1 /* derived from /netlib/fdlibm */ 2 3 /* @(#)e_acos.c 1.3 95/01/18 */ 4 /* 5 * ==================================================== 6 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 7 * 8 * Developed at SunSoft, a Sun Microsystems, Inc. business. 9 * Permission to use, copy, modify, and distribute this 10 * software is freely granted, provided that this notice 11 * is preserved. 12 * ==================================================== 13 */ 14 15 /* __ieee754_acos(x) 16 * Method : 17 * acos(x) = pi/2 - asin(x) 18 * acos(-x) = pi/2 + asin(x) 19 * For |x|<=0.5 20 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) 21 * For x>0.5 22 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) 23 * = 2asin(sqrt((1-x)/2)) 24 * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) 25 * = 2f + (2c + 2s*z*R(z)) 26 * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term 27 * for f so that f+c ~ sqrt(z). 28 * For x<-0.5 29 * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) 30 * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) 31 * 32 * Special cases: 33 * if x is NaN, return x itself; 34 * if |x|>1, return NaN with invalid signal. 35 * 36 * Function needed: sqrt 37 */ 38 39 #include "fdlibm.h" 40 41 static const double 42 one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 43 pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ 44 pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ 45 pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ 46 pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ 47 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ 48 pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ 49 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ 50 pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ 51 pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ 52 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ 53 qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ 54 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ 55 qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ 56 57 double __ieee754_acos(double x) 58 { 59 double z,p,q,r,w,s,c,df; 60 int hx,ix; 61 hx = __HI(x); 62 ix = hx&0x7fffffff; 63 if(ix>=0x3ff00000) { /* |x| >= 1 */ 64 if(((ix-0x3ff00000)|__LO(x))==0) { /* |x|==1 */ 65 if(hx>0) return 0.0; /* acos(1) = 0 */ 66 else return pi+2.0*pio2_lo; /* acos(-1)= pi */ 67 } 68 return (x-x)/(x-x); /* acos(|x|>1) is NaN */ 69 } 70 if(ix<0x3fe00000) { /* |x| < 0.5 */ 71 if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/ 72 z = x*x; 73 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); 74 q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); 75 r = p/q; 76 return pio2_hi - (x - (pio2_lo-x*r)); 77 } else if (hx<0) { /* x < -0.5 */ 78 z = (one+x)*0.5; 79 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); 80 q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); 81 s = sqrt(z); 82 r = p/q; 83 w = r*s-pio2_lo; 84 return pi - 2.0*(s+w); 85 } else { /* x > 0.5 */ 86 z = (one-x)*0.5; 87 s = sqrt(z); 88 df = s; 89 __LO(df) = 0; 90 c = (z-df*df)/(s+df); 91 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); 92 q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4))); 93 r = p/q; 94 w = r*s+c; 95 return 2.0*(df+w); 96 } 97 } 98