1 #ifndef __sctp_lock_bsd_h__ 2 #define __sctp_lock_bsd_h__ 3 /*- 4 * Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions are met: 8 * 9 * a) Redistributions of source code must retain the above copyright notice, 10 * this list of conditions and the following disclaimer. 11 * 12 * b) Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in 14 * the documentation and/or other materials provided with the distribution. 15 * 16 * c) Neither the name of Cisco Systems, Inc. nor the names of its 17 * contributors may be used to endorse or promote products derived 18 * from this software without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 22 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 24 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * General locking concepts: The goal of our locking is to of course provide 35 * consistency and yet minimize overhead. We will attempt to use 36 * non-recursive locks which are supposed to be quite inexpensive. Now in 37 * order to do this the goal is that most functions are not aware of locking. 38 * Once we have a TCB we lock it and unlock when we are through. This means 39 * that the TCB lock is kind-of a "global" lock when working on an 40 * association. Caution must be used when asserting a TCB_LOCK since if we 41 * recurse we deadlock. 42 * 43 * Most other locks (INP and INFO) attempt to localize the locking i.e. we try 44 * to contain the lock and unlock within the function that needs to lock it. 45 * This sometimes mean we do extra locks and unlocks and lose a bit of 46 * efficency, but if the performance statements about non-recursive locks are 47 * true this should not be a problem. One issue that arises with this only 48 * lock when needed is that if an implicit association setup is done we have 49 * a problem. If at the time I lookup an association I have NULL in the tcb 50 * return, by the time I call to create the association some other processor 51 * could have created it. This is what the CREATE lock on the endpoint. 52 * Places where we will be implicitly creating the association OR just 53 * creating an association (the connect call) will assert the CREATE_INP 54 * lock. This will assure us that during all the lookup of INP and INFO if 55 * another creator is also locking/looking up we can gate the two to 56 * synchronize. So the CREATE_INP lock is also another one we must use 57 * extreme caution in locking to make sure we don't hit a re-entrancy issue. 58 * 59 * For non FreeBSD 5.x we provide a bunch of EMPTY lock macros so we can 60 * blatantly put locks everywhere and they reduce to nothing on 61 * NetBSD/OpenBSD and FreeBSD 4.x 62 * 63 */ 64 65 /* 66 * When working with the global SCTP lists we lock and unlock the INP_INFO 67 * lock. So when we go to lookup an association we will want to do a 68 * SCTP_INP_INFO_RLOCK() and then when we want to add a new association to 69 * the sctppcbinfo list's we will do a SCTP_INP_INFO_WLOCK(). 70 */ 71 #include <sys/cdefs.h> 72 __FBSDID("$FreeBSD$"); 73 74 75 extern struct sctp_foo_stuff sctp_logoff[]; 76 extern int sctp_logoff_stuff; 77 78 #define SCTP_IPI_COUNT_INIT() 79 80 #define SCTP_STATLOG_INIT_LOCK() 81 #define SCTP_STATLOG_LOCK() 82 #define SCTP_STATLOG_UNLOCK() 83 #define SCTP_STATLOG_DESTROY() 84 85 86 #define SCTP_INP_INFO_LOCK_INIT() \ 87 mtx_init(&sctppcbinfo.ipi_ep_mtx, "sctp-info", "inp_info", MTX_DEF) 88 89 90 #define SCTP_INP_INFO_RLOCK() do { \ 91 mtx_lock(&sctppcbinfo.ipi_ep_mtx); \ 92 } while (0) 93 94 95 #define SCTP_INP_INFO_WLOCK() do { \ 96 mtx_lock(&sctppcbinfo.ipi_ep_mtx); \ 97 } while (0) 98 99 100 #define SCTP_IPI_ADDR_INIT() \ 101 mtx_init(&sctppcbinfo.ipi_addr_mtx, "sctp-addr", "sctp_addr", MTX_DEF) 102 103 #define SCTP_IPI_ADDR_DESTROY() \ 104 mtx_destroy(&sctppcbinfo.ipi_addr_mtx) 105 106 #define SCTP_IPI_ADDR_LOCK() do { \ 107 mtx_lock(&sctppcbinfo.ipi_addr_mtx); \ 108 } while (0) 109 110 #define SCTP_IPI_ADDR_UNLOCK() mtx_unlock(&sctppcbinfo.ipi_addr_mtx) 111 112 113 114 #define SCTP_IPI_ITERATOR_WQ_INIT() \ 115 mtx_init(&sctppcbinfo.ipi_iterator_wq_mtx, "sctp-it-wq", "sctp_it_wq", MTX_DEF) 116 117 #define SCTP_IPI_ITERATOR_WQ_DESTROY() \ 118 mtx_destroy(&sctppcbinfo.ipi_iterator_wq_mtx) 119 120 #define SCTP_IPI_ITERATOR_WQ_LOCK() do { \ 121 mtx_lock(&sctppcbinfo.ipi_iterator_wq_mtx); \ 122 } while (0) 123 124 #define SCTP_IPI_ITERATOR_WQ_UNLOCK() mtx_unlock(&sctppcbinfo.ipi_iterator_wq_mtx) 125 126 127 #define SCTP_IP_PKTLOG_INIT() \ 128 mtx_init(&sctppcbinfo.ipi_pktlog_mtx, "sctp-pktlog", "packetlog", MTX_DEF) 129 130 131 #define SCTP_IP_PKTLOG_LOCK() do { \ 132 mtx_lock(&sctppcbinfo.ipi_pktlog_mtx); \ 133 } while (0) 134 135 #define SCTP_IP_PKTLOG_UNLOCK() mtx_unlock(&sctppcbinfo.ipi_pktlog_mtx) 136 137 #define SCTP_IP_PKTLOG_DESTROY() \ 138 mtx_destroy(&sctppcbinfo.ipi_pktlog_mtx) 139 140 141 142 143 #define SCTP_INP_INFO_RUNLOCK() mtx_unlock(&sctppcbinfo.ipi_ep_mtx) 144 #define SCTP_INP_INFO_WUNLOCK() mtx_unlock(&sctppcbinfo.ipi_ep_mtx) 145 146 /* 147 * The INP locks we will use for locking an SCTP endpoint, so for example if 148 * we want to change something at the endpoint level for example random_store 149 * or cookie secrets we lock the INP level. 150 */ 151 152 #define SCTP_INP_READ_INIT(_inp) \ 153 mtx_init(&(_inp)->inp_rdata_mtx, "sctp-read", "inpr", MTX_DEF | MTX_DUPOK) 154 155 #define SCTP_INP_READ_DESTROY(_inp) \ 156 mtx_destroy(&(_inp)->inp_rdata_mtx) 157 158 #define SCTP_INP_READ_LOCK(_inp) do { \ 159 mtx_lock(&(_inp)->inp_rdata_mtx); \ 160 } while (0) 161 162 163 #define SCTP_INP_READ_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_rdata_mtx) 164 165 166 #define SCTP_INP_LOCK_INIT(_inp) \ 167 mtx_init(&(_inp)->inp_mtx, "sctp-inp", "inp", MTX_DEF | MTX_DUPOK) 168 #define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \ 169 mtx_init(&(_inp)->inp_create_mtx, "sctp-create", "inp_create", \ 170 MTX_DEF | MTX_DUPOK) 171 172 #define SCTP_INP_LOCK_DESTROY(_inp) \ 173 mtx_destroy(&(_inp)->inp_mtx) 174 175 #define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) \ 176 mtx_destroy(&(_inp)->inp_create_mtx) 177 178 179 #ifdef SCTP_LOCK_LOGGING 180 #define SCTP_INP_RLOCK(_inp) do { \ 181 if(sctp_logging_level & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\ 182 mtx_lock(&(_inp)->inp_mtx); \ 183 } while (0) 184 185 #define SCTP_INP_WLOCK(_inp) do { \ 186 if(sctp_logging_level & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_INP);\ 187 mtx_lock(&(_inp)->inp_mtx); \ 188 } while (0) 189 190 #else 191 192 #define SCTP_INP_RLOCK(_inp) do { \ 193 mtx_lock(&(_inp)->inp_mtx); \ 194 } while (0) 195 196 #define SCTP_INP_WLOCK(_inp) do { \ 197 mtx_lock(&(_inp)->inp_mtx); \ 198 } while (0) 199 200 #endif 201 202 203 #define SCTP_TCB_SEND_LOCK_INIT(_tcb) \ 204 mtx_init(&(_tcb)->tcb_send_mtx, "sctp-send-tcb", "tcbs", MTX_DEF | MTX_DUPOK) 205 206 #define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_send_mtx) 207 208 #define SCTP_TCB_SEND_LOCK(_tcb) do { \ 209 mtx_lock(&(_tcb)->tcb_send_mtx); \ 210 } while (0) 211 212 #define SCTP_TCB_SEND_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_send_mtx) 213 214 #define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1) 215 #define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1) 216 217 218 #ifdef SCTP_LOCK_LOGGING 219 #define SCTP_ASOC_CREATE_LOCK(_inp) \ 220 do { \ 221 if(sctp_logging_level & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_inp, (struct sctp_tcb *)NULL, SCTP_LOG_LOCK_CREATE); \ 222 mtx_lock(&(_inp)->inp_create_mtx); \ 223 } while (0) 224 #else 225 226 #define SCTP_ASOC_CREATE_LOCK(_inp) \ 227 do { \ 228 mtx_lock(&(_inp)->inp_create_mtx); \ 229 } while (0) 230 #endif 231 232 #define SCTP_INP_RUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 233 #define SCTP_INP_WUNLOCK(_inp) mtx_unlock(&(_inp)->inp_mtx) 234 #define SCTP_ASOC_CREATE_UNLOCK(_inp) mtx_unlock(&(_inp)->inp_create_mtx) 235 236 /* 237 * For the majority of things (once we have found the association) we will 238 * lock the actual association mutex. This will protect all the assoiciation 239 * level queues and streams and such. We will need to lock the socket layer 240 * when we stuff data up into the receiving sb_mb. I.e. we will need to do an 241 * extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked. 242 */ 243 244 #define SCTP_TCB_LOCK_INIT(_tcb) \ 245 mtx_init(&(_tcb)->tcb_mtx, "sctp-tcb", "tcb", MTX_DEF | MTX_DUPOK) 246 247 #define SCTP_TCB_LOCK_DESTROY(_tcb) mtx_destroy(&(_tcb)->tcb_mtx) 248 249 #ifdef SCTP_LOCK_LOGGING 250 #define SCTP_TCB_LOCK(_tcb) do { \ 251 if(sctp_logging_level & SCTP_LOCK_LOGGING_ENABLE) sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB); \ 252 mtx_lock(&(_tcb)->tcb_mtx); \ 253 } while (0) 254 255 #else 256 #define SCTP_TCB_LOCK(_tcb) do { \ 257 mtx_lock(&(_tcb)->tcb_mtx); \ 258 } while (0) 259 260 #endif 261 262 263 #define SCTP_TCB_TRYLOCK(_tcb) mtx_trylock(&(_tcb)->tcb_mtx) 264 265 #define SCTP_TCB_UNLOCK(_tcb) mtx_unlock(&(_tcb)->tcb_mtx) 266 267 #define SCTP_TCB_UNLOCK_IFOWNED(_tcb) do { \ 268 if (mtx_owned(&(_tcb)->tcb_mtx)) \ 269 mtx_unlock(&(_tcb)->tcb_mtx); \ 270 } while (0) 271 272 273 274 #ifdef INVARIANTS 275 #define SCTP_TCB_LOCK_ASSERT(_tcb) do { \ 276 if (mtx_owned(&(_tcb)->tcb_mtx) == 0) \ 277 panic("Don't own TCB lock"); \ 278 } while (0) 279 #else 280 #define SCTP_TCB_LOCK_ASSERT(_tcb) 281 #endif 282 283 #define SCTP_ITERATOR_LOCK_INIT() \ 284 mtx_init(&sctppcbinfo.it_mtx, "sctp-it", "iterator", MTX_DEF) 285 286 #ifdef INVARIANTS 287 #define SCTP_ITERATOR_LOCK() \ 288 do { \ 289 if (mtx_owned(&sctppcbinfo.it_mtx)) \ 290 panic("Iterator Lock"); \ 291 mtx_lock(&sctppcbinfo.it_mtx); \ 292 } while (0) 293 #else 294 #define SCTP_ITERATOR_LOCK() \ 295 do { \ 296 mtx_lock(&sctppcbinfo.it_mtx); \ 297 } while (0) 298 299 #endif 300 301 #define SCTP_ITERATOR_UNLOCK() mtx_unlock(&sctppcbinfo.it_mtx) 302 #define SCTP_ITERATOR_LOCK_DESTROY() mtx_destroy(&sctppcbinfo.it_mtx) 303 304 305 #define SCTP_INCR_EP_COUNT() \ 306 do { \ 307 atomic_add_int(&sctppcbinfo.ipi_count_ep, 1); \ 308 } while (0) 309 310 #define SCTP_DECR_EP_COUNT() \ 311 do { \ 312 atomic_subtract_int(&sctppcbinfo.ipi_count_ep, 1); \ 313 } while (0) 314 315 #define SCTP_INCR_ASOC_COUNT() \ 316 do { \ 317 atomic_add_int(&sctppcbinfo.ipi_count_asoc, 1); \ 318 } while (0) 319 320 #define SCTP_DECR_ASOC_COUNT() \ 321 do { \ 322 atomic_subtract_int(&sctppcbinfo.ipi_count_asoc, 1); \ 323 } while (0) 324 325 #define SCTP_INCR_LADDR_COUNT() \ 326 do { \ 327 atomic_add_int(&sctppcbinfo.ipi_count_laddr, 1); \ 328 } while (0) 329 330 #define SCTP_DECR_LADDR_COUNT() \ 331 do { \ 332 atomic_subtract_int(&sctppcbinfo.ipi_count_laddr, 1); \ 333 } while (0) 334 335 #define SCTP_INCR_RADDR_COUNT() \ 336 do { \ 337 atomic_add_int(&sctppcbinfo.ipi_count_raddr, 1); \ 338 } while (0) 339 340 #define SCTP_DECR_RADDR_COUNT() \ 341 do { \ 342 atomic_subtract_int(&sctppcbinfo.ipi_count_raddr,1); \ 343 } while (0) 344 345 #define SCTP_INCR_CHK_COUNT() \ 346 do { \ 347 atomic_add_int(&sctppcbinfo.ipi_count_chunk, 1); \ 348 } while (0) 349 350 #define SCTP_DECR_CHK_COUNT() \ 351 do { \ 352 if(sctppcbinfo.ipi_count_chunk == 0) \ 353 panic("chunk count to 0?"); \ 354 atomic_subtract_int(&sctppcbinfo.ipi_count_chunk, 1); \ 355 } while (0) 356 357 #define SCTP_INCR_READQ_COUNT() \ 358 do { \ 359 atomic_add_int(&sctppcbinfo.ipi_count_readq,1); \ 360 } while (0) 361 362 #define SCTP_DECR_READQ_COUNT() \ 363 do { \ 364 atomic_subtract_int(&sctppcbinfo.ipi_count_readq, 1); \ 365 } while (0) 366 367 #define SCTP_INCR_STRMOQ_COUNT() \ 368 do { \ 369 atomic_add_int(&sctppcbinfo.ipi_count_strmoq, 1); \ 370 } while (0) 371 372 #define SCTP_DECR_STRMOQ_COUNT() \ 373 do { \ 374 atomic_subtract_int(&sctppcbinfo.ipi_count_strmoq, 1); \ 375 } while (0) 376 377 378 #endif 379