xref: /freebsd-src/sys/net80211/ieee80211_output.c (revision 9310c7d568363767c06ec1aa2255c313e70f54bc)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/endian.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/bpf.h>
43 #include <net/ethernet.h>
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_llc.h>
47 #include <net/if_media.h>
48 #include <net/if_vlan_var.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_regdomain.h>
52 #ifdef IEEE80211_SUPPORT_SUPERG
53 #include <net80211/ieee80211_superg.h>
54 #endif
55 #ifdef IEEE80211_SUPPORT_TDMA
56 #include <net80211/ieee80211_tdma.h>
57 #endif
58 #include <net80211/ieee80211_wds.h>
59 #include <net80211/ieee80211_mesh.h>
60 
61 #if defined(INET) || defined(INET6)
62 #include <netinet/in.h>
63 #endif
64 
65 #ifdef INET
66 #include <netinet/if_ether.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #endif
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #endif
73 
74 #include <security/mac/mac_framework.h>
75 
76 #define	ETHER_HEADER_COPY(dst, src) \
77 	memcpy(dst, src, sizeof(struct ether_header))
78 
79 /* unalligned little endian access */
80 #define LE_WRITE_2(p, v) do {				\
81 	((uint8_t *)(p))[0] = (v) & 0xff;		\
82 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
83 } while (0)
84 #define LE_WRITE_4(p, v) do {				\
85 	((uint8_t *)(p))[0] = (v) & 0xff;		\
86 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
87 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
88 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
89 } while (0)
90 
91 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
92 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
93 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
94 
95 #ifdef IEEE80211_DEBUG
96 /*
97  * Decide if an outbound management frame should be
98  * printed when debugging is enabled.  This filters some
99  * of the less interesting frames that come frequently
100  * (e.g. beacons).
101  */
102 static __inline int
103 doprint(struct ieee80211vap *vap, int subtype)
104 {
105 	switch (subtype) {
106 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
107 		return (vap->iv_opmode == IEEE80211_M_IBSS);
108 	}
109 	return 1;
110 }
111 #endif
112 
113 /*
114  * Transmit a frame to the given destination on the given VAP.
115  *
116  * It's up to the caller to figure out the details of who this
117  * is going to and resolving the node.
118  *
119  * This routine takes care of queuing it for power save,
120  * A-MPDU state stuff, fast-frames state stuff, encapsulation
121  * if required, then passing it up to the driver layer.
122  *
123  * This routine (for now) consumes the mbuf and frees the node
124  * reference; it ideally will return a TX status which reflects
125  * whether the mbuf was consumed or not, so the caller can
126  * free the mbuf (if appropriate) and the node reference (again,
127  * if appropriate.)
128  */
129 int
130 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
131     struct ieee80211_node *ni)
132 {
133 	struct ieee80211com *ic = vap->iv_ic;
134 	struct ifnet *ifp = vap->iv_ifp;
135 	int error, len, mcast;
136 
137 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
138 	    (m->m_flags & M_PWR_SAV) == 0) {
139 		/*
140 		 * Station in power save mode; pass the frame
141 		 * to the 802.11 layer and continue.  We'll get
142 		 * the frame back when the time is right.
143 		 * XXX lose WDS vap linkage?
144 		 */
145 		if (ieee80211_pwrsave(ni, m) != 0)
146 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
147 		ieee80211_free_node(ni);
148 
149 		/*
150 		 * We queued it fine, so tell the upper layer
151 		 * that we consumed it.
152 		 */
153 		return (0);
154 	}
155 	/* calculate priority so drivers can find the tx queue */
156 	if (ieee80211_classify(ni, m)) {
157 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
158 		    ni->ni_macaddr, NULL,
159 		    "%s", "classification failure");
160 		vap->iv_stats.is_tx_classify++;
161 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
162 		m_freem(m);
163 		ieee80211_free_node(ni);
164 
165 		/* XXX better status? */
166 		return (0);
167 	}
168 	/*
169 	 * Stash the node pointer.  Note that we do this after
170 	 * any call to ieee80211_dwds_mcast because that code
171 	 * uses any existing value for rcvif to identify the
172 	 * interface it (might have been) received on.
173 	 */
174 	m->m_pkthdr.rcvif = (void *)ni;
175 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
176 	len = m->m_pkthdr.len;
177 
178 	BPF_MTAP(ifp, m);		/* 802.3 tx */
179 
180 	/*
181 	 * Check if A-MPDU tx aggregation is setup or if we
182 	 * should try to enable it.  The sta must be associated
183 	 * with HT and A-MPDU enabled for use.  When the policy
184 	 * routine decides we should enable A-MPDU we issue an
185 	 * ADDBA request and wait for a reply.  The frame being
186 	 * encapsulated will go out w/o using A-MPDU, or possibly
187 	 * it might be collected by the driver and held/retransmit.
188 	 * The default ic_ampdu_enable routine handles staggering
189 	 * ADDBA requests in case the receiver NAK's us or we are
190 	 * otherwise unable to establish a BA stream.
191 	 */
192 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
193 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
194 	    (m->m_flags & M_EAPOL) == 0) {
195 		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
196 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
197 
198 		ieee80211_txampdu_count_packet(tap);
199 		if (IEEE80211_AMPDU_RUNNING(tap)) {
200 			/*
201 			 * Operational, mark frame for aggregation.
202 			 *
203 			 * XXX do tx aggregation here
204 			 */
205 			m->m_flags |= M_AMPDU_MPDU;
206 		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
207 		    ic->ic_ampdu_enable(ni, tap)) {
208 			/*
209 			 * Not negotiated yet, request service.
210 			 */
211 			ieee80211_ampdu_request(ni, tap);
212 			/* XXX hold frame for reply? */
213 		}
214 	}
215 
216 #ifdef IEEE80211_SUPPORT_SUPERG
217 	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
218 		m = ieee80211_ff_check(ni, m);
219 		if (m == NULL) {
220 			/* NB: any ni ref held on stageq */
221 			return (0);
222 		}
223 	}
224 #endif /* IEEE80211_SUPPORT_SUPERG */
225 
226 	/*
227 	 * Grab the TX lock - serialise the TX process from this
228 	 * point (where TX state is being checked/modified)
229 	 * through to driver queue.
230 	 */
231 	IEEE80211_TX_LOCK(ic);
232 
233 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
234 		/*
235 		 * Encapsulate the packet in prep for transmission.
236 		 */
237 		m = ieee80211_encap(vap, ni, m);
238 		if (m == NULL) {
239 			/* NB: stat+msg handled in ieee80211_encap */
240 			IEEE80211_TX_UNLOCK(ic);
241 			ieee80211_free_node(ni);
242 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
243 			return (ENOBUFS);
244 		}
245 	}
246 	error = ieee80211_parent_xmitpkt(ic, m);
247 
248 	/*
249 	 * Unlock at this point - no need to hold it across
250 	 * ieee80211_free_node() (ie, the comlock)
251 	 */
252 	IEEE80211_TX_UNLOCK(ic);
253 	if (error != 0) {
254 		/* NB: IFQ_HANDOFF reclaims mbuf */
255 		ieee80211_free_node(ni);
256 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
257 	} else {
258 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
259 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
260 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
261 	}
262 	ic->ic_lastdata = ticks;
263 
264 	return (0);
265 }
266 
267 
268 
269 /*
270  * Send the given mbuf through the given vap.
271  *
272  * This consumes the mbuf regardless of whether the transmit
273  * was successful or not.
274  *
275  * This does none of the initial checks that ieee80211_start()
276  * does (eg CAC timeout, interface wakeup) - the caller must
277  * do this first.
278  */
279 static int
280 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
281 {
282 #define	IS_DWDS(vap) \
283 	(vap->iv_opmode == IEEE80211_M_WDS && \
284 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
285 	struct ieee80211com *ic = vap->iv_ic;
286 	struct ifnet *ifp = vap->iv_ifp;
287 	struct ieee80211_node *ni;
288 	struct ether_header *eh;
289 
290 	/*
291 	 * Cancel any background scan.
292 	 */
293 	if (ic->ic_flags & IEEE80211_F_SCAN)
294 		ieee80211_cancel_anyscan(vap);
295 	/*
296 	 * Find the node for the destination so we can do
297 	 * things like power save and fast frames aggregation.
298 	 *
299 	 * NB: past this point various code assumes the first
300 	 *     mbuf has the 802.3 header present (and contiguous).
301 	 */
302 	ni = NULL;
303 	if (m->m_len < sizeof(struct ether_header) &&
304 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
305 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
306 		    "discard frame, %s\n", "m_pullup failed");
307 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
308 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
309 		return (ENOBUFS);
310 	}
311 	eh = mtod(m, struct ether_header *);
312 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
313 		if (IS_DWDS(vap)) {
314 			/*
315 			 * Only unicast frames from the above go out
316 			 * DWDS vaps; multicast frames are handled by
317 			 * dispatching the frame as it comes through
318 			 * the AP vap (see below).
319 			 */
320 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
321 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
322 			vap->iv_stats.is_dwds_mcast++;
323 			m_freem(m);
324 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
325 			/* XXX better status? */
326 			return (ENOBUFS);
327 		}
328 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
329 			/*
330 			 * Spam DWDS vap's w/ multicast traffic.
331 			 */
332 			/* XXX only if dwds in use? */
333 			ieee80211_dwds_mcast(vap, m);
334 		}
335 	}
336 #ifdef IEEE80211_SUPPORT_MESH
337 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
338 #endif
339 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
340 		if (ni == NULL) {
341 			/* NB: ieee80211_find_txnode does stat+msg */
342 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
343 			m_freem(m);
344 			/* XXX better status? */
345 			return (ENOBUFS);
346 		}
347 		if (ni->ni_associd == 0 &&
348 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
349 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
350 			    eh->ether_dhost, NULL,
351 			    "sta not associated (type 0x%04x)",
352 			    htons(eh->ether_type));
353 			vap->iv_stats.is_tx_notassoc++;
354 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
355 			m_freem(m);
356 			ieee80211_free_node(ni);
357 			/* XXX better status? */
358 			return (ENOBUFS);
359 		}
360 #ifdef IEEE80211_SUPPORT_MESH
361 	} else {
362 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
363 			/*
364 			 * Proxy station only if configured.
365 			 */
366 			if (!ieee80211_mesh_isproxyena(vap)) {
367 				IEEE80211_DISCARD_MAC(vap,
368 				    IEEE80211_MSG_OUTPUT |
369 				    IEEE80211_MSG_MESH,
370 				    eh->ether_dhost, NULL,
371 				    "%s", "proxy not enabled");
372 				vap->iv_stats.is_mesh_notproxy++;
373 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
374 				m_freem(m);
375 				/* XXX better status? */
376 				return (ENOBUFS);
377 			}
378 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
379 			    "forward frame from DS SA(%6D), DA(%6D)\n",
380 			    eh->ether_shost, ":",
381 			    eh->ether_dhost, ":");
382 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
383 		}
384 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
385 		if (ni == NULL) {
386 			/*
387 			 * NB: ieee80211_mesh_discover holds/disposes
388 			 * frame (e.g. queueing on path discovery).
389 			 */
390 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
391 			/* XXX better status? */
392 			return (ENOBUFS);
393 		}
394 	}
395 #endif
396 
397 	/*
398 	 * We've resolved the sender, so attempt to transmit it.
399 	 */
400 
401 	if (vap->iv_state == IEEE80211_S_SLEEP) {
402 		/*
403 		 * In power save; queue frame and then  wakeup device
404 		 * for transmit.
405 		 */
406 		ic->ic_lastdata = ticks;
407 		if (ieee80211_pwrsave(ni, m) != 0)
408 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
409 		ieee80211_free_node(ni);
410 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
411 		return (0);
412 	}
413 
414 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
415 		return (ENOBUFS);
416 	return (0);
417 #undef	IS_DWDS
418 }
419 
420 /*
421  * Start method for vap's.  All packets from the stack come
422  * through here.  We handle common processing of the packets
423  * before dispatching them to the underlying device.
424  *
425  * if_transmit() requires that the mbuf be consumed by this call
426  * regardless of the return condition.
427  */
428 int
429 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
430 {
431 	struct ieee80211vap *vap = ifp->if_softc;
432 	struct ieee80211com *ic = vap->iv_ic;
433 	struct ifnet *parent = ic->ic_ifp;
434 
435 	/* NB: parent must be up and running */
436 	if (!IFNET_IS_UP_RUNNING(parent)) {
437 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
438 		    "%s: ignore queue, parent %s not up+running\n",
439 		    __func__, parent->if_xname);
440 		m_freem(m);
441 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
442 		return (ENETDOWN);
443 	}
444 
445 	/*
446 	 * No data frames go out unless we're running.
447 	 * Note in particular this covers CAC and CSA
448 	 * states (though maybe we should check muting
449 	 * for CSA).
450 	 */
451 	if (vap->iv_state != IEEE80211_S_RUN &&
452 	    vap->iv_state != IEEE80211_S_SLEEP) {
453 		IEEE80211_LOCK(ic);
454 		/* re-check under the com lock to avoid races */
455 		if (vap->iv_state != IEEE80211_S_RUN &&
456 		    vap->iv_state != IEEE80211_S_SLEEP) {
457 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
458 			    "%s: ignore queue, in %s state\n",
459 			    __func__, ieee80211_state_name[vap->iv_state]);
460 			vap->iv_stats.is_tx_badstate++;
461 			IEEE80211_UNLOCK(ic);
462 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
463 			m_freem(m);
464 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
465 			return (ENETDOWN);
466 		}
467 		IEEE80211_UNLOCK(ic);
468 	}
469 
470 	/*
471 	 * Sanitize mbuf flags for net80211 use.  We cannot
472 	 * clear M_PWR_SAV or M_MORE_DATA because these may
473 	 * be set for frames that are re-submitted from the
474 	 * power save queue.
475 	 *
476 	 * NB: This must be done before ieee80211_classify as
477 	 *     it marks EAPOL in frames with M_EAPOL.
478 	 */
479 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
480 
481 	/*
482 	 * Bump to the packet transmission path.
483 	 * The mbuf will be consumed here.
484 	 */
485 	return (ieee80211_start_pkt(vap, m));
486 }
487 
488 void
489 ieee80211_vap_qflush(struct ifnet *ifp)
490 {
491 
492 	/* Empty for now */
493 }
494 
495 /*
496  * 802.11 raw output routine.
497  *
498  * XXX TODO: this (and other send routines) should correctly
499  * XXX keep the pwr mgmt bit set if it decides to call into the
500  * XXX driver to send a frame whilst the state is SLEEP.
501  *
502  * Otherwise the peer may decide that we're awake and flood us
503  * with traffic we are still too asleep to receive!
504  */
505 int
506 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
507     struct mbuf *m, const struct ieee80211_bpf_params *params)
508 {
509 	struct ieee80211com *ic = vap->iv_ic;
510 
511 	return (ic->ic_raw_xmit(ni, m, params));
512 }
513 
514 /*
515  * 802.11 output routine. This is (currently) used only to
516  * connect bpf write calls to the 802.11 layer for injecting
517  * raw 802.11 frames.
518  */
519 int
520 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
521 	const struct sockaddr *dst, struct route *ro)
522 {
523 #define senderr(e) do { error = (e); goto bad;} while (0)
524 	struct ieee80211_node *ni = NULL;
525 	struct ieee80211vap *vap;
526 	struct ieee80211_frame *wh;
527 	struct ieee80211com *ic = NULL;
528 	int error;
529 	int ret;
530 
531 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
532 		/*
533 		 * Short-circuit requests if the vap is marked OACTIVE
534 		 * as this can happen because a packet came down through
535 		 * ieee80211_start before the vap entered RUN state in
536 		 * which case it's ok to just drop the frame.  This
537 		 * should not be necessary but callers of if_output don't
538 		 * check OACTIVE.
539 		 */
540 		senderr(ENETDOWN);
541 	}
542 	vap = ifp->if_softc;
543 	ic = vap->iv_ic;
544 	/*
545 	 * Hand to the 802.3 code if not tagged as
546 	 * a raw 802.11 frame.
547 	 */
548 	if (dst->sa_family != AF_IEEE80211)
549 		return vap->iv_output(ifp, m, dst, ro);
550 #ifdef MAC
551 	error = mac_ifnet_check_transmit(ifp, m);
552 	if (error)
553 		senderr(error);
554 #endif
555 	if (ifp->if_flags & IFF_MONITOR)
556 		senderr(ENETDOWN);
557 	if (!IFNET_IS_UP_RUNNING(ifp))
558 		senderr(ENETDOWN);
559 	if (vap->iv_state == IEEE80211_S_CAC) {
560 		IEEE80211_DPRINTF(vap,
561 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
562 		    "block %s frame in CAC state\n", "raw data");
563 		vap->iv_stats.is_tx_badstate++;
564 		senderr(EIO);		/* XXX */
565 	} else if (vap->iv_state == IEEE80211_S_SCAN)
566 		senderr(EIO);
567 	/* XXX bypass bridge, pfil, carp, etc. */
568 
569 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
570 		senderr(EIO);	/* XXX */
571 	wh = mtod(m, struct ieee80211_frame *);
572 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
573 	    IEEE80211_FC0_VERSION_0)
574 		senderr(EIO);	/* XXX */
575 
576 	/* locate destination node */
577 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
578 	case IEEE80211_FC1_DIR_NODS:
579 	case IEEE80211_FC1_DIR_FROMDS:
580 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
581 		break;
582 	case IEEE80211_FC1_DIR_TODS:
583 	case IEEE80211_FC1_DIR_DSTODS:
584 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
585 			senderr(EIO);	/* XXX */
586 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
587 		break;
588 	default:
589 		senderr(EIO);	/* XXX */
590 	}
591 	if (ni == NULL) {
592 		/*
593 		 * Permit packets w/ bpf params through regardless
594 		 * (see below about sa_len).
595 		 */
596 		if (dst->sa_len == 0)
597 			senderr(EHOSTUNREACH);
598 		ni = ieee80211_ref_node(vap->iv_bss);
599 	}
600 
601 	/*
602 	 * Sanitize mbuf for net80211 flags leaked from above.
603 	 *
604 	 * NB: This must be done before ieee80211_classify as
605 	 *     it marks EAPOL in frames with M_EAPOL.
606 	 */
607 	m->m_flags &= ~M_80211_TX;
608 
609 	/* calculate priority so drivers can find the tx queue */
610 	/* XXX assumes an 802.3 frame */
611 	if (ieee80211_classify(ni, m))
612 		senderr(EIO);		/* XXX */
613 
614 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
615 	IEEE80211_NODE_STAT(ni, tx_data);
616 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
617 		IEEE80211_NODE_STAT(ni, tx_mcast);
618 		m->m_flags |= M_MCAST;
619 	} else
620 		IEEE80211_NODE_STAT(ni, tx_ucast);
621 	/* NB: ieee80211_encap does not include 802.11 header */
622 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
623 
624 	IEEE80211_TX_LOCK(ic);
625 
626 	/*
627 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
628 	 * present by setting the sa_len field of the sockaddr (yes,
629 	 * this is a hack).
630 	 * NB: we assume sa_data is suitably aligned to cast.
631 	 */
632 	ret = ieee80211_raw_output(vap, ni, m,
633 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
634 		dst->sa_data : NULL));
635 	IEEE80211_TX_UNLOCK(ic);
636 	return (ret);
637 bad:
638 	if (m != NULL)
639 		m_freem(m);
640 	if (ni != NULL)
641 		ieee80211_free_node(ni);
642 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
643 	return error;
644 #undef senderr
645 }
646 
647 /*
648  * Set the direction field and address fields of an outgoing
649  * frame.  Note this should be called early on in constructing
650  * a frame as it sets i_fc[1]; other bits can then be or'd in.
651  */
652 void
653 ieee80211_send_setup(
654 	struct ieee80211_node *ni,
655 	struct mbuf *m,
656 	int type, int tid,
657 	const uint8_t sa[IEEE80211_ADDR_LEN],
658 	const uint8_t da[IEEE80211_ADDR_LEN],
659 	const uint8_t bssid[IEEE80211_ADDR_LEN])
660 {
661 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
662 	struct ieee80211vap *vap = ni->ni_vap;
663 	struct ieee80211_tx_ampdu *tap;
664 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
665 	ieee80211_seq seqno;
666 
667 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
668 
669 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
670 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
671 		switch (vap->iv_opmode) {
672 		case IEEE80211_M_STA:
673 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
674 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
675 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
676 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
677 			break;
678 		case IEEE80211_M_IBSS:
679 		case IEEE80211_M_AHDEMO:
680 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
681 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
682 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
683 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
684 			break;
685 		case IEEE80211_M_HOSTAP:
686 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
687 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
688 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
689 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
690 			break;
691 		case IEEE80211_M_WDS:
692 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
693 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
694 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
695 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
696 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
697 			break;
698 		case IEEE80211_M_MBSS:
699 #ifdef IEEE80211_SUPPORT_MESH
700 			if (IEEE80211_IS_MULTICAST(da)) {
701 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
702 				/* XXX next hop */
703 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
704 				IEEE80211_ADDR_COPY(wh->i_addr2,
705 				    vap->iv_myaddr);
706 			} else {
707 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
708 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
709 				IEEE80211_ADDR_COPY(wh->i_addr2,
710 				    vap->iv_myaddr);
711 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
712 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
713 			}
714 #endif
715 			break;
716 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
717 			break;
718 		}
719 	} else {
720 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
721 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
722 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
723 #ifdef IEEE80211_SUPPORT_MESH
724 		if (vap->iv_opmode == IEEE80211_M_MBSS)
725 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
726 		else
727 #endif
728 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
729 	}
730 	*(uint16_t *)&wh->i_dur[0] = 0;
731 
732 	tap = &ni->ni_tx_ampdu[tid];
733 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
734 		m->m_flags |= M_AMPDU_MPDU;
735 	else {
736 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
737 				      type & IEEE80211_FC0_SUBTYPE_MASK))
738 			seqno = ni->ni_txseqs[tid]++;
739 		else
740 			seqno = 0;
741 
742 		*(uint16_t *)&wh->i_seq[0] =
743 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
744 		M_SEQNO_SET(m, seqno);
745 	}
746 
747 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
748 		m->m_flags |= M_MCAST;
749 #undef WH4
750 }
751 
752 /*
753  * Send a management frame to the specified node.  The node pointer
754  * must have a reference as the pointer will be passed to the driver
755  * and potentially held for a long time.  If the frame is successfully
756  * dispatched to the driver, then it is responsible for freeing the
757  * reference (and potentially free'ing up any associated storage);
758  * otherwise deal with reclaiming any reference (on error).
759  */
760 int
761 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
762 	struct ieee80211_bpf_params *params)
763 {
764 	struct ieee80211vap *vap = ni->ni_vap;
765 	struct ieee80211com *ic = ni->ni_ic;
766 	struct ieee80211_frame *wh;
767 	int ret;
768 
769 	KASSERT(ni != NULL, ("null node"));
770 
771 	if (vap->iv_state == IEEE80211_S_CAC) {
772 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
773 		    ni, "block %s frame in CAC state",
774 			ieee80211_mgt_subtype_name[
775 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
776 				IEEE80211_FC0_SUBTYPE_SHIFT]);
777 		vap->iv_stats.is_tx_badstate++;
778 		ieee80211_free_node(ni);
779 		m_freem(m);
780 		return EIO;		/* XXX */
781 	}
782 
783 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
784 	if (m == NULL) {
785 		ieee80211_free_node(ni);
786 		return ENOMEM;
787 	}
788 
789 	IEEE80211_TX_LOCK(ic);
790 
791 	wh = mtod(m, struct ieee80211_frame *);
792 	ieee80211_send_setup(ni, m,
793 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
794 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
795 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
796 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
797 		    "encrypting frame (%s)", __func__);
798 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
799 	}
800 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
801 
802 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
803 	M_WME_SETAC(m, params->ibp_pri);
804 
805 #ifdef IEEE80211_DEBUG
806 	/* avoid printing too many frames */
807 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
808 	    ieee80211_msg_dumppkts(vap)) {
809 		printf("[%s] send %s on channel %u\n",
810 		    ether_sprintf(wh->i_addr1),
811 		    ieee80211_mgt_subtype_name[
812 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
813 				IEEE80211_FC0_SUBTYPE_SHIFT],
814 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
815 	}
816 #endif
817 	IEEE80211_NODE_STAT(ni, tx_mgmt);
818 
819 	ret = ieee80211_raw_output(vap, ni, m, params);
820 	IEEE80211_TX_UNLOCK(ic);
821 	return (ret);
822 }
823 
824 /*
825  * Send a null data frame to the specified node.  If the station
826  * is setup for QoS then a QoS Null Data frame is constructed.
827  * If this is a WDS station then a 4-address frame is constructed.
828  *
829  * NB: the caller is assumed to have setup a node reference
830  *     for use; this is necessary to deal with a race condition
831  *     when probing for inactive stations.  Like ieee80211_mgmt_output
832  *     we must cleanup any node reference on error;  however we
833  *     can safely just unref it as we know it will never be the
834  *     last reference to the node.
835  */
836 int
837 ieee80211_send_nulldata(struct ieee80211_node *ni)
838 {
839 	struct ieee80211vap *vap = ni->ni_vap;
840 	struct ieee80211com *ic = ni->ni_ic;
841 	struct mbuf *m;
842 	struct ieee80211_frame *wh;
843 	int hdrlen;
844 	uint8_t *frm;
845 	int ret;
846 
847 	if (vap->iv_state == IEEE80211_S_CAC) {
848 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
849 		    ni, "block %s frame in CAC state", "null data");
850 		ieee80211_unref_node(&ni);
851 		vap->iv_stats.is_tx_badstate++;
852 		return EIO;		/* XXX */
853 	}
854 
855 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
856 		hdrlen = sizeof(struct ieee80211_qosframe);
857 	else
858 		hdrlen = sizeof(struct ieee80211_frame);
859 	/* NB: only WDS vap's get 4-address frames */
860 	if (vap->iv_opmode == IEEE80211_M_WDS)
861 		hdrlen += IEEE80211_ADDR_LEN;
862 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
863 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
864 
865 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
866 	if (m == NULL) {
867 		/* XXX debug msg */
868 		ieee80211_unref_node(&ni);
869 		vap->iv_stats.is_tx_nobuf++;
870 		return ENOMEM;
871 	}
872 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
873 	    ("leading space %zd", M_LEADINGSPACE(m)));
874 	M_PREPEND(m, hdrlen, M_NOWAIT);
875 	if (m == NULL) {
876 		/* NB: cannot happen */
877 		ieee80211_free_node(ni);
878 		return ENOMEM;
879 	}
880 
881 	IEEE80211_TX_LOCK(ic);
882 
883 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
884 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
885 		const int tid = WME_AC_TO_TID(WME_AC_BE);
886 		uint8_t *qos;
887 
888 		ieee80211_send_setup(ni, m,
889 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
890 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
891 
892 		if (vap->iv_opmode == IEEE80211_M_WDS)
893 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
894 		else
895 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
896 		qos[0] = tid & IEEE80211_QOS_TID;
897 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
898 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
899 		qos[1] = 0;
900 	} else {
901 		ieee80211_send_setup(ni, m,
902 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
903 		    IEEE80211_NONQOS_TID,
904 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
905 	}
906 	if (vap->iv_opmode != IEEE80211_M_WDS) {
907 		/* NB: power management bit is never sent by an AP */
908 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
909 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
910 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
911 	}
912 	m->m_len = m->m_pkthdr.len = hdrlen;
913 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
914 
915 	M_WME_SETAC(m, WME_AC_BE);
916 
917 	IEEE80211_NODE_STAT(ni, tx_data);
918 
919 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
920 	    "send %snull data frame on channel %u, pwr mgt %s",
921 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
922 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
923 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
924 
925 	ret = ieee80211_raw_output(vap, ni, m, NULL);
926 	IEEE80211_TX_UNLOCK(ic);
927 	return (ret);
928 }
929 
930 /*
931  * Assign priority to a frame based on any vlan tag assigned
932  * to the station and/or any Diffserv setting in an IP header.
933  * Finally, if an ACM policy is setup (in station mode) it's
934  * applied.
935  */
936 int
937 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
938 {
939 	const struct ether_header *eh = mtod(m, struct ether_header *);
940 	int v_wme_ac, d_wme_ac, ac;
941 
942 	/*
943 	 * Always promote PAE/EAPOL frames to high priority.
944 	 */
945 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
946 		/* NB: mark so others don't need to check header */
947 		m->m_flags |= M_EAPOL;
948 		ac = WME_AC_VO;
949 		goto done;
950 	}
951 	/*
952 	 * Non-qos traffic goes to BE.
953 	 */
954 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
955 		ac = WME_AC_BE;
956 		goto done;
957 	}
958 
959 	/*
960 	 * If node has a vlan tag then all traffic
961 	 * to it must have a matching tag.
962 	 */
963 	v_wme_ac = 0;
964 	if (ni->ni_vlan != 0) {
965 		 if ((m->m_flags & M_VLANTAG) == 0) {
966 			IEEE80211_NODE_STAT(ni, tx_novlantag);
967 			return 1;
968 		}
969 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
970 		    EVL_VLANOFTAG(ni->ni_vlan)) {
971 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
972 			return 1;
973 		}
974 		/* map vlan priority to AC */
975 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
976 	}
977 
978 	/* XXX m_copydata may be too slow for fast path */
979 #ifdef INET
980 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
981 		uint8_t tos;
982 		/*
983 		 * IP frame, map the DSCP bits from the TOS field.
984 		 */
985 		/* NB: ip header may not be in first mbuf */
986 		m_copydata(m, sizeof(struct ether_header) +
987 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
988 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
989 		d_wme_ac = TID_TO_WME_AC(tos);
990 	} else {
991 #endif /* INET */
992 #ifdef INET6
993 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
994 		uint32_t flow;
995 		uint8_t tos;
996 		/*
997 		 * IPv6 frame, map the DSCP bits from the traffic class field.
998 		 */
999 		m_copydata(m, sizeof(struct ether_header) +
1000 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1001 		    (caddr_t) &flow);
1002 		tos = (uint8_t)(ntohl(flow) >> 20);
1003 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1004 		d_wme_ac = TID_TO_WME_AC(tos);
1005 	} else {
1006 #endif /* INET6 */
1007 		d_wme_ac = WME_AC_BE;
1008 #ifdef INET6
1009 	}
1010 #endif
1011 #ifdef INET
1012 	}
1013 #endif
1014 	/*
1015 	 * Use highest priority AC.
1016 	 */
1017 	if (v_wme_ac > d_wme_ac)
1018 		ac = v_wme_ac;
1019 	else
1020 		ac = d_wme_ac;
1021 
1022 	/*
1023 	 * Apply ACM policy.
1024 	 */
1025 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1026 		static const int acmap[4] = {
1027 			WME_AC_BK,	/* WME_AC_BE */
1028 			WME_AC_BK,	/* WME_AC_BK */
1029 			WME_AC_BE,	/* WME_AC_VI */
1030 			WME_AC_VI,	/* WME_AC_VO */
1031 		};
1032 		struct ieee80211com *ic = ni->ni_ic;
1033 
1034 		while (ac != WME_AC_BK &&
1035 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1036 			ac = acmap[ac];
1037 	}
1038 done:
1039 	M_WME_SETAC(m, ac);
1040 	return 0;
1041 }
1042 
1043 /*
1044  * Insure there is sufficient contiguous space to encapsulate the
1045  * 802.11 data frame.  If room isn't already there, arrange for it.
1046  * Drivers and cipher modules assume we have done the necessary work
1047  * and fail rudely if they don't find the space they need.
1048  */
1049 struct mbuf *
1050 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1051 	struct ieee80211_key *key, struct mbuf *m)
1052 {
1053 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1054 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1055 
1056 	if (key != NULL) {
1057 		/* XXX belongs in crypto code? */
1058 		needed_space += key->wk_cipher->ic_header;
1059 		/* XXX frags */
1060 		/*
1061 		 * When crypto is being done in the host we must insure
1062 		 * the data are writable for the cipher routines; clone
1063 		 * a writable mbuf chain.
1064 		 * XXX handle SWMIC specially
1065 		 */
1066 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1067 			m = m_unshare(m, M_NOWAIT);
1068 			if (m == NULL) {
1069 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1070 				    "%s: cannot get writable mbuf\n", __func__);
1071 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1072 				return NULL;
1073 			}
1074 		}
1075 	}
1076 	/*
1077 	 * We know we are called just before stripping an Ethernet
1078 	 * header and prepending an LLC header.  This means we know
1079 	 * there will be
1080 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1081 	 * bytes recovered to which we need additional space for the
1082 	 * 802.11 header and any crypto header.
1083 	 */
1084 	/* XXX check trailing space and copy instead? */
1085 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1086 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1087 		if (n == NULL) {
1088 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1089 			    "%s: cannot expand storage\n", __func__);
1090 			vap->iv_stats.is_tx_nobuf++;
1091 			m_freem(m);
1092 			return NULL;
1093 		}
1094 		KASSERT(needed_space <= MHLEN,
1095 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1096 		/*
1097 		 * Setup new mbuf to have leading space to prepend the
1098 		 * 802.11 header and any crypto header bits that are
1099 		 * required (the latter are added when the driver calls
1100 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1101 		 */
1102 		/* NB: must be first 'cuz it clobbers m_data */
1103 		m_move_pkthdr(n, m);
1104 		n->m_len = 0;			/* NB: m_gethdr does not set */
1105 		n->m_data += needed_space;
1106 		/*
1107 		 * Pull up Ethernet header to create the expected layout.
1108 		 * We could use m_pullup but that's overkill (i.e. we don't
1109 		 * need the actual data) and it cannot fail so do it inline
1110 		 * for speed.
1111 		 */
1112 		/* NB: struct ether_header is known to be contiguous */
1113 		n->m_len += sizeof(struct ether_header);
1114 		m->m_len -= sizeof(struct ether_header);
1115 		m->m_data += sizeof(struct ether_header);
1116 		/*
1117 		 * Replace the head of the chain.
1118 		 */
1119 		n->m_next = m;
1120 		m = n;
1121 	}
1122 	return m;
1123 #undef TO_BE_RECLAIMED
1124 }
1125 
1126 /*
1127  * Return the transmit key to use in sending a unicast frame.
1128  * If a unicast key is set we use that.  When no unicast key is set
1129  * we fall back to the default transmit key.
1130  */
1131 static __inline struct ieee80211_key *
1132 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1133 	struct ieee80211_node *ni)
1134 {
1135 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1136 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1137 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1138 			return NULL;
1139 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1140 	} else {
1141 		return &ni->ni_ucastkey;
1142 	}
1143 }
1144 
1145 /*
1146  * Return the transmit key to use in sending a multicast frame.
1147  * Multicast traffic always uses the group key which is installed as
1148  * the default tx key.
1149  */
1150 static __inline struct ieee80211_key *
1151 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1152 	struct ieee80211_node *ni)
1153 {
1154 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1155 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1156 		return NULL;
1157 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1158 }
1159 
1160 /*
1161  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1162  * If an error is encountered NULL is returned.  The caller is required
1163  * to provide a node reference and pullup the ethernet header in the
1164  * first mbuf.
1165  *
1166  * NB: Packet is assumed to be processed by ieee80211_classify which
1167  *     marked EAPOL frames w/ M_EAPOL.
1168  */
1169 struct mbuf *
1170 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1171     struct mbuf *m)
1172 {
1173 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1174 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1175 	struct ieee80211com *ic = ni->ni_ic;
1176 #ifdef IEEE80211_SUPPORT_MESH
1177 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1178 	struct ieee80211_meshcntl_ae10 *mc;
1179 	struct ieee80211_mesh_route *rt = NULL;
1180 	int dir = -1;
1181 #endif
1182 	struct ether_header eh;
1183 	struct ieee80211_frame *wh;
1184 	struct ieee80211_key *key;
1185 	struct llc *llc;
1186 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1187 	ieee80211_seq seqno;
1188 	int meshhdrsize, meshae;
1189 	uint8_t *qos;
1190 
1191 	IEEE80211_TX_LOCK_ASSERT(ic);
1192 
1193 	/*
1194 	 * Copy existing Ethernet header to a safe place.  The
1195 	 * rest of the code assumes it's ok to strip it when
1196 	 * reorganizing state for the final encapsulation.
1197 	 */
1198 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1199 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1200 
1201 	/*
1202 	 * Insure space for additional headers.  First identify
1203 	 * transmit key to use in calculating any buffer adjustments
1204 	 * required.  This is also used below to do privacy
1205 	 * encapsulation work.  Then calculate the 802.11 header
1206 	 * size and any padding required by the driver.
1207 	 *
1208 	 * Note key may be NULL if we fall back to the default
1209 	 * transmit key and that is not set.  In that case the
1210 	 * buffer may not be expanded as needed by the cipher
1211 	 * routines, but they will/should discard it.
1212 	 */
1213 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1214 		if (vap->iv_opmode == IEEE80211_M_STA ||
1215 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1216 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1217 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1218 			key = ieee80211_crypto_getucastkey(vap, ni);
1219 		else
1220 			key = ieee80211_crypto_getmcastkey(vap, ni);
1221 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1222 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1223 			    eh.ether_dhost,
1224 			    "no default transmit key (%s) deftxkey %u",
1225 			    __func__, vap->iv_def_txkey);
1226 			vap->iv_stats.is_tx_nodefkey++;
1227 			goto bad;
1228 		}
1229 	} else
1230 		key = NULL;
1231 	/*
1232 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1233 	 * frames so suppress use.  This may be an issue if other
1234 	 * ap's require all data frames to be QoS-encapsulated
1235 	 * once negotiated in which case we'll need to make this
1236 	 * configurable.
1237 	 * NB: mesh data frames are QoS.
1238 	 */
1239 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1240 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1241 	    (m->m_flags & M_EAPOL) == 0;
1242 	if (addqos)
1243 		hdrsize = sizeof(struct ieee80211_qosframe);
1244 	else
1245 		hdrsize = sizeof(struct ieee80211_frame);
1246 #ifdef IEEE80211_SUPPORT_MESH
1247 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1248 		/*
1249 		 * Mesh data frames are encapsulated according to the
1250 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1251 		 * o Group Addressed data (aka multicast) originating
1252 		 *   at the local sta are sent w/ 3-address format and
1253 		 *   address extension mode 00
1254 		 * o Individually Addressed data (aka unicast) originating
1255 		 *   at the local sta are sent w/ 4-address format and
1256 		 *   address extension mode 00
1257 		 * o Group Addressed data forwarded from a non-mesh sta are
1258 		 *   sent w/ 3-address format and address extension mode 01
1259 		 * o Individually Address data from another sta are sent
1260 		 *   w/ 4-address format and address extension mode 10
1261 		 */
1262 		is4addr = 0;		/* NB: don't use, disable */
1263 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1264 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1265 			KASSERT(rt != NULL, ("route is NULL"));
1266 			dir = IEEE80211_FC1_DIR_DSTODS;
1267 			hdrsize += IEEE80211_ADDR_LEN;
1268 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1269 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1270 				    vap->iv_myaddr)) {
1271 					IEEE80211_NOTE_MAC(vap,
1272 					    IEEE80211_MSG_MESH,
1273 					    eh.ether_dhost,
1274 					    "%s", "trying to send to ourself");
1275 					goto bad;
1276 				}
1277 				meshae = IEEE80211_MESH_AE_10;
1278 				meshhdrsize =
1279 				    sizeof(struct ieee80211_meshcntl_ae10);
1280 			} else {
1281 				meshae = IEEE80211_MESH_AE_00;
1282 				meshhdrsize =
1283 				    sizeof(struct ieee80211_meshcntl);
1284 			}
1285 		} else {
1286 			dir = IEEE80211_FC1_DIR_FROMDS;
1287 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1288 				/* proxy group */
1289 				meshae = IEEE80211_MESH_AE_01;
1290 				meshhdrsize =
1291 				    sizeof(struct ieee80211_meshcntl_ae01);
1292 			} else {
1293 				/* group */
1294 				meshae = IEEE80211_MESH_AE_00;
1295 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1296 			}
1297 		}
1298 	} else {
1299 #endif
1300 		/*
1301 		 * 4-address frames need to be generated for:
1302 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1303 		 * o packets sent through a vap marked for relaying
1304 		 *   (e.g. a station operating with dynamic WDS)
1305 		 */
1306 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1307 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1308 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1309 		if (is4addr)
1310 			hdrsize += IEEE80211_ADDR_LEN;
1311 		meshhdrsize = meshae = 0;
1312 #ifdef IEEE80211_SUPPORT_MESH
1313 	}
1314 #endif
1315 	/*
1316 	 * Honor driver DATAPAD requirement.
1317 	 */
1318 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1319 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1320 	else
1321 		hdrspace = hdrsize;
1322 
1323 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1324 		/*
1325 		 * Normal frame.
1326 		 */
1327 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1328 		if (m == NULL) {
1329 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1330 			goto bad;
1331 		}
1332 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1333 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1334 		llc = mtod(m, struct llc *);
1335 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1336 		llc->llc_control = LLC_UI;
1337 		llc->llc_snap.org_code[0] = 0;
1338 		llc->llc_snap.org_code[1] = 0;
1339 		llc->llc_snap.org_code[2] = 0;
1340 		llc->llc_snap.ether_type = eh.ether_type;
1341 	} else {
1342 #ifdef IEEE80211_SUPPORT_SUPERG
1343 		/*
1344 		 * Aggregated frame.
1345 		 */
1346 		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1347 		if (m == NULL)
1348 #endif
1349 			goto bad;
1350 	}
1351 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1352 
1353 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1354 	if (m == NULL) {
1355 		vap->iv_stats.is_tx_nobuf++;
1356 		goto bad;
1357 	}
1358 	wh = mtod(m, struct ieee80211_frame *);
1359 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1360 	*(uint16_t *)wh->i_dur = 0;
1361 	qos = NULL;	/* NB: quiet compiler */
1362 	if (is4addr) {
1363 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1364 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1365 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1366 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1367 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1368 	} else switch (vap->iv_opmode) {
1369 	case IEEE80211_M_STA:
1370 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1371 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1372 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1373 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1374 		break;
1375 	case IEEE80211_M_IBSS:
1376 	case IEEE80211_M_AHDEMO:
1377 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1378 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1379 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1380 		/*
1381 		 * NB: always use the bssid from iv_bss as the
1382 		 *     neighbor's may be stale after an ibss merge
1383 		 */
1384 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1385 		break;
1386 	case IEEE80211_M_HOSTAP:
1387 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1388 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1389 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1390 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1391 		break;
1392 #ifdef IEEE80211_SUPPORT_MESH
1393 	case IEEE80211_M_MBSS:
1394 		/* NB: offset by hdrspace to deal with DATAPAD */
1395 		mc = (struct ieee80211_meshcntl_ae10 *)
1396 		     (mtod(m, uint8_t *) + hdrspace);
1397 		wh->i_fc[1] = dir;
1398 		switch (meshae) {
1399 		case IEEE80211_MESH_AE_00:	/* no proxy */
1400 			mc->mc_flags = 0;
1401 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1402 				IEEE80211_ADDR_COPY(wh->i_addr1,
1403 				    ni->ni_macaddr);
1404 				IEEE80211_ADDR_COPY(wh->i_addr2,
1405 				    vap->iv_myaddr);
1406 				IEEE80211_ADDR_COPY(wh->i_addr3,
1407 				    eh.ether_dhost);
1408 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1409 				    eh.ether_shost);
1410 				qos =((struct ieee80211_qosframe_addr4 *)
1411 				    wh)->i_qos;
1412 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1413 				 /* mcast */
1414 				IEEE80211_ADDR_COPY(wh->i_addr1,
1415 				    eh.ether_dhost);
1416 				IEEE80211_ADDR_COPY(wh->i_addr2,
1417 				    vap->iv_myaddr);
1418 				IEEE80211_ADDR_COPY(wh->i_addr3,
1419 				    eh.ether_shost);
1420 				qos = ((struct ieee80211_qosframe *)
1421 				    wh)->i_qos;
1422 			}
1423 			break;
1424 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1425 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1426 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1427 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1428 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1429 			mc->mc_flags = 1;
1430 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1431 			    eh.ether_shost);
1432 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1433 			break;
1434 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1435 			KASSERT(rt != NULL, ("route is NULL"));
1436 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1437 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1438 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1439 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1440 			mc->mc_flags = IEEE80211_MESH_AE_10;
1441 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1442 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1443 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1444 			break;
1445 		default:
1446 			KASSERT(0, ("meshae %d", meshae));
1447 			break;
1448 		}
1449 		mc->mc_ttl = ms->ms_ttl;
1450 		ms->ms_seq++;
1451 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1452 		break;
1453 #endif
1454 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1455 	default:
1456 		goto bad;
1457 	}
1458 	if (m->m_flags & M_MORE_DATA)
1459 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1460 	if (addqos) {
1461 		int ac, tid;
1462 
1463 		if (is4addr) {
1464 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1465 		/* NB: mesh case handled earlier */
1466 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1467 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1468 		ac = M_WME_GETAC(m);
1469 		/* map from access class/queue to 11e header priorty value */
1470 		tid = WME_AC_TO_TID(ac);
1471 		qos[0] = tid & IEEE80211_QOS_TID;
1472 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1473 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1474 #ifdef IEEE80211_SUPPORT_MESH
1475 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1476 			qos[1] = IEEE80211_QOS_MC;
1477 		else
1478 #endif
1479 			qos[1] = 0;
1480 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1481 
1482 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1483 			/*
1484 			 * NB: don't assign a sequence # to potential
1485 			 * aggregates; we expect this happens at the
1486 			 * point the frame comes off any aggregation q
1487 			 * as otherwise we may introduce holes in the
1488 			 * BA sequence space and/or make window accouting
1489 			 * more difficult.
1490 			 *
1491 			 * XXX may want to control this with a driver
1492 			 * capability; this may also change when we pull
1493 			 * aggregation up into net80211
1494 			 */
1495 			seqno = ni->ni_txseqs[tid]++;
1496 			*(uint16_t *)wh->i_seq =
1497 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1498 			M_SEQNO_SET(m, seqno);
1499 		}
1500 	} else {
1501 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1502 		*(uint16_t *)wh->i_seq =
1503 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1504 		M_SEQNO_SET(m, seqno);
1505 	}
1506 
1507 
1508 	/* check if xmit fragmentation is required */
1509 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1510 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1511 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1512 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1513 	if (key != NULL) {
1514 		/*
1515 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1516 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1517 		 */
1518 		if ((m->m_flags & M_EAPOL) == 0 ||
1519 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1520 		     (vap->iv_opmode == IEEE80211_M_STA ?
1521 		      !IEEE80211_KEY_UNDEFINED(key) :
1522 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1523 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1524 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1525 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1526 				    eh.ether_dhost,
1527 				    "%s", "enmic failed, discard frame");
1528 				vap->iv_stats.is_crypto_enmicfail++;
1529 				goto bad;
1530 			}
1531 		}
1532 	}
1533 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1534 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1535 		goto bad;
1536 
1537 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1538 
1539 	IEEE80211_NODE_STAT(ni, tx_data);
1540 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1541 		IEEE80211_NODE_STAT(ni, tx_mcast);
1542 		m->m_flags |= M_MCAST;
1543 	} else
1544 		IEEE80211_NODE_STAT(ni, tx_ucast);
1545 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1546 
1547 	return m;
1548 bad:
1549 	if (m != NULL)
1550 		m_freem(m);
1551 	return NULL;
1552 #undef WH4
1553 #undef MC01
1554 }
1555 
1556 /*
1557  * Fragment the frame according to the specified mtu.
1558  * The size of the 802.11 header (w/o padding) is provided
1559  * so we don't need to recalculate it.  We create a new
1560  * mbuf for each fragment and chain it through m_nextpkt;
1561  * we might be able to optimize this by reusing the original
1562  * packet's mbufs but that is significantly more complicated.
1563  */
1564 static int
1565 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1566 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1567 {
1568 	struct ieee80211com *ic = vap->iv_ic;
1569 	struct ieee80211_frame *wh, *whf;
1570 	struct mbuf *m, *prev, *next;
1571 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1572 	u_int hdrspace;
1573 
1574 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1575 	KASSERT(m0->m_pkthdr.len > mtu,
1576 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1577 
1578 	/*
1579 	 * Honor driver DATAPAD requirement.
1580 	 */
1581 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1582 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1583 	else
1584 		hdrspace = hdrsize;
1585 
1586 	wh = mtod(m0, struct ieee80211_frame *);
1587 	/* NB: mark the first frag; it will be propagated below */
1588 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1589 	totalhdrsize = hdrspace + ciphdrsize;
1590 	fragno = 1;
1591 	off = mtu - ciphdrsize;
1592 	remainder = m0->m_pkthdr.len - off;
1593 	prev = m0;
1594 	do {
1595 		fragsize = totalhdrsize + remainder;
1596 		if (fragsize > mtu)
1597 			fragsize = mtu;
1598 		/* XXX fragsize can be >2048! */
1599 		KASSERT(fragsize < MCLBYTES,
1600 			("fragment size %u too big!", fragsize));
1601 		if (fragsize > MHLEN)
1602 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1603 		else
1604 			m = m_gethdr(M_NOWAIT, MT_DATA);
1605 		if (m == NULL)
1606 			goto bad;
1607 		/* leave room to prepend any cipher header */
1608 		m_align(m, fragsize - ciphdrsize);
1609 
1610 		/*
1611 		 * Form the header in the fragment.  Note that since
1612 		 * we mark the first fragment with the MORE_FRAG bit
1613 		 * it automatically is propagated to each fragment; we
1614 		 * need only clear it on the last fragment (done below).
1615 		 * NB: frag 1+ dont have Mesh Control field present.
1616 		 */
1617 		whf = mtod(m, struct ieee80211_frame *);
1618 		memcpy(whf, wh, hdrsize);
1619 #ifdef IEEE80211_SUPPORT_MESH
1620 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1621 			if (IEEE80211_IS_DSTODS(wh))
1622 				((struct ieee80211_qosframe_addr4 *)
1623 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1624 			else
1625 				((struct ieee80211_qosframe *)
1626 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1627 		}
1628 #endif
1629 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1630 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1631 				IEEE80211_SEQ_FRAG_SHIFT);
1632 		fragno++;
1633 
1634 		payload = fragsize - totalhdrsize;
1635 		/* NB: destination is known to be contiguous */
1636 
1637 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1638 		m->m_len = hdrspace + payload;
1639 		m->m_pkthdr.len = hdrspace + payload;
1640 		m->m_flags |= M_FRAG;
1641 
1642 		/* chain up the fragment */
1643 		prev->m_nextpkt = m;
1644 		prev = m;
1645 
1646 		/* deduct fragment just formed */
1647 		remainder -= payload;
1648 		off += payload;
1649 	} while (remainder != 0);
1650 
1651 	/* set the last fragment */
1652 	m->m_flags |= M_LASTFRAG;
1653 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1654 
1655 	/* strip first mbuf now that everything has been copied */
1656 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1657 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1658 
1659 	vap->iv_stats.is_tx_fragframes++;
1660 	vap->iv_stats.is_tx_frags += fragno-1;
1661 
1662 	return 1;
1663 bad:
1664 	/* reclaim fragments but leave original frame for caller to free */
1665 	for (m = m0->m_nextpkt; m != NULL; m = next) {
1666 		next = m->m_nextpkt;
1667 		m->m_nextpkt = NULL;		/* XXX paranoid */
1668 		m_freem(m);
1669 	}
1670 	m0->m_nextpkt = NULL;
1671 	return 0;
1672 }
1673 
1674 /*
1675  * Add a supported rates element id to a frame.
1676  */
1677 uint8_t *
1678 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1679 {
1680 	int nrates;
1681 
1682 	*frm++ = IEEE80211_ELEMID_RATES;
1683 	nrates = rs->rs_nrates;
1684 	if (nrates > IEEE80211_RATE_SIZE)
1685 		nrates = IEEE80211_RATE_SIZE;
1686 	*frm++ = nrates;
1687 	memcpy(frm, rs->rs_rates, nrates);
1688 	return frm + nrates;
1689 }
1690 
1691 /*
1692  * Add an extended supported rates element id to a frame.
1693  */
1694 uint8_t *
1695 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1696 {
1697 	/*
1698 	 * Add an extended supported rates element if operating in 11g mode.
1699 	 */
1700 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1701 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1702 		*frm++ = IEEE80211_ELEMID_XRATES;
1703 		*frm++ = nrates;
1704 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1705 		frm += nrates;
1706 	}
1707 	return frm;
1708 }
1709 
1710 /*
1711  * Add an ssid element to a frame.
1712  */
1713 uint8_t *
1714 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1715 {
1716 	*frm++ = IEEE80211_ELEMID_SSID;
1717 	*frm++ = len;
1718 	memcpy(frm, ssid, len);
1719 	return frm + len;
1720 }
1721 
1722 /*
1723  * Add an erp element to a frame.
1724  */
1725 static uint8_t *
1726 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1727 {
1728 	uint8_t erp;
1729 
1730 	*frm++ = IEEE80211_ELEMID_ERP;
1731 	*frm++ = 1;
1732 	erp = 0;
1733 	if (ic->ic_nonerpsta != 0)
1734 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1735 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1736 		erp |= IEEE80211_ERP_USE_PROTECTION;
1737 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1738 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1739 	*frm++ = erp;
1740 	return frm;
1741 }
1742 
1743 /*
1744  * Add a CFParams element to a frame.
1745  */
1746 static uint8_t *
1747 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1748 {
1749 #define	ADDSHORT(frm, v) do {	\
1750 	LE_WRITE_2(frm, v);	\
1751 	frm += 2;		\
1752 } while (0)
1753 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1754 	*frm++ = 6;
1755 	*frm++ = 0;		/* CFP count */
1756 	*frm++ = 2;		/* CFP period */
1757 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1758 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1759 	return frm;
1760 #undef ADDSHORT
1761 }
1762 
1763 static __inline uint8_t *
1764 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1765 {
1766 	memcpy(frm, ie->ie_data, ie->ie_len);
1767 	return frm + ie->ie_len;
1768 }
1769 
1770 static __inline uint8_t *
1771 add_ie(uint8_t *frm, const uint8_t *ie)
1772 {
1773 	memcpy(frm, ie, 2 + ie[1]);
1774 	return frm + 2 + ie[1];
1775 }
1776 
1777 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1778 /*
1779  * Add a WME information element to a frame.
1780  */
1781 static uint8_t *
1782 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1783 {
1784 	static const struct ieee80211_wme_info info = {
1785 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1786 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1787 		.wme_oui	= { WME_OUI_BYTES },
1788 		.wme_type	= WME_OUI_TYPE,
1789 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1790 		.wme_version	= WME_VERSION,
1791 		.wme_info	= 0,
1792 	};
1793 	memcpy(frm, &info, sizeof(info));
1794 	return frm + sizeof(info);
1795 }
1796 
1797 /*
1798  * Add a WME parameters element to a frame.
1799  */
1800 static uint8_t *
1801 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1802 {
1803 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1804 #define	ADDSHORT(frm, v) do {	\
1805 	LE_WRITE_2(frm, v);	\
1806 	frm += 2;		\
1807 } while (0)
1808 	/* NB: this works 'cuz a param has an info at the front */
1809 	static const struct ieee80211_wme_info param = {
1810 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1811 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1812 		.wme_oui	= { WME_OUI_BYTES },
1813 		.wme_type	= WME_OUI_TYPE,
1814 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1815 		.wme_version	= WME_VERSION,
1816 	};
1817 	int i;
1818 
1819 	memcpy(frm, &param, sizeof(param));
1820 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1821 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1822 	*frm++ = 0;					/* reserved field */
1823 	for (i = 0; i < WME_NUM_AC; i++) {
1824 		const struct wmeParams *ac =
1825 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1826 		*frm++ = SM(i, WME_PARAM_ACI)
1827 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1828 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1829 		       ;
1830 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1831 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1832 		       ;
1833 		ADDSHORT(frm, ac->wmep_txopLimit);
1834 	}
1835 	return frm;
1836 #undef SM
1837 #undef ADDSHORT
1838 }
1839 #undef WME_OUI_BYTES
1840 
1841 /*
1842  * Add an 11h Power Constraint element to a frame.
1843  */
1844 static uint8_t *
1845 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1846 {
1847 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1848 	/* XXX per-vap tx power limit? */
1849 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1850 
1851 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1852 	frm[1] = 1;
1853 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1854 	return frm + 3;
1855 }
1856 
1857 /*
1858  * Add an 11h Power Capability element to a frame.
1859  */
1860 static uint8_t *
1861 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1862 {
1863 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1864 	frm[1] = 2;
1865 	frm[2] = c->ic_minpower;
1866 	frm[3] = c->ic_maxpower;
1867 	return frm + 4;
1868 }
1869 
1870 /*
1871  * Add an 11h Supported Channels element to a frame.
1872  */
1873 static uint8_t *
1874 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1875 {
1876 	static const int ielen = 26;
1877 
1878 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1879 	frm[1] = ielen;
1880 	/* XXX not correct */
1881 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1882 	return frm + 2 + ielen;
1883 }
1884 
1885 /*
1886  * Add an 11h Quiet time element to a frame.
1887  */
1888 static uint8_t *
1889 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1890 {
1891 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1892 
1893 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1894 	quiet->len = 6;
1895 	if (vap->iv_quiet_count_value == 1)
1896 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1897 	else if (vap->iv_quiet_count_value > 1)
1898 		vap->iv_quiet_count_value--;
1899 
1900 	if (vap->iv_quiet_count_value == 0) {
1901 		/* value 0 is reserved as per 802.11h standerd */
1902 		vap->iv_quiet_count_value = 1;
1903 	}
1904 
1905 	quiet->tbttcount = vap->iv_quiet_count_value;
1906 	quiet->period = vap->iv_quiet_period;
1907 	quiet->duration = htole16(vap->iv_quiet_duration);
1908 	quiet->offset = htole16(vap->iv_quiet_offset);
1909 	return frm + sizeof(*quiet);
1910 }
1911 
1912 /*
1913  * Add an 11h Channel Switch Announcement element to a frame.
1914  * Note that we use the per-vap CSA count to adjust the global
1915  * counter so we can use this routine to form probe response
1916  * frames and get the current count.
1917  */
1918 static uint8_t *
1919 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1920 {
1921 	struct ieee80211com *ic = vap->iv_ic;
1922 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1923 
1924 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1925 	csa->csa_len = 3;
1926 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1927 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1928 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1929 	return frm + sizeof(*csa);
1930 }
1931 
1932 /*
1933  * Add an 11h country information element to a frame.
1934  */
1935 static uint8_t *
1936 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1937 {
1938 
1939 	if (ic->ic_countryie == NULL ||
1940 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1941 		/*
1942 		 * Handle lazy construction of ie.  This is done on
1943 		 * first use and after a channel change that requires
1944 		 * re-calculation.
1945 		 */
1946 		if (ic->ic_countryie != NULL)
1947 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
1948 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1949 		if (ic->ic_countryie == NULL)
1950 			return frm;
1951 		ic->ic_countryie_chan = ic->ic_bsschan;
1952 	}
1953 	return add_appie(frm, ic->ic_countryie);
1954 }
1955 
1956 uint8_t *
1957 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
1958 {
1959 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
1960 		return (add_ie(frm, vap->iv_wpa_ie));
1961 	else {
1962 		/* XXX else complain? */
1963 		return (frm);
1964 	}
1965 }
1966 
1967 uint8_t *
1968 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
1969 {
1970 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
1971 		return (add_ie(frm, vap->iv_rsn_ie));
1972 	else {
1973 		/* XXX else complain? */
1974 		return (frm);
1975 	}
1976 }
1977 
1978 uint8_t *
1979 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
1980 {
1981 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1982 		*frm++ = IEEE80211_ELEMID_QOS;
1983 		*frm++ = 1;
1984 		*frm++ = 0;
1985 	}
1986 
1987 	return (frm);
1988 }
1989 
1990 /*
1991  * Send a probe request frame with the specified ssid
1992  * and any optional information element data.
1993  */
1994 int
1995 ieee80211_send_probereq(struct ieee80211_node *ni,
1996 	const uint8_t sa[IEEE80211_ADDR_LEN],
1997 	const uint8_t da[IEEE80211_ADDR_LEN],
1998 	const uint8_t bssid[IEEE80211_ADDR_LEN],
1999 	const uint8_t *ssid, size_t ssidlen)
2000 {
2001 	struct ieee80211vap *vap = ni->ni_vap;
2002 	struct ieee80211com *ic = ni->ni_ic;
2003 	const struct ieee80211_txparam *tp;
2004 	struct ieee80211_bpf_params params;
2005 	struct ieee80211_frame *wh;
2006 	const struct ieee80211_rateset *rs;
2007 	struct mbuf *m;
2008 	uint8_t *frm;
2009 	int ret;
2010 
2011 	if (vap->iv_state == IEEE80211_S_CAC) {
2012 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2013 		    "block %s frame in CAC state", "probe request");
2014 		vap->iv_stats.is_tx_badstate++;
2015 		return EIO;		/* XXX */
2016 	}
2017 
2018 	/*
2019 	 * Hold a reference on the node so it doesn't go away until after
2020 	 * the xmit is complete all the way in the driver.  On error we
2021 	 * will remove our reference.
2022 	 */
2023 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2024 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2025 		__func__, __LINE__,
2026 		ni, ether_sprintf(ni->ni_macaddr),
2027 		ieee80211_node_refcnt(ni)+1);
2028 	ieee80211_ref_node(ni);
2029 
2030 	/*
2031 	 * prreq frame format
2032 	 *	[tlv] ssid
2033 	 *	[tlv] supported rates
2034 	 *	[tlv] RSN (optional)
2035 	 *	[tlv] extended supported rates
2036 	 *	[tlv] WPA (optional)
2037 	 *	[tlv] user-specified ie's
2038 	 */
2039 	m = ieee80211_getmgtframe(&frm,
2040 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2041 	       	 2 + IEEE80211_NWID_LEN
2042 	       + 2 + IEEE80211_RATE_SIZE
2043 	       + sizeof(struct ieee80211_ie_wpa)
2044 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2045 	       + sizeof(struct ieee80211_ie_wpa)
2046 	       + (vap->iv_appie_probereq != NULL ?
2047 		   vap->iv_appie_probereq->ie_len : 0)
2048 	);
2049 	if (m == NULL) {
2050 		vap->iv_stats.is_tx_nobuf++;
2051 		ieee80211_free_node(ni);
2052 		return ENOMEM;
2053 	}
2054 
2055 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2056 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2057 	frm = ieee80211_add_rates(frm, rs);
2058 	frm = ieee80211_add_rsn(frm, vap);
2059 	frm = ieee80211_add_xrates(frm, rs);
2060 	frm = ieee80211_add_wpa(frm, vap);
2061 	if (vap->iv_appie_probereq != NULL)
2062 		frm = add_appie(frm, vap->iv_appie_probereq);
2063 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2064 
2065 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2066 	    ("leading space %zd", M_LEADINGSPACE(m)));
2067 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2068 	if (m == NULL) {
2069 		/* NB: cannot happen */
2070 		ieee80211_free_node(ni);
2071 		return ENOMEM;
2072 	}
2073 
2074 	IEEE80211_TX_LOCK(ic);
2075 	wh = mtod(m, struct ieee80211_frame *);
2076 	ieee80211_send_setup(ni, m,
2077 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2078 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2079 	/* XXX power management? */
2080 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2081 
2082 	M_WME_SETAC(m, WME_AC_BE);
2083 
2084 	IEEE80211_NODE_STAT(ni, tx_probereq);
2085 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2086 
2087 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2088 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2089 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2090 	    ssidlen, ssid);
2091 
2092 	memset(&params, 0, sizeof(params));
2093 	params.ibp_pri = M_WME_GETAC(m);
2094 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2095 	params.ibp_rate0 = tp->mgmtrate;
2096 	if (IEEE80211_IS_MULTICAST(da)) {
2097 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2098 		params.ibp_try0 = 1;
2099 	} else
2100 		params.ibp_try0 = tp->maxretry;
2101 	params.ibp_power = ni->ni_txpower;
2102 	ret = ieee80211_raw_output(vap, ni, m, &params);
2103 	IEEE80211_TX_UNLOCK(ic);
2104 	return (ret);
2105 }
2106 
2107 /*
2108  * Calculate capability information for mgt frames.
2109  */
2110 uint16_t
2111 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2112 {
2113 	struct ieee80211com *ic = vap->iv_ic;
2114 	uint16_t capinfo;
2115 
2116 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2117 
2118 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2119 		capinfo = IEEE80211_CAPINFO_ESS;
2120 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2121 		capinfo = IEEE80211_CAPINFO_IBSS;
2122 	else
2123 		capinfo = 0;
2124 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2125 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2126 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2127 	    IEEE80211_IS_CHAN_2GHZ(chan))
2128 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2129 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2130 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2131 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2132 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2133 	return capinfo;
2134 }
2135 
2136 /*
2137  * Send a management frame.  The node is for the destination (or ic_bss
2138  * when in station mode).  Nodes other than ic_bss have their reference
2139  * count bumped to reflect our use for an indeterminant time.
2140  */
2141 int
2142 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2143 {
2144 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2145 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2146 	struct ieee80211vap *vap = ni->ni_vap;
2147 	struct ieee80211com *ic = ni->ni_ic;
2148 	struct ieee80211_node *bss = vap->iv_bss;
2149 	struct ieee80211_bpf_params params;
2150 	struct mbuf *m;
2151 	uint8_t *frm;
2152 	uint16_t capinfo;
2153 	int has_challenge, is_shared_key, ret, status;
2154 
2155 	KASSERT(ni != NULL, ("null node"));
2156 
2157 	/*
2158 	 * Hold a reference on the node so it doesn't go away until after
2159 	 * the xmit is complete all the way in the driver.  On error we
2160 	 * will remove our reference.
2161 	 */
2162 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2163 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2164 		__func__, __LINE__,
2165 		ni, ether_sprintf(ni->ni_macaddr),
2166 		ieee80211_node_refcnt(ni)+1);
2167 	ieee80211_ref_node(ni);
2168 
2169 	memset(&params, 0, sizeof(params));
2170 	switch (type) {
2171 
2172 	case IEEE80211_FC0_SUBTYPE_AUTH:
2173 		status = arg >> 16;
2174 		arg &= 0xffff;
2175 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2176 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2177 		    ni->ni_challenge != NULL);
2178 
2179 		/*
2180 		 * Deduce whether we're doing open authentication or
2181 		 * shared key authentication.  We do the latter if
2182 		 * we're in the middle of a shared key authentication
2183 		 * handshake or if we're initiating an authentication
2184 		 * request and configured to use shared key.
2185 		 */
2186 		is_shared_key = has_challenge ||
2187 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2188 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2189 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2190 
2191 		m = ieee80211_getmgtframe(&frm,
2192 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2193 			  3 * sizeof(uint16_t)
2194 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2195 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2196 		);
2197 		if (m == NULL)
2198 			senderr(ENOMEM, is_tx_nobuf);
2199 
2200 		((uint16_t *)frm)[0] =
2201 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2202 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2203 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2204 		((uint16_t *)frm)[2] = htole16(status);/* status */
2205 
2206 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2207 			((uint16_t *)frm)[3] =
2208 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2209 			    IEEE80211_ELEMID_CHALLENGE);
2210 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2211 			    IEEE80211_CHALLENGE_LEN);
2212 			m->m_pkthdr.len = m->m_len =
2213 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2214 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2215 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2216 				    "request encrypt frame (%s)", __func__);
2217 				/* mark frame for encryption */
2218 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2219 			}
2220 		} else
2221 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2222 
2223 		/* XXX not right for shared key */
2224 		if (status == IEEE80211_STATUS_SUCCESS)
2225 			IEEE80211_NODE_STAT(ni, tx_auth);
2226 		else
2227 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2228 
2229 		if (vap->iv_opmode == IEEE80211_M_STA)
2230 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2231 				(void *) vap->iv_state);
2232 		break;
2233 
2234 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2235 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2236 		    "send station deauthenticate (reason %d)", arg);
2237 		m = ieee80211_getmgtframe(&frm,
2238 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2239 			sizeof(uint16_t));
2240 		if (m == NULL)
2241 			senderr(ENOMEM, is_tx_nobuf);
2242 		*(uint16_t *)frm = htole16(arg);	/* reason */
2243 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2244 
2245 		IEEE80211_NODE_STAT(ni, tx_deauth);
2246 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2247 
2248 		ieee80211_node_unauthorize(ni);		/* port closed */
2249 		break;
2250 
2251 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2252 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2253 		/*
2254 		 * asreq frame format
2255 		 *	[2] capability information
2256 		 *	[2] listen interval
2257 		 *	[6*] current AP address (reassoc only)
2258 		 *	[tlv] ssid
2259 		 *	[tlv] supported rates
2260 		 *	[tlv] extended supported rates
2261 		 *	[4] power capability (optional)
2262 		 *	[28] supported channels (optional)
2263 		 *	[tlv] HT capabilities
2264 		 *	[tlv] WME (optional)
2265 		 *	[tlv] Vendor OUI HT capabilities (optional)
2266 		 *	[tlv] Atheros capabilities (if negotiated)
2267 		 *	[tlv] AppIE's (optional)
2268 		 */
2269 		m = ieee80211_getmgtframe(&frm,
2270 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2271 			 sizeof(uint16_t)
2272 		       + sizeof(uint16_t)
2273 		       + IEEE80211_ADDR_LEN
2274 		       + 2 + IEEE80211_NWID_LEN
2275 		       + 2 + IEEE80211_RATE_SIZE
2276 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2277 		       + 4
2278 		       + 2 + 26
2279 		       + sizeof(struct ieee80211_wme_info)
2280 		       + sizeof(struct ieee80211_ie_htcap)
2281 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2282 #ifdef IEEE80211_SUPPORT_SUPERG
2283 		       + sizeof(struct ieee80211_ath_ie)
2284 #endif
2285 		       + (vap->iv_appie_wpa != NULL ?
2286 				vap->iv_appie_wpa->ie_len : 0)
2287 		       + (vap->iv_appie_assocreq != NULL ?
2288 				vap->iv_appie_assocreq->ie_len : 0)
2289 		);
2290 		if (m == NULL)
2291 			senderr(ENOMEM, is_tx_nobuf);
2292 
2293 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2294 		    ("wrong mode %u", vap->iv_opmode));
2295 		capinfo = IEEE80211_CAPINFO_ESS;
2296 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2297 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2298 		/*
2299 		 * NB: Some 11a AP's reject the request when
2300 		 *     short premable is set.
2301 		 */
2302 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2303 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2304 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2305 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2306 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2307 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2308 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2309 		    (vap->iv_flags & IEEE80211_F_DOTH))
2310 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2311 		*(uint16_t *)frm = htole16(capinfo);
2312 		frm += 2;
2313 
2314 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2315 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2316 						    bss->ni_intval));
2317 		frm += 2;
2318 
2319 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2320 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2321 			frm += IEEE80211_ADDR_LEN;
2322 		}
2323 
2324 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2325 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2326 		frm = ieee80211_add_rsn(frm, vap);
2327 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2328 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2329 			frm = ieee80211_add_powercapability(frm,
2330 			    ic->ic_curchan);
2331 			frm = ieee80211_add_supportedchannels(frm, ic);
2332 		}
2333 
2334 		/*
2335 		 * Check the channel - we may be using an 11n NIC with an
2336 		 * 11n capable station, but we're configured to be an 11b
2337 		 * channel.
2338 		 */
2339 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2340 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2341 		    ni->ni_ies.htcap_ie != NULL &&
2342 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2343 			frm = ieee80211_add_htcap(frm, ni);
2344 		}
2345 		frm = ieee80211_add_wpa(frm, vap);
2346 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2347 		    ni->ni_ies.wme_ie != NULL)
2348 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2349 
2350 		/*
2351 		 * Same deal - only send HT info if we're on an 11n
2352 		 * capable channel.
2353 		 */
2354 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2355 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2356 		    ni->ni_ies.htcap_ie != NULL &&
2357 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2358 			frm = ieee80211_add_htcap_vendor(frm, ni);
2359 		}
2360 #ifdef IEEE80211_SUPPORT_SUPERG
2361 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2362 			frm = ieee80211_add_ath(frm,
2363 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2364 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2365 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2366 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2367 		}
2368 #endif /* IEEE80211_SUPPORT_SUPERG */
2369 		if (vap->iv_appie_assocreq != NULL)
2370 			frm = add_appie(frm, vap->iv_appie_assocreq);
2371 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2372 
2373 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2374 			(void *) vap->iv_state);
2375 		break;
2376 
2377 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2378 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2379 		/*
2380 		 * asresp frame format
2381 		 *	[2] capability information
2382 		 *	[2] status
2383 		 *	[2] association ID
2384 		 *	[tlv] supported rates
2385 		 *	[tlv] extended supported rates
2386 		 *	[tlv] HT capabilities (standard, if STA enabled)
2387 		 *	[tlv] HT information (standard, if STA enabled)
2388 		 *	[tlv] WME (if configured and STA enabled)
2389 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2390 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2391 		 *	[tlv] Atheros capabilities (if STA enabled)
2392 		 *	[tlv] AppIE's (optional)
2393 		 */
2394 		m = ieee80211_getmgtframe(&frm,
2395 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2396 			 sizeof(uint16_t)
2397 		       + sizeof(uint16_t)
2398 		       + sizeof(uint16_t)
2399 		       + 2 + IEEE80211_RATE_SIZE
2400 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2401 		       + sizeof(struct ieee80211_ie_htcap) + 4
2402 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2403 		       + sizeof(struct ieee80211_wme_param)
2404 #ifdef IEEE80211_SUPPORT_SUPERG
2405 		       + sizeof(struct ieee80211_ath_ie)
2406 #endif
2407 		       + (vap->iv_appie_assocresp != NULL ?
2408 				vap->iv_appie_assocresp->ie_len : 0)
2409 		);
2410 		if (m == NULL)
2411 			senderr(ENOMEM, is_tx_nobuf);
2412 
2413 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2414 		*(uint16_t *)frm = htole16(capinfo);
2415 		frm += 2;
2416 
2417 		*(uint16_t *)frm = htole16(arg);	/* status */
2418 		frm += 2;
2419 
2420 		if (arg == IEEE80211_STATUS_SUCCESS) {
2421 			*(uint16_t *)frm = htole16(ni->ni_associd);
2422 			IEEE80211_NODE_STAT(ni, tx_assoc);
2423 		} else
2424 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2425 		frm += 2;
2426 
2427 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2428 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2429 		/* NB: respond according to what we received */
2430 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2431 			frm = ieee80211_add_htcap(frm, ni);
2432 			frm = ieee80211_add_htinfo(frm, ni);
2433 		}
2434 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2435 		    ni->ni_ies.wme_ie != NULL)
2436 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2437 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2438 			frm = ieee80211_add_htcap_vendor(frm, ni);
2439 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2440 		}
2441 #ifdef IEEE80211_SUPPORT_SUPERG
2442 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2443 			frm = ieee80211_add_ath(frm,
2444 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2445 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2446 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2447 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2448 #endif /* IEEE80211_SUPPORT_SUPERG */
2449 		if (vap->iv_appie_assocresp != NULL)
2450 			frm = add_appie(frm, vap->iv_appie_assocresp);
2451 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2452 		break;
2453 
2454 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2455 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2456 		    "send station disassociate (reason %d)", arg);
2457 		m = ieee80211_getmgtframe(&frm,
2458 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2459 			sizeof(uint16_t));
2460 		if (m == NULL)
2461 			senderr(ENOMEM, is_tx_nobuf);
2462 		*(uint16_t *)frm = htole16(arg);	/* reason */
2463 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2464 
2465 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2466 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2467 		break;
2468 
2469 	default:
2470 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2471 		    "invalid mgmt frame type %u", type);
2472 		senderr(EINVAL, is_tx_unknownmgt);
2473 		/* NOTREACHED */
2474 	}
2475 
2476 	/* NB: force non-ProbeResp frames to the highest queue */
2477 	params.ibp_pri = WME_AC_VO;
2478 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2479 	/* NB: we know all frames are unicast */
2480 	params.ibp_try0 = bss->ni_txparms->maxretry;
2481 	params.ibp_power = bss->ni_txpower;
2482 	return ieee80211_mgmt_output(ni, m, type, &params);
2483 bad:
2484 	ieee80211_free_node(ni);
2485 	return ret;
2486 #undef senderr
2487 #undef HTFLAGS
2488 }
2489 
2490 /*
2491  * Return an mbuf with a probe response frame in it.
2492  * Space is left to prepend and 802.11 header at the
2493  * front but it's left to the caller to fill in.
2494  */
2495 struct mbuf *
2496 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2497 {
2498 	struct ieee80211vap *vap = bss->ni_vap;
2499 	struct ieee80211com *ic = bss->ni_ic;
2500 	const struct ieee80211_rateset *rs;
2501 	struct mbuf *m;
2502 	uint16_t capinfo;
2503 	uint8_t *frm;
2504 
2505 	/*
2506 	 * probe response frame format
2507 	 *	[8] time stamp
2508 	 *	[2] beacon interval
2509 	 *	[2] cabability information
2510 	 *	[tlv] ssid
2511 	 *	[tlv] supported rates
2512 	 *	[tlv] parameter set (FH/DS)
2513 	 *	[tlv] parameter set (IBSS)
2514 	 *	[tlv] country (optional)
2515 	 *	[3] power control (optional)
2516 	 *	[5] channel switch announcement (CSA) (optional)
2517 	 *	[tlv] extended rate phy (ERP)
2518 	 *	[tlv] extended supported rates
2519 	 *	[tlv] RSN (optional)
2520 	 *	[tlv] HT capabilities
2521 	 *	[tlv] HT information
2522 	 *	[tlv] WPA (optional)
2523 	 *	[tlv] WME (optional)
2524 	 *	[tlv] Vendor OUI HT capabilities (optional)
2525 	 *	[tlv] Vendor OUI HT information (optional)
2526 	 *	[tlv] Atheros capabilities
2527 	 *	[tlv] AppIE's (optional)
2528 	 *	[tlv] Mesh ID (MBSS)
2529 	 *	[tlv] Mesh Conf (MBSS)
2530 	 */
2531 	m = ieee80211_getmgtframe(&frm,
2532 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2533 		 8
2534 	       + sizeof(uint16_t)
2535 	       + sizeof(uint16_t)
2536 	       + 2 + IEEE80211_NWID_LEN
2537 	       + 2 + IEEE80211_RATE_SIZE
2538 	       + 7	/* max(7,3) */
2539 	       + IEEE80211_COUNTRY_MAX_SIZE
2540 	       + 3
2541 	       + sizeof(struct ieee80211_csa_ie)
2542 	       + sizeof(struct ieee80211_quiet_ie)
2543 	       + 3
2544 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2545 	       + sizeof(struct ieee80211_ie_wpa)
2546 	       + sizeof(struct ieee80211_ie_htcap)
2547 	       + sizeof(struct ieee80211_ie_htinfo)
2548 	       + sizeof(struct ieee80211_ie_wpa)
2549 	       + sizeof(struct ieee80211_wme_param)
2550 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2551 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2552 #ifdef IEEE80211_SUPPORT_SUPERG
2553 	       + sizeof(struct ieee80211_ath_ie)
2554 #endif
2555 #ifdef IEEE80211_SUPPORT_MESH
2556 	       + 2 + IEEE80211_MESHID_LEN
2557 	       + sizeof(struct ieee80211_meshconf_ie)
2558 #endif
2559 	       + (vap->iv_appie_proberesp != NULL ?
2560 			vap->iv_appie_proberesp->ie_len : 0)
2561 	);
2562 	if (m == NULL) {
2563 		vap->iv_stats.is_tx_nobuf++;
2564 		return NULL;
2565 	}
2566 
2567 	memset(frm, 0, 8);	/* timestamp should be filled later */
2568 	frm += 8;
2569 	*(uint16_t *)frm = htole16(bss->ni_intval);
2570 	frm += 2;
2571 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2572 	*(uint16_t *)frm = htole16(capinfo);
2573 	frm += 2;
2574 
2575 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2576 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2577 	frm = ieee80211_add_rates(frm, rs);
2578 
2579 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2580 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2581 		*frm++ = 5;
2582 		*frm++ = bss->ni_fhdwell & 0x00ff;
2583 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2584 		*frm++ = IEEE80211_FH_CHANSET(
2585 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2586 		*frm++ = IEEE80211_FH_CHANPAT(
2587 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2588 		*frm++ = bss->ni_fhindex;
2589 	} else {
2590 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2591 		*frm++ = 1;
2592 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2593 	}
2594 
2595 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2596 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2597 		*frm++ = 2;
2598 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2599 	}
2600 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2601 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2602 		frm = ieee80211_add_countryie(frm, ic);
2603 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2604 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2605 			frm = ieee80211_add_powerconstraint(frm, vap);
2606 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2607 			frm = ieee80211_add_csa(frm, vap);
2608 	}
2609 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2610 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2611 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2612 			if (vap->iv_quiet)
2613 				frm = ieee80211_add_quiet(frm, vap);
2614 		}
2615 	}
2616 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2617 		frm = ieee80211_add_erp(frm, ic);
2618 	frm = ieee80211_add_xrates(frm, rs);
2619 	frm = ieee80211_add_rsn(frm, vap);
2620 	/*
2621 	 * NB: legacy 11b clients do not get certain ie's.
2622 	 *     The caller identifies such clients by passing
2623 	 *     a token in legacy to us.  Could expand this to be
2624 	 *     any legacy client for stuff like HT ie's.
2625 	 */
2626 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2627 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2628 		frm = ieee80211_add_htcap(frm, bss);
2629 		frm = ieee80211_add_htinfo(frm, bss);
2630 	}
2631 	frm = ieee80211_add_wpa(frm, vap);
2632 	if (vap->iv_flags & IEEE80211_F_WME)
2633 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2634 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2635 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2636 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2637 		frm = ieee80211_add_htcap_vendor(frm, bss);
2638 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2639 	}
2640 #ifdef IEEE80211_SUPPORT_SUPERG
2641 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2642 	    legacy != IEEE80211_SEND_LEGACY_11B)
2643 		frm = ieee80211_add_athcaps(frm, bss);
2644 #endif
2645 	if (vap->iv_appie_proberesp != NULL)
2646 		frm = add_appie(frm, vap->iv_appie_proberesp);
2647 #ifdef IEEE80211_SUPPORT_MESH
2648 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2649 		frm = ieee80211_add_meshid(frm, vap);
2650 		frm = ieee80211_add_meshconf(frm, vap);
2651 	}
2652 #endif
2653 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2654 
2655 	return m;
2656 }
2657 
2658 /*
2659  * Send a probe response frame to the specified mac address.
2660  * This does not go through the normal mgt frame api so we
2661  * can specify the destination address and re-use the bss node
2662  * for the sta reference.
2663  */
2664 int
2665 ieee80211_send_proberesp(struct ieee80211vap *vap,
2666 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2667 {
2668 	struct ieee80211_node *bss = vap->iv_bss;
2669 	struct ieee80211com *ic = vap->iv_ic;
2670 	struct ieee80211_frame *wh;
2671 	struct mbuf *m;
2672 	int ret;
2673 
2674 	if (vap->iv_state == IEEE80211_S_CAC) {
2675 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2676 		    "block %s frame in CAC state", "probe response");
2677 		vap->iv_stats.is_tx_badstate++;
2678 		return EIO;		/* XXX */
2679 	}
2680 
2681 	/*
2682 	 * Hold a reference on the node so it doesn't go away until after
2683 	 * the xmit is complete all the way in the driver.  On error we
2684 	 * will remove our reference.
2685 	 */
2686 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2687 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2688 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2689 	    ieee80211_node_refcnt(bss)+1);
2690 	ieee80211_ref_node(bss);
2691 
2692 	m = ieee80211_alloc_proberesp(bss, legacy);
2693 	if (m == NULL) {
2694 		ieee80211_free_node(bss);
2695 		return ENOMEM;
2696 	}
2697 
2698 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2699 	KASSERT(m != NULL, ("no room for header"));
2700 
2701 	IEEE80211_TX_LOCK(ic);
2702 	wh = mtod(m, struct ieee80211_frame *);
2703 	ieee80211_send_setup(bss, m,
2704 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2705 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2706 	/* XXX power management? */
2707 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2708 
2709 	M_WME_SETAC(m, WME_AC_BE);
2710 
2711 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2712 	    "send probe resp on channel %u to %s%s\n",
2713 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2714 	    legacy ? " <legacy>" : "");
2715 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2716 
2717 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2718 	IEEE80211_TX_UNLOCK(ic);
2719 	return (ret);
2720 }
2721 
2722 /*
2723  * Allocate and build a RTS (Request To Send) control frame.
2724  */
2725 struct mbuf *
2726 ieee80211_alloc_rts(struct ieee80211com *ic,
2727 	const uint8_t ra[IEEE80211_ADDR_LEN],
2728 	const uint8_t ta[IEEE80211_ADDR_LEN],
2729 	uint16_t dur)
2730 {
2731 	struct ieee80211_frame_rts *rts;
2732 	struct mbuf *m;
2733 
2734 	/* XXX honor ic_headroom */
2735 	m = m_gethdr(M_NOWAIT, MT_DATA);
2736 	if (m != NULL) {
2737 		rts = mtod(m, struct ieee80211_frame_rts *);
2738 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2739 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2740 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2741 		*(u_int16_t *)rts->i_dur = htole16(dur);
2742 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2743 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2744 
2745 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2746 	}
2747 	return m;
2748 }
2749 
2750 /*
2751  * Allocate and build a CTS (Clear To Send) control frame.
2752  */
2753 struct mbuf *
2754 ieee80211_alloc_cts(struct ieee80211com *ic,
2755 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2756 {
2757 	struct ieee80211_frame_cts *cts;
2758 	struct mbuf *m;
2759 
2760 	/* XXX honor ic_headroom */
2761 	m = m_gethdr(M_NOWAIT, MT_DATA);
2762 	if (m != NULL) {
2763 		cts = mtod(m, struct ieee80211_frame_cts *);
2764 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2765 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2766 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2767 		*(u_int16_t *)cts->i_dur = htole16(dur);
2768 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2769 
2770 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2771 	}
2772 	return m;
2773 }
2774 
2775 static void
2776 ieee80211_tx_mgt_timeout(void *arg)
2777 {
2778 	struct ieee80211vap *vap = arg;
2779 
2780 	IEEE80211_LOCK(vap->iv_ic);
2781 	if (vap->iv_state != IEEE80211_S_INIT &&
2782 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2783 		/*
2784 		 * NB: it's safe to specify a timeout as the reason here;
2785 		 *     it'll only be used in the right state.
2786 		 */
2787 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2788 			IEEE80211_SCAN_FAIL_TIMEOUT);
2789 	}
2790 	IEEE80211_UNLOCK(vap->iv_ic);
2791 }
2792 
2793 /*
2794  * This is the callback set on net80211-sourced transmitted
2795  * authentication request frames.
2796  *
2797  * This does a couple of things:
2798  *
2799  * + If the frame transmitted was a success, it schedules a future
2800  *   event which will transition the interface to scan.
2801  *   If a state transition _then_ occurs before that event occurs,
2802  *   said state transition will cancel this callout.
2803  *
2804  * + If the frame transmit was a failure, it immediately schedules
2805  *   the transition back to scan.
2806  */
2807 static void
2808 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2809 {
2810 	struct ieee80211vap *vap = ni->ni_vap;
2811 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2812 
2813 	/*
2814 	 * Frame transmit completed; arrange timer callback.  If
2815 	 * transmit was successfuly we wait for response.  Otherwise
2816 	 * we arrange an immediate callback instead of doing the
2817 	 * callback directly since we don't know what state the driver
2818 	 * is in (e.g. what locks it is holding).  This work should
2819 	 * not be too time-critical and not happen too often so the
2820 	 * added overhead is acceptable.
2821 	 *
2822 	 * XXX what happens if !acked but response shows up before callback?
2823 	 */
2824 	if (vap->iv_state == ostate) {
2825 		callout_reset(&vap->iv_mgtsend,
2826 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2827 			ieee80211_tx_mgt_timeout, vap);
2828 	}
2829 }
2830 
2831 static void
2832 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2833 	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2834 {
2835 	struct ieee80211vap *vap = ni->ni_vap;
2836 	struct ieee80211com *ic = ni->ni_ic;
2837 	struct ieee80211_rateset *rs = &ni->ni_rates;
2838 	uint16_t capinfo;
2839 
2840 	/*
2841 	 * beacon frame format
2842 	 *	[8] time stamp
2843 	 *	[2] beacon interval
2844 	 *	[2] cabability information
2845 	 *	[tlv] ssid
2846 	 *	[tlv] supported rates
2847 	 *	[3] parameter set (DS)
2848 	 *	[8] CF parameter set (optional)
2849 	 *	[tlv] parameter set (IBSS/TIM)
2850 	 *	[tlv] country (optional)
2851 	 *	[3] power control (optional)
2852 	 *	[5] channel switch announcement (CSA) (optional)
2853 	 *	[tlv] extended rate phy (ERP)
2854 	 *	[tlv] extended supported rates
2855 	 *	[tlv] RSN parameters
2856 	 *	[tlv] HT capabilities
2857 	 *	[tlv] HT information
2858 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2859 	 *	[tlv] WPA parameters
2860 	 *	[tlv] WME parameters
2861 	 *	[tlv] Vendor OUI HT capabilities (optional)
2862 	 *	[tlv] Vendor OUI HT information (optional)
2863 	 *	[tlv] Atheros capabilities (optional)
2864 	 *	[tlv] TDMA parameters (optional)
2865 	 *	[tlv] Mesh ID (MBSS)
2866 	 *	[tlv] Mesh Conf (MBSS)
2867 	 *	[tlv] application data (optional)
2868 	 */
2869 
2870 	memset(bo, 0, sizeof(*bo));
2871 
2872 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2873 	frm += 8;
2874 	*(uint16_t *)frm = htole16(ni->ni_intval);
2875 	frm += 2;
2876 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2877 	bo->bo_caps = (uint16_t *)frm;
2878 	*(uint16_t *)frm = htole16(capinfo);
2879 	frm += 2;
2880 	*frm++ = IEEE80211_ELEMID_SSID;
2881 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2882 		*frm++ = ni->ni_esslen;
2883 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2884 		frm += ni->ni_esslen;
2885 	} else
2886 		*frm++ = 0;
2887 	frm = ieee80211_add_rates(frm, rs);
2888 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2889 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2890 		*frm++ = 1;
2891 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2892 	}
2893 	if (ic->ic_flags & IEEE80211_F_PCF) {
2894 		bo->bo_cfp = frm;
2895 		frm = ieee80211_add_cfparms(frm, ic);
2896 	}
2897 	bo->bo_tim = frm;
2898 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2899 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2900 		*frm++ = 2;
2901 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2902 		bo->bo_tim_len = 0;
2903 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2904 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2905 		/* TIM IE is the same for Mesh and Hostap */
2906 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2907 
2908 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2909 		tie->tim_len = 4;	/* length */
2910 		tie->tim_count = 0;	/* DTIM count */
2911 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2912 		tie->tim_bitctl = 0;	/* bitmap control */
2913 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2914 		frm += sizeof(struct ieee80211_tim_ie);
2915 		bo->bo_tim_len = 1;
2916 	}
2917 	bo->bo_tim_trailer = frm;
2918 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2919 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2920 		frm = ieee80211_add_countryie(frm, ic);
2921 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2922 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2923 			frm = ieee80211_add_powerconstraint(frm, vap);
2924 		bo->bo_csa = frm;
2925 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2926 			frm = ieee80211_add_csa(frm, vap);
2927 	} else
2928 		bo->bo_csa = frm;
2929 
2930 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2931 		bo->bo_quiet = frm;
2932 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2933 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2934 			if (vap->iv_quiet)
2935 				frm = ieee80211_add_quiet(frm,vap);
2936 		}
2937 	} else
2938 		bo->bo_quiet = frm;
2939 
2940 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2941 		bo->bo_erp = frm;
2942 		frm = ieee80211_add_erp(frm, ic);
2943 	}
2944 	frm = ieee80211_add_xrates(frm, rs);
2945 	frm = ieee80211_add_rsn(frm, vap);
2946 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2947 		frm = ieee80211_add_htcap(frm, ni);
2948 		bo->bo_htinfo = frm;
2949 		frm = ieee80211_add_htinfo(frm, ni);
2950 	}
2951 	frm = ieee80211_add_wpa(frm, vap);
2952 	if (vap->iv_flags & IEEE80211_F_WME) {
2953 		bo->bo_wme = frm;
2954 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2955 	}
2956 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2957 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2958 		frm = ieee80211_add_htcap_vendor(frm, ni);
2959 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2960 	}
2961 #ifdef IEEE80211_SUPPORT_SUPERG
2962 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2963 		bo->bo_ath = frm;
2964 		frm = ieee80211_add_athcaps(frm, ni);
2965 	}
2966 #endif
2967 #ifdef IEEE80211_SUPPORT_TDMA
2968 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2969 		bo->bo_tdma = frm;
2970 		frm = ieee80211_add_tdma(frm, vap);
2971 	}
2972 #endif
2973 	if (vap->iv_appie_beacon != NULL) {
2974 		bo->bo_appie = frm;
2975 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2976 		frm = add_appie(frm, vap->iv_appie_beacon);
2977 	}
2978 #ifdef IEEE80211_SUPPORT_MESH
2979 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2980 		frm = ieee80211_add_meshid(frm, vap);
2981 		bo->bo_meshconf = frm;
2982 		frm = ieee80211_add_meshconf(frm, vap);
2983 	}
2984 #endif
2985 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2986 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2987 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2988 }
2989 
2990 /*
2991  * Allocate a beacon frame and fillin the appropriate bits.
2992  */
2993 struct mbuf *
2994 ieee80211_beacon_alloc(struct ieee80211_node *ni,
2995 	struct ieee80211_beacon_offsets *bo)
2996 {
2997 	struct ieee80211vap *vap = ni->ni_vap;
2998 	struct ieee80211com *ic = ni->ni_ic;
2999 	struct ifnet *ifp = vap->iv_ifp;
3000 	struct ieee80211_frame *wh;
3001 	struct mbuf *m;
3002 	int pktlen;
3003 	uint8_t *frm;
3004 
3005 	/*
3006 	 * beacon frame format
3007 	 *	[8] time stamp
3008 	 *	[2] beacon interval
3009 	 *	[2] cabability information
3010 	 *	[tlv] ssid
3011 	 *	[tlv] supported rates
3012 	 *	[3] parameter set (DS)
3013 	 *	[8] CF parameter set (optional)
3014 	 *	[tlv] parameter set (IBSS/TIM)
3015 	 *	[tlv] country (optional)
3016 	 *	[3] power control (optional)
3017 	 *	[5] channel switch announcement (CSA) (optional)
3018 	 *	[tlv] extended rate phy (ERP)
3019 	 *	[tlv] extended supported rates
3020 	 *	[tlv] RSN parameters
3021 	 *	[tlv] HT capabilities
3022 	 *	[tlv] HT information
3023 	 *	[tlv] Vendor OUI HT capabilities (optional)
3024 	 *	[tlv] Vendor OUI HT information (optional)
3025 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3026 	 *	[tlv] WPA parameters
3027 	 *	[tlv] WME parameters
3028 	 *	[tlv] TDMA parameters (optional)
3029 	 *	[tlv] Mesh ID (MBSS)
3030 	 *	[tlv] Mesh Conf (MBSS)
3031 	 *	[tlv] application data (optional)
3032 	 * NB: we allocate the max space required for the TIM bitmap.
3033 	 * XXX how big is this?
3034 	 */
3035 	pktlen =   8					/* time stamp */
3036 		 + sizeof(uint16_t)			/* beacon interval */
3037 		 + sizeof(uint16_t)			/* capabilities */
3038 		 + 2 + ni->ni_esslen			/* ssid */
3039 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3040 	         + 2 + 1				/* DS parameters */
3041 		 + 2 + 6				/* CF parameters */
3042 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3043 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3044 		 + 2 + 1				/* power control */
3045 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3046 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3047 		 + 2 + 1				/* ERP */
3048 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3049 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3050 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3051 		 /* XXX conditional? */
3052 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3053 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3054 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3055 			sizeof(struct ieee80211_wme_param) : 0)
3056 #ifdef IEEE80211_SUPPORT_SUPERG
3057 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3058 #endif
3059 #ifdef IEEE80211_SUPPORT_TDMA
3060 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3061 			sizeof(struct ieee80211_tdma_param) : 0)
3062 #endif
3063 #ifdef IEEE80211_SUPPORT_MESH
3064 		 + 2 + ni->ni_meshidlen
3065 		 + sizeof(struct ieee80211_meshconf_ie)
3066 #endif
3067 		 + IEEE80211_MAX_APPIE
3068 		 ;
3069 	m = ieee80211_getmgtframe(&frm,
3070 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3071 	if (m == NULL) {
3072 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3073 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3074 		vap->iv_stats.is_tx_nobuf++;
3075 		return NULL;
3076 	}
3077 	ieee80211_beacon_construct(m, frm, bo, ni);
3078 
3079 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3080 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3081 	wh = mtod(m, struct ieee80211_frame *);
3082 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3083 	    IEEE80211_FC0_SUBTYPE_BEACON;
3084 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3085 	*(uint16_t *)wh->i_dur = 0;
3086 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3087 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3088 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3089 	*(uint16_t *)wh->i_seq = 0;
3090 
3091 	return m;
3092 }
3093 
3094 /*
3095  * Update the dynamic parts of a beacon frame based on the current state.
3096  */
3097 int
3098 ieee80211_beacon_update(struct ieee80211_node *ni,
3099 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
3100 {
3101 	struct ieee80211vap *vap = ni->ni_vap;
3102 	struct ieee80211com *ic = ni->ni_ic;
3103 	int len_changed = 0;
3104 	uint16_t capinfo;
3105 	struct ieee80211_frame *wh;
3106 	ieee80211_seq seqno;
3107 
3108 	IEEE80211_LOCK(ic);
3109 	/*
3110 	 * Handle 11h channel change when we've reached the count.
3111 	 * We must recalculate the beacon frame contents to account
3112 	 * for the new channel.  Note we do this only for the first
3113 	 * vap that reaches this point; subsequent vaps just update
3114 	 * their beacon state to reflect the recalculated channel.
3115 	 */
3116 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3117 	    vap->iv_csa_count == ic->ic_csa_count) {
3118 		vap->iv_csa_count = 0;
3119 		/*
3120 		 * Effect channel change before reconstructing the beacon
3121 		 * frame contents as many places reference ni_chan.
3122 		 */
3123 		if (ic->ic_csa_newchan != NULL)
3124 			ieee80211_csa_completeswitch(ic);
3125 		/*
3126 		 * NB: ieee80211_beacon_construct clears all pending
3127 		 * updates in bo_flags so we don't need to explicitly
3128 		 * clear IEEE80211_BEACON_CSA.
3129 		 */
3130 		ieee80211_beacon_construct(m,
3131 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
3132 
3133 		/* XXX do WME aggressive mode processing? */
3134 		IEEE80211_UNLOCK(ic);
3135 		return 1;		/* just assume length changed */
3136 	}
3137 
3138 	wh = mtod(m, struct ieee80211_frame *);
3139 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3140 	*(uint16_t *)&wh->i_seq[0] =
3141 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3142 	M_SEQNO_SET(m, seqno);
3143 
3144 	/* XXX faster to recalculate entirely or just changes? */
3145 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3146 	*bo->bo_caps = htole16(capinfo);
3147 
3148 	if (vap->iv_flags & IEEE80211_F_WME) {
3149 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3150 
3151 		/*
3152 		 * Check for agressive mode change.  When there is
3153 		 * significant high priority traffic in the BSS
3154 		 * throttle back BE traffic by using conservative
3155 		 * parameters.  Otherwise BE uses agressive params
3156 		 * to optimize performance of legacy/non-QoS traffic.
3157 		 */
3158 		if (wme->wme_flags & WME_F_AGGRMODE) {
3159 			if (wme->wme_hipri_traffic >
3160 			    wme->wme_hipri_switch_thresh) {
3161 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3162 				    "%s: traffic %u, disable aggressive mode\n",
3163 				    __func__, wme->wme_hipri_traffic);
3164 				wme->wme_flags &= ~WME_F_AGGRMODE;
3165 				ieee80211_wme_updateparams_locked(vap);
3166 				wme->wme_hipri_traffic =
3167 					wme->wme_hipri_switch_hysteresis;
3168 			} else
3169 				wme->wme_hipri_traffic = 0;
3170 		} else {
3171 			if (wme->wme_hipri_traffic <=
3172 			    wme->wme_hipri_switch_thresh) {
3173 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3174 				    "%s: traffic %u, enable aggressive mode\n",
3175 				    __func__, wme->wme_hipri_traffic);
3176 				wme->wme_flags |= WME_F_AGGRMODE;
3177 				ieee80211_wme_updateparams_locked(vap);
3178 				wme->wme_hipri_traffic = 0;
3179 			} else
3180 				wme->wme_hipri_traffic =
3181 					wme->wme_hipri_switch_hysteresis;
3182 		}
3183 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3184 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3185 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3186 		}
3187 	}
3188 
3189 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3190 		ieee80211_ht_update_beacon(vap, bo);
3191 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3192 	}
3193 #ifdef IEEE80211_SUPPORT_TDMA
3194 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3195 		/*
3196 		 * NB: the beacon is potentially updated every TBTT.
3197 		 */
3198 		ieee80211_tdma_update_beacon(vap, bo);
3199 	}
3200 #endif
3201 #ifdef IEEE80211_SUPPORT_MESH
3202 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3203 		ieee80211_mesh_update_beacon(vap, bo);
3204 #endif
3205 
3206 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3207 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3208 		struct ieee80211_tim_ie *tie =
3209 			(struct ieee80211_tim_ie *) bo->bo_tim;
3210 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3211 			u_int timlen, timoff, i;
3212 			/*
3213 			 * ATIM/DTIM needs updating.  If it fits in the
3214 			 * current space allocated then just copy in the
3215 			 * new bits.  Otherwise we need to move any trailing
3216 			 * data to make room.  Note that we know there is
3217 			 * contiguous space because ieee80211_beacon_allocate
3218 			 * insures there is space in the mbuf to write a
3219 			 * maximal-size virtual bitmap (based on iv_max_aid).
3220 			 */
3221 			/*
3222 			 * Calculate the bitmap size and offset, copy any
3223 			 * trailer out of the way, and then copy in the
3224 			 * new bitmap and update the information element.
3225 			 * Note that the tim bitmap must contain at least
3226 			 * one byte and any offset must be even.
3227 			 */
3228 			if (vap->iv_ps_pending != 0) {
3229 				timoff = 128;		/* impossibly large */
3230 				for (i = 0; i < vap->iv_tim_len; i++)
3231 					if (vap->iv_tim_bitmap[i]) {
3232 						timoff = i &~ 1;
3233 						break;
3234 					}
3235 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3236 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3237 					if (vap->iv_tim_bitmap[i])
3238 						break;
3239 				timlen = 1 + (i - timoff);
3240 			} else {
3241 				timoff = 0;
3242 				timlen = 1;
3243 			}
3244 			if (timlen != bo->bo_tim_len) {
3245 				/* copy up/down trailer */
3246 				int adjust = tie->tim_bitmap+timlen
3247 					   - bo->bo_tim_trailer;
3248 				ovbcopy(bo->bo_tim_trailer,
3249 				    bo->bo_tim_trailer+adjust,
3250 				    bo->bo_tim_trailer_len);
3251 				bo->bo_tim_trailer += adjust;
3252 				bo->bo_erp += adjust;
3253 				bo->bo_htinfo += adjust;
3254 #ifdef IEEE80211_SUPPORT_SUPERG
3255 				bo->bo_ath += adjust;
3256 #endif
3257 #ifdef IEEE80211_SUPPORT_TDMA
3258 				bo->bo_tdma += adjust;
3259 #endif
3260 #ifdef IEEE80211_SUPPORT_MESH
3261 				bo->bo_meshconf += adjust;
3262 #endif
3263 				bo->bo_appie += adjust;
3264 				bo->bo_wme += adjust;
3265 				bo->bo_csa += adjust;
3266 				bo->bo_quiet += adjust;
3267 				bo->bo_tim_len = timlen;
3268 
3269 				/* update information element */
3270 				tie->tim_len = 3 + timlen;
3271 				tie->tim_bitctl = timoff;
3272 				len_changed = 1;
3273 			}
3274 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3275 				bo->bo_tim_len);
3276 
3277 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3278 
3279 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3280 				"%s: TIM updated, pending %u, off %u, len %u\n",
3281 				__func__, vap->iv_ps_pending, timoff, timlen);
3282 		}
3283 		/* count down DTIM period */
3284 		if (tie->tim_count == 0)
3285 			tie->tim_count = tie->tim_period - 1;
3286 		else
3287 			tie->tim_count--;
3288 		/* update state for buffered multicast frames on DTIM */
3289 		if (mcast && tie->tim_count == 0)
3290 			tie->tim_bitctl |= 1;
3291 		else
3292 			tie->tim_bitctl &= ~1;
3293 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3294 			struct ieee80211_csa_ie *csa =
3295 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3296 
3297 			/*
3298 			 * Insert or update CSA ie.  If we're just starting
3299 			 * to count down to the channel switch then we need
3300 			 * to insert the CSA ie.  Otherwise we just need to
3301 			 * drop the count.  The actual change happens above
3302 			 * when the vap's count reaches the target count.
3303 			 */
3304 			if (vap->iv_csa_count == 0) {
3305 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3306 				bo->bo_erp += sizeof(*csa);
3307 				bo->bo_htinfo += sizeof(*csa);
3308 				bo->bo_wme += sizeof(*csa);
3309 #ifdef IEEE80211_SUPPORT_SUPERG
3310 				bo->bo_ath += sizeof(*csa);
3311 #endif
3312 #ifdef IEEE80211_SUPPORT_TDMA
3313 				bo->bo_tdma += sizeof(*csa);
3314 #endif
3315 #ifdef IEEE80211_SUPPORT_MESH
3316 				bo->bo_meshconf += sizeof(*csa);
3317 #endif
3318 				bo->bo_appie += sizeof(*csa);
3319 				bo->bo_csa_trailer_len += sizeof(*csa);
3320 				bo->bo_quiet += sizeof(*csa);
3321 				bo->bo_tim_trailer_len += sizeof(*csa);
3322 				m->m_len += sizeof(*csa);
3323 				m->m_pkthdr.len += sizeof(*csa);
3324 
3325 				ieee80211_add_csa(bo->bo_csa, vap);
3326 			} else
3327 				csa->csa_count--;
3328 			vap->iv_csa_count++;
3329 			/* NB: don't clear IEEE80211_BEACON_CSA */
3330 		}
3331 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3332 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3333 			if (vap->iv_quiet)
3334 				ieee80211_add_quiet(bo->bo_quiet, vap);
3335 		}
3336 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3337 			/*
3338 			 * ERP element needs updating.
3339 			 */
3340 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3341 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3342 		}
3343 #ifdef IEEE80211_SUPPORT_SUPERG
3344 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3345 			ieee80211_add_athcaps(bo->bo_ath, ni);
3346 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3347 		}
3348 #endif
3349 	}
3350 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3351 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3352 		int aielen;
3353 		uint8_t *frm;
3354 
3355 		aielen = 0;
3356 		if (aie != NULL)
3357 			aielen += aie->ie_len;
3358 		if (aielen != bo->bo_appie_len) {
3359 			/* copy up/down trailer */
3360 			int adjust = aielen - bo->bo_appie_len;
3361 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3362 				bo->bo_tim_trailer_len);
3363 			bo->bo_tim_trailer += adjust;
3364 			bo->bo_appie += adjust;
3365 			bo->bo_appie_len = aielen;
3366 
3367 			len_changed = 1;
3368 		}
3369 		frm = bo->bo_appie;
3370 		if (aie != NULL)
3371 			frm  = add_appie(frm, aie);
3372 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3373 	}
3374 	IEEE80211_UNLOCK(ic);
3375 
3376 	return len_changed;
3377 }
3378 
3379 /*
3380  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3381  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3382  * header at the front that must be stripped before prepending the
3383  * LLC followed by the Ethernet header passed in (with an Ethernet
3384  * type that specifies the payload size).
3385  */
3386 struct mbuf *
3387 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3388 	const struct ether_header *eh)
3389 {
3390 	struct llc *llc;
3391 	uint16_t payload;
3392 
3393 	/* XXX optimize by combining m_adj+M_PREPEND */
3394 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3395 	llc = mtod(m, struct llc *);
3396 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3397 	llc->llc_control = LLC_UI;
3398 	llc->llc_snap.org_code[0] = 0;
3399 	llc->llc_snap.org_code[1] = 0;
3400 	llc->llc_snap.org_code[2] = 0;
3401 	llc->llc_snap.ether_type = eh->ether_type;
3402 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3403 
3404 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3405 	if (m == NULL) {		/* XXX cannot happen */
3406 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3407 			"%s: no space for ether_header\n", __func__);
3408 		vap->iv_stats.is_tx_nobuf++;
3409 		return NULL;
3410 	}
3411 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3412 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3413 	return m;
3414 }
3415 
3416 /*
3417  * Complete an mbuf transmission.
3418  *
3419  * For now, this simply processes a completed frame after the
3420  * driver has completed it's transmission and/or retransmission.
3421  * It assumes the frame is an 802.11 encapsulated frame.
3422  *
3423  * Later on it will grow to become the exit path for a given frame
3424  * from the driver and, depending upon how it's been encapsulated
3425  * and already transmitted, it may end up doing A-MPDU retransmission,
3426  * power save requeuing, etc.
3427  *
3428  * In order for the above to work, the driver entry point to this
3429  * must not hold any driver locks.  Thus, the driver needs to delay
3430  * any actual mbuf completion until it can release said locks.
3431  *
3432  * This frees the mbuf and if the mbuf has a node reference,
3433  * the node reference will be freed.
3434  */
3435 void
3436 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3437 {
3438 
3439 	if (ni != NULL) {
3440 		if (m->m_flags & M_TXCB)
3441 			ieee80211_process_callback(ni, m, status);
3442 		ieee80211_free_node(ni);
3443 	}
3444 	m_freem(m);
3445 }
3446