1 /*- 2 * Copyright (c) 2004 John Baldwin <jhb@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the author nor the names of any co-contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 /* 31 * Implementation of sleep queues used to hold queue of threads blocked on 32 * a wait channel. Sleep queues different from turnstiles in that wait 33 * channels are not owned by anyone, so there is no priority propagation. 34 * Sleep queues can also provide a timeout and can also be interrupted by 35 * signals. That said, there are several similarities between the turnstile 36 * and sleep queue implementations. (Note: turnstiles were implemented 37 * first.) For example, both use a hash table of the same size where each 38 * bucket is referred to as a "chain" that contains both a spin lock and 39 * a linked list of queues. An individual queue is located by using a hash 40 * to pick a chain, locking the chain, and then walking the chain searching 41 * for the queue. This means that a wait channel object does not need to 42 * embed it's queue head just as locks do not embed their turnstile queue 43 * head. Threads also carry around a sleep queue that they lend to the 44 * wait channel when blocking. Just as in turnstiles, the queue includes 45 * a free list of the sleep queues of other threads blocked on the same 46 * wait channel in the case of multiple waiters. 47 * 48 * Some additional functionality provided by sleep queues include the 49 * ability to set a timeout. The timeout is managed using a per-thread 50 * callout that resumes a thread if it is asleep. A thread may also 51 * catch signals while it is asleep (aka an interruptible sleep). The 52 * signal code uses sleepq_abort() to interrupt a sleeping thread. Finally, 53 * sleep queues also provide some extra assertions. One is not allowed to 54 * mix the sleep/wakeup and cv APIs for a given wait channel. Also, one 55 * must consistently use the same lock to synchronize with a wait channel, 56 * though this check is currently only a warning for sleep/wakeup due to 57 * pre-existing abuse of that API. The same lock must also be held when 58 * awakening threads, though that is currently only enforced for condition 59 * variables. 60 */ 61 62 #include <sys/cdefs.h> 63 __FBSDID("$FreeBSD$"); 64 65 #include "opt_sleepqueue_profiling.h" 66 #include "opt_ddb.h" 67 #include "opt_sched.h" 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/lock.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/mutex.h> 75 #include <sys/proc.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/signalvar.h> 79 #include <sys/sleepqueue.h> 80 #include <sys/sysctl.h> 81 82 #include <vm/uma.h> 83 84 #ifdef DDB 85 #include <ddb/ddb.h> 86 #endif 87 88 /* 89 * Constants for the hash table of sleep queue chains. These constants are 90 * the same ones that 4BSD (and possibly earlier versions of BSD) used. 91 * Basically, we ignore the lower 8 bits of the address since most wait 92 * channel pointers are aligned and only look at the next 7 bits for the 93 * hash. SC_TABLESIZE must be a power of two for SC_MASK to work properly. 94 */ 95 #define SC_TABLESIZE 128 /* Must be power of 2. */ 96 #define SC_MASK (SC_TABLESIZE - 1) 97 #define SC_SHIFT 8 98 #define SC_HASH(wc) (((uintptr_t)(wc) >> SC_SHIFT) & SC_MASK) 99 #define SC_LOOKUP(wc) &sleepq_chains[SC_HASH(wc)] 100 #define NR_SLEEPQS 2 101 /* 102 * There two different lists of sleep queues. Both lists are connected 103 * via the sq_hash entries. The first list is the sleep queue chain list 104 * that a sleep queue is on when it is attached to a wait channel. The 105 * second list is the free list hung off of a sleep queue that is attached 106 * to a wait channel. 107 * 108 * Each sleep queue also contains the wait channel it is attached to, the 109 * list of threads blocked on that wait channel, flags specific to the 110 * wait channel, and the lock used to synchronize with a wait channel. 111 * The flags are used to catch mismatches between the various consumers 112 * of the sleep queue API (e.g. sleep/wakeup and condition variables). 113 * The lock pointer is only used when invariants are enabled for various 114 * debugging checks. 115 * 116 * Locking key: 117 * c - sleep queue chain lock 118 */ 119 struct sleepqueue { 120 TAILQ_HEAD(, thread) sq_blocked[NR_SLEEPQS]; /* (c) Blocked threads. */ 121 LIST_ENTRY(sleepqueue) sq_hash; /* (c) Chain and free list. */ 122 LIST_HEAD(, sleepqueue) sq_free; /* (c) Free queues. */ 123 void *sq_wchan; /* (c) Wait channel. */ 124 #ifdef INVARIANTS 125 int sq_type; /* (c) Queue type. */ 126 struct lock_object *sq_lock; /* (c) Associated lock. */ 127 #endif 128 }; 129 130 struct sleepqueue_chain { 131 LIST_HEAD(, sleepqueue) sc_queues; /* List of sleep queues. */ 132 struct mtx sc_lock; /* Spin lock for this chain. */ 133 #ifdef SLEEPQUEUE_PROFILING 134 u_int sc_depth; /* Length of sc_queues. */ 135 u_int sc_max_depth; /* Max length of sc_queues. */ 136 #endif 137 }; 138 139 #ifdef SLEEPQUEUE_PROFILING 140 u_int sleepq_max_depth; 141 SYSCTL_NODE(_debug, OID_AUTO, sleepq, CTLFLAG_RD, 0, "sleepq profiling"); 142 SYSCTL_NODE(_debug_sleepq, OID_AUTO, chains, CTLFLAG_RD, 0, 143 "sleepq chain stats"); 144 SYSCTL_UINT(_debug_sleepq, OID_AUTO, max_depth, CTLFLAG_RD, &sleepq_max_depth, 145 0, "maxmimum depth achieved of a single chain"); 146 147 static void sleepq_profile(const char *wmesg); 148 static int prof_enabled; 149 #endif 150 static struct sleepqueue_chain sleepq_chains[SC_TABLESIZE]; 151 static uma_zone_t sleepq_zone; 152 153 /* 154 * Prototypes for non-exported routines. 155 */ 156 static int sleepq_catch_signals(void *wchan, int pri); 157 static int sleepq_check_signals(void); 158 static int sleepq_check_timeout(void); 159 #ifdef INVARIANTS 160 static void sleepq_dtor(void *mem, int size, void *arg); 161 #endif 162 static int sleepq_init(void *mem, int size, int flags); 163 static void sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, 164 int pri); 165 static void sleepq_switch(void *wchan, int pri); 166 static void sleepq_timeout(void *arg); 167 168 /* 169 * Early initialization of sleep queues that is called from the sleepinit() 170 * SYSINIT. 171 */ 172 void 173 init_sleepqueues(void) 174 { 175 #ifdef SLEEPQUEUE_PROFILING 176 struct sysctl_oid *chain_oid; 177 char chain_name[10]; 178 #endif 179 int i; 180 181 for (i = 0; i < SC_TABLESIZE; i++) { 182 LIST_INIT(&sleepq_chains[i].sc_queues); 183 mtx_init(&sleepq_chains[i].sc_lock, "sleepq chain", NULL, 184 MTX_SPIN | MTX_RECURSE); 185 #ifdef SLEEPQUEUE_PROFILING 186 snprintf(chain_name, sizeof(chain_name), "%d", i); 187 chain_oid = SYSCTL_ADD_NODE(NULL, 188 SYSCTL_STATIC_CHILDREN(_debug_sleepq_chains), OID_AUTO, 189 chain_name, CTLFLAG_RD, NULL, "sleepq chain stats"); 190 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 191 "depth", CTLFLAG_RD, &sleepq_chains[i].sc_depth, 0, NULL); 192 SYSCTL_ADD_UINT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO, 193 "max_depth", CTLFLAG_RD, &sleepq_chains[i].sc_max_depth, 0, 194 NULL); 195 #endif 196 } 197 sleepq_zone = uma_zcreate("SLEEPQUEUE", sizeof(struct sleepqueue), 198 #ifdef INVARIANTS 199 NULL, sleepq_dtor, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 200 #else 201 NULL, NULL, sleepq_init, NULL, UMA_ALIGN_CACHE, 0); 202 #endif 203 204 thread0.td_sleepqueue = sleepq_alloc(); 205 } 206 207 /* 208 * Get a sleep queue for a new thread. 209 */ 210 struct sleepqueue * 211 sleepq_alloc(void) 212 { 213 214 return (uma_zalloc(sleepq_zone, M_WAITOK)); 215 } 216 217 /* 218 * Free a sleep queue when a thread is destroyed. 219 */ 220 void 221 sleepq_free(struct sleepqueue *sq) 222 { 223 224 uma_zfree(sleepq_zone, sq); 225 } 226 227 /* 228 * Lock the sleep queue chain associated with the specified wait channel. 229 */ 230 void 231 sleepq_lock(void *wchan) 232 { 233 struct sleepqueue_chain *sc; 234 235 sc = SC_LOOKUP(wchan); 236 mtx_lock_spin(&sc->sc_lock); 237 } 238 239 /* 240 * Look up the sleep queue associated with a given wait channel in the hash 241 * table locking the associated sleep queue chain. If no queue is found in 242 * the table, NULL is returned. 243 */ 244 struct sleepqueue * 245 sleepq_lookup(void *wchan) 246 { 247 struct sleepqueue_chain *sc; 248 struct sleepqueue *sq; 249 250 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 251 sc = SC_LOOKUP(wchan); 252 mtx_assert(&sc->sc_lock, MA_OWNED); 253 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 254 if (sq->sq_wchan == wchan) 255 return (sq); 256 return (NULL); 257 } 258 259 /* 260 * Unlock the sleep queue chain associated with a given wait channel. 261 */ 262 void 263 sleepq_release(void *wchan) 264 { 265 struct sleepqueue_chain *sc; 266 267 sc = SC_LOOKUP(wchan); 268 mtx_unlock_spin(&sc->sc_lock); 269 } 270 271 /* 272 * Places the current thread on the sleep queue for the specified wait 273 * channel. If INVARIANTS is enabled, then it associates the passed in 274 * lock with the sleepq to make sure it is held when that sleep queue is 275 * woken up. 276 */ 277 void 278 sleepq_add(void *wchan, struct lock_object *lock, const char *wmesg, int flags, 279 int queue) 280 { 281 struct sleepqueue_chain *sc; 282 struct sleepqueue *sq; 283 struct thread *td; 284 285 td = curthread; 286 sc = SC_LOOKUP(wchan); 287 mtx_assert(&sc->sc_lock, MA_OWNED); 288 MPASS(td->td_sleepqueue != NULL); 289 MPASS(wchan != NULL); 290 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 291 292 /* If this thread is not allowed to sleep, die a horrible death. */ 293 KASSERT(!(td->td_pflags & TDP_NOSLEEPING), 294 ("Trying sleep, but thread marked as sleeping prohibited")); 295 296 /* Look up the sleep queue associated with the wait channel 'wchan'. */ 297 sq = sleepq_lookup(wchan); 298 299 /* 300 * If the wait channel does not already have a sleep queue, use 301 * this thread's sleep queue. Otherwise, insert the current thread 302 * into the sleep queue already in use by this wait channel. 303 */ 304 if (sq == NULL) { 305 #ifdef INVARIANTS 306 int i; 307 308 sq = td->td_sleepqueue; 309 for (i = 0; i < NR_SLEEPQS; i++) 310 KASSERT(TAILQ_EMPTY(&sq->sq_blocked[i]), 311 ("thread's sleep queue %d is not empty", i)); 312 KASSERT(LIST_EMPTY(&sq->sq_free), 313 ("thread's sleep queue has a non-empty free list")); 314 KASSERT(sq->sq_wchan == NULL, ("stale sq_wchan pointer")); 315 sq->sq_lock = lock; 316 sq->sq_type = flags & SLEEPQ_TYPE; 317 #endif 318 #ifdef SLEEPQUEUE_PROFILING 319 sc->sc_depth++; 320 if (sc->sc_depth > sc->sc_max_depth) { 321 sc->sc_max_depth = sc->sc_depth; 322 if (sc->sc_max_depth > sleepq_max_depth) 323 sleepq_max_depth = sc->sc_max_depth; 324 } 325 #endif 326 sq = td->td_sleepqueue; 327 LIST_INSERT_HEAD(&sc->sc_queues, sq, sq_hash); 328 sq->sq_wchan = wchan; 329 } else { 330 MPASS(wchan == sq->sq_wchan); 331 MPASS(lock == sq->sq_lock); 332 MPASS((flags & SLEEPQ_TYPE) == sq->sq_type); 333 LIST_INSERT_HEAD(&sq->sq_free, td->td_sleepqueue, sq_hash); 334 } 335 thread_lock(td); 336 TAILQ_INSERT_TAIL(&sq->sq_blocked[queue], td, td_slpq); 337 td->td_sleepqueue = NULL; 338 td->td_sqqueue = queue; 339 td->td_wchan = wchan; 340 td->td_wmesg = wmesg; 341 if (flags & SLEEPQ_INTERRUPTIBLE) { 342 td->td_flags |= TDF_SINTR; 343 td->td_flags &= ~TDF_SLEEPABORT; 344 } 345 thread_unlock(td); 346 } 347 348 /* 349 * Sets a timeout that will remove the current thread from the specified 350 * sleep queue after timo ticks if the thread has not already been awakened. 351 */ 352 void 353 sleepq_set_timeout(void *wchan, int timo) 354 { 355 struct sleepqueue_chain *sc; 356 struct thread *td; 357 358 td = curthread; 359 sc = SC_LOOKUP(wchan); 360 mtx_assert(&sc->sc_lock, MA_OWNED); 361 MPASS(TD_ON_SLEEPQ(td)); 362 MPASS(td->td_sleepqueue == NULL); 363 MPASS(wchan != NULL); 364 callout_reset_curcpu(&td->td_slpcallout, timo, sleepq_timeout, td); 365 } 366 367 /* 368 * Marks the pending sleep of the current thread as interruptible and 369 * makes an initial check for pending signals before putting a thread 370 * to sleep. Enters and exits with the thread lock held. Thread lock 371 * may have transitioned from the sleepq lock to a run lock. 372 */ 373 static int 374 sleepq_catch_signals(void *wchan, int pri) 375 { 376 struct sleepqueue_chain *sc; 377 struct sleepqueue *sq; 378 struct thread *td; 379 struct proc *p; 380 struct sigacts *ps; 381 int sig, ret; 382 383 td = curthread; 384 p = curproc; 385 sc = SC_LOOKUP(wchan); 386 mtx_assert(&sc->sc_lock, MA_OWNED); 387 MPASS(wchan != NULL); 388 /* 389 * See if there are any pending signals for this thread. If not 390 * we can switch immediately. Otherwise do the signal processing 391 * directly. 392 */ 393 thread_lock(td); 394 if ((td->td_flags & (TDF_NEEDSIGCHK | TDF_NEEDSUSPCHK)) == 0) { 395 sleepq_switch(wchan, pri); 396 return (0); 397 } 398 thread_unlock(td); 399 mtx_unlock_spin(&sc->sc_lock); 400 CTR3(KTR_PROC, "sleepq catching signals: thread %p (pid %ld, %s)", 401 (void *)td, (long)p->p_pid, td->td_name); 402 PROC_LOCK(p); 403 ps = p->p_sigacts; 404 mtx_lock(&ps->ps_mtx); 405 sig = cursig(td); 406 if (sig == 0) { 407 mtx_unlock(&ps->ps_mtx); 408 ret = thread_suspend_check(1); 409 MPASS(ret == 0 || ret == EINTR || ret == ERESTART); 410 } else { 411 if (SIGISMEMBER(ps->ps_sigintr, sig)) 412 ret = EINTR; 413 else 414 ret = ERESTART; 415 mtx_unlock(&ps->ps_mtx); 416 } 417 /* 418 * Lock the per-process spinlock prior to dropping the PROC_LOCK 419 * to avoid a signal delivery race. PROC_LOCK, PROC_SLOCK, and 420 * thread_lock() are currently held in tdsignal(). 421 */ 422 PROC_SLOCK(p); 423 mtx_lock_spin(&sc->sc_lock); 424 PROC_UNLOCK(p); 425 thread_lock(td); 426 PROC_SUNLOCK(p); 427 if (ret == 0) { 428 sleepq_switch(wchan, pri); 429 return (0); 430 } 431 /* 432 * There were pending signals and this thread is still 433 * on the sleep queue, remove it from the sleep queue. 434 */ 435 if (TD_ON_SLEEPQ(td)) { 436 sq = sleepq_lookup(wchan); 437 sleepq_resume_thread(sq, td, 0); 438 } 439 mtx_unlock_spin(&sc->sc_lock); 440 MPASS(td->td_lock != &sc->sc_lock); 441 return (ret); 442 } 443 444 /* 445 * Switches to another thread if we are still asleep on a sleep queue. 446 * Returns with thread lock. 447 */ 448 static void 449 sleepq_switch(void *wchan, int pri) 450 { 451 struct sleepqueue_chain *sc; 452 struct sleepqueue *sq; 453 struct thread *td; 454 455 td = curthread; 456 sc = SC_LOOKUP(wchan); 457 mtx_assert(&sc->sc_lock, MA_OWNED); 458 THREAD_LOCK_ASSERT(td, MA_OWNED); 459 460 /* 461 * If we have a sleep queue, then we've already been woken up, so 462 * just return. 463 */ 464 if (td->td_sleepqueue != NULL) { 465 mtx_unlock_spin(&sc->sc_lock); 466 return; 467 } 468 469 /* 470 * If TDF_TIMEOUT is set, then our sleep has been timed out 471 * already but we are still on the sleep queue, so dequeue the 472 * thread and return. 473 */ 474 if (td->td_flags & TDF_TIMEOUT) { 475 MPASS(TD_ON_SLEEPQ(td)); 476 sq = sleepq_lookup(wchan); 477 sleepq_resume_thread(sq, td, 0); 478 mtx_unlock_spin(&sc->sc_lock); 479 return; 480 } 481 #ifdef SLEEPQUEUE_PROFILING 482 if (prof_enabled) 483 sleepq_profile(td->td_wmesg); 484 #endif 485 MPASS(td->td_sleepqueue == NULL); 486 sched_sleep(td, pri); 487 thread_lock_set(td, &sc->sc_lock); 488 TD_SET_SLEEPING(td); 489 mi_switch(SW_VOL | SWT_SLEEPQ, NULL); 490 KASSERT(TD_IS_RUNNING(td), ("running but not TDS_RUNNING")); 491 CTR3(KTR_PROC, "sleepq resume: thread %p (pid %ld, %s)", 492 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 493 } 494 495 /* 496 * Check to see if we timed out. 497 */ 498 static int 499 sleepq_check_timeout(void) 500 { 501 struct thread *td; 502 503 td = curthread; 504 THREAD_LOCK_ASSERT(td, MA_OWNED); 505 506 /* 507 * If TDF_TIMEOUT is set, we timed out. 508 */ 509 if (td->td_flags & TDF_TIMEOUT) { 510 td->td_flags &= ~TDF_TIMEOUT; 511 return (EWOULDBLOCK); 512 } 513 514 /* 515 * If TDF_TIMOFAIL is set, the timeout ran after we had 516 * already been woken up. 517 */ 518 if (td->td_flags & TDF_TIMOFAIL) 519 td->td_flags &= ~TDF_TIMOFAIL; 520 521 /* 522 * If callout_stop() fails, then the timeout is running on 523 * another CPU, so synchronize with it to avoid having it 524 * accidentally wake up a subsequent sleep. 525 */ 526 else if (callout_stop(&td->td_slpcallout) == 0) { 527 td->td_flags |= TDF_TIMEOUT; 528 TD_SET_SLEEPING(td); 529 mi_switch(SW_INVOL | SWT_SLEEPQTIMO, NULL); 530 } 531 return (0); 532 } 533 534 /* 535 * Check to see if we were awoken by a signal. 536 */ 537 static int 538 sleepq_check_signals(void) 539 { 540 struct thread *td; 541 542 td = curthread; 543 THREAD_LOCK_ASSERT(td, MA_OWNED); 544 545 /* We are no longer in an interruptible sleep. */ 546 if (td->td_flags & TDF_SINTR) 547 td->td_flags &= ~TDF_SINTR; 548 549 if (td->td_flags & TDF_SLEEPABORT) { 550 td->td_flags &= ~TDF_SLEEPABORT; 551 return (td->td_intrval); 552 } 553 554 return (0); 555 } 556 557 /* 558 * Block the current thread until it is awakened from its sleep queue. 559 */ 560 void 561 sleepq_wait(void *wchan, int pri) 562 { 563 struct thread *td; 564 565 td = curthread; 566 MPASS(!(td->td_flags & TDF_SINTR)); 567 thread_lock(td); 568 sleepq_switch(wchan, pri); 569 thread_unlock(td); 570 } 571 572 /* 573 * Block the current thread until it is awakened from its sleep queue 574 * or it is interrupted by a signal. 575 */ 576 int 577 sleepq_wait_sig(void *wchan, int pri) 578 { 579 int rcatch; 580 int rval; 581 582 rcatch = sleepq_catch_signals(wchan, pri); 583 rval = sleepq_check_signals(); 584 thread_unlock(curthread); 585 if (rcatch) 586 return (rcatch); 587 return (rval); 588 } 589 590 /* 591 * Block the current thread until it is awakened from its sleep queue 592 * or it times out while waiting. 593 */ 594 int 595 sleepq_timedwait(void *wchan, int pri) 596 { 597 struct thread *td; 598 int rval; 599 600 td = curthread; 601 MPASS(!(td->td_flags & TDF_SINTR)); 602 thread_lock(td); 603 sleepq_switch(wchan, pri); 604 rval = sleepq_check_timeout(); 605 thread_unlock(td); 606 607 return (rval); 608 } 609 610 /* 611 * Block the current thread until it is awakened from its sleep queue, 612 * it is interrupted by a signal, or it times out waiting to be awakened. 613 */ 614 int 615 sleepq_timedwait_sig(void *wchan, int pri) 616 { 617 int rcatch, rvalt, rvals; 618 619 rcatch = sleepq_catch_signals(wchan, pri); 620 rvalt = sleepq_check_timeout(); 621 rvals = sleepq_check_signals(); 622 thread_unlock(curthread); 623 if (rcatch) 624 return (rcatch); 625 if (rvals) 626 return (rvals); 627 return (rvalt); 628 } 629 630 /* 631 * Removes a thread from a sleep queue and makes it 632 * runnable. 633 */ 634 static void 635 sleepq_resume_thread(struct sleepqueue *sq, struct thread *td, int pri) 636 { 637 struct sleepqueue_chain *sc; 638 639 MPASS(td != NULL); 640 MPASS(sq->sq_wchan != NULL); 641 MPASS(td->td_wchan == sq->sq_wchan); 642 MPASS(td->td_sqqueue < NR_SLEEPQS && td->td_sqqueue >= 0); 643 THREAD_LOCK_ASSERT(td, MA_OWNED); 644 sc = SC_LOOKUP(sq->sq_wchan); 645 mtx_assert(&sc->sc_lock, MA_OWNED); 646 647 /* Remove the thread from the queue. */ 648 TAILQ_REMOVE(&sq->sq_blocked[td->td_sqqueue], td, td_slpq); 649 650 /* 651 * Get a sleep queue for this thread. If this is the last waiter, 652 * use the queue itself and take it out of the chain, otherwise, 653 * remove a queue from the free list. 654 */ 655 if (LIST_EMPTY(&sq->sq_free)) { 656 td->td_sleepqueue = sq; 657 #ifdef INVARIANTS 658 sq->sq_wchan = NULL; 659 #endif 660 #ifdef SLEEPQUEUE_PROFILING 661 sc->sc_depth--; 662 #endif 663 } else 664 td->td_sleepqueue = LIST_FIRST(&sq->sq_free); 665 LIST_REMOVE(td->td_sleepqueue, sq_hash); 666 667 td->td_wmesg = NULL; 668 td->td_wchan = NULL; 669 td->td_flags &= ~TDF_SINTR; 670 671 /* 672 * Note that thread td might not be sleeping if it is running 673 * sleepq_catch_signals() on another CPU or is blocked on 674 * its proc lock to check signals. It doesn't hurt to clear 675 * the sleeping flag if it isn't set though, so we just always 676 * do it. However, we can't assert that it is set. 677 */ 678 CTR3(KTR_PROC, "sleepq_wakeup: thread %p (pid %ld, %s)", 679 (void *)td, (long)td->td_proc->p_pid, td->td_name); 680 TD_CLR_SLEEPING(td); 681 682 /* Adjust priority if requested. */ 683 MPASS(pri == 0 || (pri >= PRI_MIN && pri <= PRI_MAX)); 684 if (pri != 0 && td->td_priority > pri) 685 sched_prio(td, pri); 686 setrunnable(td); 687 } 688 689 #ifdef INVARIANTS 690 /* 691 * UMA zone item deallocator. 692 */ 693 static void 694 sleepq_dtor(void *mem, int size, void *arg) 695 { 696 struct sleepqueue *sq; 697 int i; 698 699 sq = mem; 700 for (i = 0; i < NR_SLEEPQS; i++) 701 MPASS(TAILQ_EMPTY(&sq->sq_blocked[i])); 702 } 703 #endif 704 705 /* 706 * UMA zone item initializer. 707 */ 708 static int 709 sleepq_init(void *mem, int size, int flags) 710 { 711 struct sleepqueue *sq; 712 int i; 713 714 bzero(mem, size); 715 sq = mem; 716 for (i = 0; i < NR_SLEEPQS; i++) 717 TAILQ_INIT(&sq->sq_blocked[i]); 718 LIST_INIT(&sq->sq_free); 719 return (0); 720 } 721 722 /* 723 * Find the highest priority thread sleeping on a wait channel and resume it. 724 */ 725 void 726 sleepq_signal(void *wchan, int flags, int pri, int queue) 727 { 728 struct sleepqueue *sq; 729 struct thread *td, *besttd; 730 731 CTR2(KTR_PROC, "sleepq_signal(%p, %d)", wchan, flags); 732 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 733 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 734 sq = sleepq_lookup(wchan); 735 if (sq == NULL) 736 return; 737 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 738 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 739 740 /* 741 * Find the highest priority thread on the queue. If there is a 742 * tie, use the thread that first appears in the queue as it has 743 * been sleeping the longest since threads are always added to 744 * the tail of sleep queues. 745 */ 746 besttd = NULL; 747 TAILQ_FOREACH(td, &sq->sq_blocked[queue], td_slpq) { 748 if (besttd == NULL || td->td_priority < besttd->td_priority) 749 besttd = td; 750 } 751 MPASS(besttd != NULL); 752 thread_lock(besttd); 753 sleepq_resume_thread(sq, besttd, pri); 754 thread_unlock(besttd); 755 } 756 757 /* 758 * Resume all threads sleeping on a specified wait channel. 759 */ 760 void 761 sleepq_broadcast(void *wchan, int flags, int pri, int queue) 762 { 763 struct sleepqueue *sq; 764 struct thread *td; 765 766 CTR2(KTR_PROC, "sleepq_broadcast(%p, %d)", wchan, flags); 767 KASSERT(wchan != NULL, ("%s: invalid NULL wait channel", __func__)); 768 MPASS((queue >= 0) && (queue < NR_SLEEPQS)); 769 sq = sleepq_lookup(wchan); 770 if (sq == NULL) 771 return; 772 KASSERT(sq->sq_type == (flags & SLEEPQ_TYPE), 773 ("%s: mismatch between sleep/wakeup and cv_*", __func__)); 774 775 /* Resume all blocked threads on the sleep queue. */ 776 while (!TAILQ_EMPTY(&sq->sq_blocked[queue])) { 777 td = TAILQ_FIRST(&sq->sq_blocked[queue]); 778 thread_lock(td); 779 sleepq_resume_thread(sq, td, pri); 780 thread_unlock(td); 781 } 782 } 783 784 /* 785 * Time sleeping threads out. When the timeout expires, the thread is 786 * removed from the sleep queue and made runnable if it is still asleep. 787 */ 788 static void 789 sleepq_timeout(void *arg) 790 { 791 struct sleepqueue_chain *sc; 792 struct sleepqueue *sq; 793 struct thread *td; 794 void *wchan; 795 796 td = arg; 797 CTR3(KTR_PROC, "sleepq_timeout: thread %p (pid %ld, %s)", 798 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 799 800 /* 801 * First, see if the thread is asleep and get the wait channel if 802 * it is. 803 */ 804 thread_lock(td); 805 if (TD_IS_SLEEPING(td) && TD_ON_SLEEPQ(td)) { 806 wchan = td->td_wchan; 807 sc = SC_LOOKUP(wchan); 808 THREAD_LOCKPTR_ASSERT(td, &sc->sc_lock); 809 sq = sleepq_lookup(wchan); 810 MPASS(sq != NULL); 811 td->td_flags |= TDF_TIMEOUT; 812 sleepq_resume_thread(sq, td, 0); 813 thread_unlock(td); 814 return; 815 } 816 817 /* 818 * If the thread is on the SLEEPQ but isn't sleeping yet, it 819 * can either be on another CPU in between sleepq_add() and 820 * one of the sleepq_*wait*() routines or it can be in 821 * sleepq_catch_signals(). 822 */ 823 if (TD_ON_SLEEPQ(td)) { 824 td->td_flags |= TDF_TIMEOUT; 825 thread_unlock(td); 826 return; 827 } 828 829 /* 830 * Now check for the edge cases. First, if TDF_TIMEOUT is set, 831 * then the other thread has already yielded to us, so clear 832 * the flag and resume it. If TDF_TIMEOUT is not set, then the 833 * we know that the other thread is not on a sleep queue, but it 834 * hasn't resumed execution yet. In that case, set TDF_TIMOFAIL 835 * to let it know that the timeout has already run and doesn't 836 * need to be canceled. 837 */ 838 if (td->td_flags & TDF_TIMEOUT) { 839 MPASS(TD_IS_SLEEPING(td)); 840 td->td_flags &= ~TDF_TIMEOUT; 841 TD_CLR_SLEEPING(td); 842 setrunnable(td); 843 } else 844 td->td_flags |= TDF_TIMOFAIL; 845 thread_unlock(td); 846 } 847 848 /* 849 * Resumes a specific thread from the sleep queue associated with a specific 850 * wait channel if it is on that queue. 851 */ 852 void 853 sleepq_remove(struct thread *td, void *wchan) 854 { 855 struct sleepqueue *sq; 856 857 /* 858 * Look up the sleep queue for this wait channel, then re-check 859 * that the thread is asleep on that channel, if it is not, then 860 * bail. 861 */ 862 MPASS(wchan != NULL); 863 sleepq_lock(wchan); 864 sq = sleepq_lookup(wchan); 865 /* 866 * We can not lock the thread here as it may be sleeping on a 867 * different sleepq. However, holding the sleepq lock for this 868 * wchan can guarantee that we do not miss a wakeup for this 869 * channel. The asserts below will catch any false positives. 870 */ 871 if (!TD_ON_SLEEPQ(td) || td->td_wchan != wchan) { 872 sleepq_release(wchan); 873 return; 874 } 875 /* Thread is asleep on sleep queue sq, so wake it up. */ 876 thread_lock(td); 877 MPASS(sq != NULL); 878 MPASS(td->td_wchan == wchan); 879 sleepq_resume_thread(sq, td, 0); 880 thread_unlock(td); 881 sleepq_release(wchan); 882 } 883 884 /* 885 * Abort a thread as if an interrupt had occurred. Only abort 886 * interruptible waits (unfortunately it isn't safe to abort others). 887 */ 888 void 889 sleepq_abort(struct thread *td, int intrval) 890 { 891 struct sleepqueue *sq; 892 void *wchan; 893 894 THREAD_LOCK_ASSERT(td, MA_OWNED); 895 MPASS(TD_ON_SLEEPQ(td)); 896 MPASS(td->td_flags & TDF_SINTR); 897 MPASS(intrval == EINTR || intrval == ERESTART); 898 899 /* 900 * If the TDF_TIMEOUT flag is set, just leave. A 901 * timeout is scheduled anyhow. 902 */ 903 if (td->td_flags & TDF_TIMEOUT) 904 return; 905 906 CTR3(KTR_PROC, "sleepq_abort: thread %p (pid %ld, %s)", 907 (void *)td, (long)td->td_proc->p_pid, (void *)td->td_name); 908 td->td_intrval = intrval; 909 td->td_flags |= TDF_SLEEPABORT; 910 /* 911 * If the thread has not slept yet it will find the signal in 912 * sleepq_catch_signals() and call sleepq_resume_thread. Otherwise 913 * we have to do it here. 914 */ 915 if (!TD_IS_SLEEPING(td)) 916 return; 917 wchan = td->td_wchan; 918 MPASS(wchan != NULL); 919 sq = sleepq_lookup(wchan); 920 MPASS(sq != NULL); 921 922 /* Thread is asleep on sleep queue sq, so wake it up. */ 923 sleepq_resume_thread(sq, td, 0); 924 } 925 926 #ifdef SLEEPQUEUE_PROFILING 927 #define SLEEPQ_PROF_LOCATIONS 1024 928 #define SLEEPQ_SBUFSIZE (40 * 512) 929 struct sleepq_prof { 930 LIST_ENTRY(sleepq_prof) sp_link; 931 const char *sp_wmesg; 932 long sp_count; 933 }; 934 935 LIST_HEAD(sqphead, sleepq_prof); 936 937 struct sqphead sleepq_prof_free; 938 struct sqphead sleepq_hash[SC_TABLESIZE]; 939 static struct sleepq_prof sleepq_profent[SLEEPQ_PROF_LOCATIONS]; 940 static struct mtx sleepq_prof_lock; 941 MTX_SYSINIT(sleepq_prof_lock, &sleepq_prof_lock, "sleepq_prof", MTX_SPIN); 942 943 static void 944 sleepq_profile(const char *wmesg) 945 { 946 struct sleepq_prof *sp; 947 948 mtx_lock_spin(&sleepq_prof_lock); 949 if (prof_enabled == 0) 950 goto unlock; 951 LIST_FOREACH(sp, &sleepq_hash[SC_HASH(wmesg)], sp_link) 952 if (sp->sp_wmesg == wmesg) 953 goto done; 954 sp = LIST_FIRST(&sleepq_prof_free); 955 if (sp == NULL) 956 goto unlock; 957 sp->sp_wmesg = wmesg; 958 LIST_REMOVE(sp, sp_link); 959 LIST_INSERT_HEAD(&sleepq_hash[SC_HASH(wmesg)], sp, sp_link); 960 done: 961 sp->sp_count++; 962 unlock: 963 mtx_unlock_spin(&sleepq_prof_lock); 964 return; 965 } 966 967 static void 968 sleepq_prof_reset(void) 969 { 970 struct sleepq_prof *sp; 971 int enabled; 972 int i; 973 974 mtx_lock_spin(&sleepq_prof_lock); 975 enabled = prof_enabled; 976 prof_enabled = 0; 977 for (i = 0; i < SC_TABLESIZE; i++) 978 LIST_INIT(&sleepq_hash[i]); 979 LIST_INIT(&sleepq_prof_free); 980 for (i = 0; i < SLEEPQ_PROF_LOCATIONS; i++) { 981 sp = &sleepq_profent[i]; 982 sp->sp_wmesg = NULL; 983 sp->sp_count = 0; 984 LIST_INSERT_HEAD(&sleepq_prof_free, sp, sp_link); 985 } 986 prof_enabled = enabled; 987 mtx_unlock_spin(&sleepq_prof_lock); 988 } 989 990 static int 991 enable_sleepq_prof(SYSCTL_HANDLER_ARGS) 992 { 993 int error, v; 994 995 v = prof_enabled; 996 error = sysctl_handle_int(oidp, &v, v, req); 997 if (error) 998 return (error); 999 if (req->newptr == NULL) 1000 return (error); 1001 if (v == prof_enabled) 1002 return (0); 1003 if (v == 1) 1004 sleepq_prof_reset(); 1005 mtx_lock_spin(&sleepq_prof_lock); 1006 prof_enabled = !!v; 1007 mtx_unlock_spin(&sleepq_prof_lock); 1008 1009 return (0); 1010 } 1011 1012 static int 1013 reset_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1014 { 1015 int error, v; 1016 1017 v = 0; 1018 error = sysctl_handle_int(oidp, &v, 0, req); 1019 if (error) 1020 return (error); 1021 if (req->newptr == NULL) 1022 return (error); 1023 if (v == 0) 1024 return (0); 1025 sleepq_prof_reset(); 1026 1027 return (0); 1028 } 1029 1030 static int 1031 dump_sleepq_prof_stats(SYSCTL_HANDLER_ARGS) 1032 { 1033 static int multiplier = 1; 1034 struct sleepq_prof *sp; 1035 struct sbuf *sb; 1036 int enabled; 1037 int error; 1038 int i; 1039 1040 retry_sbufops: 1041 sb = sbuf_new(NULL, NULL, SLEEPQ_SBUFSIZE * multiplier, SBUF_FIXEDLEN); 1042 sbuf_printf(sb, "\nwmesg\tcount\n"); 1043 enabled = prof_enabled; 1044 mtx_lock_spin(&sleepq_prof_lock); 1045 prof_enabled = 0; 1046 mtx_unlock_spin(&sleepq_prof_lock); 1047 for (i = 0; i < SC_TABLESIZE; i++) { 1048 LIST_FOREACH(sp, &sleepq_hash[i], sp_link) { 1049 sbuf_printf(sb, "%s\t%ld\n", 1050 sp->sp_wmesg, sp->sp_count); 1051 if (sbuf_overflowed(sb)) { 1052 sbuf_delete(sb); 1053 multiplier++; 1054 goto retry_sbufops; 1055 } 1056 } 1057 } 1058 mtx_lock_spin(&sleepq_prof_lock); 1059 prof_enabled = enabled; 1060 mtx_unlock_spin(&sleepq_prof_lock); 1061 1062 sbuf_finish(sb); 1063 error = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1); 1064 sbuf_delete(sb); 1065 return (error); 1066 } 1067 1068 SYSCTL_PROC(_debug_sleepq, OID_AUTO, stats, CTLTYPE_STRING | CTLFLAG_RD, 1069 NULL, 0, dump_sleepq_prof_stats, "A", "Sleepqueue profiling statistics"); 1070 SYSCTL_PROC(_debug_sleepq, OID_AUTO, reset, CTLTYPE_INT | CTLFLAG_RW, 1071 NULL, 0, reset_sleepq_prof_stats, "I", 1072 "Reset sleepqueue profiling statistics"); 1073 SYSCTL_PROC(_debug_sleepq, OID_AUTO, enable, CTLTYPE_INT | CTLFLAG_RW, 1074 NULL, 0, enable_sleepq_prof, "I", "Enable sleepqueue profiling"); 1075 #endif 1076 1077 #ifdef DDB 1078 DB_SHOW_COMMAND(sleepq, db_show_sleepqueue) 1079 { 1080 struct sleepqueue_chain *sc; 1081 struct sleepqueue *sq; 1082 #ifdef INVARIANTS 1083 struct lock_object *lock; 1084 #endif 1085 struct thread *td; 1086 void *wchan; 1087 int i; 1088 1089 if (!have_addr) 1090 return; 1091 1092 /* 1093 * First, see if there is an active sleep queue for the wait channel 1094 * indicated by the address. 1095 */ 1096 wchan = (void *)addr; 1097 sc = SC_LOOKUP(wchan); 1098 LIST_FOREACH(sq, &sc->sc_queues, sq_hash) 1099 if (sq->sq_wchan == wchan) 1100 goto found; 1101 1102 /* 1103 * Second, see if there is an active sleep queue at the address 1104 * indicated. 1105 */ 1106 for (i = 0; i < SC_TABLESIZE; i++) 1107 LIST_FOREACH(sq, &sleepq_chains[i].sc_queues, sq_hash) { 1108 if (sq == (struct sleepqueue *)addr) 1109 goto found; 1110 } 1111 1112 db_printf("Unable to locate a sleep queue via %p\n", (void *)addr); 1113 return; 1114 found: 1115 db_printf("Wait channel: %p\n", sq->sq_wchan); 1116 #ifdef INVARIANTS 1117 db_printf("Queue type: %d\n", sq->sq_type); 1118 if (sq->sq_lock) { 1119 lock = sq->sq_lock; 1120 db_printf("Associated Interlock: %p - (%s) %s\n", lock, 1121 LOCK_CLASS(lock)->lc_name, lock->lo_name); 1122 } 1123 #endif 1124 db_printf("Blocked threads:\n"); 1125 for (i = 0; i < NR_SLEEPQS; i++) { 1126 db_printf("\nQueue[%d]:\n", i); 1127 if (TAILQ_EMPTY(&sq->sq_blocked[i])) 1128 db_printf("\tempty\n"); 1129 else 1130 TAILQ_FOREACH(td, &sq->sq_blocked[0], 1131 td_slpq) { 1132 db_printf("\t%p (tid %d, pid %d, \"%s\")\n", td, 1133 td->td_tid, td->td_proc->p_pid, 1134 td->td_name[i] != '\0' ? td->td_name : 1135 td->td_name); 1136 } 1137 } 1138 } 1139 1140 /* Alias 'show sleepqueue' to 'show sleepq'. */ 1141 DB_SET(sleepqueue, db_show_sleepqueue, db_show_cmd_set, 0, NULL); 1142 #endif 1143