1 /*- 2 * Copyright (c) 2008,2010 Damien Bergamini <damien.bergamini@free.fr> 3 * ported to FreeBSD by Akinori Furukoshi <moonlightakkiy@yahoo.ca> 4 * USB Consulting, Hans Petter Selasky <hselasky@freebsd.org> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include <sys/cdefs.h> 20 __FBSDID("$FreeBSD$"); 21 22 /*- 23 * Ralink Technology RT2700U/RT2800U/RT3000U chipset driver. 24 * http://www.ralinktech.com/ 25 */ 26 27 #include <sys/param.h> 28 #include <sys/sockio.h> 29 #include <sys/sysctl.h> 30 #include <sys/lock.h> 31 #include <sys/mutex.h> 32 #include <sys/mbuf.h> 33 #include <sys/kernel.h> 34 #include <sys/socket.h> 35 #include <sys/systm.h> 36 #include <sys/malloc.h> 37 #include <sys/module.h> 38 #include <sys/bus.h> 39 #include <sys/endian.h> 40 #include <sys/linker.h> 41 #include <sys/firmware.h> 42 #include <sys/kdb.h> 43 44 #include <machine/bus.h> 45 #include <machine/resource.h> 46 #include <sys/rman.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/ethernet.h> 52 #include <net/if_dl.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_systm.h> 58 #include <netinet/in_var.h> 59 #include <netinet/if_ether.h> 60 #include <netinet/ip.h> 61 62 #include <net80211/ieee80211_var.h> 63 #include <net80211/ieee80211_regdomain.h> 64 #include <net80211/ieee80211_radiotap.h> 65 #include <net80211/ieee80211_ratectl.h> 66 67 #include <dev/usb/usb.h> 68 #include <dev/usb/usbdi.h> 69 #include "usbdevs.h" 70 71 #define USB_DEBUG_VAR run_debug 72 #include <dev/usb/usb_debug.h> 73 74 #include "if_runreg.h" 75 #include "if_runvar.h" 76 77 #define nitems(_a) (sizeof((_a)) / sizeof((_a)[0])) 78 79 #ifdef USB_DEBUG 80 #define RUN_DEBUG 81 #endif 82 83 #ifdef RUN_DEBUG 84 int run_debug = 0; 85 SYSCTL_NODE(_hw_usb, OID_AUTO, run, CTLFLAG_RW, 0, "USB run"); 86 SYSCTL_INT(_hw_usb_run, OID_AUTO, debug, CTLFLAG_RW, &run_debug, 0, 87 "run debug level"); 88 #endif 89 90 #define IEEE80211_HAS_ADDR4(wh) \ 91 (((wh)->i_fc[1] & IEEE80211_FC1_DIR_MASK) == IEEE80211_FC1_DIR_DSTODS) 92 93 /* 94 * Because of LOR in run_key_delete(), use atomic instead. 95 * '& RUN_CMDQ_MASQ' is to loop cmdq[]. 96 */ 97 #define RUN_CMDQ_GET(c) (atomic_fetchadd_32((c), 1) & RUN_CMDQ_MASQ) 98 99 static const struct usb_device_id run_devs[] = { 100 #define RUN_DEV(v,p) { USB_VP(USB_VENDOR_##v, USB_PRODUCT_##v##_##p) } 101 RUN_DEV(ABOCOM, RT2770), 102 RUN_DEV(ABOCOM, RT2870), 103 RUN_DEV(ABOCOM, RT3070), 104 RUN_DEV(ABOCOM, RT3071), 105 RUN_DEV(ABOCOM, RT3072), 106 RUN_DEV(ABOCOM2, RT2870_1), 107 RUN_DEV(ACCTON, RT2770), 108 RUN_DEV(ACCTON, RT2870_1), 109 RUN_DEV(ACCTON, RT2870_2), 110 RUN_DEV(ACCTON, RT2870_3), 111 RUN_DEV(ACCTON, RT2870_4), 112 RUN_DEV(ACCTON, RT2870_5), 113 RUN_DEV(ACCTON, RT3070), 114 RUN_DEV(ACCTON, RT3070_1), 115 RUN_DEV(ACCTON, RT3070_2), 116 RUN_DEV(ACCTON, RT3070_3), 117 RUN_DEV(ACCTON, RT3070_4), 118 RUN_DEV(ACCTON, RT3070_5), 119 RUN_DEV(AIRTIES, RT3070), 120 RUN_DEV(ALLWIN, RT2070), 121 RUN_DEV(ALLWIN, RT2770), 122 RUN_DEV(ALLWIN, RT2870), 123 RUN_DEV(ALLWIN, RT3070), 124 RUN_DEV(ALLWIN, RT3071), 125 RUN_DEV(ALLWIN, RT3072), 126 RUN_DEV(ALLWIN, RT3572), 127 RUN_DEV(AMIGO, RT2870_1), 128 RUN_DEV(AMIGO, RT2870_2), 129 RUN_DEV(AMIT, CGWLUSB2GNR), 130 RUN_DEV(AMIT, RT2870_1), 131 RUN_DEV(AMIT2, RT2870), 132 RUN_DEV(ASUS, RT2870_1), 133 RUN_DEV(ASUS, RT2870_2), 134 RUN_DEV(ASUS, RT2870_3), 135 RUN_DEV(ASUS, RT2870_4), 136 RUN_DEV(ASUS, RT2870_5), 137 RUN_DEV(ASUS, USBN13), 138 RUN_DEV(ASUS, RT3070_1), 139 RUN_DEV(ASUS2, USBN11), 140 RUN_DEV(AZUREWAVE, RT2870_1), 141 RUN_DEV(AZUREWAVE, RT2870_2), 142 RUN_DEV(AZUREWAVE, RT3070_1), 143 RUN_DEV(AZUREWAVE, RT3070_2), 144 RUN_DEV(AZUREWAVE, RT3070_3), 145 RUN_DEV(BELKIN, F5D8053V3), 146 RUN_DEV(BELKIN, F5D8055), 147 RUN_DEV(BELKIN, F6D4050V1), 148 RUN_DEV(BELKIN, RT2870_1), 149 RUN_DEV(BELKIN, RT2870_2), 150 RUN_DEV(CISCOLINKSYS2, RT3070), 151 RUN_DEV(CISCOLINKSYS3, RT3070), 152 RUN_DEV(CONCEPTRONIC2, RT2870_1), 153 RUN_DEV(CONCEPTRONIC2, RT2870_2), 154 RUN_DEV(CONCEPTRONIC2, RT2870_3), 155 RUN_DEV(CONCEPTRONIC2, RT2870_4), 156 RUN_DEV(CONCEPTRONIC2, RT2870_5), 157 RUN_DEV(CONCEPTRONIC2, RT2870_6), 158 RUN_DEV(CONCEPTRONIC2, RT2870_7), 159 RUN_DEV(CONCEPTRONIC2, RT2870_8), 160 RUN_DEV(CONCEPTRONIC2, RT3070_1), 161 RUN_DEV(CONCEPTRONIC2, RT3070_2), 162 RUN_DEV(CONCEPTRONIC2, VIGORN61), 163 RUN_DEV(COREGA, CGWLUSB300GNM), 164 RUN_DEV(COREGA, RT2870_1), 165 RUN_DEV(COREGA, RT2870_2), 166 RUN_DEV(COREGA, RT2870_3), 167 RUN_DEV(COREGA, RT3070), 168 RUN_DEV(CYBERTAN, RT2870), 169 RUN_DEV(DLINK, RT2870), 170 RUN_DEV(DLINK, RT3072), 171 RUN_DEV(DLINK2, DWA130), 172 RUN_DEV(DLINK2, RT2870_1), 173 RUN_DEV(DLINK2, RT2870_2), 174 RUN_DEV(DLINK2, RT3070_1), 175 RUN_DEV(DLINK2, RT3070_2), 176 RUN_DEV(DLINK2, RT3070_3), 177 RUN_DEV(DLINK2, RT3070_4), 178 RUN_DEV(DLINK2, RT3070_5), 179 RUN_DEV(DLINK2, RT3072), 180 RUN_DEV(DLINK2, RT3072_1), 181 RUN_DEV(EDIMAX, EW7717), 182 RUN_DEV(EDIMAX, EW7718), 183 RUN_DEV(EDIMAX, RT2870_1), 184 RUN_DEV(ENCORE, RT3070_1), 185 RUN_DEV(ENCORE, RT3070_2), 186 RUN_DEV(ENCORE, RT3070_3), 187 RUN_DEV(GIGABYTE, GNWB31N), 188 RUN_DEV(GIGABYTE, GNWB32L), 189 RUN_DEV(GIGABYTE, RT2870_1), 190 RUN_DEV(GIGASET, RT3070_1), 191 RUN_DEV(GIGASET, RT3070_2), 192 RUN_DEV(GUILLEMOT, HWNU300), 193 RUN_DEV(HAWKING, HWUN2), 194 RUN_DEV(HAWKING, RT2870_1), 195 RUN_DEV(HAWKING, RT2870_2), 196 RUN_DEV(HAWKING, RT3070), 197 RUN_DEV(IODATA, RT3072_1), 198 RUN_DEV(IODATA, RT3072_2), 199 RUN_DEV(IODATA, RT3072_3), 200 RUN_DEV(IODATA, RT3072_4), 201 RUN_DEV(LINKSYS4, RT3070), 202 RUN_DEV(LINKSYS4, WUSB100), 203 RUN_DEV(LINKSYS4, WUSB54GCV3), 204 RUN_DEV(LINKSYS4, WUSB600N), 205 RUN_DEV(LINKSYS4, WUSB600NV2), 206 RUN_DEV(LOGITEC, RT2870_1), 207 RUN_DEV(LOGITEC, RT2870_2), 208 RUN_DEV(LOGITEC, RT2870_3), 209 RUN_DEV(MELCO, RT2870_1), 210 RUN_DEV(MELCO, RT2870_2), 211 RUN_DEV(MELCO, WLIUCAG300N), 212 RUN_DEV(MELCO, WLIUCG300N), 213 RUN_DEV(MELCO, WLIUCGN), 214 RUN_DEV(MOTOROLA4, RT2770), 215 RUN_DEV(MOTOROLA4, RT3070), 216 RUN_DEV(MSI, RT3070_1), 217 RUN_DEV(MSI, RT3070_2), 218 RUN_DEV(MSI, RT3070_3), 219 RUN_DEV(MSI, RT3070_4), 220 RUN_DEV(MSI, RT3070_5), 221 RUN_DEV(MSI, RT3070_6), 222 RUN_DEV(MSI, RT3070_7), 223 RUN_DEV(MSI, RT3070_8), 224 RUN_DEV(MSI, RT3070_9), 225 RUN_DEV(MSI, RT3070_10), 226 RUN_DEV(MSI, RT3070_11), 227 RUN_DEV(OVISLINK, RT3072), 228 RUN_DEV(PARA, RT3070), 229 RUN_DEV(PEGATRON, RT2870), 230 RUN_DEV(PEGATRON, RT3070), 231 RUN_DEV(PEGATRON, RT3070_2), 232 RUN_DEV(PEGATRON, RT3070_3), 233 RUN_DEV(PHILIPS, RT2870), 234 RUN_DEV(PLANEX2, GWUS300MINIS), 235 RUN_DEV(PLANEX2, GWUSMICRON), 236 RUN_DEV(PLANEX2, RT2870), 237 RUN_DEV(PLANEX2, RT3070), 238 RUN_DEV(QCOM, RT2870), 239 RUN_DEV(QUANTA, RT3070), 240 RUN_DEV(RALINK, RT2070), 241 RUN_DEV(RALINK, RT2770), 242 RUN_DEV(RALINK, RT2870), 243 RUN_DEV(RALINK, RT3070), 244 RUN_DEV(RALINK, RT3071), 245 RUN_DEV(RALINK, RT3072), 246 RUN_DEV(RALINK, RT3370), 247 RUN_DEV(RALINK, RT3572), 248 RUN_DEV(RALINK, RT8070), 249 RUN_DEV(SAMSUNG2, RT2870_1), 250 RUN_DEV(SENAO, RT2870_1), 251 RUN_DEV(SENAO, RT2870_2), 252 RUN_DEV(SENAO, RT2870_3), 253 RUN_DEV(SENAO, RT2870_4), 254 RUN_DEV(SENAO, RT3070), 255 RUN_DEV(SENAO, RT3071), 256 RUN_DEV(SENAO, RT3072_1), 257 RUN_DEV(SENAO, RT3072_2), 258 RUN_DEV(SENAO, RT3072_3), 259 RUN_DEV(SENAO, RT3072_4), 260 RUN_DEV(SENAO, RT3072_5), 261 RUN_DEV(SITECOMEU, RT2770), 262 RUN_DEV(SITECOMEU, RT2870_1), 263 RUN_DEV(SITECOMEU, RT2870_2), 264 RUN_DEV(SITECOMEU, RT2870_3), 265 RUN_DEV(SITECOMEU, RT2870_4), 266 RUN_DEV(SITECOMEU, RT3070), 267 RUN_DEV(SITECOMEU, RT3070_2), 268 RUN_DEV(SITECOMEU, RT3070_3), 269 RUN_DEV(SITECOMEU, RT3070_4), 270 RUN_DEV(SITECOMEU, RT3071), 271 RUN_DEV(SITECOMEU, RT3072_1), 272 RUN_DEV(SITECOMEU, RT3072_2), 273 RUN_DEV(SITECOMEU, RT3072_3), 274 RUN_DEV(SITECOMEU, RT3072_4), 275 RUN_DEV(SITECOMEU, RT3072_5), 276 RUN_DEV(SITECOMEU, RT3072_6), 277 RUN_DEV(SITECOMEU, WL608), 278 RUN_DEV(SPARKLAN, RT2870_1), 279 RUN_DEV(SPARKLAN, RT3070), 280 RUN_DEV(SWEEX2, LW153), 281 RUN_DEV(SWEEX2, LW303), 282 RUN_DEV(SWEEX2, LW313), 283 RUN_DEV(TOSHIBA, RT3070), 284 RUN_DEV(UMEDIA, RT2870_1), 285 RUN_DEV(ZCOM, RT2870_1), 286 RUN_DEV(ZCOM, RT2870_2), 287 RUN_DEV(ZINWELL, RT2870_1), 288 RUN_DEV(ZINWELL, RT2870_2), 289 RUN_DEV(ZINWELL, RT3070), 290 RUN_DEV(ZINWELL, RT3072_1), 291 RUN_DEV(ZINWELL, RT3072_2), 292 RUN_DEV(ZYXEL, RT2870_1), 293 RUN_DEV(ZYXEL, RT2870_2), 294 #undef RUN_DEV 295 }; 296 297 MODULE_DEPEND(run, wlan, 1, 1, 1); 298 MODULE_DEPEND(run, usb, 1, 1, 1); 299 MODULE_DEPEND(run, firmware, 1, 1, 1); 300 301 static device_probe_t run_match; 302 static device_attach_t run_attach; 303 static device_detach_t run_detach; 304 305 static usb_callback_t run_bulk_rx_callback; 306 static usb_callback_t run_bulk_tx_callback0; 307 static usb_callback_t run_bulk_tx_callback1; 308 static usb_callback_t run_bulk_tx_callback2; 309 static usb_callback_t run_bulk_tx_callback3; 310 static usb_callback_t run_bulk_tx_callback4; 311 static usb_callback_t run_bulk_tx_callback5; 312 313 static void run_bulk_tx_callbackN(struct usb_xfer *xfer, 314 usb_error_t error, unsigned int index); 315 static struct ieee80211vap *run_vap_create(struct ieee80211com *, 316 const char name[IFNAMSIZ], int unit, int opmode, int flags, 317 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t 318 mac[IEEE80211_ADDR_LEN]); 319 static void run_vap_delete(struct ieee80211vap *); 320 static void run_cmdq_cb(void *, int); 321 static void run_setup_tx_list(struct run_softc *, 322 struct run_endpoint_queue *); 323 static void run_unsetup_tx_list(struct run_softc *, 324 struct run_endpoint_queue *); 325 static int run_load_microcode(struct run_softc *); 326 static int run_reset(struct run_softc *); 327 static usb_error_t run_do_request(struct run_softc *, 328 struct usb_device_request *, void *); 329 static int run_read(struct run_softc *, uint16_t, uint32_t *); 330 static int run_read_region_1(struct run_softc *, uint16_t, uint8_t *, int); 331 static int run_write_2(struct run_softc *, uint16_t, uint16_t); 332 static int run_write(struct run_softc *, uint16_t, uint32_t); 333 static int run_write_region_1(struct run_softc *, uint16_t, 334 const uint8_t *, int); 335 static int run_set_region_4(struct run_softc *, uint16_t, uint32_t, int); 336 static int run_efuse_read_2(struct run_softc *, uint16_t, uint16_t *); 337 static int run_eeprom_read_2(struct run_softc *, uint16_t, uint16_t *); 338 static int run_rt2870_rf_write(struct run_softc *, uint8_t, uint32_t); 339 static int run_rt3070_rf_read(struct run_softc *, uint8_t, uint8_t *); 340 static int run_rt3070_rf_write(struct run_softc *, uint8_t, uint8_t); 341 static int run_bbp_read(struct run_softc *, uint8_t, uint8_t *); 342 static int run_bbp_write(struct run_softc *, uint8_t, uint8_t); 343 static int run_mcu_cmd(struct run_softc *, uint8_t, uint16_t); 344 static const char *run_get_rf(int); 345 static int run_read_eeprom(struct run_softc *); 346 static struct ieee80211_node *run_node_alloc(struct ieee80211vap *, 347 const uint8_t mac[IEEE80211_ADDR_LEN]); 348 static int run_media_change(struct ifnet *); 349 static int run_newstate(struct ieee80211vap *, enum ieee80211_state, int); 350 static int run_wme_update(struct ieee80211com *); 351 static void run_wme_update_cb(void *); 352 static void run_key_update_begin(struct ieee80211vap *); 353 static void run_key_update_end(struct ieee80211vap *); 354 static void run_key_set_cb(void *); 355 static int run_key_set(struct ieee80211vap *, struct ieee80211_key *, 356 const uint8_t mac[IEEE80211_ADDR_LEN]); 357 static void run_key_delete_cb(void *); 358 static int run_key_delete(struct ieee80211vap *, struct ieee80211_key *); 359 static void run_ratectl_to(void *); 360 static void run_ratectl_cb(void *, int); 361 static void run_drain_fifo(void *); 362 static void run_iter_func(void *, struct ieee80211_node *); 363 static void run_newassoc_cb(void *); 364 static void run_newassoc(struct ieee80211_node *, int); 365 static void run_rx_frame(struct run_softc *, struct mbuf *, uint32_t); 366 static void run_tx_free(struct run_endpoint_queue *pq, 367 struct run_tx_data *, int); 368 static void run_set_tx_desc(struct run_softc *, struct run_tx_data *); 369 static int run_tx(struct run_softc *, struct mbuf *, 370 struct ieee80211_node *); 371 static int run_tx_mgt(struct run_softc *, struct mbuf *, 372 struct ieee80211_node *); 373 static int run_sendprot(struct run_softc *, const struct mbuf *, 374 struct ieee80211_node *, int, int); 375 static int run_tx_param(struct run_softc *, struct mbuf *, 376 struct ieee80211_node *, 377 const struct ieee80211_bpf_params *); 378 static int run_raw_xmit(struct ieee80211_node *, struct mbuf *, 379 const struct ieee80211_bpf_params *); 380 static void run_start(struct ifnet *); 381 static int run_ioctl(struct ifnet *, u_long, caddr_t); 382 static void run_set_agc(struct run_softc *, uint8_t); 383 static void run_select_chan_group(struct run_softc *, int); 384 static void run_set_rx_antenna(struct run_softc *, int); 385 static void run_rt2870_set_chan(struct run_softc *, u_int); 386 static void run_rt3070_set_chan(struct run_softc *, u_int); 387 static void run_rt3572_set_chan(struct run_softc *, u_int); 388 static int run_set_chan(struct run_softc *, struct ieee80211_channel *); 389 static void run_set_channel(struct ieee80211com *); 390 static void run_scan_start(struct ieee80211com *); 391 static void run_scan_end(struct ieee80211com *); 392 static void run_update_beacon(struct ieee80211vap *, int); 393 static void run_update_beacon_cb(void *); 394 static void run_updateprot(struct ieee80211com *); 395 static void run_usb_timeout_cb(void *); 396 static void run_reset_livelock(struct run_softc *); 397 static void run_enable_tsf_sync(struct run_softc *); 398 static void run_enable_mrr(struct run_softc *); 399 static void run_set_txpreamble(struct run_softc *); 400 static void run_set_basicrates(struct run_softc *); 401 static void run_set_leds(struct run_softc *, uint16_t); 402 static void run_set_bssid(struct run_softc *, const uint8_t *); 403 static void run_set_macaddr(struct run_softc *, const uint8_t *); 404 static void run_updateslot(struct ifnet *); 405 static void run_update_mcast(struct ifnet *); 406 static int8_t run_rssi2dbm(struct run_softc *, uint8_t, uint8_t); 407 static void run_update_promisc_locked(struct ifnet *); 408 static void run_update_promisc(struct ifnet *); 409 static int run_bbp_init(struct run_softc *); 410 static int run_rt3070_rf_init(struct run_softc *); 411 static int run_rt3070_filter_calib(struct run_softc *, uint8_t, uint8_t, 412 uint8_t *); 413 static void run_rt3070_rf_setup(struct run_softc *); 414 static int run_txrx_enable(struct run_softc *); 415 static void run_init(void *); 416 static void run_init_locked(struct run_softc *); 417 static void run_stop(void *); 418 static void run_delay(struct run_softc *, unsigned int); 419 420 static const struct { 421 uint16_t reg; 422 uint32_t val; 423 } rt2870_def_mac[] = { 424 RT2870_DEF_MAC 425 }; 426 427 static const struct { 428 uint8_t reg; 429 uint8_t val; 430 } rt2860_def_bbp[] = { 431 RT2860_DEF_BBP 432 }; 433 434 static const struct rfprog { 435 uint8_t chan; 436 uint32_t r1, r2, r3, r4; 437 } rt2860_rf2850[] = { 438 RT2860_RF2850 439 }; 440 441 struct { 442 uint8_t n, r, k; 443 } rt3070_freqs[] = { 444 RT3070_RF3052 445 }; 446 447 static const struct { 448 uint8_t reg; 449 uint8_t val; 450 } rt3070_def_rf[] = { 451 RT3070_DEF_RF 452 },rt3572_def_rf[] = { 453 RT3572_DEF_RF 454 }; 455 456 static const struct usb_config run_config[RUN_N_XFER] = { 457 [RUN_BULK_TX_BE] = { 458 .type = UE_BULK, 459 .endpoint = UE_ADDR_ANY, 460 .ep_index = 0, 461 .direction = UE_DIR_OUT, 462 .bufsize = RUN_MAX_TXSZ, 463 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 464 .callback = run_bulk_tx_callback0, 465 .timeout = 5000, /* ms */ 466 }, 467 [RUN_BULK_TX_BK] = { 468 .type = UE_BULK, 469 .endpoint = UE_ADDR_ANY, 470 .direction = UE_DIR_OUT, 471 .ep_index = 1, 472 .bufsize = RUN_MAX_TXSZ, 473 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 474 .callback = run_bulk_tx_callback1, 475 .timeout = 5000, /* ms */ 476 }, 477 [RUN_BULK_TX_VI] = { 478 .type = UE_BULK, 479 .endpoint = UE_ADDR_ANY, 480 .direction = UE_DIR_OUT, 481 .ep_index = 2, 482 .bufsize = RUN_MAX_TXSZ, 483 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 484 .callback = run_bulk_tx_callback2, 485 .timeout = 5000, /* ms */ 486 }, 487 [RUN_BULK_TX_VO] = { 488 .type = UE_BULK, 489 .endpoint = UE_ADDR_ANY, 490 .direction = UE_DIR_OUT, 491 .ep_index = 3, 492 .bufsize = RUN_MAX_TXSZ, 493 .flags = {.pipe_bof = 1,.force_short_xfer = 1,}, 494 .callback = run_bulk_tx_callback3, 495 .timeout = 5000, /* ms */ 496 }, 497 [RUN_BULK_TX_HCCA] = { 498 .type = UE_BULK, 499 .endpoint = UE_ADDR_ANY, 500 .direction = UE_DIR_OUT, 501 .ep_index = 4, 502 .bufsize = RUN_MAX_TXSZ, 503 .flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,}, 504 .callback = run_bulk_tx_callback4, 505 .timeout = 5000, /* ms */ 506 }, 507 [RUN_BULK_TX_PRIO] = { 508 .type = UE_BULK, 509 .endpoint = UE_ADDR_ANY, 510 .direction = UE_DIR_OUT, 511 .ep_index = 5, 512 .bufsize = RUN_MAX_TXSZ, 513 .flags = {.pipe_bof = 1,.force_short_xfer = 1,.no_pipe_ok = 1,}, 514 .callback = run_bulk_tx_callback5, 515 .timeout = 5000, /* ms */ 516 }, 517 [RUN_BULK_RX] = { 518 .type = UE_BULK, 519 .endpoint = UE_ADDR_ANY, 520 .direction = UE_DIR_IN, 521 .bufsize = RUN_MAX_RXSZ, 522 .flags = {.pipe_bof = 1,.short_xfer_ok = 1,}, 523 .callback = run_bulk_rx_callback, 524 } 525 }; 526 527 int 528 run_match(device_t self) 529 { 530 struct usb_attach_arg *uaa = device_get_ivars(self); 531 532 if (uaa->usb_mode != USB_MODE_HOST) 533 return (ENXIO); 534 if (uaa->info.bConfigIndex != 0) 535 return (ENXIO); 536 if (uaa->info.bIfaceIndex != RT2860_IFACE_INDEX) 537 return (ENXIO); 538 539 return (usbd_lookup_id_by_uaa(run_devs, sizeof(run_devs), uaa)); 540 } 541 542 static int 543 run_attach(device_t self) 544 { 545 struct run_softc *sc = device_get_softc(self); 546 struct usb_attach_arg *uaa = device_get_ivars(self); 547 struct ieee80211com *ic; 548 struct ifnet *ifp; 549 uint32_t ver; 550 int i, ntries, error; 551 uint8_t iface_index, bands; 552 553 device_set_usb_desc(self); 554 sc->sc_udev = uaa->device; 555 sc->sc_dev = self; 556 557 mtx_init(&sc->sc_mtx, device_get_nameunit(sc->sc_dev), 558 MTX_NETWORK_LOCK, MTX_DEF); 559 560 iface_index = RT2860_IFACE_INDEX; 561 562 error = usbd_transfer_setup(uaa->device, &iface_index, 563 sc->sc_xfer, run_config, RUN_N_XFER, sc, &sc->sc_mtx); 564 if (error) { 565 device_printf(self, "could not allocate USB transfers, " 566 "err=%s\n", usbd_errstr(error)); 567 goto detach; 568 } 569 570 RUN_LOCK(sc); 571 572 /* wait for the chip to settle */ 573 for (ntries = 0; ntries < 100; ntries++) { 574 if (run_read(sc, RT2860_ASIC_VER_ID, &ver) != 0) { 575 RUN_UNLOCK(sc); 576 goto detach; 577 } 578 if (ver != 0 && ver != 0xffffffff) 579 break; 580 run_delay(sc, 10); 581 } 582 if (ntries == 100) { 583 device_printf(sc->sc_dev, 584 "timeout waiting for NIC to initialize\n"); 585 RUN_UNLOCK(sc); 586 goto detach; 587 } 588 sc->mac_ver = ver >> 16; 589 sc->mac_rev = ver & 0xffff; 590 591 /* retrieve RF rev. no and various other things from EEPROM */ 592 run_read_eeprom(sc); 593 594 device_printf(sc->sc_dev, 595 "MAC/BBP RT%04X (rev 0x%04X), RF %s (MIMO %dT%dR), address %s\n", 596 sc->mac_ver, sc->mac_rev, run_get_rf(sc->rf_rev), 597 sc->ntxchains, sc->nrxchains, ether_sprintf(sc->sc_bssid)); 598 599 if ((error = run_load_microcode(sc)) != 0) { 600 device_printf(sc->sc_dev, "could not load 8051 microcode\n"); 601 RUN_UNLOCK(sc); 602 goto detach; 603 } 604 605 RUN_UNLOCK(sc); 606 607 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 608 if(ifp == NULL){ 609 device_printf(sc->sc_dev, "can not if_alloc()\n"); 610 goto detach; 611 } 612 ic = ifp->if_l2com; 613 614 ifp->if_softc = sc; 615 if_initname(ifp, "run", device_get_unit(sc->sc_dev)); 616 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 617 ifp->if_init = run_init; 618 ifp->if_ioctl = run_ioctl; 619 ifp->if_start = run_start; 620 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 621 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 622 IFQ_SET_READY(&ifp->if_snd); 623 624 ic->ic_ifp = ifp; 625 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 626 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 627 628 /* set device capabilities */ 629 ic->ic_caps = 630 IEEE80211_C_STA | /* station mode supported */ 631 IEEE80211_C_MONITOR | /* monitor mode supported */ 632 IEEE80211_C_IBSS | 633 IEEE80211_C_HOSTAP | 634 IEEE80211_C_WDS | /* 4-address traffic works */ 635 IEEE80211_C_MBSS | 636 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 637 IEEE80211_C_SHSLOT | /* short slot time supported */ 638 IEEE80211_C_WME | /* WME */ 639 IEEE80211_C_WPA; /* WPA1|WPA2(RSN) */ 640 641 ic->ic_cryptocaps = 642 IEEE80211_CRYPTO_WEP | 643 IEEE80211_CRYPTO_AES_CCM | 644 IEEE80211_CRYPTO_TKIPMIC | 645 IEEE80211_CRYPTO_TKIP; 646 647 ic->ic_flags |= IEEE80211_F_DATAPAD; 648 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; 649 650 bands = 0; 651 setbit(&bands, IEEE80211_MODE_11B); 652 setbit(&bands, IEEE80211_MODE_11G); 653 ieee80211_init_channels(ic, NULL, &bands); 654 655 /* 656 * Do this by own because h/w supports 657 * more channels than ieee80211_init_channels() 658 */ 659 if (sc->rf_rev == RT2860_RF_2750 || 660 sc->rf_rev == RT2860_RF_2850 || 661 sc->rf_rev == RT3070_RF_3052) { 662 /* set supported .11a rates */ 663 for (i = 14; i < nitems(rt2860_rf2850); i++) { 664 uint8_t chan = rt2860_rf2850[i].chan; 665 ic->ic_channels[ic->ic_nchans].ic_freq = 666 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_A); 667 ic->ic_channels[ic->ic_nchans].ic_ieee = chan; 668 ic->ic_channels[ic->ic_nchans].ic_flags = IEEE80211_CHAN_A; 669 ic->ic_channels[ic->ic_nchans].ic_extieee = 0; 670 ic->ic_nchans++; 671 } 672 } 673 674 ieee80211_ifattach(ic, sc->sc_bssid); 675 676 ic->ic_scan_start = run_scan_start; 677 ic->ic_scan_end = run_scan_end; 678 ic->ic_set_channel = run_set_channel; 679 ic->ic_node_alloc = run_node_alloc; 680 ic->ic_newassoc = run_newassoc; 681 //ic->ic_updateslot = run_updateslot; 682 ic->ic_update_mcast = run_update_mcast; 683 ic->ic_wme.wme_update = run_wme_update; 684 ic->ic_raw_xmit = run_raw_xmit; 685 ic->ic_update_promisc = run_update_promisc; 686 687 ic->ic_vap_create = run_vap_create; 688 ic->ic_vap_delete = run_vap_delete; 689 690 ieee80211_radiotap_attach(ic, 691 &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap), 692 RUN_TX_RADIOTAP_PRESENT, 693 &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap), 694 RUN_RX_RADIOTAP_PRESENT); 695 696 TASK_INIT(&sc->cmdq_task, 0, run_cmdq_cb, sc); 697 TASK_INIT(&sc->ratectl_task, 0, run_ratectl_cb, sc); 698 callout_init((struct callout *)&sc->ratectl_ch, 1); 699 700 if (bootverbose) 701 ieee80211_announce(ic); 702 703 return (0); 704 705 detach: 706 run_detach(self); 707 return (ENXIO); 708 } 709 710 static int 711 run_detach(device_t self) 712 { 713 struct run_softc *sc = device_get_softc(self); 714 struct ifnet *ifp = sc->sc_ifp; 715 struct ieee80211com *ic; 716 int i; 717 718 /* stop all USB transfers */ 719 usbd_transfer_unsetup(sc->sc_xfer, RUN_N_XFER); 720 721 RUN_LOCK(sc); 722 723 sc->ratectl_run = RUN_RATECTL_OFF; 724 sc->cmdq_run = sc->cmdq_key_set = RUN_CMDQ_ABORT; 725 726 /* free TX list, if any */ 727 for (i = 0; i != RUN_EP_QUEUES; i++) 728 run_unsetup_tx_list(sc, &sc->sc_epq[i]); 729 RUN_UNLOCK(sc); 730 731 if (ifp) { 732 ic = ifp->if_l2com; 733 /* drain tasks */ 734 usb_callout_drain(&sc->ratectl_ch); 735 ieee80211_draintask(ic, &sc->cmdq_task); 736 ieee80211_draintask(ic, &sc->ratectl_task); 737 ieee80211_ifdetach(ic); 738 if_free(ifp); 739 } 740 741 mtx_destroy(&sc->sc_mtx); 742 743 return (0); 744 } 745 746 static struct ieee80211vap * 747 run_vap_create(struct ieee80211com *ic, 748 const char name[IFNAMSIZ], int unit, int opmode, int flags, 749 const uint8_t bssid[IEEE80211_ADDR_LEN], 750 const uint8_t mac[IEEE80211_ADDR_LEN]) 751 { 752 struct ifnet *ifp = ic->ic_ifp; 753 struct run_softc *sc = ifp->if_softc; 754 struct run_vap *rvp; 755 struct ieee80211vap *vap; 756 int i; 757 758 if (sc->rvp_cnt >= RUN_VAP_MAX) { 759 if_printf(ifp, "number of VAPs maxed out\n"); 760 return (NULL); 761 } 762 763 switch (opmode) { 764 case IEEE80211_M_STA: 765 /* enable s/w bmiss handling for sta mode */ 766 flags |= IEEE80211_CLONE_NOBEACONS; 767 /* fall though */ 768 case IEEE80211_M_IBSS: 769 case IEEE80211_M_MONITOR: 770 case IEEE80211_M_HOSTAP: 771 case IEEE80211_M_MBSS: 772 /* other than WDS vaps, only one at a time */ 773 if (!TAILQ_EMPTY(&ic->ic_vaps)) 774 return (NULL); 775 break; 776 case IEEE80211_M_WDS: 777 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next){ 778 if(vap->iv_opmode != IEEE80211_M_HOSTAP) 779 continue; 780 /* WDS vap's always share the local mac address. */ 781 flags &= ~IEEE80211_CLONE_BSSID; 782 break; 783 } 784 if (vap == NULL) { 785 if_printf(ifp, "wds only supported in ap mode\n"); 786 return (NULL); 787 } 788 break; 789 default: 790 if_printf(ifp, "unknown opmode %d\n", opmode); 791 return (NULL); 792 } 793 794 rvp = (struct run_vap *) malloc(sizeof(struct run_vap), 795 M_80211_VAP, M_NOWAIT | M_ZERO); 796 if (rvp == NULL) 797 return (NULL); 798 vap = &rvp->vap; 799 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac); 800 801 vap->iv_key_update_begin = run_key_update_begin; 802 vap->iv_key_update_end = run_key_update_end; 803 vap->iv_update_beacon = run_update_beacon; 804 vap->iv_max_aid = RT2870_WCID_MAX; 805 /* 806 * To delete the right key from h/w, we need wcid. 807 * Luckily, there is unused space in ieee80211_key{}, wk_pad, 808 * and matching wcid will be written into there. So, cast 809 * some spells to remove 'const' from ieee80211_key{} 810 */ 811 vap->iv_key_delete = (void *)run_key_delete; 812 vap->iv_key_set = (void *)run_key_set; 813 814 /* override state transition machine */ 815 rvp->newstate = vap->iv_newstate; 816 vap->iv_newstate = run_newstate; 817 818 ieee80211_ratectl_init(vap); 819 ieee80211_ratectl_setinterval(vap, 1000 /* 1 sec */); 820 821 /* complete setup */ 822 ieee80211_vap_attach(vap, run_media_change, ieee80211_media_status); 823 824 /* make sure id is always unique */ 825 for (i = 0; i < RUN_VAP_MAX; i++) { 826 if((sc->rvp_bmap & 1 << i) == 0){ 827 sc->rvp_bmap |= 1 << i; 828 rvp->rvp_id = i; 829 break; 830 } 831 } 832 if (sc->rvp_cnt++ == 0) 833 ic->ic_opmode = opmode; 834 835 if (opmode == IEEE80211_M_HOSTAP) 836 sc->cmdq_run = RUN_CMDQ_GO; 837 838 DPRINTF("rvp_id=%d bmap=%x rvp_cnt=%d\n", 839 rvp->rvp_id, sc->rvp_bmap, sc->rvp_cnt); 840 841 return (vap); 842 } 843 844 static void 845 run_vap_delete(struct ieee80211vap *vap) 846 { 847 struct run_vap *rvp = RUN_VAP(vap); 848 struct ifnet *ifp; 849 struct ieee80211com *ic; 850 struct run_softc *sc; 851 uint8_t rvp_id; 852 853 if (vap == NULL) 854 return; 855 856 ic = vap->iv_ic; 857 ifp = ic->ic_ifp; 858 859 sc = ifp->if_softc; 860 861 RUN_LOCK(sc); 862 863 rvp_id = rvp->rvp_id; 864 sc->ratectl_run &= ~(1 << rvp_id); 865 sc->rvp_bmap &= ~(1 << rvp_id); 866 run_set_region_4(sc, RT2860_SKEY(rvp_id, 0), 0, 128); 867 run_set_region_4(sc, RT2860_BCN_BASE(rvp_id), 0, 512); 868 --sc->rvp_cnt; 869 870 DPRINTF("vap=%p rvp_id=%d bmap=%x rvp_cnt=%d\n", 871 vap, rvp_id, sc->rvp_bmap, sc->rvp_cnt); 872 873 RUN_UNLOCK(sc); 874 875 ieee80211_ratectl_deinit(vap); 876 ieee80211_vap_detach(vap); 877 free(rvp, M_80211_VAP); 878 } 879 880 /* 881 * There are numbers of functions need to be called in context thread. 882 * Rather than creating taskqueue event for each of those functions, 883 * here is all-for-one taskqueue callback function. This function 884 * gurantees deferred functions are executed in the same order they 885 * were enqueued. 886 * '& RUN_CMDQ_MASQ' is to loop cmdq[]. 887 */ 888 static void 889 run_cmdq_cb(void *arg, int pending) 890 { 891 struct run_softc *sc = arg; 892 uint8_t i; 893 894 /* call cmdq[].func locked */ 895 RUN_LOCK(sc); 896 for (i = sc->cmdq_exec; sc->cmdq[i].func && pending; 897 i = sc->cmdq_exec, pending--) { 898 DPRINTFN(6, "cmdq_exec=%d pending=%d\n", i, pending); 899 if (sc->cmdq_run == RUN_CMDQ_GO) { 900 /* 901 * If arg0 is NULL, callback func needs more 902 * than one arg. So, pass ptr to cmdq struct. 903 */ 904 if (sc->cmdq[i].arg0) 905 sc->cmdq[i].func(sc->cmdq[i].arg0); 906 else 907 sc->cmdq[i].func(&sc->cmdq[i]); 908 } 909 sc->cmdq[i].arg0 = NULL; 910 sc->cmdq[i].func = NULL; 911 sc->cmdq_exec++; 912 sc->cmdq_exec &= RUN_CMDQ_MASQ; 913 } 914 RUN_UNLOCK(sc); 915 } 916 917 static void 918 run_setup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq) 919 { 920 struct run_tx_data *data; 921 922 memset(pq, 0, sizeof(*pq)); 923 924 STAILQ_INIT(&pq->tx_qh); 925 STAILQ_INIT(&pq->tx_fh); 926 927 for (data = &pq->tx_data[0]; 928 data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) { 929 data->sc = sc; 930 STAILQ_INSERT_TAIL(&pq->tx_fh, data, next); 931 } 932 pq->tx_nfree = RUN_TX_RING_COUNT; 933 } 934 935 static void 936 run_unsetup_tx_list(struct run_softc *sc, struct run_endpoint_queue *pq) 937 { 938 struct run_tx_data *data; 939 940 /* make sure any subsequent use of the queues will fail */ 941 pq->tx_nfree = 0; 942 STAILQ_INIT(&pq->tx_fh); 943 STAILQ_INIT(&pq->tx_qh); 944 945 /* free up all node references and mbufs */ 946 for (data = &pq->tx_data[0]; 947 data < &pq->tx_data[RUN_TX_RING_COUNT]; data++) { 948 if (data->m != NULL) { 949 m_freem(data->m); 950 data->m = NULL; 951 } 952 if (data->ni != NULL) { 953 ieee80211_free_node(data->ni); 954 data->ni = NULL; 955 } 956 } 957 } 958 959 int 960 run_load_microcode(struct run_softc *sc) 961 { 962 usb_device_request_t req; 963 const struct firmware *fw; 964 const u_char *base; 965 uint32_t tmp; 966 int ntries, error; 967 const uint64_t *temp; 968 uint64_t bytes; 969 970 RUN_UNLOCK(sc); 971 fw = firmware_get("runfw"); 972 RUN_LOCK(sc); 973 if (fw == NULL) { 974 device_printf(sc->sc_dev, 975 "failed loadfirmware of file %s\n", "runfw"); 976 return ENOENT; 977 } 978 979 if (fw->datasize != 8192) { 980 device_printf(sc->sc_dev, 981 "invalid firmware size (should be 8KB)\n"); 982 error = EINVAL; 983 goto fail; 984 } 985 986 /* 987 * RT3071/RT3072 use a different firmware 988 * run-rt2870 (8KB) contains both, 989 * first half (4KB) is for rt2870, 990 * last half is for rt3071. 991 */ 992 base = fw->data; 993 if ((sc->mac_ver) != 0x2860 && 994 (sc->mac_ver) != 0x2872 && 995 (sc->mac_ver) != 0x3070) { 996 base += 4096; 997 } 998 999 /* cheap sanity check */ 1000 temp = fw->data; 1001 bytes = *temp; 1002 if (bytes != be64toh(0xffffff0210280210)) { 1003 device_printf(sc->sc_dev, "firmware checksum failed\n"); 1004 error = EINVAL; 1005 goto fail; 1006 } 1007 1008 run_read(sc, RT2860_ASIC_VER_ID, &tmp); 1009 /* write microcode image */ 1010 run_write_region_1(sc, RT2870_FW_BASE, base, 4096); 1011 run_write(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff); 1012 run_write(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff); 1013 1014 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1015 req.bRequest = RT2870_RESET; 1016 USETW(req.wValue, 8); 1017 USETW(req.wIndex, 0); 1018 USETW(req.wLength, 0); 1019 if ((error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL)) != 0) { 1020 device_printf(sc->sc_dev, "firmware reset failed\n"); 1021 goto fail; 1022 } 1023 1024 run_delay(sc, 10); 1025 1026 run_write(sc, RT2860_H2M_MAILBOX, 0); 1027 if ((error = run_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0)) != 0) 1028 goto fail; 1029 1030 /* wait until microcontroller is ready */ 1031 for (ntries = 0; ntries < 1000; ntries++) { 1032 if ((error = run_read(sc, RT2860_SYS_CTRL, &tmp)) != 0) { 1033 goto fail; 1034 } 1035 if (tmp & RT2860_MCU_READY) 1036 break; 1037 run_delay(sc, 10); 1038 } 1039 if (ntries == 1000) { 1040 device_printf(sc->sc_dev, 1041 "timeout waiting for MCU to initialize\n"); 1042 error = ETIMEDOUT; 1043 goto fail; 1044 } 1045 device_printf(sc->sc_dev, "firmware %s loaded\n", 1046 (base == fw->data) ? "RT2870" : "RT3071"); 1047 1048 fail: 1049 firmware_put(fw, FIRMWARE_UNLOAD); 1050 return (error); 1051 } 1052 1053 int 1054 run_reset(struct run_softc *sc) 1055 { 1056 usb_device_request_t req; 1057 1058 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1059 req.bRequest = RT2870_RESET; 1060 USETW(req.wValue, 1); 1061 USETW(req.wIndex, 0); 1062 USETW(req.wLength, 0); 1063 return (usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, NULL)); 1064 } 1065 1066 static usb_error_t 1067 run_do_request(struct run_softc *sc, 1068 struct usb_device_request *req, void *data) 1069 { 1070 usb_error_t err; 1071 int ntries = 10; 1072 1073 RUN_LOCK_ASSERT(sc, MA_OWNED); 1074 1075 while (ntries--) { 1076 err = usbd_do_request_flags(sc->sc_udev, &sc->sc_mtx, 1077 req, data, 0, NULL, 250 /* ms */); 1078 if (err == 0) 1079 break; 1080 DPRINTFN(1, "Control request failed, %s (retrying)\n", 1081 usbd_errstr(err)); 1082 run_delay(sc, 10); 1083 } 1084 return (err); 1085 } 1086 1087 static int 1088 run_read(struct run_softc *sc, uint16_t reg, uint32_t *val) 1089 { 1090 uint32_t tmp; 1091 int error; 1092 1093 error = run_read_region_1(sc, reg, (uint8_t *)&tmp, sizeof tmp); 1094 if (error == 0) 1095 *val = le32toh(tmp); 1096 else 1097 *val = 0xffffffff; 1098 return (error); 1099 } 1100 1101 static int 1102 run_read_region_1(struct run_softc *sc, uint16_t reg, uint8_t *buf, int len) 1103 { 1104 usb_device_request_t req; 1105 1106 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1107 req.bRequest = RT2870_READ_REGION_1; 1108 USETW(req.wValue, 0); 1109 USETW(req.wIndex, reg); 1110 USETW(req.wLength, len); 1111 1112 return (run_do_request(sc, &req, buf)); 1113 } 1114 1115 static int 1116 run_write_2(struct run_softc *sc, uint16_t reg, uint16_t val) 1117 { 1118 usb_device_request_t req; 1119 1120 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1121 req.bRequest = RT2870_WRITE_2; 1122 USETW(req.wValue, val); 1123 USETW(req.wIndex, reg); 1124 USETW(req.wLength, 0); 1125 1126 return (run_do_request(sc, &req, NULL)); 1127 } 1128 1129 static int 1130 run_write(struct run_softc *sc, uint16_t reg, uint32_t val) 1131 { 1132 int error; 1133 1134 if ((error = run_write_2(sc, reg, val & 0xffff)) == 0) 1135 error = run_write_2(sc, reg + 2, val >> 16); 1136 return (error); 1137 } 1138 1139 static int 1140 run_write_region_1(struct run_softc *sc, uint16_t reg, const uint8_t *buf, 1141 int len) 1142 { 1143 #if 1 1144 int i, error = 0; 1145 /* 1146 * NB: the WRITE_REGION_1 command is not stable on RT2860. 1147 * We thus issue multiple WRITE_2 commands instead. 1148 */ 1149 KASSERT((len & 1) == 0, ("run_write_region_1: Data too long.\n")); 1150 for (i = 0; i < len && error == 0; i += 2) 1151 error = run_write_2(sc, reg + i, buf[i] | buf[i + 1] << 8); 1152 return (error); 1153 #else 1154 usb_device_request_t req; 1155 1156 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 1157 req.bRequest = RT2870_WRITE_REGION_1; 1158 USETW(req.wValue, 0); 1159 USETW(req.wIndex, reg); 1160 USETW(req.wLength, len); 1161 return (run_do_request(sc, &req, buf)); 1162 #endif 1163 } 1164 1165 static int 1166 run_set_region_4(struct run_softc *sc, uint16_t reg, uint32_t val, int len) 1167 { 1168 int i, error = 0; 1169 1170 KASSERT((len & 3) == 0, ("run_set_region_4: Invalid data length.\n")); 1171 for (i = 0; i < len && error == 0; i += 4) 1172 error = run_write(sc, reg + i, val); 1173 return (error); 1174 } 1175 1176 /* Read 16-bit from eFUSE ROM (RT3070 only.) */ 1177 static int 1178 run_efuse_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val) 1179 { 1180 uint32_t tmp; 1181 uint16_t reg; 1182 int error, ntries; 1183 1184 if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0) 1185 return (error); 1186 1187 addr *= 2; 1188 /*- 1189 * Read one 16-byte block into registers EFUSE_DATA[0-3]: 1190 * DATA0: F E D C 1191 * DATA1: B A 9 8 1192 * DATA2: 7 6 5 4 1193 * DATA3: 3 2 1 0 1194 */ 1195 tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK); 1196 tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK; 1197 run_write(sc, RT3070_EFUSE_CTRL, tmp); 1198 for (ntries = 0; ntries < 100; ntries++) { 1199 if ((error = run_read(sc, RT3070_EFUSE_CTRL, &tmp)) != 0) 1200 return (error); 1201 if (!(tmp & RT3070_EFSROM_KICK)) 1202 break; 1203 run_delay(sc, 2); 1204 } 1205 if (ntries == 100) 1206 return (ETIMEDOUT); 1207 1208 if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK) { 1209 *val = 0xffff; /* address not found */ 1210 return (0); 1211 } 1212 /* determine to which 32-bit register our 16-bit word belongs */ 1213 reg = RT3070_EFUSE_DATA3 - (addr & 0xc); 1214 if ((error = run_read(sc, reg, &tmp)) != 0) 1215 return (error); 1216 1217 *val = (addr & 2) ? tmp >> 16 : tmp & 0xffff; 1218 return (0); 1219 } 1220 1221 static int 1222 run_eeprom_read_2(struct run_softc *sc, uint16_t addr, uint16_t *val) 1223 { 1224 usb_device_request_t req; 1225 uint16_t tmp; 1226 int error; 1227 1228 addr *= 2; 1229 req.bmRequestType = UT_READ_VENDOR_DEVICE; 1230 req.bRequest = RT2870_EEPROM_READ; 1231 USETW(req.wValue, 0); 1232 USETW(req.wIndex, addr); 1233 USETW(req.wLength, sizeof tmp); 1234 1235 error = usbd_do_request(sc->sc_udev, &sc->sc_mtx, &req, &tmp); 1236 if (error == 0) 1237 *val = le16toh(tmp); 1238 else 1239 *val = 0xffff; 1240 return (error); 1241 } 1242 1243 static __inline int 1244 run_srom_read(struct run_softc *sc, uint16_t addr, uint16_t *val) 1245 { 1246 /* either eFUSE ROM or EEPROM */ 1247 return sc->sc_srom_read(sc, addr, val); 1248 } 1249 1250 static int 1251 run_rt2870_rf_write(struct run_softc *sc, uint8_t reg, uint32_t val) 1252 { 1253 uint32_t tmp; 1254 int error, ntries; 1255 1256 for (ntries = 0; ntries < 10; ntries++) { 1257 if ((error = run_read(sc, RT2860_RF_CSR_CFG0, &tmp)) != 0) 1258 return (error); 1259 if (!(tmp & RT2860_RF_REG_CTRL)) 1260 break; 1261 } 1262 if (ntries == 10) 1263 return (ETIMEDOUT); 1264 1265 /* RF registers are 24-bit on the RT2860 */ 1266 tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT | 1267 (val & 0x3fffff) << 2 | (reg & 3); 1268 return (run_write(sc, RT2860_RF_CSR_CFG0, tmp)); 1269 } 1270 1271 static int 1272 run_rt3070_rf_read(struct run_softc *sc, uint8_t reg, uint8_t *val) 1273 { 1274 uint32_t tmp; 1275 int error, ntries; 1276 1277 for (ntries = 0; ntries < 100; ntries++) { 1278 if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) 1279 return (error); 1280 if (!(tmp & RT3070_RF_KICK)) 1281 break; 1282 } 1283 if (ntries == 100) 1284 return (ETIMEDOUT); 1285 1286 tmp = RT3070_RF_KICK | reg << 8; 1287 if ((error = run_write(sc, RT3070_RF_CSR_CFG, tmp)) != 0) 1288 return (error); 1289 1290 for (ntries = 0; ntries < 100; ntries++) { 1291 if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) 1292 return (error); 1293 if (!(tmp & RT3070_RF_KICK)) 1294 break; 1295 } 1296 if (ntries == 100) 1297 return (ETIMEDOUT); 1298 1299 *val = tmp & 0xff; 1300 return (0); 1301 } 1302 1303 static int 1304 run_rt3070_rf_write(struct run_softc *sc, uint8_t reg, uint8_t val) 1305 { 1306 uint32_t tmp; 1307 int error, ntries; 1308 1309 for (ntries = 0; ntries < 10; ntries++) { 1310 if ((error = run_read(sc, RT3070_RF_CSR_CFG, &tmp)) != 0) 1311 return (error); 1312 if (!(tmp & RT3070_RF_KICK)) 1313 break; 1314 } 1315 if (ntries == 10) 1316 return (ETIMEDOUT); 1317 1318 tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val; 1319 return (run_write(sc, RT3070_RF_CSR_CFG, tmp)); 1320 } 1321 1322 static int 1323 run_bbp_read(struct run_softc *sc, uint8_t reg, uint8_t *val) 1324 { 1325 uint32_t tmp; 1326 int ntries, error; 1327 1328 for (ntries = 0; ntries < 10; ntries++) { 1329 if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) 1330 return (error); 1331 if (!(tmp & RT2860_BBP_CSR_KICK)) 1332 break; 1333 } 1334 if (ntries == 10) 1335 return (ETIMEDOUT); 1336 1337 tmp = RT2860_BBP_CSR_READ | RT2860_BBP_CSR_KICK | reg << 8; 1338 if ((error = run_write(sc, RT2860_BBP_CSR_CFG, tmp)) != 0) 1339 return (error); 1340 1341 for (ntries = 0; ntries < 10; ntries++) { 1342 if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) 1343 return (error); 1344 if (!(tmp & RT2860_BBP_CSR_KICK)) 1345 break; 1346 } 1347 if (ntries == 10) 1348 return (ETIMEDOUT); 1349 1350 *val = tmp & 0xff; 1351 return (0); 1352 } 1353 1354 static int 1355 run_bbp_write(struct run_softc *sc, uint8_t reg, uint8_t val) 1356 { 1357 uint32_t tmp; 1358 int ntries, error; 1359 1360 for (ntries = 0; ntries < 10; ntries++) { 1361 if ((error = run_read(sc, RT2860_BBP_CSR_CFG, &tmp)) != 0) 1362 return (error); 1363 if (!(tmp & RT2860_BBP_CSR_KICK)) 1364 break; 1365 } 1366 if (ntries == 10) 1367 return (ETIMEDOUT); 1368 1369 tmp = RT2860_BBP_CSR_KICK | reg << 8 | val; 1370 return (run_write(sc, RT2860_BBP_CSR_CFG, tmp)); 1371 } 1372 1373 /* 1374 * Send a command to the 8051 microcontroller unit. 1375 */ 1376 static int 1377 run_mcu_cmd(struct run_softc *sc, uint8_t cmd, uint16_t arg) 1378 { 1379 uint32_t tmp; 1380 int error, ntries; 1381 1382 for (ntries = 0; ntries < 100; ntries++) { 1383 if ((error = run_read(sc, RT2860_H2M_MAILBOX, &tmp)) != 0) 1384 return error; 1385 if (!(tmp & RT2860_H2M_BUSY)) 1386 break; 1387 } 1388 if (ntries == 100) 1389 return ETIMEDOUT; 1390 1391 tmp = RT2860_H2M_BUSY | RT2860_TOKEN_NO_INTR << 16 | arg; 1392 if ((error = run_write(sc, RT2860_H2M_MAILBOX, tmp)) == 0) 1393 error = run_write(sc, RT2860_HOST_CMD, cmd); 1394 return (error); 1395 } 1396 1397 /* 1398 * Add `delta' (signed) to each 4-bit sub-word of a 32-bit word. 1399 * Used to adjust per-rate Tx power registers. 1400 */ 1401 static __inline uint32_t 1402 b4inc(uint32_t b32, int8_t delta) 1403 { 1404 int8_t i, b4; 1405 1406 for (i = 0; i < 8; i++) { 1407 b4 = b32 & 0xf; 1408 b4 += delta; 1409 if (b4 < 0) 1410 b4 = 0; 1411 else if (b4 > 0xf) 1412 b4 = 0xf; 1413 b32 = b32 >> 4 | b4 << 28; 1414 } 1415 return (b32); 1416 } 1417 1418 static const char * 1419 run_get_rf(int rev) 1420 { 1421 switch (rev) { 1422 case RT2860_RF_2820: return "RT2820"; 1423 case RT2860_RF_2850: return "RT2850"; 1424 case RT2860_RF_2720: return "RT2720"; 1425 case RT2860_RF_2750: return "RT2750"; 1426 case RT3070_RF_3020: return "RT3020"; 1427 case RT3070_RF_2020: return "RT2020"; 1428 case RT3070_RF_3021: return "RT3021"; 1429 case RT3070_RF_3022: return "RT3022"; 1430 case RT3070_RF_3052: return "RT3052"; 1431 } 1432 return ("unknown"); 1433 } 1434 1435 int 1436 run_read_eeprom(struct run_softc *sc) 1437 { 1438 int8_t delta_2ghz, delta_5ghz; 1439 uint32_t tmp; 1440 uint16_t val; 1441 int ridx, ant, i; 1442 1443 /* check whether the ROM is eFUSE ROM or EEPROM */ 1444 sc->sc_srom_read = run_eeprom_read_2; 1445 if (sc->mac_ver >= 0x3070) { 1446 run_read(sc, RT3070_EFUSE_CTRL, &tmp); 1447 DPRINTF("EFUSE_CTRL=0x%08x\n", tmp); 1448 if (tmp & RT3070_SEL_EFUSE) 1449 sc->sc_srom_read = run_efuse_read_2; 1450 } 1451 1452 /* read ROM version */ 1453 run_srom_read(sc, RT2860_EEPROM_VERSION, &val); 1454 DPRINTF("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8); 1455 1456 /* read MAC address */ 1457 run_srom_read(sc, RT2860_EEPROM_MAC01, &val); 1458 sc->sc_bssid[0] = val & 0xff; 1459 sc->sc_bssid[1] = val >> 8; 1460 run_srom_read(sc, RT2860_EEPROM_MAC23, &val); 1461 sc->sc_bssid[2] = val & 0xff; 1462 sc->sc_bssid[3] = val >> 8; 1463 run_srom_read(sc, RT2860_EEPROM_MAC45, &val); 1464 sc->sc_bssid[4] = val & 0xff; 1465 sc->sc_bssid[5] = val >> 8; 1466 1467 /* read vender BBP settings */ 1468 for (i = 0; i < 10; i++) { 1469 run_srom_read(sc, RT2860_EEPROM_BBP_BASE + i, &val); 1470 sc->bbp[i].val = val & 0xff; 1471 sc->bbp[i].reg = val >> 8; 1472 DPRINTF("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val); 1473 } 1474 if (sc->mac_ver >= 0x3071) { 1475 /* read vendor RF settings */ 1476 for (i = 0; i < 10; i++) { 1477 run_srom_read(sc, RT3071_EEPROM_RF_BASE + i, &val); 1478 sc->rf[i].val = val & 0xff; 1479 sc->rf[i].reg = val >> 8; 1480 DPRINTF("RF%d=0x%02x\n", sc->rf[i].reg, 1481 sc->rf[i].val); 1482 } 1483 } 1484 1485 /* read RF frequency offset from EEPROM */ 1486 run_srom_read(sc, RT2860_EEPROM_FREQ_LEDS, &val); 1487 sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0; 1488 DPRINTF("EEPROM freq offset %d\n", sc->freq & 0xff); 1489 1490 if (val >> 8 != 0xff) { 1491 /* read LEDs operating mode */ 1492 sc->leds = val >> 8; 1493 run_srom_read(sc, RT2860_EEPROM_LED1, &sc->led[0]); 1494 run_srom_read(sc, RT2860_EEPROM_LED2, &sc->led[1]); 1495 run_srom_read(sc, RT2860_EEPROM_LED3, &sc->led[2]); 1496 } else { 1497 /* broken EEPROM, use default settings */ 1498 sc->leds = 0x01; 1499 sc->led[0] = 0x5555; 1500 sc->led[1] = 0x2221; 1501 sc->led[2] = 0x5627; /* differs from RT2860 */ 1502 } 1503 DPRINTF("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n", 1504 sc->leds, sc->led[0], sc->led[1], sc->led[2]); 1505 1506 /* read RF information */ 1507 run_srom_read(sc, RT2860_EEPROM_ANTENNA, &val); 1508 if (val == 0xffff) { 1509 DPRINTF("invalid EEPROM antenna info, using default\n"); 1510 if (sc->mac_ver == 0x3572) { 1511 /* default to RF3052 2T2R */ 1512 sc->rf_rev = RT3070_RF_3052; 1513 sc->ntxchains = 2; 1514 sc->nrxchains = 2; 1515 } else if (sc->mac_ver >= 0x3070) { 1516 /* default to RF3020 1T1R */ 1517 sc->rf_rev = RT3070_RF_3020; 1518 sc->ntxchains = 1; 1519 sc->nrxchains = 1; 1520 } else { 1521 /* default to RF2820 1T2R */ 1522 sc->rf_rev = RT2860_RF_2820; 1523 sc->ntxchains = 1; 1524 sc->nrxchains = 2; 1525 } 1526 } else { 1527 sc->rf_rev = (val >> 8) & 0xf; 1528 sc->ntxchains = (val >> 4) & 0xf; 1529 sc->nrxchains = val & 0xf; 1530 } 1531 DPRINTF("EEPROM RF rev=0x%02x chains=%dT%dR\n", 1532 sc->rf_rev, sc->ntxchains, sc->nrxchains); 1533 1534 /* check if RF supports automatic Tx access gain control */ 1535 run_srom_read(sc, RT2860_EEPROM_CONFIG, &val); 1536 DPRINTF("EEPROM CFG 0x%04x\n", val); 1537 /* check if driver should patch the DAC issue */ 1538 if ((val >> 8) != 0xff) 1539 sc->patch_dac = (val >> 15) & 1; 1540 if ((val & 0xff) != 0xff) { 1541 sc->ext_5ghz_lna = (val >> 3) & 1; 1542 sc->ext_2ghz_lna = (val >> 2) & 1; 1543 /* check if RF supports automatic Tx access gain control */ 1544 sc->calib_2ghz = sc->calib_5ghz = (val >> 1) & 1; 1545 /* check if we have a hardware radio switch */ 1546 sc->rfswitch = val & 1; 1547 } 1548 1549 /* read power settings for 2GHz channels */ 1550 for (i = 0; i < 14; i += 2) { 1551 run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2, &val); 1552 sc->txpow1[i + 0] = (int8_t)(val & 0xff); 1553 sc->txpow1[i + 1] = (int8_t)(val >> 8); 1554 1555 run_srom_read(sc, RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2, &val); 1556 sc->txpow2[i + 0] = (int8_t)(val & 0xff); 1557 sc->txpow2[i + 1] = (int8_t)(val >> 8); 1558 } 1559 /* fix broken Tx power entries */ 1560 for (i = 0; i < 14; i++) { 1561 if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31) 1562 sc->txpow1[i] = 5; 1563 if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31) 1564 sc->txpow2[i] = 5; 1565 DPRINTF("chan %d: power1=%d, power2=%d\n", 1566 rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]); 1567 } 1568 /* read power settings for 5GHz channels */ 1569 for (i = 0; i < 40; i += 2) { 1570 run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2, &val); 1571 sc->txpow1[i + 14] = (int8_t)(val & 0xff); 1572 sc->txpow1[i + 15] = (int8_t)(val >> 8); 1573 1574 run_srom_read(sc, RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2, &val); 1575 sc->txpow2[i + 14] = (int8_t)(val & 0xff); 1576 sc->txpow2[i + 15] = (int8_t)(val >> 8); 1577 } 1578 /* fix broken Tx power entries */ 1579 for (i = 0; i < 40; i++) { 1580 if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15) 1581 sc->txpow1[14 + i] = 5; 1582 if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15) 1583 sc->txpow2[14 + i] = 5; 1584 DPRINTF("chan %d: power1=%d, power2=%d\n", 1585 rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i], 1586 sc->txpow2[14 + i]); 1587 } 1588 1589 /* read Tx power compensation for each Tx rate */ 1590 run_srom_read(sc, RT2860_EEPROM_DELTAPWR, &val); 1591 delta_2ghz = delta_5ghz = 0; 1592 if ((val & 0xff) != 0xff && (val & 0x80)) { 1593 delta_2ghz = val & 0xf; 1594 if (!(val & 0x40)) /* negative number */ 1595 delta_2ghz = -delta_2ghz; 1596 } 1597 val >>= 8; 1598 if ((val & 0xff) != 0xff && (val & 0x80)) { 1599 delta_5ghz = val & 0xf; 1600 if (!(val & 0x40)) /* negative number */ 1601 delta_5ghz = -delta_5ghz; 1602 } 1603 DPRINTF("power compensation=%d (2GHz), %d (5GHz)\n", 1604 delta_2ghz, delta_5ghz); 1605 1606 for (ridx = 0; ridx < 5; ridx++) { 1607 uint32_t reg; 1608 1609 run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2, &val); 1610 reg = val; 1611 run_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1, &val); 1612 reg |= (uint32_t)val << 16; 1613 1614 sc->txpow20mhz[ridx] = reg; 1615 sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz); 1616 sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz); 1617 1618 DPRINTF("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, " 1619 "40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx], 1620 sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]); 1621 } 1622 1623 /* read RSSI offsets and LNA gains from EEPROM */ 1624 run_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ, &val); 1625 sc->rssi_2ghz[0] = val & 0xff; /* Ant A */ 1626 sc->rssi_2ghz[1] = val >> 8; /* Ant B */ 1627 run_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ, &val); 1628 if (sc->mac_ver >= 0x3070) { 1629 /* 1630 * On RT3070 chips (limited to 2 Rx chains), this ROM 1631 * field contains the Tx mixer gain for the 2GHz band. 1632 */ 1633 if ((val & 0xff) != 0xff) 1634 sc->txmixgain_2ghz = val & 0x7; 1635 DPRINTF("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz); 1636 } else 1637 sc->rssi_2ghz[2] = val & 0xff; /* Ant C */ 1638 sc->lna[2] = val >> 8; /* channel group 2 */ 1639 1640 run_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ, &val); 1641 sc->rssi_5ghz[0] = val & 0xff; /* Ant A */ 1642 sc->rssi_5ghz[1] = val >> 8; /* Ant B */ 1643 run_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ, &val); 1644 if (sc->mac_ver == 0x3572) { 1645 /* 1646 * On RT3572 chips (limited to 2 Rx chains), this ROM 1647 * field contains the Tx mixer gain for the 5GHz band. 1648 */ 1649 if ((val & 0xff) != 0xff) 1650 sc->txmixgain_5ghz = val & 0x7; 1651 DPRINTF("tx mixer gain=%u (5GHz)\n", sc->txmixgain_5ghz); 1652 } else 1653 sc->rssi_5ghz[2] = val & 0xff; /* Ant C */ 1654 sc->lna[3] = val >> 8; /* channel group 3 */ 1655 1656 run_srom_read(sc, RT2860_EEPROM_LNA, &val); 1657 sc->lna[0] = val & 0xff; /* channel group 0 */ 1658 sc->lna[1] = val >> 8; /* channel group 1 */ 1659 1660 /* fix broken 5GHz LNA entries */ 1661 if (sc->lna[2] == 0 || sc->lna[2] == 0xff) { 1662 DPRINTF("invalid LNA for channel group %d\n", 2); 1663 sc->lna[2] = sc->lna[1]; 1664 } 1665 if (sc->lna[3] == 0 || sc->lna[3] == 0xff) { 1666 DPRINTF("invalid LNA for channel group %d\n", 3); 1667 sc->lna[3] = sc->lna[1]; 1668 } 1669 1670 /* fix broken RSSI offset entries */ 1671 for (ant = 0; ant < 3; ant++) { 1672 if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) { 1673 DPRINTF("invalid RSSI%d offset: %d (2GHz)\n", 1674 ant + 1, sc->rssi_2ghz[ant]); 1675 sc->rssi_2ghz[ant] = 0; 1676 } 1677 if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) { 1678 DPRINTF("invalid RSSI%d offset: %d (5GHz)\n", 1679 ant + 1, sc->rssi_5ghz[ant]); 1680 sc->rssi_5ghz[ant] = 0; 1681 } 1682 } 1683 return (0); 1684 } 1685 1686 struct ieee80211_node * 1687 run_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 1688 { 1689 return malloc(sizeof (struct run_node), M_DEVBUF, M_NOWAIT | M_ZERO); 1690 } 1691 1692 static int 1693 run_media_change(struct ifnet *ifp) 1694 { 1695 struct ieee80211vap *vap = ifp->if_softc; 1696 struct ieee80211com *ic = vap->iv_ic; 1697 const struct ieee80211_txparam *tp; 1698 struct run_softc *sc = ic->ic_ifp->if_softc; 1699 struct run_node *rn = (void *)vap->iv_bss; 1700 uint8_t rate, ridx; 1701 int error; 1702 1703 RUN_LOCK(sc); 1704 1705 error = ieee80211_media_change(ifp); 1706 if (error != ENETRESET) { 1707 RUN_UNLOCK(sc); 1708 return (error); 1709 } 1710 1711 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1712 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) { 1713 rate = ic->ic_sup_rates[ic->ic_curmode]. 1714 rs_rates[tp->ucastrate] & IEEE80211_RATE_VAL; 1715 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) 1716 if (rt2860_rates[ridx].rate == rate) 1717 break; 1718 rn->fix_ridx = ridx; 1719 DPRINTF("rate=%d, fix_ridx=%d\n", rate, rn->fix_ridx); 1720 } 1721 1722 #if 0 1723 if ((ifp->if_flags & IFF_UP) && 1724 (ifp->if_drv_flags & IFF_DRV_RUNNING)){ 1725 run_init_locked(sc); 1726 } 1727 #endif 1728 1729 RUN_UNLOCK(sc); 1730 1731 return (0); 1732 } 1733 1734 static int 1735 run_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 1736 { 1737 const struct ieee80211_txparam *tp; 1738 struct ieee80211com *ic = vap->iv_ic; 1739 struct run_softc *sc = ic->ic_ifp->if_softc; 1740 struct run_vap *rvp = RUN_VAP(vap); 1741 enum ieee80211_state ostate; 1742 struct ieee80211_node *ni; 1743 uint32_t sta[3]; 1744 uint32_t tmp; 1745 uint8_t ratectl; 1746 uint8_t restart_ratectl = 0; 1747 uint8_t bid = 1 << rvp->rvp_id; 1748 1749 ostate = vap->iv_state; 1750 DPRINTF("%s -> %s\n", 1751 ieee80211_state_name[ostate], 1752 ieee80211_state_name[nstate]); 1753 1754 IEEE80211_UNLOCK(ic); 1755 RUN_LOCK(sc); 1756 1757 ratectl = sc->ratectl_run; /* remember current state */ 1758 sc->ratectl_run = RUN_RATECTL_OFF; 1759 usb_callout_stop(&sc->ratectl_ch); 1760 1761 if (ostate == IEEE80211_S_RUN) { 1762 /* turn link LED off */ 1763 run_set_leds(sc, RT2860_LED_RADIO); 1764 } 1765 1766 switch (nstate) { 1767 case IEEE80211_S_INIT: 1768 restart_ratectl = 1; 1769 1770 if (ostate != IEEE80211_S_RUN) 1771 break; 1772 1773 ratectl &= ~bid; 1774 sc->runbmap &= ~bid; 1775 1776 /* abort TSF synchronization if there is no vap running */ 1777 if (--sc->running == 0) { 1778 run_read(sc, RT2860_BCN_TIME_CFG, &tmp); 1779 run_write(sc, RT2860_BCN_TIME_CFG, 1780 tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | 1781 RT2860_TBTT_TIMER_EN)); 1782 } 1783 break; 1784 1785 1786 case IEEE80211_S_RUN: 1787 ni = vap->iv_bss; 1788 if (!(sc->runbmap & bid)) { 1789 if(sc->running++) 1790 restart_ratectl = 1; 1791 sc->runbmap |= bid; 1792 } 1793 1794 switch (vap->iv_opmode) { 1795 case IEEE80211_M_HOSTAP: 1796 case IEEE80211_M_MBSS: 1797 sc->ap_running |= bid; 1798 ic->ic_opmode = vap->iv_opmode; 1799 run_update_beacon_cb(vap); 1800 break; 1801 case IEEE80211_M_IBSS: 1802 sc->adhoc_running |= bid; 1803 if (!sc->ap_running) 1804 ic->ic_opmode = vap->iv_opmode; 1805 run_update_beacon_cb(vap); 1806 break; 1807 case IEEE80211_M_STA: 1808 sc->sta_running |= bid; 1809 if (!sc->ap_running && !sc->adhoc_running) 1810 ic->ic_opmode = vap->iv_opmode; 1811 1812 /* read statistic counters (clear on read) */ 1813 run_read_region_1(sc, RT2860_TX_STA_CNT0, 1814 (uint8_t *)sta, sizeof sta); 1815 1816 break; 1817 default: 1818 ic->ic_opmode = vap->iv_opmode; 1819 break; 1820 } 1821 1822 if (vap->iv_opmode != IEEE80211_M_MONITOR) { 1823 run_updateslot(ic->ic_ifp); 1824 run_enable_mrr(sc); 1825 run_set_txpreamble(sc); 1826 run_set_basicrates(sc); 1827 IEEE80211_ADDR_COPY(sc->sc_bssid, ni->ni_bssid); 1828 run_set_bssid(sc, ni->ni_bssid); 1829 run_enable_tsf_sync(sc); 1830 1831 /* enable automatic rate adaptation */ 1832 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1833 if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) 1834 ratectl |= bid; 1835 } 1836 1837 /* turn link LED on */ 1838 run_set_leds(sc, RT2860_LED_RADIO | 1839 (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan) ? 1840 RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ)); 1841 1842 break; 1843 default: 1844 DPRINTFN(6, "undefined case\n"); 1845 break; 1846 } 1847 1848 /* restart amrr for running VAPs */ 1849 if ((sc->ratectl_run = ratectl) && restart_ratectl) 1850 usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc); 1851 1852 RUN_UNLOCK(sc); 1853 IEEE80211_LOCK(ic); 1854 1855 return(rvp->newstate(vap, nstate, arg)); 1856 } 1857 1858 /* ARGSUSED */ 1859 static void 1860 run_wme_update_cb(void *arg) 1861 { 1862 struct ieee80211com *ic = arg; 1863 struct run_softc *sc = ic->ic_ifp->if_softc; 1864 struct ieee80211_wme_state *wmesp = &ic->ic_wme; 1865 int aci, error = 0; 1866 1867 RUN_LOCK_ASSERT(sc, MA_OWNED); 1868 1869 /* update MAC TX configuration registers */ 1870 for (aci = 0; aci < WME_NUM_AC; aci++) { 1871 error = run_write(sc, RT2860_EDCA_AC_CFG(aci), 1872 wmesp->wme_params[aci].wmep_logcwmax << 16 | 1873 wmesp->wme_params[aci].wmep_logcwmin << 12 | 1874 wmesp->wme_params[aci].wmep_aifsn << 8 | 1875 wmesp->wme_params[aci].wmep_txopLimit); 1876 if (error) goto err; 1877 } 1878 1879 /* update SCH/DMA registers too */ 1880 error = run_write(sc, RT2860_WMM_AIFSN_CFG, 1881 wmesp->wme_params[WME_AC_VO].wmep_aifsn << 12 | 1882 wmesp->wme_params[WME_AC_VI].wmep_aifsn << 8 | 1883 wmesp->wme_params[WME_AC_BK].wmep_aifsn << 4 | 1884 wmesp->wme_params[WME_AC_BE].wmep_aifsn); 1885 if (error) goto err; 1886 error = run_write(sc, RT2860_WMM_CWMIN_CFG, 1887 wmesp->wme_params[WME_AC_VO].wmep_logcwmin << 12 | 1888 wmesp->wme_params[WME_AC_VI].wmep_logcwmin << 8 | 1889 wmesp->wme_params[WME_AC_BK].wmep_logcwmin << 4 | 1890 wmesp->wme_params[WME_AC_BE].wmep_logcwmin); 1891 if (error) goto err; 1892 error = run_write(sc, RT2860_WMM_CWMAX_CFG, 1893 wmesp->wme_params[WME_AC_VO].wmep_logcwmax << 12 | 1894 wmesp->wme_params[WME_AC_VI].wmep_logcwmax << 8 | 1895 wmesp->wme_params[WME_AC_BK].wmep_logcwmax << 4 | 1896 wmesp->wme_params[WME_AC_BE].wmep_logcwmax); 1897 if (error) goto err; 1898 error = run_write(sc, RT2860_WMM_TXOP0_CFG, 1899 wmesp->wme_params[WME_AC_BK].wmep_txopLimit << 16 | 1900 wmesp->wme_params[WME_AC_BE].wmep_txopLimit); 1901 if (error) goto err; 1902 error = run_write(sc, RT2860_WMM_TXOP1_CFG, 1903 wmesp->wme_params[WME_AC_VO].wmep_txopLimit << 16 | 1904 wmesp->wme_params[WME_AC_VI].wmep_txopLimit); 1905 1906 err: 1907 if (error) 1908 DPRINTF("WME update failed\n"); 1909 1910 return; 1911 } 1912 1913 static int 1914 run_wme_update(struct ieee80211com *ic) 1915 { 1916 struct run_softc *sc = ic->ic_ifp->if_softc; 1917 1918 /* sometime called wothout lock */ 1919 if (mtx_owned(&ic->ic_comlock.mtx)) { 1920 uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store); 1921 DPRINTF("cmdq_store=%d\n", i); 1922 sc->cmdq[i].func = run_wme_update_cb; 1923 sc->cmdq[i].arg0 = ic; 1924 ieee80211_runtask(ic, &sc->cmdq_task); 1925 return (0); 1926 } 1927 1928 RUN_LOCK(sc); 1929 run_wme_update_cb(ic); 1930 RUN_UNLOCK(sc); 1931 1932 /* return whatever, upper layer desn't care anyway */ 1933 return (0); 1934 } 1935 1936 static void 1937 run_key_update_begin(struct ieee80211vap *vap) 1938 { 1939 /* 1940 * To avoid out-of-order events, both run_key_set() and 1941 * _delete() are deferred and handled by run_cmdq_cb(). 1942 * So, there is nothing we need to do here. 1943 */ 1944 } 1945 1946 static void 1947 run_key_update_end(struct ieee80211vap *vap) 1948 { 1949 /* null */ 1950 } 1951 1952 static void 1953 run_key_set_cb(void *arg) 1954 { 1955 struct run_cmdq *cmdq = arg; 1956 struct ieee80211vap *vap = cmdq->arg1; 1957 struct ieee80211_key *k = cmdq->k; 1958 struct ieee80211com *ic = vap->iv_ic; 1959 struct run_softc *sc = ic->ic_ifp->if_softc; 1960 struct ieee80211_node *ni; 1961 uint32_t attr; 1962 uint16_t base, associd; 1963 uint8_t mode, wcid, iv[8]; 1964 1965 RUN_LOCK_ASSERT(sc, MA_OWNED); 1966 1967 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 1968 ni = ieee80211_find_vap_node(&ic->ic_sta, vap, cmdq->mac); 1969 else 1970 ni = vap->iv_bss; 1971 associd = (ni != NULL) ? ni->ni_associd : 0; 1972 1973 /* map net80211 cipher to RT2860 security mode */ 1974 switch (k->wk_cipher->ic_cipher) { 1975 case IEEE80211_CIPHER_WEP: 1976 if(k->wk_keylen < 8) 1977 mode = RT2860_MODE_WEP40; 1978 else 1979 mode = RT2860_MODE_WEP104; 1980 break; 1981 case IEEE80211_CIPHER_TKIP: 1982 mode = RT2860_MODE_TKIP; 1983 break; 1984 case IEEE80211_CIPHER_AES_CCM: 1985 mode = RT2860_MODE_AES_CCMP; 1986 break; 1987 default: 1988 DPRINTF("undefined case\n"); 1989 return; 1990 } 1991 1992 DPRINTFN(1, "associd=%x, keyix=%d, mode=%x, type=%s, tx=%s, rx=%s\n", 1993 associd, k->wk_keyix, mode, 1994 (k->wk_flags & IEEE80211_KEY_GROUP) ? "group" : "pairwise", 1995 (k->wk_flags & IEEE80211_KEY_XMIT) ? "on" : "off", 1996 (k->wk_flags & IEEE80211_KEY_RECV) ? "on" : "off"); 1997 1998 if (k->wk_flags & IEEE80211_KEY_GROUP) { 1999 wcid = 0; /* NB: update WCID0 for group keys */ 2000 base = RT2860_SKEY(RUN_VAP(vap)->rvp_id, k->wk_keyix); 2001 } else { 2002 wcid = RUN_AID2WCID(associd); 2003 base = RT2860_PKEY(wcid); 2004 } 2005 2006 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { 2007 if(run_write_region_1(sc, base, k->wk_key, 16)) 2008 return; 2009 if(run_write_region_1(sc, base + 16, &k->wk_key[16], 8)) /* wk_txmic */ 2010 return; 2011 if(run_write_region_1(sc, base + 24, &k->wk_key[24], 8)) /* wk_rxmic */ 2012 return; 2013 } else { 2014 /* roundup len to 16-bit: XXX fix write_region_1() instead */ 2015 if(run_write_region_1(sc, base, k->wk_key, (k->wk_keylen + 1) & ~1)) 2016 return; 2017 } 2018 2019 if (!(k->wk_flags & IEEE80211_KEY_GROUP) || 2020 (k->wk_flags & (IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV))) { 2021 /* set initial packet number in IV+EIV */ 2022 if (k->wk_cipher == IEEE80211_CIPHER_WEP) { 2023 memset(iv, 0, sizeof iv); 2024 iv[3] = vap->iv_def_txkey << 6; 2025 } else { 2026 if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP) { 2027 iv[0] = k->wk_keytsc >> 8; 2028 iv[1] = (iv[0] | 0x20) & 0x7f; 2029 iv[2] = k->wk_keytsc; 2030 } else /* CCMP */ { 2031 iv[0] = k->wk_keytsc; 2032 iv[1] = k->wk_keytsc >> 8; 2033 iv[2] = 0; 2034 } 2035 iv[3] = k->wk_keyix << 6 | IEEE80211_WEP_EXTIV; 2036 iv[4] = k->wk_keytsc >> 16; 2037 iv[5] = k->wk_keytsc >> 24; 2038 iv[6] = k->wk_keytsc >> 32; 2039 iv[7] = k->wk_keytsc >> 40; 2040 } 2041 if (run_write_region_1(sc, RT2860_IVEIV(wcid), iv, 8)) 2042 return; 2043 } 2044 2045 if (k->wk_flags & IEEE80211_KEY_GROUP) { 2046 /* install group key */ 2047 if (run_read(sc, RT2860_SKEY_MODE_0_7, &attr)) 2048 return; 2049 attr &= ~(0xf << (k->wk_keyix * 4)); 2050 attr |= mode << (k->wk_keyix * 4); 2051 if (run_write(sc, RT2860_SKEY_MODE_0_7, attr)) 2052 return; 2053 } else { 2054 /* install pairwise key */ 2055 if (run_read(sc, RT2860_WCID_ATTR(wcid), &attr)) 2056 return; 2057 attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN; 2058 if (run_write(sc, RT2860_WCID_ATTR(wcid), attr)) 2059 return; 2060 } 2061 2062 /* TODO create a pass-thru key entry? */ 2063 2064 /* need wcid to delete the right key later */ 2065 k->wk_pad = wcid; 2066 } 2067 2068 /* 2069 * Don't have to be deferred, but in order to keep order of 2070 * execution, i.e. with run_key_delete(), defer this and let 2071 * run_cmdq_cb() maintain the order. 2072 * 2073 * return 0 on error 2074 */ 2075 static int 2076 run_key_set(struct ieee80211vap *vap, struct ieee80211_key *k, 2077 const uint8_t mac[IEEE80211_ADDR_LEN]) 2078 { 2079 struct ieee80211com *ic = vap->iv_ic; 2080 struct run_softc *sc = ic->ic_ifp->if_softc; 2081 uint32_t i; 2082 2083 i = RUN_CMDQ_GET(&sc->cmdq_store); 2084 DPRINTF("cmdq_store=%d\n", i); 2085 sc->cmdq[i].func = run_key_set_cb; 2086 sc->cmdq[i].arg0 = NULL; 2087 sc->cmdq[i].arg1 = vap; 2088 sc->cmdq[i].k = k; 2089 IEEE80211_ADDR_COPY(sc->cmdq[i].mac, mac); 2090 ieee80211_runtask(ic, &sc->cmdq_task); 2091 2092 /* 2093 * To make sure key will be set when hostapd 2094 * calls iv_key_set() before if_init(). 2095 */ 2096 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 2097 RUN_LOCK(sc); 2098 sc->cmdq_key_set = RUN_CMDQ_GO; 2099 RUN_UNLOCK(sc); 2100 } 2101 2102 return (1); 2103 } 2104 2105 /* 2106 * If wlan is destroyed without being brought down i.e. without 2107 * wlan down or wpa_cli terminate, this function is called after 2108 * vap is gone. Don't refer it. 2109 */ 2110 static void 2111 run_key_delete_cb(void *arg) 2112 { 2113 struct run_cmdq *cmdq = arg; 2114 struct run_softc *sc = cmdq->arg1; 2115 struct ieee80211_key *k = &cmdq->key; 2116 uint32_t attr; 2117 uint8_t wcid; 2118 2119 RUN_LOCK_ASSERT(sc, MA_OWNED); 2120 2121 if (k->wk_flags & IEEE80211_KEY_GROUP) { 2122 /* remove group key */ 2123 DPRINTF("removing group key\n"); 2124 run_read(sc, RT2860_SKEY_MODE_0_7, &attr); 2125 attr &= ~(0xf << (k->wk_keyix * 4)); 2126 run_write(sc, RT2860_SKEY_MODE_0_7, attr); 2127 } else { 2128 /* remove pairwise key */ 2129 DPRINTF("removing key for wcid %x\n", k->wk_pad); 2130 /* matching wcid was written to wk_pad in run_key_set() */ 2131 wcid = k->wk_pad; 2132 run_read(sc, RT2860_WCID_ATTR(wcid), &attr); 2133 attr &= ~0xf; 2134 run_write(sc, RT2860_WCID_ATTR(wcid), attr); 2135 run_set_region_4(sc, RT2860_WCID_ENTRY(wcid), 0, 8); 2136 } 2137 2138 k->wk_pad = 0; 2139 } 2140 2141 /* 2142 * return 0 on error 2143 */ 2144 static int 2145 run_key_delete(struct ieee80211vap *vap, struct ieee80211_key *k) 2146 { 2147 struct ieee80211com *ic = vap->iv_ic; 2148 struct run_softc *sc = ic->ic_ifp->if_softc; 2149 struct ieee80211_key *k0; 2150 uint32_t i; 2151 2152 /* 2153 * When called back, key might be gone. So, make a copy 2154 * of some values need to delete keys before deferring. 2155 * But, because of LOR with node lock, cannot use lock here. 2156 * So, use atomic instead. 2157 */ 2158 i = RUN_CMDQ_GET(&sc->cmdq_store); 2159 DPRINTF("cmdq_store=%d\n", i); 2160 sc->cmdq[i].func = run_key_delete_cb; 2161 sc->cmdq[i].arg0 = NULL; 2162 sc->cmdq[i].arg1 = sc; 2163 k0 = &sc->cmdq[i].key; 2164 k0->wk_flags = k->wk_flags; 2165 k0->wk_keyix = k->wk_keyix; 2166 /* matching wcid was written to wk_pad in run_key_set() */ 2167 k0->wk_pad = k->wk_pad; 2168 ieee80211_runtask(ic, &sc->cmdq_task); 2169 return (1); /* return fake success */ 2170 2171 } 2172 2173 static void 2174 run_ratectl_to(void *arg) 2175 { 2176 struct run_softc *sc = arg; 2177 2178 /* do it in a process context, so it can go sleep */ 2179 ieee80211_runtask(sc->sc_ifp->if_l2com, &sc->ratectl_task); 2180 /* next timeout will be rescheduled in the callback task */ 2181 } 2182 2183 /* ARGSUSED */ 2184 static void 2185 run_ratectl_cb(void *arg, int pending) 2186 { 2187 struct run_softc *sc = arg; 2188 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2189 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 2190 2191 if (vap == NULL) 2192 return; 2193 2194 if (sc->rvp_cnt <= 1 && vap->iv_opmode == IEEE80211_M_STA) 2195 run_iter_func(sc, vap->iv_bss); 2196 else { 2197 /* 2198 * run_reset_livelock() doesn't do anything with AMRR, 2199 * but Ralink wants us to call it every 1 sec. So, we 2200 * piggyback here rather than creating another callout. 2201 * Livelock may occur only in HOSTAP or IBSS mode 2202 * (when h/w is sending beacons). 2203 */ 2204 RUN_LOCK(sc); 2205 run_reset_livelock(sc); 2206 /* just in case, there are some stats to drain */ 2207 run_drain_fifo(sc); 2208 RUN_UNLOCK(sc); 2209 ieee80211_iterate_nodes(&ic->ic_sta, run_iter_func, sc); 2210 } 2211 2212 if(sc->ratectl_run != RUN_RATECTL_OFF) 2213 usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc); 2214 } 2215 2216 static void 2217 run_drain_fifo(void *arg) 2218 { 2219 struct run_softc *sc = arg; 2220 struct ifnet *ifp = sc->sc_ifp; 2221 struct ieee80211_node *ni = sc->sc_ni[0]; /* make compiler happy */ 2222 uint32_t stat; 2223 int retrycnt = 0; 2224 uint8_t wcid, mcs, pid; 2225 2226 RUN_LOCK_ASSERT(sc, MA_OWNED); 2227 2228 for (;;) { 2229 /* drain Tx status FIFO (maxsize = 16) */ 2230 run_read(sc, RT2860_TX_STAT_FIFO, &stat); 2231 DPRINTFN(4, "tx stat 0x%08x\n", stat); 2232 if (!(stat & RT2860_TXQ_VLD)) 2233 break; 2234 2235 wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff; 2236 2237 /* if no ACK was requested, no feedback is available */ 2238 if (!(stat & RT2860_TXQ_ACKREQ) || wcid > RT2870_WCID_MAX || 2239 wcid == 0) 2240 continue; 2241 2242 ni = sc->sc_ni[wcid]; 2243 if (ni->ni_rctls == NULL) 2244 continue; 2245 2246 /* update per-STA AMRR stats */ 2247 if (stat & RT2860_TXQ_OK) { 2248 /* 2249 * Check if there were retries, ie if the Tx 2250 * success rate is different from the requested 2251 * rate. Note that it works only because we do 2252 * not allow rate fallback from OFDM to CCK. 2253 */ 2254 mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f; 2255 pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf; 2256 if (mcs + 1 != pid) 2257 retrycnt = 1; 2258 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 2259 IEEE80211_RATECTL_TX_SUCCESS, 2260 &retrycnt, NULL); 2261 } else { 2262 retrycnt = 1; 2263 ieee80211_ratectl_tx_complete(ni->ni_vap, ni, 2264 IEEE80211_RATECTL_TX_FAILURE, 2265 &retrycnt, NULL); 2266 ifp->if_oerrors++; 2267 } 2268 } 2269 DPRINTFN(3, "count=%d\n", sc->fifo_cnt); 2270 2271 sc->fifo_cnt = 0; 2272 } 2273 2274 static void 2275 run_iter_func(void *arg, struct ieee80211_node *ni) 2276 { 2277 struct run_softc *sc = arg; 2278 struct ieee80211vap *vap = ni->ni_vap; 2279 struct ieee80211com *ic = ni->ni_ic; 2280 struct ifnet *ifp = ic->ic_ifp; 2281 struct run_node *rn = (void *)ni; 2282 uint32_t sta[3]; 2283 int txcnt = 0, success = 0, retrycnt = 0; 2284 int error; 2285 2286 if (sc->rvp_cnt <= 1 && (vap->iv_opmode == IEEE80211_M_IBSS || 2287 vap->iv_opmode == IEEE80211_M_STA)) { 2288 RUN_LOCK(sc); 2289 2290 /* read statistic counters (clear on read) and update AMRR state */ 2291 error = run_read_region_1(sc, RT2860_TX_STA_CNT0, (uint8_t *)sta, 2292 sizeof sta); 2293 if (error != 0) 2294 return; 2295 2296 DPRINTFN(3, "retrycnt=%d txcnt=%d failcnt=%d\n", 2297 le32toh(sta[1]) >> 16, le32toh(sta[1]) & 0xffff, 2298 le32toh(sta[0]) & 0xffff); 2299 2300 /* count failed TX as errors */ 2301 ifp->if_oerrors += le32toh(sta[0]) & 0xffff; 2302 2303 retrycnt = 2304 (le32toh(sta[0]) & 0xffff) + /* failed TX count */ 2305 (le32toh(sta[1]) >> 16); /* TX retransmission count */ 2306 2307 txcnt = 2308 retrycnt + 2309 (le32toh(sta[1]) & 0xffff); /* successful TX count */ 2310 2311 success = 2312 (le32toh(sta[1]) >> 16) + 2313 (le32toh(sta[1]) & 0xffff); 2314 2315 ieee80211_ratectl_tx_update(vap, ni, &txcnt, &success, 2316 &retrycnt); 2317 2318 RUN_UNLOCK(sc); 2319 } 2320 2321 rn->amrr_ridx = ieee80211_ratectl_rate(ni, NULL, 0); 2322 DPRINTFN(3, "ridx=%d\n", rn->amrr_ridx); 2323 } 2324 2325 static void 2326 run_newassoc_cb(void *arg) 2327 { 2328 struct run_cmdq *cmdq = arg; 2329 struct ieee80211_node *ni = cmdq->arg1; 2330 struct run_softc *sc = ni->ni_vap->iv_ic->ic_ifp->if_softc; 2331 uint8_t wcid = cmdq->wcid; 2332 2333 RUN_LOCK_ASSERT(sc, MA_OWNED); 2334 2335 run_write_region_1(sc, RT2860_WCID_ENTRY(wcid), 2336 ni->ni_macaddr, IEEE80211_ADDR_LEN); 2337 } 2338 2339 static void 2340 run_newassoc(struct ieee80211_node *ni, int isnew) 2341 { 2342 struct run_node *rn = (void *)ni; 2343 struct ieee80211_rateset *rs = &ni->ni_rates; 2344 struct ieee80211vap *vap = ni->ni_vap; 2345 struct ieee80211com *ic = vap->iv_ic; 2346 struct run_softc *sc = ic->ic_ifp->if_softc; 2347 uint8_t rate; 2348 uint8_t ridx; 2349 uint8_t wcid = RUN_AID2WCID(ni->ni_associd); 2350 int i, j; 2351 2352 if (wcid > RT2870_WCID_MAX) { 2353 device_printf(sc->sc_dev, "wcid=%d out of range\n", wcid); 2354 return; 2355 } 2356 2357 /* only interested in true associations */ 2358 if (isnew && ni->ni_associd != 0) { 2359 2360 /* 2361 * This function could is called though timeout function. 2362 * Need to defer. 2363 */ 2364 uint32_t cnt = RUN_CMDQ_GET(&sc->cmdq_store); 2365 DPRINTF("cmdq_store=%d\n", cnt); 2366 sc->cmdq[cnt].func = run_newassoc_cb; 2367 sc->cmdq[cnt].arg0 = NULL; 2368 sc->cmdq[cnt].arg1 = ni; 2369 sc->cmdq[cnt].wcid = wcid; 2370 ieee80211_runtask(ic, &sc->cmdq_task); 2371 } 2372 2373 DPRINTF("new assoc isnew=%d associd=%x addr=%s\n", 2374 isnew, ni->ni_associd, ether_sprintf(ni->ni_macaddr)); 2375 2376 ieee80211_ratectl_node_init(ni); 2377 sc->sc_ni[wcid] = ni; 2378 2379 for (i = 0; i < rs->rs_nrates; i++) { 2380 rate = rs->rs_rates[i] & IEEE80211_RATE_VAL; 2381 /* convert 802.11 rate to hardware rate index */ 2382 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) 2383 if (rt2860_rates[ridx].rate == rate) 2384 break; 2385 rn->ridx[i] = ridx; 2386 /* determine rate of control response frames */ 2387 for (j = i; j >= 0; j--) { 2388 if ((rs->rs_rates[j] & IEEE80211_RATE_BASIC) && 2389 rt2860_rates[rn->ridx[i]].phy == 2390 rt2860_rates[rn->ridx[j]].phy) 2391 break; 2392 } 2393 if (j >= 0) { 2394 rn->ctl_ridx[i] = rn->ridx[j]; 2395 } else { 2396 /* no basic rate found, use mandatory one */ 2397 rn->ctl_ridx[i] = rt2860_rates[ridx].ctl_ridx; 2398 } 2399 DPRINTF("rate=0x%02x ridx=%d ctl_ridx=%d\n", 2400 rs->rs_rates[i], rn->ridx[i], rn->ctl_ridx[i]); 2401 } 2402 rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate; 2403 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) 2404 if (rt2860_rates[ridx].rate == rate) 2405 break; 2406 rn->mgt_ridx = ridx; 2407 DPRINTF("rate=%d, mgmt_ridx=%d\n", rate, rn->mgt_ridx); 2408 2409 usb_callout_reset(&sc->ratectl_ch, hz, run_ratectl_to, sc); 2410 } 2411 2412 /* 2413 * Return the Rx chain with the highest RSSI for a given frame. 2414 */ 2415 static __inline uint8_t 2416 run_maxrssi_chain(struct run_softc *sc, const struct rt2860_rxwi *rxwi) 2417 { 2418 uint8_t rxchain = 0; 2419 2420 if (sc->nrxchains > 1) { 2421 if (rxwi->rssi[1] > rxwi->rssi[rxchain]) 2422 rxchain = 1; 2423 if (sc->nrxchains > 2) 2424 if (rxwi->rssi[2] > rxwi->rssi[rxchain]) 2425 rxchain = 2; 2426 } 2427 return (rxchain); 2428 } 2429 2430 static void 2431 run_rx_frame(struct run_softc *sc, struct mbuf *m, uint32_t dmalen) 2432 { 2433 struct ifnet *ifp = sc->sc_ifp; 2434 struct ieee80211com *ic = ifp->if_l2com; 2435 struct ieee80211_frame *wh; 2436 struct ieee80211_node *ni; 2437 struct rt2870_rxd *rxd; 2438 struct rt2860_rxwi *rxwi; 2439 uint32_t flags; 2440 uint16_t len, phy; 2441 uint8_t ant, rssi; 2442 int8_t nf; 2443 2444 rxwi = mtod(m, struct rt2860_rxwi *); 2445 len = le16toh(rxwi->len) & 0xfff; 2446 if (__predict_false(len > dmalen)) { 2447 m_freem(m); 2448 ifp->if_ierrors++; 2449 DPRINTF("bad RXWI length %u > %u\n", len, dmalen); 2450 return; 2451 } 2452 /* Rx descriptor is located at the end */ 2453 rxd = (struct rt2870_rxd *)(mtod(m, caddr_t) + dmalen); 2454 flags = le32toh(rxd->flags); 2455 2456 if (__predict_false(flags & (RT2860_RX_CRCERR | RT2860_RX_ICVERR))) { 2457 m_freem(m); 2458 ifp->if_ierrors++; 2459 DPRINTF("%s error.\n", (flags & RT2860_RX_CRCERR)?"CRC":"ICV"); 2460 return; 2461 } 2462 2463 m->m_data += sizeof(struct rt2860_rxwi); 2464 m->m_pkthdr.len = m->m_len -= sizeof(struct rt2860_rxwi); 2465 2466 wh = mtod(m, struct ieee80211_frame *); 2467 2468 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 2469 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 2470 m->m_flags |= M_WEP; 2471 } 2472 2473 if (flags & RT2860_RX_L2PAD) { 2474 DPRINTFN(8, "received RT2860_RX_L2PAD frame\n"); 2475 len += 2; 2476 } 2477 2478 ni = ieee80211_find_rxnode(ic, 2479 mtod(m, struct ieee80211_frame_min *)); 2480 2481 if (__predict_false(flags & RT2860_RX_MICERR)) { 2482 /* report MIC failures to net80211 for TKIP */ 2483 if (ni != NULL) 2484 ieee80211_notify_michael_failure(ni->ni_vap, wh, rxwi->keyidx); 2485 m_freem(m); 2486 ifp->if_ierrors++; 2487 DPRINTF("MIC error. Someone is lying.\n"); 2488 return; 2489 } 2490 2491 ant = run_maxrssi_chain(sc, rxwi); 2492 rssi = rxwi->rssi[ant]; 2493 nf = run_rssi2dbm(sc, rssi, ant); 2494 2495 m->m_pkthdr.rcvif = ifp; 2496 m->m_pkthdr.len = m->m_len = len; 2497 2498 if (ni != NULL) { 2499 (void)ieee80211_input(ni, m, rssi, nf); 2500 ieee80211_free_node(ni); 2501 } else { 2502 (void)ieee80211_input_all(ic, m, rssi, nf); 2503 } 2504 2505 if (__predict_false(ieee80211_radiotap_active(ic))) { 2506 struct run_rx_radiotap_header *tap = &sc->sc_rxtap; 2507 2508 tap->wr_flags = 0; 2509 tap->wr_chan_freq = htole16(ic->ic_bsschan->ic_freq); 2510 tap->wr_chan_flags = htole16(ic->ic_bsschan->ic_flags); 2511 tap->wr_antsignal = rssi; 2512 tap->wr_antenna = ant; 2513 tap->wr_dbm_antsignal = run_rssi2dbm(sc, rssi, ant); 2514 tap->wr_rate = 2; /* in case it can't be found below */ 2515 phy = le16toh(rxwi->phy); 2516 switch (phy & RT2860_PHY_MODE) { 2517 case RT2860_PHY_CCK: 2518 switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) { 2519 case 0: tap->wr_rate = 2; break; 2520 case 1: tap->wr_rate = 4; break; 2521 case 2: tap->wr_rate = 11; break; 2522 case 3: tap->wr_rate = 22; break; 2523 } 2524 if (phy & RT2860_PHY_SHPRE) 2525 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2526 break; 2527 case RT2860_PHY_OFDM: 2528 switch (phy & RT2860_PHY_MCS) { 2529 case 0: tap->wr_rate = 12; break; 2530 case 1: tap->wr_rate = 18; break; 2531 case 2: tap->wr_rate = 24; break; 2532 case 3: tap->wr_rate = 36; break; 2533 case 4: tap->wr_rate = 48; break; 2534 case 5: tap->wr_rate = 72; break; 2535 case 6: tap->wr_rate = 96; break; 2536 case 7: tap->wr_rate = 108; break; 2537 } 2538 break; 2539 } 2540 } 2541 } 2542 2543 static void 2544 run_bulk_rx_callback(struct usb_xfer *xfer, usb_error_t error) 2545 { 2546 struct run_softc *sc = usbd_xfer_softc(xfer); 2547 struct ifnet *ifp = sc->sc_ifp; 2548 struct mbuf *m = NULL; 2549 struct mbuf *m0; 2550 uint32_t dmalen; 2551 int xferlen; 2552 2553 usbd_xfer_status(xfer, &xferlen, NULL, NULL, NULL); 2554 2555 switch (USB_GET_STATE(xfer)) { 2556 case USB_ST_TRANSFERRED: 2557 2558 DPRINTFN(15, "rx done, actlen=%d\n", xferlen); 2559 2560 if (xferlen < sizeof (uint32_t) + 2561 sizeof (struct rt2860_rxwi) + sizeof (struct rt2870_rxd)) { 2562 DPRINTF("xfer too short %d\n", xferlen); 2563 goto tr_setup; 2564 } 2565 2566 m = sc->rx_m; 2567 sc->rx_m = NULL; 2568 2569 /* FALLTHROUGH */ 2570 case USB_ST_SETUP: 2571 tr_setup: 2572 if (sc->rx_m == NULL) { 2573 sc->rx_m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, 2574 MJUMPAGESIZE /* xfer can be bigger than MCLBYTES */); 2575 } 2576 if (sc->rx_m == NULL) { 2577 DPRINTF("could not allocate mbuf - idle with stall\n"); 2578 ifp->if_ierrors++; 2579 usbd_xfer_set_stall(xfer); 2580 usbd_xfer_set_frames(xfer, 0); 2581 } else { 2582 /* 2583 * Directly loading a mbuf cluster into DMA to 2584 * save some data copying. This works because 2585 * there is only one cluster. 2586 */ 2587 usbd_xfer_set_frame_data(xfer, 0, 2588 mtod(sc->rx_m, caddr_t), RUN_MAX_RXSZ); 2589 usbd_xfer_set_frames(xfer, 1); 2590 } 2591 usbd_transfer_submit(xfer); 2592 break; 2593 2594 default: /* Error */ 2595 if (error != USB_ERR_CANCELLED) { 2596 /* try to clear stall first */ 2597 usbd_xfer_set_stall(xfer); 2598 2599 if (error == USB_ERR_TIMEOUT) 2600 device_printf(sc->sc_dev, "device timeout\n"); 2601 2602 ifp->if_ierrors++; 2603 2604 goto tr_setup; 2605 } 2606 if (sc->rx_m != NULL) { 2607 m_freem(sc->rx_m); 2608 sc->rx_m = NULL; 2609 } 2610 break; 2611 } 2612 2613 if (m == NULL) 2614 return; 2615 2616 /* inputting all the frames must be last */ 2617 2618 RUN_UNLOCK(sc); 2619 2620 m->m_pkthdr.len = m->m_len = xferlen; 2621 2622 /* HW can aggregate multiple 802.11 frames in a single USB xfer */ 2623 for(;;) { 2624 dmalen = le32toh(*mtod(m, uint32_t *)) & 0xffff; 2625 2626 if ((dmalen == 0) || ((dmalen & 3) != 0)) { 2627 DPRINTF("bad DMA length %u\n", dmalen); 2628 break; 2629 } 2630 if ((dmalen + 8) > xferlen) { 2631 DPRINTF("bad DMA length %u > %d\n", 2632 dmalen + 8, xferlen); 2633 break; 2634 } 2635 2636 /* If it is the last one or a single frame, we won't copy. */ 2637 if ((xferlen -= dmalen + 8) <= 8) { 2638 /* trim 32-bit DMA-len header */ 2639 m->m_data += 4; 2640 m->m_pkthdr.len = m->m_len -= 4; 2641 run_rx_frame(sc, m, dmalen); 2642 break; 2643 } 2644 2645 /* copy aggregated frames to another mbuf */ 2646 m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 2647 if (__predict_false(m0 == NULL)) { 2648 DPRINTF("could not allocate mbuf\n"); 2649 ifp->if_ierrors++; 2650 break; 2651 } 2652 m_copydata(m, 4 /* skip 32-bit DMA-len header */, 2653 dmalen + sizeof(struct rt2870_rxd), mtod(m0, caddr_t)); 2654 m0->m_pkthdr.len = m0->m_len = 2655 dmalen + sizeof(struct rt2870_rxd); 2656 run_rx_frame(sc, m0, dmalen); 2657 2658 /* update data ptr */ 2659 m->m_data += dmalen + 8; 2660 m->m_pkthdr.len = m->m_len -= dmalen + 8; 2661 } 2662 2663 RUN_LOCK(sc); 2664 } 2665 2666 static void 2667 run_tx_free(struct run_endpoint_queue *pq, 2668 struct run_tx_data *data, int txerr) 2669 { 2670 if (data->m != NULL) { 2671 if (data->m->m_flags & M_TXCB) 2672 ieee80211_process_callback(data->ni, data->m, 2673 txerr ? ETIMEDOUT : 0); 2674 m_freem(data->m); 2675 data->m = NULL; 2676 2677 if (data->ni == NULL) { 2678 DPRINTF("no node\n"); 2679 } else { 2680 ieee80211_free_node(data->ni); 2681 data->ni = NULL; 2682 } 2683 } 2684 2685 STAILQ_INSERT_TAIL(&pq->tx_fh, data, next); 2686 pq->tx_nfree++; 2687 } 2688 2689 static void 2690 run_bulk_tx_callbackN(struct usb_xfer *xfer, usb_error_t error, unsigned int index) 2691 { 2692 struct run_softc *sc = usbd_xfer_softc(xfer); 2693 struct ifnet *ifp = sc->sc_ifp; 2694 struct ieee80211com *ic = ifp->if_l2com; 2695 struct run_tx_data *data; 2696 struct ieee80211vap *vap = NULL; 2697 struct usb_page_cache *pc; 2698 struct run_endpoint_queue *pq = &sc->sc_epq[index]; 2699 struct mbuf *m; 2700 usb_frlength_t size; 2701 unsigned int len; 2702 int actlen; 2703 int sumlen; 2704 2705 usbd_xfer_status(xfer, &actlen, &sumlen, NULL, NULL); 2706 2707 switch (USB_GET_STATE(xfer)) { 2708 case USB_ST_TRANSFERRED: 2709 DPRINTFN(11, "transfer complete: %d " 2710 "bytes @ index %d\n", actlen, index); 2711 2712 data = usbd_xfer_get_priv(xfer); 2713 2714 run_tx_free(pq, data, 0); 2715 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2716 2717 usbd_xfer_set_priv(xfer, NULL); 2718 2719 ifp->if_opackets++; 2720 2721 /* FALLTHROUGH */ 2722 case USB_ST_SETUP: 2723 tr_setup: 2724 data = STAILQ_FIRST(&pq->tx_qh); 2725 if (data == NULL) 2726 break; 2727 2728 STAILQ_REMOVE_HEAD(&pq->tx_qh, next); 2729 2730 m = data->m; 2731 if (m->m_pkthdr.len > RUN_MAX_TXSZ) { 2732 DPRINTF("data overflow, %u bytes\n", 2733 m->m_pkthdr.len); 2734 2735 ifp->if_oerrors++; 2736 2737 run_tx_free(pq, data, 1); 2738 2739 goto tr_setup; 2740 } 2741 2742 pc = usbd_xfer_get_frame(xfer, 0); 2743 size = sizeof(data->desc); 2744 usbd_copy_in(pc, 0, &data->desc, size); 2745 usbd_m_copy_in(pc, size, m, 0, m->m_pkthdr.len); 2746 2747 vap = data->ni->ni_vap; 2748 if (ieee80211_radiotap_active_vap(vap)) { 2749 struct run_tx_radiotap_header *tap = &sc->sc_txtap; 2750 struct rt2860_txwi *txwi = 2751 (struct rt2860_txwi *)(&data->desc + sizeof(struct rt2870_txd)); 2752 2753 tap->wt_flags = 0; 2754 tap->wt_rate = rt2860_rates[data->ridx].rate; 2755 tap->wt_chan_freq = htole16(vap->iv_bss->ni_chan->ic_freq); 2756 tap->wt_chan_flags = htole16(vap->iv_bss->ni_chan->ic_flags); 2757 tap->wt_hwqueue = index; 2758 if (le16toh(txwi->phy) & RT2860_PHY_SHPRE) 2759 tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; 2760 2761 ieee80211_radiotap_tx(vap, m); 2762 } 2763 2764 /* align end on a 4-bytes boundary */ 2765 len = (size + IEEE80211_CRC_LEN + m->m_pkthdr.len + 3) & ~3; 2766 2767 DPRINTFN(11, "sending frame len=%u xferlen=%u @ index %d\n", 2768 m->m_pkthdr.len, len, index); 2769 2770 usbd_xfer_set_frame_len(xfer, 0, len); 2771 usbd_xfer_set_priv(xfer, data); 2772 2773 usbd_transfer_submit(xfer); 2774 2775 RUN_UNLOCK(sc); 2776 run_start(ifp); 2777 RUN_LOCK(sc); 2778 2779 break; 2780 2781 default: 2782 DPRINTF("USB transfer error, %s\n", 2783 usbd_errstr(error)); 2784 2785 data = usbd_xfer_get_priv(xfer); 2786 2787 ifp->if_oerrors++; 2788 2789 if (data != NULL) { 2790 if(data->ni != NULL) 2791 vap = data->ni->ni_vap; 2792 run_tx_free(pq, data, error); 2793 usbd_xfer_set_priv(xfer, NULL); 2794 } 2795 if (vap == NULL) 2796 vap = TAILQ_FIRST(&ic->ic_vaps); 2797 2798 if (error != USB_ERR_CANCELLED) { 2799 if (error == USB_ERR_TIMEOUT) { 2800 device_printf(sc->sc_dev, "device timeout\n"); 2801 uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store); 2802 DPRINTF("cmdq_store=%d\n", i); 2803 sc->cmdq[i].func = run_usb_timeout_cb; 2804 sc->cmdq[i].arg0 = vap; 2805 ieee80211_runtask(ic, &sc->cmdq_task); 2806 } 2807 2808 /* 2809 * Try to clear stall first, also if other 2810 * errors occur, hence clearing stall 2811 * introduces a 50 ms delay: 2812 */ 2813 usbd_xfer_set_stall(xfer); 2814 goto tr_setup; 2815 } 2816 break; 2817 } 2818 } 2819 2820 static void 2821 run_bulk_tx_callback0(struct usb_xfer *xfer, usb_error_t error) 2822 { 2823 run_bulk_tx_callbackN(xfer, error, 0); 2824 } 2825 2826 static void 2827 run_bulk_tx_callback1(struct usb_xfer *xfer, usb_error_t error) 2828 { 2829 run_bulk_tx_callbackN(xfer, error, 1); 2830 } 2831 2832 static void 2833 run_bulk_tx_callback2(struct usb_xfer *xfer, usb_error_t error) 2834 { 2835 run_bulk_tx_callbackN(xfer, error, 2); 2836 } 2837 2838 static void 2839 run_bulk_tx_callback3(struct usb_xfer *xfer, usb_error_t error) 2840 { 2841 run_bulk_tx_callbackN(xfer, error, 3); 2842 } 2843 2844 static void 2845 run_bulk_tx_callback4(struct usb_xfer *xfer, usb_error_t error) 2846 { 2847 run_bulk_tx_callbackN(xfer, error, 4); 2848 } 2849 2850 static void 2851 run_bulk_tx_callback5(struct usb_xfer *xfer, usb_error_t error) 2852 { 2853 run_bulk_tx_callbackN(xfer, error, 5); 2854 } 2855 2856 static void 2857 run_set_tx_desc(struct run_softc *sc, struct run_tx_data *data) 2858 { 2859 struct mbuf *m = data->m; 2860 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2861 struct ieee80211vap *vap = data->ni->ni_vap; 2862 struct ieee80211_frame *wh; 2863 struct rt2870_txd *txd; 2864 struct rt2860_txwi *txwi; 2865 uint16_t xferlen; 2866 uint16_t mcs; 2867 uint8_t ridx = data->ridx; 2868 uint8_t pad; 2869 2870 /* get MCS code from rate index */ 2871 mcs = rt2860_rates[ridx].mcs; 2872 2873 xferlen = sizeof(*txwi) + m->m_pkthdr.len; 2874 2875 /* roundup to 32-bit alignment */ 2876 xferlen = (xferlen + 3) & ~3; 2877 2878 txd = (struct rt2870_txd *)&data->desc; 2879 txd->len = htole16(xferlen); 2880 2881 wh = mtod(m, struct ieee80211_frame *); 2882 2883 /* 2884 * Ether both are true or both are false, the header 2885 * are nicely aligned to 32-bit. So, no L2 padding. 2886 */ 2887 if(IEEE80211_HAS_ADDR4(wh) == IEEE80211_QOS_HAS_SEQ(wh)) 2888 pad = 0; 2889 else 2890 pad = 2; 2891 2892 /* setup TX Wireless Information */ 2893 txwi = (struct rt2860_txwi *)(txd + 1); 2894 txwi->len = htole16(m->m_pkthdr.len - pad); 2895 if (rt2860_rates[ridx].phy == IEEE80211_T_DS) { 2896 txwi->phy = htole16(RT2860_PHY_CCK); 2897 if (ridx != RT2860_RIDX_CCK1 && 2898 (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2899 mcs |= RT2860_PHY_SHPRE; 2900 } else 2901 txwi->phy = htole16(RT2860_PHY_OFDM); 2902 txwi->phy |= htole16(mcs); 2903 2904 /* check if RTS/CTS or CTS-to-self protection is required */ 2905 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && 2906 (m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold || 2907 ((ic->ic_flags & IEEE80211_F_USEPROT) && 2908 rt2860_rates[ridx].phy == IEEE80211_T_OFDM))) 2909 txwi->txop |= RT2860_TX_TXOP_HT; 2910 else 2911 txwi->txop |= RT2860_TX_TXOP_BACKOFF; 2912 2913 if (vap->iv_opmode != IEEE80211_M_STA && !IEEE80211_QOS_HAS_SEQ(wh)) 2914 txwi->xflags |= RT2860_TX_NSEQ; 2915 } 2916 2917 /* This function must be called locked */ 2918 static int 2919 run_tx(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 2920 { 2921 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2922 struct ieee80211vap *vap = ni->ni_vap; 2923 struct ieee80211_frame *wh; 2924 struct ieee80211_channel *chan; 2925 const struct ieee80211_txparam *tp; 2926 struct run_node *rn = (void *)ni; 2927 struct run_tx_data *data; 2928 struct rt2870_txd *txd; 2929 struct rt2860_txwi *txwi; 2930 uint16_t qos; 2931 uint16_t dur; 2932 uint16_t qid; 2933 uint8_t type; 2934 uint8_t tid; 2935 uint8_t ridx; 2936 uint8_t ctl_ridx; 2937 uint8_t qflags; 2938 uint8_t xflags = 0; 2939 int hasqos; 2940 2941 RUN_LOCK_ASSERT(sc, MA_OWNED); 2942 2943 wh = mtod(m, struct ieee80211_frame *); 2944 2945 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 2946 2947 /* 2948 * There are 7 bulk endpoints: 1 for RX 2949 * and 6 for TX (4 EDCAs + HCCA + Prio). 2950 * Update 03-14-2009: some devices like the Planex GW-US300MiniS 2951 * seem to have only 4 TX bulk endpoints (Fukaumi Naoki). 2952 */ 2953 if ((hasqos = IEEE80211_QOS_HAS_SEQ(wh))) { 2954 uint8_t *frm; 2955 2956 if(IEEE80211_HAS_ADDR4(wh)) 2957 frm = ((struct ieee80211_qosframe_addr4 *)wh)->i_qos; 2958 else 2959 frm =((struct ieee80211_qosframe *)wh)->i_qos; 2960 2961 qos = le16toh(*(const uint16_t *)frm); 2962 tid = qos & IEEE80211_QOS_TID; 2963 qid = TID_TO_WME_AC(tid); 2964 } else { 2965 qos = 0; 2966 tid = 0; 2967 qid = WME_AC_BE; 2968 } 2969 qflags = (qid < 4) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_HCCA; 2970 2971 DPRINTFN(8, "qos %d\tqid %d\ttid %d\tqflags %x\n", 2972 qos, qid, tid, qflags); 2973 2974 chan = (ni->ni_chan != IEEE80211_CHAN_ANYC)?ni->ni_chan:ic->ic_curchan; 2975 tp = &vap->iv_txparms[ieee80211_chan2mode(chan)]; 2976 2977 /* pickup a rate index */ 2978 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2979 type != IEEE80211_FC0_TYPE_DATA) { 2980 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 2981 RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1; 2982 ctl_ridx = rt2860_rates[ridx].ctl_ridx; 2983 } else { 2984 if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) 2985 ridx = rn->fix_ridx; 2986 else 2987 ridx = rn->amrr_ridx; 2988 ctl_ridx = rt2860_rates[ridx].ctl_ridx; 2989 } 2990 2991 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && 2992 (!hasqos || (qos & IEEE80211_QOS_ACKPOLICY) != 2993 IEEE80211_QOS_ACKPOLICY_NOACK)) { 2994 xflags |= RT2860_TX_ACK; 2995 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 2996 dur = rt2860_rates[ctl_ridx].sp_ack_dur; 2997 else 2998 dur = rt2860_rates[ctl_ridx].lp_ack_dur; 2999 *(uint16_t *)wh->i_dur = htole16(dur); 3000 } 3001 3002 /* reserve slots for mgmt packets, just in case */ 3003 if (sc->sc_epq[qid].tx_nfree < 3) { 3004 DPRINTFN(10, "tx ring %d is full\n", qid); 3005 return (-1); 3006 } 3007 3008 data = STAILQ_FIRST(&sc->sc_epq[qid].tx_fh); 3009 STAILQ_REMOVE_HEAD(&sc->sc_epq[qid].tx_fh, next); 3010 sc->sc_epq[qid].tx_nfree--; 3011 3012 txd = (struct rt2870_txd *)&data->desc; 3013 txd->flags = qflags; 3014 txwi = (struct rt2860_txwi *)(txd + 1); 3015 txwi->xflags = xflags; 3016 txwi->wcid = IEEE80211_IS_MULTICAST(wh->i_addr1) ? 3017 0 : RUN_AID2WCID(ni->ni_associd); 3018 /* clear leftover garbage bits */ 3019 txwi->flags = 0; 3020 txwi->txop = 0; 3021 3022 data->m = m; 3023 data->ni = ni; 3024 data->ridx = ridx; 3025 3026 run_set_tx_desc(sc, data); 3027 3028 /* 3029 * The chip keeps track of 2 kind of Tx stats, 3030 * * TX_STAT_FIFO, for per WCID stats, and 3031 * * TX_STA_CNT0 for all-TX-in-one stats. 3032 * 3033 * To use FIFO stats, we need to store MCS into the driver-private 3034 * PacketID field. So that, we can tell whose stats when we read them. 3035 * We add 1 to the MCS because setting the PacketID field to 0 means 3036 * that we don't want feedback in TX_STAT_FIFO. 3037 * And, that's what we want for STA mode, since TX_STA_CNT0 does the job. 3038 * 3039 * FIFO stats doesn't count Tx with WCID 0xff, so we do this in run_tx(). 3040 */ 3041 if (sc->rvp_cnt > 1 || vap->iv_opmode == IEEE80211_M_HOSTAP || 3042 vap->iv_opmode == IEEE80211_M_MBSS) { 3043 uint16_t pid = (rt2860_rates[ridx].mcs + 1) & 0xf; 3044 txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT); 3045 3046 /* 3047 * Unlike PCI based devices, we don't get any interrupt from 3048 * USB devices, so we simulate FIFO-is-full interrupt here. 3049 * Ralink recomends to drain FIFO stats every 100 ms, but 16 slots 3050 * quickly get fulled. To prevent overflow, increment a counter on 3051 * every FIFO stat request, so we know how many slots are left. 3052 * We do this only in HOSTAP or multiple vap mode since FIFO stats 3053 * are used only in those modes. 3054 * We just drain stats. AMRR gets updated every 1 sec by 3055 * run_ratectl_cb() via callout. 3056 * Call it early. Otherwise overflow. 3057 */ 3058 if (sc->fifo_cnt++ == 10) { 3059 /* 3060 * With multiple vaps or if_bridge, if_start() is called 3061 * with a non-sleepable lock, tcpinp. So, need to defer. 3062 */ 3063 uint32_t i = RUN_CMDQ_GET(&sc->cmdq_store); 3064 DPRINTFN(6, "cmdq_store=%d\n", i); 3065 sc->cmdq[i].func = run_drain_fifo; 3066 sc->cmdq[i].arg0 = sc; 3067 ieee80211_runtask(ic, &sc->cmdq_task); 3068 } 3069 } 3070 3071 STAILQ_INSERT_TAIL(&sc->sc_epq[qid].tx_qh, data, next); 3072 3073 usbd_transfer_start(sc->sc_xfer[qid]); 3074 3075 DPRINTFN(8, "sending data frame len=%d rate=%d qid=%d\n", m->m_pkthdr.len + 3076 (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)), 3077 rt2860_rates[ridx].rate, qid); 3078 3079 return (0); 3080 } 3081 3082 static int 3083 run_tx_mgt(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 3084 { 3085 struct ifnet *ifp = sc->sc_ifp; 3086 struct ieee80211com *ic = ifp->if_l2com; 3087 struct run_node *rn = (void *)ni; 3088 struct run_tx_data *data; 3089 struct ieee80211_frame *wh; 3090 struct rt2870_txd *txd; 3091 struct rt2860_txwi *txwi; 3092 uint16_t dur; 3093 uint8_t ridx = rn->mgt_ridx; 3094 uint8_t type; 3095 uint8_t xflags = 0; 3096 uint8_t wflags = 0; 3097 3098 RUN_LOCK_ASSERT(sc, MA_OWNED); 3099 3100 wh = mtod(m, struct ieee80211_frame *); 3101 3102 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3103 3104 /* tell hardware to add timestamp for probe responses */ 3105 if ((wh->i_fc[0] & 3106 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 3107 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 3108 wflags |= RT2860_TX_TS; 3109 else if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 3110 xflags |= RT2860_TX_ACK; 3111 3112 dur = ieee80211_ack_duration(ic->ic_rt, rt2860_rates[ridx].rate, 3113 ic->ic_flags & IEEE80211_F_SHPREAMBLE); 3114 *(uint16_t *)wh->i_dur = htole16(dur); 3115 } 3116 3117 if (sc->sc_epq[0].tx_nfree == 0) { 3118 /* let caller free mbuf */ 3119 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3120 return (EIO); 3121 } 3122 data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh); 3123 STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next); 3124 sc->sc_epq[0].tx_nfree--; 3125 3126 txd = (struct rt2870_txd *)&data->desc; 3127 txd->flags = RT2860_TX_QSEL_EDCA; 3128 txwi = (struct rt2860_txwi *)(txd + 1); 3129 txwi->wcid = 0xff; 3130 txwi->flags = wflags; 3131 txwi->xflags = xflags; 3132 txwi->txop = 0; /* clear leftover garbage bits */ 3133 3134 data->m = m; 3135 data->ni = ni; 3136 data->ridx = ridx; 3137 3138 run_set_tx_desc(sc, data); 3139 3140 DPRINTFN(10, "sending mgt frame len=%d rate=%d\n", m->m_pkthdr.len + 3141 (int)(sizeof (struct rt2870_txd) + sizeof (struct rt2860_rxwi)), 3142 rt2860_rates[ridx].rate); 3143 3144 STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next); 3145 3146 usbd_transfer_start(sc->sc_xfer[0]); 3147 3148 return (0); 3149 } 3150 3151 static int 3152 run_sendprot(struct run_softc *sc, 3153 const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate) 3154 { 3155 struct ieee80211com *ic = ni->ni_ic; 3156 struct ieee80211_frame *wh; 3157 struct run_tx_data *data; 3158 struct rt2870_txd *txd; 3159 struct rt2860_txwi *txwi; 3160 struct mbuf *mprot; 3161 int ridx; 3162 int protrate; 3163 int ackrate; 3164 int pktlen; 3165 int isshort; 3166 uint16_t dur; 3167 uint8_t type; 3168 uint8_t wflags = 0; 3169 uint8_t xflags = 0; 3170 3171 RUN_LOCK_ASSERT(sc, MA_OWNED); 3172 3173 KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY, 3174 ("protection %d", prot)); 3175 3176 wh = mtod(m, struct ieee80211_frame *); 3177 pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 3178 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3179 3180 protrate = ieee80211_ctl_rate(ic->ic_rt, rate); 3181 ackrate = ieee80211_ack_rate(ic->ic_rt, rate); 3182 3183 isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0; 3184 dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort) 3185 + ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3186 wflags = RT2860_TX_FRAG; 3187 3188 /* check that there are free slots before allocating the mbuf */ 3189 if (sc->sc_epq[0].tx_nfree == 0) { 3190 /* let caller free mbuf */ 3191 sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3192 return (ENOBUFS); 3193 } 3194 3195 if (prot == IEEE80211_PROT_RTSCTS) { 3196 /* NB: CTS is the same size as an ACK */ 3197 dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort); 3198 xflags |= RT2860_TX_ACK; 3199 mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur); 3200 } else { 3201 mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur); 3202 } 3203 if (mprot == NULL) { 3204 sc->sc_ifp->if_oerrors++; 3205 DPRINTF("could not allocate mbuf\n"); 3206 return (ENOBUFS); 3207 } 3208 3209 data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh); 3210 STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next); 3211 sc->sc_epq[0].tx_nfree--; 3212 3213 txd = (struct rt2870_txd *)&data->desc; 3214 txd->flags = RT2860_TX_QSEL_EDCA; 3215 txwi = (struct rt2860_txwi *)(txd + 1); 3216 txwi->wcid = 0xff; 3217 txwi->flags = wflags; 3218 txwi->xflags = xflags; 3219 txwi->txop = 0; /* clear leftover garbage bits */ 3220 3221 data->m = mprot; 3222 data->ni = ieee80211_ref_node(ni); 3223 3224 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) 3225 if (rt2860_rates[ridx].rate == protrate) 3226 break; 3227 data->ridx = ridx; 3228 3229 run_set_tx_desc(sc, data); 3230 3231 DPRINTFN(1, "sending prot len=%u rate=%u\n", 3232 m->m_pkthdr.len, rate); 3233 3234 STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next); 3235 3236 usbd_transfer_start(sc->sc_xfer[0]); 3237 3238 return (0); 3239 } 3240 3241 static int 3242 run_tx_param(struct run_softc *sc, struct mbuf *m, struct ieee80211_node *ni, 3243 const struct ieee80211_bpf_params *params) 3244 { 3245 struct ieee80211com *ic = ni->ni_ic; 3246 struct ieee80211_frame *wh; 3247 struct run_tx_data *data; 3248 struct rt2870_txd *txd; 3249 struct rt2860_txwi *txwi; 3250 uint8_t type; 3251 uint8_t ridx; 3252 uint8_t rate; 3253 uint8_t opflags = 0; 3254 uint8_t xflags = 0; 3255 int error; 3256 3257 RUN_LOCK_ASSERT(sc, MA_OWNED); 3258 3259 KASSERT(params != NULL, ("no raw xmit params")); 3260 3261 wh = mtod(m, struct ieee80211_frame *); 3262 type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; 3263 3264 rate = params->ibp_rate0; 3265 if (!ieee80211_isratevalid(ic->ic_rt, rate)) { 3266 /* let caller free mbuf */ 3267 return (EINVAL); 3268 } 3269 3270 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 3271 xflags |= RT2860_TX_ACK; 3272 if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) { 3273 error = run_sendprot(sc, m, ni, 3274 params->ibp_flags & IEEE80211_BPF_RTS ? 3275 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY, 3276 rate); 3277 if (error) { 3278 /* let caller free mbuf */ 3279 return error; 3280 } 3281 opflags |= /*XXX RT2573_TX_LONG_RETRY |*/ RT2860_TX_TXOP_SIFS; 3282 } 3283 3284 if (sc->sc_epq[0].tx_nfree == 0) { 3285 /* let caller free mbuf */ 3286 sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3287 DPRINTF("sending raw frame, but tx ring is full\n"); 3288 return (EIO); 3289 } 3290 data = STAILQ_FIRST(&sc->sc_epq[0].tx_fh); 3291 STAILQ_REMOVE_HEAD(&sc->sc_epq[0].tx_fh, next); 3292 sc->sc_epq[0].tx_nfree--; 3293 3294 txd = (struct rt2870_txd *)&data->desc; 3295 txd->flags = RT2860_TX_QSEL_EDCA; 3296 txwi = (struct rt2860_txwi *)(txd + 1); 3297 txwi->wcid = 0xff; 3298 txwi->xflags = xflags; 3299 txwi->txop = opflags; 3300 txwi->flags = 0; /* clear leftover garbage bits */ 3301 3302 data->m = m; 3303 data->ni = ni; 3304 for (ridx = 0; ridx < RT2860_RIDX_MAX; ridx++) 3305 if (rt2860_rates[ridx].rate == rate) 3306 break; 3307 data->ridx = ridx; 3308 3309 run_set_tx_desc(sc, data); 3310 3311 DPRINTFN(10, "sending raw frame len=%u rate=%u\n", 3312 m->m_pkthdr.len, rate); 3313 3314 STAILQ_INSERT_TAIL(&sc->sc_epq[0].tx_qh, data, next); 3315 3316 usbd_transfer_start(sc->sc_xfer[0]); 3317 3318 return (0); 3319 } 3320 3321 static int 3322 run_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 3323 const struct ieee80211_bpf_params *params) 3324 { 3325 struct ifnet *ifp = ni->ni_ic->ic_ifp; 3326 struct run_softc *sc = ifp->if_softc; 3327 int error = 0; 3328 3329 RUN_LOCK(sc); 3330 3331 /* prevent management frames from being sent if we're not ready */ 3332 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 3333 error = ENETDOWN; 3334 goto done; 3335 } 3336 3337 if (params == NULL) { 3338 /* tx mgt packet */ 3339 if ((error = run_tx_mgt(sc, m, ni)) != 0) { 3340 ifp->if_oerrors++; 3341 DPRINTF("mgt tx failed\n"); 3342 goto done; 3343 } 3344 } else { 3345 /* tx raw packet with param */ 3346 if ((error = run_tx_param(sc, m, ni, params)) != 0) { 3347 ifp->if_oerrors++; 3348 DPRINTF("tx with param failed\n"); 3349 goto done; 3350 } 3351 } 3352 3353 ifp->if_opackets++; 3354 3355 done: 3356 RUN_UNLOCK(sc); 3357 3358 if (error != 0) { 3359 if(m != NULL) 3360 m_freem(m); 3361 ieee80211_free_node(ni); 3362 } 3363 3364 return (error); 3365 } 3366 3367 static void 3368 run_start(struct ifnet *ifp) 3369 { 3370 struct run_softc *sc = ifp->if_softc; 3371 struct ieee80211_node *ni; 3372 struct mbuf *m; 3373 3374 RUN_LOCK(sc); 3375 3376 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 3377 RUN_UNLOCK(sc); 3378 return; 3379 } 3380 3381 for (;;) { 3382 /* send data frames */ 3383 IFQ_DRV_DEQUEUE(&ifp->if_snd, m); 3384 if (m == NULL) 3385 break; 3386 3387 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif; 3388 if (run_tx(sc, m, ni) != 0) { 3389 IFQ_DRV_PREPEND(&ifp->if_snd, m); 3390 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 3391 break; 3392 } 3393 } 3394 3395 RUN_UNLOCK(sc); 3396 } 3397 3398 static int 3399 run_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 3400 { 3401 struct run_softc *sc = ifp->if_softc; 3402 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3403 struct ifreq *ifr = (struct ifreq *) data; 3404 int startall = 0; 3405 int error = 0; 3406 3407 switch (cmd) { 3408 case SIOCSIFFLAGS: 3409 RUN_LOCK(sc); 3410 if (ifp->if_flags & IFF_UP) { 3411 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)){ 3412 startall = 1; 3413 run_init_locked(sc); 3414 } else 3415 run_update_promisc_locked(ifp); 3416 } else { 3417 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 3418 (ic->ic_nrunning == 0 || sc->rvp_cnt <= 1)) { 3419 run_stop(sc); 3420 } 3421 } 3422 RUN_UNLOCK(sc); 3423 if (startall) 3424 ieee80211_start_all(ic); 3425 break; 3426 case SIOCGIFMEDIA: 3427 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 3428 break; 3429 case SIOCGIFADDR: 3430 error = ether_ioctl(ifp, cmd, data); 3431 break; 3432 default: 3433 error = EINVAL; 3434 break; 3435 } 3436 3437 return (error); 3438 } 3439 3440 static void 3441 run_set_agc(struct run_softc *sc, uint8_t agc) 3442 { 3443 uint8_t bbp; 3444 3445 if (sc->mac_ver == 0x3572) { 3446 run_bbp_read(sc, 27, &bbp); 3447 bbp &= ~(0x3 << 5); 3448 run_bbp_write(sc, 27, bbp | 0 << 5); /* select Rx0 */ 3449 run_bbp_write(sc, 66, agc); 3450 run_bbp_write(sc, 27, bbp | 1 << 5); /* select Rx1 */ 3451 run_bbp_write(sc, 66, agc); 3452 } else 3453 run_bbp_write(sc, 66, agc); 3454 } 3455 3456 static void 3457 run_select_chan_group(struct run_softc *sc, int group) 3458 { 3459 uint32_t tmp; 3460 uint8_t agc; 3461 3462 run_bbp_write(sc, 62, 0x37 - sc->lna[group]); 3463 run_bbp_write(sc, 63, 0x37 - sc->lna[group]); 3464 run_bbp_write(sc, 64, 0x37 - sc->lna[group]); 3465 run_bbp_write(sc, 86, 0x00); 3466 3467 if (group == 0) { 3468 if (sc->ext_2ghz_lna) { 3469 run_bbp_write(sc, 82, 0x62); 3470 run_bbp_write(sc, 75, 0x46); 3471 } else { 3472 run_bbp_write(sc, 82, 0x84); 3473 run_bbp_write(sc, 75, 0x50); 3474 } 3475 } else { 3476 if (sc->mac_ver == 0x3572) 3477 run_bbp_write(sc, 82, 0x94); 3478 else 3479 run_bbp_write(sc, 82, 0xf2); 3480 if (sc->ext_5ghz_lna) 3481 run_bbp_write(sc, 75, 0x46); 3482 else 3483 run_bbp_write(sc, 75, 0x50); 3484 } 3485 3486 run_read(sc, RT2860_TX_BAND_CFG, &tmp); 3487 tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P); 3488 tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P; 3489 run_write(sc, RT2860_TX_BAND_CFG, tmp); 3490 3491 /* enable appropriate Power Amplifiers and Low Noise Amplifiers */ 3492 tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN; 3493 if (sc->nrxchains > 1) 3494 tmp |= RT2860_LNA_PE1_EN; 3495 if (group == 0) { /* 2GHz */ 3496 tmp |= RT2860_PA_PE_G0_EN; 3497 if (sc->ntxchains > 1) 3498 tmp |= RT2860_PA_PE_G1_EN; 3499 } else { /* 5GHz */ 3500 tmp |= RT2860_PA_PE_A0_EN; 3501 if (sc->ntxchains > 1) 3502 tmp |= RT2860_PA_PE_A1_EN; 3503 } 3504 if (sc->mac_ver == 0x3572) { 3505 run_rt3070_rf_write(sc, 8, 0x00); 3506 run_write(sc, RT2860_TX_PIN_CFG, tmp); 3507 run_rt3070_rf_write(sc, 8, 0x80); 3508 } else 3509 run_write(sc, RT2860_TX_PIN_CFG, tmp); 3510 3511 /* set initial AGC value */ 3512 if (group == 0) { /* 2GHz band */ 3513 if (sc->mac_ver >= 0x3070) 3514 agc = 0x1c + sc->lna[0] * 2; 3515 else 3516 agc = 0x2e + sc->lna[0]; 3517 } else { /* 5GHz band */ 3518 if (sc->mac_ver == 0x3572) 3519 agc = 0x22 + (sc->lna[group] * 5) / 3; 3520 else 3521 agc = 0x32 + (sc->lna[group] * 5) / 3; 3522 } 3523 run_set_agc(sc, agc); 3524 } 3525 3526 static void 3527 run_rt2870_set_chan(struct run_softc *sc, uint32_t chan) 3528 { 3529 const struct rfprog *rfprog = rt2860_rf2850; 3530 uint32_t r2, r3, r4; 3531 int8_t txpow1, txpow2; 3532 int i; 3533 3534 /* find the settings for this channel (we know it exists) */ 3535 for (i = 0; rfprog[i].chan != chan; i++); 3536 3537 r2 = rfprog[i].r2; 3538 if (sc->ntxchains == 1) 3539 r2 |= 1 << 12; /* 1T: disable Tx chain 2 */ 3540 if (sc->nrxchains == 1) 3541 r2 |= 1 << 15 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ 3542 else if (sc->nrxchains == 2) 3543 r2 |= 1 << 4; /* 2R: disable Rx chain 3 */ 3544 3545 /* use Tx power values from EEPROM */ 3546 txpow1 = sc->txpow1[i]; 3547 txpow2 = sc->txpow2[i]; 3548 if (chan > 14) { 3549 if (txpow1 >= 0) 3550 txpow1 = txpow1 << 1 | 1; 3551 else 3552 txpow1 = (7 + txpow1) << 1; 3553 if (txpow2 >= 0) 3554 txpow2 = txpow2 << 1 | 1; 3555 else 3556 txpow2 = (7 + txpow2) << 1; 3557 } 3558 r3 = rfprog[i].r3 | txpow1 << 7; 3559 r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4; 3560 3561 run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1); 3562 run_rt2870_rf_write(sc, RT2860_RF2, r2); 3563 run_rt2870_rf_write(sc, RT2860_RF3, r3); 3564 run_rt2870_rf_write(sc, RT2860_RF4, r4); 3565 3566 run_delay(sc, 10); 3567 3568 run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1); 3569 run_rt2870_rf_write(sc, RT2860_RF2, r2); 3570 run_rt2870_rf_write(sc, RT2860_RF3, r3 | 1); 3571 run_rt2870_rf_write(sc, RT2860_RF4, r4); 3572 3573 run_delay(sc, 10); 3574 3575 run_rt2870_rf_write(sc, RT2860_RF1, rfprog[i].r1); 3576 run_rt2870_rf_write(sc, RT2860_RF2, r2); 3577 run_rt2870_rf_write(sc, RT2860_RF3, r3); 3578 run_rt2870_rf_write(sc, RT2860_RF4, r4); 3579 } 3580 3581 static void 3582 run_rt3070_set_chan(struct run_softc *sc, uint32_t chan) 3583 { 3584 int8_t txpow1, txpow2; 3585 uint8_t rf; 3586 int i; 3587 3588 /* RT3070 is 2GHz only */ 3589 KASSERT(chan >= 1 && chan <= 14, ("wrong channel selected\n")); 3590 3591 /* find the settings for this channel (we know it exists) */ 3592 for (i = 0; rt2860_rf2850[i].chan != chan; i++); 3593 3594 /* use Tx power values from EEPROM */ 3595 txpow1 = sc->txpow1[i]; 3596 txpow2 = sc->txpow2[i]; 3597 3598 run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n); 3599 run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k); 3600 run_rt3070_rf_read(sc, 6, &rf); 3601 rf = (rf & ~0x03) | rt3070_freqs[i].r; 3602 run_rt3070_rf_write(sc, 6, rf); 3603 3604 /* set Tx0 power */ 3605 run_rt3070_rf_read(sc, 12, &rf); 3606 rf = (rf & ~0x1f) | txpow1; 3607 run_rt3070_rf_write(sc, 12, rf); 3608 3609 /* set Tx1 power */ 3610 run_rt3070_rf_read(sc, 13, &rf); 3611 rf = (rf & ~0x1f) | txpow2; 3612 run_rt3070_rf_write(sc, 13, rf); 3613 3614 run_rt3070_rf_read(sc, 1, &rf); 3615 rf &= ~0xfc; 3616 if (sc->ntxchains == 1) 3617 rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */ 3618 else if (sc->ntxchains == 2) 3619 rf |= 1 << 7; /* 2T: disable Tx chain 3 */ 3620 if (sc->nrxchains == 1) 3621 rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ 3622 else if (sc->nrxchains == 2) 3623 rf |= 1 << 6; /* 2R: disable Rx chain 3 */ 3624 run_rt3070_rf_write(sc, 1, rf); 3625 3626 /* set RF offset */ 3627 run_rt3070_rf_read(sc, 23, &rf); 3628 rf = (rf & ~0x7f) | sc->freq; 3629 run_rt3070_rf_write(sc, 23, rf); 3630 3631 /* program RF filter */ 3632 run_rt3070_rf_read(sc, 24, &rf); /* Tx */ 3633 rf = (rf & ~0x3f) | sc->rf24_20mhz; 3634 run_rt3070_rf_write(sc, 24, rf); 3635 run_rt3070_rf_read(sc, 31, &rf); /* Rx */ 3636 rf = (rf & ~0x3f) | sc->rf24_20mhz; 3637 run_rt3070_rf_write(sc, 31, rf); 3638 3639 /* enable RF tuning */ 3640 run_rt3070_rf_read(sc, 7, &rf); 3641 run_rt3070_rf_write(sc, 7, rf | 0x01); 3642 } 3643 3644 static void 3645 run_rt3572_set_chan(struct run_softc *sc, u_int chan) 3646 { 3647 int8_t txpow1, txpow2; 3648 uint32_t tmp; 3649 uint8_t rf; 3650 int i; 3651 3652 /* find the settings for this channel (we know it exists) */ 3653 for (i = 0; rt2860_rf2850[i].chan != chan; i++); 3654 3655 /* use Tx power values from EEPROM */ 3656 txpow1 = sc->txpow1[i]; 3657 txpow2 = sc->txpow2[i]; 3658 3659 if (chan <= 14) { 3660 run_bbp_write(sc, 25, sc->bbp25); 3661 run_bbp_write(sc, 26, sc->bbp26); 3662 } else { 3663 /* enable IQ phase correction */ 3664 run_bbp_write(sc, 25, 0x09); 3665 run_bbp_write(sc, 26, 0xff); 3666 } 3667 3668 run_rt3070_rf_write(sc, 2, rt3070_freqs[i].n); 3669 run_rt3070_rf_write(sc, 3, rt3070_freqs[i].k); 3670 run_rt3070_rf_read(sc, 6, &rf); 3671 rf = (rf & ~0x0f) | rt3070_freqs[i].r; 3672 rf |= (chan <= 14) ? 0x08 : 0x04; 3673 run_rt3070_rf_write(sc, 6, rf); 3674 3675 /* set PLL mode */ 3676 run_rt3070_rf_read(sc, 5, &rf); 3677 rf &= ~(0x08 | 0x04); 3678 rf |= (chan <= 14) ? 0x04 : 0x08; 3679 run_rt3070_rf_write(sc, 5, rf); 3680 3681 /* set Tx power for chain 0 */ 3682 if (chan <= 14) 3683 rf = 0x60 | txpow1; 3684 else 3685 rf = 0xe0 | (txpow1 & 0xc) << 1 | (txpow1 & 0x3); 3686 run_rt3070_rf_write(sc, 12, rf); 3687 3688 /* set Tx power for chain 1 */ 3689 if (chan <= 14) 3690 rf = 0x60 | txpow2; 3691 else 3692 rf = 0xe0 | (txpow2 & 0xc) << 1 | (txpow2 & 0x3); 3693 run_rt3070_rf_write(sc, 13, rf); 3694 3695 /* set Tx/Rx streams */ 3696 run_rt3070_rf_read(sc, 1, &rf); 3697 rf &= ~0xfc; 3698 if (sc->ntxchains == 1) 3699 rf |= 1 << 7 | 1 << 5; /* 1T: disable Tx chains 2 & 3 */ 3700 else if (sc->ntxchains == 2) 3701 rf |= 1 << 7; /* 2T: disable Tx chain 3 */ 3702 if (sc->nrxchains == 1) 3703 rf |= 1 << 6 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */ 3704 else if (sc->nrxchains == 2) 3705 rf |= 1 << 6; /* 2R: disable Rx chain 3 */ 3706 run_rt3070_rf_write(sc, 1, rf); 3707 3708 /* set RF offset */ 3709 run_rt3070_rf_read(sc, 23, &rf); 3710 rf = (rf & ~0x7f) | sc->freq; 3711 run_rt3070_rf_write(sc, 23, rf); 3712 3713 /* program RF filter */ 3714 rf = sc->rf24_20mhz; 3715 run_rt3070_rf_write(sc, 24, rf); /* Tx */ 3716 run_rt3070_rf_write(sc, 31, rf); /* Rx */ 3717 3718 /* enable RF tuning */ 3719 run_rt3070_rf_read(sc, 7, &rf); 3720 rf = (chan <= 14) ? 0xd8 : ((rf & ~0xc8) | 0x14); 3721 run_rt3070_rf_write(sc, 7, rf); 3722 3723 /* TSSI */ 3724 rf = (chan <= 14) ? 0xc3 : 0xc0; 3725 run_rt3070_rf_write(sc, 9, rf); 3726 3727 /* set loop filter 1 */ 3728 run_rt3070_rf_write(sc, 10, 0xf1); 3729 /* set loop filter 2 */ 3730 run_rt3070_rf_write(sc, 11, (chan <= 14) ? 0xb9 : 0x00); 3731 3732 /* set tx_mx2_ic */ 3733 run_rt3070_rf_write(sc, 15, (chan <= 14) ? 0x53 : 0x43); 3734 /* set tx_mx1_ic */ 3735 if (chan <= 14) 3736 rf = 0x48 | sc->txmixgain_2ghz; 3737 else 3738 rf = 0x78 | sc->txmixgain_5ghz; 3739 run_rt3070_rf_write(sc, 16, rf); 3740 3741 /* set tx_lo1 */ 3742 run_rt3070_rf_write(sc, 17, 0x23); 3743 /* set tx_lo2 */ 3744 if (chan <= 14) 3745 rf = 0x93; 3746 else if (chan <= 64) 3747 rf = 0xb7; 3748 else if (chan <= 128) 3749 rf = 0x74; 3750 else 3751 rf = 0x72; 3752 run_rt3070_rf_write(sc, 19, rf); 3753 3754 /* set rx_lo1 */ 3755 if (chan <= 14) 3756 rf = 0xb3; 3757 else if (chan <= 64) 3758 rf = 0xf6; 3759 else if (chan <= 128) 3760 rf = 0xf4; 3761 else 3762 rf = 0xf3; 3763 run_rt3070_rf_write(sc, 20, rf); 3764 3765 /* set pfd_delay */ 3766 if (chan <= 14) 3767 rf = 0x15; 3768 else if (chan <= 64) 3769 rf = 0x3d; 3770 else 3771 rf = 0x01; 3772 run_rt3070_rf_write(sc, 25, rf); 3773 3774 /* set rx_lo2 */ 3775 run_rt3070_rf_write(sc, 26, (chan <= 14) ? 0x85 : 0x87); 3776 /* set ldo_rf_vc */ 3777 run_rt3070_rf_write(sc, 27, (chan <= 14) ? 0x00 : 0x01); 3778 /* set drv_cc */ 3779 run_rt3070_rf_write(sc, 29, (chan <= 14) ? 0x9b : 0x9f); 3780 3781 run_read(sc, RT2860_GPIO_CTRL, &tmp); 3782 tmp &= ~0x8080; 3783 if (chan <= 14) 3784 tmp |= 0x80; 3785 run_write(sc, RT2860_GPIO_CTRL, tmp); 3786 3787 /* enable RF tuning */ 3788 run_rt3070_rf_read(sc, 7, &rf); 3789 run_rt3070_rf_write(sc, 7, rf | 0x01); 3790 3791 run_delay(sc, 2); 3792 } 3793 3794 static void 3795 run_set_rx_antenna(struct run_softc *sc, int aux) 3796 { 3797 uint32_t tmp; 3798 3799 if (aux) { 3800 run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 0); 3801 run_read(sc, RT2860_GPIO_CTRL, &tmp); 3802 run_write(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08); 3803 } else { 3804 run_mcu_cmd(sc, RT2860_MCU_CMD_ANTSEL, 1); 3805 run_read(sc, RT2860_GPIO_CTRL, &tmp); 3806 run_write(sc, RT2860_GPIO_CTRL, tmp & ~0x0808); 3807 } 3808 } 3809 3810 static int 3811 run_set_chan(struct run_softc *sc, struct ieee80211_channel *c) 3812 { 3813 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3814 uint32_t chan, group; 3815 3816 chan = ieee80211_chan2ieee(ic, c); 3817 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 3818 return (EINVAL); 3819 3820 if (sc->mac_ver == 0x3572) 3821 run_rt3572_set_chan(sc, chan); 3822 else if (sc->mac_ver >= 0x3070) 3823 run_rt3070_set_chan(sc, chan); 3824 else 3825 run_rt2870_set_chan(sc, chan); 3826 3827 /* determine channel group */ 3828 if (chan <= 14) 3829 group = 0; 3830 else if (chan <= 64) 3831 group = 1; 3832 else if (chan <= 128) 3833 group = 2; 3834 else 3835 group = 3; 3836 3837 /* XXX necessary only when group has changed! */ 3838 run_select_chan_group(sc, group); 3839 3840 run_delay(sc, 10); 3841 3842 return (0); 3843 } 3844 3845 static void 3846 run_set_channel(struct ieee80211com *ic) 3847 { 3848 struct run_softc *sc = ic->ic_ifp->if_softc; 3849 3850 RUN_LOCK(sc); 3851 run_set_chan(sc, ic->ic_curchan); 3852 RUN_UNLOCK(sc); 3853 3854 return; 3855 } 3856 3857 static void 3858 run_scan_start(struct ieee80211com *ic) 3859 { 3860 struct run_softc *sc = ic->ic_ifp->if_softc; 3861 uint32_t tmp; 3862 3863 RUN_LOCK(sc); 3864 3865 /* abort TSF synchronization */ 3866 run_read(sc, RT2860_BCN_TIME_CFG, &tmp); 3867 run_write(sc, RT2860_BCN_TIME_CFG, 3868 tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | 3869 RT2860_TBTT_TIMER_EN)); 3870 run_set_bssid(sc, sc->sc_ifp->if_broadcastaddr); 3871 3872 RUN_UNLOCK(sc); 3873 3874 return; 3875 } 3876 3877 static void 3878 run_scan_end(struct ieee80211com *ic) 3879 { 3880 struct run_softc *sc = ic->ic_ifp->if_softc; 3881 3882 RUN_LOCK(sc); 3883 3884 run_enable_tsf_sync(sc); 3885 /* XXX keep local copy */ 3886 run_set_bssid(sc, sc->sc_bssid); 3887 3888 RUN_UNLOCK(sc); 3889 3890 return; 3891 } 3892 3893 /* 3894 * Could be called from ieee80211_node_timeout() 3895 * (non-sleepable thread) 3896 */ 3897 static void 3898 run_update_beacon(struct ieee80211vap *vap, int item) 3899 { 3900 struct ieee80211com *ic = vap->iv_ic; 3901 struct run_softc *sc = ic->ic_ifp->if_softc; 3902 uint32_t i; 3903 3904 i = RUN_CMDQ_GET(&sc->cmdq_store); 3905 DPRINTF("cmdq_store=%d\n", i); 3906 sc->cmdq[i].func = run_update_beacon_cb; 3907 sc->cmdq[i].arg0 = vap; 3908 ieee80211_runtask(ic, &sc->cmdq_task); 3909 3910 return; 3911 } 3912 3913 static void 3914 run_update_beacon_cb(void *arg) 3915 { 3916 struct ieee80211vap *vap = arg; 3917 struct ieee80211com *ic = vap->iv_ic; 3918 struct run_softc *sc = ic->ic_ifp->if_softc; 3919 struct rt2860_txwi txwi; 3920 struct mbuf *m; 3921 uint8_t ridx; 3922 3923 if (vap->iv_bss->ni_chan == IEEE80211_CHAN_ANYC) 3924 return; 3925 3926 if ((m = ieee80211_beacon_alloc(vap->iv_bss, &RUN_VAP(vap)->bo)) == NULL) 3927 return; 3928 3929 memset(&txwi, 0, sizeof txwi); 3930 txwi.wcid = 0xff; 3931 txwi.len = htole16(m->m_pkthdr.len); 3932 /* send beacons at the lowest available rate */ 3933 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? 3934 RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1; 3935 txwi.phy = htole16(rt2860_rates[ridx].mcs); 3936 if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM) 3937 txwi.phy |= htole16(RT2860_PHY_OFDM); 3938 txwi.txop = RT2860_TX_TXOP_HT; 3939 txwi.flags = RT2860_TX_TS; 3940 txwi.xflags = RT2860_TX_NSEQ; 3941 3942 run_write_region_1(sc, RT2860_BCN_BASE(RUN_VAP(vap)->rvp_id), 3943 (uint8_t *)&txwi, sizeof txwi); 3944 run_write_region_1(sc, RT2860_BCN_BASE(RUN_VAP(vap)->rvp_id) + sizeof txwi, 3945 mtod(m, uint8_t *), (m->m_pkthdr.len + 1) & ~1); /* roundup len */ 3946 3947 m_freem(m); 3948 3949 return; 3950 } 3951 3952 static void 3953 run_updateprot(struct ieee80211com *ic) 3954 { 3955 struct run_softc *sc = ic->ic_ifp->if_softc; 3956 uint32_t tmp; 3957 3958 tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL; 3959 /* setup protection frame rate (MCS code) */ 3960 tmp |= (ic->ic_curmode == IEEE80211_MODE_11A) ? 3961 rt2860_rates[RT2860_RIDX_OFDM6].mcs : 3962 rt2860_rates[RT2860_RIDX_CCK11].mcs; 3963 3964 /* CCK frames don't require protection */ 3965 run_write(sc, RT2860_CCK_PROT_CFG, tmp); 3966 if (ic->ic_flags & IEEE80211_F_USEPROT) { 3967 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 3968 tmp |= RT2860_PROT_CTRL_RTS_CTS; 3969 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 3970 tmp |= RT2860_PROT_CTRL_CTS; 3971 } 3972 run_write(sc, RT2860_OFDM_PROT_CFG, tmp); 3973 } 3974 3975 static void 3976 run_usb_timeout_cb(void *arg) 3977 { 3978 struct ieee80211vap *vap = arg; 3979 struct run_softc *sc = vap->iv_ic->ic_ifp->if_softc; 3980 3981 RUN_LOCK_ASSERT(sc, MA_OWNED); 3982 3983 if(vap->iv_state == IEEE80211_S_RUN && 3984 vap->iv_opmode != IEEE80211_M_STA) 3985 run_reset_livelock(sc); 3986 else if (vap->iv_state == IEEE80211_S_SCAN) { 3987 DPRINTF("timeout caused by scan\n"); 3988 /* cancel bgscan */ 3989 ieee80211_cancel_scan(vap); 3990 } else 3991 DPRINTF("timeout by unknown cause\n"); 3992 } 3993 3994 static void 3995 run_reset_livelock(struct run_softc *sc) 3996 { 3997 uint32_t tmp; 3998 3999 RUN_LOCK_ASSERT(sc, MA_OWNED); 4000 4001 /* 4002 * In IBSS or HostAP modes (when the hardware sends beacons), the MAC 4003 * can run into a livelock and start sending CTS-to-self frames like 4004 * crazy if protection is enabled. Reset MAC/BBP for a while 4005 */ 4006 run_read(sc, RT2860_DEBUG, &tmp); 4007 DPRINTFN(3, "debug reg %08x\n", tmp); 4008 if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) { 4009 DPRINTF("CTS-to-self livelock detected\n"); 4010 run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST); 4011 run_delay(sc, 1); 4012 run_write(sc, RT2860_MAC_SYS_CTRL, 4013 RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); 4014 } 4015 } 4016 4017 static void 4018 run_update_promisc_locked(struct ifnet *ifp) 4019 { 4020 struct run_softc *sc = ifp->if_softc; 4021 uint32_t tmp; 4022 4023 run_read(sc, RT2860_RX_FILTR_CFG, &tmp); 4024 4025 tmp |= RT2860_DROP_UC_NOME; 4026 if (ifp->if_flags & IFF_PROMISC) 4027 tmp &= ~RT2860_DROP_UC_NOME; 4028 4029 run_write(sc, RT2860_RX_FILTR_CFG, tmp); 4030 4031 DPRINTF("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 4032 "entering" : "leaving"); 4033 } 4034 4035 static void 4036 run_update_promisc(struct ifnet *ifp) 4037 { 4038 struct run_softc *sc = ifp->if_softc; 4039 4040 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 4041 return; 4042 4043 RUN_LOCK(sc); 4044 run_update_promisc_locked(ifp); 4045 RUN_UNLOCK(sc); 4046 } 4047 4048 static void 4049 run_enable_tsf_sync(struct run_softc *sc) 4050 { 4051 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4052 struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); 4053 uint32_t tmp; 4054 4055 DPRINTF("rvp_id=%d ic_opmode=%d\n", RUN_VAP(vap)->rvp_id, ic->ic_opmode); 4056 4057 run_read(sc, RT2860_BCN_TIME_CFG, &tmp); 4058 tmp &= ~0x1fffff; 4059 tmp |= vap->iv_bss->ni_intval * 16; 4060 tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN; 4061 4062 if (ic->ic_opmode == IEEE80211_M_STA) { 4063 /* 4064 * Local TSF is always updated with remote TSF on beacon 4065 * reception. 4066 */ 4067 tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT; 4068 } else if (ic->ic_opmode == IEEE80211_M_IBSS) { 4069 tmp |= RT2860_BCN_TX_EN; 4070 /* 4071 * Local TSF is updated with remote TSF on beacon reception 4072 * only if the remote TSF is greater than local TSF. 4073 */ 4074 tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT; 4075 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP || 4076 ic->ic_opmode == IEEE80211_M_MBSS) { 4077 tmp |= RT2860_BCN_TX_EN; 4078 /* SYNC with nobody */ 4079 tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT; 4080 } else { 4081 DPRINTF("Enabling TSF failed. undefined opmode\n"); 4082 return; 4083 } 4084 4085 run_write(sc, RT2860_BCN_TIME_CFG, tmp); 4086 } 4087 4088 static void 4089 run_enable_mrr(struct run_softc *sc) 4090 { 4091 #define CCK(mcs) (mcs) 4092 #define OFDM(mcs) (1 << 3 | (mcs)) 4093 run_write(sc, RT2860_LG_FBK_CFG0, 4094 OFDM(6) << 28 | /* 54->48 */ 4095 OFDM(5) << 24 | /* 48->36 */ 4096 OFDM(4) << 20 | /* 36->24 */ 4097 OFDM(3) << 16 | /* 24->18 */ 4098 OFDM(2) << 12 | /* 18->12 */ 4099 OFDM(1) << 8 | /* 12-> 9 */ 4100 OFDM(0) << 4 | /* 9-> 6 */ 4101 OFDM(0)); /* 6-> 6 */ 4102 4103 run_write(sc, RT2860_LG_FBK_CFG1, 4104 CCK(2) << 12 | /* 11->5.5 */ 4105 CCK(1) << 8 | /* 5.5-> 2 */ 4106 CCK(0) << 4 | /* 2-> 1 */ 4107 CCK(0)); /* 1-> 1 */ 4108 #undef OFDM 4109 #undef CCK 4110 } 4111 4112 static void 4113 run_set_txpreamble(struct run_softc *sc) 4114 { 4115 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4116 uint32_t tmp; 4117 4118 run_read(sc, RT2860_AUTO_RSP_CFG, &tmp); 4119 if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) 4120 tmp |= RT2860_CCK_SHORT_EN; 4121 else 4122 tmp &= ~RT2860_CCK_SHORT_EN; 4123 run_write(sc, RT2860_AUTO_RSP_CFG, tmp); 4124 } 4125 4126 static void 4127 run_set_basicrates(struct run_softc *sc) 4128 { 4129 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4130 4131 /* set basic rates mask */ 4132 if (ic->ic_curmode == IEEE80211_MODE_11B) 4133 run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x003); 4134 else if (ic->ic_curmode == IEEE80211_MODE_11A) 4135 run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x150); 4136 else /* 11g */ 4137 run_write(sc, RT2860_LEGACY_BASIC_RATE, 0x15f); 4138 } 4139 4140 static void 4141 run_set_leds(struct run_softc *sc, uint16_t which) 4142 { 4143 (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LEDS, 4144 which | (sc->leds & 0x7f)); 4145 } 4146 4147 static void 4148 run_set_bssid(struct run_softc *sc, const uint8_t *bssid) 4149 { 4150 run_write(sc, RT2860_MAC_BSSID_DW0, 4151 bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24); 4152 run_write(sc, RT2860_MAC_BSSID_DW1, 4153 bssid[4] | bssid[5] << 8); 4154 } 4155 4156 static void 4157 run_set_macaddr(struct run_softc *sc, const uint8_t *addr) 4158 { 4159 run_write(sc, RT2860_MAC_ADDR_DW0, 4160 addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24); 4161 run_write(sc, RT2860_MAC_ADDR_DW1, 4162 addr[4] | addr[5] << 8 | 0xff << 16); 4163 } 4164 4165 /* ARGSUSED */ 4166 static void 4167 run_updateslot(struct ifnet *ifp) 4168 { 4169 struct run_softc *sc = ifp->if_softc; 4170 struct ieee80211com *ic = ifp->if_l2com; 4171 uint32_t tmp; 4172 4173 run_read(sc, RT2860_BKOFF_SLOT_CFG, &tmp); 4174 tmp &= ~0xff; 4175 tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 4176 run_write(sc, RT2860_BKOFF_SLOT_CFG, tmp); 4177 } 4178 4179 static void 4180 run_update_mcast(struct ifnet *ifp) 4181 { 4182 /* h/w filter supports getting everything or nothing */ 4183 ifp->if_flags |= IFF_ALLMULTI; 4184 } 4185 4186 static int8_t 4187 run_rssi2dbm(struct run_softc *sc, uint8_t rssi, uint8_t rxchain) 4188 { 4189 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4190 struct ieee80211_channel *c = ic->ic_curchan; 4191 int delta; 4192 4193 if (IEEE80211_IS_CHAN_5GHZ(c)) { 4194 uint32_t chan = ieee80211_chan2ieee(ic, c); 4195 delta = sc->rssi_5ghz[rxchain]; 4196 4197 /* determine channel group */ 4198 if (chan <= 64) 4199 delta -= sc->lna[1]; 4200 else if (chan <= 128) 4201 delta -= sc->lna[2]; 4202 else 4203 delta -= sc->lna[3]; 4204 } else 4205 delta = sc->rssi_2ghz[rxchain] - sc->lna[0]; 4206 4207 return (-12 - delta - rssi); 4208 } 4209 4210 static int 4211 run_bbp_init(struct run_softc *sc) 4212 { 4213 int i, error, ntries; 4214 uint8_t bbp0; 4215 4216 /* wait for BBP to wake up */ 4217 for (ntries = 0; ntries < 20; ntries++) { 4218 if ((error = run_bbp_read(sc, 0, &bbp0)) != 0) 4219 return error; 4220 if (bbp0 != 0 && bbp0 != 0xff) 4221 break; 4222 } 4223 if (ntries == 20) 4224 return (ETIMEDOUT); 4225 4226 /* initialize BBP registers to default values */ 4227 for (i = 0; i < nitems(rt2860_def_bbp); i++) { 4228 run_bbp_write(sc, rt2860_def_bbp[i].reg, 4229 rt2860_def_bbp[i].val); 4230 } 4231 4232 /* fix BBP84 for RT2860E */ 4233 if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101) 4234 run_bbp_write(sc, 84, 0x19); 4235 4236 if (sc->mac_ver >= 0x3070) { 4237 run_bbp_write(sc, 79, 0x13); 4238 run_bbp_write(sc, 80, 0x05); 4239 run_bbp_write(sc, 81, 0x33); 4240 } else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) { 4241 run_bbp_write(sc, 69, 0x16); 4242 run_bbp_write(sc, 73, 0x12); 4243 } 4244 return (0); 4245 } 4246 4247 static int 4248 run_rt3070_rf_init(struct run_softc *sc) 4249 { 4250 uint32_t tmp; 4251 uint8_t rf, target, bbp4; 4252 int i; 4253 4254 run_rt3070_rf_read(sc, 30, &rf); 4255 /* toggle RF R30 bit 7 */ 4256 run_rt3070_rf_write(sc, 30, rf | 0x80); 4257 run_delay(sc, 10); 4258 run_rt3070_rf_write(sc, 30, rf & ~0x80); 4259 4260 /* initialize RF registers to default value */ 4261 if (sc->mac_ver == 0x3572) { 4262 for (i = 0; i < nitems(rt3572_def_rf); i++) { 4263 run_rt3070_rf_write(sc, rt3572_def_rf[i].reg, 4264 rt3572_def_rf[i].val); 4265 } 4266 } else { 4267 for (i = 0; i < nitems(rt3070_def_rf); i++) { 4268 run_rt3070_rf_write(sc, rt3070_def_rf[i].reg, 4269 rt3070_def_rf[i].val); 4270 } 4271 } 4272 4273 if (sc->mac_ver == 0x3070) { 4274 /* change voltage from 1.2V to 1.35V for RT3070 */ 4275 run_read(sc, RT3070_LDO_CFG0, &tmp); 4276 tmp = (tmp & ~0x0f000000) | 0x0d000000; 4277 run_write(sc, RT3070_LDO_CFG0, tmp); 4278 4279 } else if (sc->mac_ver == 0x3071) { 4280 run_rt3070_rf_read(sc, 6, &rf); 4281 run_rt3070_rf_write(sc, 6, rf | 0x40); 4282 run_rt3070_rf_write(sc, 31, 0x14); 4283 4284 run_read(sc, RT3070_LDO_CFG0, &tmp); 4285 tmp &= ~0x1f000000; 4286 if (sc->mac_rev < 0x0211) 4287 tmp |= 0x0d000000; /* 1.3V */ 4288 else 4289 tmp |= 0x01000000; /* 1.2V */ 4290 run_write(sc, RT3070_LDO_CFG0, tmp); 4291 4292 /* patch LNA_PE_G1 */ 4293 run_read(sc, RT3070_GPIO_SWITCH, &tmp); 4294 run_write(sc, RT3070_GPIO_SWITCH, tmp & ~0x20); 4295 4296 } else if (sc->mac_ver == 0x3572) { 4297 run_rt3070_rf_read(sc, 6, &rf); 4298 run_rt3070_rf_write(sc, 6, rf | 0x40); 4299 4300 /* increase voltage from 1.2V to 1.35V */ 4301 run_read(sc, RT3070_LDO_CFG0, &tmp); 4302 tmp = (tmp & ~0x1f000000) | 0x0d000000; 4303 run_write(sc, RT3070_LDO_CFG0, tmp); 4304 4305 if (sc->mac_rev < 0x0211 || !sc->patch_dac) { 4306 run_delay(sc, 1); /* wait for 1msec */ 4307 /* decrease voltage back to 1.2V */ 4308 tmp = (tmp & ~0x1f000000) | 0x01000000; 4309 run_write(sc, RT3070_LDO_CFG0, tmp); 4310 } 4311 } 4312 4313 /* select 20MHz bandwidth */ 4314 run_rt3070_rf_read(sc, 31, &rf); 4315 run_rt3070_rf_write(sc, 31, rf & ~0x20); 4316 4317 /* calibrate filter for 20MHz bandwidth */ 4318 sc->rf24_20mhz = 0x1f; /* default value */ 4319 target = (sc->mac_ver < 0x3071) ? 0x16 : 0x13; 4320 run_rt3070_filter_calib(sc, 0x07, target, &sc->rf24_20mhz); 4321 4322 /* select 40MHz bandwidth */ 4323 run_bbp_read(sc, 4, &bbp4); 4324 run_bbp_write(sc, 4, (bbp4 & ~0x08) | 0x10); 4325 run_rt3070_rf_read(sc, 31, &rf); 4326 run_rt3070_rf_write(sc, 31, rf | 0x20); 4327 4328 /* calibrate filter for 40MHz bandwidth */ 4329 sc->rf24_40mhz = 0x2f; /* default value */ 4330 target = (sc->mac_ver < 0x3071) ? 0x19 : 0x15; 4331 run_rt3070_filter_calib(sc, 0x27, target, &sc->rf24_40mhz); 4332 4333 /* go back to 20MHz bandwidth */ 4334 run_bbp_read(sc, 4, &bbp4); 4335 run_bbp_write(sc, 4, bbp4 & ~0x18); 4336 4337 if (sc->mac_ver == 0x3572) { 4338 /* save default BBP registers 25 and 26 values */ 4339 run_bbp_read(sc, 25, &sc->bbp25); 4340 run_bbp_read(sc, 26, &sc->bbp26); 4341 } else if (sc->mac_rev < 0x0211) 4342 run_rt3070_rf_write(sc, 27, 0x03); 4343 4344 run_read(sc, RT3070_OPT_14, &tmp); 4345 run_write(sc, RT3070_OPT_14, tmp | 1); 4346 4347 if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) { 4348 run_rt3070_rf_read(sc, 17, &rf); 4349 rf &= ~RT3070_TX_LO1; 4350 if ((sc->mac_ver == 0x3070 || 4351 (sc->mac_ver == 0x3071 && sc->mac_rev >= 0x0211)) && 4352 !sc->ext_2ghz_lna) 4353 rf |= 0x20; /* fix for long range Rx issue */ 4354 if (sc->txmixgain_2ghz >= 1) 4355 rf = (rf & ~0x7) | sc->txmixgain_2ghz; 4356 run_rt3070_rf_write(sc, 17, rf); 4357 } 4358 4359 if (sc->mac_rev == 0x3071) { 4360 run_rt3070_rf_read(sc, 1, &rf); 4361 rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD); 4362 rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD; 4363 run_rt3070_rf_write(sc, 1, rf); 4364 4365 run_rt3070_rf_read(sc, 15, &rf); 4366 run_rt3070_rf_write(sc, 15, rf & ~RT3070_TX_LO2); 4367 4368 run_rt3070_rf_read(sc, 20, &rf); 4369 run_rt3070_rf_write(sc, 20, rf & ~RT3070_RX_LO1); 4370 4371 run_rt3070_rf_read(sc, 21, &rf); 4372 run_rt3070_rf_write(sc, 21, rf & ~RT3070_RX_LO2); 4373 } 4374 4375 if (sc->mac_ver == 0x3070 || sc->mac_ver == 0x3071) { 4376 /* fix Tx to Rx IQ glitch by raising RF voltage */ 4377 run_rt3070_rf_read(sc, 27, &rf); 4378 rf &= ~0x77; 4379 if (sc->mac_rev < 0x0211) 4380 rf |= 0x03; 4381 run_rt3070_rf_write(sc, 27, rf); 4382 } 4383 return (0); 4384 } 4385 4386 static int 4387 run_rt3070_filter_calib(struct run_softc *sc, uint8_t init, uint8_t target, 4388 uint8_t *val) 4389 { 4390 uint8_t rf22, rf24; 4391 uint8_t bbp55_pb, bbp55_sb, delta; 4392 int ntries; 4393 4394 /* program filter */ 4395 run_rt3070_rf_read(sc, 24, &rf24); 4396 rf24 = (rf24 & 0xc0) | init; /* initial filter value */ 4397 run_rt3070_rf_write(sc, 24, rf24); 4398 4399 /* enable baseband loopback mode */ 4400 run_rt3070_rf_read(sc, 22, &rf22); 4401 run_rt3070_rf_write(sc, 22, rf22 | 0x01); 4402 4403 /* set power and frequency of passband test tone */ 4404 run_bbp_write(sc, 24, 0x00); 4405 for (ntries = 0; ntries < 100; ntries++) { 4406 /* transmit test tone */ 4407 run_bbp_write(sc, 25, 0x90); 4408 run_delay(sc, 10); 4409 /* read received power */ 4410 run_bbp_read(sc, 55, &bbp55_pb); 4411 if (bbp55_pb != 0) 4412 break; 4413 } 4414 if (ntries == 100) 4415 return ETIMEDOUT; 4416 4417 /* set power and frequency of stopband test tone */ 4418 run_bbp_write(sc, 24, 0x06); 4419 for (ntries = 0; ntries < 100; ntries++) { 4420 /* transmit test tone */ 4421 run_bbp_write(sc, 25, 0x90); 4422 run_delay(sc, 10); 4423 /* read received power */ 4424 run_bbp_read(sc, 55, &bbp55_sb); 4425 4426 delta = bbp55_pb - bbp55_sb; 4427 if (delta > target) 4428 break; 4429 4430 /* reprogram filter */ 4431 rf24++; 4432 run_rt3070_rf_write(sc, 24, rf24); 4433 } 4434 if (ntries < 100) { 4435 if (rf24 != init) 4436 rf24--; /* backtrack */ 4437 *val = rf24; 4438 run_rt3070_rf_write(sc, 24, rf24); 4439 } 4440 4441 /* restore initial state */ 4442 run_bbp_write(sc, 24, 0x00); 4443 4444 /* disable baseband loopback mode */ 4445 run_rt3070_rf_read(sc, 22, &rf22); 4446 run_rt3070_rf_write(sc, 22, rf22 & ~0x01); 4447 4448 return (0); 4449 } 4450 4451 static void 4452 run_rt3070_rf_setup(struct run_softc *sc) 4453 { 4454 uint8_t bbp, rf; 4455 int i; 4456 4457 if (sc->mac_ver == 0x3572) { 4458 /* enable DC filter */ 4459 if (sc->mac_rev >= 0x0201) 4460 run_bbp_write(sc, 103, 0xc0); 4461 4462 run_bbp_read(sc, 138, &bbp); 4463 if (sc->ntxchains == 1) 4464 bbp |= 0x20; /* turn off DAC1 */ 4465 if (sc->nrxchains == 1) 4466 bbp &= ~0x02; /* turn off ADC1 */ 4467 run_bbp_write(sc, 138, bbp); 4468 4469 if (sc->mac_rev >= 0x0211) { 4470 /* improve power consumption */ 4471 run_bbp_read(sc, 31, &bbp); 4472 run_bbp_write(sc, 31, bbp & ~0x03); 4473 } 4474 4475 run_rt3070_rf_read(sc, 16, &rf); 4476 rf = (rf & ~0x07) | sc->txmixgain_2ghz; 4477 run_rt3070_rf_write(sc, 16, rf); 4478 4479 } else if (sc->mac_ver == 0x3071) { 4480 /* enable DC filter */ 4481 if (sc->mac_rev >= 0x0201) 4482 run_bbp_write(sc, 103, 0xc0); 4483 4484 run_bbp_read(sc, 138, &bbp); 4485 if (sc->ntxchains == 1) 4486 bbp |= 0x20; /* turn off DAC1 */ 4487 if (sc->nrxchains == 1) 4488 bbp &= ~0x02; /* turn off ADC1 */ 4489 run_bbp_write(sc, 138, bbp); 4490 4491 if (sc->mac_rev >= 0x0211) { 4492 /* improve power consumption */ 4493 run_bbp_read(sc, 31, &bbp); 4494 run_bbp_write(sc, 31, bbp & ~0x03); 4495 } 4496 4497 run_write(sc, RT2860_TX_SW_CFG1, 0); 4498 if (sc->mac_rev < 0x0211) { 4499 run_write(sc, RT2860_TX_SW_CFG2, 4500 sc->patch_dac ? 0x2c : 0x0f); 4501 } else 4502 run_write(sc, RT2860_TX_SW_CFG2, 0); 4503 4504 } else if (sc->mac_ver == 0x3070) { 4505 if (sc->mac_rev >= 0x0201) { 4506 /* enable DC filter */ 4507 run_bbp_write(sc, 103, 0xc0); 4508 4509 /* improve power consumption */ 4510 run_bbp_read(sc, 31, &bbp); 4511 run_bbp_write(sc, 31, bbp & ~0x03); 4512 } 4513 4514 if (sc->mac_rev < 0x0211) { 4515 run_write(sc, RT2860_TX_SW_CFG1, 0); 4516 run_write(sc, RT2860_TX_SW_CFG2, 0x2c); 4517 } else 4518 run_write(sc, RT2860_TX_SW_CFG2, 0); 4519 } 4520 4521 /* initialize RF registers from ROM for >=RT3071*/ 4522 if (sc->mac_ver >= 0x3071) { 4523 for (i = 0; i < 10; i++) { 4524 if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff) 4525 continue; 4526 run_rt3070_rf_write(sc, sc->rf[i].reg, sc->rf[i].val); 4527 } 4528 } 4529 } 4530 4531 static int 4532 run_txrx_enable(struct run_softc *sc) 4533 { 4534 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4535 uint32_t tmp; 4536 int error, ntries; 4537 4538 run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN); 4539 for (ntries = 0; ntries < 200; ntries++) { 4540 if ((error = run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp)) != 0) 4541 return error; 4542 if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) 4543 break; 4544 run_delay(sc, 50); 4545 } 4546 if (ntries == 200) 4547 return ETIMEDOUT; 4548 4549 run_delay(sc, 50); 4550 4551 tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN | RT2860_TX_WB_DDONE; 4552 run_write(sc, RT2860_WPDMA_GLO_CFG, tmp); 4553 4554 /* enable Rx bulk aggregation (set timeout and limit) */ 4555 tmp = RT2860_USB_TX_EN | RT2860_USB_RX_EN | RT2860_USB_RX_AGG_EN | 4556 RT2860_USB_RX_AGG_TO(128) | RT2860_USB_RX_AGG_LMT(2); 4557 run_write(sc, RT2860_USB_DMA_CFG, tmp); 4558 4559 /* set Rx filter */ 4560 tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR; 4561 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 4562 tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL | 4563 RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK | 4564 RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV | 4565 RT2860_DROP_CFACK | RT2860_DROP_CFEND; 4566 if (ic->ic_opmode == IEEE80211_M_STA) 4567 tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL; 4568 } 4569 run_write(sc, RT2860_RX_FILTR_CFG, tmp); 4570 4571 run_write(sc, RT2860_MAC_SYS_CTRL, 4572 RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); 4573 4574 return (0); 4575 } 4576 4577 static void 4578 run_init_locked(struct run_softc *sc) 4579 { 4580 struct ifnet *ifp = sc->sc_ifp; 4581 struct ieee80211com *ic = ifp->if_l2com; 4582 uint32_t tmp; 4583 uint8_t bbp1, bbp3; 4584 int i; 4585 int ridx; 4586 int ntries; 4587 4588 if (ic->ic_nrunning > 1) 4589 return; 4590 4591 run_stop(sc); 4592 4593 for (ntries = 0; ntries < 100; ntries++) { 4594 if (run_read(sc, RT2860_ASIC_VER_ID, &tmp) != 0) 4595 goto fail; 4596 if (tmp != 0 && tmp != 0xffffffff) 4597 break; 4598 run_delay(sc, 10); 4599 } 4600 if (ntries == 100) 4601 goto fail; 4602 4603 for (i = 0; i != RUN_EP_QUEUES; i++) 4604 run_setup_tx_list(sc, &sc->sc_epq[i]); 4605 4606 run_set_macaddr(sc, IF_LLADDR(ifp)); 4607 4608 for (ntries = 0; ntries < 100; ntries++) { 4609 if (run_read(sc, RT2860_WPDMA_GLO_CFG, &tmp) != 0) 4610 goto fail; 4611 if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0) 4612 break; 4613 run_delay(sc, 10); 4614 } 4615 if (ntries == 100) { 4616 device_printf(sc->sc_dev, "timeout waiting for DMA engine\n"); 4617 goto fail; 4618 } 4619 tmp &= 0xff0; 4620 tmp |= RT2860_TX_WB_DDONE; 4621 run_write(sc, RT2860_WPDMA_GLO_CFG, tmp); 4622 4623 /* turn off PME_OEN to solve high-current issue */ 4624 run_read(sc, RT2860_SYS_CTRL, &tmp); 4625 run_write(sc, RT2860_SYS_CTRL, tmp & ~RT2860_PME_OEN); 4626 4627 run_write(sc, RT2860_MAC_SYS_CTRL, 4628 RT2860_BBP_HRST | RT2860_MAC_SRST); 4629 run_write(sc, RT2860_USB_DMA_CFG, 0); 4630 4631 if (run_reset(sc) != 0) { 4632 device_printf(sc->sc_dev, "could not reset chipset\n"); 4633 goto fail; 4634 } 4635 4636 run_write(sc, RT2860_MAC_SYS_CTRL, 0); 4637 4638 /* init Tx power for all Tx rates (from EEPROM) */ 4639 for (ridx = 0; ridx < 5; ridx++) { 4640 if (sc->txpow20mhz[ridx] == 0xffffffff) 4641 continue; 4642 run_write(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]); 4643 } 4644 4645 for (i = 0; i < nitems(rt2870_def_mac); i++) 4646 run_write(sc, rt2870_def_mac[i].reg, rt2870_def_mac[i].val); 4647 run_write(sc, RT2860_WMM_AIFSN_CFG, 0x00002273); 4648 run_write(sc, RT2860_WMM_CWMIN_CFG, 0x00002344); 4649 run_write(sc, RT2860_WMM_CWMAX_CFG, 0x000034aa); 4650 4651 if (sc->mac_ver >= 0x3070) { 4652 /* set delay of PA_PE assertion to 1us (unit of 0.25us) */ 4653 run_write(sc, RT2860_TX_SW_CFG0, 4654 4 << RT2860_DLY_PAPE_EN_SHIFT); 4655 } 4656 4657 /* wait while MAC is busy */ 4658 for (ntries = 0; ntries < 100; ntries++) { 4659 if (run_read(sc, RT2860_MAC_STATUS_REG, &tmp) != 0) 4660 goto fail; 4661 if (!(tmp & (RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY))) 4662 break; 4663 run_delay(sc, 10); 4664 } 4665 if (ntries == 100) 4666 goto fail; 4667 4668 /* clear Host to MCU mailbox */ 4669 run_write(sc, RT2860_H2M_BBPAGENT, 0); 4670 run_write(sc, RT2860_H2M_MAILBOX, 0); 4671 run_delay(sc, 10); 4672 4673 if (run_bbp_init(sc) != 0) { 4674 device_printf(sc->sc_dev, "could not initialize BBP\n"); 4675 goto fail; 4676 } 4677 4678 /* abort TSF synchronization */ 4679 run_read(sc, RT2860_BCN_TIME_CFG, &tmp); 4680 tmp &= ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN | 4681 RT2860_TBTT_TIMER_EN); 4682 run_write(sc, RT2860_BCN_TIME_CFG, tmp); 4683 4684 /* clear RX WCID search table */ 4685 run_set_region_4(sc, RT2860_WCID_ENTRY(0), 0, 512); 4686 /* clear WCID attribute table */ 4687 run_set_region_4(sc, RT2860_WCID_ATTR(0), 0, 8 * 32); 4688 4689 /* hostapd sets a key before init. So, don't clear it. */ 4690 if (sc->cmdq_key_set != RUN_CMDQ_GO) { 4691 /* clear shared key table */ 4692 run_set_region_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32); 4693 /* clear shared key mode */ 4694 run_set_region_4(sc, RT2860_SKEY_MODE_0_7, 0, 4); 4695 } 4696 4697 run_read(sc, RT2860_US_CYC_CNT, &tmp); 4698 tmp = (tmp & ~0xff) | 0x1e; 4699 run_write(sc, RT2860_US_CYC_CNT, tmp); 4700 4701 if (sc->mac_rev != 0x0101) 4702 run_write(sc, RT2860_TXOP_CTRL_CFG, 0x0000583f); 4703 4704 run_write(sc, RT2860_WMM_TXOP0_CFG, 0); 4705 run_write(sc, RT2860_WMM_TXOP1_CFG, 48 << 16 | 96); 4706 4707 /* write vendor-specific BBP values (from EEPROM) */ 4708 for (i = 0; i < 10; i++) { 4709 if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff) 4710 continue; 4711 run_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val); 4712 } 4713 4714 /* select Main antenna for 1T1R devices */ 4715 if (sc->rf_rev == RT3070_RF_3020) 4716 run_set_rx_antenna(sc, 0); 4717 4718 /* send LEDs operating mode to microcontroller */ 4719 (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0]); 4720 (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1]); 4721 (void)run_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2]); 4722 4723 if (sc->mac_ver >= 0x3070) 4724 run_rt3070_rf_init(sc); 4725 4726 /* disable non-existing Rx chains */ 4727 run_bbp_read(sc, 3, &bbp3); 4728 bbp3 &= ~(1 << 3 | 1 << 4); 4729 if (sc->nrxchains == 2) 4730 bbp3 |= 1 << 3; 4731 else if (sc->nrxchains == 3) 4732 bbp3 |= 1 << 4; 4733 run_bbp_write(sc, 3, bbp3); 4734 4735 /* disable non-existing Tx chains */ 4736 run_bbp_read(sc, 1, &bbp1); 4737 if (sc->ntxchains == 1) 4738 bbp1 &= ~(1 << 3 | 1 << 4); 4739 run_bbp_write(sc, 1, bbp1); 4740 4741 if (sc->mac_ver >= 0x3070) 4742 run_rt3070_rf_setup(sc); 4743 4744 /* select default channel */ 4745 run_set_chan(sc, ic->ic_curchan); 4746 4747 /* setup initial protection mode */ 4748 run_updateprot(ic); 4749 4750 /* turn radio LED on */ 4751 run_set_leds(sc, RT2860_LED_RADIO); 4752 4753 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4754 ifp->if_drv_flags |= IFF_DRV_RUNNING; 4755 sc->cmdq_run = RUN_CMDQ_GO; 4756 4757 for (i = 0; i != RUN_N_XFER; i++) 4758 usbd_xfer_set_stall(sc->sc_xfer[i]); 4759 4760 usbd_transfer_start(sc->sc_xfer[RUN_BULK_RX]); 4761 4762 if (run_txrx_enable(sc) != 0) 4763 goto fail; 4764 4765 return; 4766 4767 fail: 4768 run_stop(sc); 4769 } 4770 4771 static void 4772 run_init(void *arg) 4773 { 4774 struct run_softc *sc = arg; 4775 struct ifnet *ifp = sc->sc_ifp; 4776 struct ieee80211com *ic = ifp->if_l2com; 4777 4778 RUN_LOCK(sc); 4779 run_init_locked(sc); 4780 RUN_UNLOCK(sc); 4781 4782 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 4783 ieee80211_start_all(ic); 4784 } 4785 4786 static void 4787 run_stop(void *arg) 4788 { 4789 struct run_softc *sc = (struct run_softc *)arg; 4790 struct ifnet *ifp = sc->sc_ifp; 4791 uint32_t tmp; 4792 int i; 4793 int ntries; 4794 4795 RUN_LOCK_ASSERT(sc, MA_OWNED); 4796 4797 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 4798 run_set_leds(sc, 0); /* turn all LEDs off */ 4799 4800 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 4801 4802 sc->ratectl_run = RUN_RATECTL_OFF; 4803 sc->cmdq_run = sc->cmdq_key_set; 4804 4805 RUN_UNLOCK(sc); 4806 4807 for(i = 0; i < RUN_N_XFER; i++) 4808 usbd_transfer_drain(sc->sc_xfer[i]); 4809 4810 RUN_LOCK(sc); 4811 4812 if (sc->rx_m != NULL) { 4813 m_free(sc->rx_m); 4814 sc->rx_m = NULL; 4815 } 4816 4817 /* disable Tx/Rx */ 4818 run_read(sc, RT2860_MAC_SYS_CTRL, &tmp); 4819 tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN); 4820 run_write(sc, RT2860_MAC_SYS_CTRL, tmp); 4821 4822 /* wait for pending Tx to complete */ 4823 for (ntries = 0; ntries < 100; ntries++) { 4824 if (run_read(sc, RT2860_TXRXQ_PCNT, &tmp) != 0) { 4825 DPRINTF("Cannot read Tx queue count\n"); 4826 break; 4827 } 4828 if ((tmp & RT2860_TX2Q_PCNT_MASK) == 0) { 4829 DPRINTF("All Tx cleared\n"); 4830 break; 4831 } 4832 run_delay(sc, 10); 4833 } 4834 if (ntries >= 100) 4835 DPRINTF("There are still pending Tx\n"); 4836 run_delay(sc, 10); 4837 run_write(sc, RT2860_USB_DMA_CFG, 0); 4838 4839 run_write(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST); 4840 run_write(sc, RT2860_MAC_SYS_CTRL, 0); 4841 4842 for (i = 0; i != RUN_EP_QUEUES; i++) 4843 run_unsetup_tx_list(sc, &sc->sc_epq[i]); 4844 4845 return; 4846 } 4847 4848 static void 4849 run_delay(struct run_softc *sc, unsigned int ms) 4850 { 4851 usb_pause_mtx(mtx_owned(&sc->sc_mtx) ? 4852 &sc->sc_mtx : NULL, USB_MS_TO_TICKS(ms)); 4853 } 4854 4855 static device_method_t run_methods[] = { 4856 /* Device interface */ 4857 DEVMETHOD(device_probe, run_match), 4858 DEVMETHOD(device_attach, run_attach), 4859 DEVMETHOD(device_detach, run_detach), 4860 4861 { 0, 0 } 4862 }; 4863 4864 static driver_t run_driver = { 4865 "run", 4866 run_methods, 4867 sizeof(struct run_softc) 4868 }; 4869 4870 static devclass_t run_devclass; 4871 4872 DRIVER_MODULE(run, uhub, run_driver, run_devclass, NULL, 0); 4873