1 /* 2 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 */ 25 26 /* $FreeBSD$ */ 27 #include "opt_inet.h" 28 #include "opt_inet6.h" 29 30 #include <sys/types.h> 31 #include <sys/module.h> 32 #include <sys/errno.h> 33 #include <sys/param.h> /* defines used in kernel.h */ 34 #include <sys/poll.h> /* POLLIN, POLLOUT */ 35 #include <sys/kernel.h> /* types used in module initialization */ 36 #include <sys/conf.h> /* DEV_MODULE_ORDERED */ 37 #include <sys/endian.h> 38 #include <sys/syscallsubr.h> /* kern_ioctl() */ 39 40 #include <sys/rwlock.h> 41 42 #include <vm/vm.h> /* vtophys */ 43 #include <vm/pmap.h> /* vtophys */ 44 #include <vm/vm_param.h> 45 #include <vm/vm_object.h> 46 #include <vm/vm_page.h> 47 #include <vm/vm_pager.h> 48 #include <vm/uma.h> 49 50 51 #include <sys/malloc.h> 52 #include <sys/socket.h> /* sockaddrs */ 53 #include <sys/selinfo.h> 54 #include <sys/kthread.h> /* kthread_add() */ 55 #include <sys/proc.h> /* PROC_LOCK() */ 56 #include <sys/unistd.h> /* RFNOWAIT */ 57 #include <sys/sched.h> /* sched_bind() */ 58 #include <sys/smp.h> /* mp_maxid */ 59 #include <net/if.h> 60 #include <net/if_var.h> 61 #include <net/if_types.h> /* IFT_ETHER */ 62 #include <net/ethernet.h> /* ether_ifdetach */ 63 #include <net/if_dl.h> /* LLADDR */ 64 #include <machine/bus.h> /* bus_dmamap_* */ 65 #include <netinet/in.h> /* in6_cksum_pseudo() */ 66 #include <machine/in_cksum.h> /* in_pseudo(), in_cksum_hdr() */ 67 68 #include <net/netmap.h> 69 #include <dev/netmap/netmap_kern.h> 70 #include <net/netmap_virt.h> 71 #include <dev/netmap/netmap_mem2.h> 72 73 74 /* ======================== FREEBSD-SPECIFIC ROUTINES ================== */ 75 76 void nm_os_selinfo_init(NM_SELINFO_T *si) { 77 struct mtx *m = &si->m; 78 mtx_init(m, "nm_kn_lock", NULL, MTX_DEF); 79 knlist_init_mtx(&si->si.si_note, m); 80 } 81 82 void 83 nm_os_selinfo_uninit(NM_SELINFO_T *si) 84 { 85 /* XXX kqueue(9) needed; these will mirror knlist_init. */ 86 knlist_delete(&si->si.si_note, curthread, 0 /* not locked */ ); 87 knlist_destroy(&si->si.si_note); 88 /* now we don't need the mutex anymore */ 89 mtx_destroy(&si->m); 90 } 91 92 void 93 nm_os_ifnet_lock(void) 94 { 95 IFNET_WLOCK(); 96 } 97 98 void 99 nm_os_ifnet_unlock(void) 100 { 101 IFNET_WUNLOCK(); 102 } 103 104 static int netmap_use_count = 0; 105 106 void 107 nm_os_get_module(void) 108 { 109 netmap_use_count++; 110 } 111 112 void 113 nm_os_put_module(void) 114 { 115 netmap_use_count--; 116 } 117 118 static void 119 netmap_ifnet_arrival_handler(void *arg __unused, struct ifnet *ifp) 120 { 121 netmap_undo_zombie(ifp); 122 } 123 124 static void 125 netmap_ifnet_departure_handler(void *arg __unused, struct ifnet *ifp) 126 { 127 netmap_make_zombie(ifp); 128 } 129 130 static eventhandler_tag nm_ifnet_ah_tag; 131 static eventhandler_tag nm_ifnet_dh_tag; 132 133 int 134 nm_os_ifnet_init(void) 135 { 136 nm_ifnet_ah_tag = 137 EVENTHANDLER_REGISTER(ifnet_arrival_event, 138 netmap_ifnet_arrival_handler, 139 NULL, EVENTHANDLER_PRI_ANY); 140 nm_ifnet_dh_tag = 141 EVENTHANDLER_REGISTER(ifnet_departure_event, 142 netmap_ifnet_departure_handler, 143 NULL, EVENTHANDLER_PRI_ANY); 144 return 0; 145 } 146 147 void 148 nm_os_ifnet_fini(void) 149 { 150 EVENTHANDLER_DEREGISTER(ifnet_arrival_event, 151 nm_ifnet_ah_tag); 152 EVENTHANDLER_DEREGISTER(ifnet_departure_event, 153 nm_ifnet_dh_tag); 154 } 155 156 rawsum_t 157 nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum) 158 { 159 /* TODO XXX please use the FreeBSD implementation for this. */ 160 uint16_t *words = (uint16_t *)data; 161 int nw = len / 2; 162 int i; 163 164 for (i = 0; i < nw; i++) 165 cur_sum += be16toh(words[i]); 166 167 if (len & 1) 168 cur_sum += (data[len-1] << 8); 169 170 return cur_sum; 171 } 172 173 /* Fold a raw checksum: 'cur_sum' is in host byte order, while the 174 * return value is in network byte order. 175 */ 176 uint16_t 177 nm_os_csum_fold(rawsum_t cur_sum) 178 { 179 /* TODO XXX please use the FreeBSD implementation for this. */ 180 while (cur_sum >> 16) 181 cur_sum = (cur_sum & 0xFFFF) + (cur_sum >> 16); 182 183 return htobe16((~cur_sum) & 0xFFFF); 184 } 185 186 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph) 187 { 188 #if 0 189 return in_cksum_hdr((void *)iph); 190 #else 191 return nm_os_csum_fold(nm_os_csum_raw((uint8_t*)iph, sizeof(struct nm_iphdr), 0)); 192 #endif 193 } 194 195 void 196 nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 197 size_t datalen, uint16_t *check) 198 { 199 #ifdef INET 200 uint16_t pseudolen = datalen + iph->protocol; 201 202 /* Compute and insert the pseudo-header cheksum. */ 203 *check = in_pseudo(iph->saddr, iph->daddr, 204 htobe16(pseudolen)); 205 /* Compute the checksum on TCP/UDP header + payload 206 * (includes the pseudo-header). 207 */ 208 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 209 #else 210 static int notsupported = 0; 211 if (!notsupported) { 212 notsupported = 1; 213 D("inet4 segmentation not supported"); 214 } 215 #endif 216 } 217 218 void 219 nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 220 size_t datalen, uint16_t *check) 221 { 222 #ifdef INET6 223 *check = in6_cksum_pseudo((void*)ip6h, datalen, ip6h->nexthdr, 0); 224 *check = nm_os_csum_fold(nm_os_csum_raw(data, datalen, 0)); 225 #else 226 static int notsupported = 0; 227 if (!notsupported) { 228 notsupported = 1; 229 D("inet6 segmentation not supported"); 230 } 231 #endif 232 } 233 234 /* on FreeBSD we send up one packet at a time */ 235 void * 236 nm_os_send_up(struct ifnet *ifp, struct mbuf *m, struct mbuf *prev) 237 { 238 239 NA(ifp)->if_input(ifp, m); 240 return NULL; 241 } 242 243 int 244 nm_os_mbuf_has_offld(struct mbuf *m) 245 { 246 return m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_SCTP | 247 CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | 248 CSUM_SCTP_IPV6 | CSUM_TSO); 249 } 250 251 static void 252 freebsd_generic_rx_handler(struct ifnet *ifp, struct mbuf *m) 253 { 254 struct netmap_generic_adapter *gna = 255 (struct netmap_generic_adapter *)NA(ifp); 256 int stolen = generic_rx_handler(ifp, m); 257 258 if (!stolen) { 259 gna->save_if_input(ifp, m); 260 } 261 } 262 263 /* 264 * Intercept the rx routine in the standard device driver. 265 * Second argument is non-zero to intercept, 0 to restore 266 */ 267 int 268 nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept) 269 { 270 struct netmap_adapter *na = &gna->up.up; 271 struct ifnet *ifp = na->ifp; 272 273 if (intercept) { 274 if (gna->save_if_input) { 275 D("cannot intercept again"); 276 return EINVAL; /* already set */ 277 } 278 gna->save_if_input = ifp->if_input; 279 ifp->if_input = freebsd_generic_rx_handler; 280 } else { 281 if (!gna->save_if_input){ 282 D("cannot restore"); 283 return EINVAL; /* not saved */ 284 } 285 ifp->if_input = gna->save_if_input; 286 gna->save_if_input = NULL; 287 } 288 289 return 0; 290 } 291 292 293 /* 294 * Intercept the packet steering routine in the tx path, 295 * so that we can decide which queue is used for an mbuf. 296 * Second argument is non-zero to intercept, 0 to restore. 297 * On freebsd we just intercept if_transmit. 298 */ 299 int 300 nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept) 301 { 302 struct netmap_adapter *na = &gna->up.up; 303 struct ifnet *ifp = netmap_generic_getifp(gna); 304 305 if (intercept) { 306 na->if_transmit = ifp->if_transmit; 307 ifp->if_transmit = netmap_transmit; 308 } else { 309 ifp->if_transmit = na->if_transmit; 310 } 311 312 return 0; 313 } 314 315 316 /* 317 * Transmit routine used by generic_netmap_txsync(). Returns 0 on success 318 * and non-zero on error (which may be packet drops or other errors). 319 * addr and len identify the netmap buffer, m is the (preallocated) 320 * mbuf to use for transmissions. 321 * 322 * We should add a reference to the mbuf so the m_freem() at the end 323 * of the transmission does not consume resources. 324 * 325 * On FreeBSD, and on multiqueue cards, we can force the queue using 326 * if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 327 * i = m->m_pkthdr.flowid % adapter->num_queues; 328 * else 329 * i = curcpu % adapter->num_queues; 330 * 331 */ 332 int 333 nm_os_generic_xmit_frame(struct nm_os_gen_arg *a) 334 { 335 int ret; 336 u_int len = a->len; 337 struct ifnet *ifp = a->ifp; 338 struct mbuf *m = a->m; 339 340 #if __FreeBSD_version < 1100000 341 /* 342 * Old FreeBSD versions. The mbuf has a cluster attached, 343 * we need to copy from the cluster to the netmap buffer. 344 */ 345 if (MBUF_REFCNT(m) != 1) { 346 D("invalid refcnt %d for %p", MBUF_REFCNT(m), m); 347 panic("in generic_xmit_frame"); 348 } 349 if (m->m_ext.ext_size < len) { 350 RD(5, "size %d < len %d", m->m_ext.ext_size, len); 351 len = m->m_ext.ext_size; 352 } 353 bcopy(a->addr, m->m_data, len); 354 #else /* __FreeBSD_version >= 1100000 */ 355 /* New FreeBSD versions. Link the external storage to 356 * the netmap buffer, so that no copy is necessary. */ 357 m->m_ext.ext_buf = m->m_data = a->addr; 358 m->m_ext.ext_size = len; 359 #endif /* __FreeBSD_version >= 1100000 */ 360 361 m->m_len = m->m_pkthdr.len = len; 362 363 /* mbuf refcnt is not contended, no need to use atomic 364 * (a memory barrier is enough). */ 365 SET_MBUF_REFCNT(m, 2); 366 M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE); 367 m->m_pkthdr.flowid = a->ring_nr; 368 m->m_pkthdr.rcvif = ifp; /* used for tx notification */ 369 ret = NA(ifp)->if_transmit(ifp, m); 370 return ret ? -1 : 0; 371 } 372 373 374 #if __FreeBSD_version >= 1100005 375 struct netmap_adapter * 376 netmap_getna(if_t ifp) 377 { 378 return (NA((struct ifnet *)ifp)); 379 } 380 #endif /* __FreeBSD_version >= 1100005 */ 381 382 /* 383 * The following two functions are empty until we have a generic 384 * way to extract the info from the ifp 385 */ 386 int 387 nm_os_generic_find_num_desc(struct ifnet *ifp, unsigned int *tx, unsigned int *rx) 388 { 389 D("called, in tx %d rx %d", *tx, *rx); 390 return 0; 391 } 392 393 394 void 395 nm_os_generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq) 396 { 397 D("called, in txq %d rxq %d", *txq, *rxq); 398 *txq = netmap_generic_rings; 399 *rxq = netmap_generic_rings; 400 } 401 402 void 403 nm_os_generic_set_features(struct netmap_generic_adapter *gna) 404 { 405 406 gna->rxsg = 1; /* Supported through m_copydata. */ 407 gna->txqdisc = 0; /* Not supported. */ 408 } 409 410 void 411 nm_os_mitigation_init(struct nm_generic_mit *mit, int idx, struct netmap_adapter *na) 412 { 413 ND("called"); 414 mit->mit_pending = 0; 415 mit->mit_ring_idx = idx; 416 mit->mit_na = na; 417 } 418 419 420 void 421 nm_os_mitigation_start(struct nm_generic_mit *mit) 422 { 423 ND("called"); 424 } 425 426 427 void 428 nm_os_mitigation_restart(struct nm_generic_mit *mit) 429 { 430 ND("called"); 431 } 432 433 434 int 435 nm_os_mitigation_active(struct nm_generic_mit *mit) 436 { 437 ND("called"); 438 return 0; 439 } 440 441 442 void 443 nm_os_mitigation_cleanup(struct nm_generic_mit *mit) 444 { 445 ND("called"); 446 } 447 448 static int 449 nm_vi_dummy(struct ifnet *ifp, u_long cmd, caddr_t addr) 450 { 451 return EINVAL; 452 } 453 454 static void 455 nm_vi_start(struct ifnet *ifp) 456 { 457 panic("nm_vi_start() must not be called"); 458 } 459 460 /* 461 * Index manager of persistent virtual interfaces. 462 * It is used to decide the lowest byte of the MAC address. 463 * We use the same algorithm with management of bridge port index. 464 */ 465 #define NM_VI_MAX 255 466 static struct { 467 uint8_t index[NM_VI_MAX]; /* XXX just for a reasonable number */ 468 uint8_t active; 469 struct mtx lock; 470 } nm_vi_indices; 471 472 void 473 nm_os_vi_init_index(void) 474 { 475 int i; 476 for (i = 0; i < NM_VI_MAX; i++) 477 nm_vi_indices.index[i] = i; 478 nm_vi_indices.active = 0; 479 mtx_init(&nm_vi_indices.lock, "nm_vi_indices_lock", NULL, MTX_DEF); 480 } 481 482 /* return -1 if no index available */ 483 static int 484 nm_vi_get_index(void) 485 { 486 int ret; 487 488 mtx_lock(&nm_vi_indices.lock); 489 ret = nm_vi_indices.active == NM_VI_MAX ? -1 : 490 nm_vi_indices.index[nm_vi_indices.active++]; 491 mtx_unlock(&nm_vi_indices.lock); 492 return ret; 493 } 494 495 static void 496 nm_vi_free_index(uint8_t val) 497 { 498 int i, lim; 499 500 mtx_lock(&nm_vi_indices.lock); 501 lim = nm_vi_indices.active; 502 for (i = 0; i < lim; i++) { 503 if (nm_vi_indices.index[i] == val) { 504 /* swap index[lim-1] and j */ 505 int tmp = nm_vi_indices.index[lim-1]; 506 nm_vi_indices.index[lim-1] = val; 507 nm_vi_indices.index[i] = tmp; 508 nm_vi_indices.active--; 509 break; 510 } 511 } 512 if (lim == nm_vi_indices.active) 513 D("funny, index %u didn't found", val); 514 mtx_unlock(&nm_vi_indices.lock); 515 } 516 #undef NM_VI_MAX 517 518 /* 519 * Implementation of a netmap-capable virtual interface that 520 * registered to the system. 521 * It is based on if_tap.c and ip_fw_log.c in FreeBSD 9. 522 * 523 * Note: Linux sets refcount to 0 on allocation of net_device, 524 * then increments it on registration to the system. 525 * FreeBSD sets refcount to 1 on if_alloc(), and does not 526 * increment this refcount on if_attach(). 527 */ 528 int 529 nm_os_vi_persist(const char *name, struct ifnet **ret) 530 { 531 struct ifnet *ifp; 532 u_short macaddr_hi; 533 uint32_t macaddr_mid; 534 u_char eaddr[6]; 535 int unit = nm_vi_get_index(); /* just to decide MAC address */ 536 537 if (unit < 0) 538 return EBUSY; 539 /* 540 * We use the same MAC address generation method with tap 541 * except for the highest octet is 00:be instead of 00:bd 542 */ 543 macaddr_hi = htons(0x00be); /* XXX tap + 1 */ 544 macaddr_mid = (uint32_t) ticks; 545 bcopy(&macaddr_hi, eaddr, sizeof(short)); 546 bcopy(&macaddr_mid, &eaddr[2], sizeof(uint32_t)); 547 eaddr[5] = (uint8_t)unit; 548 549 ifp = if_alloc(IFT_ETHER); 550 if (ifp == NULL) { 551 D("if_alloc failed"); 552 return ENOMEM; 553 } 554 if_initname(ifp, name, IF_DUNIT_NONE); 555 ifp->if_mtu = 65536; 556 ifp->if_flags = IFF_UP | IFF_SIMPLEX | IFF_MULTICAST; 557 ifp->if_init = (void *)nm_vi_dummy; 558 ifp->if_ioctl = nm_vi_dummy; 559 ifp->if_start = nm_vi_start; 560 ifp->if_mtu = ETHERMTU; 561 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 562 ifp->if_capabilities |= IFCAP_LINKSTATE; 563 ifp->if_capenable |= IFCAP_LINKSTATE; 564 565 ether_ifattach(ifp, eaddr); 566 *ret = ifp; 567 return 0; 568 } 569 570 /* unregister from the system and drop the final refcount */ 571 void 572 nm_os_vi_detach(struct ifnet *ifp) 573 { 574 nm_vi_free_index(((char *)IF_LLADDR(ifp))[5]); 575 ether_ifdetach(ifp); 576 if_free(ifp); 577 } 578 579 /* ======================== PTNETMAP SUPPORT ========================== */ 580 581 #ifdef WITH_PTNETMAP_GUEST 582 #include <sys/bus.h> 583 #include <sys/rman.h> 584 #include <machine/bus.h> /* bus_dmamap_* */ 585 #include <machine/resource.h> 586 #include <dev/pci/pcivar.h> 587 #include <dev/pci/pcireg.h> 588 /* 589 * ptnetmap memory device (memdev) for freebsd guest, 590 * ssed to expose host netmap memory to the guest through a PCI BAR. 591 */ 592 593 /* 594 * ptnetmap memdev private data structure 595 */ 596 struct ptnetmap_memdev { 597 device_t dev; 598 struct resource *pci_io; 599 struct resource *pci_mem; 600 struct netmap_mem_d *nm_mem; 601 }; 602 603 static int ptn_memdev_probe(device_t); 604 static int ptn_memdev_attach(device_t); 605 static int ptn_memdev_detach(device_t); 606 static int ptn_memdev_shutdown(device_t); 607 608 static device_method_t ptn_memdev_methods[] = { 609 DEVMETHOD(device_probe, ptn_memdev_probe), 610 DEVMETHOD(device_attach, ptn_memdev_attach), 611 DEVMETHOD(device_detach, ptn_memdev_detach), 612 DEVMETHOD(device_shutdown, ptn_memdev_shutdown), 613 DEVMETHOD_END 614 }; 615 616 static driver_t ptn_memdev_driver = { 617 PTNETMAP_MEMDEV_NAME, 618 ptn_memdev_methods, 619 sizeof(struct ptnetmap_memdev), 620 }; 621 622 /* We use (SI_ORDER_MIDDLE+1) here, see DEV_MODULE_ORDERED() invocation 623 * below. */ 624 static devclass_t ptnetmap_devclass; 625 DRIVER_MODULE_ORDERED(ptn_memdev, pci, ptn_memdev_driver, ptnetmap_devclass, 626 NULL, NULL, SI_ORDER_MIDDLE + 1); 627 628 /* 629 * I/O port read/write wrappers. 630 * Some are not used, so we keep them commented out until needed 631 */ 632 #define ptn_ioread16(ptn_dev, reg) bus_read_2((ptn_dev)->pci_io, (reg)) 633 #define ptn_ioread32(ptn_dev, reg) bus_read_4((ptn_dev)->pci_io, (reg)) 634 #if 0 635 #define ptn_ioread8(ptn_dev, reg) bus_read_1((ptn_dev)->pci_io, (reg)) 636 #define ptn_iowrite8(ptn_dev, reg, val) bus_write_1((ptn_dev)->pci_io, (reg), (val)) 637 #define ptn_iowrite16(ptn_dev, reg, val) bus_write_2((ptn_dev)->pci_io, (reg), (val)) 638 #define ptn_iowrite32(ptn_dev, reg, val) bus_write_4((ptn_dev)->pci_io, (reg), (val)) 639 #endif /* unused */ 640 641 /* 642 * Map host netmap memory through PCI-BAR in the guest OS, 643 * returning physical (nm_paddr) and virtual (nm_addr) addresses 644 * of the netmap memory mapped in the guest. 645 */ 646 int 647 nm_os_pt_memdev_iomap(struct ptnetmap_memdev *ptn_dev, vm_paddr_t *nm_paddr, void **nm_addr) 648 { 649 uint32_t mem_size; 650 int rid; 651 652 D("ptn_memdev_driver iomap"); 653 654 rid = PCIR_BAR(PTNETMAP_MEM_PCI_BAR); 655 mem_size = ptn_ioread32(ptn_dev, PTNETMAP_IO_PCI_MEMSIZE); 656 657 /* map memory allocator */ 658 ptn_dev->pci_mem = bus_alloc_resource(ptn_dev->dev, SYS_RES_MEMORY, 659 &rid, 0, ~0, mem_size, RF_ACTIVE); 660 if (ptn_dev->pci_mem == NULL) { 661 *nm_paddr = 0; 662 *nm_addr = 0; 663 return ENOMEM; 664 } 665 666 *nm_paddr = rman_get_start(ptn_dev->pci_mem); 667 *nm_addr = rman_get_virtual(ptn_dev->pci_mem); 668 669 D("=== BAR %d start %lx len %lx mem_size %x ===", 670 PTNETMAP_MEM_PCI_BAR, 671 *nm_paddr, 672 rman_get_size(ptn_dev->pci_mem), 673 mem_size); 674 return (0); 675 } 676 677 /* Unmap host netmap memory. */ 678 void 679 nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *ptn_dev) 680 { 681 D("ptn_memdev_driver iounmap"); 682 683 if (ptn_dev->pci_mem) { 684 bus_release_resource(ptn_dev->dev, SYS_RES_MEMORY, 685 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 686 ptn_dev->pci_mem = NULL; 687 } 688 } 689 690 /* Device identification routine, return BUS_PROBE_DEFAULT on success, 691 * positive on failure */ 692 static int 693 ptn_memdev_probe(device_t dev) 694 { 695 char desc[256]; 696 697 if (pci_get_vendor(dev) != PTNETMAP_PCI_VENDOR_ID) 698 return (ENXIO); 699 if (pci_get_device(dev) != PTNETMAP_PCI_DEVICE_ID) 700 return (ENXIO); 701 702 snprintf(desc, sizeof(desc), "%s PCI adapter", 703 PTNETMAP_MEMDEV_NAME); 704 device_set_desc_copy(dev, desc); 705 706 return (BUS_PROBE_DEFAULT); 707 } 708 709 /* Device initialization routine. */ 710 static int 711 ptn_memdev_attach(device_t dev) 712 { 713 struct ptnetmap_memdev *ptn_dev; 714 int rid; 715 uint16_t mem_id; 716 717 D("ptn_memdev_driver attach"); 718 719 ptn_dev = device_get_softc(dev); 720 ptn_dev->dev = dev; 721 722 pci_enable_busmaster(dev); 723 724 rid = PCIR_BAR(PTNETMAP_IO_PCI_BAR); 725 ptn_dev->pci_io = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, 726 RF_ACTIVE); 727 if (ptn_dev->pci_io == NULL) { 728 device_printf(dev, "cannot map I/O space\n"); 729 return (ENXIO); 730 } 731 732 mem_id = ptn_ioread16(ptn_dev, PTNETMAP_IO_PCI_HOSTID); 733 734 /* create guest allocator */ 735 ptn_dev->nm_mem = netmap_mem_pt_guest_attach(ptn_dev, mem_id); 736 if (ptn_dev->nm_mem == NULL) { 737 ptn_memdev_detach(dev); 738 return (ENOMEM); 739 } 740 netmap_mem_get(ptn_dev->nm_mem); 741 742 D("ptn_memdev_driver probe OK - host_id: %d", mem_id); 743 744 return (0); 745 } 746 747 /* Device removal routine. */ 748 static int 749 ptn_memdev_detach(device_t dev) 750 { 751 struct ptnetmap_memdev *ptn_dev; 752 753 D("ptn_memdev_driver detach"); 754 ptn_dev = device_get_softc(dev); 755 756 if (ptn_dev->nm_mem) { 757 netmap_mem_put(ptn_dev->nm_mem); 758 ptn_dev->nm_mem = NULL; 759 } 760 if (ptn_dev->pci_mem) { 761 bus_release_resource(dev, SYS_RES_MEMORY, 762 PCIR_BAR(PTNETMAP_MEM_PCI_BAR), ptn_dev->pci_mem); 763 ptn_dev->pci_mem = NULL; 764 } 765 if (ptn_dev->pci_io) { 766 bus_release_resource(dev, SYS_RES_IOPORT, 767 PCIR_BAR(PTNETMAP_IO_PCI_BAR), ptn_dev->pci_io); 768 ptn_dev->pci_io = NULL; 769 } 770 771 return (0); 772 } 773 774 static int 775 ptn_memdev_shutdown(device_t dev) 776 { 777 D("ptn_memdev_driver shutdown"); 778 return bus_generic_shutdown(dev); 779 } 780 781 #endif /* WITH_PTNETMAP_GUEST */ 782 783 /* 784 * In order to track whether pages are still mapped, we hook into 785 * the standard cdev_pager and intercept the constructor and 786 * destructor. 787 */ 788 789 struct netmap_vm_handle_t { 790 struct cdev *dev; 791 struct netmap_priv_d *priv; 792 }; 793 794 795 static int 796 netmap_dev_pager_ctor(void *handle, vm_ooffset_t size, vm_prot_t prot, 797 vm_ooffset_t foff, struct ucred *cred, u_short *color) 798 { 799 struct netmap_vm_handle_t *vmh = handle; 800 801 if (netmap_verbose) 802 D("handle %p size %jd prot %d foff %jd", 803 handle, (intmax_t)size, prot, (intmax_t)foff); 804 if (color) 805 *color = 0; 806 dev_ref(vmh->dev); 807 return 0; 808 } 809 810 811 static void 812 netmap_dev_pager_dtor(void *handle) 813 { 814 struct netmap_vm_handle_t *vmh = handle; 815 struct cdev *dev = vmh->dev; 816 struct netmap_priv_d *priv = vmh->priv; 817 818 if (netmap_verbose) 819 D("handle %p", handle); 820 netmap_dtor(priv); 821 free(vmh, M_DEVBUF); 822 dev_rel(dev); 823 } 824 825 826 static int 827 netmap_dev_pager_fault(vm_object_t object, vm_ooffset_t offset, 828 int prot, vm_page_t *mres) 829 { 830 struct netmap_vm_handle_t *vmh = object->handle; 831 struct netmap_priv_d *priv = vmh->priv; 832 struct netmap_adapter *na = priv->np_na; 833 vm_paddr_t paddr; 834 vm_page_t page; 835 vm_memattr_t memattr; 836 vm_pindex_t pidx; 837 838 ND("object %p offset %jd prot %d mres %p", 839 object, (intmax_t)offset, prot, mres); 840 memattr = object->memattr; 841 pidx = OFF_TO_IDX(offset); 842 paddr = netmap_mem_ofstophys(na->nm_mem, offset); 843 if (paddr == 0) 844 return VM_PAGER_FAIL; 845 846 if (((*mres)->flags & PG_FICTITIOUS) != 0) { 847 /* 848 * If the passed in result page is a fake page, update it with 849 * the new physical address. 850 */ 851 page = *mres; 852 vm_page_updatefake(page, paddr, memattr); 853 } else { 854 /* 855 * Replace the passed in reqpage page with our own fake page and 856 * free up the all of the original pages. 857 */ 858 #ifndef VM_OBJECT_WUNLOCK /* FreeBSD < 10.x */ 859 #define VM_OBJECT_WUNLOCK VM_OBJECT_UNLOCK 860 #define VM_OBJECT_WLOCK VM_OBJECT_LOCK 861 #endif /* VM_OBJECT_WUNLOCK */ 862 863 VM_OBJECT_WUNLOCK(object); 864 page = vm_page_getfake(paddr, memattr); 865 VM_OBJECT_WLOCK(object); 866 vm_page_lock(*mres); 867 vm_page_free(*mres); 868 vm_page_unlock(*mres); 869 *mres = page; 870 vm_page_insert(page, object, pidx); 871 } 872 page->valid = VM_PAGE_BITS_ALL; 873 return (VM_PAGER_OK); 874 } 875 876 877 static struct cdev_pager_ops netmap_cdev_pager_ops = { 878 .cdev_pg_ctor = netmap_dev_pager_ctor, 879 .cdev_pg_dtor = netmap_dev_pager_dtor, 880 .cdev_pg_fault = netmap_dev_pager_fault, 881 }; 882 883 884 static int 885 netmap_mmap_single(struct cdev *cdev, vm_ooffset_t *foff, 886 vm_size_t objsize, vm_object_t *objp, int prot) 887 { 888 int error; 889 struct netmap_vm_handle_t *vmh; 890 struct netmap_priv_d *priv; 891 vm_object_t obj; 892 893 if (netmap_verbose) 894 D("cdev %p foff %jd size %jd objp %p prot %d", cdev, 895 (intmax_t )*foff, (intmax_t )objsize, objp, prot); 896 897 vmh = malloc(sizeof(struct netmap_vm_handle_t), M_DEVBUF, 898 M_NOWAIT | M_ZERO); 899 if (vmh == NULL) 900 return ENOMEM; 901 vmh->dev = cdev; 902 903 NMG_LOCK(); 904 error = devfs_get_cdevpriv((void**)&priv); 905 if (error) 906 goto err_unlock; 907 if (priv->np_nifp == NULL) { 908 error = EINVAL; 909 goto err_unlock; 910 } 911 vmh->priv = priv; 912 priv->np_refs++; 913 NMG_UNLOCK(); 914 915 obj = cdev_pager_allocate(vmh, OBJT_DEVICE, 916 &netmap_cdev_pager_ops, objsize, prot, 917 *foff, NULL); 918 if (obj == NULL) { 919 D("cdev_pager_allocate failed"); 920 error = EINVAL; 921 goto err_deref; 922 } 923 924 *objp = obj; 925 return 0; 926 927 err_deref: 928 NMG_LOCK(); 929 priv->np_refs--; 930 err_unlock: 931 NMG_UNLOCK(); 932 // err: 933 free(vmh, M_DEVBUF); 934 return error; 935 } 936 937 /* 938 * On FreeBSD the close routine is only called on the last close on 939 * the device (/dev/netmap) so we cannot do anything useful. 940 * To track close() on individual file descriptors we pass netmap_dtor() to 941 * devfs_set_cdevpriv() on open(). The FreeBSD kernel will call the destructor 942 * when the last fd pointing to the device is closed. 943 * 944 * Note that FreeBSD does not even munmap() on close() so we also have 945 * to track mmap() ourselves, and postpone the call to 946 * netmap_dtor() is called when the process has no open fds and no active 947 * memory maps on /dev/netmap, as in linux. 948 */ 949 static int 950 netmap_close(struct cdev *dev, int fflag, int devtype, struct thread *td) 951 { 952 if (netmap_verbose) 953 D("dev %p fflag 0x%x devtype %d td %p", 954 dev, fflag, devtype, td); 955 return 0; 956 } 957 958 959 static int 960 netmap_open(struct cdev *dev, int oflags, int devtype, struct thread *td) 961 { 962 struct netmap_priv_d *priv; 963 int error; 964 965 (void)dev; 966 (void)oflags; 967 (void)devtype; 968 (void)td; 969 970 NMG_LOCK(); 971 priv = netmap_priv_new(); 972 if (priv == NULL) { 973 error = ENOMEM; 974 goto out; 975 } 976 error = devfs_set_cdevpriv(priv, netmap_dtor); 977 if (error) { 978 netmap_priv_delete(priv); 979 } 980 out: 981 NMG_UNLOCK(); 982 return error; 983 } 984 985 /******************** kthread wrapper ****************/ 986 #include <sys/sysproto.h> 987 u_int 988 nm_os_ncpus(void) 989 { 990 return mp_maxid + 1; 991 } 992 993 struct nm_kthread_ctx { 994 struct thread *user_td; /* thread user-space (kthread creator) to send ioctl */ 995 /* notification to guest (interrupt) */ 996 int irq_fd; /* ioctl fd */ 997 struct nm_kth_ioctl irq_ioctl; /* ioctl arguments */ 998 999 /* notification from guest */ 1000 void *ioevent_file; /* tsleep() argument */ 1001 1002 /* worker function and parameter */ 1003 nm_kthread_worker_fn_t worker_fn; 1004 void *worker_private; 1005 1006 struct nm_kthread *nmk; 1007 1008 /* integer to manage multiple worker contexts (e.g., RX or TX on ptnetmap) */ 1009 long type; 1010 }; 1011 1012 struct nm_kthread { 1013 struct thread *worker; 1014 struct mtx worker_lock; 1015 uint64_t scheduled; /* pending wake_up request */ 1016 struct nm_kthread_ctx worker_ctx; 1017 int run; /* used to stop kthread */ 1018 int attach_user; /* kthread attached to user_process */ 1019 int affinity; 1020 }; 1021 1022 void inline 1023 nm_os_kthread_wakeup_worker(struct nm_kthread *nmk) 1024 { 1025 /* 1026 * There may be a race between FE and BE, 1027 * which call both this function, and worker kthread, 1028 * that reads nmk->scheduled. 1029 * 1030 * For us it is not important the counter value, 1031 * but simply that it has changed since the last 1032 * time the kthread saw it. 1033 */ 1034 mtx_lock(&nmk->worker_lock); 1035 nmk->scheduled++; 1036 if (nmk->worker_ctx.ioevent_file) { 1037 wakeup(nmk->worker_ctx.ioevent_file); 1038 } 1039 mtx_unlock(&nmk->worker_lock); 1040 } 1041 1042 void inline 1043 nm_os_kthread_send_irq(struct nm_kthread *nmk) 1044 { 1045 struct nm_kthread_ctx *ctx = &nmk->worker_ctx; 1046 int err; 1047 1048 if (ctx->user_td && ctx->irq_fd > 0) { 1049 err = kern_ioctl(ctx->user_td, ctx->irq_fd, ctx->irq_ioctl.com, (caddr_t)&ctx->irq_ioctl.data.msix); 1050 if (err) { 1051 D("kern_ioctl error: %d ioctl parameters: fd %d com %lu data %p", 1052 err, ctx->irq_fd, ctx->irq_ioctl.com, &ctx->irq_ioctl.data); 1053 } 1054 } 1055 } 1056 1057 static void 1058 nm_kthread_worker(void *data) 1059 { 1060 struct nm_kthread *nmk = data; 1061 struct nm_kthread_ctx *ctx = &nmk->worker_ctx; 1062 uint64_t old_scheduled = nmk->scheduled; 1063 1064 if (nmk->affinity >= 0) { 1065 thread_lock(curthread); 1066 sched_bind(curthread, nmk->affinity); 1067 thread_unlock(curthread); 1068 } 1069 1070 while (nmk->run) { 1071 /* 1072 * check if the parent process dies 1073 * (when kthread is attached to user process) 1074 */ 1075 if (ctx->user_td) { 1076 PROC_LOCK(curproc); 1077 thread_suspend_check(0); 1078 PROC_UNLOCK(curproc); 1079 } else { 1080 kthread_suspend_check(); 1081 } 1082 1083 /* 1084 * if ioevent_file is not defined, we don't have notification 1085 * mechanism and we continually execute worker_fn() 1086 */ 1087 if (!ctx->ioevent_file) { 1088 ctx->worker_fn(ctx->worker_private); /* worker body */ 1089 } else { 1090 /* checks if there is a pending notification */ 1091 mtx_lock(&nmk->worker_lock); 1092 if (likely(nmk->scheduled != old_scheduled)) { 1093 old_scheduled = nmk->scheduled; 1094 mtx_unlock(&nmk->worker_lock); 1095 1096 ctx->worker_fn(ctx->worker_private); /* worker body */ 1097 1098 continue; 1099 } else if (nmk->run) { 1100 /* wait on event with one second timeout */ 1101 msleep_spin(ctx->ioevent_file, &nmk->worker_lock, 1102 "nmk_ev", hz); 1103 nmk->scheduled++; 1104 } 1105 mtx_unlock(&nmk->worker_lock); 1106 } 1107 } 1108 1109 kthread_exit(); 1110 } 1111 1112 static int 1113 nm_kthread_open_files(struct nm_kthread *nmk, struct nm_kthread_cfg *cfg) 1114 { 1115 /* send irq through ioctl to bhyve (vmm.ko) */ 1116 if (cfg->event.irqfd) { 1117 nmk->worker_ctx.irq_fd = cfg->event.irqfd; 1118 nmk->worker_ctx.irq_ioctl = cfg->event.ioctl; 1119 } 1120 /* ring.ioeventfd contains the chan where do tsleep to wait events */ 1121 if (cfg->event.ioeventfd) { 1122 nmk->worker_ctx.ioevent_file = (void *)cfg->event.ioeventfd; 1123 } 1124 1125 return 0; 1126 } 1127 1128 static void 1129 nm_kthread_close_files(struct nm_kthread *nmk) 1130 { 1131 nmk->worker_ctx.irq_fd = 0; 1132 nmk->worker_ctx.ioevent_file = NULL; 1133 } 1134 1135 void 1136 nm_os_kthread_set_affinity(struct nm_kthread *nmk, int affinity) 1137 { 1138 nmk->affinity = affinity; 1139 } 1140 1141 struct nm_kthread * 1142 nm_os_kthread_create(struct nm_kthread_cfg *cfg) 1143 { 1144 struct nm_kthread *nmk = NULL; 1145 int error; 1146 1147 nmk = malloc(sizeof(*nmk), M_DEVBUF, M_NOWAIT | M_ZERO); 1148 if (!nmk) 1149 return NULL; 1150 1151 mtx_init(&nmk->worker_lock, "nm_kthread lock", NULL, MTX_SPIN); 1152 nmk->worker_ctx.worker_fn = cfg->worker_fn; 1153 nmk->worker_ctx.worker_private = cfg->worker_private; 1154 nmk->worker_ctx.type = cfg->type; 1155 nmk->affinity = -1; 1156 1157 /* attach kthread to user process (ptnetmap) */ 1158 nmk->attach_user = cfg->attach_user; 1159 1160 /* open event fd */ 1161 error = nm_kthread_open_files(nmk, cfg); 1162 if (error) 1163 goto err; 1164 1165 return nmk; 1166 err: 1167 free(nmk, M_DEVBUF); 1168 return NULL; 1169 } 1170 1171 int 1172 nm_os_kthread_start(struct nm_kthread *nmk) 1173 { 1174 struct proc *p = NULL; 1175 int error = 0; 1176 1177 if (nmk->worker) { 1178 return EBUSY; 1179 } 1180 1181 /* check if we want to attach kthread to user process */ 1182 if (nmk->attach_user) { 1183 nmk->worker_ctx.user_td = curthread; 1184 p = curthread->td_proc; 1185 } 1186 1187 /* enable kthread main loop */ 1188 nmk->run = 1; 1189 /* create kthread */ 1190 if((error = kthread_add(nm_kthread_worker, nmk, p, 1191 &nmk->worker, RFNOWAIT /* to be checked */, 0, "nm-kthread-%ld", 1192 nmk->worker_ctx.type))) { 1193 goto err; 1194 } 1195 1196 D("nm_kthread started td 0x%p", nmk->worker); 1197 1198 return 0; 1199 err: 1200 D("nm_kthread start failed err %d", error); 1201 nmk->worker = NULL; 1202 return error; 1203 } 1204 1205 void 1206 nm_os_kthread_stop(struct nm_kthread *nmk) 1207 { 1208 if (!nmk->worker) { 1209 return; 1210 } 1211 /* tell to kthread to exit from main loop */ 1212 nmk->run = 0; 1213 1214 /* wake up kthread if it sleeps */ 1215 kthread_resume(nmk->worker); 1216 nm_os_kthread_wakeup_worker(nmk); 1217 1218 nmk->worker = NULL; 1219 } 1220 1221 void 1222 nm_os_kthread_delete(struct nm_kthread *nmk) 1223 { 1224 if (!nmk) 1225 return; 1226 if (nmk->worker) { 1227 nm_os_kthread_stop(nmk); 1228 } 1229 1230 nm_kthread_close_files(nmk); 1231 1232 free(nmk, M_DEVBUF); 1233 } 1234 1235 /******************** kqueue support ****************/ 1236 1237 /* 1238 * nm_os_selwakeup also needs to issue a KNOTE_UNLOCKED. 1239 * We use a non-zero argument to distinguish the call from the one 1240 * in kevent_scan() which instead also needs to run netmap_poll(). 1241 * The knote uses a global mutex for the time being. We might 1242 * try to reuse the one in the si, but it is not allocated 1243 * permanently so it might be a bit tricky. 1244 * 1245 * The *kqfilter function registers one or another f_event 1246 * depending on read or write mode. 1247 * In the call to f_event() td_fpop is NULL so any child function 1248 * calling devfs_get_cdevpriv() would fail - and we need it in 1249 * netmap_poll(). As a workaround we store priv into kn->kn_hook 1250 * and pass it as first argument to netmap_poll(), which then 1251 * uses the failure to tell that we are called from f_event() 1252 * and do not need the selrecord(). 1253 */ 1254 1255 1256 void 1257 nm_os_selwakeup(struct nm_selinfo *si) 1258 { 1259 if (netmap_verbose) 1260 D("on knote %p", &si->si.si_note); 1261 selwakeuppri(&si->si, PI_NET); 1262 /* use a non-zero hint to tell the notification from the 1263 * call done in kqueue_scan() which uses 0 1264 */ 1265 KNOTE_UNLOCKED(&si->si.si_note, 0x100 /* notification */); 1266 } 1267 1268 void 1269 nm_os_selrecord(struct thread *td, struct nm_selinfo *si) 1270 { 1271 selrecord(td, &si->si); 1272 } 1273 1274 static void 1275 netmap_knrdetach(struct knote *kn) 1276 { 1277 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1278 struct selinfo *si = &priv->np_si[NR_RX]->si; 1279 1280 D("remove selinfo %p", si); 1281 knlist_remove(&si->si_note, kn, 0); 1282 } 1283 1284 static void 1285 netmap_knwdetach(struct knote *kn) 1286 { 1287 struct netmap_priv_d *priv = (struct netmap_priv_d *)kn->kn_hook; 1288 struct selinfo *si = &priv->np_si[NR_TX]->si; 1289 1290 D("remove selinfo %p", si); 1291 knlist_remove(&si->si_note, kn, 0); 1292 } 1293 1294 /* 1295 * callback from notifies (generated externally) and our 1296 * calls to kevent(). The former we just return 1 (ready) 1297 * since we do not know better. 1298 * In the latter we call netmap_poll and return 0/1 accordingly. 1299 */ 1300 static int 1301 netmap_knrw(struct knote *kn, long hint, int events) 1302 { 1303 struct netmap_priv_d *priv; 1304 int revents; 1305 1306 if (hint != 0) { 1307 ND(5, "call from notify"); 1308 return 1; /* assume we are ready */ 1309 } 1310 priv = kn->kn_hook; 1311 /* the notification may come from an external thread, 1312 * in which case we do not want to run the netmap_poll 1313 * This should be filtered above, but check just in case. 1314 */ 1315 if (curthread != priv->np_td) { /* should not happen */ 1316 RD(5, "curthread changed %p %p", curthread, priv->np_td); 1317 return 1; 1318 } else { 1319 revents = netmap_poll(priv, events, NULL); 1320 return (events & revents) ? 1 : 0; 1321 } 1322 } 1323 1324 static int 1325 netmap_knread(struct knote *kn, long hint) 1326 { 1327 return netmap_knrw(kn, hint, POLLIN); 1328 } 1329 1330 static int 1331 netmap_knwrite(struct knote *kn, long hint) 1332 { 1333 return netmap_knrw(kn, hint, POLLOUT); 1334 } 1335 1336 static struct filterops netmap_rfiltops = { 1337 .f_isfd = 1, 1338 .f_detach = netmap_knrdetach, 1339 .f_event = netmap_knread, 1340 }; 1341 1342 static struct filterops netmap_wfiltops = { 1343 .f_isfd = 1, 1344 .f_detach = netmap_knwdetach, 1345 .f_event = netmap_knwrite, 1346 }; 1347 1348 1349 /* 1350 * This is called when a thread invokes kevent() to record 1351 * a change in the configuration of the kqueue(). 1352 * The 'priv' should be the same as in the netmap device. 1353 */ 1354 static int 1355 netmap_kqfilter(struct cdev *dev, struct knote *kn) 1356 { 1357 struct netmap_priv_d *priv; 1358 int error; 1359 struct netmap_adapter *na; 1360 struct nm_selinfo *si; 1361 int ev = kn->kn_filter; 1362 1363 if (ev != EVFILT_READ && ev != EVFILT_WRITE) { 1364 D("bad filter request %d", ev); 1365 return 1; 1366 } 1367 error = devfs_get_cdevpriv((void**)&priv); 1368 if (error) { 1369 D("device not yet setup"); 1370 return 1; 1371 } 1372 na = priv->np_na; 1373 if (na == NULL) { 1374 D("no netmap adapter for this file descriptor"); 1375 return 1; 1376 } 1377 /* the si is indicated in the priv */ 1378 si = priv->np_si[(ev == EVFILT_WRITE) ? NR_TX : NR_RX]; 1379 // XXX lock(priv) ? 1380 kn->kn_fop = (ev == EVFILT_WRITE) ? 1381 &netmap_wfiltops : &netmap_rfiltops; 1382 kn->kn_hook = priv; 1383 knlist_add(&si->si.si_note, kn, 1); 1384 // XXX unlock(priv) 1385 ND("register %p %s td %p priv %p kn %p np_nifp %p kn_fp/fpop %s", 1386 na, na->ifp->if_xname, curthread, priv, kn, 1387 priv->np_nifp, 1388 kn->kn_fp == curthread->td_fpop ? "match" : "MISMATCH"); 1389 return 0; 1390 } 1391 1392 static int 1393 freebsd_netmap_poll(struct cdev *cdevi __unused, int events, struct thread *td) 1394 { 1395 struct netmap_priv_d *priv; 1396 if (devfs_get_cdevpriv((void **)&priv)) { 1397 return POLLERR; 1398 } 1399 return netmap_poll(priv, events, td); 1400 } 1401 1402 static int 1403 freebsd_netmap_ioctl(struct cdev *dev __unused, u_long cmd, caddr_t data, 1404 int ffla __unused, struct thread *td) 1405 { 1406 int error; 1407 struct netmap_priv_d *priv; 1408 1409 CURVNET_SET(TD_TO_VNET(rd)); 1410 error = devfs_get_cdevpriv((void **)&priv); 1411 if (error) { 1412 /* XXX ENOENT should be impossible, since the priv 1413 * is now created in the open */ 1414 if (error == ENOENT) 1415 error = ENXIO; 1416 goto out; 1417 } 1418 error = netmap_ioctl(priv, cmd, data, td); 1419 out: 1420 CURVNET_RESTORE(); 1421 1422 return error; 1423 } 1424 1425 extern struct cdevsw netmap_cdevsw; /* XXX used in netmap.c, should go elsewhere */ 1426 struct cdevsw netmap_cdevsw = { 1427 .d_version = D_VERSION, 1428 .d_name = "netmap", 1429 .d_open = netmap_open, 1430 .d_mmap_single = netmap_mmap_single, 1431 .d_ioctl = freebsd_netmap_ioctl, 1432 .d_poll = freebsd_netmap_poll, 1433 .d_kqfilter = netmap_kqfilter, 1434 .d_close = netmap_close, 1435 }; 1436 /*--- end of kqueue support ----*/ 1437 1438 /* 1439 * Kernel entry point. 1440 * 1441 * Initialize/finalize the module and return. 1442 * 1443 * Return 0 on success, errno on failure. 1444 */ 1445 static int 1446 netmap_loader(__unused struct module *module, int event, __unused void *arg) 1447 { 1448 int error = 0; 1449 1450 switch (event) { 1451 case MOD_LOAD: 1452 error = netmap_init(); 1453 break; 1454 1455 case MOD_UNLOAD: 1456 /* 1457 * if some one is still using netmap, 1458 * then the module can not be unloaded. 1459 */ 1460 if (netmap_use_count) { 1461 D("netmap module can not be unloaded - netmap_use_count: %d", 1462 netmap_use_count); 1463 error = EBUSY; 1464 break; 1465 } 1466 netmap_fini(); 1467 break; 1468 1469 default: 1470 error = EOPNOTSUPP; 1471 break; 1472 } 1473 1474 return (error); 1475 } 1476 1477 #ifdef DEV_MODULE_ORDERED 1478 /* 1479 * The netmap module contains three drivers: (i) the netmap character device 1480 * driver; (ii) the ptnetmap memdev PCI device driver, (iii) the ptnet PCI 1481 * device driver. The attach() routines of both (ii) and (iii) need the 1482 * lock of the global allocator, and such lock is initialized in netmap_init(), 1483 * which is part of (i). 1484 * Therefore, we make sure that (i) is loaded before (ii) and (iii), using 1485 * the 'order' parameter of driver declaration macros. For (i), we specify 1486 * SI_ORDER_MIDDLE, while higher orders are used with the DRIVER_MODULE_ORDERED 1487 * macros for (ii) and (iii). 1488 */ 1489 DEV_MODULE_ORDERED(netmap, netmap_loader, NULL, SI_ORDER_MIDDLE); 1490 #else /* !DEV_MODULE_ORDERED */ 1491 DEV_MODULE(netmap, netmap_loader, NULL); 1492 #endif /* DEV_MODULE_ORDERED */ 1493 MODULE_DEPEND(netmap, pci, 1, 1, 1); 1494 MODULE_VERSION(netmap, 1); 1495 /* reduce conditional code */ 1496 // linux API, use for the knlist in FreeBSD 1497 /* use a private mutex for the knlist */ 1498