xref: /freebsd-src/sys/dev/cxgbe/common/t4_hw.c (revision 32a95656b51ebefcdf3e0b02c110825f59abd26f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		adap->flags &= ~FW_OK;
216 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218 		if (pcie_fw != 0xffffffff)
219 			t4_os_dump_devlog(adap);
220 	}
221 }
222 
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227 			 u32 mbox_addr)
228 {
229 	for ( ; nflit; nflit--, mbox_addr += 8)
230 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232 
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238 	CH_ALERT(adap,
239 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240 		  asrt->u.assert.filename_0_7,
241 		  be32_to_cpu(asrt->u.assert.line),
242 		  be32_to_cpu(asrt->u.assert.x),
243 		  be32_to_cpu(asrt->u.assert.y));
244 }
245 
246 struct port_tx_state {
247 	uint64_t rx_pause;
248 	uint64_t tx_frames;
249 };
250 
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254 	uint32_t rx_pause_reg, tx_frames_reg;
255 
256 	if (is_t4(sc)) {
257 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259 	} else {
260 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262 	}
263 
264 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267 
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271 	int i;
272 
273 	for_each_port(sc, i)
274 		read_tx_state_one(sc, i, &tx_state[i]);
275 }
276 
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280 	uint32_t port_ctl_reg;
281 	uint64_t tx_frames, rx_pause;
282 	int i;
283 
284 	for_each_port(sc, i) {
285 		rx_pause = tx_state[i].rx_pause;
286 		tx_frames = tx_state[i].tx_frames;
287 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
288 
289 		if (is_t4(sc))
290 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291 		else
292 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294 		    rx_pause != tx_state[i].rx_pause &&
295 		    tx_frames == tx_state[i].tx_frames) {
296 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297 			mdelay(1);
298 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299 		}
300 	}
301 }
302 
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *	@adap: the adapter
307  *	@mbox: index of the mailbox to use
308  *	@cmd: the command to write
309  *	@size: command length in bytes
310  *	@rpl: where to optionally store the reply
311  *	@sleep_ok: if true we may sleep while awaiting command completion
312  *	@timeout: time to wait for command to finish before timing out
313  *		(negative implies @sleep_ok=false)
314  *
315  *	Sends the given command to FW through the selected mailbox and waits
316  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *	store the FW's reply to the command.  The command and its optional
318  *	reply are of the same length.  Some FW commands like RESET and
319  *	INITIALIZE can take a considerable amount of time to execute.
320  *	@sleep_ok determines whether we may sleep while awaiting the response.
321  *	If sleeping is allowed we use progressive backoff otherwise we spin.
322  *	Note that passing in a negative @timeout is an alternate mechanism
323  *	for specifying @sleep_ok=false.  This is useful when a higher level
324  *	interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *	The return value is 0 on success or a negative errno on failure.  A
327  *	failure can happen either because we are not able to execute the
328  *	command or FW executes it but signals an error.  In the latter case
329  *	the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332 			    int size, void *rpl, bool sleep_ok, int timeout)
333 {
334 	/*
335 	 * We delay in small increments at first in an effort to maintain
336 	 * responsiveness for simple, fast executing commands but then back
337 	 * off to larger delays to a maximum retry delay.
338 	 */
339 	static const int delay[] = {
340 		1, 1, 3, 5, 10, 10, 20, 50, 100
341 	};
342 	u32 v;
343 	u64 res;
344 	int i, ms, delay_idx, ret, next_tx_check;
345 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347 	u32 ctl;
348 	__be64 cmd_rpl[MBOX_LEN/8];
349 	u32 pcie_fw;
350 	struct port_tx_state tx_state[MAX_NPORTS];
351 
352 	if (adap->flags & CHK_MBOX_ACCESS)
353 		ASSERT_SYNCHRONIZED_OP(adap);
354 
355 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
356 		return -EINVAL;
357 
358 	if (adap->flags & IS_VF) {
359 		if (is_t6(adap))
360 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361 		else
362 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364 	}
365 
366 	/*
367 	 * If we have a negative timeout, that implies that we can't sleep.
368 	 */
369 	if (timeout < 0) {
370 		sleep_ok = false;
371 		timeout = -timeout;
372 	}
373 
374 	/*
375 	 * Attempt to gain access to the mailbox.
376 	 */
377 	for (i = 0; i < 4; i++) {
378 		ctl = t4_read_reg(adap, ctl_reg);
379 		v = G_MBOWNER(ctl);
380 		if (v != X_MBOWNER_NONE)
381 			break;
382 	}
383 
384 	/*
385 	 * If we were unable to gain access, report the error to our caller.
386 	 */
387 	if (v != X_MBOWNER_PL) {
388 		t4_report_fw_error(adap);
389 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390 		return ret;
391 	}
392 
393 	/*
394 	 * If we gain ownership of the mailbox and there's a "valid" message
395 	 * in it, this is likely an asynchronous error message from the
396 	 * firmware.  So we'll report that and then proceed on with attempting
397 	 * to issue our own command ... which may well fail if the error
398 	 * presaged the firmware crashing ...
399 	 */
400 	if (ctl & F_MBMSGVALID) {
401 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402 	}
403 
404 	/*
405 	 * Copy in the new mailbox command and send it on its way ...
406 	 */
407 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
408 	memcpy(cmd_rpl, cmd, size);
409 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412 
413 	if (adap->flags & IS_VF) {
414 		/*
415 		 * For the VFs, the Mailbox Data "registers" are
416 		 * actually backed by T4's "MA" interface rather than
417 		 * PL Registers (as is the case for the PFs).  Because
418 		 * these are in different coherency domains, the write
419 		 * to the VF's PL-register-backed Mailbox Control can
420 		 * race in front of the writes to the MA-backed VF
421 		 * Mailbox Data "registers".  So we need to do a
422 		 * read-back on at least one byte of the VF Mailbox
423 		 * Data registers before doing the write to the VF
424 		 * Mailbox Control register.
425 		 */
426 		t4_read_reg(adap, data_reg);
427 	}
428 
429 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
431 	next_tx_check = 1000;
432 	delay_idx = 0;
433 	ms = delay[0];
434 
435 	/*
436 	 * Loop waiting for the reply; bail out if we time out or the firmware
437 	 * reports an error.
438 	 */
439 	pcie_fw = 0;
440 	for (i = 0; i < timeout; i += ms) {
441 		if (!(adap->flags & IS_VF)) {
442 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443 			if (pcie_fw & F_PCIE_FW_ERR)
444 				break;
445 		}
446 
447 		if (i >= next_tx_check) {
448 			check_tx_state(adap, &tx_state[0]);
449 			next_tx_check = i + 1000;
450 		}
451 
452 		if (sleep_ok) {
453 			ms = delay[delay_idx];  /* last element may repeat */
454 			if (delay_idx < ARRAY_SIZE(delay) - 1)
455 				delay_idx++;
456 			msleep(ms);
457 		} else {
458 			mdelay(ms);
459 		}
460 
461 		v = t4_read_reg(adap, ctl_reg);
462 		if (v == X_CIM_PF_NOACCESS)
463 			continue;
464 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
465 			if (!(v & F_MBMSGVALID)) {
466 				t4_write_reg(adap, ctl_reg,
467 					     V_MBOWNER(X_MBOWNER_NONE));
468 				continue;
469 			}
470 
471 			/*
472 			 * Retrieve the command reply and release the mailbox.
473 			 */
474 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477 
478 			res = be64_to_cpu(cmd_rpl[0]);
479 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481 				res = V_FW_CMD_RETVAL(EIO);
482 			} else if (rpl)
483 				memcpy(rpl, cmd_rpl, size);
484 			return -G_FW_CMD_RETVAL((int)res);
485 		}
486 	}
487 
488 	/*
489 	 * We timed out waiting for a reply to our mailbox command.  Report
490 	 * the error and also check to see if the firmware reported any
491 	 * errors ...
492 	 */
493 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494 	    *(const u8 *)cmd, mbox, pcie_fw);
495 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497 
498 	if (pcie_fw & F_PCIE_FW_ERR) {
499 		ret = -ENXIO;
500 		t4_report_fw_error(adap);
501 	} else {
502 		ret = -ETIMEDOUT;
503 		t4_os_dump_devlog(adap);
504 	}
505 
506 	t4_fatal_err(adap, true);
507 	return ret;
508 }
509 
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511 		    void *rpl, bool sleep_ok)
512 {
513 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
515 
516 }
517 
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520 	u32 edc_ecc_err_addr_reg;
521 	u32 edc_bist_status_rdata_reg;
522 
523 	if (is_t4(adap)) {
524 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525 		return 0;
526 	}
527 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529 		return 0;
530 	}
531 
532 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534 
535 	CH_WARN(adap,
536 		"edc%d err addr 0x%x: 0x%x.\n",
537 		idx, edc_ecc_err_addr_reg,
538 		t4_read_reg(adap, edc_ecc_err_addr_reg));
539 	CH_WARN(adap,
540 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541 		edc_bist_status_rdata_reg,
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551 
552 	return 0;
553 }
554 
555 /**
556  *	t4_mc_read - read from MC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which MC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572 
573 	if (is_t4(adap)) {
574 		mc_bist_cmd_reg = A_MC_BIST_CMD;
575 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579 	} else {
580 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584 						  idx);
585 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586 						  idx);
587 	}
588 
589 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590 		return -EBUSY;
591 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595 		     F_START_BIST | V_BIST_CMD_GAP(1));
596 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597 	if (i)
598 		return i;
599 
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601 
602 	for (i = 15; i >= 0; i--)
603 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604 	if (ecc)
605 		*ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607 	return 0;
608 }
609 
610 /**
611  *	t4_edc_read - read from EDC through backdoor accesses
612  *	@adap: the adapter
613  *	@idx: which EDC to access
614  *	@addr: address of first byte requested
615  *	@data: 64 bytes of data containing the requested address
616  *	@ecc: where to store the corresponding 64-bit ECC word
617  *
618  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *	that covers the requested address @addr.  If @parity is not %NULL it
620  *	is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624 	int i;
625 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627 
628 	if (is_t4(adap)) {
629 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633 						    idx);
634 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635 						    idx);
636 	} else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649 						    idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652 	}
653 
654 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655 		return -EBUSY;
656 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659 	t4_write_reg(adap, edc_bist_cmd_reg,
660 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662 	if (i)
663 		return i;
664 
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666 
667 	for (i = 15; i >= 0; i--)
668 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669 	if (ecc)
670 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672 	return 0;
673 }
674 
675 /**
676  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *	@adap: the adapter
678  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *	@addr: address within indicated memory type
680  *	@len: amount of memory to read
681  *	@buf: host memory buffer
682  *
683  *	Reads an [almost] arbitrary memory region in the firmware: the
684  *	firmware memory address, length and host buffer must be aligned on
685  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *	the firmware's memory.  If this memory contains data structures which
687  *	contain multi-byte integers, it's the callers responsibility to
688  *	perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691 		__be32 *buf)
692 {
693 	u32 pos, start, end, offset;
694 	int ret;
695 
696 	/*
697 	 * Argument sanity checks ...
698 	 */
699 	if ((addr & 0x3) || (len & 0x3))
700 		return -EINVAL;
701 
702 	/*
703 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
704 	 * need to round down the start and round up the end.  We'll start
705 	 * copying out of the first line at (addr - start) a word at a time.
706 	 */
707 	start = rounddown2(addr, 64);
708 	end = roundup2(addr + len, 64);
709 	offset = (addr - start)/sizeof(__be32);
710 
711 	for (pos = start; pos < end; pos += 64, offset = 0) {
712 		__be32 data[16];
713 
714 		/*
715 		 * Read the chip's memory block and bail if there's an error.
716 		 */
717 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719 		else
720 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
721 		if (ret)
722 			return ret;
723 
724 		/*
725 		 * Copy the data into the caller's memory buffer.
726 		 */
727 		while (offset < 16 && len > 0) {
728 			*buf++ = data[offset++];
729 			len -= sizeof(__be32);
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744 
745 	/*
746 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
747 	 * retrieve the specified PCI-E Configuration Space register.
748 	 */
749 	if (drv_fw_attach != 0) {
750 		struct fw_ldst_cmd ldst_cmd;
751 		int ret;
752 
753 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754 		ldst_cmd.op_to_addrspace =
755 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756 				    F_FW_CMD_REQUEST |
757 				    F_FW_CMD_READ |
758 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761 		ldst_cmd.u.pcie.ctrl_to_fn =
762 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763 		ldst_cmd.u.pcie.r = reg;
764 
765 		/*
766 		 * If the LDST Command succeeds, return the result, otherwise
767 		 * fall through to reading it directly ourselves ...
768 		 */
769 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770 				 &ldst_cmd);
771 		if (ret == 0)
772 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773 
774 		CH_WARN(adap, "Firmware failed to return "
775 			"Configuration Space register %d, err = %d\n",
776 			reg, -ret);
777 	}
778 
779 	/*
780 	 * Read the desired Configuration Space register via the PCI-E
781 	 * Backdoor mechanism.
782 	 */
783 	return t4_hw_pci_read_cfg4(adap, reg);
784 }
785 
786 /**
787  *	t4_get_regs_len - return the size of the chips register set
788  *	@adapter: the adapter
789  *
790  *	Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794 	unsigned int chip_version = chip_id(adapter);
795 
796 	switch (chip_version) {
797 	case CHELSIO_T4:
798 		if (adapter->flags & IS_VF)
799 			return FW_T4VF_REGMAP_SIZE;
800 		return T4_REGMAP_SIZE;
801 
802 	case CHELSIO_T5:
803 	case CHELSIO_T6:
804 		if (adapter->flags & IS_VF)
805 			return FW_T4VF_REGMAP_SIZE;
806 		return T5_REGMAP_SIZE;
807 	}
808 
809 	CH_ERR(adapter,
810 		"Unsupported chip version %d\n", chip_version);
811 	return 0;
812 }
813 
814 /**
815  *	t4_get_regs - read chip registers into provided buffer
816  *	@adap: the adapter
817  *	@buf: register buffer
818  *	@buf_size: size (in bytes) of register buffer
819  *
820  *	If the provided register buffer isn't large enough for the chip's
821  *	full register range, the register dump will be truncated to the
822  *	register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826 	static const unsigned int t4_reg_ranges[] = {
827 		0x1008, 0x1108,
828 		0x1180, 0x1184,
829 		0x1190, 0x1194,
830 		0x11a0, 0x11a4,
831 		0x11b0, 0x11b4,
832 		0x11fc, 0x123c,
833 		0x1300, 0x173c,
834 		0x1800, 0x18fc,
835 		0x3000, 0x30d8,
836 		0x30e0, 0x30e4,
837 		0x30ec, 0x5910,
838 		0x5920, 0x5924,
839 		0x5960, 0x5960,
840 		0x5968, 0x5968,
841 		0x5970, 0x5970,
842 		0x5978, 0x5978,
843 		0x5980, 0x5980,
844 		0x5988, 0x5988,
845 		0x5990, 0x5990,
846 		0x5998, 0x5998,
847 		0x59a0, 0x59d4,
848 		0x5a00, 0x5ae0,
849 		0x5ae8, 0x5ae8,
850 		0x5af0, 0x5af0,
851 		0x5af8, 0x5af8,
852 		0x6000, 0x6098,
853 		0x6100, 0x6150,
854 		0x6200, 0x6208,
855 		0x6240, 0x6248,
856 		0x6280, 0x62b0,
857 		0x62c0, 0x6338,
858 		0x6370, 0x638c,
859 		0x6400, 0x643c,
860 		0x6500, 0x6524,
861 		0x6a00, 0x6a04,
862 		0x6a14, 0x6a38,
863 		0x6a60, 0x6a70,
864 		0x6a78, 0x6a78,
865 		0x6b00, 0x6b0c,
866 		0x6b1c, 0x6b84,
867 		0x6bf0, 0x6bf8,
868 		0x6c00, 0x6c0c,
869 		0x6c1c, 0x6c84,
870 		0x6cf0, 0x6cf8,
871 		0x6d00, 0x6d0c,
872 		0x6d1c, 0x6d84,
873 		0x6df0, 0x6df8,
874 		0x6e00, 0x6e0c,
875 		0x6e1c, 0x6e84,
876 		0x6ef0, 0x6ef8,
877 		0x6f00, 0x6f0c,
878 		0x6f1c, 0x6f84,
879 		0x6ff0, 0x6ff8,
880 		0x7000, 0x700c,
881 		0x701c, 0x7084,
882 		0x70f0, 0x70f8,
883 		0x7100, 0x710c,
884 		0x711c, 0x7184,
885 		0x71f0, 0x71f8,
886 		0x7200, 0x720c,
887 		0x721c, 0x7284,
888 		0x72f0, 0x72f8,
889 		0x7300, 0x730c,
890 		0x731c, 0x7384,
891 		0x73f0, 0x73f8,
892 		0x7400, 0x7450,
893 		0x7500, 0x7530,
894 		0x7600, 0x760c,
895 		0x7614, 0x761c,
896 		0x7680, 0x76cc,
897 		0x7700, 0x7798,
898 		0x77c0, 0x77fc,
899 		0x7900, 0x79fc,
900 		0x7b00, 0x7b58,
901 		0x7b60, 0x7b84,
902 		0x7b8c, 0x7c38,
903 		0x7d00, 0x7d38,
904 		0x7d40, 0x7d80,
905 		0x7d8c, 0x7ddc,
906 		0x7de4, 0x7e04,
907 		0x7e10, 0x7e1c,
908 		0x7e24, 0x7e38,
909 		0x7e40, 0x7e44,
910 		0x7e4c, 0x7e78,
911 		0x7e80, 0x7ea4,
912 		0x7eac, 0x7edc,
913 		0x7ee8, 0x7efc,
914 		0x8dc0, 0x8e04,
915 		0x8e10, 0x8e1c,
916 		0x8e30, 0x8e78,
917 		0x8ea0, 0x8eb8,
918 		0x8ec0, 0x8f6c,
919 		0x8fc0, 0x9008,
920 		0x9010, 0x9058,
921 		0x9060, 0x9060,
922 		0x9068, 0x9074,
923 		0x90fc, 0x90fc,
924 		0x9400, 0x9408,
925 		0x9410, 0x9458,
926 		0x9600, 0x9600,
927 		0x9608, 0x9638,
928 		0x9640, 0x96bc,
929 		0x9800, 0x9808,
930 		0x9820, 0x983c,
931 		0x9850, 0x9864,
932 		0x9c00, 0x9c6c,
933 		0x9c80, 0x9cec,
934 		0x9d00, 0x9d6c,
935 		0x9d80, 0x9dec,
936 		0x9e00, 0x9e6c,
937 		0x9e80, 0x9eec,
938 		0x9f00, 0x9f6c,
939 		0x9f80, 0x9fec,
940 		0xd004, 0xd004,
941 		0xd010, 0xd03c,
942 		0xdfc0, 0xdfe0,
943 		0xe000, 0xea7c,
944 		0xf000, 0x11110,
945 		0x11118, 0x11190,
946 		0x19040, 0x1906c,
947 		0x19078, 0x19080,
948 		0x1908c, 0x190e4,
949 		0x190f0, 0x190f8,
950 		0x19100, 0x19110,
951 		0x19120, 0x19124,
952 		0x19150, 0x19194,
953 		0x1919c, 0x191b0,
954 		0x191d0, 0x191e8,
955 		0x19238, 0x1924c,
956 		0x193f8, 0x1943c,
957 		0x1944c, 0x19474,
958 		0x19490, 0x194e0,
959 		0x194f0, 0x194f8,
960 		0x19800, 0x19c08,
961 		0x19c10, 0x19c90,
962 		0x19ca0, 0x19ce4,
963 		0x19cf0, 0x19d40,
964 		0x19d50, 0x19d94,
965 		0x19da0, 0x19de8,
966 		0x19df0, 0x19e40,
967 		0x19e50, 0x19e90,
968 		0x19ea0, 0x19f4c,
969 		0x1a000, 0x1a004,
970 		0x1a010, 0x1a06c,
971 		0x1a0b0, 0x1a0e4,
972 		0x1a0ec, 0x1a0f4,
973 		0x1a100, 0x1a108,
974 		0x1a114, 0x1a120,
975 		0x1a128, 0x1a130,
976 		0x1a138, 0x1a138,
977 		0x1a190, 0x1a1c4,
978 		0x1a1fc, 0x1a1fc,
979 		0x1e040, 0x1e04c,
980 		0x1e284, 0x1e28c,
981 		0x1e2c0, 0x1e2c0,
982 		0x1e2e0, 0x1e2e0,
983 		0x1e300, 0x1e384,
984 		0x1e3c0, 0x1e3c8,
985 		0x1e440, 0x1e44c,
986 		0x1e684, 0x1e68c,
987 		0x1e6c0, 0x1e6c0,
988 		0x1e6e0, 0x1e6e0,
989 		0x1e700, 0x1e784,
990 		0x1e7c0, 0x1e7c8,
991 		0x1e840, 0x1e84c,
992 		0x1ea84, 0x1ea8c,
993 		0x1eac0, 0x1eac0,
994 		0x1eae0, 0x1eae0,
995 		0x1eb00, 0x1eb84,
996 		0x1ebc0, 0x1ebc8,
997 		0x1ec40, 0x1ec4c,
998 		0x1ee84, 0x1ee8c,
999 		0x1eec0, 0x1eec0,
1000 		0x1eee0, 0x1eee0,
1001 		0x1ef00, 0x1ef84,
1002 		0x1efc0, 0x1efc8,
1003 		0x1f040, 0x1f04c,
1004 		0x1f284, 0x1f28c,
1005 		0x1f2c0, 0x1f2c0,
1006 		0x1f2e0, 0x1f2e0,
1007 		0x1f300, 0x1f384,
1008 		0x1f3c0, 0x1f3c8,
1009 		0x1f440, 0x1f44c,
1010 		0x1f684, 0x1f68c,
1011 		0x1f6c0, 0x1f6c0,
1012 		0x1f6e0, 0x1f6e0,
1013 		0x1f700, 0x1f784,
1014 		0x1f7c0, 0x1f7c8,
1015 		0x1f840, 0x1f84c,
1016 		0x1fa84, 0x1fa8c,
1017 		0x1fac0, 0x1fac0,
1018 		0x1fae0, 0x1fae0,
1019 		0x1fb00, 0x1fb84,
1020 		0x1fbc0, 0x1fbc8,
1021 		0x1fc40, 0x1fc4c,
1022 		0x1fe84, 0x1fe8c,
1023 		0x1fec0, 0x1fec0,
1024 		0x1fee0, 0x1fee0,
1025 		0x1ff00, 0x1ff84,
1026 		0x1ffc0, 0x1ffc8,
1027 		0x20000, 0x2002c,
1028 		0x20100, 0x2013c,
1029 		0x20190, 0x201a0,
1030 		0x201a8, 0x201b8,
1031 		0x201c4, 0x201c8,
1032 		0x20200, 0x20318,
1033 		0x20400, 0x204b4,
1034 		0x204c0, 0x20528,
1035 		0x20540, 0x20614,
1036 		0x21000, 0x21040,
1037 		0x2104c, 0x21060,
1038 		0x210c0, 0x210ec,
1039 		0x21200, 0x21268,
1040 		0x21270, 0x21284,
1041 		0x212fc, 0x21388,
1042 		0x21400, 0x21404,
1043 		0x21500, 0x21500,
1044 		0x21510, 0x21518,
1045 		0x2152c, 0x21530,
1046 		0x2153c, 0x2153c,
1047 		0x21550, 0x21554,
1048 		0x21600, 0x21600,
1049 		0x21608, 0x2161c,
1050 		0x21624, 0x21628,
1051 		0x21630, 0x21634,
1052 		0x2163c, 0x2163c,
1053 		0x21700, 0x2171c,
1054 		0x21780, 0x2178c,
1055 		0x21800, 0x21818,
1056 		0x21820, 0x21828,
1057 		0x21830, 0x21848,
1058 		0x21850, 0x21854,
1059 		0x21860, 0x21868,
1060 		0x21870, 0x21870,
1061 		0x21878, 0x21898,
1062 		0x218a0, 0x218a8,
1063 		0x218b0, 0x218c8,
1064 		0x218d0, 0x218d4,
1065 		0x218e0, 0x218e8,
1066 		0x218f0, 0x218f0,
1067 		0x218f8, 0x21a18,
1068 		0x21a20, 0x21a28,
1069 		0x21a30, 0x21a48,
1070 		0x21a50, 0x21a54,
1071 		0x21a60, 0x21a68,
1072 		0x21a70, 0x21a70,
1073 		0x21a78, 0x21a98,
1074 		0x21aa0, 0x21aa8,
1075 		0x21ab0, 0x21ac8,
1076 		0x21ad0, 0x21ad4,
1077 		0x21ae0, 0x21ae8,
1078 		0x21af0, 0x21af0,
1079 		0x21af8, 0x21c18,
1080 		0x21c20, 0x21c20,
1081 		0x21c28, 0x21c30,
1082 		0x21c38, 0x21c38,
1083 		0x21c80, 0x21c98,
1084 		0x21ca0, 0x21ca8,
1085 		0x21cb0, 0x21cc8,
1086 		0x21cd0, 0x21cd4,
1087 		0x21ce0, 0x21ce8,
1088 		0x21cf0, 0x21cf0,
1089 		0x21cf8, 0x21d7c,
1090 		0x21e00, 0x21e04,
1091 		0x22000, 0x2202c,
1092 		0x22100, 0x2213c,
1093 		0x22190, 0x221a0,
1094 		0x221a8, 0x221b8,
1095 		0x221c4, 0x221c8,
1096 		0x22200, 0x22318,
1097 		0x22400, 0x224b4,
1098 		0x224c0, 0x22528,
1099 		0x22540, 0x22614,
1100 		0x23000, 0x23040,
1101 		0x2304c, 0x23060,
1102 		0x230c0, 0x230ec,
1103 		0x23200, 0x23268,
1104 		0x23270, 0x23284,
1105 		0x232fc, 0x23388,
1106 		0x23400, 0x23404,
1107 		0x23500, 0x23500,
1108 		0x23510, 0x23518,
1109 		0x2352c, 0x23530,
1110 		0x2353c, 0x2353c,
1111 		0x23550, 0x23554,
1112 		0x23600, 0x23600,
1113 		0x23608, 0x2361c,
1114 		0x23624, 0x23628,
1115 		0x23630, 0x23634,
1116 		0x2363c, 0x2363c,
1117 		0x23700, 0x2371c,
1118 		0x23780, 0x2378c,
1119 		0x23800, 0x23818,
1120 		0x23820, 0x23828,
1121 		0x23830, 0x23848,
1122 		0x23850, 0x23854,
1123 		0x23860, 0x23868,
1124 		0x23870, 0x23870,
1125 		0x23878, 0x23898,
1126 		0x238a0, 0x238a8,
1127 		0x238b0, 0x238c8,
1128 		0x238d0, 0x238d4,
1129 		0x238e0, 0x238e8,
1130 		0x238f0, 0x238f0,
1131 		0x238f8, 0x23a18,
1132 		0x23a20, 0x23a28,
1133 		0x23a30, 0x23a48,
1134 		0x23a50, 0x23a54,
1135 		0x23a60, 0x23a68,
1136 		0x23a70, 0x23a70,
1137 		0x23a78, 0x23a98,
1138 		0x23aa0, 0x23aa8,
1139 		0x23ab0, 0x23ac8,
1140 		0x23ad0, 0x23ad4,
1141 		0x23ae0, 0x23ae8,
1142 		0x23af0, 0x23af0,
1143 		0x23af8, 0x23c18,
1144 		0x23c20, 0x23c20,
1145 		0x23c28, 0x23c30,
1146 		0x23c38, 0x23c38,
1147 		0x23c80, 0x23c98,
1148 		0x23ca0, 0x23ca8,
1149 		0x23cb0, 0x23cc8,
1150 		0x23cd0, 0x23cd4,
1151 		0x23ce0, 0x23ce8,
1152 		0x23cf0, 0x23cf0,
1153 		0x23cf8, 0x23d7c,
1154 		0x23e00, 0x23e04,
1155 		0x24000, 0x2402c,
1156 		0x24100, 0x2413c,
1157 		0x24190, 0x241a0,
1158 		0x241a8, 0x241b8,
1159 		0x241c4, 0x241c8,
1160 		0x24200, 0x24318,
1161 		0x24400, 0x244b4,
1162 		0x244c0, 0x24528,
1163 		0x24540, 0x24614,
1164 		0x25000, 0x25040,
1165 		0x2504c, 0x25060,
1166 		0x250c0, 0x250ec,
1167 		0x25200, 0x25268,
1168 		0x25270, 0x25284,
1169 		0x252fc, 0x25388,
1170 		0x25400, 0x25404,
1171 		0x25500, 0x25500,
1172 		0x25510, 0x25518,
1173 		0x2552c, 0x25530,
1174 		0x2553c, 0x2553c,
1175 		0x25550, 0x25554,
1176 		0x25600, 0x25600,
1177 		0x25608, 0x2561c,
1178 		0x25624, 0x25628,
1179 		0x25630, 0x25634,
1180 		0x2563c, 0x2563c,
1181 		0x25700, 0x2571c,
1182 		0x25780, 0x2578c,
1183 		0x25800, 0x25818,
1184 		0x25820, 0x25828,
1185 		0x25830, 0x25848,
1186 		0x25850, 0x25854,
1187 		0x25860, 0x25868,
1188 		0x25870, 0x25870,
1189 		0x25878, 0x25898,
1190 		0x258a0, 0x258a8,
1191 		0x258b0, 0x258c8,
1192 		0x258d0, 0x258d4,
1193 		0x258e0, 0x258e8,
1194 		0x258f0, 0x258f0,
1195 		0x258f8, 0x25a18,
1196 		0x25a20, 0x25a28,
1197 		0x25a30, 0x25a48,
1198 		0x25a50, 0x25a54,
1199 		0x25a60, 0x25a68,
1200 		0x25a70, 0x25a70,
1201 		0x25a78, 0x25a98,
1202 		0x25aa0, 0x25aa8,
1203 		0x25ab0, 0x25ac8,
1204 		0x25ad0, 0x25ad4,
1205 		0x25ae0, 0x25ae8,
1206 		0x25af0, 0x25af0,
1207 		0x25af8, 0x25c18,
1208 		0x25c20, 0x25c20,
1209 		0x25c28, 0x25c30,
1210 		0x25c38, 0x25c38,
1211 		0x25c80, 0x25c98,
1212 		0x25ca0, 0x25ca8,
1213 		0x25cb0, 0x25cc8,
1214 		0x25cd0, 0x25cd4,
1215 		0x25ce0, 0x25ce8,
1216 		0x25cf0, 0x25cf0,
1217 		0x25cf8, 0x25d7c,
1218 		0x25e00, 0x25e04,
1219 		0x26000, 0x2602c,
1220 		0x26100, 0x2613c,
1221 		0x26190, 0x261a0,
1222 		0x261a8, 0x261b8,
1223 		0x261c4, 0x261c8,
1224 		0x26200, 0x26318,
1225 		0x26400, 0x264b4,
1226 		0x264c0, 0x26528,
1227 		0x26540, 0x26614,
1228 		0x27000, 0x27040,
1229 		0x2704c, 0x27060,
1230 		0x270c0, 0x270ec,
1231 		0x27200, 0x27268,
1232 		0x27270, 0x27284,
1233 		0x272fc, 0x27388,
1234 		0x27400, 0x27404,
1235 		0x27500, 0x27500,
1236 		0x27510, 0x27518,
1237 		0x2752c, 0x27530,
1238 		0x2753c, 0x2753c,
1239 		0x27550, 0x27554,
1240 		0x27600, 0x27600,
1241 		0x27608, 0x2761c,
1242 		0x27624, 0x27628,
1243 		0x27630, 0x27634,
1244 		0x2763c, 0x2763c,
1245 		0x27700, 0x2771c,
1246 		0x27780, 0x2778c,
1247 		0x27800, 0x27818,
1248 		0x27820, 0x27828,
1249 		0x27830, 0x27848,
1250 		0x27850, 0x27854,
1251 		0x27860, 0x27868,
1252 		0x27870, 0x27870,
1253 		0x27878, 0x27898,
1254 		0x278a0, 0x278a8,
1255 		0x278b0, 0x278c8,
1256 		0x278d0, 0x278d4,
1257 		0x278e0, 0x278e8,
1258 		0x278f0, 0x278f0,
1259 		0x278f8, 0x27a18,
1260 		0x27a20, 0x27a28,
1261 		0x27a30, 0x27a48,
1262 		0x27a50, 0x27a54,
1263 		0x27a60, 0x27a68,
1264 		0x27a70, 0x27a70,
1265 		0x27a78, 0x27a98,
1266 		0x27aa0, 0x27aa8,
1267 		0x27ab0, 0x27ac8,
1268 		0x27ad0, 0x27ad4,
1269 		0x27ae0, 0x27ae8,
1270 		0x27af0, 0x27af0,
1271 		0x27af8, 0x27c18,
1272 		0x27c20, 0x27c20,
1273 		0x27c28, 0x27c30,
1274 		0x27c38, 0x27c38,
1275 		0x27c80, 0x27c98,
1276 		0x27ca0, 0x27ca8,
1277 		0x27cb0, 0x27cc8,
1278 		0x27cd0, 0x27cd4,
1279 		0x27ce0, 0x27ce8,
1280 		0x27cf0, 0x27cf0,
1281 		0x27cf8, 0x27d7c,
1282 		0x27e00, 0x27e04,
1283 	};
1284 
1285 	static const unsigned int t4vf_reg_ranges[] = {
1286 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287 		VF_MPS_REG(A_MPS_VF_CTL),
1288 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292 		FW_T4VF_MBDATA_BASE_ADDR,
1293 		FW_T4VF_MBDATA_BASE_ADDR +
1294 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295 	};
1296 
1297 	static const unsigned int t5_reg_ranges[] = {
1298 		0x1008, 0x10c0,
1299 		0x10cc, 0x10f8,
1300 		0x1100, 0x1100,
1301 		0x110c, 0x1148,
1302 		0x1180, 0x1184,
1303 		0x1190, 0x1194,
1304 		0x11a0, 0x11a4,
1305 		0x11b0, 0x11b4,
1306 		0x11fc, 0x123c,
1307 		0x1280, 0x173c,
1308 		0x1800, 0x18fc,
1309 		0x3000, 0x3028,
1310 		0x3060, 0x30b0,
1311 		0x30b8, 0x30d8,
1312 		0x30e0, 0x30fc,
1313 		0x3140, 0x357c,
1314 		0x35a8, 0x35cc,
1315 		0x35ec, 0x35ec,
1316 		0x3600, 0x5624,
1317 		0x56cc, 0x56ec,
1318 		0x56f4, 0x5720,
1319 		0x5728, 0x575c,
1320 		0x580c, 0x5814,
1321 		0x5890, 0x589c,
1322 		0x58a4, 0x58ac,
1323 		0x58b8, 0x58bc,
1324 		0x5940, 0x59c8,
1325 		0x59d0, 0x59dc,
1326 		0x59fc, 0x5a18,
1327 		0x5a60, 0x5a70,
1328 		0x5a80, 0x5a9c,
1329 		0x5b94, 0x5bfc,
1330 		0x6000, 0x6020,
1331 		0x6028, 0x6040,
1332 		0x6058, 0x609c,
1333 		0x60a8, 0x614c,
1334 		0x7700, 0x7798,
1335 		0x77c0, 0x78fc,
1336 		0x7b00, 0x7b58,
1337 		0x7b60, 0x7b84,
1338 		0x7b8c, 0x7c54,
1339 		0x7d00, 0x7d38,
1340 		0x7d40, 0x7d80,
1341 		0x7d8c, 0x7ddc,
1342 		0x7de4, 0x7e04,
1343 		0x7e10, 0x7e1c,
1344 		0x7e24, 0x7e38,
1345 		0x7e40, 0x7e44,
1346 		0x7e4c, 0x7e78,
1347 		0x7e80, 0x7edc,
1348 		0x7ee8, 0x7efc,
1349 		0x8dc0, 0x8de0,
1350 		0x8df8, 0x8e04,
1351 		0x8e10, 0x8e84,
1352 		0x8ea0, 0x8f84,
1353 		0x8fc0, 0x9058,
1354 		0x9060, 0x9060,
1355 		0x9068, 0x90f8,
1356 		0x9400, 0x9408,
1357 		0x9410, 0x9470,
1358 		0x9600, 0x9600,
1359 		0x9608, 0x9638,
1360 		0x9640, 0x96f4,
1361 		0x9800, 0x9808,
1362 		0x9810, 0x9864,
1363 		0x9c00, 0x9c6c,
1364 		0x9c80, 0x9cec,
1365 		0x9d00, 0x9d6c,
1366 		0x9d80, 0x9dec,
1367 		0x9e00, 0x9e6c,
1368 		0x9e80, 0x9eec,
1369 		0x9f00, 0x9f6c,
1370 		0x9f80, 0xa020,
1371 		0xd000, 0xd004,
1372 		0xd010, 0xd03c,
1373 		0xdfc0, 0xdfe0,
1374 		0xe000, 0x1106c,
1375 		0x11074, 0x11088,
1376 		0x1109c, 0x11110,
1377 		0x11118, 0x1117c,
1378 		0x11190, 0x11204,
1379 		0x19040, 0x1906c,
1380 		0x19078, 0x19080,
1381 		0x1908c, 0x190e8,
1382 		0x190f0, 0x190f8,
1383 		0x19100, 0x19110,
1384 		0x19120, 0x19124,
1385 		0x19150, 0x19194,
1386 		0x1919c, 0x191b0,
1387 		0x191d0, 0x191e8,
1388 		0x19238, 0x19290,
1389 		0x193f8, 0x19428,
1390 		0x19430, 0x19444,
1391 		0x1944c, 0x1946c,
1392 		0x19474, 0x19474,
1393 		0x19490, 0x194cc,
1394 		0x194f0, 0x194f8,
1395 		0x19c00, 0x19c08,
1396 		0x19c10, 0x19c60,
1397 		0x19c94, 0x19ce4,
1398 		0x19cf0, 0x19d40,
1399 		0x19d50, 0x19d94,
1400 		0x19da0, 0x19de8,
1401 		0x19df0, 0x19e10,
1402 		0x19e50, 0x19e90,
1403 		0x19ea0, 0x19f24,
1404 		0x19f34, 0x19f34,
1405 		0x19f40, 0x19f50,
1406 		0x19f90, 0x19fb4,
1407 		0x19fc4, 0x19fe4,
1408 		0x1a000, 0x1a004,
1409 		0x1a010, 0x1a06c,
1410 		0x1a0b0, 0x1a0e4,
1411 		0x1a0ec, 0x1a0f8,
1412 		0x1a100, 0x1a108,
1413 		0x1a114, 0x1a130,
1414 		0x1a138, 0x1a1c4,
1415 		0x1a1fc, 0x1a1fc,
1416 		0x1e008, 0x1e00c,
1417 		0x1e040, 0x1e044,
1418 		0x1e04c, 0x1e04c,
1419 		0x1e284, 0x1e290,
1420 		0x1e2c0, 0x1e2c0,
1421 		0x1e2e0, 0x1e2e0,
1422 		0x1e300, 0x1e384,
1423 		0x1e3c0, 0x1e3c8,
1424 		0x1e408, 0x1e40c,
1425 		0x1e440, 0x1e444,
1426 		0x1e44c, 0x1e44c,
1427 		0x1e684, 0x1e690,
1428 		0x1e6c0, 0x1e6c0,
1429 		0x1e6e0, 0x1e6e0,
1430 		0x1e700, 0x1e784,
1431 		0x1e7c0, 0x1e7c8,
1432 		0x1e808, 0x1e80c,
1433 		0x1e840, 0x1e844,
1434 		0x1e84c, 0x1e84c,
1435 		0x1ea84, 0x1ea90,
1436 		0x1eac0, 0x1eac0,
1437 		0x1eae0, 0x1eae0,
1438 		0x1eb00, 0x1eb84,
1439 		0x1ebc0, 0x1ebc8,
1440 		0x1ec08, 0x1ec0c,
1441 		0x1ec40, 0x1ec44,
1442 		0x1ec4c, 0x1ec4c,
1443 		0x1ee84, 0x1ee90,
1444 		0x1eec0, 0x1eec0,
1445 		0x1eee0, 0x1eee0,
1446 		0x1ef00, 0x1ef84,
1447 		0x1efc0, 0x1efc8,
1448 		0x1f008, 0x1f00c,
1449 		0x1f040, 0x1f044,
1450 		0x1f04c, 0x1f04c,
1451 		0x1f284, 0x1f290,
1452 		0x1f2c0, 0x1f2c0,
1453 		0x1f2e0, 0x1f2e0,
1454 		0x1f300, 0x1f384,
1455 		0x1f3c0, 0x1f3c8,
1456 		0x1f408, 0x1f40c,
1457 		0x1f440, 0x1f444,
1458 		0x1f44c, 0x1f44c,
1459 		0x1f684, 0x1f690,
1460 		0x1f6c0, 0x1f6c0,
1461 		0x1f6e0, 0x1f6e0,
1462 		0x1f700, 0x1f784,
1463 		0x1f7c0, 0x1f7c8,
1464 		0x1f808, 0x1f80c,
1465 		0x1f840, 0x1f844,
1466 		0x1f84c, 0x1f84c,
1467 		0x1fa84, 0x1fa90,
1468 		0x1fac0, 0x1fac0,
1469 		0x1fae0, 0x1fae0,
1470 		0x1fb00, 0x1fb84,
1471 		0x1fbc0, 0x1fbc8,
1472 		0x1fc08, 0x1fc0c,
1473 		0x1fc40, 0x1fc44,
1474 		0x1fc4c, 0x1fc4c,
1475 		0x1fe84, 0x1fe90,
1476 		0x1fec0, 0x1fec0,
1477 		0x1fee0, 0x1fee0,
1478 		0x1ff00, 0x1ff84,
1479 		0x1ffc0, 0x1ffc8,
1480 		0x30000, 0x30030,
1481 		0x30100, 0x30144,
1482 		0x30190, 0x301a0,
1483 		0x301a8, 0x301b8,
1484 		0x301c4, 0x301c8,
1485 		0x301d0, 0x301d0,
1486 		0x30200, 0x30318,
1487 		0x30400, 0x304b4,
1488 		0x304c0, 0x3052c,
1489 		0x30540, 0x3061c,
1490 		0x30800, 0x30828,
1491 		0x30834, 0x30834,
1492 		0x308c0, 0x30908,
1493 		0x30910, 0x309ac,
1494 		0x30a00, 0x30a14,
1495 		0x30a1c, 0x30a2c,
1496 		0x30a44, 0x30a50,
1497 		0x30a74, 0x30a74,
1498 		0x30a7c, 0x30afc,
1499 		0x30b08, 0x30c24,
1500 		0x30d00, 0x30d00,
1501 		0x30d08, 0x30d14,
1502 		0x30d1c, 0x30d20,
1503 		0x30d3c, 0x30d3c,
1504 		0x30d48, 0x30d50,
1505 		0x31200, 0x3120c,
1506 		0x31220, 0x31220,
1507 		0x31240, 0x31240,
1508 		0x31600, 0x3160c,
1509 		0x31a00, 0x31a1c,
1510 		0x31e00, 0x31e20,
1511 		0x31e38, 0x31e3c,
1512 		0x31e80, 0x31e80,
1513 		0x31e88, 0x31ea8,
1514 		0x31eb0, 0x31eb4,
1515 		0x31ec8, 0x31ed4,
1516 		0x31fb8, 0x32004,
1517 		0x32200, 0x32200,
1518 		0x32208, 0x32240,
1519 		0x32248, 0x32280,
1520 		0x32288, 0x322c0,
1521 		0x322c8, 0x322fc,
1522 		0x32600, 0x32630,
1523 		0x32a00, 0x32abc,
1524 		0x32b00, 0x32b10,
1525 		0x32b20, 0x32b30,
1526 		0x32b40, 0x32b50,
1527 		0x32b60, 0x32b70,
1528 		0x33000, 0x33028,
1529 		0x33030, 0x33048,
1530 		0x33060, 0x33068,
1531 		0x33070, 0x3309c,
1532 		0x330f0, 0x33128,
1533 		0x33130, 0x33148,
1534 		0x33160, 0x33168,
1535 		0x33170, 0x3319c,
1536 		0x331f0, 0x33238,
1537 		0x33240, 0x33240,
1538 		0x33248, 0x33250,
1539 		0x3325c, 0x33264,
1540 		0x33270, 0x332b8,
1541 		0x332c0, 0x332e4,
1542 		0x332f8, 0x33338,
1543 		0x33340, 0x33340,
1544 		0x33348, 0x33350,
1545 		0x3335c, 0x33364,
1546 		0x33370, 0x333b8,
1547 		0x333c0, 0x333e4,
1548 		0x333f8, 0x33428,
1549 		0x33430, 0x33448,
1550 		0x33460, 0x33468,
1551 		0x33470, 0x3349c,
1552 		0x334f0, 0x33528,
1553 		0x33530, 0x33548,
1554 		0x33560, 0x33568,
1555 		0x33570, 0x3359c,
1556 		0x335f0, 0x33638,
1557 		0x33640, 0x33640,
1558 		0x33648, 0x33650,
1559 		0x3365c, 0x33664,
1560 		0x33670, 0x336b8,
1561 		0x336c0, 0x336e4,
1562 		0x336f8, 0x33738,
1563 		0x33740, 0x33740,
1564 		0x33748, 0x33750,
1565 		0x3375c, 0x33764,
1566 		0x33770, 0x337b8,
1567 		0x337c0, 0x337e4,
1568 		0x337f8, 0x337fc,
1569 		0x33814, 0x33814,
1570 		0x3382c, 0x3382c,
1571 		0x33880, 0x3388c,
1572 		0x338e8, 0x338ec,
1573 		0x33900, 0x33928,
1574 		0x33930, 0x33948,
1575 		0x33960, 0x33968,
1576 		0x33970, 0x3399c,
1577 		0x339f0, 0x33a38,
1578 		0x33a40, 0x33a40,
1579 		0x33a48, 0x33a50,
1580 		0x33a5c, 0x33a64,
1581 		0x33a70, 0x33ab8,
1582 		0x33ac0, 0x33ae4,
1583 		0x33af8, 0x33b10,
1584 		0x33b28, 0x33b28,
1585 		0x33b3c, 0x33b50,
1586 		0x33bf0, 0x33c10,
1587 		0x33c28, 0x33c28,
1588 		0x33c3c, 0x33c50,
1589 		0x33cf0, 0x33cfc,
1590 		0x34000, 0x34030,
1591 		0x34100, 0x34144,
1592 		0x34190, 0x341a0,
1593 		0x341a8, 0x341b8,
1594 		0x341c4, 0x341c8,
1595 		0x341d0, 0x341d0,
1596 		0x34200, 0x34318,
1597 		0x34400, 0x344b4,
1598 		0x344c0, 0x3452c,
1599 		0x34540, 0x3461c,
1600 		0x34800, 0x34828,
1601 		0x34834, 0x34834,
1602 		0x348c0, 0x34908,
1603 		0x34910, 0x349ac,
1604 		0x34a00, 0x34a14,
1605 		0x34a1c, 0x34a2c,
1606 		0x34a44, 0x34a50,
1607 		0x34a74, 0x34a74,
1608 		0x34a7c, 0x34afc,
1609 		0x34b08, 0x34c24,
1610 		0x34d00, 0x34d00,
1611 		0x34d08, 0x34d14,
1612 		0x34d1c, 0x34d20,
1613 		0x34d3c, 0x34d3c,
1614 		0x34d48, 0x34d50,
1615 		0x35200, 0x3520c,
1616 		0x35220, 0x35220,
1617 		0x35240, 0x35240,
1618 		0x35600, 0x3560c,
1619 		0x35a00, 0x35a1c,
1620 		0x35e00, 0x35e20,
1621 		0x35e38, 0x35e3c,
1622 		0x35e80, 0x35e80,
1623 		0x35e88, 0x35ea8,
1624 		0x35eb0, 0x35eb4,
1625 		0x35ec8, 0x35ed4,
1626 		0x35fb8, 0x36004,
1627 		0x36200, 0x36200,
1628 		0x36208, 0x36240,
1629 		0x36248, 0x36280,
1630 		0x36288, 0x362c0,
1631 		0x362c8, 0x362fc,
1632 		0x36600, 0x36630,
1633 		0x36a00, 0x36abc,
1634 		0x36b00, 0x36b10,
1635 		0x36b20, 0x36b30,
1636 		0x36b40, 0x36b50,
1637 		0x36b60, 0x36b70,
1638 		0x37000, 0x37028,
1639 		0x37030, 0x37048,
1640 		0x37060, 0x37068,
1641 		0x37070, 0x3709c,
1642 		0x370f0, 0x37128,
1643 		0x37130, 0x37148,
1644 		0x37160, 0x37168,
1645 		0x37170, 0x3719c,
1646 		0x371f0, 0x37238,
1647 		0x37240, 0x37240,
1648 		0x37248, 0x37250,
1649 		0x3725c, 0x37264,
1650 		0x37270, 0x372b8,
1651 		0x372c0, 0x372e4,
1652 		0x372f8, 0x37338,
1653 		0x37340, 0x37340,
1654 		0x37348, 0x37350,
1655 		0x3735c, 0x37364,
1656 		0x37370, 0x373b8,
1657 		0x373c0, 0x373e4,
1658 		0x373f8, 0x37428,
1659 		0x37430, 0x37448,
1660 		0x37460, 0x37468,
1661 		0x37470, 0x3749c,
1662 		0x374f0, 0x37528,
1663 		0x37530, 0x37548,
1664 		0x37560, 0x37568,
1665 		0x37570, 0x3759c,
1666 		0x375f0, 0x37638,
1667 		0x37640, 0x37640,
1668 		0x37648, 0x37650,
1669 		0x3765c, 0x37664,
1670 		0x37670, 0x376b8,
1671 		0x376c0, 0x376e4,
1672 		0x376f8, 0x37738,
1673 		0x37740, 0x37740,
1674 		0x37748, 0x37750,
1675 		0x3775c, 0x37764,
1676 		0x37770, 0x377b8,
1677 		0x377c0, 0x377e4,
1678 		0x377f8, 0x377fc,
1679 		0x37814, 0x37814,
1680 		0x3782c, 0x3782c,
1681 		0x37880, 0x3788c,
1682 		0x378e8, 0x378ec,
1683 		0x37900, 0x37928,
1684 		0x37930, 0x37948,
1685 		0x37960, 0x37968,
1686 		0x37970, 0x3799c,
1687 		0x379f0, 0x37a38,
1688 		0x37a40, 0x37a40,
1689 		0x37a48, 0x37a50,
1690 		0x37a5c, 0x37a64,
1691 		0x37a70, 0x37ab8,
1692 		0x37ac0, 0x37ae4,
1693 		0x37af8, 0x37b10,
1694 		0x37b28, 0x37b28,
1695 		0x37b3c, 0x37b50,
1696 		0x37bf0, 0x37c10,
1697 		0x37c28, 0x37c28,
1698 		0x37c3c, 0x37c50,
1699 		0x37cf0, 0x37cfc,
1700 		0x38000, 0x38030,
1701 		0x38100, 0x38144,
1702 		0x38190, 0x381a0,
1703 		0x381a8, 0x381b8,
1704 		0x381c4, 0x381c8,
1705 		0x381d0, 0x381d0,
1706 		0x38200, 0x38318,
1707 		0x38400, 0x384b4,
1708 		0x384c0, 0x3852c,
1709 		0x38540, 0x3861c,
1710 		0x38800, 0x38828,
1711 		0x38834, 0x38834,
1712 		0x388c0, 0x38908,
1713 		0x38910, 0x389ac,
1714 		0x38a00, 0x38a14,
1715 		0x38a1c, 0x38a2c,
1716 		0x38a44, 0x38a50,
1717 		0x38a74, 0x38a74,
1718 		0x38a7c, 0x38afc,
1719 		0x38b08, 0x38c24,
1720 		0x38d00, 0x38d00,
1721 		0x38d08, 0x38d14,
1722 		0x38d1c, 0x38d20,
1723 		0x38d3c, 0x38d3c,
1724 		0x38d48, 0x38d50,
1725 		0x39200, 0x3920c,
1726 		0x39220, 0x39220,
1727 		0x39240, 0x39240,
1728 		0x39600, 0x3960c,
1729 		0x39a00, 0x39a1c,
1730 		0x39e00, 0x39e20,
1731 		0x39e38, 0x39e3c,
1732 		0x39e80, 0x39e80,
1733 		0x39e88, 0x39ea8,
1734 		0x39eb0, 0x39eb4,
1735 		0x39ec8, 0x39ed4,
1736 		0x39fb8, 0x3a004,
1737 		0x3a200, 0x3a200,
1738 		0x3a208, 0x3a240,
1739 		0x3a248, 0x3a280,
1740 		0x3a288, 0x3a2c0,
1741 		0x3a2c8, 0x3a2fc,
1742 		0x3a600, 0x3a630,
1743 		0x3aa00, 0x3aabc,
1744 		0x3ab00, 0x3ab10,
1745 		0x3ab20, 0x3ab30,
1746 		0x3ab40, 0x3ab50,
1747 		0x3ab60, 0x3ab70,
1748 		0x3b000, 0x3b028,
1749 		0x3b030, 0x3b048,
1750 		0x3b060, 0x3b068,
1751 		0x3b070, 0x3b09c,
1752 		0x3b0f0, 0x3b128,
1753 		0x3b130, 0x3b148,
1754 		0x3b160, 0x3b168,
1755 		0x3b170, 0x3b19c,
1756 		0x3b1f0, 0x3b238,
1757 		0x3b240, 0x3b240,
1758 		0x3b248, 0x3b250,
1759 		0x3b25c, 0x3b264,
1760 		0x3b270, 0x3b2b8,
1761 		0x3b2c0, 0x3b2e4,
1762 		0x3b2f8, 0x3b338,
1763 		0x3b340, 0x3b340,
1764 		0x3b348, 0x3b350,
1765 		0x3b35c, 0x3b364,
1766 		0x3b370, 0x3b3b8,
1767 		0x3b3c0, 0x3b3e4,
1768 		0x3b3f8, 0x3b428,
1769 		0x3b430, 0x3b448,
1770 		0x3b460, 0x3b468,
1771 		0x3b470, 0x3b49c,
1772 		0x3b4f0, 0x3b528,
1773 		0x3b530, 0x3b548,
1774 		0x3b560, 0x3b568,
1775 		0x3b570, 0x3b59c,
1776 		0x3b5f0, 0x3b638,
1777 		0x3b640, 0x3b640,
1778 		0x3b648, 0x3b650,
1779 		0x3b65c, 0x3b664,
1780 		0x3b670, 0x3b6b8,
1781 		0x3b6c0, 0x3b6e4,
1782 		0x3b6f8, 0x3b738,
1783 		0x3b740, 0x3b740,
1784 		0x3b748, 0x3b750,
1785 		0x3b75c, 0x3b764,
1786 		0x3b770, 0x3b7b8,
1787 		0x3b7c0, 0x3b7e4,
1788 		0x3b7f8, 0x3b7fc,
1789 		0x3b814, 0x3b814,
1790 		0x3b82c, 0x3b82c,
1791 		0x3b880, 0x3b88c,
1792 		0x3b8e8, 0x3b8ec,
1793 		0x3b900, 0x3b928,
1794 		0x3b930, 0x3b948,
1795 		0x3b960, 0x3b968,
1796 		0x3b970, 0x3b99c,
1797 		0x3b9f0, 0x3ba38,
1798 		0x3ba40, 0x3ba40,
1799 		0x3ba48, 0x3ba50,
1800 		0x3ba5c, 0x3ba64,
1801 		0x3ba70, 0x3bab8,
1802 		0x3bac0, 0x3bae4,
1803 		0x3baf8, 0x3bb10,
1804 		0x3bb28, 0x3bb28,
1805 		0x3bb3c, 0x3bb50,
1806 		0x3bbf0, 0x3bc10,
1807 		0x3bc28, 0x3bc28,
1808 		0x3bc3c, 0x3bc50,
1809 		0x3bcf0, 0x3bcfc,
1810 		0x3c000, 0x3c030,
1811 		0x3c100, 0x3c144,
1812 		0x3c190, 0x3c1a0,
1813 		0x3c1a8, 0x3c1b8,
1814 		0x3c1c4, 0x3c1c8,
1815 		0x3c1d0, 0x3c1d0,
1816 		0x3c200, 0x3c318,
1817 		0x3c400, 0x3c4b4,
1818 		0x3c4c0, 0x3c52c,
1819 		0x3c540, 0x3c61c,
1820 		0x3c800, 0x3c828,
1821 		0x3c834, 0x3c834,
1822 		0x3c8c0, 0x3c908,
1823 		0x3c910, 0x3c9ac,
1824 		0x3ca00, 0x3ca14,
1825 		0x3ca1c, 0x3ca2c,
1826 		0x3ca44, 0x3ca50,
1827 		0x3ca74, 0x3ca74,
1828 		0x3ca7c, 0x3cafc,
1829 		0x3cb08, 0x3cc24,
1830 		0x3cd00, 0x3cd00,
1831 		0x3cd08, 0x3cd14,
1832 		0x3cd1c, 0x3cd20,
1833 		0x3cd3c, 0x3cd3c,
1834 		0x3cd48, 0x3cd50,
1835 		0x3d200, 0x3d20c,
1836 		0x3d220, 0x3d220,
1837 		0x3d240, 0x3d240,
1838 		0x3d600, 0x3d60c,
1839 		0x3da00, 0x3da1c,
1840 		0x3de00, 0x3de20,
1841 		0x3de38, 0x3de3c,
1842 		0x3de80, 0x3de80,
1843 		0x3de88, 0x3dea8,
1844 		0x3deb0, 0x3deb4,
1845 		0x3dec8, 0x3ded4,
1846 		0x3dfb8, 0x3e004,
1847 		0x3e200, 0x3e200,
1848 		0x3e208, 0x3e240,
1849 		0x3e248, 0x3e280,
1850 		0x3e288, 0x3e2c0,
1851 		0x3e2c8, 0x3e2fc,
1852 		0x3e600, 0x3e630,
1853 		0x3ea00, 0x3eabc,
1854 		0x3eb00, 0x3eb10,
1855 		0x3eb20, 0x3eb30,
1856 		0x3eb40, 0x3eb50,
1857 		0x3eb60, 0x3eb70,
1858 		0x3f000, 0x3f028,
1859 		0x3f030, 0x3f048,
1860 		0x3f060, 0x3f068,
1861 		0x3f070, 0x3f09c,
1862 		0x3f0f0, 0x3f128,
1863 		0x3f130, 0x3f148,
1864 		0x3f160, 0x3f168,
1865 		0x3f170, 0x3f19c,
1866 		0x3f1f0, 0x3f238,
1867 		0x3f240, 0x3f240,
1868 		0x3f248, 0x3f250,
1869 		0x3f25c, 0x3f264,
1870 		0x3f270, 0x3f2b8,
1871 		0x3f2c0, 0x3f2e4,
1872 		0x3f2f8, 0x3f338,
1873 		0x3f340, 0x3f340,
1874 		0x3f348, 0x3f350,
1875 		0x3f35c, 0x3f364,
1876 		0x3f370, 0x3f3b8,
1877 		0x3f3c0, 0x3f3e4,
1878 		0x3f3f8, 0x3f428,
1879 		0x3f430, 0x3f448,
1880 		0x3f460, 0x3f468,
1881 		0x3f470, 0x3f49c,
1882 		0x3f4f0, 0x3f528,
1883 		0x3f530, 0x3f548,
1884 		0x3f560, 0x3f568,
1885 		0x3f570, 0x3f59c,
1886 		0x3f5f0, 0x3f638,
1887 		0x3f640, 0x3f640,
1888 		0x3f648, 0x3f650,
1889 		0x3f65c, 0x3f664,
1890 		0x3f670, 0x3f6b8,
1891 		0x3f6c0, 0x3f6e4,
1892 		0x3f6f8, 0x3f738,
1893 		0x3f740, 0x3f740,
1894 		0x3f748, 0x3f750,
1895 		0x3f75c, 0x3f764,
1896 		0x3f770, 0x3f7b8,
1897 		0x3f7c0, 0x3f7e4,
1898 		0x3f7f8, 0x3f7fc,
1899 		0x3f814, 0x3f814,
1900 		0x3f82c, 0x3f82c,
1901 		0x3f880, 0x3f88c,
1902 		0x3f8e8, 0x3f8ec,
1903 		0x3f900, 0x3f928,
1904 		0x3f930, 0x3f948,
1905 		0x3f960, 0x3f968,
1906 		0x3f970, 0x3f99c,
1907 		0x3f9f0, 0x3fa38,
1908 		0x3fa40, 0x3fa40,
1909 		0x3fa48, 0x3fa50,
1910 		0x3fa5c, 0x3fa64,
1911 		0x3fa70, 0x3fab8,
1912 		0x3fac0, 0x3fae4,
1913 		0x3faf8, 0x3fb10,
1914 		0x3fb28, 0x3fb28,
1915 		0x3fb3c, 0x3fb50,
1916 		0x3fbf0, 0x3fc10,
1917 		0x3fc28, 0x3fc28,
1918 		0x3fc3c, 0x3fc50,
1919 		0x3fcf0, 0x3fcfc,
1920 		0x40000, 0x4000c,
1921 		0x40040, 0x40050,
1922 		0x40060, 0x40068,
1923 		0x4007c, 0x4008c,
1924 		0x40094, 0x400b0,
1925 		0x400c0, 0x40144,
1926 		0x40180, 0x4018c,
1927 		0x40200, 0x40254,
1928 		0x40260, 0x40264,
1929 		0x40270, 0x40288,
1930 		0x40290, 0x40298,
1931 		0x402ac, 0x402c8,
1932 		0x402d0, 0x402e0,
1933 		0x402f0, 0x402f0,
1934 		0x40300, 0x4033c,
1935 		0x403f8, 0x403fc,
1936 		0x41304, 0x413c4,
1937 		0x41400, 0x4140c,
1938 		0x41414, 0x4141c,
1939 		0x41480, 0x414d0,
1940 		0x44000, 0x44054,
1941 		0x4405c, 0x44078,
1942 		0x440c0, 0x44174,
1943 		0x44180, 0x441ac,
1944 		0x441b4, 0x441b8,
1945 		0x441c0, 0x44254,
1946 		0x4425c, 0x44278,
1947 		0x442c0, 0x44374,
1948 		0x44380, 0x443ac,
1949 		0x443b4, 0x443b8,
1950 		0x443c0, 0x44454,
1951 		0x4445c, 0x44478,
1952 		0x444c0, 0x44574,
1953 		0x44580, 0x445ac,
1954 		0x445b4, 0x445b8,
1955 		0x445c0, 0x44654,
1956 		0x4465c, 0x44678,
1957 		0x446c0, 0x44774,
1958 		0x44780, 0x447ac,
1959 		0x447b4, 0x447b8,
1960 		0x447c0, 0x44854,
1961 		0x4485c, 0x44878,
1962 		0x448c0, 0x44974,
1963 		0x44980, 0x449ac,
1964 		0x449b4, 0x449b8,
1965 		0x449c0, 0x449fc,
1966 		0x45000, 0x45004,
1967 		0x45010, 0x45030,
1968 		0x45040, 0x45060,
1969 		0x45068, 0x45068,
1970 		0x45080, 0x45084,
1971 		0x450a0, 0x450b0,
1972 		0x45200, 0x45204,
1973 		0x45210, 0x45230,
1974 		0x45240, 0x45260,
1975 		0x45268, 0x45268,
1976 		0x45280, 0x45284,
1977 		0x452a0, 0x452b0,
1978 		0x460c0, 0x460e4,
1979 		0x47000, 0x4703c,
1980 		0x47044, 0x4708c,
1981 		0x47200, 0x47250,
1982 		0x47400, 0x47408,
1983 		0x47414, 0x47420,
1984 		0x47600, 0x47618,
1985 		0x47800, 0x47814,
1986 		0x48000, 0x4800c,
1987 		0x48040, 0x48050,
1988 		0x48060, 0x48068,
1989 		0x4807c, 0x4808c,
1990 		0x48094, 0x480b0,
1991 		0x480c0, 0x48144,
1992 		0x48180, 0x4818c,
1993 		0x48200, 0x48254,
1994 		0x48260, 0x48264,
1995 		0x48270, 0x48288,
1996 		0x48290, 0x48298,
1997 		0x482ac, 0x482c8,
1998 		0x482d0, 0x482e0,
1999 		0x482f0, 0x482f0,
2000 		0x48300, 0x4833c,
2001 		0x483f8, 0x483fc,
2002 		0x49304, 0x493c4,
2003 		0x49400, 0x4940c,
2004 		0x49414, 0x4941c,
2005 		0x49480, 0x494d0,
2006 		0x4c000, 0x4c054,
2007 		0x4c05c, 0x4c078,
2008 		0x4c0c0, 0x4c174,
2009 		0x4c180, 0x4c1ac,
2010 		0x4c1b4, 0x4c1b8,
2011 		0x4c1c0, 0x4c254,
2012 		0x4c25c, 0x4c278,
2013 		0x4c2c0, 0x4c374,
2014 		0x4c380, 0x4c3ac,
2015 		0x4c3b4, 0x4c3b8,
2016 		0x4c3c0, 0x4c454,
2017 		0x4c45c, 0x4c478,
2018 		0x4c4c0, 0x4c574,
2019 		0x4c580, 0x4c5ac,
2020 		0x4c5b4, 0x4c5b8,
2021 		0x4c5c0, 0x4c654,
2022 		0x4c65c, 0x4c678,
2023 		0x4c6c0, 0x4c774,
2024 		0x4c780, 0x4c7ac,
2025 		0x4c7b4, 0x4c7b8,
2026 		0x4c7c0, 0x4c854,
2027 		0x4c85c, 0x4c878,
2028 		0x4c8c0, 0x4c974,
2029 		0x4c980, 0x4c9ac,
2030 		0x4c9b4, 0x4c9b8,
2031 		0x4c9c0, 0x4c9fc,
2032 		0x4d000, 0x4d004,
2033 		0x4d010, 0x4d030,
2034 		0x4d040, 0x4d060,
2035 		0x4d068, 0x4d068,
2036 		0x4d080, 0x4d084,
2037 		0x4d0a0, 0x4d0b0,
2038 		0x4d200, 0x4d204,
2039 		0x4d210, 0x4d230,
2040 		0x4d240, 0x4d260,
2041 		0x4d268, 0x4d268,
2042 		0x4d280, 0x4d284,
2043 		0x4d2a0, 0x4d2b0,
2044 		0x4e0c0, 0x4e0e4,
2045 		0x4f000, 0x4f03c,
2046 		0x4f044, 0x4f08c,
2047 		0x4f200, 0x4f250,
2048 		0x4f400, 0x4f408,
2049 		0x4f414, 0x4f420,
2050 		0x4f600, 0x4f618,
2051 		0x4f800, 0x4f814,
2052 		0x50000, 0x50084,
2053 		0x50090, 0x500cc,
2054 		0x50400, 0x50400,
2055 		0x50800, 0x50884,
2056 		0x50890, 0x508cc,
2057 		0x50c00, 0x50c00,
2058 		0x51000, 0x5101c,
2059 		0x51300, 0x51308,
2060 	};
2061 
2062 	static const unsigned int t5vf_reg_ranges[] = {
2063 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2064 		VF_MPS_REG(A_MPS_VF_CTL),
2065 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2066 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2067 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2068 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2069 		FW_T4VF_MBDATA_BASE_ADDR,
2070 		FW_T4VF_MBDATA_BASE_ADDR +
2071 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2072 	};
2073 
2074 	static const unsigned int t6_reg_ranges[] = {
2075 		0x1008, 0x101c,
2076 		0x1024, 0x10a8,
2077 		0x10b4, 0x10f8,
2078 		0x1100, 0x1114,
2079 		0x111c, 0x112c,
2080 		0x1138, 0x113c,
2081 		0x1144, 0x114c,
2082 		0x1180, 0x1184,
2083 		0x1190, 0x1194,
2084 		0x11a0, 0x11a4,
2085 		0x11b0, 0x11c4,
2086 		0x11fc, 0x123c,
2087 		0x1254, 0x1274,
2088 		0x1280, 0x133c,
2089 		0x1800, 0x18fc,
2090 		0x3000, 0x302c,
2091 		0x3060, 0x30b0,
2092 		0x30b8, 0x30d8,
2093 		0x30e0, 0x30fc,
2094 		0x3140, 0x357c,
2095 		0x35a8, 0x35cc,
2096 		0x35ec, 0x35ec,
2097 		0x3600, 0x5624,
2098 		0x56cc, 0x56ec,
2099 		0x56f4, 0x5720,
2100 		0x5728, 0x575c,
2101 		0x580c, 0x5814,
2102 		0x5890, 0x589c,
2103 		0x58a4, 0x58ac,
2104 		0x58b8, 0x58bc,
2105 		0x5940, 0x595c,
2106 		0x5980, 0x598c,
2107 		0x59b0, 0x59c8,
2108 		0x59d0, 0x59dc,
2109 		0x59fc, 0x5a18,
2110 		0x5a60, 0x5a6c,
2111 		0x5a80, 0x5a8c,
2112 		0x5a94, 0x5a9c,
2113 		0x5b94, 0x5bfc,
2114 		0x5c10, 0x5e48,
2115 		0x5e50, 0x5e94,
2116 		0x5ea0, 0x5eb0,
2117 		0x5ec0, 0x5ec0,
2118 		0x5ec8, 0x5ed0,
2119 		0x5ee0, 0x5ee0,
2120 		0x5ef0, 0x5ef0,
2121 		0x5f00, 0x5f00,
2122 		0x6000, 0x6020,
2123 		0x6028, 0x6040,
2124 		0x6058, 0x609c,
2125 		0x60a8, 0x619c,
2126 		0x7700, 0x7798,
2127 		0x77c0, 0x7880,
2128 		0x78cc, 0x78fc,
2129 		0x7b00, 0x7b58,
2130 		0x7b60, 0x7b84,
2131 		0x7b8c, 0x7c54,
2132 		0x7d00, 0x7d38,
2133 		0x7d40, 0x7d84,
2134 		0x7d8c, 0x7ddc,
2135 		0x7de4, 0x7e04,
2136 		0x7e10, 0x7e1c,
2137 		0x7e24, 0x7e38,
2138 		0x7e40, 0x7e44,
2139 		0x7e4c, 0x7e78,
2140 		0x7e80, 0x7edc,
2141 		0x7ee8, 0x7efc,
2142 		0x8dc0, 0x8de0,
2143 		0x8df8, 0x8e04,
2144 		0x8e10, 0x8e84,
2145 		0x8ea0, 0x8f88,
2146 		0x8fb8, 0x9058,
2147 		0x9060, 0x9060,
2148 		0x9068, 0x90f8,
2149 		0x9100, 0x9124,
2150 		0x9400, 0x9470,
2151 		0x9600, 0x9600,
2152 		0x9608, 0x9638,
2153 		0x9640, 0x9704,
2154 		0x9710, 0x971c,
2155 		0x9800, 0x9808,
2156 		0x9810, 0x9864,
2157 		0x9c00, 0x9c6c,
2158 		0x9c80, 0x9cec,
2159 		0x9d00, 0x9d6c,
2160 		0x9d80, 0x9dec,
2161 		0x9e00, 0x9e6c,
2162 		0x9e80, 0x9eec,
2163 		0x9f00, 0x9f6c,
2164 		0x9f80, 0xa020,
2165 		0xd000, 0xd03c,
2166 		0xd100, 0xd118,
2167 		0xd200, 0xd214,
2168 		0xd220, 0xd234,
2169 		0xd240, 0xd254,
2170 		0xd260, 0xd274,
2171 		0xd280, 0xd294,
2172 		0xd2a0, 0xd2b4,
2173 		0xd2c0, 0xd2d4,
2174 		0xd2e0, 0xd2f4,
2175 		0xd300, 0xd31c,
2176 		0xdfc0, 0xdfe0,
2177 		0xe000, 0xf008,
2178 		0xf010, 0xf018,
2179 		0xf020, 0xf028,
2180 		0x11000, 0x11014,
2181 		0x11048, 0x1106c,
2182 		0x11074, 0x11088,
2183 		0x11098, 0x11120,
2184 		0x1112c, 0x1117c,
2185 		0x11190, 0x112e0,
2186 		0x11300, 0x1130c,
2187 		0x12000, 0x1206c,
2188 		0x19040, 0x1906c,
2189 		0x19078, 0x19080,
2190 		0x1908c, 0x190e8,
2191 		0x190f0, 0x190f8,
2192 		0x19100, 0x19110,
2193 		0x19120, 0x19124,
2194 		0x19150, 0x19194,
2195 		0x1919c, 0x191b0,
2196 		0x191d0, 0x191e8,
2197 		0x19238, 0x19290,
2198 		0x192a4, 0x192b0,
2199 		0x19348, 0x1934c,
2200 		0x193f8, 0x19418,
2201 		0x19420, 0x19428,
2202 		0x19430, 0x19444,
2203 		0x1944c, 0x1946c,
2204 		0x19474, 0x19474,
2205 		0x19490, 0x194cc,
2206 		0x194f0, 0x194f8,
2207 		0x19c00, 0x19c48,
2208 		0x19c50, 0x19c80,
2209 		0x19c94, 0x19c98,
2210 		0x19ca0, 0x19cbc,
2211 		0x19ce4, 0x19ce4,
2212 		0x19cf0, 0x19cf8,
2213 		0x19d00, 0x19d28,
2214 		0x19d50, 0x19d78,
2215 		0x19d94, 0x19d98,
2216 		0x19da0, 0x19de0,
2217 		0x19df0, 0x19e10,
2218 		0x19e50, 0x19e6c,
2219 		0x19ea0, 0x19ebc,
2220 		0x19ec4, 0x19ef4,
2221 		0x19f04, 0x19f2c,
2222 		0x19f34, 0x19f34,
2223 		0x19f40, 0x19f50,
2224 		0x19f90, 0x19fac,
2225 		0x19fc4, 0x19fc8,
2226 		0x19fd0, 0x19fe4,
2227 		0x1a000, 0x1a004,
2228 		0x1a010, 0x1a06c,
2229 		0x1a0b0, 0x1a0e4,
2230 		0x1a0ec, 0x1a0f8,
2231 		0x1a100, 0x1a108,
2232 		0x1a114, 0x1a130,
2233 		0x1a138, 0x1a1c4,
2234 		0x1a1fc, 0x1a1fc,
2235 		0x1e008, 0x1e00c,
2236 		0x1e040, 0x1e044,
2237 		0x1e04c, 0x1e04c,
2238 		0x1e284, 0x1e290,
2239 		0x1e2c0, 0x1e2c0,
2240 		0x1e2e0, 0x1e2e0,
2241 		0x1e300, 0x1e384,
2242 		0x1e3c0, 0x1e3c8,
2243 		0x1e408, 0x1e40c,
2244 		0x1e440, 0x1e444,
2245 		0x1e44c, 0x1e44c,
2246 		0x1e684, 0x1e690,
2247 		0x1e6c0, 0x1e6c0,
2248 		0x1e6e0, 0x1e6e0,
2249 		0x1e700, 0x1e784,
2250 		0x1e7c0, 0x1e7c8,
2251 		0x1e808, 0x1e80c,
2252 		0x1e840, 0x1e844,
2253 		0x1e84c, 0x1e84c,
2254 		0x1ea84, 0x1ea90,
2255 		0x1eac0, 0x1eac0,
2256 		0x1eae0, 0x1eae0,
2257 		0x1eb00, 0x1eb84,
2258 		0x1ebc0, 0x1ebc8,
2259 		0x1ec08, 0x1ec0c,
2260 		0x1ec40, 0x1ec44,
2261 		0x1ec4c, 0x1ec4c,
2262 		0x1ee84, 0x1ee90,
2263 		0x1eec0, 0x1eec0,
2264 		0x1eee0, 0x1eee0,
2265 		0x1ef00, 0x1ef84,
2266 		0x1efc0, 0x1efc8,
2267 		0x1f008, 0x1f00c,
2268 		0x1f040, 0x1f044,
2269 		0x1f04c, 0x1f04c,
2270 		0x1f284, 0x1f290,
2271 		0x1f2c0, 0x1f2c0,
2272 		0x1f2e0, 0x1f2e0,
2273 		0x1f300, 0x1f384,
2274 		0x1f3c0, 0x1f3c8,
2275 		0x1f408, 0x1f40c,
2276 		0x1f440, 0x1f444,
2277 		0x1f44c, 0x1f44c,
2278 		0x1f684, 0x1f690,
2279 		0x1f6c0, 0x1f6c0,
2280 		0x1f6e0, 0x1f6e0,
2281 		0x1f700, 0x1f784,
2282 		0x1f7c0, 0x1f7c8,
2283 		0x1f808, 0x1f80c,
2284 		0x1f840, 0x1f844,
2285 		0x1f84c, 0x1f84c,
2286 		0x1fa84, 0x1fa90,
2287 		0x1fac0, 0x1fac0,
2288 		0x1fae0, 0x1fae0,
2289 		0x1fb00, 0x1fb84,
2290 		0x1fbc0, 0x1fbc8,
2291 		0x1fc08, 0x1fc0c,
2292 		0x1fc40, 0x1fc44,
2293 		0x1fc4c, 0x1fc4c,
2294 		0x1fe84, 0x1fe90,
2295 		0x1fec0, 0x1fec0,
2296 		0x1fee0, 0x1fee0,
2297 		0x1ff00, 0x1ff84,
2298 		0x1ffc0, 0x1ffc8,
2299 		0x30000, 0x30030,
2300 		0x30100, 0x30168,
2301 		0x30190, 0x301a0,
2302 		0x301a8, 0x301b8,
2303 		0x301c4, 0x301c8,
2304 		0x301d0, 0x301d0,
2305 		0x30200, 0x30320,
2306 		0x30400, 0x304b4,
2307 		0x304c0, 0x3052c,
2308 		0x30540, 0x3061c,
2309 		0x30800, 0x308a0,
2310 		0x308c0, 0x30908,
2311 		0x30910, 0x309b8,
2312 		0x30a00, 0x30a04,
2313 		0x30a0c, 0x30a14,
2314 		0x30a1c, 0x30a2c,
2315 		0x30a44, 0x30a50,
2316 		0x30a74, 0x30a74,
2317 		0x30a7c, 0x30afc,
2318 		0x30b08, 0x30c24,
2319 		0x30d00, 0x30d14,
2320 		0x30d1c, 0x30d3c,
2321 		0x30d44, 0x30d4c,
2322 		0x30d54, 0x30d74,
2323 		0x30d7c, 0x30d7c,
2324 		0x30de0, 0x30de0,
2325 		0x30e00, 0x30ed4,
2326 		0x30f00, 0x30fa4,
2327 		0x30fc0, 0x30fc4,
2328 		0x31000, 0x31004,
2329 		0x31080, 0x310fc,
2330 		0x31208, 0x31220,
2331 		0x3123c, 0x31254,
2332 		0x31300, 0x31300,
2333 		0x31308, 0x3131c,
2334 		0x31338, 0x3133c,
2335 		0x31380, 0x31380,
2336 		0x31388, 0x313a8,
2337 		0x313b4, 0x313b4,
2338 		0x31400, 0x31420,
2339 		0x31438, 0x3143c,
2340 		0x31480, 0x31480,
2341 		0x314a8, 0x314a8,
2342 		0x314b0, 0x314b4,
2343 		0x314c8, 0x314d4,
2344 		0x31a40, 0x31a4c,
2345 		0x31af0, 0x31b20,
2346 		0x31b38, 0x31b3c,
2347 		0x31b80, 0x31b80,
2348 		0x31ba8, 0x31ba8,
2349 		0x31bb0, 0x31bb4,
2350 		0x31bc8, 0x31bd4,
2351 		0x32140, 0x3218c,
2352 		0x321f0, 0x321f4,
2353 		0x32200, 0x32200,
2354 		0x32218, 0x32218,
2355 		0x32400, 0x32400,
2356 		0x32408, 0x3241c,
2357 		0x32618, 0x32620,
2358 		0x32664, 0x32664,
2359 		0x326a8, 0x326a8,
2360 		0x326ec, 0x326ec,
2361 		0x32a00, 0x32abc,
2362 		0x32b00, 0x32b18,
2363 		0x32b20, 0x32b38,
2364 		0x32b40, 0x32b58,
2365 		0x32b60, 0x32b78,
2366 		0x32c00, 0x32c00,
2367 		0x32c08, 0x32c3c,
2368 		0x33000, 0x3302c,
2369 		0x33034, 0x33050,
2370 		0x33058, 0x33058,
2371 		0x33060, 0x3308c,
2372 		0x3309c, 0x330ac,
2373 		0x330c0, 0x330c0,
2374 		0x330c8, 0x330d0,
2375 		0x330d8, 0x330e0,
2376 		0x330ec, 0x3312c,
2377 		0x33134, 0x33150,
2378 		0x33158, 0x33158,
2379 		0x33160, 0x3318c,
2380 		0x3319c, 0x331ac,
2381 		0x331c0, 0x331c0,
2382 		0x331c8, 0x331d0,
2383 		0x331d8, 0x331e0,
2384 		0x331ec, 0x33290,
2385 		0x33298, 0x332c4,
2386 		0x332e4, 0x33390,
2387 		0x33398, 0x333c4,
2388 		0x333e4, 0x3342c,
2389 		0x33434, 0x33450,
2390 		0x33458, 0x33458,
2391 		0x33460, 0x3348c,
2392 		0x3349c, 0x334ac,
2393 		0x334c0, 0x334c0,
2394 		0x334c8, 0x334d0,
2395 		0x334d8, 0x334e0,
2396 		0x334ec, 0x3352c,
2397 		0x33534, 0x33550,
2398 		0x33558, 0x33558,
2399 		0x33560, 0x3358c,
2400 		0x3359c, 0x335ac,
2401 		0x335c0, 0x335c0,
2402 		0x335c8, 0x335d0,
2403 		0x335d8, 0x335e0,
2404 		0x335ec, 0x33690,
2405 		0x33698, 0x336c4,
2406 		0x336e4, 0x33790,
2407 		0x33798, 0x337c4,
2408 		0x337e4, 0x337fc,
2409 		0x33814, 0x33814,
2410 		0x33854, 0x33868,
2411 		0x33880, 0x3388c,
2412 		0x338c0, 0x338d0,
2413 		0x338e8, 0x338ec,
2414 		0x33900, 0x3392c,
2415 		0x33934, 0x33950,
2416 		0x33958, 0x33958,
2417 		0x33960, 0x3398c,
2418 		0x3399c, 0x339ac,
2419 		0x339c0, 0x339c0,
2420 		0x339c8, 0x339d0,
2421 		0x339d8, 0x339e0,
2422 		0x339ec, 0x33a90,
2423 		0x33a98, 0x33ac4,
2424 		0x33ae4, 0x33b10,
2425 		0x33b24, 0x33b28,
2426 		0x33b38, 0x33b50,
2427 		0x33bf0, 0x33c10,
2428 		0x33c24, 0x33c28,
2429 		0x33c38, 0x33c50,
2430 		0x33cf0, 0x33cfc,
2431 		0x34000, 0x34030,
2432 		0x34100, 0x34168,
2433 		0x34190, 0x341a0,
2434 		0x341a8, 0x341b8,
2435 		0x341c4, 0x341c8,
2436 		0x341d0, 0x341d0,
2437 		0x34200, 0x34320,
2438 		0x34400, 0x344b4,
2439 		0x344c0, 0x3452c,
2440 		0x34540, 0x3461c,
2441 		0x34800, 0x348a0,
2442 		0x348c0, 0x34908,
2443 		0x34910, 0x349b8,
2444 		0x34a00, 0x34a04,
2445 		0x34a0c, 0x34a14,
2446 		0x34a1c, 0x34a2c,
2447 		0x34a44, 0x34a50,
2448 		0x34a74, 0x34a74,
2449 		0x34a7c, 0x34afc,
2450 		0x34b08, 0x34c24,
2451 		0x34d00, 0x34d14,
2452 		0x34d1c, 0x34d3c,
2453 		0x34d44, 0x34d4c,
2454 		0x34d54, 0x34d74,
2455 		0x34d7c, 0x34d7c,
2456 		0x34de0, 0x34de0,
2457 		0x34e00, 0x34ed4,
2458 		0x34f00, 0x34fa4,
2459 		0x34fc0, 0x34fc4,
2460 		0x35000, 0x35004,
2461 		0x35080, 0x350fc,
2462 		0x35208, 0x35220,
2463 		0x3523c, 0x35254,
2464 		0x35300, 0x35300,
2465 		0x35308, 0x3531c,
2466 		0x35338, 0x3533c,
2467 		0x35380, 0x35380,
2468 		0x35388, 0x353a8,
2469 		0x353b4, 0x353b4,
2470 		0x35400, 0x35420,
2471 		0x35438, 0x3543c,
2472 		0x35480, 0x35480,
2473 		0x354a8, 0x354a8,
2474 		0x354b0, 0x354b4,
2475 		0x354c8, 0x354d4,
2476 		0x35a40, 0x35a4c,
2477 		0x35af0, 0x35b20,
2478 		0x35b38, 0x35b3c,
2479 		0x35b80, 0x35b80,
2480 		0x35ba8, 0x35ba8,
2481 		0x35bb0, 0x35bb4,
2482 		0x35bc8, 0x35bd4,
2483 		0x36140, 0x3618c,
2484 		0x361f0, 0x361f4,
2485 		0x36200, 0x36200,
2486 		0x36218, 0x36218,
2487 		0x36400, 0x36400,
2488 		0x36408, 0x3641c,
2489 		0x36618, 0x36620,
2490 		0x36664, 0x36664,
2491 		0x366a8, 0x366a8,
2492 		0x366ec, 0x366ec,
2493 		0x36a00, 0x36abc,
2494 		0x36b00, 0x36b18,
2495 		0x36b20, 0x36b38,
2496 		0x36b40, 0x36b58,
2497 		0x36b60, 0x36b78,
2498 		0x36c00, 0x36c00,
2499 		0x36c08, 0x36c3c,
2500 		0x37000, 0x3702c,
2501 		0x37034, 0x37050,
2502 		0x37058, 0x37058,
2503 		0x37060, 0x3708c,
2504 		0x3709c, 0x370ac,
2505 		0x370c0, 0x370c0,
2506 		0x370c8, 0x370d0,
2507 		0x370d8, 0x370e0,
2508 		0x370ec, 0x3712c,
2509 		0x37134, 0x37150,
2510 		0x37158, 0x37158,
2511 		0x37160, 0x3718c,
2512 		0x3719c, 0x371ac,
2513 		0x371c0, 0x371c0,
2514 		0x371c8, 0x371d0,
2515 		0x371d8, 0x371e0,
2516 		0x371ec, 0x37290,
2517 		0x37298, 0x372c4,
2518 		0x372e4, 0x37390,
2519 		0x37398, 0x373c4,
2520 		0x373e4, 0x3742c,
2521 		0x37434, 0x37450,
2522 		0x37458, 0x37458,
2523 		0x37460, 0x3748c,
2524 		0x3749c, 0x374ac,
2525 		0x374c0, 0x374c0,
2526 		0x374c8, 0x374d0,
2527 		0x374d8, 0x374e0,
2528 		0x374ec, 0x3752c,
2529 		0x37534, 0x37550,
2530 		0x37558, 0x37558,
2531 		0x37560, 0x3758c,
2532 		0x3759c, 0x375ac,
2533 		0x375c0, 0x375c0,
2534 		0x375c8, 0x375d0,
2535 		0x375d8, 0x375e0,
2536 		0x375ec, 0x37690,
2537 		0x37698, 0x376c4,
2538 		0x376e4, 0x37790,
2539 		0x37798, 0x377c4,
2540 		0x377e4, 0x377fc,
2541 		0x37814, 0x37814,
2542 		0x37854, 0x37868,
2543 		0x37880, 0x3788c,
2544 		0x378c0, 0x378d0,
2545 		0x378e8, 0x378ec,
2546 		0x37900, 0x3792c,
2547 		0x37934, 0x37950,
2548 		0x37958, 0x37958,
2549 		0x37960, 0x3798c,
2550 		0x3799c, 0x379ac,
2551 		0x379c0, 0x379c0,
2552 		0x379c8, 0x379d0,
2553 		0x379d8, 0x379e0,
2554 		0x379ec, 0x37a90,
2555 		0x37a98, 0x37ac4,
2556 		0x37ae4, 0x37b10,
2557 		0x37b24, 0x37b28,
2558 		0x37b38, 0x37b50,
2559 		0x37bf0, 0x37c10,
2560 		0x37c24, 0x37c28,
2561 		0x37c38, 0x37c50,
2562 		0x37cf0, 0x37cfc,
2563 		0x40040, 0x40040,
2564 		0x40080, 0x40084,
2565 		0x40100, 0x40100,
2566 		0x40140, 0x401bc,
2567 		0x40200, 0x40214,
2568 		0x40228, 0x40228,
2569 		0x40240, 0x40258,
2570 		0x40280, 0x40280,
2571 		0x40304, 0x40304,
2572 		0x40330, 0x4033c,
2573 		0x41304, 0x413c8,
2574 		0x413d0, 0x413dc,
2575 		0x413f0, 0x413f0,
2576 		0x41400, 0x4140c,
2577 		0x41414, 0x4141c,
2578 		0x41480, 0x414d0,
2579 		0x44000, 0x4407c,
2580 		0x440c0, 0x441ac,
2581 		0x441b4, 0x4427c,
2582 		0x442c0, 0x443ac,
2583 		0x443b4, 0x4447c,
2584 		0x444c0, 0x445ac,
2585 		0x445b4, 0x4467c,
2586 		0x446c0, 0x447ac,
2587 		0x447b4, 0x4487c,
2588 		0x448c0, 0x449ac,
2589 		0x449b4, 0x44a7c,
2590 		0x44ac0, 0x44bac,
2591 		0x44bb4, 0x44c7c,
2592 		0x44cc0, 0x44dac,
2593 		0x44db4, 0x44e7c,
2594 		0x44ec0, 0x44fac,
2595 		0x44fb4, 0x4507c,
2596 		0x450c0, 0x451ac,
2597 		0x451b4, 0x451fc,
2598 		0x45800, 0x45804,
2599 		0x45810, 0x45830,
2600 		0x45840, 0x45860,
2601 		0x45868, 0x45868,
2602 		0x45880, 0x45884,
2603 		0x458a0, 0x458b0,
2604 		0x45a00, 0x45a04,
2605 		0x45a10, 0x45a30,
2606 		0x45a40, 0x45a60,
2607 		0x45a68, 0x45a68,
2608 		0x45a80, 0x45a84,
2609 		0x45aa0, 0x45ab0,
2610 		0x460c0, 0x460e4,
2611 		0x47000, 0x4703c,
2612 		0x47044, 0x4708c,
2613 		0x47200, 0x47250,
2614 		0x47400, 0x47408,
2615 		0x47414, 0x47420,
2616 		0x47600, 0x47618,
2617 		0x47800, 0x47814,
2618 		0x47820, 0x4782c,
2619 		0x50000, 0x50084,
2620 		0x50090, 0x500cc,
2621 		0x50300, 0x50384,
2622 		0x50400, 0x50400,
2623 		0x50800, 0x50884,
2624 		0x50890, 0x508cc,
2625 		0x50b00, 0x50b84,
2626 		0x50c00, 0x50c00,
2627 		0x51000, 0x51020,
2628 		0x51028, 0x510b0,
2629 		0x51300, 0x51324,
2630 	};
2631 
2632 	static const unsigned int t6vf_reg_ranges[] = {
2633 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2634 		VF_MPS_REG(A_MPS_VF_CTL),
2635 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2636 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2637 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2638 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2639 		FW_T6VF_MBDATA_BASE_ADDR,
2640 		FW_T6VF_MBDATA_BASE_ADDR +
2641 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2642 	};
2643 
2644 	u32 *buf_end = (u32 *)(buf + buf_size);
2645 	const unsigned int *reg_ranges;
2646 	int reg_ranges_size, range;
2647 	unsigned int chip_version = chip_id(adap);
2648 
2649 	/*
2650 	 * Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		if (adap->flags & IS_VF) {
2656 			reg_ranges = t4vf_reg_ranges;
2657 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2658 		} else {
2659 			reg_ranges = t4_reg_ranges;
2660 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2661 		}
2662 		break;
2663 
2664 	case CHELSIO_T5:
2665 		if (adap->flags & IS_VF) {
2666 			reg_ranges = t5vf_reg_ranges;
2667 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2668 		} else {
2669 			reg_ranges = t5_reg_ranges;
2670 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2671 		}
2672 		break;
2673 
2674 	case CHELSIO_T6:
2675 		if (adap->flags & IS_VF) {
2676 			reg_ranges = t6vf_reg_ranges;
2677 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2678 		} else {
2679 			reg_ranges = t6_reg_ranges;
2680 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2681 		}
2682 		break;
2683 
2684 	default:
2685 		CH_ERR(adap,
2686 			"Unsupported chip version %d\n", chip_version);
2687 		return;
2688 	}
2689 
2690 	/*
2691 	 * Clear the register buffer and insert the appropriate register
2692 	 * values selected by the above register ranges.
2693 	 */
2694 	memset(buf, 0, buf_size);
2695 	for (range = 0; range < reg_ranges_size; range += 2) {
2696 		unsigned int reg = reg_ranges[range];
2697 		unsigned int last_reg = reg_ranges[range + 1];
2698 		u32 *bufp = (u32 *)(buf + reg);
2699 
2700 		/*
2701 		 * Iterate across the register range filling in the register
2702 		 * buffer but don't write past the end of the register buffer.
2703 		 */
2704 		while (reg <= last_reg && bufp < buf_end) {
2705 			*bufp++ = t4_read_reg(adap, reg);
2706 			reg += sizeof(u32);
2707 		}
2708 	}
2709 }
2710 
2711 /*
2712  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2713  * header followed by one or more VPD-R sections, each with its own header.
2714  */
2715 struct t4_vpd_hdr {
2716 	u8  id_tag;
2717 	u8  id_len[2];
2718 	u8  id_data[ID_LEN];
2719 };
2720 
2721 struct t4_vpdr_hdr {
2722 	u8  vpdr_tag;
2723 	u8  vpdr_len[2];
2724 };
2725 
2726 /*
2727  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2728  */
2729 #define EEPROM_DELAY		10		/* 10us per poll spin */
2730 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2731 
2732 #define EEPROM_STAT_ADDR	0x7bfc
2733 #define VPD_SIZE		0x800
2734 #define VPD_BASE		0x400
2735 #define VPD_BASE_OLD		0
2736 #define VPD_LEN			1024
2737 #define VPD_INFO_FLD_HDR_SIZE	3
2738 #define CHELSIO_VPD_UNIQUE_ID	0x82
2739 
2740 /*
2741  * Small utility function to wait till any outstanding VPD Access is complete.
2742  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2743  * VPD Access in flight.  This allows us to handle the problem of having a
2744  * previous VPD Access time out and prevent an attempt to inject a new VPD
2745  * Request before any in-flight VPD reguest has completed.
2746  */
2747 static int t4_seeprom_wait(struct adapter *adapter)
2748 {
2749 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2750 	int max_poll;
2751 
2752 	/*
2753 	 * If no VPD Access is in flight, we can just return success right
2754 	 * away.
2755 	 */
2756 	if (!adapter->vpd_busy)
2757 		return 0;
2758 
2759 	/*
2760 	 * Poll the VPD Capability Address/Flag register waiting for it
2761 	 * to indicate that the operation is complete.
2762 	 */
2763 	max_poll = EEPROM_MAX_POLL;
2764 	do {
2765 		u16 val;
2766 
2767 		udelay(EEPROM_DELAY);
2768 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2769 
2770 		/*
2771 		 * If the operation is complete, mark the VPD as no longer
2772 		 * busy and return success.
2773 		 */
2774 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2775 			adapter->vpd_busy = 0;
2776 			return 0;
2777 		}
2778 	} while (--max_poll);
2779 
2780 	/*
2781 	 * Failure!  Note that we leave the VPD Busy status set in order to
2782 	 * avoid pushing a new VPD Access request into the VPD Capability till
2783 	 * the current operation eventually succeeds.  It's a bug to issue a
2784 	 * new request when an existing request is in flight and will result
2785 	 * in corrupt hardware state.
2786 	 */
2787 	return -ETIMEDOUT;
2788 }
2789 
2790 /**
2791  *	t4_seeprom_read - read a serial EEPROM location
2792  *	@adapter: adapter to read
2793  *	@addr: EEPROM virtual address
2794  *	@data: where to store the read data
2795  *
2796  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2797  *	VPD capability.  Note that this function must be called with a virtual
2798  *	address.
2799  */
2800 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2801 {
2802 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2803 	int ret;
2804 
2805 	/*
2806 	 * VPD Accesses must alway be 4-byte aligned!
2807 	 */
2808 	if (addr >= EEPROMVSIZE || (addr & 3))
2809 		return -EINVAL;
2810 
2811 	/*
2812 	 * Wait for any previous operation which may still be in flight to
2813 	 * complete.
2814 	 */
2815 	ret = t4_seeprom_wait(adapter);
2816 	if (ret) {
2817 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2818 		return ret;
2819 	}
2820 
2821 	/*
2822 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2823 	 * for our request to complete.  If it doesn't complete, note the
2824 	 * error and return it to our caller.  Note that we do not reset the
2825 	 * VPD Busy status!
2826 	 */
2827 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2828 	adapter->vpd_busy = 1;
2829 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2830 	ret = t4_seeprom_wait(adapter);
2831 	if (ret) {
2832 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2833 		return ret;
2834 	}
2835 
2836 	/*
2837 	 * Grab the returned data, swizzle it into our endianness and
2838 	 * return success.
2839 	 */
2840 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2841 	*data = le32_to_cpu(*data);
2842 	return 0;
2843 }
2844 
2845 /**
2846  *	t4_seeprom_write - write a serial EEPROM location
2847  *	@adapter: adapter to write
2848  *	@addr: virtual EEPROM address
2849  *	@data: value to write
2850  *
2851  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2852  *	VPD capability.  Note that this function must be called with a virtual
2853  *	address.
2854  */
2855 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2856 {
2857 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2858 	int ret;
2859 	u32 stats_reg;
2860 	int max_poll;
2861 
2862 	/*
2863 	 * VPD Accesses must alway be 4-byte aligned!
2864 	 */
2865 	if (addr >= EEPROMVSIZE || (addr & 3))
2866 		return -EINVAL;
2867 
2868 	/*
2869 	 * Wait for any previous operation which may still be in flight to
2870 	 * complete.
2871 	 */
2872 	ret = t4_seeprom_wait(adapter);
2873 	if (ret) {
2874 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2875 		return ret;
2876 	}
2877 
2878 	/*
2879 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2880 	 * for our request to complete.  If it doesn't complete, note the
2881 	 * error and return it to our caller.  Note that we do not reset the
2882 	 * VPD Busy status!
2883 	 */
2884 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2885 				 cpu_to_le32(data));
2886 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2887 				 (u16)addr | PCI_VPD_ADDR_F);
2888 	adapter->vpd_busy = 1;
2889 	adapter->vpd_flag = 0;
2890 	ret = t4_seeprom_wait(adapter);
2891 	if (ret) {
2892 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2893 		return ret;
2894 	}
2895 
2896 	/*
2897 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2898 	 * request to complete. If it doesn't complete, return error.
2899 	 */
2900 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2901 	max_poll = EEPROM_MAX_POLL;
2902 	do {
2903 		udelay(EEPROM_DELAY);
2904 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2905 	} while ((stats_reg & 0x1) && --max_poll);
2906 	if (!max_poll)
2907 		return -ETIMEDOUT;
2908 
2909 	/* Return success! */
2910 	return 0;
2911 }
2912 
2913 /**
2914  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2915  *	@phys_addr: the physical EEPROM address
2916  *	@fn: the PCI function number
2917  *	@sz: size of function-specific area
2918  *
2919  *	Translate a physical EEPROM address to virtual.  The first 1K is
2920  *	accessed through virtual addresses starting at 31K, the rest is
2921  *	accessed through virtual addresses starting at 0.
2922  *
2923  *	The mapping is as follows:
2924  *	[0..1K) -> [31K..32K)
2925  *	[1K..1K+A) -> [ES-A..ES)
2926  *	[1K+A..ES) -> [0..ES-A-1K)
2927  *
2928  *	where A = @fn * @sz, and ES = EEPROM size.
2929  */
2930 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2931 {
2932 	fn *= sz;
2933 	if (phys_addr < 1024)
2934 		return phys_addr + (31 << 10);
2935 	if (phys_addr < 1024 + fn)
2936 		return EEPROMSIZE - fn + phys_addr - 1024;
2937 	if (phys_addr < EEPROMSIZE)
2938 		return phys_addr - 1024 - fn;
2939 	return -EINVAL;
2940 }
2941 
2942 /**
2943  *	t4_seeprom_wp - enable/disable EEPROM write protection
2944  *	@adapter: the adapter
2945  *	@enable: whether to enable or disable write protection
2946  *
2947  *	Enables or disables write protection on the serial EEPROM.
2948  */
2949 int t4_seeprom_wp(struct adapter *adapter, int enable)
2950 {
2951 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2952 }
2953 
2954 /**
2955  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2956  *	@vpd: Pointer to buffered vpd data structure
2957  *	@kw: The keyword to search for
2958  *	@region: VPD region to search (starting from 0)
2959  *
2960  *	Returns the value of the information field keyword or
2961  *	-ENOENT otherwise.
2962  */
2963 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2964 {
2965 	int i, tag;
2966 	unsigned int offset, len;
2967 	const struct t4_vpdr_hdr *vpdr;
2968 
2969 	offset = sizeof(struct t4_vpd_hdr);
2970 	vpdr = (const void *)(vpd + offset);
2971 	tag = vpdr->vpdr_tag;
2972 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2973 	while (region--) {
2974 		offset += sizeof(struct t4_vpdr_hdr) + len;
2975 		vpdr = (const void *)(vpd + offset);
2976 		if (++tag != vpdr->vpdr_tag)
2977 			return -ENOENT;
2978 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2979 	}
2980 	offset += sizeof(struct t4_vpdr_hdr);
2981 
2982 	if (offset + len > VPD_LEN) {
2983 		return -ENOENT;
2984 	}
2985 
2986 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2987 		if (memcmp(vpd + i , kw , 2) == 0){
2988 			i += VPD_INFO_FLD_HDR_SIZE;
2989 			return i;
2990 		}
2991 
2992 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2993 	}
2994 
2995 	return -ENOENT;
2996 }
2997 
2998 
2999 /**
3000  *	get_vpd_params - read VPD parameters from VPD EEPROM
3001  *	@adapter: adapter to read
3002  *	@p: where to store the parameters
3003  *	@vpd: caller provided temporary space to read the VPD into
3004  *
3005  *	Reads card parameters stored in VPD EEPROM.
3006  */
3007 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3008     uint16_t device_id, u32 *buf)
3009 {
3010 	int i, ret, addr;
3011 	int ec, sn, pn, na, md;
3012 	u8 csum;
3013 	const u8 *vpd = (const u8 *)buf;
3014 
3015 	/*
3016 	 * Card information normally starts at VPD_BASE but early cards had
3017 	 * it at 0.
3018 	 */
3019 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3020 	if (ret)
3021 		return (ret);
3022 
3023 	/*
3024 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3025 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3026 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3027 	 * is expected to automatically put this entry at the
3028 	 * beginning of the VPD.
3029 	 */
3030 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3031 
3032 	for (i = 0; i < VPD_LEN; i += 4) {
3033 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3034 		if (ret)
3035 			return ret;
3036 	}
3037 
3038 #define FIND_VPD_KW(var,name) do { \
3039 	var = get_vpd_keyword_val(vpd, name, 0); \
3040 	if (var < 0) { \
3041 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3042 		return -EINVAL; \
3043 	} \
3044 } while (0)
3045 
3046 	FIND_VPD_KW(i, "RV");
3047 	for (csum = 0; i >= 0; i--)
3048 		csum += vpd[i];
3049 
3050 	if (csum) {
3051 		CH_ERR(adapter,
3052 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3053 		return -EINVAL;
3054 	}
3055 
3056 	FIND_VPD_KW(ec, "EC");
3057 	FIND_VPD_KW(sn, "SN");
3058 	FIND_VPD_KW(pn, "PN");
3059 	FIND_VPD_KW(na, "NA");
3060 #undef FIND_VPD_KW
3061 
3062 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3063 	strstrip(p->id);
3064 	memcpy(p->ec, vpd + ec, EC_LEN);
3065 	strstrip(p->ec);
3066 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3067 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3068 	strstrip(p->sn);
3069 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3070 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3071 	strstrip((char *)p->pn);
3072 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3073 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3074 	strstrip((char *)p->na);
3075 
3076 	if (device_id & 0x80)
3077 		return 0;	/* Custom card */
3078 
3079 	md = get_vpd_keyword_val(vpd, "VF", 1);
3080 	if (md < 0) {
3081 		snprintf(p->md, sizeof(p->md), "unknown");
3082 	} else {
3083 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3084 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3085 		strstrip((char *)p->md);
3086 	}
3087 
3088 	return 0;
3089 }
3090 
3091 /* serial flash and firmware constants and flash config file constants */
3092 enum {
3093 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3094 
3095 	/* flash command opcodes */
3096 	SF_PROG_PAGE    = 2,	/* program 256B page */
3097 	SF_WR_DISABLE   = 4,	/* disable writes */
3098 	SF_RD_STATUS    = 5,	/* read status register */
3099 	SF_WR_ENABLE    = 6,	/* enable writes */
3100 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3101 	SF_RD_ID	= 0x9f,	/* read ID */
3102 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3103 };
3104 
3105 /**
3106  *	sf1_read - read data from the serial flash
3107  *	@adapter: the adapter
3108  *	@byte_cnt: number of bytes to read
3109  *	@cont: whether another operation will be chained
3110  *	@lock: whether to lock SF for PL access only
3111  *	@valp: where to store the read data
3112  *
3113  *	Reads up to 4 bytes of data from the serial flash.  The location of
3114  *	the read needs to be specified prior to calling this by issuing the
3115  *	appropriate commands to the serial flash.
3116  */
3117 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3118 		    int lock, u32 *valp)
3119 {
3120 	int ret;
3121 
3122 	if (!byte_cnt || byte_cnt > 4)
3123 		return -EINVAL;
3124 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3125 		return -EBUSY;
3126 	t4_write_reg(adapter, A_SF_OP,
3127 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3128 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3129 	if (!ret)
3130 		*valp = t4_read_reg(adapter, A_SF_DATA);
3131 	return ret;
3132 }
3133 
3134 /**
3135  *	sf1_write - write data to the serial flash
3136  *	@adapter: the adapter
3137  *	@byte_cnt: number of bytes to write
3138  *	@cont: whether another operation will be chained
3139  *	@lock: whether to lock SF for PL access only
3140  *	@val: value to write
3141  *
3142  *	Writes up to 4 bytes of data to the serial flash.  The location of
3143  *	the write needs to be specified prior to calling this by issuing the
3144  *	appropriate commands to the serial flash.
3145  */
3146 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3147 		     int lock, u32 val)
3148 {
3149 	if (!byte_cnt || byte_cnt > 4)
3150 		return -EINVAL;
3151 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3152 		return -EBUSY;
3153 	t4_write_reg(adapter, A_SF_DATA, val);
3154 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3155 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3156 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3157 }
3158 
3159 /**
3160  *	flash_wait_op - wait for a flash operation to complete
3161  *	@adapter: the adapter
3162  *	@attempts: max number of polls of the status register
3163  *	@delay: delay between polls in ms
3164  *
3165  *	Wait for a flash operation to complete by polling the status register.
3166  */
3167 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3168 {
3169 	int ret;
3170 	u32 status;
3171 
3172 	while (1) {
3173 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3174 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3175 			return ret;
3176 		if (!(status & 1))
3177 			return 0;
3178 		if (--attempts == 0)
3179 			return -EAGAIN;
3180 		if (delay)
3181 			msleep(delay);
3182 	}
3183 }
3184 
3185 /**
3186  *	t4_read_flash - read words from serial flash
3187  *	@adapter: the adapter
3188  *	@addr: the start address for the read
3189  *	@nwords: how many 32-bit words to read
3190  *	@data: where to store the read data
3191  *	@byte_oriented: whether to store data as bytes or as words
3192  *
3193  *	Read the specified number of 32-bit words from the serial flash.
3194  *	If @byte_oriented is set the read data is stored as a byte array
3195  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3196  *	natural endianness.
3197  */
3198 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3199 		  unsigned int nwords, u32 *data, int byte_oriented)
3200 {
3201 	int ret;
3202 
3203 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3204 		return -EINVAL;
3205 
3206 	addr = swab32(addr) | SF_RD_DATA_FAST;
3207 
3208 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3209 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3210 		return ret;
3211 
3212 	for ( ; nwords; nwords--, data++) {
3213 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3214 		if (nwords == 1)
3215 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3216 		if (ret)
3217 			return ret;
3218 		if (byte_oriented)
3219 			*data = (__force __u32)(cpu_to_be32(*data));
3220 	}
3221 	return 0;
3222 }
3223 
3224 /**
3225  *	t4_write_flash - write up to a page of data to the serial flash
3226  *	@adapter: the adapter
3227  *	@addr: the start address to write
3228  *	@n: length of data to write in bytes
3229  *	@data: the data to write
3230  *	@byte_oriented: whether to store data as bytes or as words
3231  *
3232  *	Writes up to a page of data (256 bytes) to the serial flash starting
3233  *	at the given address.  All the data must be written to the same page.
3234  *	If @byte_oriented is set the write data is stored as byte stream
3235  *	(i.e. matches what on disk), otherwise in big-endian.
3236  */
3237 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3238 			  unsigned int n, const u8 *data, int byte_oriented)
3239 {
3240 	int ret;
3241 	u32 buf[SF_PAGE_SIZE / 4];
3242 	unsigned int i, c, left, val, offset = addr & 0xff;
3243 
3244 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3245 		return -EINVAL;
3246 
3247 	val = swab32(addr) | SF_PROG_PAGE;
3248 
3249 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3250 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3251 		goto unlock;
3252 
3253 	for (left = n; left; left -= c) {
3254 		c = min(left, 4U);
3255 		for (val = 0, i = 0; i < c; ++i)
3256 			val = (val << 8) + *data++;
3257 
3258 		if (!byte_oriented)
3259 			val = cpu_to_be32(val);
3260 
3261 		ret = sf1_write(adapter, c, c != left, 1, val);
3262 		if (ret)
3263 			goto unlock;
3264 	}
3265 	ret = flash_wait_op(adapter, 8, 1);
3266 	if (ret)
3267 		goto unlock;
3268 
3269 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3270 
3271 	/* Read the page to verify the write succeeded */
3272 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3273 			    byte_oriented);
3274 	if (ret)
3275 		return ret;
3276 
3277 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3278 		CH_ERR(adapter,
3279 			"failed to correctly write the flash page at %#x\n",
3280 			addr);
3281 		return -EIO;
3282 	}
3283 	return 0;
3284 
3285 unlock:
3286 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3287 	return ret;
3288 }
3289 
3290 /**
3291  *	t4_get_fw_version - read the firmware version
3292  *	@adapter: the adapter
3293  *	@vers: where to place the version
3294  *
3295  *	Reads the FW version from flash.
3296  */
3297 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3298 {
3299 	return t4_read_flash(adapter, FLASH_FW_START +
3300 			     offsetof(struct fw_hdr, fw_ver), 1,
3301 			     vers, 0);
3302 }
3303 
3304 /**
3305  *	t4_get_fw_hdr - read the firmware header
3306  *	@adapter: the adapter
3307  *	@hdr: where to place the version
3308  *
3309  *	Reads the FW header from flash into caller provided buffer.
3310  */
3311 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3312 {
3313 	return t4_read_flash(adapter, FLASH_FW_START,
3314 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3315 }
3316 
3317 /**
3318  *	t4_get_bs_version - read the firmware bootstrap version
3319  *	@adapter: the adapter
3320  *	@vers: where to place the version
3321  *
3322  *	Reads the FW Bootstrap version from flash.
3323  */
3324 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3325 {
3326 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3327 			     offsetof(struct fw_hdr, fw_ver), 1,
3328 			     vers, 0);
3329 }
3330 
3331 /**
3332  *	t4_get_tp_version - read the TP microcode version
3333  *	@adapter: the adapter
3334  *	@vers: where to place the version
3335  *
3336  *	Reads the TP microcode version from flash.
3337  */
3338 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3339 {
3340 	return t4_read_flash(adapter, FLASH_FW_START +
3341 			     offsetof(struct fw_hdr, tp_microcode_ver),
3342 			     1, vers, 0);
3343 }
3344 
3345 /**
3346  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3347  *	@adapter: the adapter
3348  *	@vers: where to place the version
3349  *
3350  *	Reads the Expansion ROM header from FLASH and returns the version
3351  *	number (if present) through the @vers return value pointer.  We return
3352  *	this in the Firmware Version Format since it's convenient.  Return
3353  *	0 on success, -ENOENT if no Expansion ROM is present.
3354  */
3355 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3356 {
3357 	struct exprom_header {
3358 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3359 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3360 	} *hdr;
3361 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3362 					   sizeof(u32))];
3363 	int ret;
3364 
3365 	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3366 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3367 			    0);
3368 	if (ret)
3369 		return ret;
3370 
3371 	hdr = (struct exprom_header *)exprom_header_buf;
3372 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3373 		return -ENOENT;
3374 
3375 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3376 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3377 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3378 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3379 	return 0;
3380 }
3381 
3382 /**
3383  *	t4_get_scfg_version - return the Serial Configuration version
3384  *	@adapter: the adapter
3385  *	@vers: where to place the version
3386  *
3387  *	Reads the Serial Configuration Version via the Firmware interface
3388  *	(thus this can only be called once we're ready to issue Firmware
3389  *	commands).  The format of the Serial Configuration version is
3390  *	adapter specific.  Returns 0 on success, an error on failure.
3391  *
3392  *	Note that early versions of the Firmware didn't include the ability
3393  *	to retrieve the Serial Configuration version, so we zero-out the
3394  *	return-value parameter in that case to avoid leaving it with
3395  *	garbage in it.
3396  *
3397  *	Also note that the Firmware will return its cached copy of the Serial
3398  *	Initialization Revision ID, not the actual Revision ID as written in
3399  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3400  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3401  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3402  *	been issued if the Host Driver will be performing a full adapter
3403  *	initialization.
3404  */
3405 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3406 {
3407 	u32 scfgrev_param;
3408 	int ret;
3409 
3410 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3411 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3412 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3413 			      1, &scfgrev_param, vers);
3414 	if (ret)
3415 		*vers = 0;
3416 	return ret;
3417 }
3418 
3419 /**
3420  *	t4_get_vpd_version - return the VPD version
3421  *	@adapter: the adapter
3422  *	@vers: where to place the version
3423  *
3424  *	Reads the VPD via the Firmware interface (thus this can only be called
3425  *	once we're ready to issue Firmware commands).  The format of the
3426  *	VPD version is adapter specific.  Returns 0 on success, an error on
3427  *	failure.
3428  *
3429  *	Note that early versions of the Firmware didn't include the ability
3430  *	to retrieve the VPD version, so we zero-out the return-value parameter
3431  *	in that case to avoid leaving it with garbage in it.
3432  *
3433  *	Also note that the Firmware will return its cached copy of the VPD
3434  *	Revision ID, not the actual Revision ID as written in the Serial
3435  *	EEPROM.  This is only an issue if a new VPD has been written and the
3436  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3437  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3438  *	if the Host Driver will be performing a full adapter initialization.
3439  */
3440 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3441 {
3442 	u32 vpdrev_param;
3443 	int ret;
3444 
3445 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3446 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3447 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3448 			      1, &vpdrev_param, vers);
3449 	if (ret)
3450 		*vers = 0;
3451 	return ret;
3452 }
3453 
3454 /**
3455  *	t4_get_version_info - extract various chip/firmware version information
3456  *	@adapter: the adapter
3457  *
3458  *	Reads various chip/firmware version numbers and stores them into the
3459  *	adapter Adapter Parameters structure.  If any of the efforts fails
3460  *	the first failure will be returned, but all of the version numbers
3461  *	will be read.
3462  */
3463 int t4_get_version_info(struct adapter *adapter)
3464 {
3465 	int ret = 0;
3466 
3467 	#define FIRST_RET(__getvinfo) \
3468 	do { \
3469 		int __ret = __getvinfo; \
3470 		if (__ret && !ret) \
3471 			ret = __ret; \
3472 	} while (0)
3473 
3474 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3475 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3476 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3477 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3478 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3479 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3480 
3481 	#undef FIRST_RET
3482 
3483 	return ret;
3484 }
3485 
3486 /**
3487  *	t4_flash_erase_sectors - erase a range of flash sectors
3488  *	@adapter: the adapter
3489  *	@start: the first sector to erase
3490  *	@end: the last sector to erase
3491  *
3492  *	Erases the sectors in the given inclusive range.
3493  */
3494 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3495 {
3496 	int ret = 0;
3497 
3498 	if (end >= adapter->params.sf_nsec)
3499 		return -EINVAL;
3500 
3501 	while (start <= end) {
3502 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3503 		    (ret = sf1_write(adapter, 4, 0, 1,
3504 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3505 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3506 			CH_ERR(adapter,
3507 				"erase of flash sector %d failed, error %d\n",
3508 				start, ret);
3509 			break;
3510 		}
3511 		start++;
3512 	}
3513 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3514 	return ret;
3515 }
3516 
3517 /**
3518  *	t4_flash_cfg_addr - return the address of the flash configuration file
3519  *	@adapter: the adapter
3520  *
3521  *	Return the address within the flash where the Firmware Configuration
3522  *	File is stored, or an error if the device FLASH is too small to contain
3523  *	a Firmware Configuration File.
3524  */
3525 int t4_flash_cfg_addr(struct adapter *adapter)
3526 {
3527 	/*
3528 	 * If the device FLASH isn't large enough to hold a Firmware
3529 	 * Configuration File, return an error.
3530 	 */
3531 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3532 		return -ENOSPC;
3533 
3534 	return FLASH_CFG_START;
3535 }
3536 
3537 /*
3538  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3539  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3540  * and emit an error message for mismatched firmware to save our caller the
3541  * effort ...
3542  */
3543 static int t4_fw_matches_chip(struct adapter *adap,
3544 			      const struct fw_hdr *hdr)
3545 {
3546 	/*
3547 	 * The expression below will return FALSE for any unsupported adapter
3548 	 * which will keep us "honest" in the future ...
3549 	 */
3550 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3551 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3552 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3553 		return 1;
3554 
3555 	CH_ERR(adap,
3556 		"FW image (%d) is not suitable for this adapter (%d)\n",
3557 		hdr->chip, chip_id(adap));
3558 	return 0;
3559 }
3560 
3561 /**
3562  *	t4_load_fw - download firmware
3563  *	@adap: the adapter
3564  *	@fw_data: the firmware image to write
3565  *	@size: image size
3566  *
3567  *	Write the supplied firmware image to the card's serial flash.
3568  */
3569 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3570 {
3571 	u32 csum;
3572 	int ret, addr;
3573 	unsigned int i;
3574 	u8 first_page[SF_PAGE_SIZE];
3575 	const u32 *p = (const u32 *)fw_data;
3576 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3577 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3578 	unsigned int fw_start_sec;
3579 	unsigned int fw_start;
3580 	unsigned int fw_size;
3581 
3582 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3583 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3584 		fw_start = FLASH_FWBOOTSTRAP_START;
3585 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3586 	} else {
3587 		fw_start_sec = FLASH_FW_START_SEC;
3588  		fw_start = FLASH_FW_START;
3589 		fw_size = FLASH_FW_MAX_SIZE;
3590 	}
3591 
3592 	if (!size) {
3593 		CH_ERR(adap, "FW image has no data\n");
3594 		return -EINVAL;
3595 	}
3596 	if (size & 511) {
3597 		CH_ERR(adap,
3598 			"FW image size not multiple of 512 bytes\n");
3599 		return -EINVAL;
3600 	}
3601 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3602 		CH_ERR(adap,
3603 			"FW image size differs from size in FW header\n");
3604 		return -EINVAL;
3605 	}
3606 	if (size > fw_size) {
3607 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3608 			fw_size);
3609 		return -EFBIG;
3610 	}
3611 	if (!t4_fw_matches_chip(adap, hdr))
3612 		return -EINVAL;
3613 
3614 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3615 		csum += be32_to_cpu(p[i]);
3616 
3617 	if (csum != 0xffffffff) {
3618 		CH_ERR(adap,
3619 			"corrupted firmware image, checksum %#x\n", csum);
3620 		return -EINVAL;
3621 	}
3622 
3623 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3624 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3625 	if (ret)
3626 		goto out;
3627 
3628 	/*
3629 	 * We write the correct version at the end so the driver can see a bad
3630 	 * version if the FW write fails.  Start by writing a copy of the
3631 	 * first page with a bad version.
3632 	 */
3633 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3634 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3635 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3636 	if (ret)
3637 		goto out;
3638 
3639 	addr = fw_start;
3640 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3641 		addr += SF_PAGE_SIZE;
3642 		fw_data += SF_PAGE_SIZE;
3643 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3644 		if (ret)
3645 			goto out;
3646 	}
3647 
3648 	ret = t4_write_flash(adap,
3649 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3650 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3651 out:
3652 	if (ret)
3653 		CH_ERR(adap, "firmware download failed, error %d\n",
3654 			ret);
3655 	return ret;
3656 }
3657 
3658 /**
3659  *	t4_fwcache - firmware cache operation
3660  *	@adap: the adapter
3661  *	@op  : the operation (flush or flush and invalidate)
3662  */
3663 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3664 {
3665 	struct fw_params_cmd c;
3666 
3667 	memset(&c, 0, sizeof(c));
3668 	c.op_to_vfn =
3669 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3670 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3671 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3672 				V_FW_PARAMS_CMD_VFN(0));
3673 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3674 	c.param[0].mnem =
3675 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3676 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3677 	c.param[0].val = (__force __be32)op;
3678 
3679 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3680 }
3681 
3682 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3683 			unsigned int *pif_req_wrptr,
3684 			unsigned int *pif_rsp_wrptr)
3685 {
3686 	int i, j;
3687 	u32 cfg, val, req, rsp;
3688 
3689 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3690 	if (cfg & F_LADBGEN)
3691 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3692 
3693 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3694 	req = G_POLADBGWRPTR(val);
3695 	rsp = G_PILADBGWRPTR(val);
3696 	if (pif_req_wrptr)
3697 		*pif_req_wrptr = req;
3698 	if (pif_rsp_wrptr)
3699 		*pif_rsp_wrptr = rsp;
3700 
3701 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3702 		for (j = 0; j < 6; j++) {
3703 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3704 				     V_PILADBGRDPTR(rsp));
3705 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3706 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3707 			req++;
3708 			rsp++;
3709 		}
3710 		req = (req + 2) & M_POLADBGRDPTR;
3711 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3712 	}
3713 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3714 }
3715 
3716 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3717 {
3718 	u32 cfg;
3719 	int i, j, idx;
3720 
3721 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3722 	if (cfg & F_LADBGEN)
3723 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3724 
3725 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3726 		for (j = 0; j < 5; j++) {
3727 			idx = 8 * i + j;
3728 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3729 				     V_PILADBGRDPTR(idx));
3730 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3731 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3732 		}
3733 	}
3734 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3735 }
3736 
3737 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3738 {
3739 	unsigned int i, j;
3740 
3741 	for (i = 0; i < 8; i++) {
3742 		u32 *p = la_buf + i;
3743 
3744 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3745 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3746 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3747 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3748 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3749 	}
3750 }
3751 
3752 /**
3753  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3754  *	@caps16: a 16-bit Port Capabilities value
3755  *
3756  *	Returns the equivalent 32-bit Port Capabilities value.
3757  */
3758 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3759 {
3760 	uint32_t caps32 = 0;
3761 
3762 	#define CAP16_TO_CAP32(__cap) \
3763 		do { \
3764 			if (caps16 & FW_PORT_CAP_##__cap) \
3765 				caps32 |= FW_PORT_CAP32_##__cap; \
3766 		} while (0)
3767 
3768 	CAP16_TO_CAP32(SPEED_100M);
3769 	CAP16_TO_CAP32(SPEED_1G);
3770 	CAP16_TO_CAP32(SPEED_25G);
3771 	CAP16_TO_CAP32(SPEED_10G);
3772 	CAP16_TO_CAP32(SPEED_40G);
3773 	CAP16_TO_CAP32(SPEED_100G);
3774 	CAP16_TO_CAP32(FC_RX);
3775 	CAP16_TO_CAP32(FC_TX);
3776 	CAP16_TO_CAP32(ANEG);
3777 	CAP16_TO_CAP32(FORCE_PAUSE);
3778 	CAP16_TO_CAP32(MDIAUTO);
3779 	CAP16_TO_CAP32(MDISTRAIGHT);
3780 	CAP16_TO_CAP32(FEC_RS);
3781 	CAP16_TO_CAP32(FEC_BASER_RS);
3782 	CAP16_TO_CAP32(802_3_PAUSE);
3783 	CAP16_TO_CAP32(802_3_ASM_DIR);
3784 
3785 	#undef CAP16_TO_CAP32
3786 
3787 	return caps32;
3788 }
3789 
3790 /**
3791  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3792  *	@caps32: a 32-bit Port Capabilities value
3793  *
3794  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3795  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3796  *	Port Capabilities and some fields/values may not make it.
3797  */
3798 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3799 {
3800 	uint16_t caps16 = 0;
3801 
3802 	#define CAP32_TO_CAP16(__cap) \
3803 		do { \
3804 			if (caps32 & FW_PORT_CAP32_##__cap) \
3805 				caps16 |= FW_PORT_CAP_##__cap; \
3806 		} while (0)
3807 
3808 	CAP32_TO_CAP16(SPEED_100M);
3809 	CAP32_TO_CAP16(SPEED_1G);
3810 	CAP32_TO_CAP16(SPEED_10G);
3811 	CAP32_TO_CAP16(SPEED_25G);
3812 	CAP32_TO_CAP16(SPEED_40G);
3813 	CAP32_TO_CAP16(SPEED_100G);
3814 	CAP32_TO_CAP16(FC_RX);
3815 	CAP32_TO_CAP16(FC_TX);
3816 	CAP32_TO_CAP16(802_3_PAUSE);
3817 	CAP32_TO_CAP16(802_3_ASM_DIR);
3818 	CAP32_TO_CAP16(ANEG);
3819 	CAP32_TO_CAP16(FORCE_PAUSE);
3820 	CAP32_TO_CAP16(MDIAUTO);
3821 	CAP32_TO_CAP16(MDISTRAIGHT);
3822 	CAP32_TO_CAP16(FEC_RS);
3823 	CAP32_TO_CAP16(FEC_BASER_RS);
3824 
3825 	#undef CAP32_TO_CAP16
3826 
3827 	return caps16;
3828 }
3829 
3830 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3831 {
3832 	int8_t fec = 0;
3833 
3834 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3835 		return (unset_means_none ? FEC_NONE : 0);
3836 
3837 	if (caps & FW_PORT_CAP32_FEC_RS)
3838 		fec |= FEC_RS;
3839 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3840 		fec |= FEC_BASER_RS;
3841 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3842 		fec |= FEC_NONE;
3843 
3844 	return (fec);
3845 }
3846 
3847 /*
3848  * Note that 0 is not translated to NO_FEC.
3849  */
3850 static uint32_t fec_to_fwcap(int8_t fec)
3851 {
3852 	uint32_t caps = 0;
3853 
3854 	/* Only real FECs allowed. */
3855 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3856 
3857 	if (fec & FEC_RS)
3858 		caps |= FW_PORT_CAP32_FEC_RS;
3859 	if (fec & FEC_BASER_RS)
3860 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3861 	if (fec & FEC_NONE)
3862 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3863 
3864 	return (caps);
3865 }
3866 
3867 /**
3868  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3869  *	@phy: the PHY to setup
3870  *	@mac: the MAC to setup
3871  *	@lc: the requested link configuration
3872  *
3873  *	Set up a port's MAC and PHY according to a desired link configuration.
3874  *	- If the PHY can auto-negotiate first decide what to advertise, then
3875  *	  enable/disable auto-negotiation as desired, and reset.
3876  *	- If the PHY does not auto-negotiate just reset it.
3877  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3878  *	  otherwise do it later based on the outcome of auto-negotiation.
3879  */
3880 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3881 		  struct link_config *lc)
3882 {
3883 	struct fw_port_cmd c;
3884 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3885 	unsigned int aneg, fc, fec, speed, rcap;
3886 
3887 	fc = 0;
3888 	if (lc->requested_fc & PAUSE_RX)
3889 		fc |= FW_PORT_CAP32_FC_RX;
3890 	if (lc->requested_fc & PAUSE_TX)
3891 		fc |= FW_PORT_CAP32_FC_TX;
3892 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3893 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3894 
3895 	if (lc->requested_aneg == AUTONEG_DISABLE)
3896 		aneg = 0;
3897 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3898 		aneg = FW_PORT_CAP32_ANEG;
3899 	else
3900 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3901 
3902 	if (aneg) {
3903 		speed = lc->pcaps &
3904 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3905 	} else if (lc->requested_speed != 0)
3906 		speed = speed_to_fwcap(lc->requested_speed);
3907 	else
3908 		speed = fwcap_top_speed(lc->pcaps);
3909 
3910 	fec = 0;
3911 #ifdef INVARIANTS
3912 	if (lc->force_fec != 0)
3913 		MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_FEC);
3914 #endif
3915 	if (fec_supported(speed)) {
3916 		if (lc->requested_fec == FEC_AUTO) {
3917 			if (lc->force_fec > 0) {
3918 				/*
3919 				 * Must use FORCE_FEC even though requested FEC
3920 				 * is AUTO. Set all the FEC bits valid for the
3921 				 * speed and let the firmware pick one.
3922 				 */
3923 				fec |= FW_PORT_CAP32_FORCE_FEC;
3924 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3925 					fec |= FW_PORT_CAP32_FEC_RS;
3926 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3927 				} else if (speed & FW_PORT_CAP32_SPEED_50G) {
3928 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3929 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3930 				} else {
3931 					fec |= FW_PORT_CAP32_FEC_RS;
3932 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3933 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3934 				}
3935 			} else {
3936 				/*
3937 				 * Set only 1b. Old firmwares can't deal with
3938 				 * multiple bits and new firmwares are free to
3939 				 * ignore this and try whatever FECs they want
3940 				 * because we aren't setting FORCE_FEC here.
3941 				 */
3942 				fec |= fec_to_fwcap(lc->fec_hint);
3943 				MPASS(powerof2(fec));
3944 
3945 				/*
3946 				 * Override the hint if the FEC is not valid for
3947 				 * the potential top speed.  Request the best
3948 				 * FEC at that speed instead.
3949 				 */
3950 				if (speed & FW_PORT_CAP32_SPEED_100G &&
3951 				    fec == FW_PORT_CAP32_FEC_BASER_RS)
3952 					fec = FW_PORT_CAP32_FEC_RS;
3953 				else if (speed & FW_PORT_CAP32_SPEED_50G &&
3954 				    fec == FW_PORT_CAP32_FEC_RS)
3955 					fec = FW_PORT_CAP32_FEC_BASER_RS;
3956 			}
3957 		} else {
3958 			/*
3959 			 * User has explicitly requested some FEC(s). Set
3960 			 * FORCE_FEC unless prohibited from using it.
3961 			 */
3962 			if (lc->force_fec != 0)
3963 				fec |= FW_PORT_CAP32_FORCE_FEC;
3964 			fec |= fec_to_fwcap(lc->requested_fec &
3965 			    M_FW_PORT_CAP32_FEC);
3966 			if (lc->requested_fec & FEC_MODULE)
3967 				fec |= fec_to_fwcap(lc->fec_hint);
3968 		}
3969 
3970 		/*
3971 		 * This is for compatibility with old firmwares. The original
3972 		 * way to request NO_FEC was to not set any of the FEC bits. New
3973 		 * firmwares understand this too.
3974 		 */
3975 		if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3976 			fec = 0;
3977 	}
3978 
3979 	/* Force AN on for BT cards. */
3980 	if (isset(&adap->bt_map, port))
3981 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3982 
3983 	rcap = aneg | speed | fc | fec;
3984 	if ((rcap | lc->pcaps) != lc->pcaps) {
3985 #ifdef INVARIANTS
3986 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3987 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3988 #endif
3989 		rcap &= lc->pcaps;
3990 	}
3991 	rcap |= mdi;
3992 
3993 	memset(&c, 0, sizeof(c));
3994 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3995 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3996 				     V_FW_PORT_CMD_PORTID(port));
3997 	if (adap->params.port_caps32) {
3998 		c.action_to_len16 =
3999 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
4000 			FW_LEN16(c));
4001 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4002 	} else {
4003 		c.action_to_len16 =
4004 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4005 			    FW_LEN16(c));
4006 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4007 	}
4008 
4009 	lc->requested_caps = rcap;
4010 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4011 }
4012 
4013 /**
4014  *	t4_restart_aneg - restart autonegotiation
4015  *	@adap: the adapter
4016  *	@mbox: mbox to use for the FW command
4017  *	@port: the port id
4018  *
4019  *	Restarts autonegotiation for the selected port.
4020  */
4021 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4022 {
4023 	struct fw_port_cmd c;
4024 
4025 	memset(&c, 0, sizeof(c));
4026 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4027 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4028 				     V_FW_PORT_CMD_PORTID(port));
4029 	c.action_to_len16 =
4030 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4031 			    FW_LEN16(c));
4032 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4033 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4034 }
4035 
4036 struct intr_details {
4037 	u32 mask;
4038 	const char *msg;
4039 };
4040 
4041 struct intr_action {
4042 	u32 mask;
4043 	int arg;
4044 	bool (*action)(struct adapter *, int, bool);
4045 };
4046 
4047 #define NONFATAL_IF_DISABLED 1
4048 struct intr_info {
4049 	const char *name;	/* name of the INT_CAUSE register */
4050 	int cause_reg;		/* INT_CAUSE register */
4051 	int enable_reg;		/* INT_ENABLE register */
4052 	u32 fatal;		/* bits that are fatal */
4053 	int flags;		/* hints */
4054 	const struct intr_details *details;
4055 	const struct intr_action *actions;
4056 };
4057 
4058 static inline char
4059 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4060 {
4061 
4062 	if (cause & fatal)
4063 		return ('!');
4064 	if (cause & enable)
4065 		return ('*');
4066 	return ('-');
4067 }
4068 
4069 static void
4070 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4071 {
4072 	u32 enable, fatal, leftover;
4073 	const struct intr_details *details;
4074 	char alert;
4075 
4076 	enable = t4_read_reg(adap, ii->enable_reg);
4077 	if (ii->flags & NONFATAL_IF_DISABLED)
4078 		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4079 	else
4080 		fatal = ii->fatal;
4081 	alert = intr_alert_char(cause, enable, fatal);
4082 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4083 	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4084 
4085 	leftover = cause;
4086 	for (details = ii->details; details && details->mask != 0; details++) {
4087 		u32 msgbits = details->mask & cause;
4088 		if (msgbits == 0)
4089 			continue;
4090 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4091 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4092 		    details->msg);
4093 		leftover &= ~msgbits;
4094 	}
4095 	if (leftover != 0 && leftover != cause)
4096 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4097 }
4098 
4099 /*
4100  * Returns true for fatal error.
4101  */
4102 static bool
4103 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4104     u32 additional_cause, bool verbose)
4105 {
4106 	u32 cause, fatal;
4107 	bool rc;
4108 	const struct intr_action *action;
4109 
4110 	/*
4111 	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4112 	 * bit special and we need to completely ignore the bits that are not in
4113 	 * PL_INT_ENABLE.
4114 	 */
4115 	cause = t4_read_reg(adap, ii->cause_reg);
4116 	if (ii->cause_reg == A_PL_INT_CAUSE)
4117 		cause &= t4_read_reg(adap, ii->enable_reg);
4118 	if (verbose || cause != 0)
4119 		t4_show_intr_info(adap, ii, cause);
4120 	fatal = cause & ii->fatal;
4121 	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4122 		fatal &= t4_read_reg(adap, ii->enable_reg);
4123 	cause |= additional_cause;
4124 	if (cause == 0)
4125 		return (false);
4126 
4127 	rc = fatal != 0;
4128 	for (action = ii->actions; action && action->mask != 0; action++) {
4129 		if (!(action->mask & cause))
4130 			continue;
4131 		rc |= (action->action)(adap, action->arg, verbose);
4132 	}
4133 
4134 	/* clear */
4135 	t4_write_reg(adap, ii->cause_reg, cause);
4136 	(void)t4_read_reg(adap, ii->cause_reg);
4137 
4138 	return (rc);
4139 }
4140 
4141 /*
4142  * Interrupt handler for the PCIE module.
4143  */
4144 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4145 {
4146 	static const struct intr_details sysbus_intr_details[] = {
4147 		{ F_RNPP, "RXNP array parity error" },
4148 		{ F_RPCP, "RXPC array parity error" },
4149 		{ F_RCIP, "RXCIF array parity error" },
4150 		{ F_RCCP, "Rx completions control array parity error" },
4151 		{ F_RFTP, "RXFT array parity error" },
4152 		{ 0 }
4153 	};
4154 	static const struct intr_info sysbus_intr_info = {
4155 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4156 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4157 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4158 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4159 		.flags = 0,
4160 		.details = sysbus_intr_details,
4161 		.actions = NULL,
4162 	};
4163 	static const struct intr_details pcie_port_intr_details[] = {
4164 		{ F_TPCP, "TXPC array parity error" },
4165 		{ F_TNPP, "TXNP array parity error" },
4166 		{ F_TFTP, "TXFT array parity error" },
4167 		{ F_TCAP, "TXCA array parity error" },
4168 		{ F_TCIP, "TXCIF array parity error" },
4169 		{ F_RCAP, "RXCA array parity error" },
4170 		{ F_OTDD, "outbound request TLP discarded" },
4171 		{ F_RDPE, "Rx data parity error" },
4172 		{ F_TDUE, "Tx uncorrectable data error" },
4173 		{ 0 }
4174 	};
4175 	static const struct intr_info pcie_port_intr_info = {
4176 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4177 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4178 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4179 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4180 		    F_OTDD | F_RDPE | F_TDUE,
4181 		.flags = 0,
4182 		.details = pcie_port_intr_details,
4183 		.actions = NULL,
4184 	};
4185 	static const struct intr_details pcie_intr_details[] = {
4186 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4187 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4188 		{ F_MSIDATAPERR, "MSI data parity error" },
4189 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4190 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4191 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4192 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4193 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4194 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4195 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4196 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4197 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4198 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4199 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4200 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4201 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4202 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4203 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4204 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4205 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4206 		{ F_FIDPERR, "PCIe FID parity error" },
4207 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4208 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4209 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4210 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4211 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4212 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4213 		{ F_PCIESINT, "PCIe core secondary fault" },
4214 		{ F_PCIEPINT, "PCIe core primary fault" },
4215 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4216 		{ 0 }
4217 	};
4218 	static const struct intr_details t5_pcie_intr_details[] = {
4219 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4220 		{ F_NONFATALERR, "PCIe non-fatal error" },
4221 		{ F_READRSPERR, "Outbound read error" },
4222 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4223 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4224 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4225 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4226 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4227 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4228 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4229 		{ F_VFIDPERR, "VFID SRAM parity error" },
4230 		{ F_FIDPERR, "FID SRAM parity error" },
4231 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4232 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4233 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4234 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4235 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4236 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4237 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4238 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4239 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4240 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4241 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4242 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4243 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4244 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4245 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4246 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4247 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4248 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4249 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4250 		{ 0 }
4251 	};
4252 	struct intr_info pcie_intr_info = {
4253 		.name = "PCIE_INT_CAUSE",
4254 		.cause_reg = A_PCIE_INT_CAUSE,
4255 		.enable_reg = A_PCIE_INT_ENABLE,
4256 		.fatal = 0xffffffff,
4257 		.flags = NONFATAL_IF_DISABLED,
4258 		.details = NULL,
4259 		.actions = NULL,
4260 	};
4261 	bool fatal = false;
4262 
4263 	if (is_t4(adap)) {
4264 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4265 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4266 
4267 		pcie_intr_info.details = pcie_intr_details;
4268 	} else {
4269 		pcie_intr_info.details = t5_pcie_intr_details;
4270 	}
4271 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4272 
4273 	return (fatal);
4274 }
4275 
4276 /*
4277  * TP interrupt handler.
4278  */
4279 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4280 {
4281 	static const struct intr_details tp_intr_details[] = {
4282 		{ 0x3fffffff, "TP parity error" },
4283 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4284 		{ 0 }
4285 	};
4286 	static const struct intr_info tp_intr_info = {
4287 		.name = "TP_INT_CAUSE",
4288 		.cause_reg = A_TP_INT_CAUSE,
4289 		.enable_reg = A_TP_INT_ENABLE,
4290 		.fatal = 0x7fffffff,
4291 		.flags = NONFATAL_IF_DISABLED,
4292 		.details = tp_intr_details,
4293 		.actions = NULL,
4294 	};
4295 
4296 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4297 }
4298 
4299 /*
4300  * SGE interrupt handler.
4301  */
4302 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4303 {
4304 	static const struct intr_info sge_int1_info = {
4305 		.name = "SGE_INT_CAUSE1",
4306 		.cause_reg = A_SGE_INT_CAUSE1,
4307 		.enable_reg = A_SGE_INT_ENABLE1,
4308 		.fatal = 0xffffffff,
4309 		.flags = NONFATAL_IF_DISABLED,
4310 		.details = NULL,
4311 		.actions = NULL,
4312 	};
4313 	static const struct intr_info sge_int2_info = {
4314 		.name = "SGE_INT_CAUSE2",
4315 		.cause_reg = A_SGE_INT_CAUSE2,
4316 		.enable_reg = A_SGE_INT_ENABLE2,
4317 		.fatal = 0xffffffff,
4318 		.flags = NONFATAL_IF_DISABLED,
4319 		.details = NULL,
4320 		.actions = NULL,
4321 	};
4322 	static const struct intr_details sge_int3_details[] = {
4323 		{ F_ERR_FLM_DBP,
4324 			"DBP pointer delivery for invalid context or QID" },
4325 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4326 			"Invalid QID or header request by IDMA" },
4327 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4328 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4329 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4330 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4331 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4332 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4333 			"SGE GTS with timer 0-5 for IQID > 1023" },
4334 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4335 			"SGE received CPL exceeding IQE size" },
4336 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4337 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4338 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4339 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4340 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4341 		  "SGE IQID > 1023 received CPL for FL" },
4342 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4343 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4344 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4345 		{ F_ERR_ING_CTXT_PRIO,
4346 			"Ingress context manager priority user error" },
4347 		{ F_ERR_EGR_CTXT_PRIO,
4348 			"Egress context manager priority user error" },
4349 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4350 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4351 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4352 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4353 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4354 		{ 0x0000000f, "SGE context access for invalid queue" },
4355 		{ 0 }
4356 	};
4357 	static const struct intr_details t6_sge_int3_details[] = {
4358 		{ F_ERR_FLM_DBP,
4359 			"DBP pointer delivery for invalid context or QID" },
4360 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4361 			"Invalid QID or header request by IDMA" },
4362 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4363 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4364 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4365 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4366 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4367 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4368 			"SGE GTS with timer 0-5 for IQID > 1023" },
4369 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4370 			"SGE received CPL exceeding IQE size" },
4371 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4372 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4373 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4374 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4375 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4376 			"SGE IQID > 1023 received CPL for FL" },
4377 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4378 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4379 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4380 		{ F_ERR_ING_CTXT_PRIO,
4381 			"Ingress context manager priority user error" },
4382 		{ F_ERR_EGR_CTXT_PRIO,
4383 			"Egress context manager priority user error" },
4384 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4385 		{ F_FATAL_WRE_LEN,
4386 			"SGE WRE packet less than advertized length" },
4387 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4388 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4389 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4390 		{ 0x0000000f, "SGE context access for invalid queue" },
4391 		{ 0 }
4392 	};
4393 	struct intr_info sge_int3_info = {
4394 		.name = "SGE_INT_CAUSE3",
4395 		.cause_reg = A_SGE_INT_CAUSE3,
4396 		.enable_reg = A_SGE_INT_ENABLE3,
4397 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4398 		.flags = 0,
4399 		.details = NULL,
4400 		.actions = NULL,
4401 	};
4402 	static const struct intr_info sge_int4_info = {
4403 		.name = "SGE_INT_CAUSE4",
4404 		.cause_reg = A_SGE_INT_CAUSE4,
4405 		.enable_reg = A_SGE_INT_ENABLE4,
4406 		.fatal = 0,
4407 		.flags = 0,
4408 		.details = NULL,
4409 		.actions = NULL,
4410 	};
4411 	static const struct intr_info sge_int5_info = {
4412 		.name = "SGE_INT_CAUSE5",
4413 		.cause_reg = A_SGE_INT_CAUSE5,
4414 		.enable_reg = A_SGE_INT_ENABLE5,
4415 		.fatal = 0xffffffff,
4416 		.flags = NONFATAL_IF_DISABLED,
4417 		.details = NULL,
4418 		.actions = NULL,
4419 	};
4420 	static const struct intr_info sge_int6_info = {
4421 		.name = "SGE_INT_CAUSE6",
4422 		.cause_reg = A_SGE_INT_CAUSE6,
4423 		.enable_reg = A_SGE_INT_ENABLE6,
4424 		.fatal = 0,
4425 		.flags = 0,
4426 		.details = NULL,
4427 		.actions = NULL,
4428 	};
4429 
4430 	bool fatal;
4431 	u32 v;
4432 
4433 	if (chip_id(adap) <= CHELSIO_T5) {
4434 		sge_int3_info.details = sge_int3_details;
4435 	} else {
4436 		sge_int3_info.details = t6_sge_int3_details;
4437 	}
4438 
4439 	fatal = false;
4440 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4441 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4442 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4443 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4444 	if (chip_id(adap) >= CHELSIO_T5)
4445 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4446 	if (chip_id(adap) >= CHELSIO_T6)
4447 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4448 
4449 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4450 	if (v & F_ERROR_QID_VALID) {
4451 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4452 		if (v & F_UNCAPTURED_ERROR)
4453 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4454 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4455 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4456 	}
4457 
4458 	return (fatal);
4459 }
4460 
4461 /*
4462  * CIM interrupt handler.
4463  */
4464 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4465 {
4466 	static const struct intr_action cim_host_intr_actions[] = {
4467 		{ F_TIMER0INT, 0, t4_os_dump_cimla },
4468 		{ 0 },
4469 	};
4470 	static const struct intr_details cim_host_intr_details[] = {
4471 		/* T6+ */
4472 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4473 
4474 		/* T5+ */
4475 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4476 		{ F_PLCIM_MSTRSPDATAPARERR,
4477 			"PL2CIM master response data parity error" },
4478 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4479 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4480 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4481 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4482 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4483 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4484 
4485 		/* T4+ */
4486 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4487 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4488 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4489 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4490 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4491 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4492 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4493 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4494 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4495 			"CIM IBQ PCIe/SGE_HI parity error" },
4496 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4497 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4498 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4499 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4500 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4501 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4502 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4503 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4504 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4505 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4506 		{ 0}
4507 	};
4508 	static const struct intr_info cim_host_intr_info = {
4509 		.name = "CIM_HOST_INT_CAUSE",
4510 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4511 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4512 		.fatal = 0x007fffe6,
4513 		.flags = NONFATAL_IF_DISABLED,
4514 		.details = cim_host_intr_details,
4515 		.actions = cim_host_intr_actions,
4516 	};
4517 	static const struct intr_details cim_host_upacc_intr_details[] = {
4518 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4519 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4520 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4521 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4522 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4523 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4524 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4525 		{ F_SGLWRPLINT,
4526 			"CIM single write to PL space with illegal BEs" },
4527 		{ F_SGLRDPLINT,
4528 			"CIM single read from PL space with illegal BEs" },
4529 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4530 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4531 		{ F_SGLWRCTLINT,
4532 			"CIM single write to CTL space with illegal BEs" },
4533 		{ F_SGLRDCTLINT,
4534 			"CIM single read from CTL space with illegal BEs" },
4535 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4536 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4537 		{ F_SGLWREEPROMINT,
4538 			"CIM single write to EEPROM space with illegal BEs" },
4539 		{ F_SGLRDEEPROMINT,
4540 			"CIM single read from EEPROM space with illegal BEs" },
4541 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4542 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4543 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4544 		{ F_SGLRDFLASHINT,
4545 			"CIM single read from flash space with illegal BEs" },
4546 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4547 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4548 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4549 		{ F_SGLRDBOOTINT,
4550 			"CIM single read from boot space with illegal BEs" },
4551 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4552 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4553 		{ F_ILLRDINT, "CIM illegal read" },
4554 		{ F_ILLWRINT, "CIM illegal write" },
4555 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4556 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4557 		{0}
4558 	};
4559 	static const struct intr_info cim_host_upacc_intr_info = {
4560 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4561 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4562 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4563 		.fatal = 0x3fffeeff,
4564 		.flags = NONFATAL_IF_DISABLED,
4565 		.details = cim_host_upacc_intr_details,
4566 		.actions = NULL,
4567 	};
4568 	static const struct intr_info cim_pf_host_intr_info = {
4569 		.name = "CIM_PF_HOST_INT_CAUSE",
4570 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4571 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4572 		.fatal = 0,
4573 		.flags = 0,
4574 		.details = NULL,
4575 		.actions = NULL,
4576 	};
4577 	u32 val, fw_err;
4578 	bool fatal;
4579 
4580 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4581 	if (fw_err & F_PCIE_FW_ERR)
4582 		t4_report_fw_error(adap);
4583 
4584 	/*
4585 	 * When the Firmware detects an internal error which normally wouldn't
4586 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4587 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4588 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4589 	 * interrupt.
4590 	 */
4591 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4592 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4593 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4594 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4595 	}
4596 
4597 	fatal = false;
4598 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4599 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4600 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4601 
4602 	return (fatal);
4603 }
4604 
4605 /*
4606  * ULP RX interrupt handler.
4607  */
4608 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4609 {
4610 	static const struct intr_details ulprx_intr_details[] = {
4611 		/* T5+ */
4612 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4613 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4614 
4615 		/* T4+ */
4616 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4617 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4618 		{ 0x007fffff, "ULPRX parity error" },
4619 		{ 0 }
4620 	};
4621 	static const struct intr_info ulprx_intr_info = {
4622 		.name = "ULP_RX_INT_CAUSE",
4623 		.cause_reg = A_ULP_RX_INT_CAUSE,
4624 		.enable_reg = A_ULP_RX_INT_ENABLE,
4625 		.fatal = 0x07ffffff,
4626 		.flags = NONFATAL_IF_DISABLED,
4627 		.details = ulprx_intr_details,
4628 		.actions = NULL,
4629 	};
4630 	static const struct intr_info ulprx_intr2_info = {
4631 		.name = "ULP_RX_INT_CAUSE_2",
4632 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4633 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4634 		.fatal = 0,
4635 		.flags = 0,
4636 		.details = NULL,
4637 		.actions = NULL,
4638 	};
4639 	bool fatal = false;
4640 
4641 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4642 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4643 
4644 	return (fatal);
4645 }
4646 
4647 /*
4648  * ULP TX interrupt handler.
4649  */
4650 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4651 {
4652 	static const struct intr_details ulptx_intr_details[] = {
4653 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4654 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4655 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4656 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4657 		{ 0x0fffffff, "ULPTX parity error" },
4658 		{ 0 }
4659 	};
4660 	static const struct intr_info ulptx_intr_info = {
4661 		.name = "ULP_TX_INT_CAUSE",
4662 		.cause_reg = A_ULP_TX_INT_CAUSE,
4663 		.enable_reg = A_ULP_TX_INT_ENABLE,
4664 		.fatal = 0x0fffffff,
4665 		.flags = NONFATAL_IF_DISABLED,
4666 		.details = ulptx_intr_details,
4667 		.actions = NULL,
4668 	};
4669 	static const struct intr_info ulptx_intr2_info = {
4670 		.name = "ULP_TX_INT_CAUSE_2",
4671 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4672 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4673 		.fatal = 0xf0,
4674 		.flags = NONFATAL_IF_DISABLED,
4675 		.details = NULL,
4676 		.actions = NULL,
4677 	};
4678 	bool fatal = false;
4679 
4680 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4681 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4682 
4683 	return (fatal);
4684 }
4685 
4686 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4687 {
4688 	int i;
4689 	u32 data[17];
4690 
4691 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4692 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4693 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4694 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4695 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4696 	}
4697 
4698 	return (false);
4699 }
4700 
4701 /*
4702  * PM TX interrupt handler.
4703  */
4704 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4705 {
4706 	static const struct intr_action pmtx_intr_actions[] = {
4707 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4708 		{ 0 },
4709 	};
4710 	static const struct intr_details pmtx_intr_details[] = {
4711 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4712 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4713 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4714 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4715 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4716 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4717 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4718 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4719 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4720 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4721 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4722 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4723 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4724 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4725 		{ 0 }
4726 	};
4727 	static const struct intr_info pmtx_intr_info = {
4728 		.name = "PM_TX_INT_CAUSE",
4729 		.cause_reg = A_PM_TX_INT_CAUSE,
4730 		.enable_reg = A_PM_TX_INT_ENABLE,
4731 		.fatal = 0xffffffff,
4732 		.flags = 0,
4733 		.details = pmtx_intr_details,
4734 		.actions = pmtx_intr_actions,
4735 	};
4736 
4737 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4738 }
4739 
4740 /*
4741  * PM RX interrupt handler.
4742  */
4743 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4744 {
4745 	static const struct intr_details pmrx_intr_details[] = {
4746 		/* T6+ */
4747 		{ 0x18000000, "PMRX ospi overflow" },
4748 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4749 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4750 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4751 		{ F_SDC_ERR, "PMRX SDC error" },
4752 
4753 		/* T4+ */
4754 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4755 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4756 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4757 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4758 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4759 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4760 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4761 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4762 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4763 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4764 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4765 		{ 0 }
4766 	};
4767 	static const struct intr_info pmrx_intr_info = {
4768 		.name = "PM_RX_INT_CAUSE",
4769 		.cause_reg = A_PM_RX_INT_CAUSE,
4770 		.enable_reg = A_PM_RX_INT_ENABLE,
4771 		.fatal = 0x1fffffff,
4772 		.flags = NONFATAL_IF_DISABLED,
4773 		.details = pmrx_intr_details,
4774 		.actions = NULL,
4775 	};
4776 
4777 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4778 }
4779 
4780 /*
4781  * CPL switch interrupt handler.
4782  */
4783 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4784 {
4785 	static const struct intr_details cplsw_intr_details[] = {
4786 		/* T5+ */
4787 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4788 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4789 
4790 		/* T4+ */
4791 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4792 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4793 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4794 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4795 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4796 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4797 		{ 0 }
4798 	};
4799 	static const struct intr_info cplsw_intr_info = {
4800 		.name = "CPL_INTR_CAUSE",
4801 		.cause_reg = A_CPL_INTR_CAUSE,
4802 		.enable_reg = A_CPL_INTR_ENABLE,
4803 		.fatal = 0xff,
4804 		.flags = NONFATAL_IF_DISABLED,
4805 		.details = cplsw_intr_details,
4806 		.actions = NULL,
4807 	};
4808 
4809 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4810 }
4811 
4812 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4813 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4814 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4815     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4816     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4817     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4818 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4819     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4820     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4821 
4822 /*
4823  * LE interrupt handler.
4824  */
4825 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4826 {
4827 	static const struct intr_details le_intr_details[] = {
4828 		{ F_REQQPARERR, "LE request queue parity error" },
4829 		{ F_UNKNOWNCMD, "LE unknown command" },
4830 		{ F_ACTRGNFULL, "LE active region full" },
4831 		{ F_PARITYERR, "LE parity error" },
4832 		{ F_LIPMISS, "LE LIP miss" },
4833 		{ F_LIP0, "LE 0 LIP error" },
4834 		{ 0 }
4835 	};
4836 	static const struct intr_details t6_le_intr_details[] = {
4837 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4838 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4839 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4840 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4841 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4842 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4843 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4844 		{ F_T6_ACTRGNFULL, "LE active region full" },
4845 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4846 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4847 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4848 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4849 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4850 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4851 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4852 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4853 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4854 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4855 		{ 0 }
4856 	};
4857 	struct intr_info le_intr_info = {
4858 		.name = "LE_DB_INT_CAUSE",
4859 		.cause_reg = A_LE_DB_INT_CAUSE,
4860 		.enable_reg = A_LE_DB_INT_ENABLE,
4861 		.fatal = 0,
4862 		.flags = NONFATAL_IF_DISABLED,
4863 		.details = NULL,
4864 		.actions = NULL,
4865 	};
4866 
4867 	if (chip_id(adap) <= CHELSIO_T5) {
4868 		le_intr_info.details = le_intr_details;
4869 		le_intr_info.fatal = T5_LE_FATAL_MASK;
4870 	} else {
4871 		le_intr_info.details = t6_le_intr_details;
4872 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4873 	}
4874 
4875 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4876 }
4877 
4878 /*
4879  * MPS interrupt handler.
4880  */
4881 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4882 {
4883 	static const struct intr_details mps_rx_perr_intr_details[] = {
4884 		{ 0xffffffff, "MPS Rx parity error" },
4885 		{ 0 }
4886 	};
4887 	static const struct intr_info mps_rx_perr_intr_info = {
4888 		.name = "MPS_RX_PERR_INT_CAUSE",
4889 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4890 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4891 		.fatal = 0xffffffff,
4892 		.flags = NONFATAL_IF_DISABLED,
4893 		.details = mps_rx_perr_intr_details,
4894 		.actions = NULL,
4895 	};
4896 	static const struct intr_details mps_tx_intr_details[] = {
4897 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4898 		{ F_FRMERR, "MPS Tx framing error" },
4899 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4900 		{ F_BUBBLE, "MPS Tx underflow" },
4901 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4902 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4903 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4904 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4905 		{ 0 }
4906 	};
4907 	static const struct intr_info mps_tx_intr_info = {
4908 		.name = "MPS_TX_INT_CAUSE",
4909 		.cause_reg = A_MPS_TX_INT_CAUSE,
4910 		.enable_reg = A_MPS_TX_INT_ENABLE,
4911 		.fatal = 0x1ffff,
4912 		.flags = NONFATAL_IF_DISABLED,
4913 		.details = mps_tx_intr_details,
4914 		.actions = NULL,
4915 	};
4916 	static const struct intr_details mps_trc_intr_details[] = {
4917 		{ F_MISCPERR, "MPS TRC misc parity error" },
4918 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4919 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4920 		{ 0 }
4921 	};
4922 	static const struct intr_info mps_trc_intr_info = {
4923 		.name = "MPS_TRC_INT_CAUSE",
4924 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4925 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4926 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4927 		.flags = 0,
4928 		.details = mps_trc_intr_details,
4929 		.actions = NULL,
4930 	};
4931 	static const struct intr_details mps_stat_sram_intr_details[] = {
4932 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4933 		{ 0 }
4934 	};
4935 	static const struct intr_info mps_stat_sram_intr_info = {
4936 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4937 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4938 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4939 		.fatal = 0x1fffffff,
4940 		.flags = NONFATAL_IF_DISABLED,
4941 		.details = mps_stat_sram_intr_details,
4942 		.actions = NULL,
4943 	};
4944 	static const struct intr_details mps_stat_tx_intr_details[] = {
4945 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4946 		{ 0 }
4947 	};
4948 	static const struct intr_info mps_stat_tx_intr_info = {
4949 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4950 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4951 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4952 		.fatal =  0xffffff,
4953 		.flags = NONFATAL_IF_DISABLED,
4954 		.details = mps_stat_tx_intr_details,
4955 		.actions = NULL,
4956 	};
4957 	static const struct intr_details mps_stat_rx_intr_details[] = {
4958 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4959 		{ 0 }
4960 	};
4961 	static const struct intr_info mps_stat_rx_intr_info = {
4962 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4963 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4964 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4965 		.fatal =  0xffffff,
4966 		.flags = 0,
4967 		.details = mps_stat_rx_intr_details,
4968 		.actions = NULL,
4969 	};
4970 	static const struct intr_details mps_cls_intr_details[] = {
4971 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4972 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4973 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4974 		{ 0 }
4975 	};
4976 	static const struct intr_info mps_cls_intr_info = {
4977 		.name = "MPS_CLS_INT_CAUSE",
4978 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4979 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4980 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4981 		.flags = 0,
4982 		.details = mps_cls_intr_details,
4983 		.actions = NULL,
4984 	};
4985 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4986 		{ 0xff, "MPS statistics SRAM1 parity error" },
4987 		{ 0 }
4988 	};
4989 	static const struct intr_info mps_stat_sram1_intr_info = {
4990 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4991 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4992 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4993 		.fatal = 0xff,
4994 		.flags = 0,
4995 		.details = mps_stat_sram1_intr_details,
4996 		.actions = NULL,
4997 	};
4998 
4999 	bool fatal;
5000 
5001 	fatal = false;
5002 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
5003 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
5004 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
5005 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
5006 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
5007 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
5008 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
5009 	if (chip_id(adap) > CHELSIO_T4) {
5010 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
5011 		    verbose);
5012 	}
5013 
5014 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5015 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
5016 
5017 	return (fatal);
5018 
5019 }
5020 
5021 /*
5022  * EDC/MC interrupt handler.
5023  */
5024 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
5025 {
5026 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
5027 	unsigned int count_reg, v;
5028 	static const struct intr_details mem_intr_details[] = {
5029 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
5030 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
5031 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
5032 		{ 0 }
5033 	};
5034 	struct intr_info ii = {
5035 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5036 		.details = mem_intr_details,
5037 		.flags = 0,
5038 		.actions = NULL,
5039 	};
5040 	bool fatal;
5041 
5042 	switch (idx) {
5043 	case MEM_EDC0:
5044 		ii.name = "EDC0_INT_CAUSE";
5045 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5046 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5047 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5048 		break;
5049 	case MEM_EDC1:
5050 		ii.name = "EDC1_INT_CAUSE";
5051 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5052 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5053 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5054 		break;
5055 	case MEM_MC0:
5056 		ii.name = "MC0_INT_CAUSE";
5057 		if (is_t4(adap)) {
5058 			ii.cause_reg = A_MC_INT_CAUSE;
5059 			ii.enable_reg = A_MC_INT_ENABLE;
5060 			count_reg = A_MC_ECC_STATUS;
5061 		} else {
5062 			ii.cause_reg = A_MC_P_INT_CAUSE;
5063 			ii.enable_reg = A_MC_P_INT_ENABLE;
5064 			count_reg = A_MC_P_ECC_STATUS;
5065 		}
5066 		break;
5067 	case MEM_MC1:
5068 		ii.name = "MC1_INT_CAUSE";
5069 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5070 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5071 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5072 		break;
5073 	}
5074 
5075 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5076 
5077 	v = t4_read_reg(adap, count_reg);
5078 	if (v != 0) {
5079 		if (G_ECC_UECNT(v) != 0) {
5080 			CH_ALERT(adap,
5081 			    "%s: %u uncorrectable ECC data error(s)\n",
5082 			    name[idx], G_ECC_UECNT(v));
5083 		}
5084 		if (G_ECC_CECNT(v) != 0) {
5085 			if (idx <= MEM_EDC1)
5086 				t4_edc_err_read(adap, idx);
5087 			CH_WARN_RATELIMIT(adap,
5088 			    "%s: %u correctable ECC data error(s)\n",
5089 			    name[idx], G_ECC_CECNT(v));
5090 		}
5091 		t4_write_reg(adap, count_reg, 0xffffffff);
5092 	}
5093 
5094 	return (fatal);
5095 }
5096 
5097 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5098 {
5099 	u32 v;
5100 
5101 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5102 	CH_ALERT(adap,
5103 	    "MA address wrap-around error by client %u to address %#x\n",
5104 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5105 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5106 
5107 	return (false);
5108 }
5109 
5110 
5111 /*
5112  * MA interrupt handler.
5113  */
5114 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5115 {
5116 	static const struct intr_action ma_intr_actions[] = {
5117 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5118 		{ 0 },
5119 	};
5120 	static const struct intr_info ma_intr_info = {
5121 		.name = "MA_INT_CAUSE",
5122 		.cause_reg = A_MA_INT_CAUSE,
5123 		.enable_reg = A_MA_INT_ENABLE,
5124 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5125 		.flags = NONFATAL_IF_DISABLED,
5126 		.details = NULL,
5127 		.actions = ma_intr_actions,
5128 	};
5129 	static const struct intr_info ma_perr_status1 = {
5130 		.name = "MA_PARITY_ERROR_STATUS1",
5131 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5132 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5133 		.fatal = 0xffffffff,
5134 		.flags = 0,
5135 		.details = NULL,
5136 		.actions = NULL,
5137 	};
5138 	static const struct intr_info ma_perr_status2 = {
5139 		.name = "MA_PARITY_ERROR_STATUS2",
5140 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5141 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5142 		.fatal = 0xffffffff,
5143 		.flags = 0,
5144 		.details = NULL,
5145 		.actions = NULL,
5146 	};
5147 	bool fatal;
5148 
5149 	fatal = false;
5150 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5151 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5152 	if (chip_id(adap) > CHELSIO_T4)
5153 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5154 
5155 	return (fatal);
5156 }
5157 
5158 /*
5159  * SMB interrupt handler.
5160  */
5161 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5162 {
5163 	static const struct intr_details smb_intr_details[] = {
5164 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5165 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5166 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5167 		{ 0 }
5168 	};
5169 	static const struct intr_info smb_intr_info = {
5170 		.name = "SMB_INT_CAUSE",
5171 		.cause_reg = A_SMB_INT_CAUSE,
5172 		.enable_reg = A_SMB_INT_ENABLE,
5173 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5174 		.flags = 0,
5175 		.details = smb_intr_details,
5176 		.actions = NULL,
5177 	};
5178 
5179 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5180 }
5181 
5182 /*
5183  * NC-SI interrupt handler.
5184  */
5185 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5186 {
5187 	static const struct intr_details ncsi_intr_details[] = {
5188 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5189 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5190 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5191 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5192 		{ 0 }
5193 	};
5194 	static const struct intr_info ncsi_intr_info = {
5195 		.name = "NCSI_INT_CAUSE",
5196 		.cause_reg = A_NCSI_INT_CAUSE,
5197 		.enable_reg = A_NCSI_INT_ENABLE,
5198 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5199 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5200 		.flags = 0,
5201 		.details = ncsi_intr_details,
5202 		.actions = NULL,
5203 	};
5204 
5205 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5206 }
5207 
5208 /*
5209  * MAC interrupt handler.
5210  */
5211 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5212 {
5213 	static const struct intr_details mac_intr_details[] = {
5214 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5215 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5216 		{ 0 }
5217 	};
5218 	char name[32];
5219 	struct intr_info ii;
5220 	bool fatal = false;
5221 
5222 	if (is_t4(adap)) {
5223 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5224 		ii.name = &name[0];
5225 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5226 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5227 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5228 		ii.flags = 0;
5229 		ii.details = mac_intr_details;
5230 		ii.actions = NULL;
5231 	} else {
5232 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5233 		ii.name = &name[0];
5234 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5235 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5236 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5237 		ii.flags = 0;
5238 		ii.details = mac_intr_details;
5239 		ii.actions = NULL;
5240 	}
5241 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5242 
5243 	if (chip_id(adap) >= CHELSIO_T5) {
5244 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5245 		ii.name = &name[0];
5246 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5247 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5248 		ii.fatal = 0;
5249 		ii.flags = 0;
5250 		ii.details = NULL;
5251 		ii.actions = NULL;
5252 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5253 	}
5254 
5255 	if (chip_id(adap) >= CHELSIO_T6) {
5256 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5257 		ii.name = &name[0];
5258 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5259 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5260 		ii.fatal = 0;
5261 		ii.flags = 0;
5262 		ii.details = NULL;
5263 		ii.actions = NULL;
5264 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5265 	}
5266 
5267 	return (fatal);
5268 }
5269 
5270 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5271 {
5272 	static const struct intr_details plpl_intr_details[] = {
5273 		{ F_FATALPERR, "Fatal parity error" },
5274 		{ F_PERRVFID, "VFID_MAP parity error" },
5275 		{ 0 }
5276 	};
5277 	static const struct intr_info plpl_intr_info = {
5278 		.name = "PL_PL_INT_CAUSE",
5279 		.cause_reg = A_PL_PL_INT_CAUSE,
5280 		.enable_reg = A_PL_PL_INT_ENABLE,
5281 		.fatal = F_FATALPERR | F_PERRVFID,
5282 		.flags = NONFATAL_IF_DISABLED,
5283 		.details = plpl_intr_details,
5284 		.actions = NULL,
5285 	};
5286 
5287 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5288 }
5289 
5290 /**
5291  *	t4_slow_intr_handler - control path interrupt handler
5292  *	@adap: the adapter
5293  *	@verbose: increased verbosity, for debug
5294  *
5295  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5296  *	The designation 'slow' is because it involves register reads, while
5297  *	data interrupts typically don't involve any MMIOs.
5298  */
5299 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5300 {
5301 	static const struct intr_details pl_intr_details[] = {
5302 		{ F_MC1, "MC1" },
5303 		{ F_UART, "UART" },
5304 		{ F_ULP_TX, "ULP TX" },
5305 		{ F_SGE, "SGE" },
5306 		{ F_HMA, "HMA" },
5307 		{ F_CPL_SWITCH, "CPL Switch" },
5308 		{ F_ULP_RX, "ULP RX" },
5309 		{ F_PM_RX, "PM RX" },
5310 		{ F_PM_TX, "PM TX" },
5311 		{ F_MA, "MA" },
5312 		{ F_TP, "TP" },
5313 		{ F_LE, "LE" },
5314 		{ F_EDC1, "EDC1" },
5315 		{ F_EDC0, "EDC0" },
5316 		{ F_MC, "MC0" },
5317 		{ F_PCIE, "PCIE" },
5318 		{ F_PMU, "PMU" },
5319 		{ F_MAC3, "MAC3" },
5320 		{ F_MAC2, "MAC2" },
5321 		{ F_MAC1, "MAC1" },
5322 		{ F_MAC0, "MAC0" },
5323 		{ F_SMB, "SMB" },
5324 		{ F_SF, "SF" },
5325 		{ F_PL, "PL" },
5326 		{ F_NCSI, "NC-SI" },
5327 		{ F_MPS, "MPS" },
5328 		{ F_MI, "MI" },
5329 		{ F_DBG, "DBG" },
5330 		{ F_I2CM, "I2CM" },
5331 		{ F_CIM, "CIM" },
5332 		{ 0 }
5333 	};
5334 	static const struct intr_info pl_perr_cause = {
5335 		.name = "PL_PERR_CAUSE",
5336 		.cause_reg = A_PL_PERR_CAUSE,
5337 		.enable_reg = A_PL_PERR_ENABLE,
5338 		.fatal = 0xffffffff,
5339 		.flags = 0,
5340 		.details = pl_intr_details,
5341 		.actions = NULL,
5342 	};
5343 	static const struct intr_action pl_intr_action[] = {
5344 		{ F_MC1, MEM_MC1, mem_intr_handler },
5345 		{ F_ULP_TX, -1, ulptx_intr_handler },
5346 		{ F_SGE, -1, sge_intr_handler },
5347 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5348 		{ F_ULP_RX, -1, ulprx_intr_handler },
5349 		{ F_PM_RX, -1, pmrx_intr_handler},
5350 		{ F_PM_TX, -1, pmtx_intr_handler},
5351 		{ F_MA, -1, ma_intr_handler },
5352 		{ F_TP, -1, tp_intr_handler },
5353 		{ F_LE, -1, le_intr_handler },
5354 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5355 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5356 		{ F_MC0, MEM_MC0, mem_intr_handler },
5357 		{ F_PCIE, -1, pcie_intr_handler },
5358 		{ F_MAC3, 3, mac_intr_handler},
5359 		{ F_MAC2, 2, mac_intr_handler},
5360 		{ F_MAC1, 1, mac_intr_handler},
5361 		{ F_MAC0, 0, mac_intr_handler},
5362 		{ F_SMB, -1, smb_intr_handler},
5363 		{ F_PL, -1, plpl_intr_handler },
5364 		{ F_NCSI, -1, ncsi_intr_handler},
5365 		{ F_MPS, -1, mps_intr_handler },
5366 		{ F_CIM, -1, cim_intr_handler },
5367 		{ 0 }
5368 	};
5369 	static const struct intr_info pl_intr_info = {
5370 		.name = "PL_INT_CAUSE",
5371 		.cause_reg = A_PL_INT_CAUSE,
5372 		.enable_reg = A_PL_INT_ENABLE,
5373 		.fatal = 0,
5374 		.flags = 0,
5375 		.details = pl_intr_details,
5376 		.actions = pl_intr_action,
5377 	};
5378 	bool fatal;
5379 	u32 perr;
5380 
5381 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5382 	if (verbose || perr != 0) {
5383 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5384 		if (perr != 0)
5385 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5386 		if (verbose)
5387 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5388 	}
5389 	fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5390 	if (fatal)
5391 		t4_fatal_err(adap, false);
5392 
5393 	return (0);
5394 }
5395 
5396 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5397 
5398 /**
5399  *	t4_intr_enable - enable interrupts
5400  *	@adapter: the adapter whose interrupts should be enabled
5401  *
5402  *	Enable PF-specific interrupts for the calling function and the top-level
5403  *	interrupt concentrator for global interrupts.  Interrupts are already
5404  *	enabled at each module,	here we just enable the roots of the interrupt
5405  *	hierarchies.
5406  *
5407  *	Note: this function should be called only when the driver manages
5408  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5409  *	function at a time should be doing this.
5410  */
5411 void t4_intr_enable(struct adapter *adap)
5412 {
5413 	u32 val = 0;
5414 
5415 	if (chip_id(adap) <= CHELSIO_T5)
5416 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5417 	else
5418 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5419 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5420 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5421 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5422 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5423 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5424 	    F_EGRESS_SIZE_ERR;
5425 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5426 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5427 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5428 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5429 }
5430 
5431 /**
5432  *	t4_intr_disable - disable interrupts
5433  *	@adap: the adapter whose interrupts should be disabled
5434  *
5435  *	Disable interrupts.  We only disable the top-level interrupt
5436  *	concentrators.  The caller must be a PCI function managing global
5437  *	interrupts.
5438  */
5439 void t4_intr_disable(struct adapter *adap)
5440 {
5441 
5442 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5443 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5444 }
5445 
5446 /**
5447  *	t4_intr_clear - clear all interrupts
5448  *	@adap: the adapter whose interrupts should be cleared
5449  *
5450  *	Clears all interrupts.  The caller must be a PCI function managing
5451  *	global interrupts.
5452  */
5453 void t4_intr_clear(struct adapter *adap)
5454 {
5455 	static const u32 cause_reg[] = {
5456 		A_CIM_HOST_INT_CAUSE,
5457 		A_CIM_HOST_UPACC_INT_CAUSE,
5458 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5459 		A_CPL_INTR_CAUSE,
5460 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5461 		A_LE_DB_INT_CAUSE,
5462 		A_MA_INT_WRAP_STATUS,
5463 		A_MA_PARITY_ERROR_STATUS1,
5464 		A_MA_INT_CAUSE,
5465 		A_MPS_CLS_INT_CAUSE,
5466 		A_MPS_RX_PERR_INT_CAUSE,
5467 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5468 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5469 		A_MPS_TRC_INT_CAUSE,
5470 		A_MPS_TX_INT_CAUSE,
5471 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5472 		A_NCSI_INT_CAUSE,
5473 		A_PCIE_INT_CAUSE,
5474 		A_PCIE_NONFAT_ERR,
5475 		A_PL_PL_INT_CAUSE,
5476 		A_PM_RX_INT_CAUSE,
5477 		A_PM_TX_INT_CAUSE,
5478 		A_SGE_INT_CAUSE1,
5479 		A_SGE_INT_CAUSE2,
5480 		A_SGE_INT_CAUSE3,
5481 		A_SGE_INT_CAUSE4,
5482 		A_SMB_INT_CAUSE,
5483 		A_TP_INT_CAUSE,
5484 		A_ULP_RX_INT_CAUSE,
5485 		A_ULP_RX_INT_CAUSE_2,
5486 		A_ULP_TX_INT_CAUSE,
5487 		A_ULP_TX_INT_CAUSE_2,
5488 
5489 		MYPF_REG(A_PL_PF_INT_CAUSE),
5490 	};
5491 	int i;
5492 	const int nchan = adap->chip_params->nchan;
5493 
5494 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5495 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5496 
5497 	if (is_t4(adap)) {
5498 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5499 		    0xffffffff);
5500 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5501 		    0xffffffff);
5502 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5503 		for (i = 0; i < nchan; i++) {
5504 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5505 			    0xffffffff);
5506 		}
5507 	}
5508 	if (chip_id(adap) >= CHELSIO_T5) {
5509 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5510 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5511 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5512 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5513 		if (is_t5(adap)) {
5514 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5515 			    0xffffffff);
5516 		}
5517 		for (i = 0; i < nchan; i++) {
5518 			t4_write_reg(adap, T5_PORT_REG(i,
5519 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5520 			if (chip_id(adap) > CHELSIO_T5) {
5521 				t4_write_reg(adap, T5_PORT_REG(i,
5522 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5523 				    0xffffffff);
5524 			}
5525 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5526 			    0xffffffff);
5527 		}
5528 	}
5529 	if (chip_id(adap) >= CHELSIO_T6) {
5530 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5531 	}
5532 
5533 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5534 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5535 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5536 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5537 }
5538 
5539 /**
5540  *	hash_mac_addr - return the hash value of a MAC address
5541  *	@addr: the 48-bit Ethernet MAC address
5542  *
5543  *	Hashes a MAC address according to the hash function used by HW inexact
5544  *	(hash) address matching.
5545  */
5546 static int hash_mac_addr(const u8 *addr)
5547 {
5548 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5549 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5550 	a ^= b;
5551 	a ^= (a >> 12);
5552 	a ^= (a >> 6);
5553 	return a & 0x3f;
5554 }
5555 
5556 /**
5557  *	t4_config_rss_range - configure a portion of the RSS mapping table
5558  *	@adapter: the adapter
5559  *	@mbox: mbox to use for the FW command
5560  *	@viid: virtual interface whose RSS subtable is to be written
5561  *	@start: start entry in the table to write
5562  *	@n: how many table entries to write
5563  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5564  *	@nrspq: number of values in @rspq
5565  *
5566  *	Programs the selected part of the VI's RSS mapping table with the
5567  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5568  *	until the full table range is populated.
5569  *
5570  *	The caller must ensure the values in @rspq are in the range allowed for
5571  *	@viid.
5572  */
5573 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5574 			int start, int n, const u16 *rspq, unsigned int nrspq)
5575 {
5576 	int ret;
5577 	const u16 *rsp = rspq;
5578 	const u16 *rsp_end = rspq + nrspq;
5579 	struct fw_rss_ind_tbl_cmd cmd;
5580 
5581 	memset(&cmd, 0, sizeof(cmd));
5582 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5583 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5584 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5585 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5586 
5587 	/*
5588 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5589 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5590 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5591 	 * reserved.
5592 	 */
5593 	while (n > 0) {
5594 		int nq = min(n, 32);
5595 		int nq_packed = 0;
5596 		__be32 *qp = &cmd.iq0_to_iq2;
5597 
5598 		/*
5599 		 * Set up the firmware RSS command header to send the next
5600 		 * "nq" Ingress Queue IDs to the firmware.
5601 		 */
5602 		cmd.niqid = cpu_to_be16(nq);
5603 		cmd.startidx = cpu_to_be16(start);
5604 
5605 		/*
5606 		 * "nq" more done for the start of the next loop.
5607 		 */
5608 		start += nq;
5609 		n -= nq;
5610 
5611 		/*
5612 		 * While there are still Ingress Queue IDs to stuff into the
5613 		 * current firmware RSS command, retrieve them from the
5614 		 * Ingress Queue ID array and insert them into the command.
5615 		 */
5616 		while (nq > 0) {
5617 			/*
5618 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5619 			 * around the Ingress Queue ID array if necessary) and
5620 			 * insert them into the firmware RSS command at the
5621 			 * current 3-tuple position within the commad.
5622 			 */
5623 			u16 qbuf[3];
5624 			u16 *qbp = qbuf;
5625 			int nqbuf = min(3, nq);
5626 
5627 			nq -= nqbuf;
5628 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5629 			while (nqbuf && nq_packed < 32) {
5630 				nqbuf--;
5631 				nq_packed++;
5632 				*qbp++ = *rsp++;
5633 				if (rsp >= rsp_end)
5634 					rsp = rspq;
5635 			}
5636 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5637 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5638 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5639 		}
5640 
5641 		/*
5642 		 * Send this portion of the RRS table update to the firmware;
5643 		 * bail out on any errors.
5644 		 */
5645 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5646 		if (ret)
5647 			return ret;
5648 	}
5649 	return 0;
5650 }
5651 
5652 /**
5653  *	t4_config_glbl_rss - configure the global RSS mode
5654  *	@adapter: the adapter
5655  *	@mbox: mbox to use for the FW command
5656  *	@mode: global RSS mode
5657  *	@flags: mode-specific flags
5658  *
5659  *	Sets the global RSS mode.
5660  */
5661 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5662 		       unsigned int flags)
5663 {
5664 	struct fw_rss_glb_config_cmd c;
5665 
5666 	memset(&c, 0, sizeof(c));
5667 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5668 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5669 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5670 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5671 		c.u.manual.mode_pkd =
5672 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5673 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5674 		c.u.basicvirtual.mode_keymode =
5675 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5676 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5677 	} else
5678 		return -EINVAL;
5679 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5680 }
5681 
5682 /**
5683  *	t4_config_vi_rss - configure per VI RSS settings
5684  *	@adapter: the adapter
5685  *	@mbox: mbox to use for the FW command
5686  *	@viid: the VI id
5687  *	@flags: RSS flags
5688  *	@defq: id of the default RSS queue for the VI.
5689  *	@skeyidx: RSS secret key table index for non-global mode
5690  *	@skey: RSS vf_scramble key for VI.
5691  *
5692  *	Configures VI-specific RSS properties.
5693  */
5694 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5695 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5696 		     unsigned int skey)
5697 {
5698 	struct fw_rss_vi_config_cmd c;
5699 
5700 	memset(&c, 0, sizeof(c));
5701 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5702 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5703 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5704 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5705 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5706 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5707 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5708 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5709 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5710 
5711 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5712 }
5713 
5714 /* Read an RSS table row */
5715 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5716 {
5717 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5718 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5719 				   5, 0, val);
5720 }
5721 
5722 /**
5723  *	t4_read_rss - read the contents of the RSS mapping table
5724  *	@adapter: the adapter
5725  *	@map: holds the contents of the RSS mapping table
5726  *
5727  *	Reads the contents of the RSS hash->queue mapping table.
5728  */
5729 int t4_read_rss(struct adapter *adapter, u16 *map)
5730 {
5731 	u32 val;
5732 	int i, ret;
5733 	int rss_nentries = adapter->chip_params->rss_nentries;
5734 
5735 	for (i = 0; i < rss_nentries / 2; ++i) {
5736 		ret = rd_rss_row(adapter, i, &val);
5737 		if (ret)
5738 			return ret;
5739 		*map++ = G_LKPTBLQUEUE0(val);
5740 		*map++ = G_LKPTBLQUEUE1(val);
5741 	}
5742 	return 0;
5743 }
5744 
5745 /**
5746  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5747  * @adap: the adapter
5748  * @cmd: TP fw ldst address space type
5749  * @vals: where the indirect register values are stored/written
5750  * @nregs: how many indirect registers to read/write
5751  * @start_idx: index of first indirect register to read/write
5752  * @rw: Read (1) or Write (0)
5753  * @sleep_ok: if true we may sleep while awaiting command completion
5754  *
5755  * Access TP indirect registers through LDST
5756  **/
5757 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5758 			    unsigned int nregs, unsigned int start_index,
5759 			    unsigned int rw, bool sleep_ok)
5760 {
5761 	int ret = 0;
5762 	unsigned int i;
5763 	struct fw_ldst_cmd c;
5764 
5765 	for (i = 0; i < nregs; i++) {
5766 		memset(&c, 0, sizeof(c));
5767 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5768 						F_FW_CMD_REQUEST |
5769 						(rw ? F_FW_CMD_READ :
5770 						      F_FW_CMD_WRITE) |
5771 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5772 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5773 
5774 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5775 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5776 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5777 				      sleep_ok);
5778 		if (ret)
5779 			return ret;
5780 
5781 		if (rw)
5782 			vals[i] = be32_to_cpu(c.u.addrval.val);
5783 	}
5784 	return 0;
5785 }
5786 
5787 /**
5788  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5789  * @adap: the adapter
5790  * @reg_addr: Address Register
5791  * @reg_data: Data register
5792  * @buff: where the indirect register values are stored/written
5793  * @nregs: how many indirect registers to read/write
5794  * @start_index: index of first indirect register to read/write
5795  * @rw: READ(1) or WRITE(0)
5796  * @sleep_ok: if true we may sleep while awaiting command completion
5797  *
5798  * Read/Write TP indirect registers through LDST if possible.
5799  * Else, use backdoor access
5800  **/
5801 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5802 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5803 			      bool sleep_ok)
5804 {
5805 	int rc = -EINVAL;
5806 	int cmd;
5807 
5808 	switch (reg_addr) {
5809 	case A_TP_PIO_ADDR:
5810 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5811 		break;
5812 	case A_TP_TM_PIO_ADDR:
5813 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5814 		break;
5815 	case A_TP_MIB_INDEX:
5816 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5817 		break;
5818 	default:
5819 		goto indirect_access;
5820 	}
5821 
5822 	if (t4_use_ldst(adap))
5823 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5824 				      sleep_ok);
5825 
5826 indirect_access:
5827 
5828 	if (rc) {
5829 		if (rw)
5830 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5831 					 start_index);
5832 		else
5833 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5834 					  start_index);
5835 	}
5836 }
5837 
5838 /**
5839  * t4_tp_pio_read - Read TP PIO registers
5840  * @adap: the adapter
5841  * @buff: where the indirect register values are written
5842  * @nregs: how many indirect registers to read
5843  * @start_index: index of first indirect register to read
5844  * @sleep_ok: if true we may sleep while awaiting command completion
5845  *
5846  * Read TP PIO Registers
5847  **/
5848 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5849 		    u32 start_index, bool sleep_ok)
5850 {
5851 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5852 			  start_index, 1, sleep_ok);
5853 }
5854 
5855 /**
5856  * t4_tp_pio_write - Write TP PIO registers
5857  * @adap: the adapter
5858  * @buff: where the indirect register values are stored
5859  * @nregs: how many indirect registers to write
5860  * @start_index: index of first indirect register to write
5861  * @sleep_ok: if true we may sleep while awaiting command completion
5862  *
5863  * Write TP PIO Registers
5864  **/
5865 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5866 		     u32 start_index, bool sleep_ok)
5867 {
5868 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5869 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5870 }
5871 
5872 /**
5873  * t4_tp_tm_pio_read - Read TP TM PIO registers
5874  * @adap: the adapter
5875  * @buff: where the indirect register values are written
5876  * @nregs: how many indirect registers to read
5877  * @start_index: index of first indirect register to read
5878  * @sleep_ok: if true we may sleep while awaiting command completion
5879  *
5880  * Read TP TM PIO Registers
5881  **/
5882 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5883 		       u32 start_index, bool sleep_ok)
5884 {
5885 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5886 			  nregs, start_index, 1, sleep_ok);
5887 }
5888 
5889 /**
5890  * t4_tp_mib_read - Read TP MIB registers
5891  * @adap: the adapter
5892  * @buff: where the indirect register values are written
5893  * @nregs: how many indirect registers to read
5894  * @start_index: index of first indirect register to read
5895  * @sleep_ok: if true we may sleep while awaiting command completion
5896  *
5897  * Read TP MIB Registers
5898  **/
5899 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5900 		    bool sleep_ok)
5901 {
5902 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5903 			  start_index, 1, sleep_ok);
5904 }
5905 
5906 /**
5907  *	t4_read_rss_key - read the global RSS key
5908  *	@adap: the adapter
5909  *	@key: 10-entry array holding the 320-bit RSS key
5910  * 	@sleep_ok: if true we may sleep while awaiting command completion
5911  *
5912  *	Reads the global 320-bit RSS key.
5913  */
5914 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5915 {
5916 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5917 }
5918 
5919 /**
5920  *	t4_write_rss_key - program one of the RSS keys
5921  *	@adap: the adapter
5922  *	@key: 10-entry array holding the 320-bit RSS key
5923  *	@idx: which RSS key to write
5924  * 	@sleep_ok: if true we may sleep while awaiting command completion
5925  *
5926  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5927  *	0..15 the corresponding entry in the RSS key table is written,
5928  *	otherwise the global RSS key is written.
5929  */
5930 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5931 		      bool sleep_ok)
5932 {
5933 	u8 rss_key_addr_cnt = 16;
5934 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5935 
5936 	/*
5937 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5938 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5939 	 * as index[5:4](upper 2) into key table
5940 	 */
5941 	if ((chip_id(adap) > CHELSIO_T5) &&
5942 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5943 		rss_key_addr_cnt = 32;
5944 
5945 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5946 
5947 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5948 		if (rss_key_addr_cnt > 16)
5949 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5950 				     vrt | V_KEYWRADDRX(idx >> 4) |
5951 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5952 		else
5953 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5954 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5955 	}
5956 }
5957 
5958 /**
5959  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5960  *	@adapter: the adapter
5961  *	@index: the entry in the PF RSS table to read
5962  *	@valp: where to store the returned value
5963  * 	@sleep_ok: if true we may sleep while awaiting command completion
5964  *
5965  *	Reads the PF RSS Configuration Table at the specified index and returns
5966  *	the value found there.
5967  */
5968 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5969 			   u32 *valp, bool sleep_ok)
5970 {
5971 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5972 }
5973 
5974 /**
5975  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5976  *	@adapter: the adapter
5977  *	@index: the entry in the VF RSS table to read
5978  *	@val: the value to store
5979  * 	@sleep_ok: if true we may sleep while awaiting command completion
5980  *
5981  *	Writes the PF RSS Configuration Table at the specified index with the
5982  *	specified value.
5983  */
5984 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5985 			    u32 val, bool sleep_ok)
5986 {
5987 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5988 			sleep_ok);
5989 }
5990 
5991 /**
5992  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5993  *	@adapter: the adapter
5994  *	@index: the entry in the VF RSS table to read
5995  *	@vfl: where to store the returned VFL
5996  *	@vfh: where to store the returned VFH
5997  * 	@sleep_ok: if true we may sleep while awaiting command completion
5998  *
5999  *	Reads the VF RSS Configuration Table at the specified index and returns
6000  *	the (VFL, VFH) values found there.
6001  */
6002 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
6003 			   u32 *vfl, u32 *vfh, bool sleep_ok)
6004 {
6005 	u32 vrt, mask, data;
6006 
6007 	if (chip_id(adapter) <= CHELSIO_T5) {
6008 		mask = V_VFWRADDR(M_VFWRADDR);
6009 		data = V_VFWRADDR(index);
6010 	} else {
6011 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6012 		 data = V_T6_VFWRADDR(index);
6013 	}
6014 	/*
6015 	 * Request that the index'th VF Table values be read into VFL/VFH.
6016 	 */
6017 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6018 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6019 	vrt |= data | F_VFRDEN;
6020 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6021 
6022 	/*
6023 	 * Grab the VFL/VFH values ...
6024 	 */
6025 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6026 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6027 }
6028 
6029 /**
6030  *	t4_write_rss_vf_config - write VF RSS Configuration Table
6031  *
6032  *	@adapter: the adapter
6033  *	@index: the entry in the VF RSS table to write
6034  *	@vfl: the VFL to store
6035  *	@vfh: the VFH to store
6036  *
6037  *	Writes the VF RSS Configuration Table at the specified index with the
6038  *	specified (VFL, VFH) values.
6039  */
6040 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6041 			    u32 vfl, u32 vfh, bool sleep_ok)
6042 {
6043 	u32 vrt, mask, data;
6044 
6045 	if (chip_id(adapter) <= CHELSIO_T5) {
6046 		mask = V_VFWRADDR(M_VFWRADDR);
6047 		data = V_VFWRADDR(index);
6048 	} else {
6049 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6050 		data = V_T6_VFWRADDR(index);
6051 	}
6052 
6053 	/*
6054 	 * Load up VFL/VFH with the values to be written ...
6055 	 */
6056 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6057 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6058 
6059 	/*
6060 	 * Write the VFL/VFH into the VF Table at index'th location.
6061 	 */
6062 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6063 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6064 	vrt |= data | F_VFRDEN;
6065 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6066 }
6067 
6068 /**
6069  *	t4_read_rss_pf_map - read PF RSS Map
6070  *	@adapter: the adapter
6071  * 	@sleep_ok: if true we may sleep while awaiting command completion
6072  *
6073  *	Reads the PF RSS Map register and returns its value.
6074  */
6075 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6076 {
6077 	u32 pfmap;
6078 
6079 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6080 
6081 	return pfmap;
6082 }
6083 
6084 /**
6085  *	t4_write_rss_pf_map - write PF RSS Map
6086  *	@adapter: the adapter
6087  *	@pfmap: PF RSS Map value
6088  *
6089  *	Writes the specified value to the PF RSS Map register.
6090  */
6091 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6092 {
6093 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6094 }
6095 
6096 /**
6097  *	t4_read_rss_pf_mask - read PF RSS Mask
6098  *	@adapter: the adapter
6099  * 	@sleep_ok: if true we may sleep while awaiting command completion
6100  *
6101  *	Reads the PF RSS Mask register and returns its value.
6102  */
6103 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6104 {
6105 	u32 pfmask;
6106 
6107 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6108 
6109 	return pfmask;
6110 }
6111 
6112 /**
6113  *	t4_write_rss_pf_mask - write PF RSS Mask
6114  *	@adapter: the adapter
6115  *	@pfmask: PF RSS Mask value
6116  *
6117  *	Writes the specified value to the PF RSS Mask register.
6118  */
6119 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6120 {
6121 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6122 }
6123 
6124 /**
6125  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6126  *	@adap: the adapter
6127  *	@v4: holds the TCP/IP counter values
6128  *	@v6: holds the TCP/IPv6 counter values
6129  * 	@sleep_ok: if true we may sleep while awaiting command completion
6130  *
6131  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6132  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6133  */
6134 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6135 			 struct tp_tcp_stats *v6, bool sleep_ok)
6136 {
6137 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6138 
6139 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6140 #define STAT(x)     val[STAT_IDX(x)]
6141 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6142 
6143 	if (v4) {
6144 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6145 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6146 		v4->tcp_out_rsts = STAT(OUT_RST);
6147 		v4->tcp_in_segs  = STAT64(IN_SEG);
6148 		v4->tcp_out_segs = STAT64(OUT_SEG);
6149 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6150 	}
6151 	if (v6) {
6152 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6153 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6154 		v6->tcp_out_rsts = STAT(OUT_RST);
6155 		v6->tcp_in_segs  = STAT64(IN_SEG);
6156 		v6->tcp_out_segs = STAT64(OUT_SEG);
6157 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6158 	}
6159 #undef STAT64
6160 #undef STAT
6161 #undef STAT_IDX
6162 }
6163 
6164 /**
6165  *	t4_tp_get_err_stats - read TP's error MIB counters
6166  *	@adap: the adapter
6167  *	@st: holds the counter values
6168  * 	@sleep_ok: if true we may sleep while awaiting command completion
6169  *
6170  *	Returns the values of TP's error counters.
6171  */
6172 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6173 			 bool sleep_ok)
6174 {
6175 	int nchan = adap->chip_params->nchan;
6176 
6177 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6178 		       sleep_ok);
6179 
6180 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6181 		       sleep_ok);
6182 
6183 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6184 		       sleep_ok);
6185 
6186 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6187 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6188 
6189 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6190 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6191 
6192 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6193 		       sleep_ok);
6194 
6195 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6196 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6197 
6198 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6199 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6200 
6201 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6202 		       sleep_ok);
6203 }
6204 
6205 /**
6206  *	t4_tp_get_err_stats - read TP's error MIB counters
6207  *	@adap: the adapter
6208  *	@st: holds the counter values
6209  * 	@sleep_ok: if true we may sleep while awaiting command completion
6210  *
6211  *	Returns the values of TP's error counters.
6212  */
6213 void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st,
6214 			 bool sleep_ok)
6215 {
6216 	int nchan = adap->chip_params->nchan;
6217 
6218 	t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0,
6219 		       sleep_ok);
6220 	t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0,
6221 		       sleep_ok);
6222 }
6223 
6224 /**
6225  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6226  *	@adap: the adapter
6227  *	@st: holds the counter values
6228  *
6229  *	Returns the values of TP's proxy counters.
6230  */
6231 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6232     bool sleep_ok)
6233 {
6234 	int nchan = adap->chip_params->nchan;
6235 
6236 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6237 }
6238 
6239 /**
6240  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6241  *	@adap: the adapter
6242  *	@st: holds the counter values
6243  * 	@sleep_ok: if true we may sleep while awaiting command completion
6244  *
6245  *	Returns the values of TP's CPL counters.
6246  */
6247 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6248 			 bool sleep_ok)
6249 {
6250 	int nchan = adap->chip_params->nchan;
6251 
6252 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6253 
6254 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6255 }
6256 
6257 /**
6258  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6259  *	@adap: the adapter
6260  *	@st: holds the counter values
6261  *
6262  *	Returns the values of TP's RDMA counters.
6263  */
6264 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6265 			  bool sleep_ok)
6266 {
6267 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6268 		       sleep_ok);
6269 }
6270 
6271 /**
6272  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6273  *	@adap: the adapter
6274  *	@idx: the port index
6275  *	@st: holds the counter values
6276  * 	@sleep_ok: if true we may sleep while awaiting command completion
6277  *
6278  *	Returns the values of TP's FCoE counters for the selected port.
6279  */
6280 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6281 		       struct tp_fcoe_stats *st, bool sleep_ok)
6282 {
6283 	u32 val[2];
6284 
6285 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6286 		       sleep_ok);
6287 
6288 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6289 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6290 
6291 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6292 		       sleep_ok);
6293 
6294 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6295 }
6296 
6297 /**
6298  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6299  *	@adap: the adapter
6300  *	@st: holds the counter values
6301  * 	@sleep_ok: if true we may sleep while awaiting command completion
6302  *
6303  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6304  */
6305 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6306 		      bool sleep_ok)
6307 {
6308 	u32 val[4];
6309 
6310 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6311 
6312 	st->frames = val[0];
6313 	st->drops = val[1];
6314 	st->octets = ((u64)val[2] << 32) | val[3];
6315 }
6316 
6317 /**
6318  *	t4_tp_get_tid_stats - read TP's tid MIB counters.
6319  *	@adap: the adapter
6320  *	@st: holds the counter values
6321  * 	@sleep_ok: if true we may sleep while awaiting command completion
6322  *
6323  *	Returns the values of TP's counters for tids.
6324  */
6325 void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st,
6326 		      bool sleep_ok)
6327 {
6328 
6329 	t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok);
6330 }
6331 
6332 /**
6333  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6334  *	@adap: the adapter
6335  *	@mtus: where to store the MTU values
6336  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6337  *
6338  *	Reads the HW path MTU table.
6339  */
6340 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6341 {
6342 	u32 v;
6343 	int i;
6344 
6345 	for (i = 0; i < NMTUS; ++i) {
6346 		t4_write_reg(adap, A_TP_MTU_TABLE,
6347 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6348 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6349 		mtus[i] = G_MTUVALUE(v);
6350 		if (mtu_log)
6351 			mtu_log[i] = G_MTUWIDTH(v);
6352 	}
6353 }
6354 
6355 /**
6356  *	t4_read_cong_tbl - reads the congestion control table
6357  *	@adap: the adapter
6358  *	@incr: where to store the alpha values
6359  *
6360  *	Reads the additive increments programmed into the HW congestion
6361  *	control table.
6362  */
6363 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6364 {
6365 	unsigned int mtu, w;
6366 
6367 	for (mtu = 0; mtu < NMTUS; ++mtu)
6368 		for (w = 0; w < NCCTRL_WIN; ++w) {
6369 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6370 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6371 			incr[mtu][w] = (u16)t4_read_reg(adap,
6372 						A_TP_CCTRL_TABLE) & 0x1fff;
6373 		}
6374 }
6375 
6376 /**
6377  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6378  *	@adap: the adapter
6379  *	@addr: the indirect TP register address
6380  *	@mask: specifies the field within the register to modify
6381  *	@val: new value for the field
6382  *
6383  *	Sets a field of an indirect TP register to the given value.
6384  */
6385 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6386 			    unsigned int mask, unsigned int val)
6387 {
6388 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6389 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6390 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6391 }
6392 
6393 /**
6394  *	init_cong_ctrl - initialize congestion control parameters
6395  *	@a: the alpha values for congestion control
6396  *	@b: the beta values for congestion control
6397  *
6398  *	Initialize the congestion control parameters.
6399  */
6400 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6401 {
6402 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6403 	a[9] = 2;
6404 	a[10] = 3;
6405 	a[11] = 4;
6406 	a[12] = 5;
6407 	a[13] = 6;
6408 	a[14] = 7;
6409 	a[15] = 8;
6410 	a[16] = 9;
6411 	a[17] = 10;
6412 	a[18] = 14;
6413 	a[19] = 17;
6414 	a[20] = 21;
6415 	a[21] = 25;
6416 	a[22] = 30;
6417 	a[23] = 35;
6418 	a[24] = 45;
6419 	a[25] = 60;
6420 	a[26] = 80;
6421 	a[27] = 100;
6422 	a[28] = 200;
6423 	a[29] = 300;
6424 	a[30] = 400;
6425 	a[31] = 500;
6426 
6427 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6428 	b[9] = b[10] = 1;
6429 	b[11] = b[12] = 2;
6430 	b[13] = b[14] = b[15] = b[16] = 3;
6431 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6432 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6433 	b[28] = b[29] = 6;
6434 	b[30] = b[31] = 7;
6435 }
6436 
6437 /* The minimum additive increment value for the congestion control table */
6438 #define CC_MIN_INCR 2U
6439 
6440 /**
6441  *	t4_load_mtus - write the MTU and congestion control HW tables
6442  *	@adap: the adapter
6443  *	@mtus: the values for the MTU table
6444  *	@alpha: the values for the congestion control alpha parameter
6445  *	@beta: the values for the congestion control beta parameter
6446  *
6447  *	Write the HW MTU table with the supplied MTUs and the high-speed
6448  *	congestion control table with the supplied alpha, beta, and MTUs.
6449  *	We write the two tables together because the additive increments
6450  *	depend on the MTUs.
6451  */
6452 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6453 		  const unsigned short *alpha, const unsigned short *beta)
6454 {
6455 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6456 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6457 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6458 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6459 	};
6460 
6461 	unsigned int i, w;
6462 
6463 	for (i = 0; i < NMTUS; ++i) {
6464 		unsigned int mtu = mtus[i];
6465 		unsigned int log2 = fls(mtu);
6466 
6467 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6468 			log2--;
6469 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6470 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6471 
6472 		for (w = 0; w < NCCTRL_WIN; ++w) {
6473 			unsigned int inc;
6474 
6475 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6476 				  CC_MIN_INCR);
6477 
6478 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6479 				     (w << 16) | (beta[w] << 13) | inc);
6480 		}
6481 	}
6482 }
6483 
6484 /**
6485  *	t4_set_pace_tbl - set the pace table
6486  *	@adap: the adapter
6487  *	@pace_vals: the pace values in microseconds
6488  *	@start: index of the first entry in the HW pace table to set
6489  *	@n: how many entries to set
6490  *
6491  *	Sets (a subset of the) HW pace table.
6492  */
6493 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6494 		     unsigned int start, unsigned int n)
6495 {
6496 	unsigned int vals[NTX_SCHED], i;
6497 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6498 
6499 	if (n > NTX_SCHED)
6500 	    return -ERANGE;
6501 
6502 	/* convert values from us to dack ticks, rounding to closest value */
6503 	for (i = 0; i < n; i++, pace_vals++) {
6504 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6505 		if (vals[i] > 0x7ff)
6506 			return -ERANGE;
6507 		if (*pace_vals && vals[i] == 0)
6508 			return -ERANGE;
6509 	}
6510 	for (i = 0; i < n; i++, start++)
6511 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6512 	return 0;
6513 }
6514 
6515 /**
6516  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6517  *	@adap: the adapter
6518  *	@kbps: target rate in Kbps
6519  *	@sched: the scheduler index
6520  *
6521  *	Configure a Tx HW scheduler for the target rate.
6522  */
6523 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6524 {
6525 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6526 	unsigned int clk = adap->params.vpd.cclk * 1000;
6527 	unsigned int selected_cpt = 0, selected_bpt = 0;
6528 
6529 	if (kbps > 0) {
6530 		kbps *= 125;     /* -> bytes */
6531 		for (cpt = 1; cpt <= 255; cpt++) {
6532 			tps = clk / cpt;
6533 			bpt = (kbps + tps / 2) / tps;
6534 			if (bpt > 0 && bpt <= 255) {
6535 				v = bpt * tps;
6536 				delta = v >= kbps ? v - kbps : kbps - v;
6537 				if (delta < mindelta) {
6538 					mindelta = delta;
6539 					selected_cpt = cpt;
6540 					selected_bpt = bpt;
6541 				}
6542 			} else if (selected_cpt)
6543 				break;
6544 		}
6545 		if (!selected_cpt)
6546 			return -EINVAL;
6547 	}
6548 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6549 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6550 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6551 	if (sched & 1)
6552 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6553 	else
6554 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6555 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6556 	return 0;
6557 }
6558 
6559 /**
6560  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6561  *	@adap: the adapter
6562  *	@sched: the scheduler index
6563  *	@ipg: the interpacket delay in tenths of nanoseconds
6564  *
6565  *	Set the interpacket delay for a HW packet rate scheduler.
6566  */
6567 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6568 {
6569 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6570 
6571 	/* convert ipg to nearest number of core clocks */
6572 	ipg *= core_ticks_per_usec(adap);
6573 	ipg = (ipg + 5000) / 10000;
6574 	if (ipg > M_TXTIMERSEPQ0)
6575 		return -EINVAL;
6576 
6577 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6578 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6579 	if (sched & 1)
6580 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6581 	else
6582 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6583 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6584 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6585 	return 0;
6586 }
6587 
6588 /*
6589  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6590  * clocks.  The formula is
6591  *
6592  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6593  *
6594  * which is equivalent to
6595  *
6596  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6597  */
6598 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6599 {
6600 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6601 
6602 	return v * 62 + v / 2;
6603 }
6604 
6605 /**
6606  *	t4_get_chan_txrate - get the current per channel Tx rates
6607  *	@adap: the adapter
6608  *	@nic_rate: rates for NIC traffic
6609  *	@ofld_rate: rates for offloaded traffic
6610  *
6611  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6612  *	for each channel.
6613  */
6614 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6615 {
6616 	u32 v;
6617 
6618 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6619 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6620 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6621 	if (adap->chip_params->nchan > 2) {
6622 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6623 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6624 	}
6625 
6626 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6627 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6628 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6629 	if (adap->chip_params->nchan > 2) {
6630 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6631 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6632 	}
6633 }
6634 
6635 /**
6636  *	t4_set_trace_filter - configure one of the tracing filters
6637  *	@adap: the adapter
6638  *	@tp: the desired trace filter parameters
6639  *	@idx: which filter to configure
6640  *	@enable: whether to enable or disable the filter
6641  *
6642  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6643  *	it indicates that the filter is already written in the register and it
6644  *	just needs to be enabled or disabled.
6645  */
6646 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6647     int idx, int enable)
6648 {
6649 	int i, ofst = idx * 4;
6650 	u32 data_reg, mask_reg, cfg;
6651 	u32 multitrc = F_TRCMULTIFILTER;
6652 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6653 
6654 	if (idx < 0 || idx >= NTRACE)
6655 		return -EINVAL;
6656 
6657 	if (tp == NULL || !enable) {
6658 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6659 		    enable ? en : 0);
6660 		return 0;
6661 	}
6662 
6663 	/*
6664 	 * TODO - After T4 data book is updated, specify the exact
6665 	 * section below.
6666 	 *
6667 	 * See T4 data book - MPS section for a complete description
6668 	 * of the below if..else handling of A_MPS_TRC_CFG register
6669 	 * value.
6670 	 */
6671 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6672 	if (cfg & F_TRCMULTIFILTER) {
6673 		/*
6674 		 * If multiple tracers are enabled, then maximum
6675 		 * capture size is 2.5KB (FIFO size of a single channel)
6676 		 * minus 2 flits for CPL_TRACE_PKT header.
6677 		 */
6678 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6679 			return -EINVAL;
6680 	} else {
6681 		/*
6682 		 * If multiple tracers are disabled, to avoid deadlocks
6683 		 * maximum packet capture size of 9600 bytes is recommended.
6684 		 * Also in this mode, only trace0 can be enabled and running.
6685 		 */
6686 		multitrc = 0;
6687 		if (tp->snap_len > 9600 || idx)
6688 			return -EINVAL;
6689 	}
6690 
6691 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6692 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6693 	    tp->min_len > M_TFMINPKTSIZE)
6694 		return -EINVAL;
6695 
6696 	/* stop the tracer we'll be changing */
6697 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6698 
6699 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6700 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6701 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6702 
6703 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6704 		t4_write_reg(adap, data_reg, tp->data[i]);
6705 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6706 	}
6707 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6708 		     V_TFCAPTUREMAX(tp->snap_len) |
6709 		     V_TFMINPKTSIZE(tp->min_len));
6710 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6711 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6712 		     (is_t4(adap) ?
6713 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6714 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6715 
6716 	return 0;
6717 }
6718 
6719 /**
6720  *	t4_get_trace_filter - query one of the tracing filters
6721  *	@adap: the adapter
6722  *	@tp: the current trace filter parameters
6723  *	@idx: which trace filter to query
6724  *	@enabled: non-zero if the filter is enabled
6725  *
6726  *	Returns the current settings of one of the HW tracing filters.
6727  */
6728 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6729 			 int *enabled)
6730 {
6731 	u32 ctla, ctlb;
6732 	int i, ofst = idx * 4;
6733 	u32 data_reg, mask_reg;
6734 
6735 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6736 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6737 
6738 	if (is_t4(adap)) {
6739 		*enabled = !!(ctla & F_TFEN);
6740 		tp->port =  G_TFPORT(ctla);
6741 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6742 	} else {
6743 		*enabled = !!(ctla & F_T5_TFEN);
6744 		tp->port = G_T5_TFPORT(ctla);
6745 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6746 	}
6747 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6748 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6749 	tp->skip_ofst = G_TFOFFSET(ctla);
6750 	tp->skip_len = G_TFLENGTH(ctla);
6751 
6752 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6753 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6754 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6755 
6756 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6757 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6758 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6759 	}
6760 }
6761 
6762 /**
6763  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6764  *	@adap: the adapter
6765  *	@cnt: where to store the count statistics
6766  *	@cycles: where to store the cycle statistics
6767  *
6768  *	Returns performance statistics from PMTX.
6769  */
6770 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6771 {
6772 	int i;
6773 	u32 data[2];
6774 
6775 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6776 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6777 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6778 		if (is_t4(adap))
6779 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6780 		else {
6781 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6782 					 A_PM_TX_DBG_DATA, data, 2,
6783 					 A_PM_TX_DBG_STAT_MSB);
6784 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6785 		}
6786 	}
6787 }
6788 
6789 /**
6790  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6791  *	@adap: the adapter
6792  *	@cnt: where to store the count statistics
6793  *	@cycles: where to store the cycle statistics
6794  *
6795  *	Returns performance statistics from PMRX.
6796  */
6797 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6798 {
6799 	int i;
6800 	u32 data[2];
6801 
6802 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6803 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6804 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6805 		if (is_t4(adap)) {
6806 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6807 		} else {
6808 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6809 					 A_PM_RX_DBG_DATA, data, 2,
6810 					 A_PM_RX_DBG_STAT_MSB);
6811 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6812 		}
6813 	}
6814 }
6815 
6816 /**
6817  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6818  *	@adap: the adapter
6819  *	@idx: the port index
6820  *
6821  *	Returns a bitmap indicating which MPS buffer groups are associated
6822  *	with the given port.  Bit i is set if buffer group i is used by the
6823  *	port.
6824  */
6825 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6826 {
6827 	u32 n;
6828 
6829 	if (adap->params.mps_bg_map)
6830 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6831 
6832 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6833 	if (n == 0)
6834 		return idx == 0 ? 0xf : 0;
6835 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6836 		return idx < 2 ? (3 << (2 * idx)) : 0;
6837 	return 1 << idx;
6838 }
6839 
6840 /*
6841  * TP RX e-channels associated with the port.
6842  */
6843 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6844 {
6845 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6846 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6847 
6848 	if (n == 0)
6849 		return idx == 0 ? all_chan : 0;
6850 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6851 		return idx < 2 ? (3 << (2 * idx)) : 0;
6852 	return 1 << idx;
6853 }
6854 
6855 /*
6856  * TP RX c-channel associated with the port.
6857  */
6858 static unsigned int t4_get_rx_c_chan(struct adapter *adap, int idx)
6859 {
6860 	u32 param, val;
6861 	int ret;
6862 
6863 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6864 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPCHMAP));
6865 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
6866 	if (!ret)
6867 		return (val >> (8 * idx)) & 0xff;
6868 
6869         return 0;
6870 }
6871 
6872 /**
6873  *      t4_get_port_type_description - return Port Type string description
6874  *      @port_type: firmware Port Type enumeration
6875  */
6876 const char *t4_get_port_type_description(enum fw_port_type port_type)
6877 {
6878 	static const char *const port_type_description[] = {
6879 		"Fiber_XFI",
6880 		"Fiber_XAUI",
6881 		"BT_SGMII",
6882 		"BT_XFI",
6883 		"BT_XAUI",
6884 		"KX4",
6885 		"CX4",
6886 		"KX",
6887 		"KR",
6888 		"SFP",
6889 		"BP_AP",
6890 		"BP4_AP",
6891 		"QSFP_10G",
6892 		"QSA",
6893 		"QSFP",
6894 		"BP40_BA",
6895 		"KR4_100G",
6896 		"CR4_QSFP",
6897 		"CR_QSFP",
6898 		"CR2_QSFP",
6899 		"SFP28",
6900 		"KR_SFP28",
6901 	};
6902 
6903 	if (port_type < ARRAY_SIZE(port_type_description))
6904 		return port_type_description[port_type];
6905 	return "UNKNOWN";
6906 }
6907 
6908 /**
6909  *      t4_get_port_stats_offset - collect port stats relative to a previous
6910  *				   snapshot
6911  *      @adap: The adapter
6912  *      @idx: The port
6913  *      @stats: Current stats to fill
6914  *      @offset: Previous stats snapshot
6915  */
6916 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6917 		struct port_stats *stats,
6918 		struct port_stats *offset)
6919 {
6920 	u64 *s, *o;
6921 	int i;
6922 
6923 	t4_get_port_stats(adap, idx, stats);
6924 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6925 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6926 			i++, s++, o++)
6927 		*s -= *o;
6928 }
6929 
6930 /**
6931  *	t4_get_port_stats - collect port statistics
6932  *	@adap: the adapter
6933  *	@idx: the port index
6934  *	@p: the stats structure to fill
6935  *
6936  *	Collect statistics related to the given port from HW.
6937  */
6938 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6939 {
6940 	struct port_info *pi = adap->port[idx];
6941 	u32 bgmap = pi->mps_bg_map;
6942 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6943 
6944 #define GET_STAT(name) \
6945 	t4_read_reg64(adap, \
6946 	(is_t4(adap) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L) : \
6947 	T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L)))
6948 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6949 
6950 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6951 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6952 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6953 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6954 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6955 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6956 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6957 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6958 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6959 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6960 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6961 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6962 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6963 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6964 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6965 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6966 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6967 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6968 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6969 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6970 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6971 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6972 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6973 
6974 	if (chip_id(adap) >= CHELSIO_T5) {
6975 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6976 			p->tx_frames -= p->tx_pause;
6977 			p->tx_octets -= p->tx_pause * 64;
6978 		}
6979 		if (stat_ctl & F_COUNTPAUSEMCTX)
6980 			p->tx_mcast_frames -= p->tx_pause;
6981 	}
6982 
6983 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6984 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6985 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6986 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6987 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6988 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6989 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6990 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6991 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6992 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6993 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6994 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6995 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6996 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6997 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6998 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6999 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
7000 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
7001 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
7002 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
7003 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
7004 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
7005 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
7006 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
7007 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
7008 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
7009 
7010 	if (pi->fcs_reg != -1)
7011 		p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base;
7012 
7013 	if (chip_id(adap) >= CHELSIO_T5) {
7014 		if (stat_ctl & F_COUNTPAUSESTATRX) {
7015 			p->rx_frames -= p->rx_pause;
7016 			p->rx_octets -= p->rx_pause * 64;
7017 		}
7018 		if (stat_ctl & F_COUNTPAUSEMCRX)
7019 			p->rx_mcast_frames -= p->rx_pause;
7020 	}
7021 
7022 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
7023 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
7024 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
7025 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
7026 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
7027 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
7028 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
7029 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
7030 
7031 #undef GET_STAT
7032 #undef GET_STAT_COM
7033 }
7034 
7035 /**
7036  *	t4_get_lb_stats - collect loopback port statistics
7037  *	@adap: the adapter
7038  *	@idx: the loopback port index
7039  *	@p: the stats structure to fill
7040  *
7041  *	Return HW statistics for the given loopback port.
7042  */
7043 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
7044 {
7045 
7046 #define GET_STAT(name) \
7047 	t4_read_reg64(adap, \
7048 	(is_t4(adap) ? \
7049 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
7050 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
7051 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
7052 
7053 	p->octets	= GET_STAT(BYTES);
7054 	p->frames	= GET_STAT(FRAMES);
7055 	p->bcast_frames	= GET_STAT(BCAST);
7056 	p->mcast_frames	= GET_STAT(MCAST);
7057 	p->ucast_frames	= GET_STAT(UCAST);
7058 	p->error_frames	= GET_STAT(ERROR);
7059 
7060 	p->frames_64		= GET_STAT(64B);
7061 	p->frames_65_127	= GET_STAT(65B_127B);
7062 	p->frames_128_255	= GET_STAT(128B_255B);
7063 	p->frames_256_511	= GET_STAT(256B_511B);
7064 	p->frames_512_1023	= GET_STAT(512B_1023B);
7065 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
7066 	p->frames_1519_max	= GET_STAT(1519B_MAX);
7067 	p->drop			= GET_STAT(DROP_FRAMES);
7068 
7069 	if (idx < adap->params.nports) {
7070 		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
7071 
7072 		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
7073 		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
7074 		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
7075 		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
7076 		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
7077 		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
7078 		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
7079 		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
7080 	}
7081 
7082 #undef GET_STAT
7083 #undef GET_STAT_COM
7084 }
7085 
7086 /**
7087  *	t4_wol_magic_enable - enable/disable magic packet WoL
7088  *	@adap: the adapter
7089  *	@port: the physical port index
7090  *	@addr: MAC address expected in magic packets, %NULL to disable
7091  *
7092  *	Enables/disables magic packet wake-on-LAN for the selected port.
7093  */
7094 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7095 			 const u8 *addr)
7096 {
7097 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7098 
7099 	if (is_t4(adap)) {
7100 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7101 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7102 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7103 	} else {
7104 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7105 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7106 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7107 	}
7108 
7109 	if (addr) {
7110 		t4_write_reg(adap, mag_id_reg_l,
7111 			     (addr[2] << 24) | (addr[3] << 16) |
7112 			     (addr[4] << 8) | addr[5]);
7113 		t4_write_reg(adap, mag_id_reg_h,
7114 			     (addr[0] << 8) | addr[1]);
7115 	}
7116 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7117 			 V_MAGICEN(addr != NULL));
7118 }
7119 
7120 /**
7121  *	t4_wol_pat_enable - enable/disable pattern-based WoL
7122  *	@adap: the adapter
7123  *	@port: the physical port index
7124  *	@map: bitmap of which HW pattern filters to set
7125  *	@mask0: byte mask for bytes 0-63 of a packet
7126  *	@mask1: byte mask for bytes 64-127 of a packet
7127  *	@crc: Ethernet CRC for selected bytes
7128  *	@enable: enable/disable switch
7129  *
7130  *	Sets the pattern filters indicated in @map to mask out the bytes
7131  *	specified in @mask0/@mask1 in received packets and compare the CRC of
7132  *	the resulting packet against @crc.  If @enable is %true pattern-based
7133  *	WoL is enabled, otherwise disabled.
7134  */
7135 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7136 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7137 {
7138 	int i;
7139 	u32 port_cfg_reg;
7140 
7141 	if (is_t4(adap))
7142 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7143 	else
7144 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7145 
7146 	if (!enable) {
7147 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7148 		return 0;
7149 	}
7150 	if (map > 0xff)
7151 		return -EINVAL;
7152 
7153 #define EPIO_REG(name) \
7154 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7155 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7156 
7157 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7158 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7159 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7160 
7161 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7162 		if (!(map & 1))
7163 			continue;
7164 
7165 		/* write byte masks */
7166 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7167 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7168 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7169 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7170 			return -ETIMEDOUT;
7171 
7172 		/* write CRC */
7173 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7174 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7175 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7176 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7177 			return -ETIMEDOUT;
7178 	}
7179 #undef EPIO_REG
7180 
7181 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7182 	return 0;
7183 }
7184 
7185 /*     t4_mk_filtdelwr - create a delete filter WR
7186  *     @ftid: the filter ID
7187  *     @wr: the filter work request to populate
7188  *     @qid: ingress queue to receive the delete notification
7189  *
7190  *     Creates a filter work request to delete the supplied filter.  If @qid is
7191  *     negative the delete notification is suppressed.
7192  */
7193 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7194 {
7195 	memset(wr, 0, sizeof(*wr));
7196 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7197 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7198 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7199 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7200 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7201 	if (qid >= 0)
7202 		wr->rx_chan_rx_rpl_iq =
7203 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7204 }
7205 
7206 #define INIT_CMD(var, cmd, rd_wr) do { \
7207 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7208 					F_FW_CMD_REQUEST | \
7209 					F_FW_CMD_##rd_wr); \
7210 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7211 } while (0)
7212 
7213 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7214 			  u32 addr, u32 val)
7215 {
7216 	u32 ldst_addrspace;
7217 	struct fw_ldst_cmd c;
7218 
7219 	memset(&c, 0, sizeof(c));
7220 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7221 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7222 					F_FW_CMD_REQUEST |
7223 					F_FW_CMD_WRITE |
7224 					ldst_addrspace);
7225 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7226 	c.u.addrval.addr = cpu_to_be32(addr);
7227 	c.u.addrval.val = cpu_to_be32(val);
7228 
7229 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7230 }
7231 
7232 /**
7233  *	t4_mdio_rd - read a PHY register through MDIO
7234  *	@adap: the adapter
7235  *	@mbox: mailbox to use for the FW command
7236  *	@phy_addr: the PHY address
7237  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7238  *	@reg: the register to read
7239  *	@valp: where to store the value
7240  *
7241  *	Issues a FW command through the given mailbox to read a PHY register.
7242  */
7243 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7244 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7245 {
7246 	int ret;
7247 	u32 ldst_addrspace;
7248 	struct fw_ldst_cmd c;
7249 
7250 	memset(&c, 0, sizeof(c));
7251 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7252 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7253 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7254 					ldst_addrspace);
7255 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7256 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7257 					 V_FW_LDST_CMD_MMD(mmd));
7258 	c.u.mdio.raddr = cpu_to_be16(reg);
7259 
7260 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7261 	if (ret == 0)
7262 		*valp = be16_to_cpu(c.u.mdio.rval);
7263 	return ret;
7264 }
7265 
7266 /**
7267  *	t4_mdio_wr - write a PHY register through MDIO
7268  *	@adap: the adapter
7269  *	@mbox: mailbox to use for the FW command
7270  *	@phy_addr: the PHY address
7271  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7272  *	@reg: the register to write
7273  *	@valp: value to write
7274  *
7275  *	Issues a FW command through the given mailbox to write a PHY register.
7276  */
7277 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7278 	       unsigned int mmd, unsigned int reg, unsigned int val)
7279 {
7280 	u32 ldst_addrspace;
7281 	struct fw_ldst_cmd c;
7282 
7283 	memset(&c, 0, sizeof(c));
7284 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7285 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7286 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7287 					ldst_addrspace);
7288 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7289 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7290 					 V_FW_LDST_CMD_MMD(mmd));
7291 	c.u.mdio.raddr = cpu_to_be16(reg);
7292 	c.u.mdio.rval = cpu_to_be16(val);
7293 
7294 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7295 }
7296 
7297 /**
7298  *
7299  *	t4_sge_decode_idma_state - decode the idma state
7300  *	@adap: the adapter
7301  *	@state: the state idma is stuck in
7302  */
7303 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7304 {
7305 	static const char * const t4_decode[] = {
7306 		"IDMA_IDLE",
7307 		"IDMA_PUSH_MORE_CPL_FIFO",
7308 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7309 		"Not used",
7310 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7311 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7312 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7313 		"IDMA_SEND_FIFO_TO_IMSG",
7314 		"IDMA_FL_REQ_DATA_FL_PREP",
7315 		"IDMA_FL_REQ_DATA_FL",
7316 		"IDMA_FL_DROP",
7317 		"IDMA_FL_H_REQ_HEADER_FL",
7318 		"IDMA_FL_H_SEND_PCIEHDR",
7319 		"IDMA_FL_H_PUSH_CPL_FIFO",
7320 		"IDMA_FL_H_SEND_CPL",
7321 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7322 		"IDMA_FL_H_SEND_IP_HDR",
7323 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7324 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7325 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7326 		"IDMA_FL_D_SEND_PCIEHDR",
7327 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7328 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7329 		"IDMA_FL_SEND_PCIEHDR",
7330 		"IDMA_FL_PUSH_CPL_FIFO",
7331 		"IDMA_FL_SEND_CPL",
7332 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7333 		"IDMA_FL_SEND_PAYLOAD",
7334 		"IDMA_FL_REQ_NEXT_DATA_FL",
7335 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7336 		"IDMA_FL_SEND_PADDING",
7337 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7338 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7339 		"IDMA_FL_REQ_DATAFL_DONE",
7340 		"IDMA_FL_REQ_HEADERFL_DONE",
7341 	};
7342 	static const char * const t5_decode[] = {
7343 		"IDMA_IDLE",
7344 		"IDMA_ALMOST_IDLE",
7345 		"IDMA_PUSH_MORE_CPL_FIFO",
7346 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7347 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7348 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7349 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7350 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7351 		"IDMA_SEND_FIFO_TO_IMSG",
7352 		"IDMA_FL_REQ_DATA_FL",
7353 		"IDMA_FL_DROP",
7354 		"IDMA_FL_DROP_SEND_INC",
7355 		"IDMA_FL_H_REQ_HEADER_FL",
7356 		"IDMA_FL_H_SEND_PCIEHDR",
7357 		"IDMA_FL_H_PUSH_CPL_FIFO",
7358 		"IDMA_FL_H_SEND_CPL",
7359 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7360 		"IDMA_FL_H_SEND_IP_HDR",
7361 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7362 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7363 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7364 		"IDMA_FL_D_SEND_PCIEHDR",
7365 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7366 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7367 		"IDMA_FL_SEND_PCIEHDR",
7368 		"IDMA_FL_PUSH_CPL_FIFO",
7369 		"IDMA_FL_SEND_CPL",
7370 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7371 		"IDMA_FL_SEND_PAYLOAD",
7372 		"IDMA_FL_REQ_NEXT_DATA_FL",
7373 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7374 		"IDMA_FL_SEND_PADDING",
7375 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7376 	};
7377 	static const char * const t6_decode[] = {
7378 		"IDMA_IDLE",
7379 		"IDMA_PUSH_MORE_CPL_FIFO",
7380 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7381 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7382 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7383 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7384 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7385 		"IDMA_FL_REQ_DATA_FL",
7386 		"IDMA_FL_DROP",
7387 		"IDMA_FL_DROP_SEND_INC",
7388 		"IDMA_FL_H_REQ_HEADER_FL",
7389 		"IDMA_FL_H_SEND_PCIEHDR",
7390 		"IDMA_FL_H_PUSH_CPL_FIFO",
7391 		"IDMA_FL_H_SEND_CPL",
7392 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7393 		"IDMA_FL_H_SEND_IP_HDR",
7394 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7395 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7396 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7397 		"IDMA_FL_D_SEND_PCIEHDR",
7398 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7399 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7400 		"IDMA_FL_SEND_PCIEHDR",
7401 		"IDMA_FL_PUSH_CPL_FIFO",
7402 		"IDMA_FL_SEND_CPL",
7403 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7404 		"IDMA_FL_SEND_PAYLOAD",
7405 		"IDMA_FL_REQ_NEXT_DATA_FL",
7406 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7407 		"IDMA_FL_SEND_PADDING",
7408 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7409 	};
7410 	static const u32 sge_regs[] = {
7411 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7412 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7413 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7414 	};
7415 	const char * const *sge_idma_decode;
7416 	int sge_idma_decode_nstates;
7417 	int i;
7418 	unsigned int chip_version = chip_id(adapter);
7419 
7420 	/* Select the right set of decode strings to dump depending on the
7421 	 * adapter chip type.
7422 	 */
7423 	switch (chip_version) {
7424 	case CHELSIO_T4:
7425 		sge_idma_decode = (const char * const *)t4_decode;
7426 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7427 		break;
7428 
7429 	case CHELSIO_T5:
7430 		sge_idma_decode = (const char * const *)t5_decode;
7431 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7432 		break;
7433 
7434 	case CHELSIO_T6:
7435 		sge_idma_decode = (const char * const *)t6_decode;
7436 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7437 		break;
7438 
7439 	default:
7440 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7441 		return;
7442 	}
7443 
7444 	if (state < sge_idma_decode_nstates)
7445 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7446 	else
7447 		CH_WARN(adapter, "idma state %d unknown\n", state);
7448 
7449 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7450 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7451 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7452 }
7453 
7454 /**
7455  *      t4_sge_ctxt_flush - flush the SGE context cache
7456  *      @adap: the adapter
7457  *      @mbox: mailbox to use for the FW command
7458  *
7459  *      Issues a FW command through the given mailbox to flush the
7460  *      SGE context cache.
7461  */
7462 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7463 {
7464 	int ret;
7465 	u32 ldst_addrspace;
7466 	struct fw_ldst_cmd c;
7467 
7468 	memset(&c, 0, sizeof(c));
7469 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7470 						 FW_LDST_ADDRSPC_SGE_EGRC :
7471 						 FW_LDST_ADDRSPC_SGE_INGC);
7472 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7473 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7474 					ldst_addrspace);
7475 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7476 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7477 
7478 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7479 	return ret;
7480 }
7481 
7482 /**
7483  *      t4_fw_hello - establish communication with FW
7484  *      @adap: the adapter
7485  *      @mbox: mailbox to use for the FW command
7486  *      @evt_mbox: mailbox to receive async FW events
7487  *      @master: specifies the caller's willingness to be the device master
7488  *	@state: returns the current device state (if non-NULL)
7489  *
7490  *	Issues a command to establish communication with FW.  Returns either
7491  *	an error (negative integer) or the mailbox of the Master PF.
7492  */
7493 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7494 		enum dev_master master, enum dev_state *state)
7495 {
7496 	int ret;
7497 	struct fw_hello_cmd c;
7498 	u32 v;
7499 	unsigned int master_mbox;
7500 	int retries = FW_CMD_HELLO_RETRIES;
7501 
7502 retry:
7503 	memset(&c, 0, sizeof(c));
7504 	INIT_CMD(c, HELLO, WRITE);
7505 	c.err_to_clearinit = cpu_to_be32(
7506 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7507 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7508 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7509 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7510 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7511 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7512 		F_FW_HELLO_CMD_CLEARINIT);
7513 
7514 	/*
7515 	 * Issue the HELLO command to the firmware.  If it's not successful
7516 	 * but indicates that we got a "busy" or "timeout" condition, retry
7517 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7518 	 * retry limit, check to see if the firmware left us any error
7519 	 * information and report that if so ...
7520 	 */
7521 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7522 	if (ret != FW_SUCCESS) {
7523 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7524 			goto retry;
7525 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7526 			t4_report_fw_error(adap);
7527 		return ret;
7528 	}
7529 
7530 	v = be32_to_cpu(c.err_to_clearinit);
7531 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7532 	if (state) {
7533 		if (v & F_FW_HELLO_CMD_ERR)
7534 			*state = DEV_STATE_ERR;
7535 		else if (v & F_FW_HELLO_CMD_INIT)
7536 			*state = DEV_STATE_INIT;
7537 		else
7538 			*state = DEV_STATE_UNINIT;
7539 	}
7540 
7541 	/*
7542 	 * If we're not the Master PF then we need to wait around for the
7543 	 * Master PF Driver to finish setting up the adapter.
7544 	 *
7545 	 * Note that we also do this wait if we're a non-Master-capable PF and
7546 	 * there is no current Master PF; a Master PF may show up momentarily
7547 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7548 	 * OS loads lots of different drivers rapidly at the same time).  In
7549 	 * this case, the Master PF returned by the firmware will be
7550 	 * M_PCIE_FW_MASTER so the test below will work ...
7551 	 */
7552 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7553 	    master_mbox != mbox) {
7554 		int waiting = FW_CMD_HELLO_TIMEOUT;
7555 
7556 		/*
7557 		 * Wait for the firmware to either indicate an error or
7558 		 * initialized state.  If we see either of these we bail out
7559 		 * and report the issue to the caller.  If we exhaust the
7560 		 * "hello timeout" and we haven't exhausted our retries, try
7561 		 * again.  Otherwise bail with a timeout error.
7562 		 */
7563 		for (;;) {
7564 			u32 pcie_fw;
7565 
7566 			msleep(50);
7567 			waiting -= 50;
7568 
7569 			/*
7570 			 * If neither Error nor Initialialized are indicated
7571 			 * by the firmware keep waiting till we exhaust our
7572 			 * timeout ... and then retry if we haven't exhausted
7573 			 * our retries ...
7574 			 */
7575 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7576 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7577 				if (waiting <= 0) {
7578 					if (retries-- > 0)
7579 						goto retry;
7580 
7581 					return -ETIMEDOUT;
7582 				}
7583 				continue;
7584 			}
7585 
7586 			/*
7587 			 * We either have an Error or Initialized condition
7588 			 * report errors preferentially.
7589 			 */
7590 			if (state) {
7591 				if (pcie_fw & F_PCIE_FW_ERR)
7592 					*state = DEV_STATE_ERR;
7593 				else if (pcie_fw & F_PCIE_FW_INIT)
7594 					*state = DEV_STATE_INIT;
7595 			}
7596 
7597 			/*
7598 			 * If we arrived before a Master PF was selected and
7599 			 * there's not a valid Master PF, grab its identity
7600 			 * for our caller.
7601 			 */
7602 			if (master_mbox == M_PCIE_FW_MASTER &&
7603 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7604 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7605 			break;
7606 		}
7607 	}
7608 
7609 	return master_mbox;
7610 }
7611 
7612 /**
7613  *	t4_fw_bye - end communication with FW
7614  *	@adap: the adapter
7615  *	@mbox: mailbox to use for the FW command
7616  *
7617  *	Issues a command to terminate communication with FW.
7618  */
7619 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7620 {
7621 	struct fw_bye_cmd c;
7622 
7623 	memset(&c, 0, sizeof(c));
7624 	INIT_CMD(c, BYE, WRITE);
7625 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7626 }
7627 
7628 /**
7629  *	t4_fw_reset - issue a reset to FW
7630  *	@adap: the adapter
7631  *	@mbox: mailbox to use for the FW command
7632  *	@reset: specifies the type of reset to perform
7633  *
7634  *	Issues a reset command of the specified type to FW.
7635  */
7636 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7637 {
7638 	struct fw_reset_cmd c;
7639 
7640 	memset(&c, 0, sizeof(c));
7641 	INIT_CMD(c, RESET, WRITE);
7642 	c.val = cpu_to_be32(reset);
7643 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7644 }
7645 
7646 /**
7647  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7648  *	@adap: the adapter
7649  *	@mbox: mailbox to use for the FW RESET command (if desired)
7650  *	@force: force uP into RESET even if FW RESET command fails
7651  *
7652  *	Issues a RESET command to firmware (if desired) with a HALT indication
7653  *	and then puts the microprocessor into RESET state.  The RESET command
7654  *	will only be issued if a legitimate mailbox is provided (mbox <=
7655  *	M_PCIE_FW_MASTER).
7656  *
7657  *	This is generally used in order for the host to safely manipulate the
7658  *	adapter without fear of conflicting with whatever the firmware might
7659  *	be doing.  The only way out of this state is to RESTART the firmware
7660  *	...
7661  */
7662 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7663 {
7664 	int ret = 0;
7665 
7666 	/*
7667 	 * If a legitimate mailbox is provided, issue a RESET command
7668 	 * with a HALT indication.
7669 	 */
7670 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7671 		struct fw_reset_cmd c;
7672 
7673 		memset(&c, 0, sizeof(c));
7674 		INIT_CMD(c, RESET, WRITE);
7675 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7676 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7677 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7678 	}
7679 
7680 	/*
7681 	 * Normally we won't complete the operation if the firmware RESET
7682 	 * command fails but if our caller insists we'll go ahead and put the
7683 	 * uP into RESET.  This can be useful if the firmware is hung or even
7684 	 * missing ...  We'll have to take the risk of putting the uP into
7685 	 * RESET without the cooperation of firmware in that case.
7686 	 *
7687 	 * We also force the firmware's HALT flag to be on in case we bypassed
7688 	 * the firmware RESET command above or we're dealing with old firmware
7689 	 * which doesn't have the HALT capability.  This will serve as a flag
7690 	 * for the incoming firmware to know that it's coming out of a HALT
7691 	 * rather than a RESET ... if it's new enough to understand that ...
7692 	 */
7693 	if (ret == 0 || force) {
7694 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7695 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7696 				 F_PCIE_FW_HALT);
7697 	}
7698 
7699 	/*
7700 	 * And we always return the result of the firmware RESET command
7701 	 * even when we force the uP into RESET ...
7702 	 */
7703 	return ret;
7704 }
7705 
7706 /**
7707  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7708  *	@adap: the adapter
7709  *
7710  *	Restart firmware previously halted by t4_fw_halt().  On successful
7711  *	return the previous PF Master remains as the new PF Master and there
7712  *	is no need to issue a new HELLO command, etc.
7713  */
7714 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7715 {
7716 	int ms;
7717 
7718 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7719 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7720 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7721 			return FW_SUCCESS;
7722 		msleep(100);
7723 		ms += 100;
7724 	}
7725 
7726 	return -ETIMEDOUT;
7727 }
7728 
7729 /**
7730  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7731  *	@adap: the adapter
7732  *	@mbox: mailbox to use for the FW RESET command (if desired)
7733  *	@fw_data: the firmware image to write
7734  *	@size: image size
7735  *	@force: force upgrade even if firmware doesn't cooperate
7736  *
7737  *	Perform all of the steps necessary for upgrading an adapter's
7738  *	firmware image.  Normally this requires the cooperation of the
7739  *	existing firmware in order to halt all existing activities
7740  *	but if an invalid mailbox token is passed in we skip that step
7741  *	(though we'll still put the adapter microprocessor into RESET in
7742  *	that case).
7743  *
7744  *	On successful return the new firmware will have been loaded and
7745  *	the adapter will have been fully RESET losing all previous setup
7746  *	state.  On unsuccessful return the adapter may be completely hosed ...
7747  *	positive errno indicates that the adapter is ~probably~ intact, a
7748  *	negative errno indicates that things are looking bad ...
7749  */
7750 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7751 		  const u8 *fw_data, unsigned int size, int force)
7752 {
7753 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7754 	unsigned int bootstrap =
7755 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7756 	int ret;
7757 
7758 	if (!t4_fw_matches_chip(adap, fw_hdr))
7759 		return -EINVAL;
7760 
7761 	if (!bootstrap) {
7762 		ret = t4_fw_halt(adap, mbox, force);
7763 		if (ret < 0 && !force)
7764 			return ret;
7765 	}
7766 
7767 	ret = t4_load_fw(adap, fw_data, size);
7768 	if (ret < 0 || bootstrap)
7769 		return ret;
7770 
7771 	return t4_fw_restart(adap, mbox);
7772 }
7773 
7774 /**
7775  *	t4_fw_initialize - ask FW to initialize the device
7776  *	@adap: the adapter
7777  *	@mbox: mailbox to use for the FW command
7778  *
7779  *	Issues a command to FW to partially initialize the device.  This
7780  *	performs initialization that generally doesn't depend on user input.
7781  */
7782 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7783 {
7784 	struct fw_initialize_cmd c;
7785 
7786 	memset(&c, 0, sizeof(c));
7787 	INIT_CMD(c, INITIALIZE, WRITE);
7788 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7789 }
7790 
7791 /**
7792  *	t4_query_params_rw - query FW or device parameters
7793  *	@adap: the adapter
7794  *	@mbox: mailbox to use for the FW command
7795  *	@pf: the PF
7796  *	@vf: the VF
7797  *	@nparams: the number of parameters
7798  *	@params: the parameter names
7799  *	@val: the parameter values
7800  *	@rw: Write and read flag
7801  *
7802  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7803  *	queried at once.
7804  */
7805 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7806 		       unsigned int vf, unsigned int nparams, const u32 *params,
7807 		       u32 *val, int rw)
7808 {
7809 	int i, ret;
7810 	struct fw_params_cmd c;
7811 	__be32 *p = &c.param[0].mnem;
7812 
7813 	if (nparams > 7)
7814 		return -EINVAL;
7815 
7816 	memset(&c, 0, sizeof(c));
7817 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7818 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7819 				  V_FW_PARAMS_CMD_PFN(pf) |
7820 				  V_FW_PARAMS_CMD_VFN(vf));
7821 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7822 
7823 	for (i = 0; i < nparams; i++) {
7824 		*p++ = cpu_to_be32(*params++);
7825 		if (rw)
7826 			*p = cpu_to_be32(*(val + i));
7827 		p++;
7828 	}
7829 
7830 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7831 	if (ret == 0)
7832 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7833 			*val++ = be32_to_cpu(*p);
7834 	return ret;
7835 }
7836 
7837 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7838 		    unsigned int vf, unsigned int nparams, const u32 *params,
7839 		    u32 *val)
7840 {
7841 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7842 }
7843 
7844 /**
7845  *      t4_set_params_timeout - sets FW or device parameters
7846  *      @adap: the adapter
7847  *      @mbox: mailbox to use for the FW command
7848  *      @pf: the PF
7849  *      @vf: the VF
7850  *      @nparams: the number of parameters
7851  *      @params: the parameter names
7852  *      @val: the parameter values
7853  *      @timeout: the timeout time
7854  *
7855  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7856  *      specified at once.
7857  */
7858 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7859 			  unsigned int pf, unsigned int vf,
7860 			  unsigned int nparams, const u32 *params,
7861 			  const u32 *val, int timeout)
7862 {
7863 	struct fw_params_cmd c;
7864 	__be32 *p = &c.param[0].mnem;
7865 
7866 	if (nparams > 7)
7867 		return -EINVAL;
7868 
7869 	memset(&c, 0, sizeof(c));
7870 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7871 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7872 				  V_FW_PARAMS_CMD_PFN(pf) |
7873 				  V_FW_PARAMS_CMD_VFN(vf));
7874 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7875 
7876 	while (nparams--) {
7877 		*p++ = cpu_to_be32(*params++);
7878 		*p++ = cpu_to_be32(*val++);
7879 	}
7880 
7881 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7882 }
7883 
7884 /**
7885  *	t4_set_params - sets FW or device parameters
7886  *	@adap: the adapter
7887  *	@mbox: mailbox to use for the FW command
7888  *	@pf: the PF
7889  *	@vf: the VF
7890  *	@nparams: the number of parameters
7891  *	@params: the parameter names
7892  *	@val: the parameter values
7893  *
7894  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7895  *	specified at once.
7896  */
7897 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7898 		  unsigned int vf, unsigned int nparams, const u32 *params,
7899 		  const u32 *val)
7900 {
7901 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7902 				     FW_CMD_MAX_TIMEOUT);
7903 }
7904 
7905 /**
7906  *	t4_cfg_pfvf - configure PF/VF resource limits
7907  *	@adap: the adapter
7908  *	@mbox: mailbox to use for the FW command
7909  *	@pf: the PF being configured
7910  *	@vf: the VF being configured
7911  *	@txq: the max number of egress queues
7912  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7913  *	@rxqi: the max number of interrupt-capable ingress queues
7914  *	@rxq: the max number of interruptless ingress queues
7915  *	@tc: the PCI traffic class
7916  *	@vi: the max number of virtual interfaces
7917  *	@cmask: the channel access rights mask for the PF/VF
7918  *	@pmask: the port access rights mask for the PF/VF
7919  *	@nexact: the maximum number of exact MPS filters
7920  *	@rcaps: read capabilities
7921  *	@wxcaps: write/execute capabilities
7922  *
7923  *	Configures resource limits and capabilities for a physical or virtual
7924  *	function.
7925  */
7926 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7927 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7928 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7929 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7930 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7931 {
7932 	struct fw_pfvf_cmd c;
7933 
7934 	memset(&c, 0, sizeof(c));
7935 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7936 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7937 				  V_FW_PFVF_CMD_VFN(vf));
7938 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7939 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7940 				     V_FW_PFVF_CMD_NIQ(rxq));
7941 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7942 				    V_FW_PFVF_CMD_PMASK(pmask) |
7943 				    V_FW_PFVF_CMD_NEQ(txq));
7944 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7945 				      V_FW_PFVF_CMD_NVI(vi) |
7946 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7947 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7948 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7949 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7950 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7951 }
7952 
7953 /**
7954  *	t4_alloc_vi_func - allocate a virtual interface
7955  *	@adap: the adapter
7956  *	@mbox: mailbox to use for the FW command
7957  *	@port: physical port associated with the VI
7958  *	@pf: the PF owning the VI
7959  *	@vf: the VF owning the VI
7960  *	@nmac: number of MAC addresses needed (1 to 5)
7961  *	@mac: the MAC addresses of the VI
7962  *	@rss_size: size of RSS table slice associated with this VI
7963  *	@portfunc: which Port Application Function MAC Address is desired
7964  *	@idstype: Intrusion Detection Type
7965  *
7966  *	Allocates a virtual interface for the given physical port.  If @mac is
7967  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7968  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7969  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7970  *	stored consecutively so the space needed is @nmac * 6 bytes.
7971  *	Returns a negative error number or the non-negative VI id.
7972  */
7973 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7974 		     unsigned int port, unsigned int pf, unsigned int vf,
7975 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7976 		     uint8_t *vfvld, uint16_t *vin,
7977 		     unsigned int portfunc, unsigned int idstype)
7978 {
7979 	int ret;
7980 	struct fw_vi_cmd c;
7981 
7982 	memset(&c, 0, sizeof(c));
7983 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7984 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7985 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7986 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7987 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7988 				     V_FW_VI_CMD_FUNC(portfunc));
7989 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7990 	c.nmac = nmac - 1;
7991 	if(!rss_size)
7992 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7993 
7994 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7995 	if (ret)
7996 		return ret;
7997 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7998 
7999 	if (mac) {
8000 		memcpy(mac, c.mac, sizeof(c.mac));
8001 		switch (nmac) {
8002 		case 5:
8003 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
8004 		case 4:
8005 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
8006 		case 3:
8007 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
8008 		case 2:
8009 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
8010 		}
8011 	}
8012 	if (rss_size)
8013 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
8014 	if (vfvld) {
8015 		*vfvld = adap->params.viid_smt_extn_support ?
8016 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
8017 		    G_FW_VIID_VIVLD(ret);
8018 	}
8019 	if (vin) {
8020 		*vin = adap->params.viid_smt_extn_support ?
8021 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
8022 		    G_FW_VIID_VIN(ret);
8023 	}
8024 
8025 	return ret;
8026 }
8027 
8028 /**
8029  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
8030  *      @adap: the adapter
8031  *      @mbox: mailbox to use for the FW command
8032  *      @port: physical port associated with the VI
8033  *      @pf: the PF owning the VI
8034  *      @vf: the VF owning the VI
8035  *      @nmac: number of MAC addresses needed (1 to 5)
8036  *      @mac: the MAC addresses of the VI
8037  *      @rss_size: size of RSS table slice associated with this VI
8038  *
8039  *	backwards compatible and convieniance routine to allocate a Virtual
8040  *	Interface with a Ethernet Port Application Function and Intrustion
8041  *	Detection System disabled.
8042  */
8043 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
8044 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
8045 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
8046 {
8047 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
8048 				vfvld, vin, FW_VI_FUNC_ETH, 0);
8049 }
8050 
8051 /**
8052  * 	t4_free_vi - free a virtual interface
8053  * 	@adap: the adapter
8054  * 	@mbox: mailbox to use for the FW command
8055  * 	@pf: the PF owning the VI
8056  * 	@vf: the VF owning the VI
8057  * 	@viid: virtual interface identifiler
8058  *
8059  * 	Free a previously allocated virtual interface.
8060  */
8061 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
8062 	       unsigned int vf, unsigned int viid)
8063 {
8064 	struct fw_vi_cmd c;
8065 
8066 	memset(&c, 0, sizeof(c));
8067 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
8068 				  F_FW_CMD_REQUEST |
8069 				  F_FW_CMD_EXEC |
8070 				  V_FW_VI_CMD_PFN(pf) |
8071 				  V_FW_VI_CMD_VFN(vf));
8072 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
8073 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
8074 
8075 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8076 }
8077 
8078 /**
8079  *	t4_set_rxmode - set Rx properties of a virtual interface
8080  *	@adap: the adapter
8081  *	@mbox: mailbox to use for the FW command
8082  *	@viid: the VI id
8083  *	@mtu: the new MTU or -1
8084  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
8085  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
8086  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8087  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8088  *	@sleep_ok: if true we may sleep while awaiting command completion
8089  *
8090  *	Sets Rx properties of a virtual interface.
8091  */
8092 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8093 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8094 		  bool sleep_ok)
8095 {
8096 	struct fw_vi_rxmode_cmd c;
8097 
8098 	/* convert to FW values */
8099 	if (mtu < 0)
8100 		mtu = M_FW_VI_RXMODE_CMD_MTU;
8101 	if (promisc < 0)
8102 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8103 	if (all_multi < 0)
8104 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8105 	if (bcast < 0)
8106 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8107 	if (vlanex < 0)
8108 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8109 
8110 	memset(&c, 0, sizeof(c));
8111 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8112 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8113 				   V_FW_VI_RXMODE_CMD_VIID(viid));
8114 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8115 	c.mtu_to_vlanexen =
8116 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8117 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8118 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8119 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8120 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8121 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8122 }
8123 
8124 /**
8125  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8126  *	@adap: the adapter
8127  *	@viid: the VI id
8128  *	@mac: the MAC address
8129  *	@mask: the mask
8130  *	@vni: the VNI id for the tunnel protocol
8131  *	@vni_mask: mask for the VNI id
8132  *	@dip_hit: to enable DIP match for the MPS entry
8133  *	@lookup_type: MAC address for inner (1) or outer (0) header
8134  *	@sleep_ok: call is allowed to sleep
8135  *
8136  *	Allocates an MPS entry with specified MAC address and VNI value.
8137  *
8138  *	Returns a negative error number or the allocated index for this mac.
8139  */
8140 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8141 			    const u8 *addr, const u8 *mask, unsigned int vni,
8142 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8143 			    bool sleep_ok)
8144 {
8145 	struct fw_vi_mac_cmd c;
8146 	struct fw_vi_mac_vni *p = c.u.exact_vni;
8147 	int ret = 0;
8148 	u32 val;
8149 
8150 	memset(&c, 0, sizeof(c));
8151 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8152 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8153 				   V_FW_VI_MAC_CMD_VIID(viid));
8154 	val = V_FW_CMD_LEN16(1) |
8155 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8156 	c.freemacs_to_len16 = cpu_to_be32(val);
8157 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8158 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8159 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8160 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8161 
8162 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8163 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8164 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8165 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8166 
8167 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8168 	if (ret == 0)
8169 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8170 	return ret;
8171 }
8172 
8173 /**
8174  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8175  *	@adap: the adapter
8176  *	@viid: the VI id
8177  *	@mac: the MAC address
8178  *	@mask: the mask
8179  *	@idx: index at which to add this entry
8180  *	@port_id: the port index
8181  *	@lookup_type: MAC address for inner (1) or outer (0) header
8182  *	@sleep_ok: call is allowed to sleep
8183  *
8184  *	Adds the mac entry at the specified index using raw mac interface.
8185  *
8186  *	Returns a negative error number or the allocated index for this mac.
8187  */
8188 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8189 			  const u8 *addr, const u8 *mask, unsigned int idx,
8190 			  u8 lookup_type, u8 port_id, bool sleep_ok)
8191 {
8192 	int ret = 0;
8193 	struct fw_vi_mac_cmd c;
8194 	struct fw_vi_mac_raw *p = &c.u.raw;
8195 	u32 val;
8196 
8197 	memset(&c, 0, sizeof(c));
8198 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8199 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8200 				   V_FW_VI_MAC_CMD_VIID(viid));
8201 	val = V_FW_CMD_LEN16(1) |
8202 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8203 	c.freemacs_to_len16 = cpu_to_be32(val);
8204 
8205 	/* Specify that this is an inner mac address */
8206 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8207 
8208 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8209 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8210 				   V_DATAPORTNUM(port_id));
8211 	/* Lookup mask and port mask */
8212 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8213 				    V_DATAPORTNUM(M_DATAPORTNUM));
8214 
8215 	/* Copy the address and the mask */
8216 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8217 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8218 
8219 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8220 	if (ret == 0) {
8221 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8222 		if (ret != idx)
8223 			ret = -ENOMEM;
8224 	}
8225 
8226 	return ret;
8227 }
8228 
8229 /**
8230  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8231  *	@adap: the adapter
8232  *	@mbox: mailbox to use for the FW command
8233  *	@viid: the VI id
8234  *	@free: if true any existing filters for this VI id are first removed
8235  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8236  *	@addr: the MAC address(es)
8237  *	@idx: where to store the index of each allocated filter
8238  *	@hash: pointer to hash address filter bitmap
8239  *	@sleep_ok: call is allowed to sleep
8240  *
8241  *	Allocates an exact-match filter for each of the supplied addresses and
8242  *	sets it to the corresponding address.  If @idx is not %NULL it should
8243  *	have at least @naddr entries, each of which will be set to the index of
8244  *	the filter allocated for the corresponding MAC address.  If a filter
8245  *	could not be allocated for an address its index is set to 0xffff.
8246  *	If @hash is not %NULL addresses that fail to allocate an exact filter
8247  *	are hashed and update the hash filter bitmap pointed at by @hash.
8248  *
8249  *	Returns a negative error number or the number of filters allocated.
8250  */
8251 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8252 		      unsigned int viid, bool free, unsigned int naddr,
8253 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8254 {
8255 	int offset, ret = 0;
8256 	struct fw_vi_mac_cmd c;
8257 	unsigned int nfilters = 0;
8258 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8259 	unsigned int rem = naddr;
8260 
8261 	if (naddr > max_naddr)
8262 		return -EINVAL;
8263 
8264 	for (offset = 0; offset < naddr ; /**/) {
8265 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8266 					 ? rem
8267 					 : ARRAY_SIZE(c.u.exact));
8268 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8269 						     u.exact[fw_naddr]), 16);
8270 		struct fw_vi_mac_exact *p;
8271 		int i;
8272 
8273 		memset(&c, 0, sizeof(c));
8274 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8275 					   F_FW_CMD_REQUEST |
8276 					   F_FW_CMD_WRITE |
8277 					   V_FW_CMD_EXEC(free) |
8278 					   V_FW_VI_MAC_CMD_VIID(viid));
8279 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8280 						  V_FW_CMD_LEN16(len16));
8281 
8282 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8283 			p->valid_to_idx =
8284 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8285 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8286 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8287 		}
8288 
8289 		/*
8290 		 * It's okay if we run out of space in our MAC address arena.
8291 		 * Some of the addresses we submit may get stored so we need
8292 		 * to run through the reply to see what the results were ...
8293 		 */
8294 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8295 		if (ret && ret != -FW_ENOMEM)
8296 			break;
8297 
8298 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8299 			u16 index = G_FW_VI_MAC_CMD_IDX(
8300 						be16_to_cpu(p->valid_to_idx));
8301 
8302 			if (idx)
8303 				idx[offset+i] = (index >=  max_naddr
8304 						 ? 0xffff
8305 						 : index);
8306 			if (index < max_naddr)
8307 				nfilters++;
8308 			else if (hash)
8309 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8310 		}
8311 
8312 		free = false;
8313 		offset += fw_naddr;
8314 		rem -= fw_naddr;
8315 	}
8316 
8317 	if (ret == 0 || ret == -FW_ENOMEM)
8318 		ret = nfilters;
8319 	return ret;
8320 }
8321 
8322 /**
8323  *	t4_free_encap_mac_filt - frees MPS entry at given index
8324  *	@adap: the adapter
8325  *	@viid: the VI id
8326  *	@idx: index of MPS entry to be freed
8327  *	@sleep_ok: call is allowed to sleep
8328  *
8329  *	Frees the MPS entry at supplied index
8330  *
8331  *	Returns a negative error number or zero on success
8332  */
8333 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8334 			   int idx, bool sleep_ok)
8335 {
8336 	struct fw_vi_mac_exact *p;
8337 	struct fw_vi_mac_cmd c;
8338 	u8 addr[] = {0,0,0,0,0,0};
8339 	int ret = 0;
8340 	u32 exact;
8341 
8342 	memset(&c, 0, sizeof(c));
8343 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8344 				   F_FW_CMD_REQUEST |
8345 				   F_FW_CMD_WRITE |
8346 				   V_FW_CMD_EXEC(0) |
8347 				   V_FW_VI_MAC_CMD_VIID(viid));
8348 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8349 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8350 					  exact |
8351 					  V_FW_CMD_LEN16(1));
8352 	p = c.u.exact;
8353 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8354 				      V_FW_VI_MAC_CMD_IDX(idx));
8355 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8356 
8357 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8358 	return ret;
8359 }
8360 
8361 /**
8362  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8363  *	@adap: the adapter
8364  *	@viid: the VI id
8365  *	@addr: the MAC address
8366  *	@mask: the mask
8367  *	@idx: index of the entry in mps tcam
8368  *	@lookup_type: MAC address for inner (1) or outer (0) header
8369  *	@port_id: the port index
8370  *	@sleep_ok: call is allowed to sleep
8371  *
8372  *	Removes the mac entry at the specified index using raw mac interface.
8373  *
8374  *	Returns a negative error number on failure.
8375  */
8376 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8377 			 const u8 *addr, const u8 *mask, unsigned int idx,
8378 			 u8 lookup_type, u8 port_id, bool sleep_ok)
8379 {
8380 	struct fw_vi_mac_cmd c;
8381 	struct fw_vi_mac_raw *p = &c.u.raw;
8382 	u32 raw;
8383 
8384 	memset(&c, 0, sizeof(c));
8385 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8386 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8387 				   V_FW_CMD_EXEC(0) |
8388 				   V_FW_VI_MAC_CMD_VIID(viid));
8389 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8390 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8391 					  raw |
8392 					  V_FW_CMD_LEN16(1));
8393 
8394 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8395 				     FW_VI_MAC_ID_BASED_FREE);
8396 
8397 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8398 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8399 				   V_DATAPORTNUM(port_id));
8400 	/* Lookup mask and port mask */
8401 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8402 				    V_DATAPORTNUM(M_DATAPORTNUM));
8403 
8404 	/* Copy the address and the mask */
8405 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8406 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8407 
8408 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8409 }
8410 
8411 /**
8412  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8413  *	@adap: the adapter
8414  *	@mbox: mailbox to use for the FW command
8415  *	@viid: the VI id
8416  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8417  *	@addr: the MAC address(es)
8418  *	@sleep_ok: call is allowed to sleep
8419  *
8420  *	Frees the exact-match filter for each of the supplied addresses
8421  *
8422  *	Returns a negative error number or the number of filters freed.
8423  */
8424 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8425 		      unsigned int viid, unsigned int naddr,
8426 		      const u8 **addr, bool sleep_ok)
8427 {
8428 	int offset, ret = 0;
8429 	struct fw_vi_mac_cmd c;
8430 	unsigned int nfilters = 0;
8431 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8432 	unsigned int rem = naddr;
8433 
8434 	if (naddr > max_naddr)
8435 		return -EINVAL;
8436 
8437 	for (offset = 0; offset < (int)naddr ; /**/) {
8438 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8439 					 ? rem
8440 					 : ARRAY_SIZE(c.u.exact));
8441 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8442 						     u.exact[fw_naddr]), 16);
8443 		struct fw_vi_mac_exact *p;
8444 		int i;
8445 
8446 		memset(&c, 0, sizeof(c));
8447 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8448 				     F_FW_CMD_REQUEST |
8449 				     F_FW_CMD_WRITE |
8450 				     V_FW_CMD_EXEC(0) |
8451 				     V_FW_VI_MAC_CMD_VIID(viid));
8452 		c.freemacs_to_len16 =
8453 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8454 					    V_FW_CMD_LEN16(len16));
8455 
8456 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8457 			p->valid_to_idx = cpu_to_be16(
8458 				F_FW_VI_MAC_CMD_VALID |
8459 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8460 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8461 		}
8462 
8463 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8464 		if (ret)
8465 			break;
8466 
8467 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8468 			u16 index = G_FW_VI_MAC_CMD_IDX(
8469 						be16_to_cpu(p->valid_to_idx));
8470 
8471 			if (index < max_naddr)
8472 				nfilters++;
8473 		}
8474 
8475 		offset += fw_naddr;
8476 		rem -= fw_naddr;
8477 	}
8478 
8479 	if (ret == 0)
8480 		ret = nfilters;
8481 	return ret;
8482 }
8483 
8484 /**
8485  *	t4_change_mac - modifies the exact-match filter for a MAC address
8486  *	@adap: the adapter
8487  *	@mbox: mailbox to use for the FW command
8488  *	@viid: the VI id
8489  *	@idx: index of existing filter for old value of MAC address, or -1
8490  *	@addr: the new MAC address value
8491  *	@persist: whether a new MAC allocation should be persistent
8492  *	@smt_idx: add MAC to SMT and return its index, or NULL
8493  *
8494  *	Modifies an exact-match filter and sets it to the new MAC address if
8495  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8496  *	latter case the address is added persistently if @persist is %true.
8497  *
8498  *	Note that in general it is not possible to modify the value of a given
8499  *	filter so the generic way to modify an address filter is to free the one
8500  *	being used by the old address value and allocate a new filter for the
8501  *	new address value.
8502  *
8503  *	Returns a negative error number or the index of the filter with the new
8504  *	MAC value.  Note that this index may differ from @idx.
8505  */
8506 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8507 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8508 {
8509 	int ret, mode;
8510 	struct fw_vi_mac_cmd c;
8511 	struct fw_vi_mac_exact *p = c.u.exact;
8512 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8513 
8514 	if (idx < 0)		/* new allocation */
8515 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8516 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8517 
8518 	memset(&c, 0, sizeof(c));
8519 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8520 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8521 				   V_FW_VI_MAC_CMD_VIID(viid));
8522 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8523 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8524 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8525 				      V_FW_VI_MAC_CMD_IDX(idx));
8526 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8527 
8528 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8529 	if (ret == 0) {
8530 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8531 		if (ret >= max_mac_addr)
8532 			ret = -ENOMEM;
8533 		if (smt_idx) {
8534 			if (adap->params.viid_smt_extn_support)
8535 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8536 			else {
8537 				if (chip_id(adap) <= CHELSIO_T5)
8538 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8539 				else
8540 					*smt_idx = viid & M_FW_VIID_VIN;
8541 			}
8542 		}
8543 	}
8544 	return ret;
8545 }
8546 
8547 /**
8548  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8549  *	@adap: the adapter
8550  *	@mbox: mailbox to use for the FW command
8551  *	@viid: the VI id
8552  *	@ucast: whether the hash filter should also match unicast addresses
8553  *	@vec: the value to be written to the hash filter
8554  *	@sleep_ok: call is allowed to sleep
8555  *
8556  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8557  */
8558 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8559 		     bool ucast, u64 vec, bool sleep_ok)
8560 {
8561 	struct fw_vi_mac_cmd c;
8562 	u32 val;
8563 
8564 	memset(&c, 0, sizeof(c));
8565 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8566 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8567 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8568 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8569 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8570 	c.freemacs_to_len16 = cpu_to_be32(val);
8571 	c.u.hash.hashvec = cpu_to_be64(vec);
8572 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8573 }
8574 
8575 /**
8576  *      t4_enable_vi_params - enable/disable a virtual interface
8577  *      @adap: the adapter
8578  *      @mbox: mailbox to use for the FW command
8579  *      @viid: the VI id
8580  *      @rx_en: 1=enable Rx, 0=disable Rx
8581  *      @tx_en: 1=enable Tx, 0=disable Tx
8582  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8583  *
8584  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8585  *      only makes sense when enabling a Virtual Interface ...
8586  */
8587 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8588 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8589 {
8590 	struct fw_vi_enable_cmd c;
8591 
8592 	memset(&c, 0, sizeof(c));
8593 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8594 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8595 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8596 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8597 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8598 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8599 				     FW_LEN16(c));
8600 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8601 }
8602 
8603 /**
8604  *	t4_enable_vi - enable/disable a virtual interface
8605  *	@adap: the adapter
8606  *	@mbox: mailbox to use for the FW command
8607  *	@viid: the VI id
8608  *	@rx_en: 1=enable Rx, 0=disable Rx
8609  *	@tx_en: 1=enable Tx, 0=disable Tx
8610  *
8611  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8612  *	only makes sense when enabling a Virtual Interface ...
8613  */
8614 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8615 		 bool rx_en, bool tx_en)
8616 {
8617 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8618 }
8619 
8620 /**
8621  *	t4_identify_port - identify a VI's port by blinking its LED
8622  *	@adap: the adapter
8623  *	@mbox: mailbox to use for the FW command
8624  *	@viid: the VI id
8625  *	@nblinks: how many times to blink LED at 2.5 Hz
8626  *
8627  *	Identifies a VI's port by blinking its LED.
8628  */
8629 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8630 		     unsigned int nblinks)
8631 {
8632 	struct fw_vi_enable_cmd c;
8633 
8634 	memset(&c, 0, sizeof(c));
8635 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8636 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8637 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8638 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8639 	c.blinkdur = cpu_to_be16(nblinks);
8640 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8641 }
8642 
8643 /**
8644  *	t4_iq_stop - stop an ingress queue and its FLs
8645  *	@adap: the adapter
8646  *	@mbox: mailbox to use for the FW command
8647  *	@pf: the PF owning the queues
8648  *	@vf: the VF owning the queues
8649  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8650  *	@iqid: ingress queue id
8651  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8652  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8653  *
8654  *	Stops an ingress queue and its associated FLs, if any.  This causes
8655  *	any current or future data/messages destined for these queues to be
8656  *	tossed.
8657  */
8658 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8659 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8660 	       unsigned int fl0id, unsigned int fl1id)
8661 {
8662 	struct fw_iq_cmd c;
8663 
8664 	memset(&c, 0, sizeof(c));
8665 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8666 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8667 				  V_FW_IQ_CMD_VFN(vf));
8668 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8669 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8670 	c.iqid = cpu_to_be16(iqid);
8671 	c.fl0id = cpu_to_be16(fl0id);
8672 	c.fl1id = cpu_to_be16(fl1id);
8673 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8674 }
8675 
8676 /**
8677  *	t4_iq_free - free an ingress queue and its FLs
8678  *	@adap: the adapter
8679  *	@mbox: mailbox to use for the FW command
8680  *	@pf: the PF owning the queues
8681  *	@vf: the VF owning the queues
8682  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8683  *	@iqid: ingress queue id
8684  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8685  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8686  *
8687  *	Frees an ingress queue and its associated FLs, if any.
8688  */
8689 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8690 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8691 	       unsigned int fl0id, unsigned int fl1id)
8692 {
8693 	struct fw_iq_cmd c;
8694 
8695 	memset(&c, 0, sizeof(c));
8696 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8697 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8698 				  V_FW_IQ_CMD_VFN(vf));
8699 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8700 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8701 	c.iqid = cpu_to_be16(iqid);
8702 	c.fl0id = cpu_to_be16(fl0id);
8703 	c.fl1id = cpu_to_be16(fl1id);
8704 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8705 }
8706 
8707 /**
8708  *	t4_eth_eq_stop - stop an Ethernet egress queue
8709  *	@adap: the adapter
8710  *	@mbox: mailbox to use for the FW command
8711  *	@pf: the PF owning the queues
8712  *	@vf: the VF owning the queues
8713  *	@eqid: egress queue id
8714  *
8715  *	Stops an Ethernet egress queue.  The queue can be reinitialized or
8716  *	freed but is not otherwise functional after this call.
8717  */
8718 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8719                    unsigned int vf, unsigned int eqid)
8720 {
8721 	struct fw_eq_eth_cmd c;
8722 
8723 	memset(&c, 0, sizeof(c));
8724 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8725 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8726 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8727 				  V_FW_EQ_ETH_CMD_VFN(vf));
8728 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
8729 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8730 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8731 }
8732 
8733 /**
8734  *	t4_eth_eq_free - free an Ethernet egress queue
8735  *	@adap: the adapter
8736  *	@mbox: mailbox to use for the FW command
8737  *	@pf: the PF owning the queue
8738  *	@vf: the VF owning the queue
8739  *	@eqid: egress queue id
8740  *
8741  *	Frees an Ethernet egress queue.
8742  */
8743 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8744 		   unsigned int vf, unsigned int eqid)
8745 {
8746 	struct fw_eq_eth_cmd c;
8747 
8748 	memset(&c, 0, sizeof(c));
8749 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8750 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8751 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8752 				  V_FW_EQ_ETH_CMD_VFN(vf));
8753 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8754 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8755 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8756 }
8757 
8758 /**
8759  *	t4_ctrl_eq_free - free a control egress queue
8760  *	@adap: the adapter
8761  *	@mbox: mailbox to use for the FW command
8762  *	@pf: the PF owning the queue
8763  *	@vf: the VF owning the queue
8764  *	@eqid: egress queue id
8765  *
8766  *	Frees a control egress queue.
8767  */
8768 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8769 		    unsigned int vf, unsigned int eqid)
8770 {
8771 	struct fw_eq_ctrl_cmd c;
8772 
8773 	memset(&c, 0, sizeof(c));
8774 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8775 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8776 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8777 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8778 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8779 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8780 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8781 }
8782 
8783 /**
8784  *	t4_ofld_eq_free - free an offload egress queue
8785  *	@adap: the adapter
8786  *	@mbox: mailbox to use for the FW command
8787  *	@pf: the PF owning the queue
8788  *	@vf: the VF owning the queue
8789  *	@eqid: egress queue id
8790  *
8791  *	Frees a control egress queue.
8792  */
8793 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8794 		    unsigned int vf, unsigned int eqid)
8795 {
8796 	struct fw_eq_ofld_cmd c;
8797 
8798 	memset(&c, 0, sizeof(c));
8799 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8800 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8801 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8802 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8803 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8804 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8805 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8806 }
8807 
8808 /**
8809  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8810  *	@link_down_rc: Link Down Reason Code
8811  *
8812  *	Returns a string representation of the Link Down Reason Code.
8813  */
8814 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8815 {
8816 	static const char *reason[] = {
8817 		"Link Down",
8818 		"Remote Fault",
8819 		"Auto-negotiation Failure",
8820 		"Reserved3",
8821 		"Insufficient Airflow",
8822 		"Unable To Determine Reason",
8823 		"No RX Signal Detected",
8824 		"Reserved7",
8825 	};
8826 
8827 	if (link_down_rc >= ARRAY_SIZE(reason))
8828 		return "Bad Reason Code";
8829 
8830 	return reason[link_down_rc];
8831 }
8832 
8833 /*
8834  * Return the highest speed set in the port capabilities, in Mb/s.
8835  */
8836 unsigned int fwcap_to_speed(uint32_t caps)
8837 {
8838 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8839 		do { \
8840 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8841 				return __speed; \
8842 		} while (0)
8843 
8844 	TEST_SPEED_RETURN(400G, 400000);
8845 	TEST_SPEED_RETURN(200G, 200000);
8846 	TEST_SPEED_RETURN(100G, 100000);
8847 	TEST_SPEED_RETURN(50G,   50000);
8848 	TEST_SPEED_RETURN(40G,   40000);
8849 	TEST_SPEED_RETURN(25G,   25000);
8850 	TEST_SPEED_RETURN(10G,   10000);
8851 	TEST_SPEED_RETURN(1G,     1000);
8852 	TEST_SPEED_RETURN(100M,    100);
8853 
8854 	#undef TEST_SPEED_RETURN
8855 
8856 	return 0;
8857 }
8858 
8859 /*
8860  * Return the port capabilities bit for the given speed, which is in Mb/s.
8861  */
8862 uint32_t speed_to_fwcap(unsigned int speed)
8863 {
8864 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8865 		do { \
8866 			if (speed == __speed) \
8867 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8868 		} while (0)
8869 
8870 	TEST_SPEED_RETURN(400G, 400000);
8871 	TEST_SPEED_RETURN(200G, 200000);
8872 	TEST_SPEED_RETURN(100G, 100000);
8873 	TEST_SPEED_RETURN(50G,   50000);
8874 	TEST_SPEED_RETURN(40G,   40000);
8875 	TEST_SPEED_RETURN(25G,   25000);
8876 	TEST_SPEED_RETURN(10G,   10000);
8877 	TEST_SPEED_RETURN(1G,     1000);
8878 	TEST_SPEED_RETURN(100M,    100);
8879 
8880 	#undef TEST_SPEED_RETURN
8881 
8882 	return 0;
8883 }
8884 
8885 /*
8886  * Return the port capabilities bit for the highest speed in the capabilities.
8887  */
8888 uint32_t fwcap_top_speed(uint32_t caps)
8889 {
8890 	#define TEST_SPEED_RETURN(__caps_speed) \
8891 		do { \
8892 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8893 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8894 		} while (0)
8895 
8896 	TEST_SPEED_RETURN(400G);
8897 	TEST_SPEED_RETURN(200G);
8898 	TEST_SPEED_RETURN(100G);
8899 	TEST_SPEED_RETURN(50G);
8900 	TEST_SPEED_RETURN(40G);
8901 	TEST_SPEED_RETURN(25G);
8902 	TEST_SPEED_RETURN(10G);
8903 	TEST_SPEED_RETURN(1G);
8904 	TEST_SPEED_RETURN(100M);
8905 
8906 	#undef TEST_SPEED_RETURN
8907 
8908 	return 0;
8909 }
8910 
8911 /**
8912  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8913  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8914  *
8915  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8916  *	32-bit Port Capabilities value.
8917  */
8918 static uint32_t lstatus_to_fwcap(u32 lstatus)
8919 {
8920 	uint32_t linkattr = 0;
8921 
8922 	/*
8923 	 * Unfortunately the format of the Link Status in the old
8924 	 * 16-bit Port Information message isn't the same as the
8925 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8926 	 */
8927 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8928 		linkattr |= FW_PORT_CAP32_FC_RX;
8929 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8930 		linkattr |= FW_PORT_CAP32_FC_TX;
8931 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8932 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8933 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8934 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8935 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8936 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8937 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8938 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8939 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8940 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8941 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8942 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8943 
8944 	return linkattr;
8945 }
8946 
8947 /*
8948  * Updates all fields owned by the common code in port_info and link_config
8949  * based on information provided by the firmware.  Does not touch any
8950  * requested_* field.
8951  */
8952 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8953     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8954 {
8955 	struct link_config old_lc, *lc = &pi->link_cfg;
8956 	unsigned char fc;
8957 	u32 stat, linkattr;
8958 	int old_ptype, old_mtype;
8959 
8960 	old_ptype = pi->port_type;
8961 	old_mtype = pi->mod_type;
8962 	old_lc = *lc;
8963 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8964 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8965 
8966 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8967 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8968 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8969 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8970 
8971 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8972 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8973 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8974 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8975 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8976 
8977 		linkattr = lstatus_to_fwcap(stat);
8978 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8979 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8980 
8981 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8982 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8983 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8984 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8985 
8986 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8987 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8988 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8989 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8990 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8991 
8992 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8993 	} else {
8994 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8995 		return;
8996 	}
8997 
8998 	lc->speed = fwcap_to_speed(linkattr);
8999 	lc->fec = fwcap_to_fec(linkattr, true);
9000 
9001 	fc = 0;
9002 	if (linkattr & FW_PORT_CAP32_FC_RX)
9003 		fc |= PAUSE_RX;
9004 	if (linkattr & FW_PORT_CAP32_FC_TX)
9005 		fc |= PAUSE_TX;
9006 	lc->fc = fc;
9007 
9008 	if (mod_changed != NULL)
9009 		*mod_changed = false;
9010 	if (link_changed != NULL)
9011 		*link_changed = false;
9012 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
9013 	    old_lc.pcaps != lc->pcaps) {
9014 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
9015 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
9016 		if (mod_changed != NULL)
9017 			*mod_changed = true;
9018 	}
9019 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
9020 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
9021 		if (link_changed != NULL)
9022 			*link_changed = true;
9023 	}
9024 }
9025 
9026 /**
9027  *	t4_update_port_info - retrieve and update port information if changed
9028  *	@pi: the port_info
9029  *
9030  *	We issue a Get Port Information Command to the Firmware and, if
9031  *	successful, we check to see if anything is different from what we
9032  *	last recorded and update things accordingly.
9033  */
9034  int t4_update_port_info(struct port_info *pi)
9035  {
9036 	struct adapter *sc = pi->adapter;
9037 	struct fw_port_cmd cmd;
9038 	enum fw_port_action action;
9039 	int ret;
9040 
9041 	memset(&cmd, 0, sizeof(cmd));
9042 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
9043 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
9044 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
9045 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
9046 	    FW_PORT_ACTION_GET_PORT_INFO;
9047 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
9048 	    FW_LEN16(cmd));
9049 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
9050 	if (ret)
9051 		return ret;
9052 
9053 	handle_port_info(pi, &cmd, action, NULL, NULL);
9054 	return 0;
9055 }
9056 
9057 /**
9058  *	t4_handle_fw_rpl - process a FW reply message
9059  *	@adap: the adapter
9060  *	@rpl: start of the FW message
9061  *
9062  *	Processes a FW message, such as link state change messages.
9063  */
9064 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
9065 {
9066 	u8 opcode = *(const u8 *)rpl;
9067 	const struct fw_port_cmd *p = (const void *)rpl;
9068 	enum fw_port_action action =
9069 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
9070 	bool mod_changed, link_changed;
9071 
9072 	if (opcode == FW_PORT_CMD &&
9073 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
9074 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
9075 		/* link/module state change message */
9076 		int i;
9077 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
9078 		struct port_info *pi = NULL;
9079 		struct link_config *lc;
9080 
9081 		for_each_port(adap, i) {
9082 			pi = adap2pinfo(adap, i);
9083 			if (pi->tx_chan == chan)
9084 				break;
9085 		}
9086 
9087 		lc = &pi->link_cfg;
9088 		PORT_LOCK(pi);
9089 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
9090 		PORT_UNLOCK(pi);
9091 		if (mod_changed)
9092 			t4_os_portmod_changed(pi);
9093 		if (link_changed) {
9094 			PORT_LOCK(pi);
9095 			t4_os_link_changed(pi);
9096 			PORT_UNLOCK(pi);
9097 		}
9098 	} else {
9099 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
9100 		return -EINVAL;
9101 	}
9102 	return 0;
9103 }
9104 
9105 /**
9106  *	get_pci_mode - determine a card's PCI mode
9107  *	@adapter: the adapter
9108  *	@p: where to store the PCI settings
9109  *
9110  *	Determines a card's PCI mode and associated parameters, such as speed
9111  *	and width.
9112  */
9113 static void get_pci_mode(struct adapter *adapter,
9114 				   struct pci_params *p)
9115 {
9116 	u16 val;
9117 	u32 pcie_cap;
9118 
9119 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9120 	if (pcie_cap) {
9121 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9122 		p->speed = val & PCI_EXP_LNKSTA_CLS;
9123 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9124 	}
9125 }
9126 
9127 struct flash_desc {
9128 	u32 vendor_and_model_id;
9129 	u32 size_mb;
9130 };
9131 
9132 int t4_get_flash_params(struct adapter *adapter)
9133 {
9134 	/*
9135 	 * Table for non-standard supported Flash parts.  Note, all Flash
9136 	 * parts must have 64KB sectors.
9137 	 */
9138 	static struct flash_desc supported_flash[] = {
9139 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
9140 	};
9141 
9142 	int ret;
9143 	u32 flashid = 0;
9144 	unsigned int part, manufacturer;
9145 	unsigned int density, size = 0;
9146 
9147 
9148 	/*
9149 	 * Issue a Read ID Command to the Flash part.  We decode supported
9150 	 * Flash parts and their sizes from this.  There's a newer Query
9151 	 * Command which can retrieve detailed geometry information but many
9152 	 * Flash parts don't support it.
9153 	 */
9154 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9155 	if (!ret)
9156 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
9157 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
9158 	if (ret < 0)
9159 		return ret;
9160 
9161 	/*
9162 	 * Check to see if it's one of our non-standard supported Flash parts.
9163 	 */
9164 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9165 		if (supported_flash[part].vendor_and_model_id == flashid) {
9166 			adapter->params.sf_size =
9167 				supported_flash[part].size_mb;
9168 			adapter->params.sf_nsec =
9169 				adapter->params.sf_size / SF_SEC_SIZE;
9170 			goto found;
9171 		}
9172 
9173 	/*
9174 	 * Decode Flash part size.  The code below looks repetative with
9175 	 * common encodings, but that's not guaranteed in the JEDEC
9176 	 * specification for the Read JADEC ID command.  The only thing that
9177 	 * we're guaranteed by the JADEC specification is where the
9178 	 * Manufacturer ID is in the returned result.  After that each
9179 	 * Manufacturer ~could~ encode things completely differently.
9180 	 * Note, all Flash parts must have 64KB sectors.
9181 	 */
9182 	manufacturer = flashid & 0xff;
9183 	switch (manufacturer) {
9184 	case 0x20: /* Micron/Numonix */
9185 		/*
9186 		 * This Density -> Size decoding table is taken from Micron
9187 		 * Data Sheets.
9188 		 */
9189 		density = (flashid >> 16) & 0xff;
9190 		switch (density) {
9191 		case 0x14: size = 1 << 20; break; /*   1MB */
9192 		case 0x15: size = 1 << 21; break; /*   2MB */
9193 		case 0x16: size = 1 << 22; break; /*   4MB */
9194 		case 0x17: size = 1 << 23; break; /*   8MB */
9195 		case 0x18: size = 1 << 24; break; /*  16MB */
9196 		case 0x19: size = 1 << 25; break; /*  32MB */
9197 		case 0x20: size = 1 << 26; break; /*  64MB */
9198 		case 0x21: size = 1 << 27; break; /* 128MB */
9199 		case 0x22: size = 1 << 28; break; /* 256MB */
9200 		}
9201 		break;
9202 
9203 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9204 		/*
9205 		 * This Density -> Size decoding table is taken from ISSI
9206 		 * Data Sheets.
9207 		 */
9208 		density = (flashid >> 16) & 0xff;
9209 		switch (density) {
9210 		case 0x16: size = 1 << 25; break; /*  32MB */
9211 		case 0x17: size = 1 << 26; break; /*  64MB */
9212 		}
9213 		break;
9214 
9215 	case 0xc2: /* Macronix */
9216 		/*
9217 		 * This Density -> Size decoding table is taken from Macronix
9218 		 * Data Sheets.
9219 		 */
9220 		density = (flashid >> 16) & 0xff;
9221 		switch (density) {
9222 		case 0x17: size = 1 << 23; break; /*   8MB */
9223 		case 0x18: size = 1 << 24; break; /*  16MB */
9224 		}
9225 		break;
9226 
9227 	case 0xef: /* Winbond */
9228 		/*
9229 		 * This Density -> Size decoding table is taken from Winbond
9230 		 * Data Sheets.
9231 		 */
9232 		density = (flashid >> 16) & 0xff;
9233 		switch (density) {
9234 		case 0x17: size = 1 << 23; break; /*   8MB */
9235 		case 0x18: size = 1 << 24; break; /*  16MB */
9236 		}
9237 		break;
9238 	}
9239 
9240 	/* If we didn't recognize the FLASH part, that's no real issue: the
9241 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9242 	 * use a FLASH part which is at least 4MB in size and has 64KB
9243 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9244 	 * than 4MB, but that's all we really need.
9245 	 */
9246 	if (size == 0) {
9247 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9248 		size = 1 << 22;
9249 	}
9250 
9251 	/*
9252 	 * Store decoded Flash size and fall through into vetting code.
9253 	 */
9254 	adapter->params.sf_size = size;
9255 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
9256 
9257  found:
9258 	/*
9259 	 * We should ~probably~ reject adapters with FLASHes which are too
9260 	 * small but we have some legacy FPGAs with small FLASHes that we'd
9261 	 * still like to use.  So instead we emit a scary message ...
9262 	 */
9263 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
9264 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9265 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9266 
9267 	return 0;
9268 }
9269 
9270 static void set_pcie_completion_timeout(struct adapter *adapter,
9271 						  u8 range)
9272 {
9273 	u16 val;
9274 	u32 pcie_cap;
9275 
9276 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9277 	if (pcie_cap) {
9278 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9279 		val &= 0xfff0;
9280 		val |= range ;
9281 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9282 	}
9283 }
9284 
9285 const struct chip_params *t4_get_chip_params(int chipid)
9286 {
9287 	static const struct chip_params chip_params[] = {
9288 		{
9289 			/* T4 */
9290 			.nchan = NCHAN,
9291 			.pm_stats_cnt = PM_NSTATS,
9292 			.cng_ch_bits_log = 2,
9293 			.nsched_cls = 15,
9294 			.cim_num_obq = CIM_NUM_OBQ,
9295 			.filter_opt_len = FILTER_OPT_LEN,
9296 			.mps_rplc_size = 128,
9297 			.vfcount = 128,
9298 			.sge_fl_db = F_DBPRIO,
9299 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9300 			.rss_nentries = RSS_NENTRIES,
9301 		},
9302 		{
9303 			/* T5 */
9304 			.nchan = NCHAN,
9305 			.pm_stats_cnt = PM_NSTATS,
9306 			.cng_ch_bits_log = 2,
9307 			.nsched_cls = 16,
9308 			.cim_num_obq = CIM_NUM_OBQ_T5,
9309 			.filter_opt_len = T5_FILTER_OPT_LEN,
9310 			.mps_rplc_size = 128,
9311 			.vfcount = 128,
9312 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
9313 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9314 			.rss_nentries = RSS_NENTRIES,
9315 		},
9316 		{
9317 			/* T6 */
9318 			.nchan = T6_NCHAN,
9319 			.pm_stats_cnt = T6_PM_NSTATS,
9320 			.cng_ch_bits_log = 3,
9321 			.nsched_cls = 16,
9322 			.cim_num_obq = CIM_NUM_OBQ_T5,
9323 			.filter_opt_len = T5_FILTER_OPT_LEN,
9324 			.mps_rplc_size = 256,
9325 			.vfcount = 256,
9326 			.sge_fl_db = 0,
9327 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9328 			.rss_nentries = T6_RSS_NENTRIES,
9329 		},
9330 	};
9331 
9332 	chipid -= CHELSIO_T4;
9333 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9334 		return NULL;
9335 
9336 	return &chip_params[chipid];
9337 }
9338 
9339 /**
9340  *	t4_prep_adapter - prepare SW and HW for operation
9341  *	@adapter: the adapter
9342  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
9343  *
9344  *	Initialize adapter SW state for the various HW modules, set initial
9345  *	values for some adapter tunables, take PHYs out of reset, and
9346  *	initialize the MDIO interface.
9347  */
9348 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9349 {
9350 	int ret;
9351 	uint16_t device_id;
9352 	uint32_t pl_rev;
9353 
9354 	get_pci_mode(adapter, &adapter->params.pci);
9355 
9356 	pl_rev = t4_read_reg(adapter, A_PL_REV);
9357 	adapter->params.chipid = G_CHIPID(pl_rev);
9358 	adapter->params.rev = G_REV(pl_rev);
9359 	if (adapter->params.chipid == 0) {
9360 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
9361 		adapter->params.chipid = CHELSIO_T4;
9362 
9363 		/* T4A1 chip is not supported */
9364 		if (adapter->params.rev == 1) {
9365 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9366 			return -EINVAL;
9367 		}
9368 	}
9369 
9370 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9371 	if (adapter->chip_params == NULL)
9372 		return -EINVAL;
9373 
9374 	adapter->params.pci.vpd_cap_addr =
9375 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9376 
9377 	ret = t4_get_flash_params(adapter);
9378 	if (ret < 0)
9379 		return ret;
9380 
9381 	/* Cards with real ASICs have the chipid in the PCIe device id */
9382 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9383 	if (device_id >> 12 == chip_id(adapter))
9384 		adapter->params.cim_la_size = CIMLA_SIZE;
9385 	else {
9386 		/* FPGA */
9387 		adapter->params.fpga = 1;
9388 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9389 	}
9390 
9391 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9392 	if (ret < 0)
9393 		return ret;
9394 
9395 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9396 
9397 	/*
9398 	 * Default port and clock for debugging in case we can't reach FW.
9399 	 */
9400 	adapter->params.nports = 1;
9401 	adapter->params.portvec = 1;
9402 	adapter->params.vpd.cclk = 50000;
9403 
9404 	/* Set pci completion timeout value to 4 seconds. */
9405 	set_pcie_completion_timeout(adapter, 0xd);
9406 	return 0;
9407 }
9408 
9409 /**
9410  *	t4_shutdown_adapter - shut down adapter, host & wire
9411  *	@adapter: the adapter
9412  *
9413  *	Perform an emergency shutdown of the adapter and stop it from
9414  *	continuing any further communication on the ports or DMA to the
9415  *	host.  This is typically used when the adapter and/or firmware
9416  *	have crashed and we want to prevent any further accidental
9417  *	communication with the rest of the world.  This will also force
9418  *	the port Link Status to go down -- if register writes work --
9419  *	which should help our peers figure out that we're down.
9420  */
9421 int t4_shutdown_adapter(struct adapter *adapter)
9422 {
9423 	int port;
9424 	const bool bt = adapter->bt_map != 0;
9425 
9426 	t4_intr_disable(adapter);
9427 	if (bt)
9428 		t4_write_reg(adapter, A_DBG_GPIO_EN, 0xffff0000);
9429 	for_each_port(adapter, port) {
9430 		u32 a_port_cfg = is_t4(adapter) ?
9431 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
9432 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
9433 
9434 		t4_write_reg(adapter, a_port_cfg,
9435 			     t4_read_reg(adapter, a_port_cfg)
9436 			     & ~V_SIGNAL_DET(1));
9437 		if (!bt) {
9438 			u32 hss_cfg0 = is_t4(adapter) ?
9439 					 PORT_REG(port, A_XGMAC_PORT_HSS_CFG0) :
9440 					 T5_PORT_REG(port, A_MAC_PORT_HSS_CFG0);
9441 			t4_set_reg_field(adapter, hss_cfg0, F_HSSPDWNPLLB |
9442 			    F_HSSPDWNPLLA | F_HSSPLLBYPB | F_HSSPLLBYPA,
9443 			    F_HSSPDWNPLLB | F_HSSPDWNPLLA | F_HSSPLLBYPB |
9444 			    F_HSSPLLBYPA);
9445 		}
9446 	}
9447 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9448 
9449 	return 0;
9450 }
9451 
9452 /**
9453  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9454  *	@adapter: the adapter
9455  *	@qid: the Queue ID
9456  *	@qtype: the Ingress or Egress type for @qid
9457  *	@user: true if this request is for a user mode queue
9458  *	@pbar2_qoffset: BAR2 Queue Offset
9459  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9460  *
9461  *	Returns the BAR2 SGE Queue Registers information associated with the
9462  *	indicated Absolute Queue ID.  These are passed back in return value
9463  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9464  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9465  *
9466  *	This may return an error which indicates that BAR2 SGE Queue
9467  *	registers aren't available.  If an error is not returned, then the
9468  *	following values are returned:
9469  *
9470  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9471  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9472  *
9473  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9474  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9475  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9476  *	then these "Inferred Queue ID" register may not be used.
9477  */
9478 int t4_bar2_sge_qregs(struct adapter *adapter,
9479 		      unsigned int qid,
9480 		      enum t4_bar2_qtype qtype,
9481 		      int user,
9482 		      u64 *pbar2_qoffset,
9483 		      unsigned int *pbar2_qid)
9484 {
9485 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9486 	u64 bar2_page_offset, bar2_qoffset;
9487 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9488 
9489 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9490 	 * mode queues.
9491 	 */
9492 	if (!user && is_t4(adapter))
9493 		return -EINVAL;
9494 
9495 	/* Get our SGE Page Size parameters.
9496 	 */
9497 	page_shift = adapter->params.sge.page_shift;
9498 	page_size = 1 << page_shift;
9499 
9500 	/* Get the right Queues per Page parameters for our Queue.
9501 	 */
9502 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9503 		     ? adapter->params.sge.eq_s_qpp
9504 		     : adapter->params.sge.iq_s_qpp);
9505 	qpp_mask = (1 << qpp_shift) - 1;
9506 
9507 	/* Calculate the basics of the BAR2 SGE Queue register area:
9508 	 *  o The BAR2 page the Queue registers will be in.
9509 	 *  o The BAR2 Queue ID.
9510 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9511 	 */
9512 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9513 	bar2_qid = qid & qpp_mask;
9514 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9515 
9516 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9517 	 * hardware will infer the Absolute Queue ID simply from the writes to
9518 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9519 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9520 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9521 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9522 	 * from the BAR2 Page and BAR2 Queue ID.
9523 	 *
9524 	 * One important censequence of this is that some BAR2 SGE registers
9525 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9526 	 * there.  But other registers synthesize the SGE Queue ID purely
9527 	 * from the writes to the registers -- the Write Combined Doorbell
9528 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9529 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9530 	 * Queue ID can be inferred from simple writes.
9531 	 */
9532 	bar2_qoffset = bar2_page_offset;
9533 	bar2_qinferred = (bar2_qid_offset < page_size);
9534 	if (bar2_qinferred) {
9535 		bar2_qoffset += bar2_qid_offset;
9536 		bar2_qid = 0;
9537 	}
9538 
9539 	*pbar2_qoffset = bar2_qoffset;
9540 	*pbar2_qid = bar2_qid;
9541 	return 0;
9542 }
9543 
9544 /**
9545  *	t4_init_devlog_params - initialize adapter->params.devlog
9546  *	@adap: the adapter
9547  *	@fw_attach: whether we can talk to the firmware
9548  *
9549  *	Initialize various fields of the adapter's Firmware Device Log
9550  *	Parameters structure.
9551  */
9552 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9553 {
9554 	struct devlog_params *dparams = &adap->params.devlog;
9555 	u32 pf_dparams;
9556 	unsigned int devlog_meminfo;
9557 	struct fw_devlog_cmd devlog_cmd;
9558 	int ret;
9559 
9560 	/* If we're dealing with newer firmware, the Device Log Paramerters
9561 	 * are stored in a designated register which allows us to access the
9562 	 * Device Log even if we can't talk to the firmware.
9563 	 */
9564 	pf_dparams =
9565 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9566 	if (pf_dparams) {
9567 		unsigned int nentries, nentries128;
9568 
9569 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9570 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9571 
9572 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9573 		nentries = (nentries128 + 1) * 128;
9574 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9575 
9576 		return 0;
9577 	}
9578 
9579 	/*
9580 	 * For any failing returns ...
9581 	 */
9582 	memset(dparams, 0, sizeof *dparams);
9583 
9584 	/*
9585 	 * If we can't talk to the firmware, there's really nothing we can do
9586 	 * at this point.
9587 	 */
9588 	if (!fw_attach)
9589 		return -ENXIO;
9590 
9591 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9592 	 */
9593 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9594 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9595 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9596 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9597 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9598 			 &devlog_cmd);
9599 	if (ret)
9600 		return ret;
9601 
9602 	devlog_meminfo =
9603 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9604 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9605 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9606 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9607 
9608 	return 0;
9609 }
9610 
9611 /**
9612  *	t4_init_sge_params - initialize adap->params.sge
9613  *	@adapter: the adapter
9614  *
9615  *	Initialize various fields of the adapter's SGE Parameters structure.
9616  */
9617 int t4_init_sge_params(struct adapter *adapter)
9618 {
9619 	u32 r;
9620 	struct sge_params *sp = &adapter->params.sge;
9621 	unsigned i, tscale = 1;
9622 
9623 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9624 	sp->counter_val[0] = G_THRESHOLD_0(r);
9625 	sp->counter_val[1] = G_THRESHOLD_1(r);
9626 	sp->counter_val[2] = G_THRESHOLD_2(r);
9627 	sp->counter_val[3] = G_THRESHOLD_3(r);
9628 
9629 	if (chip_id(adapter) >= CHELSIO_T6) {
9630 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9631 		tscale = G_TSCALE(r);
9632 		if (tscale == 0)
9633 			tscale = 1;
9634 		else
9635 			tscale += 2;
9636 	}
9637 
9638 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9639 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9640 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9641 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9642 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9643 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9644 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9645 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9646 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9647 
9648 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9649 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9650 	if (is_t4(adapter))
9651 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9652 	else if (is_t5(adapter))
9653 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9654 	else
9655 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9656 
9657 	/* egress queues: log2 of # of doorbells per BAR2 page */
9658 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9659 	r >>= S_QUEUESPERPAGEPF0 +
9660 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9661 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9662 
9663 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9664 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9665 	r >>= S_QUEUESPERPAGEPF0 +
9666 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9667 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9668 
9669 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9670 	r >>= S_HOSTPAGESIZEPF0 +
9671 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9672 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9673 
9674 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9675 	sp->sge_control = r;
9676 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9677 	sp->fl_pktshift = G_PKTSHIFT(r);
9678 	if (chip_id(adapter) <= CHELSIO_T5) {
9679 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9680 		    X_INGPADBOUNDARY_SHIFT);
9681 	} else {
9682 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9683 		    X_T6_INGPADBOUNDARY_SHIFT);
9684 	}
9685 	if (is_t4(adapter))
9686 		sp->pack_boundary = sp->pad_boundary;
9687 	else {
9688 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9689 		if (G_INGPACKBOUNDARY(r) == 0)
9690 			sp->pack_boundary = 16;
9691 		else
9692 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9693 	}
9694 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9695 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9696 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9697 
9698 	return 0;
9699 }
9700 
9701 /* Convert the LE's hardware hash mask to a shorter filter mask. */
9702 static inline uint16_t
9703 hashmask_to_filtermask(uint64_t hashmask, uint16_t filter_mode)
9704 {
9705 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
9706 	int i;
9707 	uint16_t filter_mask;
9708 	uint64_t mask;		/* field mask */
9709 
9710 	filter_mask = 0;
9711 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
9712 		if ((filter_mode & (1 << i)) == 0)
9713 			continue;
9714 		mask = (1 << width[i]) - 1;
9715 		if ((hashmask & mask) == mask)
9716 			filter_mask |= 1 << i;
9717 		hashmask >>= width[i];
9718 	}
9719 
9720 	return (filter_mask);
9721 }
9722 
9723 /*
9724  * Read and cache the adapter's compressed filter mode and ingress config.
9725  */
9726 static void
9727 read_filter_mode_and_ingress_config(struct adapter *adap)
9728 {
9729 	int rc;
9730 	uint32_t v, param[2], val[2];
9731 	struct tp_params *tpp = &adap->params.tp;
9732 	uint64_t hash_mask;
9733 
9734 	param[0] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9735 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9736 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
9737 	param[1] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9738 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9739 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
9740 	rc = -t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val);
9741 	if (rc == 0) {
9742 		tpp->filter_mode = G_FW_PARAMS_PARAM_FILTER_MODE(val[0]);
9743 		tpp->filter_mask = G_FW_PARAMS_PARAM_FILTER_MASK(val[0]);
9744 		tpp->vnic_mode = val[1];
9745 	} else {
9746 		/*
9747 		 * Old firmware.  Read filter mode/mask and ingress config
9748 		 * straight from the hardware.
9749 		 */
9750 		t4_tp_pio_read(adap, &v, 1, A_TP_VLAN_PRI_MAP, true);
9751 		tpp->filter_mode = v & 0xffff;
9752 
9753 		hash_mask = 0;
9754 		if (chip_id(adap) > CHELSIO_T4) {
9755 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9756 			hash_mask = v;
9757 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9758 			hash_mask |= (u64)v << 32;
9759 		}
9760 		tpp->filter_mask = hashmask_to_filtermask(hash_mask,
9761 		    tpp->filter_mode);
9762 
9763 		t4_tp_pio_read(adap, &v, 1, A_TP_INGRESS_CONFIG, true);
9764 		if (v & F_VNIC)
9765 			tpp->vnic_mode = FW_VNIC_MODE_PF_VF;
9766 		else
9767 			tpp->vnic_mode = FW_VNIC_MODE_OUTER_VLAN;
9768 	}
9769 
9770 	/*
9771 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9772 	 * shift positions of several elements of the Compressed Filter Tuple
9773 	 * for this adapter which we need frequently ...
9774 	 */
9775 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9776 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9777 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9778 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9779 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9780 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9781 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9782 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9783 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9784 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9785 }
9786 
9787 /**
9788  *      t4_init_tp_params - initialize adap->params.tp
9789  *      @adap: the adapter
9790  *
9791  *      Initialize various fields of the adapter's TP Parameters structure.
9792  */
9793 int t4_init_tp_params(struct adapter *adap)
9794 {
9795 	int chan;
9796 	u32 tx_len, rx_len, r, v;
9797 	struct tp_params *tpp = &adap->params.tp;
9798 
9799 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9800 	tpp->tre = G_TIMERRESOLUTION(v);
9801 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9802 
9803 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9804 	for (chan = 0; chan < MAX_NCHAN; chan++)
9805 		tpp->tx_modq[chan] = chan;
9806 
9807 	read_filter_mode_and_ingress_config(adap);
9808 
9809 	if (chip_id(adap) > CHELSIO_T5) {
9810 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9811 		tpp->rx_pkt_encap = v & F_CRXPKTENC;
9812 	} else
9813 		tpp->rx_pkt_encap = false;
9814 
9815 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9816 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9817 
9818 	r = t4_read_reg(adap, A_TP_PARA_REG2);
9819 	rx_len = min(rx_len, G_MAXRXDATA(r));
9820 	tx_len = min(tx_len, G_MAXRXDATA(r));
9821 
9822 	r = t4_read_reg(adap, A_TP_PARA_REG7);
9823 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9824 	rx_len = min(rx_len, v);
9825 	tx_len = min(tx_len, v);
9826 
9827 	tpp->max_tx_pdu = tx_len;
9828 	tpp->max_rx_pdu = rx_len;
9829 
9830 	return 0;
9831 }
9832 
9833 /**
9834  *      t4_filter_field_shift - calculate filter field shift
9835  *      @adap: the adapter
9836  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9837  *
9838  *      Return the shift position of a filter field within the Compressed
9839  *      Filter Tuple.  The filter field is specified via its selection bit
9840  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9841  */
9842 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9843 {
9844 	const unsigned int filter_mode = adap->params.tp.filter_mode;
9845 	unsigned int sel;
9846 	int field_shift;
9847 
9848 	if ((filter_mode & filter_sel) == 0)
9849 		return -1;
9850 
9851 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9852 		switch (filter_mode & sel) {
9853 		case F_FCOE:
9854 			field_shift += W_FT_FCOE;
9855 			break;
9856 		case F_PORT:
9857 			field_shift += W_FT_PORT;
9858 			break;
9859 		case F_VNIC_ID:
9860 			field_shift += W_FT_VNIC_ID;
9861 			break;
9862 		case F_VLAN:
9863 			field_shift += W_FT_VLAN;
9864 			break;
9865 		case F_TOS:
9866 			field_shift += W_FT_TOS;
9867 			break;
9868 		case F_PROTOCOL:
9869 			field_shift += W_FT_PROTOCOL;
9870 			break;
9871 		case F_ETHERTYPE:
9872 			field_shift += W_FT_ETHERTYPE;
9873 			break;
9874 		case F_MACMATCH:
9875 			field_shift += W_FT_MACMATCH;
9876 			break;
9877 		case F_MPSHITTYPE:
9878 			field_shift += W_FT_MPSHITTYPE;
9879 			break;
9880 		case F_FRAGMENTATION:
9881 			field_shift += W_FT_FRAGMENTATION;
9882 			break;
9883 		}
9884 	}
9885 	return field_shift;
9886 }
9887 
9888 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9889 {
9890 	u8 addr[6];
9891 	int ret, i, j;
9892 	struct port_info *p = adap2pinfo(adap, port_id);
9893 	u32 param, val;
9894 	struct vi_info *vi = &p->vi[0];
9895 
9896 	for (i = 0, j = -1; i <= p->port_id; i++) {
9897 		do {
9898 			j++;
9899 		} while ((adap->params.portvec & (1 << j)) == 0);
9900 	}
9901 
9902 	p->tx_chan = j;
9903 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9904 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9905 	p->rx_c_chan = t4_get_rx_c_chan(adap, j);
9906 	p->lport = j;
9907 
9908 	if (!(adap->flags & IS_VF) ||
9909 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9910  		t4_update_port_info(p);
9911 	}
9912 
9913 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9914 	    &vi->vfvld, &vi->vin);
9915 	if (ret < 0)
9916 		return ret;
9917 
9918 	vi->viid = ret;
9919 	t4_os_set_hw_addr(p, addr);
9920 
9921 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9922 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9923 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9924 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9925 	if (ret)
9926 		vi->rss_base = 0xffff;
9927 	else {
9928 		/* MPASS((val >> 16) == rss_size); */
9929 		vi->rss_base = val & 0xffff;
9930 	}
9931 
9932 	return 0;
9933 }
9934 
9935 /**
9936  *	t4_read_cimq_cfg - read CIM queue configuration
9937  *	@adap: the adapter
9938  *	@base: holds the queue base addresses in bytes
9939  *	@size: holds the queue sizes in bytes
9940  *	@thres: holds the queue full thresholds in bytes
9941  *
9942  *	Returns the current configuration of the CIM queues, starting with
9943  *	the IBQs, then the OBQs.
9944  */
9945 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9946 {
9947 	unsigned int i, v;
9948 	int cim_num_obq = adap->chip_params->cim_num_obq;
9949 
9950 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9951 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9952 			     V_QUENUMSELECT(i));
9953 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9954 		/* value is in 256-byte units */
9955 		*base++ = G_CIMQBASE(v) * 256;
9956 		*size++ = G_CIMQSIZE(v) * 256;
9957 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9958 	}
9959 	for (i = 0; i < cim_num_obq; i++) {
9960 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9961 			     V_QUENUMSELECT(i));
9962 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9963 		/* value is in 256-byte units */
9964 		*base++ = G_CIMQBASE(v) * 256;
9965 		*size++ = G_CIMQSIZE(v) * 256;
9966 	}
9967 }
9968 
9969 /**
9970  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9971  *	@adap: the adapter
9972  *	@qid: the queue index
9973  *	@data: where to store the queue contents
9974  *	@n: capacity of @data in 32-bit words
9975  *
9976  *	Reads the contents of the selected CIM queue starting at address 0 up
9977  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9978  *	error and the number of 32-bit words actually read on success.
9979  */
9980 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9981 {
9982 	int i, err, attempts;
9983 	unsigned int addr;
9984 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9985 
9986 	if (qid > 5 || (n & 3))
9987 		return -EINVAL;
9988 
9989 	addr = qid * nwords;
9990 	if (n > nwords)
9991 		n = nwords;
9992 
9993 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9994 	 * Wait for 1 Sec with a delay of 1 usec.
9995 	 */
9996 	attempts = 1000000;
9997 
9998 	for (i = 0; i < n; i++, addr++) {
9999 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
10000 			     F_IBQDBGEN);
10001 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
10002 				      attempts, 1);
10003 		if (err)
10004 			return err;
10005 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
10006 	}
10007 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
10008 	return i;
10009 }
10010 
10011 /**
10012  *	t4_read_cim_obq - read the contents of a CIM outbound queue
10013  *	@adap: the adapter
10014  *	@qid: the queue index
10015  *	@data: where to store the queue contents
10016  *	@n: capacity of @data in 32-bit words
10017  *
10018  *	Reads the contents of the selected CIM queue starting at address 0 up
10019  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
10020  *	error and the number of 32-bit words actually read on success.
10021  */
10022 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
10023 {
10024 	int i, err;
10025 	unsigned int addr, v, nwords;
10026 	int cim_num_obq = adap->chip_params->cim_num_obq;
10027 
10028 	if ((qid > (cim_num_obq - 1)) || (n & 3))
10029 		return -EINVAL;
10030 
10031 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
10032 		     V_QUENUMSELECT(qid));
10033 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
10034 
10035 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
10036 	nwords = G_CIMQSIZE(v) * 64;  /* same */
10037 	if (n > nwords)
10038 		n = nwords;
10039 
10040 	for (i = 0; i < n; i++, addr++) {
10041 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
10042 			     F_OBQDBGEN);
10043 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
10044 				      2, 1);
10045 		if (err)
10046 			return err;
10047 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
10048 	}
10049 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
10050 	return i;
10051 }
10052 
10053 enum {
10054 	CIM_QCTL_BASE     = 0,
10055 	CIM_CTL_BASE      = 0x2000,
10056 	CIM_PBT_ADDR_BASE = 0x2800,
10057 	CIM_PBT_LRF_BASE  = 0x3000,
10058 	CIM_PBT_DATA_BASE = 0x3800
10059 };
10060 
10061 /**
10062  *	t4_cim_read - read a block from CIM internal address space
10063  *	@adap: the adapter
10064  *	@addr: the start address within the CIM address space
10065  *	@n: number of words to read
10066  *	@valp: where to store the result
10067  *
10068  *	Reads a block of 4-byte words from the CIM intenal address space.
10069  */
10070 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
10071 		unsigned int *valp)
10072 {
10073 	int ret = 0;
10074 
10075 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10076 		return -EBUSY;
10077 
10078 	for ( ; !ret && n--; addr += 4) {
10079 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
10080 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10081 				      0, 5, 2);
10082 		if (!ret)
10083 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
10084 	}
10085 	return ret;
10086 }
10087 
10088 /**
10089  *	t4_cim_write - write a block into CIM internal address space
10090  *	@adap: the adapter
10091  *	@addr: the start address within the CIM address space
10092  *	@n: number of words to write
10093  *	@valp: set of values to write
10094  *
10095  *	Writes a block of 4-byte words into the CIM intenal address space.
10096  */
10097 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
10098 		 const unsigned int *valp)
10099 {
10100 	int ret = 0;
10101 
10102 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10103 		return -EBUSY;
10104 
10105 	for ( ; !ret && n--; addr += 4) {
10106 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
10107 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
10108 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10109 				      0, 5, 2);
10110 	}
10111 	return ret;
10112 }
10113 
10114 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
10115 			 unsigned int val)
10116 {
10117 	return t4_cim_write(adap, addr, 1, &val);
10118 }
10119 
10120 /**
10121  *	t4_cim_ctl_read - read a block from CIM control region
10122  *	@adap: the adapter
10123  *	@addr: the start address within the CIM control region
10124  *	@n: number of words to read
10125  *	@valp: where to store the result
10126  *
10127  *	Reads a block of 4-byte words from the CIM control region.
10128  */
10129 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
10130 		    unsigned int *valp)
10131 {
10132 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
10133 }
10134 
10135 /**
10136  *	t4_cim_read_la - read CIM LA capture buffer
10137  *	@adap: the adapter
10138  *	@la_buf: where to store the LA data
10139  *	@wrptr: the HW write pointer within the capture buffer
10140  *
10141  *	Reads the contents of the CIM LA buffer with the most recent entry at
10142  *	the end	of the returned data and with the entry at @wrptr first.
10143  *	We try to leave the LA in the running state we find it in.
10144  */
10145 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
10146 {
10147 	int i, ret;
10148 	unsigned int cfg, val, idx;
10149 
10150 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
10151 	if (ret)
10152 		return ret;
10153 
10154 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
10155 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
10156 		if (ret)
10157 			return ret;
10158 	}
10159 
10160 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10161 	if (ret)
10162 		goto restart;
10163 
10164 	idx = G_UPDBGLAWRPTR(val);
10165 	if (wrptr)
10166 		*wrptr = idx;
10167 
10168 	for (i = 0; i < adap->params.cim_la_size; i++) {
10169 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10170 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
10171 		if (ret)
10172 			break;
10173 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10174 		if (ret)
10175 			break;
10176 		if (val & F_UPDBGLARDEN) {
10177 			ret = -ETIMEDOUT;
10178 			break;
10179 		}
10180 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10181 		if (ret)
10182 			break;
10183 
10184 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10185 		 * identify the 32-bit portion of the full 312-bit data
10186 		 */
10187 		if (is_t6(adap) && (idx & 0xf) >= 9)
10188 			idx = (idx & 0xff0) + 0x10;
10189 		else
10190 			idx++;
10191 		/* address can't exceed 0xfff */
10192 		idx &= M_UPDBGLARDPTR;
10193 	}
10194 restart:
10195 	if (cfg & F_UPDBGLAEN) {
10196 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10197 				      cfg & ~F_UPDBGLARDEN);
10198 		if (!ret)
10199 			ret = r;
10200 	}
10201 	return ret;
10202 }
10203 
10204 /**
10205  *	t4_tp_read_la - read TP LA capture buffer
10206  *	@adap: the adapter
10207  *	@la_buf: where to store the LA data
10208  *	@wrptr: the HW write pointer within the capture buffer
10209  *
10210  *	Reads the contents of the TP LA buffer with the most recent entry at
10211  *	the end	of the returned data and with the entry at @wrptr first.
10212  *	We leave the LA in the running state we find it in.
10213  */
10214 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10215 {
10216 	bool last_incomplete;
10217 	unsigned int i, cfg, val, idx;
10218 
10219 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10220 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
10221 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10222 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10223 
10224 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10225 	idx = G_DBGLAWPTR(val);
10226 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10227 	if (last_incomplete)
10228 		idx = (idx + 1) & M_DBGLARPTR;
10229 	if (wrptr)
10230 		*wrptr = idx;
10231 
10232 	val &= 0xffff;
10233 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
10234 	val |= adap->params.tp.la_mask;
10235 
10236 	for (i = 0; i < TPLA_SIZE; i++) {
10237 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10238 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10239 		idx = (idx + 1) & M_DBGLARPTR;
10240 	}
10241 
10242 	/* Wipe out last entry if it isn't valid */
10243 	if (last_incomplete)
10244 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10245 
10246 	if (cfg & F_DBGLAENABLE)		/* restore running state */
10247 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10248 			     cfg | adap->params.tp.la_mask);
10249 }
10250 
10251 /*
10252  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10253  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10254  * state for more than the Warning Threshold then we'll issue a warning about
10255  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10256  * appears to be hung every Warning Repeat second till the situation clears.
10257  * If the situation clears, we'll note that as well.
10258  */
10259 #define SGE_IDMA_WARN_THRESH 1
10260 #define SGE_IDMA_WARN_REPEAT 300
10261 
10262 /**
10263  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10264  *	@adapter: the adapter
10265  *	@idma: the adapter IDMA Monitor state
10266  *
10267  *	Initialize the state of an SGE Ingress DMA Monitor.
10268  */
10269 void t4_idma_monitor_init(struct adapter *adapter,
10270 			  struct sge_idma_monitor_state *idma)
10271 {
10272 	/* Initialize the state variables for detecting an SGE Ingress DMA
10273 	 * hang.  The SGE has internal counters which count up on each clock
10274 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10275 	 * same state they were on the previous clock tick.  The clock used is
10276 	 * the Core Clock so we have a limit on the maximum "time" they can
10277 	 * record; typically a very small number of seconds.  For instance,
10278 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10279 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10280 	 * risk of having the "timers" overflow and give us the flexibility to
10281 	 * maintain a Hung SGE State Machine of our own which operates across
10282 	 * a longer time frame.
10283 	 */
10284 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10285 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10286 }
10287 
10288 /**
10289  *	t4_idma_monitor - monitor SGE Ingress DMA state
10290  *	@adapter: the adapter
10291  *	@idma: the adapter IDMA Monitor state
10292  *	@hz: number of ticks/second
10293  *	@ticks: number of ticks since the last IDMA Monitor call
10294  */
10295 void t4_idma_monitor(struct adapter *adapter,
10296 		     struct sge_idma_monitor_state *idma,
10297 		     int hz, int ticks)
10298 {
10299 	int i, idma_same_state_cnt[2];
10300 
10301 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10302 	  * are counters inside the SGE which count up on each clock when the
10303 	  * SGE finds its Ingress DMA State Engines in the same states they
10304 	  * were in the previous clock.  The counters will peg out at
10305 	  * 0xffffffff without wrapping around so once they pass the 1s
10306 	  * threshold they'll stay above that till the IDMA state changes.
10307 	  */
10308 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10309 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10310 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10311 
10312 	for (i = 0; i < 2; i++) {
10313 		u32 debug0, debug11;
10314 
10315 		/* If the Ingress DMA Same State Counter ("timer") is less
10316 		 * than 1s, then we can reset our synthesized Stall Timer and
10317 		 * continue.  If we have previously emitted warnings about a
10318 		 * potential stalled Ingress Queue, issue a note indicating
10319 		 * that the Ingress Queue has resumed forward progress.
10320 		 */
10321 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10322 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10323 				CH_WARN(adapter, "SGE idma%d, queue %u, "
10324 					"resumed after %d seconds\n",
10325 					i, idma->idma_qid[i],
10326 					idma->idma_stalled[i]/hz);
10327 			idma->idma_stalled[i] = 0;
10328 			continue;
10329 		}
10330 
10331 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10332 		 * domain.  The first time we get here it'll be because we
10333 		 * passed the 1s Threshold; each additional time it'll be
10334 		 * because the RX Timer Callback is being fired on its regular
10335 		 * schedule.
10336 		 *
10337 		 * If the stall is below our Potential Hung Ingress Queue
10338 		 * Warning Threshold, continue.
10339 		 */
10340 		if (idma->idma_stalled[i] == 0) {
10341 			idma->idma_stalled[i] = hz;
10342 			idma->idma_warn[i] = 0;
10343 		} else {
10344 			idma->idma_stalled[i] += ticks;
10345 			idma->idma_warn[i] -= ticks;
10346 		}
10347 
10348 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10349 			continue;
10350 
10351 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10352 		 */
10353 		if (idma->idma_warn[i] > 0)
10354 			continue;
10355 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10356 
10357 		/* Read and save the SGE IDMA State and Queue ID information.
10358 		 * We do this every time in case it changes across time ...
10359 		 * can't be too careful ...
10360 		 */
10361 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10362 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10363 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10364 
10365 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10366 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10367 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10368 
10369 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10370 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10371 			i, idma->idma_qid[i], idma->idma_state[i],
10372 			idma->idma_stalled[i]/hz,
10373 			debug0, debug11);
10374 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10375 	}
10376 }
10377 
10378 /**
10379  *     t4_set_vf_mac - Set MAC address for the specified VF
10380  *     @adapter: The adapter
10381  *     @pf: the PF used to instantiate the VFs
10382  *     @vf: one of the VFs instantiated by the specified PF
10383  *     @naddr: the number of MAC addresses
10384  *     @addr: the MAC address(es) to be set to the specified VF
10385  */
10386 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
10387 		  unsigned int naddr, u8 *addr)
10388 {
10389 	struct fw_acl_mac_cmd cmd;
10390 
10391 	memset(&cmd, 0, sizeof(cmd));
10392 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
10393 				    F_FW_CMD_REQUEST |
10394 				    F_FW_CMD_WRITE |
10395 				    V_FW_ACL_MAC_CMD_PFN(pf) |
10396 				    V_FW_ACL_MAC_CMD_VFN(vf));
10397 
10398 	/* Note: Do not enable the ACL */
10399 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10400 	cmd.nmac = naddr;
10401 
10402 	switch (pf) {
10403 	case 3:
10404 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10405 		break;
10406 	case 2:
10407 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10408 		break;
10409 	case 1:
10410 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10411 		break;
10412 	case 0:
10413 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10414 		break;
10415 	}
10416 
10417 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10418 }
10419 
10420 /**
10421  *	t4_read_pace_tbl - read the pace table
10422  *	@adap: the adapter
10423  *	@pace_vals: holds the returned values
10424  *
10425  *	Returns the values of TP's pace table in microseconds.
10426  */
10427 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10428 {
10429 	unsigned int i, v;
10430 
10431 	for (i = 0; i < NTX_SCHED; i++) {
10432 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10433 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
10434 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10435 	}
10436 }
10437 
10438 /**
10439  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10440  *	@adap: the adapter
10441  *	@sched: the scheduler index
10442  *	@kbps: the byte rate in Kbps
10443  *	@ipg: the interpacket delay in tenths of nanoseconds
10444  *
10445  *	Return the current configuration of a HW Tx scheduler.
10446  */
10447 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10448 		     unsigned int *ipg, bool sleep_ok)
10449 {
10450 	unsigned int v, addr, bpt, cpt;
10451 
10452 	if (kbps) {
10453 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10454 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10455 		if (sched & 1)
10456 			v >>= 16;
10457 		bpt = (v >> 8) & 0xff;
10458 		cpt = v & 0xff;
10459 		if (!cpt)
10460 			*kbps = 0;	/* scheduler disabled */
10461 		else {
10462 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10463 			*kbps = (v * bpt) / 125;
10464 		}
10465 	}
10466 	if (ipg) {
10467 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10468 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10469 		if (sched & 1)
10470 			v >>= 16;
10471 		v &= 0xffff;
10472 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10473 	}
10474 }
10475 
10476 /**
10477  *	t4_load_cfg - download config file
10478  *	@adap: the adapter
10479  *	@cfg_data: the cfg text file to write
10480  *	@size: text file size
10481  *
10482  *	Write the supplied config text file to the card's serial flash.
10483  */
10484 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10485 {
10486 	int ret, i, n, cfg_addr;
10487 	unsigned int addr;
10488 	unsigned int flash_cfg_start_sec;
10489 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10490 
10491 	cfg_addr = t4_flash_cfg_addr(adap);
10492 	if (cfg_addr < 0)
10493 		return cfg_addr;
10494 
10495 	addr = cfg_addr;
10496 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10497 
10498 	if (size > FLASH_CFG_MAX_SIZE) {
10499 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10500 		       FLASH_CFG_MAX_SIZE);
10501 		return -EFBIG;
10502 	}
10503 
10504 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10505 			 sf_sec_size);
10506 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10507 				     flash_cfg_start_sec + i - 1);
10508 	/*
10509 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10510 	 * with the on-adapter Firmware Configuration File.
10511 	 */
10512 	if (ret || size == 0)
10513 		goto out;
10514 
10515 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10516 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10517 		if ( (size - i) <  SF_PAGE_SIZE)
10518 			n = size - i;
10519 		else
10520 			n = SF_PAGE_SIZE;
10521 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10522 		if (ret)
10523 			goto out;
10524 
10525 		addr += SF_PAGE_SIZE;
10526 		cfg_data += SF_PAGE_SIZE;
10527 	}
10528 
10529 out:
10530 	if (ret)
10531 		CH_ERR(adap, "config file %s failed %d\n",
10532 		       (size == 0 ? "clear" : "download"), ret);
10533 	return ret;
10534 }
10535 
10536 /**
10537  *	t5_fw_init_extern_mem - initialize the external memory
10538  *	@adap: the adapter
10539  *
10540  *	Initializes the external memory on T5.
10541  */
10542 int t5_fw_init_extern_mem(struct adapter *adap)
10543 {
10544 	u32 params[1], val[1];
10545 	int ret;
10546 
10547 	if (!is_t5(adap))
10548 		return 0;
10549 
10550 	val[0] = 0xff; /* Initialize all MCs */
10551 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10552 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10553 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10554 			FW_CMD_MAX_TIMEOUT);
10555 
10556 	return ret;
10557 }
10558 
10559 /* BIOS boot headers */
10560 typedef struct pci_expansion_rom_header {
10561 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10562 	u8	reserved[22]; /* Reserved per processor Architecture data */
10563 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10564 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10565 
10566 /* Legacy PCI Expansion ROM Header */
10567 typedef struct legacy_pci_expansion_rom_header {
10568 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10569 	u8	size512; /* Current Image Size in units of 512 bytes */
10570 	u8	initentry_point[4];
10571 	u8	cksum; /* Checksum computed on the entire Image */
10572 	u8	reserved[16]; /* Reserved */
10573 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10574 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10575 
10576 /* EFI PCI Expansion ROM Header */
10577 typedef struct efi_pci_expansion_rom_header {
10578 	u8	signature[2]; // ROM signature. The value 0xaa55
10579 	u8	initialization_size[2]; /* Units 512. Includes this header */
10580 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10581 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10582 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10583 	u8	compression_type[2]; /* Compression type. */
10584 		/*
10585 		 * Compression type definition
10586 		 * 0x0: uncompressed
10587 		 * 0x1: Compressed
10588 		 * 0x2-0xFFFF: Reserved
10589 		 */
10590 	u8	reserved[8]; /* Reserved */
10591 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10592 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10593 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10594 
10595 /* PCI Data Structure Format */
10596 typedef struct pcir_data_structure { /* PCI Data Structure */
10597 	u8	signature[4]; /* Signature. The string "PCIR" */
10598 	u8	vendor_id[2]; /* Vendor Identification */
10599 	u8	device_id[2]; /* Device Identification */
10600 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10601 	u8	length[2]; /* PCIR Data Structure Length */
10602 	u8	revision; /* PCIR Data Structure Revision */
10603 	u8	class_code[3]; /* Class Code */
10604 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10605 	u8	code_revision[2]; /* Revision Level of Code/Data */
10606 	u8	code_type; /* Code Type. */
10607 		/*
10608 		 * PCI Expansion ROM Code Types
10609 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10610 		 * 0x01: Open Firmware standard for PCI. FCODE
10611 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10612 		 * 0x03: EFI Image. EFI
10613 		 * 0x04-0xFF: Reserved.
10614 		 */
10615 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10616 	u8	reserved[2]; /* Reserved */
10617 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10618 
10619 /* BOOT constants */
10620 enum {
10621 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10622 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10623 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10624 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10625 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10626 	VENDOR_ID = 0x1425, /* Vendor ID */
10627 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10628 };
10629 
10630 /*
10631  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10632  *	@adatper: the device ID to write.
10633  *	@boot_data: the boot image to modify.
10634  *
10635  *	Write the supplied device ID to the boot BIOS image.
10636  */
10637 static void modify_device_id(int device_id, u8 *boot_data)
10638 {
10639 	legacy_pci_exp_rom_header_t *header;
10640 	pcir_data_t *pcir_header;
10641 	u32 cur_header = 0;
10642 
10643 	/*
10644 	 * Loop through all chained images and change the device ID's
10645 	 */
10646 	while (1) {
10647 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10648 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10649 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10650 
10651 		/*
10652 		 * Only modify the Device ID if code type is Legacy or HP.
10653 		 * 0x00: Okay to modify
10654 		 * 0x01: FCODE. Do not be modify
10655 		 * 0x03: Okay to modify
10656 		 * 0x04-0xFF: Do not modify
10657 		 */
10658 		if (pcir_header->code_type == 0x00) {
10659 			u8 csum = 0;
10660 			int i;
10661 
10662 			/*
10663 			 * Modify Device ID to match current adatper
10664 			 */
10665 			*(u16*) pcir_header->device_id = device_id;
10666 
10667 			/*
10668 			 * Set checksum temporarily to 0.
10669 			 * We will recalculate it later.
10670 			 */
10671 			header->cksum = 0x0;
10672 
10673 			/*
10674 			 * Calculate and update checksum
10675 			 */
10676 			for (i = 0; i < (header->size512 * 512); i++)
10677 				csum += (u8)boot_data[cur_header + i];
10678 
10679 			/*
10680 			 * Invert summed value to create the checksum
10681 			 * Writing new checksum value directly to the boot data
10682 			 */
10683 			boot_data[cur_header + 7] = -csum;
10684 
10685 		} else if (pcir_header->code_type == 0x03) {
10686 
10687 			/*
10688 			 * Modify Device ID to match current adatper
10689 			 */
10690 			*(u16*) pcir_header->device_id = device_id;
10691 
10692 		}
10693 
10694 
10695 		/*
10696 		 * Check indicator element to identify if this is the last
10697 		 * image in the ROM.
10698 		 */
10699 		if (pcir_header->indicator & 0x80)
10700 			break;
10701 
10702 		/*
10703 		 * Move header pointer up to the next image in the ROM.
10704 		 */
10705 		cur_header += header->size512 * 512;
10706 	}
10707 }
10708 
10709 /*
10710  *	t4_load_boot - download boot flash
10711  *	@adapter: the adapter
10712  *	@boot_data: the boot image to write
10713  *	@boot_addr: offset in flash to write boot_data
10714  *	@size: image size
10715  *
10716  *	Write the supplied boot image to the card's serial flash.
10717  *	The boot image has the following sections: a 28-byte header and the
10718  *	boot image.
10719  */
10720 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10721 		 unsigned int boot_addr, unsigned int size)
10722 {
10723 	pci_exp_rom_header_t *header;
10724 	int pcir_offset ;
10725 	pcir_data_t *pcir_header;
10726 	int ret, addr;
10727 	uint16_t device_id;
10728 	unsigned int i;
10729 	unsigned int boot_sector = (boot_addr * 1024 );
10730 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10731 
10732 	/*
10733 	 * Make sure the boot image does not encroach on the firmware region
10734 	 */
10735 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10736 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10737 		return -EFBIG;
10738 	}
10739 
10740 	/*
10741 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10742 	 * and Boot configuration data sections. These 3 boot sections span
10743 	 * sectors 0 to 7 in flash and live right before the FW image location.
10744 	 */
10745 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10746 			sf_sec_size);
10747 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10748 				     (boot_sector >> 16) + i - 1);
10749 
10750 	/*
10751 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10752 	 * with the on-adapter option ROM file
10753 	 */
10754 	if (ret || (size == 0))
10755 		goto out;
10756 
10757 	/* Get boot header */
10758 	header = (pci_exp_rom_header_t *)boot_data;
10759 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10760 	/* PCIR Data Structure */
10761 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10762 
10763 	/*
10764 	 * Perform some primitive sanity testing to avoid accidentally
10765 	 * writing garbage over the boot sectors.  We ought to check for
10766 	 * more but it's not worth it for now ...
10767 	 */
10768 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10769 		CH_ERR(adap, "boot image too small/large\n");
10770 		return -EFBIG;
10771 	}
10772 
10773 #ifndef CHELSIO_T4_DIAGS
10774 	/*
10775 	 * Check BOOT ROM header signature
10776 	 */
10777 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10778 		CH_ERR(adap, "Boot image missing signature\n");
10779 		return -EINVAL;
10780 	}
10781 
10782 	/*
10783 	 * Check PCI header signature
10784 	 */
10785 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10786 		CH_ERR(adap, "PCI header missing signature\n");
10787 		return -EINVAL;
10788 	}
10789 
10790 	/*
10791 	 * Check Vendor ID matches Chelsio ID
10792 	 */
10793 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10794 		CH_ERR(adap, "Vendor ID missing signature\n");
10795 		return -EINVAL;
10796 	}
10797 #endif
10798 
10799 	/*
10800 	 * Retrieve adapter's device ID
10801 	 */
10802 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10803 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10804 	device_id = device_id & 0xf0ff;
10805 
10806 	/*
10807 	 * Check PCIE Device ID
10808 	 */
10809 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10810 		/*
10811 		 * Change the device ID in the Boot BIOS image to match
10812 		 * the Device ID of the current adapter.
10813 		 */
10814 		modify_device_id(device_id, boot_data);
10815 	}
10816 
10817 	/*
10818 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10819 	 * we finish copying the rest of the boot image. This will ensure
10820 	 * that the BIOS boot header will only be written if the boot image
10821 	 * was written in full.
10822 	 */
10823 	addr = boot_sector;
10824 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10825 		addr += SF_PAGE_SIZE;
10826 		boot_data += SF_PAGE_SIZE;
10827 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10828 		if (ret)
10829 			goto out;
10830 	}
10831 
10832 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10833 			     (const u8 *)header, 0);
10834 
10835 out:
10836 	if (ret)
10837 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10838 	return ret;
10839 }
10840 
10841 /*
10842  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10843  *	@adapter: the adapter
10844  *
10845  *	Return the address within the flash where the OptionROM Configuration
10846  *	is stored, or an error if the device FLASH is too small to contain
10847  *	a OptionROM Configuration.
10848  */
10849 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10850 {
10851 	/*
10852 	 * If the device FLASH isn't large enough to hold a Firmware
10853 	 * Configuration File, return an error.
10854 	 */
10855 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10856 		return -ENOSPC;
10857 
10858 	return FLASH_BOOTCFG_START;
10859 }
10860 
10861 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10862 {
10863 	int ret, i, n, cfg_addr;
10864 	unsigned int addr;
10865 	unsigned int flash_cfg_start_sec;
10866 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10867 
10868 	cfg_addr = t4_flash_bootcfg_addr(adap);
10869 	if (cfg_addr < 0)
10870 		return cfg_addr;
10871 
10872 	addr = cfg_addr;
10873 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10874 
10875 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10876 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10877 			FLASH_BOOTCFG_MAX_SIZE);
10878 		return -EFBIG;
10879 	}
10880 
10881 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10882 			 sf_sec_size);
10883 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10884 					flash_cfg_start_sec + i - 1);
10885 
10886 	/*
10887 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10888 	 * with the on-adapter OptionROM Configuration File.
10889 	 */
10890 	if (ret || size == 0)
10891 		goto out;
10892 
10893 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10894 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10895 		if ( (size - i) <  SF_PAGE_SIZE)
10896 			n = size - i;
10897 		else
10898 			n = SF_PAGE_SIZE;
10899 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10900 		if (ret)
10901 			goto out;
10902 
10903 		addr += SF_PAGE_SIZE;
10904 		cfg_data += SF_PAGE_SIZE;
10905 	}
10906 
10907 out:
10908 	if (ret)
10909 		CH_ERR(adap, "boot config data %s failed %d\n",
10910 				(size == 0 ? "clear" : "download"), ret);
10911 	return ret;
10912 }
10913 
10914 /**
10915  *	t4_set_filter_cfg - set up filter mode/mask and ingress config.
10916  *	@adap: the adapter
10917  *	@mode: a bitmap selecting which optional filter components to enable
10918  *	@mask: a bitmap selecting which components to enable in filter mask
10919  *	@vnic_mode: the ingress config/vnic mode setting
10920  *
10921  *	Sets the filter mode and mask by selecting the optional components to
10922  *	enable in filter tuples.  Returns 0 on success and a negative error if
10923  *	the requested mode needs more bits than are available for optional
10924  *	components.  The filter mask must be a subset of the filter mode.
10925  */
10926 int t4_set_filter_cfg(struct adapter *adap, int mode, int mask, int vnic_mode)
10927 {
10928 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
10929 	int i, nbits, rc;
10930 	uint32_t param, val;
10931 	uint16_t fmode, fmask;
10932 	const int maxbits = adap->chip_params->filter_opt_len;
10933 
10934 	if (mode != -1 || mask != -1) {
10935 		if (mode != -1) {
10936 			fmode = mode;
10937 			nbits = 0;
10938 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10939 				if (fmode & (1 << i))
10940 					nbits += width[i];
10941 			}
10942 			if (nbits > maxbits) {
10943 				CH_ERR(adap, "optional fields in the filter "
10944 				    "mode (0x%x) add up to %d bits "
10945 				    "(must be <= %db).  Remove some fields and "
10946 				    "try again.\n", fmode, nbits, maxbits);
10947 				return -E2BIG;
10948 			}
10949 
10950 			/*
10951 			 * Hardware wants the bits to be maxed out.  Keep
10952 			 * setting them until there's no room for more.
10953 			 */
10954 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10955 				if (fmode & (1 << i))
10956 					continue;
10957 				if (nbits + width[i] <= maxbits) {
10958 					fmode |= 1 << i;
10959 					nbits += width[i];
10960 					if (nbits == maxbits)
10961 						break;
10962 				}
10963 			}
10964 
10965 			fmask = fmode & adap->params.tp.filter_mask;
10966 			if (fmask != adap->params.tp.filter_mask) {
10967 				CH_WARN(adap,
10968 				    "filter mask will be changed from 0x%x to "
10969 				    "0x%x to comply with the filter mode (0x%x).\n",
10970 				    adap->params.tp.filter_mask, fmask, fmode);
10971 			}
10972 		} else {
10973 			fmode = adap->params.tp.filter_mode;
10974 			fmask = mask;
10975 			if ((fmode | fmask) != fmode) {
10976 				CH_ERR(adap,
10977 				    "filter mask (0x%x) must be a subset of "
10978 				    "the filter mode (0x%x).\n", fmask, fmode);
10979 				return -EINVAL;
10980 			}
10981 		}
10982 
10983 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10984 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10985 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
10986 		val = V_FW_PARAMS_PARAM_FILTER_MODE(fmode) |
10987 		    V_FW_PARAMS_PARAM_FILTER_MASK(fmask);
10988 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10989 		    &val);
10990 		if (rc < 0)
10991 			return rc;
10992 	}
10993 
10994 	if (vnic_mode != -1) {
10995 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10996 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10997 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
10998 		val = vnic_mode;
10999 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
11000 		    &val);
11001 		if (rc < 0)
11002 			return rc;
11003 	}
11004 
11005 	/* Refresh. */
11006 	read_filter_mode_and_ingress_config(adap);
11007 
11008 	return 0;
11009 }
11010 
11011 /**
11012  *	t4_clr_port_stats - clear port statistics
11013  *	@adap: the adapter
11014  *	@idx: the port index
11015  *
11016  *	Clear HW statistics for the given port.
11017  */
11018 void t4_clr_port_stats(struct adapter *adap, int idx)
11019 {
11020 	unsigned int i;
11021 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
11022 	u32 port_base_addr;
11023 
11024 	if (is_t4(adap))
11025 		port_base_addr = PORT_BASE(idx);
11026 	else
11027 		port_base_addr = T5_PORT_BASE(idx);
11028 
11029 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
11030 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
11031 		t4_write_reg(adap, port_base_addr + i, 0);
11032 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
11033 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
11034 		t4_write_reg(adap, port_base_addr + i, 0);
11035 	for (i = 0; i < 4; i++)
11036 		if (bgmap & (1 << i)) {
11037 			t4_write_reg(adap,
11038 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
11039 			t4_write_reg(adap,
11040 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
11041 		}
11042 }
11043 
11044 /**
11045  *	t4_i2c_io - read/write I2C data from adapter
11046  *	@adap: the adapter
11047  *	@port: Port number if per-port device; <0 if not
11048  *	@devid: per-port device ID or absolute device ID
11049  *	@offset: byte offset into device I2C space
11050  *	@len: byte length of I2C space data
11051  *	@buf: buffer in which to return I2C data for read
11052  *	      buffer which holds the I2C data for write
11053  *	@write: if true, do a write; else do a read
11054  *	Reads/Writes the I2C data from/to the indicated device and location.
11055  */
11056 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
11057 	      int port, unsigned int devid,
11058 	      unsigned int offset, unsigned int len,
11059 	      u8 *buf, bool write)
11060 {
11061 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
11062 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
11063 	int ret = 0;
11064 
11065 	if (len > I2C_PAGE_SIZE)
11066 		return -EINVAL;
11067 
11068 	/* Dont allow reads that spans multiple pages */
11069 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
11070 		return -EINVAL;
11071 
11072 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11073 	ldst_cmd.op_to_addrspace =
11074 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11075 			    F_FW_CMD_REQUEST |
11076 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
11077 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
11078 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
11079 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
11080 	ldst_cmd.u.i2c.did = devid;
11081 
11082 	while (len > 0) {
11083 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
11084 
11085 		ldst_cmd.u.i2c.boffset = offset;
11086 		ldst_cmd.u.i2c.blen = i2c_len;
11087 
11088 		if (write)
11089 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
11090 
11091 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
11092 				 write ? NULL : &ldst_rpl);
11093 		if (ret)
11094 			break;
11095 
11096 		if (!write)
11097 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
11098 		offset += i2c_len;
11099 		buf += i2c_len;
11100 		len -= i2c_len;
11101 	}
11102 
11103 	return ret;
11104 }
11105 
11106 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
11107 	      int port, unsigned int devid,
11108 	      unsigned int offset, unsigned int len,
11109 	      u8 *buf)
11110 {
11111 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
11112 }
11113 
11114 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
11115 	      int port, unsigned int devid,
11116 	      unsigned int offset, unsigned int len,
11117 	      u8 *buf)
11118 {
11119 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
11120 }
11121 
11122 /**
11123  * 	t4_sge_ctxt_rd - read an SGE context through FW
11124  * 	@adap: the adapter
11125  * 	@mbox: mailbox to use for the FW command
11126  * 	@cid: the context id
11127  * 	@ctype: the context type
11128  * 	@data: where to store the context data
11129  *
11130  * 	Issues a FW command through the given mailbox to read an SGE context.
11131  */
11132 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
11133 		   enum ctxt_type ctype, u32 *data)
11134 {
11135 	int ret;
11136 	struct fw_ldst_cmd c;
11137 
11138 	if (ctype == CTXT_EGRESS)
11139 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
11140 	else if (ctype == CTXT_INGRESS)
11141 		ret = FW_LDST_ADDRSPC_SGE_INGC;
11142 	else if (ctype == CTXT_FLM)
11143 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
11144 	else
11145 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
11146 
11147 	memset(&c, 0, sizeof(c));
11148 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11149 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
11150 					V_FW_LDST_CMD_ADDRSPACE(ret));
11151 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
11152 	c.u.idctxt.physid = cpu_to_be32(cid);
11153 
11154 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11155 	if (ret == 0) {
11156 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
11157 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
11158 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
11159 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
11160 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
11161 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
11162 	}
11163 	return ret;
11164 }
11165 
11166 /**
11167  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
11168  * 	@adap: the adapter
11169  * 	@cid: the context id
11170  * 	@ctype: the context type
11171  * 	@data: where to store the context data
11172  *
11173  * 	Reads an SGE context directly, bypassing FW.  This is only for
11174  * 	debugging when FW is unavailable.
11175  */
11176 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
11177 		      u32 *data)
11178 {
11179 	int i, ret;
11180 
11181 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
11182 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
11183 	if (!ret)
11184 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
11185 			*data++ = t4_read_reg(adap, i);
11186 	return ret;
11187 }
11188 
11189 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
11190     int sleep_ok)
11191 {
11192 	struct fw_sched_cmd cmd;
11193 
11194 	memset(&cmd, 0, sizeof(cmd));
11195 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11196 				      F_FW_CMD_REQUEST |
11197 				      F_FW_CMD_WRITE);
11198 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11199 
11200 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
11201 	cmd.u.config.type = type;
11202 	cmd.u.config.minmaxen = minmaxen;
11203 
11204 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11205 			       NULL, sleep_ok);
11206 }
11207 
11208 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
11209 		    int rateunit, int ratemode, int channel, int cl,
11210 		    int minrate, int maxrate, int weight, int pktsize,
11211 		    int burstsize, int sleep_ok)
11212 {
11213 	struct fw_sched_cmd cmd;
11214 
11215 	memset(&cmd, 0, sizeof(cmd));
11216 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11217 				      F_FW_CMD_REQUEST |
11218 				      F_FW_CMD_WRITE);
11219 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11220 
11221 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11222 	cmd.u.params.type = type;
11223 	cmd.u.params.level = level;
11224 	cmd.u.params.mode = mode;
11225 	cmd.u.params.ch = channel;
11226 	cmd.u.params.cl = cl;
11227 	cmd.u.params.unit = rateunit;
11228 	cmd.u.params.rate = ratemode;
11229 	cmd.u.params.min = cpu_to_be32(minrate);
11230 	cmd.u.params.max = cpu_to_be32(maxrate);
11231 	cmd.u.params.weight = cpu_to_be16(weight);
11232 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11233 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
11234 
11235 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11236 			       NULL, sleep_ok);
11237 }
11238 
11239 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
11240     unsigned int maxrate, int sleep_ok)
11241 {
11242 	struct fw_sched_cmd cmd;
11243 
11244 	memset(&cmd, 0, sizeof(cmd));
11245 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11246 				      F_FW_CMD_REQUEST |
11247 				      F_FW_CMD_WRITE);
11248 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11249 
11250 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11251 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11252 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
11253 	cmd.u.params.ch = channel;
11254 	cmd.u.params.rate = ratemode;		/* REL or ABS */
11255 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
11256 
11257 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11258 			       NULL, sleep_ok);
11259 }
11260 
11261 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
11262     int weight, int sleep_ok)
11263 {
11264 	struct fw_sched_cmd cmd;
11265 
11266 	if (weight < 0 || weight > 100)
11267 		return -EINVAL;
11268 
11269 	memset(&cmd, 0, sizeof(cmd));
11270 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11271 				      F_FW_CMD_REQUEST |
11272 				      F_FW_CMD_WRITE);
11273 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11274 
11275 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11276 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11277 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
11278 	cmd.u.params.ch = channel;
11279 	cmd.u.params.cl = cl;
11280 	cmd.u.params.weight = cpu_to_be16(weight);
11281 
11282 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11283 			       NULL, sleep_ok);
11284 }
11285 
11286 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11287     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11288 {
11289 	struct fw_sched_cmd cmd;
11290 
11291 	memset(&cmd, 0, sizeof(cmd));
11292 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11293 				      F_FW_CMD_REQUEST |
11294 				      F_FW_CMD_WRITE);
11295 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11296 
11297 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11298 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11299 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11300 	cmd.u.params.mode = mode;
11301 	cmd.u.params.ch = channel;
11302 	cmd.u.params.cl = cl;
11303 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11304 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11305 	cmd.u.params.max = cpu_to_be32(maxrate);
11306 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11307 
11308 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11309 			       NULL, sleep_ok);
11310 }
11311 
11312 /*
11313  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
11314  *	@adapter: the adapter
11315  * 	@mbox: mailbox to use for the FW command
11316  * 	@pf: the PF owning the queue
11317  * 	@vf: the VF owning the queue
11318  *	@timeout: watchdog timeout in ms
11319  *	@action: watchdog timer / action
11320  *
11321  *	There are separate watchdog timers for each possible watchdog
11322  *	action.  Configure one of the watchdog timers by setting a non-zero
11323  *	timeout.  Disable a watchdog timer by using a timeout of zero.
11324  */
11325 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11326 		       unsigned int pf, unsigned int vf,
11327 		       unsigned int timeout, unsigned int action)
11328 {
11329 	struct fw_watchdog_cmd wdog;
11330 	unsigned int ticks;
11331 
11332 	/*
11333 	 * The watchdog command expects a timeout in units of 10ms so we need
11334 	 * to convert it here (via rounding) and force a minimum of one 10ms
11335 	 * "tick" if the timeout is non-zero but the conversion results in 0
11336 	 * ticks.
11337 	 */
11338 	ticks = (timeout + 5)/10;
11339 	if (timeout && !ticks)
11340 		ticks = 1;
11341 
11342 	memset(&wdog, 0, sizeof wdog);
11343 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11344 				     F_FW_CMD_REQUEST |
11345 				     F_FW_CMD_WRITE |
11346 				     V_FW_PARAMS_CMD_PFN(pf) |
11347 				     V_FW_PARAMS_CMD_VFN(vf));
11348 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11349 	wdog.timeout = cpu_to_be32(ticks);
11350 	wdog.action = cpu_to_be32(action);
11351 
11352 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11353 }
11354 
11355 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11356 {
11357 	struct fw_devlog_cmd devlog_cmd;
11358 	int ret;
11359 
11360 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11361 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11362 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11363 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11364 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11365 			 sizeof(devlog_cmd), &devlog_cmd);
11366 	if (ret)
11367 		return ret;
11368 
11369 	*level = devlog_cmd.level;
11370 	return 0;
11371 }
11372 
11373 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11374 {
11375 	struct fw_devlog_cmd devlog_cmd;
11376 
11377 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11378 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11379 					     F_FW_CMD_REQUEST |
11380 					     F_FW_CMD_WRITE);
11381 	devlog_cmd.level = level;
11382 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11383 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11384 			  sizeof(devlog_cmd), &devlog_cmd);
11385 }
11386 
11387 int t4_configure_add_smac(struct adapter *adap)
11388 {
11389 	unsigned int param, val;
11390 	int ret = 0;
11391 
11392 	adap->params.smac_add_support = 0;
11393 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11394 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11395 	/* Query FW to check if FW supports adding source mac address
11396 	 * to TCAM feature or not.
11397 	 * If FW returns 1, driver can use this feature and driver need to send
11398 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11399 	 * enable adding smac to TCAM.
11400 	 */
11401 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11402 	if (ret)
11403 		return ret;
11404 
11405 	if (val == 1) {
11406 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11407 				    &param, &val);
11408 		if (!ret)
11409 			/* Firmware allows adding explicit TCAM entries.
11410 			 * Save this internally.
11411 			 */
11412 			adap->params.smac_add_support = 1;
11413 	}
11414 
11415 	return ret;
11416 }
11417 
11418 int t4_configure_ringbb(struct adapter *adap)
11419 {
11420 	unsigned int param, val;
11421 	int ret = 0;
11422 
11423 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11424 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11425 	/* Query FW to check if FW supports ring switch feature or not.
11426 	 * If FW returns 1, driver can use this feature and driver need to send
11427 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11428 	 * enable the ring backbone configuration.
11429 	 */
11430 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11431 	if (ret < 0) {
11432 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11433 			ret);
11434 		goto out;
11435 	}
11436 
11437 	if (val != 1) {
11438 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11439 		goto out;
11440 	}
11441 
11442 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11443 	if (ret < 0) {
11444 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11445 			ret);
11446 		goto out;
11447 	}
11448 
11449 out:
11450 	return ret;
11451 }
11452 
11453 /*
11454  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
11455  *	@adapter: the adapter
11456  *	@mbox: mailbox to use for the FW command
11457  *	@vf: one of the VFs instantiated by the specified PF
11458  *	@vlan: The vlanid to be set
11459  *
11460  */
11461 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11462 		    u16 vlan)
11463 {
11464 	struct fw_acl_vlan_cmd vlan_cmd;
11465 	unsigned int enable;
11466 
11467 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11468 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11469 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11470 					 F_FW_CMD_REQUEST |
11471 					 F_FW_CMD_WRITE |
11472 					 F_FW_CMD_EXEC |
11473 					 V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11474 					 V_FW_ACL_VLAN_CMD_VFN(vf));
11475 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11476 	/* Drop all packets that donot match vlan id */
11477 	vlan_cmd.dropnovlan_fm = (enable
11478 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11479 				     F_FW_ACL_VLAN_CMD_FM)
11480 				  : 0);
11481 	if (enable != 0) {
11482 		vlan_cmd.nvlan = 1;
11483 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11484 	}
11485 
11486 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11487 }
11488 
11489 /**
11490  *	t4_del_mac - Removes the exact-match filter for a MAC address
11491  *	@adap: the adapter
11492  *	@mbox: mailbox to use for the FW command
11493  *	@viid: the VI id
11494  *	@addr: the MAC address value
11495  *	@smac: if true, delete from only the smac region of MPS
11496  *
11497  *	Modifies an exact-match filter and sets it to the new MAC address if
11498  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11499  *	latter case the address is added persistently if @persist is %true.
11500  *
11501  *	Returns a negative error number or the index of the filter with the new
11502  *	MAC value.  Note that this index may differ from @idx.
11503  */
11504 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11505 	       const u8 *addr, bool smac)
11506 {
11507 	int ret;
11508 	struct fw_vi_mac_cmd c;
11509 	struct fw_vi_mac_exact *p = c.u.exact;
11510 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11511 
11512 	memset(&c, 0, sizeof(c));
11513 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11514 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11515 				   V_FW_VI_MAC_CMD_VIID(viid));
11516 	c.freemacs_to_len16 = cpu_to_be32(
11517 					V_FW_CMD_LEN16(1) |
11518 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11519 
11520 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11521 	p->valid_to_idx = cpu_to_be16(
11522 				F_FW_VI_MAC_CMD_VALID |
11523 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11524 
11525 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11526 	if (ret == 0) {
11527 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11528 		if (ret < max_mac_addr)
11529 			return -ENOMEM;
11530 	}
11531 
11532 	return ret;
11533 }
11534 
11535 /**
11536  *	t4_add_mac - Adds an exact-match filter for a MAC address
11537  *	@adap: the adapter
11538  *	@mbox: mailbox to use for the FW command
11539  *	@viid: the VI id
11540  *	@idx: index of existing filter for old value of MAC address, or -1
11541  *	@addr: the new MAC address value
11542  *	@persist: whether a new MAC allocation should be persistent
11543  *	@add_smt: if true also add the address to the HW SMT
11544  *	@smac: if true, update only the smac region of MPS
11545  *
11546  *	Modifies an exact-match filter and sets it to the new MAC address if
11547  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11548  *	latter case the address is added persistently if @persist is %true.
11549  *
11550  *	Returns a negative error number or the index of the filter with the new
11551  *	MAC value.  Note that this index may differ from @idx.
11552  */
11553 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11554 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11555 {
11556 	int ret, mode;
11557 	struct fw_vi_mac_cmd c;
11558 	struct fw_vi_mac_exact *p = c.u.exact;
11559 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11560 
11561 	if (idx < 0)		/* new allocation */
11562 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11563 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11564 
11565 	memset(&c, 0, sizeof(c));
11566 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11567 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11568 				   V_FW_VI_MAC_CMD_VIID(viid));
11569 	c.freemacs_to_len16 = cpu_to_be32(
11570 				V_FW_CMD_LEN16(1) |
11571 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11572 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11573 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11574 				      V_FW_VI_MAC_CMD_IDX(idx));
11575 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11576 
11577 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11578 	if (ret == 0) {
11579 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11580 		if (ret >= max_mac_addr)
11581 			return -ENOMEM;
11582 		if (smt_idx) {
11583 			/* Does fw supports returning smt_idx? */
11584 			if (adap->params.viid_smt_extn_support)
11585 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11586 			else {
11587 				/* In T4/T5, SMT contains 256 SMAC entries
11588 				 * organized in 128 rows of 2 entries each.
11589 				 * In T6, SMT contains 256 SMAC entries in
11590 				 * 256 rows.
11591 				 */
11592 				if (chip_id(adap) <= CHELSIO_T5)
11593 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11594 				else
11595 					*smt_idx = (viid & M_FW_VIID_VIN);
11596 			}
11597 		}
11598 	}
11599 
11600 	return ret;
11601 }
11602