1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer, 10 * without modification. 11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 12 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 13 * redistribution must be conditioned upon including a substantially 14 * similar Disclaimer requirement for further binary redistribution. 15 * 16 * NO WARRANTY 17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 27 * THE POSSIBILITY OF SUCH DAMAGES. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Atheros Wireless LAN controller. 35 * 36 * This software is derived from work of Atsushi Onoe; his contribution 37 * is greatly appreciated. 38 */ 39 40 #include "opt_inet.h" 41 #include "opt_ath.h" 42 /* 43 * This is needed for register operations which are performed 44 * by the driver - eg, calls to ath_hal_gettsf32(). 45 * 46 * It's also required for any AH_DEBUG checks in here, eg the 47 * module dependencies. 48 */ 49 #include "opt_ah.h" 50 #include "opt_wlan.h" 51 52 #include <sys/param.h> 53 #include <sys/systm.h> 54 #include <sys/sysctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/malloc.h> 57 #include <sys/lock.h> 58 #include <sys/mutex.h> 59 #include <sys/kernel.h> 60 #include <sys/socket.h> 61 #include <sys/sockio.h> 62 #include <sys/errno.h> 63 #include <sys/callout.h> 64 #include <sys/bus.h> 65 #include <sys/endian.h> 66 #include <sys/kthread.h> 67 #include <sys/taskqueue.h> 68 #include <sys/priv.h> 69 #include <sys/module.h> 70 #include <sys/ktr.h> 71 #include <sys/smp.h> /* for mp_ncpus */ 72 73 #include <machine/bus.h> 74 75 #include <net/if.h> 76 #include <net/if_dl.h> 77 #include <net/if_media.h> 78 #include <net/if_types.h> 79 #include <net/if_arp.h> 80 #include <net/ethernet.h> 81 #include <net/if_llc.h> 82 83 #include <net80211/ieee80211_var.h> 84 #include <net80211/ieee80211_regdomain.h> 85 #ifdef IEEE80211_SUPPORT_SUPERG 86 #include <net80211/ieee80211_superg.h> 87 #endif 88 #ifdef IEEE80211_SUPPORT_TDMA 89 #include <net80211/ieee80211_tdma.h> 90 #endif 91 92 #include <net/bpf.h> 93 94 #ifdef INET 95 #include <netinet/in.h> 96 #include <netinet/if_ether.h> 97 #endif 98 99 #include <dev/ath/if_athvar.h> 100 #include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */ 101 #include <dev/ath/ath_hal/ah_diagcodes.h> 102 103 #include <dev/ath/if_ath_debug.h> 104 #include <dev/ath/if_ath_misc.h> 105 #include <dev/ath/if_ath_tsf.h> 106 #include <dev/ath/if_ath_tx.h> 107 #include <dev/ath/if_ath_sysctl.h> 108 #include <dev/ath/if_ath_led.h> 109 #include <dev/ath/if_ath_keycache.h> 110 #include <dev/ath/if_ath_rx.h> 111 #include <dev/ath/if_ath_rx_edma.h> 112 #include <dev/ath/if_ath_tx_edma.h> 113 #include <dev/ath/if_ath_beacon.h> 114 #include <dev/ath/if_ath_spectral.h> 115 #include <dev/ath/if_athdfs.h> 116 117 #ifdef ATH_TX99_DIAG 118 #include <dev/ath/ath_tx99/ath_tx99.h> 119 #endif 120 121 #ifdef ATH_DEBUG_ALQ 122 #include <dev/ath/if_ath_alq.h> 123 #endif 124 125 /* 126 * Only enable this if you're working on PS-POLL support. 127 */ 128 #undef ATH_SW_PSQ 129 130 /* 131 * ATH_BCBUF determines the number of vap's that can transmit 132 * beacons and also (currently) the number of vap's that can 133 * have unique mac addresses/bssid. When staggering beacons 134 * 4 is probably a good max as otherwise the beacons become 135 * very closely spaced and there is limited time for cab q traffic 136 * to go out. You can burst beacons instead but that is not good 137 * for stations in power save and at some point you really want 138 * another radio (and channel). 139 * 140 * The limit on the number of mac addresses is tied to our use of 141 * the U/L bit and tracking addresses in a byte; it would be 142 * worthwhile to allow more for applications like proxy sta. 143 */ 144 CTASSERT(ATH_BCBUF <= 8); 145 146 static struct ieee80211vap *ath_vap_create(struct ieee80211com *, 147 const char [IFNAMSIZ], int, enum ieee80211_opmode, int, 148 const uint8_t [IEEE80211_ADDR_LEN], 149 const uint8_t [IEEE80211_ADDR_LEN]); 150 static void ath_vap_delete(struct ieee80211vap *); 151 static void ath_init(void *); 152 static void ath_stop_locked(struct ifnet *); 153 static void ath_stop(struct ifnet *); 154 static int ath_reset_vap(struct ieee80211vap *, u_long); 155 static void ath_start_queue(struct ifnet *ifp); 156 static int ath_media_change(struct ifnet *); 157 static void ath_watchdog(void *); 158 static int ath_ioctl(struct ifnet *, u_long, caddr_t); 159 static void ath_fatal_proc(void *, int); 160 static void ath_bmiss_vap(struct ieee80211vap *); 161 static void ath_bmiss_proc(void *, int); 162 static void ath_key_update_begin(struct ieee80211vap *); 163 static void ath_key_update_end(struct ieee80211vap *); 164 static void ath_update_mcast(struct ifnet *); 165 static void ath_update_promisc(struct ifnet *); 166 static void ath_updateslot(struct ifnet *); 167 static void ath_bstuck_proc(void *, int); 168 static void ath_reset_proc(void *, int); 169 static int ath_desc_alloc(struct ath_softc *); 170 static void ath_desc_free(struct ath_softc *); 171 static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *, 172 const uint8_t [IEEE80211_ADDR_LEN]); 173 static void ath_node_cleanup(struct ieee80211_node *); 174 static void ath_node_free(struct ieee80211_node *); 175 static void ath_node_getsignal(const struct ieee80211_node *, 176 int8_t *, int8_t *); 177 static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int); 178 static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype); 179 static int ath_tx_setup(struct ath_softc *, int, int); 180 static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *); 181 static void ath_tx_cleanup(struct ath_softc *); 182 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, 183 int dosched); 184 static void ath_tx_proc_q0(void *, int); 185 static void ath_tx_proc_q0123(void *, int); 186 static void ath_tx_proc(void *, int); 187 static void ath_txq_sched_tasklet(void *, int); 188 static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *); 189 static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *); 190 static void ath_scan_start(struct ieee80211com *); 191 static void ath_scan_end(struct ieee80211com *); 192 static void ath_set_channel(struct ieee80211com *); 193 #ifdef ATH_ENABLE_11N 194 static void ath_update_chw(struct ieee80211com *); 195 #endif /* ATH_ENABLE_11N */ 196 static void ath_calibrate(void *); 197 static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int); 198 static void ath_setup_stationkey(struct ieee80211_node *); 199 static void ath_newassoc(struct ieee80211_node *, int); 200 static int ath_setregdomain(struct ieee80211com *, 201 struct ieee80211_regdomain *, int, 202 struct ieee80211_channel []); 203 static void ath_getradiocaps(struct ieee80211com *, int, int *, 204 struct ieee80211_channel []); 205 static int ath_getchannels(struct ath_softc *); 206 207 static int ath_rate_setup(struct ath_softc *, u_int mode); 208 static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode); 209 210 static void ath_announce(struct ath_softc *); 211 212 static void ath_dfs_tasklet(void *, int); 213 static void ath_node_powersave(struct ieee80211_node *, int); 214 static int ath_node_set_tim(struct ieee80211_node *, int); 215 216 #ifdef IEEE80211_SUPPORT_TDMA 217 #include <dev/ath/if_ath_tdma.h> 218 #endif 219 220 SYSCTL_DECL(_hw_ath); 221 222 /* XXX validate sysctl values */ 223 static int ath_longcalinterval = 30; /* long cals every 30 secs */ 224 SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval, 225 0, "long chip calibration interval (secs)"); 226 static int ath_shortcalinterval = 100; /* short cals every 100 ms */ 227 SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval, 228 0, "short chip calibration interval (msecs)"); 229 static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */ 230 SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval, 231 0, "reset chip calibration results (secs)"); 232 static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */ 233 SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval, 234 0, "ANI calibration (msecs)"); 235 236 int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */ 237 SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf, 238 0, "rx buffers allocated"); 239 TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf); 240 int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */ 241 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf, 242 0, "tx buffers allocated"); 243 TUNABLE_INT("hw.ath.txbuf", &ath_txbuf); 244 int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */ 245 SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt, 246 0, "tx (mgmt) buffers allocated"); 247 TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt); 248 249 int ath_bstuck_threshold = 4; /* max missed beacons */ 250 SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold, 251 0, "max missed beacon xmits before chip reset"); 252 253 MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers"); 254 255 void 256 ath_legacy_attach_comp_func(struct ath_softc *sc) 257 { 258 259 /* 260 * Special case certain configurations. Note the 261 * CAB queue is handled by these specially so don't 262 * include them when checking the txq setup mask. 263 */ 264 switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) { 265 case 0x01: 266 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc); 267 break; 268 case 0x0f: 269 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc); 270 break; 271 default: 272 TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc); 273 break; 274 } 275 } 276 277 #define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20) 278 #define HAL_MODE_HT40 \ 279 (HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \ 280 HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS) 281 int 282 ath_attach(u_int16_t devid, struct ath_softc *sc) 283 { 284 struct ifnet *ifp; 285 struct ieee80211com *ic; 286 struct ath_hal *ah = NULL; 287 HAL_STATUS status; 288 int error = 0, i; 289 u_int wmodes; 290 uint8_t macaddr[IEEE80211_ADDR_LEN]; 291 int rx_chainmask, tx_chainmask; 292 293 DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid); 294 295 CURVNET_SET(vnet0); 296 ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211); 297 if (ifp == NULL) { 298 device_printf(sc->sc_dev, "can not if_alloc()\n"); 299 error = ENOSPC; 300 CURVNET_RESTORE(); 301 goto bad; 302 } 303 ic = ifp->if_l2com; 304 305 /* set these up early for if_printf use */ 306 if_initname(ifp, device_get_name(sc->sc_dev), 307 device_get_unit(sc->sc_dev)); 308 CURVNET_RESTORE(); 309 310 ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, 311 sc->sc_eepromdata, &status); 312 if (ah == NULL) { 313 if_printf(ifp, "unable to attach hardware; HAL status %u\n", 314 status); 315 error = ENXIO; 316 goto bad; 317 } 318 sc->sc_ah = ah; 319 sc->sc_invalid = 0; /* ready to go, enable interrupt handling */ 320 #ifdef ATH_DEBUG 321 sc->sc_debug = ath_debug; 322 #endif 323 324 /* 325 * Setup the DMA/EDMA functions based on the current 326 * hardware support. 327 * 328 * This is required before the descriptors are allocated. 329 */ 330 if (ath_hal_hasedma(sc->sc_ah)) { 331 sc->sc_isedma = 1; 332 ath_recv_setup_edma(sc); 333 ath_xmit_setup_edma(sc); 334 } else { 335 ath_recv_setup_legacy(sc); 336 ath_xmit_setup_legacy(sc); 337 } 338 339 /* 340 * Check if the MAC has multi-rate retry support. 341 * We do this by trying to setup a fake extended 342 * descriptor. MAC's that don't have support will 343 * return false w/o doing anything. MAC's that do 344 * support it will return true w/o doing anything. 345 */ 346 sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0); 347 348 /* 349 * Check if the device has hardware counters for PHY 350 * errors. If so we need to enable the MIB interrupt 351 * so we can act on stat triggers. 352 */ 353 if (ath_hal_hwphycounters(ah)) 354 sc->sc_needmib = 1; 355 356 /* 357 * Get the hardware key cache size. 358 */ 359 sc->sc_keymax = ath_hal_keycachesize(ah); 360 if (sc->sc_keymax > ATH_KEYMAX) { 361 if_printf(ifp, "Warning, using only %u of %u key cache slots\n", 362 ATH_KEYMAX, sc->sc_keymax); 363 sc->sc_keymax = ATH_KEYMAX; 364 } 365 /* 366 * Reset the key cache since some parts do not 367 * reset the contents on initial power up. 368 */ 369 for (i = 0; i < sc->sc_keymax; i++) 370 ath_hal_keyreset(ah, i); 371 372 /* 373 * Collect the default channel list. 374 */ 375 error = ath_getchannels(sc); 376 if (error != 0) 377 goto bad; 378 379 /* 380 * Setup rate tables for all potential media types. 381 */ 382 ath_rate_setup(sc, IEEE80211_MODE_11A); 383 ath_rate_setup(sc, IEEE80211_MODE_11B); 384 ath_rate_setup(sc, IEEE80211_MODE_11G); 385 ath_rate_setup(sc, IEEE80211_MODE_TURBO_A); 386 ath_rate_setup(sc, IEEE80211_MODE_TURBO_G); 387 ath_rate_setup(sc, IEEE80211_MODE_STURBO_A); 388 ath_rate_setup(sc, IEEE80211_MODE_11NA); 389 ath_rate_setup(sc, IEEE80211_MODE_11NG); 390 ath_rate_setup(sc, IEEE80211_MODE_HALF); 391 ath_rate_setup(sc, IEEE80211_MODE_QUARTER); 392 393 /* NB: setup here so ath_rate_update is happy */ 394 ath_setcurmode(sc, IEEE80211_MODE_11A); 395 396 /* 397 * Allocate TX descriptors and populate the lists. 398 */ 399 error = ath_desc_alloc(sc); 400 if (error != 0) { 401 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 402 error); 403 goto bad; 404 } 405 error = ath_txdma_setup(sc); 406 if (error != 0) { 407 if_printf(ifp, "failed to allocate TX descriptors: %d\n", 408 error); 409 goto bad; 410 } 411 412 /* 413 * Allocate RX descriptors and populate the lists. 414 */ 415 error = ath_rxdma_setup(sc); 416 if (error != 0) { 417 if_printf(ifp, "failed to allocate RX descriptors: %d\n", 418 error); 419 goto bad; 420 } 421 422 callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0); 423 callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0); 424 425 ATH_TXBUF_LOCK_INIT(sc); 426 427 sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT, 428 taskqueue_thread_enqueue, &sc->sc_tq); 429 taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, 430 "%s taskq", ifp->if_xname); 431 432 TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc); 433 TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc); 434 TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc); 435 TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc); 436 TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc); 437 TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc); 438 439 /* XXX make this a higher priority taskqueue? */ 440 TASK_INIT(&sc->sc_txpkttask, 0, ath_start_task, sc); 441 442 /* 443 * Allocate hardware transmit queues: one queue for 444 * beacon frames and one data queue for each QoS 445 * priority. Note that the hal handles resetting 446 * these queues at the needed time. 447 * 448 * XXX PS-Poll 449 */ 450 sc->sc_bhalq = ath_beaconq_setup(sc); 451 if (sc->sc_bhalq == (u_int) -1) { 452 if_printf(ifp, "unable to setup a beacon xmit queue!\n"); 453 error = EIO; 454 goto bad2; 455 } 456 sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0); 457 if (sc->sc_cabq == NULL) { 458 if_printf(ifp, "unable to setup CAB xmit queue!\n"); 459 error = EIO; 460 goto bad2; 461 } 462 /* NB: insure BK queue is the lowest priority h/w queue */ 463 if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) { 464 if_printf(ifp, "unable to setup xmit queue for %s traffic!\n", 465 ieee80211_wme_acnames[WME_AC_BK]); 466 error = EIO; 467 goto bad2; 468 } 469 if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) || 470 !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) || 471 !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) { 472 /* 473 * Not enough hardware tx queues to properly do WME; 474 * just punt and assign them all to the same h/w queue. 475 * We could do a better job of this if, for example, 476 * we allocate queues when we switch from station to 477 * AP mode. 478 */ 479 if (sc->sc_ac2q[WME_AC_VI] != NULL) 480 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]); 481 if (sc->sc_ac2q[WME_AC_BE] != NULL) 482 ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]); 483 sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK]; 484 sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK]; 485 sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK]; 486 } 487 488 /* 489 * Attach the TX completion function. 490 * 491 * The non-EDMA chips may have some special case optimisations; 492 * this method gives everyone a chance to attach cleanly. 493 */ 494 sc->sc_tx.xmit_attach_comp_func(sc); 495 496 /* 497 * Setup rate control. Some rate control modules 498 * call back to change the anntena state so expose 499 * the necessary entry points. 500 * XXX maybe belongs in struct ath_ratectrl? 501 */ 502 sc->sc_setdefantenna = ath_setdefantenna; 503 sc->sc_rc = ath_rate_attach(sc); 504 if (sc->sc_rc == NULL) { 505 error = EIO; 506 goto bad2; 507 } 508 509 /* Attach DFS module */ 510 if (! ath_dfs_attach(sc)) { 511 device_printf(sc->sc_dev, 512 "%s: unable to attach DFS\n", __func__); 513 error = EIO; 514 goto bad2; 515 } 516 517 /* Attach spectral module */ 518 if (ath_spectral_attach(sc) < 0) { 519 device_printf(sc->sc_dev, 520 "%s: unable to attach spectral\n", __func__); 521 error = EIO; 522 goto bad2; 523 } 524 525 /* Start DFS processing tasklet */ 526 TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc); 527 528 /* Configure LED state */ 529 sc->sc_blinking = 0; 530 sc->sc_ledstate = 1; 531 sc->sc_ledon = 0; /* low true */ 532 sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */ 533 callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE); 534 535 /* 536 * Don't setup hardware-based blinking. 537 * 538 * Although some NICs may have this configured in the 539 * default reset register values, the user may wish 540 * to alter which pins have which function. 541 * 542 * The reference driver attaches the MAC network LED to GPIO1 and 543 * the MAC power LED to GPIO2. However, the DWA-552 cardbus 544 * NIC has these reversed. 545 */ 546 sc->sc_hardled = (1 == 0); 547 sc->sc_led_net_pin = -1; 548 sc->sc_led_pwr_pin = -1; 549 /* 550 * Auto-enable soft led processing for IBM cards and for 551 * 5211 minipci cards. Users can also manually enable/disable 552 * support with a sysctl. 553 */ 554 sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID); 555 ath_led_config(sc); 556 ath_hal_setledstate(ah, HAL_LED_INIT); 557 558 ifp->if_softc = sc; 559 ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST; 560 ifp->if_start = ath_start_queue; 561 ifp->if_ioctl = ath_ioctl; 562 ifp->if_init = ath_init; 563 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 564 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 565 IFQ_SET_READY(&ifp->if_snd); 566 567 ic->ic_ifp = ifp; 568 /* XXX not right but it's not used anywhere important */ 569 ic->ic_phytype = IEEE80211_T_OFDM; 570 ic->ic_opmode = IEEE80211_M_STA; 571 ic->ic_caps = 572 IEEE80211_C_STA /* station mode */ 573 | IEEE80211_C_IBSS /* ibss, nee adhoc, mode */ 574 | IEEE80211_C_HOSTAP /* hostap mode */ 575 | IEEE80211_C_MONITOR /* monitor mode */ 576 | IEEE80211_C_AHDEMO /* adhoc demo mode */ 577 | IEEE80211_C_WDS /* 4-address traffic works */ 578 | IEEE80211_C_MBSS /* mesh point link mode */ 579 | IEEE80211_C_SHPREAMBLE /* short preamble supported */ 580 | IEEE80211_C_SHSLOT /* short slot time supported */ 581 | IEEE80211_C_WPA /* capable of WPA1+WPA2 */ 582 #ifndef ATH_ENABLE_11N 583 | IEEE80211_C_BGSCAN /* capable of bg scanning */ 584 #endif 585 | IEEE80211_C_TXFRAG /* handle tx frags */ 586 #ifdef ATH_ENABLE_DFS 587 | IEEE80211_C_DFS /* Enable radar detection */ 588 #endif 589 ; 590 /* 591 * Query the hal to figure out h/w crypto support. 592 */ 593 if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP)) 594 ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP; 595 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB)) 596 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB; 597 if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM)) 598 ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM; 599 if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP)) 600 ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP; 601 if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) { 602 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP; 603 /* 604 * Check if h/w does the MIC and/or whether the 605 * separate key cache entries are required to 606 * handle both tx+rx MIC keys. 607 */ 608 if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC)) 609 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 610 /* 611 * If the h/w supports storing tx+rx MIC keys 612 * in one cache slot automatically enable use. 613 */ 614 if (ath_hal_hastkipsplit(ah) || 615 !ath_hal_settkipsplit(ah, AH_FALSE)) 616 sc->sc_splitmic = 1; 617 /* 618 * If the h/w can do TKIP MIC together with WME then 619 * we use it; otherwise we force the MIC to be done 620 * in software by the net80211 layer. 621 */ 622 if (ath_hal_haswmetkipmic(ah)) 623 sc->sc_wmetkipmic = 1; 624 } 625 sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR); 626 /* 627 * Check for multicast key search support. 628 */ 629 if (ath_hal_hasmcastkeysearch(sc->sc_ah) && 630 !ath_hal_getmcastkeysearch(sc->sc_ah)) { 631 ath_hal_setmcastkeysearch(sc->sc_ah, 1); 632 } 633 sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah); 634 /* 635 * Mark key cache slots associated with global keys 636 * as in use. If we knew TKIP was not to be used we 637 * could leave the +32, +64, and +32+64 slots free. 638 */ 639 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 640 setbit(sc->sc_keymap, i); 641 setbit(sc->sc_keymap, i+64); 642 if (sc->sc_splitmic) { 643 setbit(sc->sc_keymap, i+32); 644 setbit(sc->sc_keymap, i+32+64); 645 } 646 } 647 /* 648 * TPC support can be done either with a global cap or 649 * per-packet support. The latter is not available on 650 * all parts. We're a bit pedantic here as all parts 651 * support a global cap. 652 */ 653 if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah)) 654 ic->ic_caps |= IEEE80211_C_TXPMGT; 655 656 /* 657 * Mark WME capability only if we have sufficient 658 * hardware queues to do proper priority scheduling. 659 */ 660 if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK]) 661 ic->ic_caps |= IEEE80211_C_WME; 662 /* 663 * Check for misc other capabilities. 664 */ 665 if (ath_hal_hasbursting(ah)) 666 ic->ic_caps |= IEEE80211_C_BURST; 667 sc->sc_hasbmask = ath_hal_hasbssidmask(ah); 668 sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah); 669 sc->sc_hastsfadd = ath_hal_hastsfadjust(ah); 670 sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah); 671 sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah); 672 if (ath_hal_hasfastframes(ah)) 673 ic->ic_caps |= IEEE80211_C_FF; 674 wmodes = ath_hal_getwirelessmodes(ah); 675 if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO)) 676 ic->ic_caps |= IEEE80211_C_TURBOP; 677 #ifdef IEEE80211_SUPPORT_TDMA 678 if (ath_hal_macversion(ah) > 0x78) { 679 ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */ 680 ic->ic_tdma_update = ath_tdma_update; 681 } 682 #endif 683 684 /* 685 * TODO: enforce that at least this many frames are available 686 * in the txbuf list before allowing data frames (raw or 687 * otherwise) to be transmitted. 688 */ 689 sc->sc_txq_data_minfree = 10; 690 /* 691 * Leave this as default to maintain legacy behaviour. 692 * Shortening the cabq/mcastq may end up causing some 693 * undesirable behaviour. 694 */ 695 sc->sc_txq_mcastq_maxdepth = ath_txbuf; 696 697 /* Enable CABQ by default */ 698 sc->sc_cabq_enable = 1; 699 700 /* 701 * Allow the TX and RX chainmasks to be overridden by 702 * environment variables and/or device.hints. 703 * 704 * This must be done early - before the hardware is 705 * calibrated or before the 802.11n stream calculation 706 * is done. 707 */ 708 if (resource_int_value(device_get_name(sc->sc_dev), 709 device_get_unit(sc->sc_dev), "rx_chainmask", 710 &rx_chainmask) == 0) { 711 device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n", 712 rx_chainmask); 713 (void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask); 714 } 715 if (resource_int_value(device_get_name(sc->sc_dev), 716 device_get_unit(sc->sc_dev), "tx_chainmask", 717 &tx_chainmask) == 0) { 718 device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n", 719 tx_chainmask); 720 (void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask); 721 } 722 723 /* 724 * Disable MRR with protected frames by default. 725 * Only 802.11n series NICs can handle this. 726 */ 727 sc->sc_mrrprot = 0; /* XXX should be a capability */ 728 729 /* 730 * Query the enterprise mode information the HAL. 731 */ 732 if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0, 733 &sc->sc_ent_cfg) == HAL_OK) 734 sc->sc_use_ent = 1; 735 736 #ifdef ATH_ENABLE_11N 737 /* 738 * Query HT capabilities 739 */ 740 if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK && 741 (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) { 742 int rxs, txs; 743 744 device_printf(sc->sc_dev, "[HT] enabling HT modes\n"); 745 746 sc->sc_mrrprot = 1; /* XXX should be a capability */ 747 748 ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */ 749 | IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */ 750 | IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */ 751 | IEEE80211_HTCAP_MAXAMSDU_3839 752 /* max A-MSDU length */ 753 | IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */ 754 ; 755 756 /* 757 * Enable short-GI for HT20 only if the hardware 758 * advertises support. 759 * Notably, anything earlier than the AR9287 doesn't. 760 */ 761 if ((ath_hal_getcapability(ah, 762 HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) && 763 (wmodes & HAL_MODE_HT20)) { 764 device_printf(sc->sc_dev, 765 "[HT] enabling short-GI in 20MHz mode\n"); 766 ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20; 767 } 768 769 if (wmodes & HAL_MODE_HT40) 770 ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40 771 | IEEE80211_HTCAP_SHORTGI40; 772 773 /* 774 * TX/RX streams need to be taken into account when 775 * negotiating which MCS rates it'll receive and 776 * what MCS rates are available for TX. 777 */ 778 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs); 779 (void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs); 780 781 ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask); 782 ath_hal_gettxchainmask(ah, &sc->sc_txchainmask); 783 784 ic->ic_txstream = txs; 785 ic->ic_rxstream = rxs; 786 787 /* 788 * Setup TX and RX STBC based on what the HAL allows and 789 * the currently configured chainmask set. 790 * Ie - don't enable STBC TX if only one chain is enabled. 791 * STBC RX is fine on a single RX chain; it just won't 792 * provide any real benefit. 793 */ 794 if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0, 795 NULL) == HAL_OK) { 796 sc->sc_rx_stbc = 1; 797 device_printf(sc->sc_dev, 798 "[HT] 1 stream STBC receive enabled\n"); 799 ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM; 800 } 801 if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0, 802 NULL) == HAL_OK) { 803 sc->sc_tx_stbc = 1; 804 device_printf(sc->sc_dev, 805 "[HT] 1 stream STBC transmit enabled\n"); 806 ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC; 807 } 808 809 (void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1, 810 &sc->sc_rts_aggr_limit); 811 if (sc->sc_rts_aggr_limit != (64 * 1024)) 812 device_printf(sc->sc_dev, 813 "[HT] RTS aggregates limited to %d KiB\n", 814 sc->sc_rts_aggr_limit / 1024); 815 816 device_printf(sc->sc_dev, 817 "[HT] %d RX streams; %d TX streams\n", rxs, txs); 818 } 819 #endif 820 821 /* 822 * Initial aggregation settings. 823 */ 824 sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH; 825 sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW; 826 sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH; 827 sc->sc_aggr_limit = ATH_AGGR_MAXSIZE; 828 sc->sc_delim_min_pad = 0; 829 830 /* 831 * Check if the hardware requires PCI register serialisation. 832 * Some of the Owl based MACs require this. 833 */ 834 if (mp_ncpus > 1 && 835 ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR, 836 0, NULL) == HAL_OK) { 837 sc->sc_ah->ah_config.ah_serialise_reg_war = 1; 838 device_printf(sc->sc_dev, 839 "Enabling register serialisation\n"); 840 } 841 842 /* 843 * Initialise the deferred completed RX buffer list. 844 */ 845 TAILQ_INIT(&sc->sc_rx_rxlist); 846 847 /* 848 * Indicate we need the 802.11 header padded to a 849 * 32-bit boundary for 4-address and QoS frames. 850 */ 851 ic->ic_flags |= IEEE80211_F_DATAPAD; 852 853 /* 854 * Query the hal about antenna support. 855 */ 856 sc->sc_defant = ath_hal_getdefantenna(ah); 857 858 /* 859 * Not all chips have the VEOL support we want to 860 * use with IBSS beacons; check here for it. 861 */ 862 sc->sc_hasveol = ath_hal_hasveol(ah); 863 864 /* get mac address from hardware */ 865 ath_hal_getmac(ah, macaddr); 866 if (sc->sc_hasbmask) 867 ath_hal_getbssidmask(ah, sc->sc_hwbssidmask); 868 869 /* NB: used to size node table key mapping array */ 870 ic->ic_max_keyix = sc->sc_keymax; 871 /* call MI attach routine. */ 872 ieee80211_ifattach(ic, macaddr); 873 ic->ic_setregdomain = ath_setregdomain; 874 ic->ic_getradiocaps = ath_getradiocaps; 875 sc->sc_opmode = HAL_M_STA; 876 877 /* override default methods */ 878 ic->ic_newassoc = ath_newassoc; 879 ic->ic_updateslot = ath_updateslot; 880 ic->ic_wme.wme_update = ath_wme_update; 881 ic->ic_vap_create = ath_vap_create; 882 ic->ic_vap_delete = ath_vap_delete; 883 ic->ic_raw_xmit = ath_raw_xmit; 884 ic->ic_update_mcast = ath_update_mcast; 885 ic->ic_update_promisc = ath_update_promisc; 886 ic->ic_node_alloc = ath_node_alloc; 887 sc->sc_node_free = ic->ic_node_free; 888 ic->ic_node_free = ath_node_free; 889 sc->sc_node_cleanup = ic->ic_node_cleanup; 890 ic->ic_node_cleanup = ath_node_cleanup; 891 ic->ic_node_getsignal = ath_node_getsignal; 892 ic->ic_scan_start = ath_scan_start; 893 ic->ic_scan_end = ath_scan_end; 894 ic->ic_set_channel = ath_set_channel; 895 #ifdef ATH_ENABLE_11N 896 /* 802.11n specific - but just override anyway */ 897 sc->sc_addba_request = ic->ic_addba_request; 898 sc->sc_addba_response = ic->ic_addba_response; 899 sc->sc_addba_stop = ic->ic_addba_stop; 900 sc->sc_bar_response = ic->ic_bar_response; 901 sc->sc_addba_response_timeout = ic->ic_addba_response_timeout; 902 903 ic->ic_addba_request = ath_addba_request; 904 ic->ic_addba_response = ath_addba_response; 905 ic->ic_addba_response_timeout = ath_addba_response_timeout; 906 ic->ic_addba_stop = ath_addba_stop; 907 ic->ic_bar_response = ath_bar_response; 908 909 ic->ic_update_chw = ath_update_chw; 910 #endif /* ATH_ENABLE_11N */ 911 912 #ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT 913 /* 914 * There's one vendor bitmap entry in the RX radiotap 915 * header; make sure that's taken into account. 916 */ 917 ieee80211_radiotap_attachv(ic, 918 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0, 919 ATH_TX_RADIOTAP_PRESENT, 920 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1, 921 ATH_RX_RADIOTAP_PRESENT); 922 #else 923 /* 924 * No vendor bitmap/extensions are present. 925 */ 926 ieee80211_radiotap_attach(ic, 927 &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 928 ATH_TX_RADIOTAP_PRESENT, 929 &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 930 ATH_RX_RADIOTAP_PRESENT); 931 #endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */ 932 933 /* 934 * Setup the ALQ logging if required 935 */ 936 #ifdef ATH_DEBUG_ALQ 937 if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev)); 938 if_ath_alq_setcfg(&sc->sc_alq, 939 sc->sc_ah->ah_macVersion, 940 sc->sc_ah->ah_macRev, 941 sc->sc_ah->ah_phyRev, 942 sc->sc_ah->ah_magic); 943 #endif 944 945 /* 946 * Setup dynamic sysctl's now that country code and 947 * regdomain are available from the hal. 948 */ 949 ath_sysctlattach(sc); 950 ath_sysctl_stats_attach(sc); 951 ath_sysctl_hal_attach(sc); 952 953 if (bootverbose) 954 ieee80211_announce(ic); 955 ath_announce(sc); 956 return 0; 957 bad2: 958 ath_tx_cleanup(sc); 959 ath_desc_free(sc); 960 ath_txdma_teardown(sc); 961 ath_rxdma_teardown(sc); 962 bad: 963 if (ah) 964 ath_hal_detach(ah); 965 966 /* 967 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE.. 968 */ 969 if (ifp != NULL && ifp->if_vnet) { 970 CURVNET_SET(ifp->if_vnet); 971 if_free(ifp); 972 CURVNET_RESTORE(); 973 } else if (ifp != NULL) 974 if_free(ifp); 975 sc->sc_invalid = 1; 976 return error; 977 } 978 979 int 980 ath_detach(struct ath_softc *sc) 981 { 982 struct ifnet *ifp = sc->sc_ifp; 983 984 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 985 __func__, ifp->if_flags); 986 987 /* 988 * NB: the order of these is important: 989 * o stop the chip so no more interrupts will fire 990 * o call the 802.11 layer before detaching the hal to 991 * insure callbacks into the driver to delete global 992 * key cache entries can be handled 993 * o free the taskqueue which drains any pending tasks 994 * o reclaim the tx queue data structures after calling 995 * the 802.11 layer as we'll get called back to reclaim 996 * node state and potentially want to use them 997 * o to cleanup the tx queues the hal is called, so detach 998 * it last 999 * Other than that, it's straightforward... 1000 */ 1001 ath_stop(ifp); 1002 ieee80211_ifdetach(ifp->if_l2com); 1003 taskqueue_free(sc->sc_tq); 1004 #ifdef ATH_TX99_DIAG 1005 if (sc->sc_tx99 != NULL) 1006 sc->sc_tx99->detach(sc->sc_tx99); 1007 #endif 1008 ath_rate_detach(sc->sc_rc); 1009 #ifdef ATH_DEBUG_ALQ 1010 if_ath_alq_tidyup(&sc->sc_alq); 1011 #endif 1012 ath_spectral_detach(sc); 1013 ath_dfs_detach(sc); 1014 ath_desc_free(sc); 1015 ath_txdma_teardown(sc); 1016 ath_rxdma_teardown(sc); 1017 ath_tx_cleanup(sc); 1018 ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */ 1019 1020 CURVNET_SET(ifp->if_vnet); 1021 if_free(ifp); 1022 CURVNET_RESTORE(); 1023 1024 return 0; 1025 } 1026 1027 /* 1028 * MAC address handling for multiple BSS on the same radio. 1029 * The first vap uses the MAC address from the EEPROM. For 1030 * subsequent vap's we set the U/L bit (bit 1) in the MAC 1031 * address and use the next six bits as an index. 1032 */ 1033 static void 1034 assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone) 1035 { 1036 int i; 1037 1038 if (clone && sc->sc_hasbmask) { 1039 /* NB: we only do this if h/w supports multiple bssid */ 1040 for (i = 0; i < 8; i++) 1041 if ((sc->sc_bssidmask & (1<<i)) == 0) 1042 break; 1043 if (i != 0) 1044 mac[0] |= (i << 2)|0x2; 1045 } else 1046 i = 0; 1047 sc->sc_bssidmask |= 1<<i; 1048 sc->sc_hwbssidmask[0] &= ~mac[0]; 1049 if (i == 0) 1050 sc->sc_nbssid0++; 1051 } 1052 1053 static void 1054 reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN]) 1055 { 1056 int i = mac[0] >> 2; 1057 uint8_t mask; 1058 1059 if (i != 0 || --sc->sc_nbssid0 == 0) { 1060 sc->sc_bssidmask &= ~(1<<i); 1061 /* recalculate bssid mask from remaining addresses */ 1062 mask = 0xff; 1063 for (i = 1; i < 8; i++) 1064 if (sc->sc_bssidmask & (1<<i)) 1065 mask &= ~((i<<2)|0x2); 1066 sc->sc_hwbssidmask[0] |= mask; 1067 } 1068 } 1069 1070 /* 1071 * Assign a beacon xmit slot. We try to space out 1072 * assignments so when beacons are staggered the 1073 * traffic coming out of the cab q has maximal time 1074 * to go out before the next beacon is scheduled. 1075 */ 1076 static int 1077 assign_bslot(struct ath_softc *sc) 1078 { 1079 u_int slot, free; 1080 1081 free = 0; 1082 for (slot = 0; slot < ATH_BCBUF; slot++) 1083 if (sc->sc_bslot[slot] == NULL) { 1084 if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL && 1085 sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL) 1086 return slot; 1087 free = slot; 1088 /* NB: keep looking for a double slot */ 1089 } 1090 return free; 1091 } 1092 1093 static struct ieee80211vap * 1094 ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit, 1095 enum ieee80211_opmode opmode, int flags, 1096 const uint8_t bssid[IEEE80211_ADDR_LEN], 1097 const uint8_t mac0[IEEE80211_ADDR_LEN]) 1098 { 1099 struct ath_softc *sc = ic->ic_ifp->if_softc; 1100 struct ath_vap *avp; 1101 struct ieee80211vap *vap; 1102 uint8_t mac[IEEE80211_ADDR_LEN]; 1103 int needbeacon, error; 1104 enum ieee80211_opmode ic_opmode; 1105 1106 avp = (struct ath_vap *) malloc(sizeof(struct ath_vap), 1107 M_80211_VAP, M_WAITOK | M_ZERO); 1108 needbeacon = 0; 1109 IEEE80211_ADDR_COPY(mac, mac0); 1110 1111 ATH_LOCK(sc); 1112 ic_opmode = opmode; /* default to opmode of new vap */ 1113 switch (opmode) { 1114 case IEEE80211_M_STA: 1115 if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */ 1116 device_printf(sc->sc_dev, "only 1 sta vap supported\n"); 1117 goto bad; 1118 } 1119 if (sc->sc_nvaps) { 1120 /* 1121 * With multiple vaps we must fall back 1122 * to s/w beacon miss handling. 1123 */ 1124 flags |= IEEE80211_CLONE_NOBEACONS; 1125 } 1126 if (flags & IEEE80211_CLONE_NOBEACONS) { 1127 /* 1128 * Station mode w/o beacons are implemented w/ AP mode. 1129 */ 1130 ic_opmode = IEEE80211_M_HOSTAP; 1131 } 1132 break; 1133 case IEEE80211_M_IBSS: 1134 if (sc->sc_nvaps != 0) { /* XXX only 1 for now */ 1135 device_printf(sc->sc_dev, 1136 "only 1 ibss vap supported\n"); 1137 goto bad; 1138 } 1139 needbeacon = 1; 1140 break; 1141 case IEEE80211_M_AHDEMO: 1142 #ifdef IEEE80211_SUPPORT_TDMA 1143 if (flags & IEEE80211_CLONE_TDMA) { 1144 if (sc->sc_nvaps != 0) { 1145 device_printf(sc->sc_dev, 1146 "only 1 tdma vap supported\n"); 1147 goto bad; 1148 } 1149 needbeacon = 1; 1150 flags |= IEEE80211_CLONE_NOBEACONS; 1151 } 1152 /* fall thru... */ 1153 #endif 1154 case IEEE80211_M_MONITOR: 1155 if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) { 1156 /* 1157 * Adopt existing mode. Adding a monitor or ahdemo 1158 * vap to an existing configuration is of dubious 1159 * value but should be ok. 1160 */ 1161 /* XXX not right for monitor mode */ 1162 ic_opmode = ic->ic_opmode; 1163 } 1164 break; 1165 case IEEE80211_M_HOSTAP: 1166 case IEEE80211_M_MBSS: 1167 needbeacon = 1; 1168 break; 1169 case IEEE80211_M_WDS: 1170 if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) { 1171 device_printf(sc->sc_dev, 1172 "wds not supported in sta mode\n"); 1173 goto bad; 1174 } 1175 /* 1176 * Silently remove any request for a unique 1177 * bssid; WDS vap's always share the local 1178 * mac address. 1179 */ 1180 flags &= ~IEEE80211_CLONE_BSSID; 1181 if (sc->sc_nvaps == 0) 1182 ic_opmode = IEEE80211_M_HOSTAP; 1183 else 1184 ic_opmode = ic->ic_opmode; 1185 break; 1186 default: 1187 device_printf(sc->sc_dev, "unknown opmode %d\n", opmode); 1188 goto bad; 1189 } 1190 /* 1191 * Check that a beacon buffer is available; the code below assumes it. 1192 */ 1193 if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) { 1194 device_printf(sc->sc_dev, "no beacon buffer available\n"); 1195 goto bad; 1196 } 1197 1198 /* STA, AHDEMO? */ 1199 if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) { 1200 assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID); 1201 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1202 } 1203 1204 vap = &avp->av_vap; 1205 /* XXX can't hold mutex across if_alloc */ 1206 ATH_UNLOCK(sc); 1207 error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, 1208 bssid, mac); 1209 ATH_LOCK(sc); 1210 if (error != 0) { 1211 device_printf(sc->sc_dev, "%s: error %d creating vap\n", 1212 __func__, error); 1213 goto bad2; 1214 } 1215 1216 /* h/w crypto support */ 1217 vap->iv_key_alloc = ath_key_alloc; 1218 vap->iv_key_delete = ath_key_delete; 1219 vap->iv_key_set = ath_key_set; 1220 vap->iv_key_update_begin = ath_key_update_begin; 1221 vap->iv_key_update_end = ath_key_update_end; 1222 1223 /* override various methods */ 1224 avp->av_recv_mgmt = vap->iv_recv_mgmt; 1225 vap->iv_recv_mgmt = ath_recv_mgmt; 1226 vap->iv_reset = ath_reset_vap; 1227 vap->iv_update_beacon = ath_beacon_update; 1228 avp->av_newstate = vap->iv_newstate; 1229 vap->iv_newstate = ath_newstate; 1230 avp->av_bmiss = vap->iv_bmiss; 1231 vap->iv_bmiss = ath_bmiss_vap; 1232 1233 avp->av_node_ps = vap->iv_node_ps; 1234 vap->iv_node_ps = ath_node_powersave; 1235 1236 avp->av_set_tim = vap->iv_set_tim; 1237 vap->iv_set_tim = ath_node_set_tim; 1238 1239 /* Set default parameters */ 1240 1241 /* 1242 * Anything earlier than some AR9300 series MACs don't 1243 * support a smaller MPDU density. 1244 */ 1245 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8; 1246 /* 1247 * All NICs can handle the maximum size, however 1248 * AR5416 based MACs can only TX aggregates w/ RTS 1249 * protection when the total aggregate size is <= 8k. 1250 * However, for now that's enforced by the TX path. 1251 */ 1252 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K; 1253 1254 avp->av_bslot = -1; 1255 if (needbeacon) { 1256 /* 1257 * Allocate beacon state and setup the q for buffered 1258 * multicast frames. We know a beacon buffer is 1259 * available because we checked above. 1260 */ 1261 avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf); 1262 TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list); 1263 if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) { 1264 /* 1265 * Assign the vap to a beacon xmit slot. As above 1266 * this cannot fail to find a free one. 1267 */ 1268 avp->av_bslot = assign_bslot(sc); 1269 KASSERT(sc->sc_bslot[avp->av_bslot] == NULL, 1270 ("beacon slot %u not empty", avp->av_bslot)); 1271 sc->sc_bslot[avp->av_bslot] = vap; 1272 sc->sc_nbcnvaps++; 1273 } 1274 if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) { 1275 /* 1276 * Multple vaps are to transmit beacons and we 1277 * have h/w support for TSF adjusting; enable 1278 * use of staggered beacons. 1279 */ 1280 sc->sc_stagbeacons = 1; 1281 } 1282 ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ); 1283 } 1284 1285 ic->ic_opmode = ic_opmode; 1286 if (opmode != IEEE80211_M_WDS) { 1287 sc->sc_nvaps++; 1288 if (opmode == IEEE80211_M_STA) 1289 sc->sc_nstavaps++; 1290 if (opmode == IEEE80211_M_MBSS) 1291 sc->sc_nmeshvaps++; 1292 } 1293 switch (ic_opmode) { 1294 case IEEE80211_M_IBSS: 1295 sc->sc_opmode = HAL_M_IBSS; 1296 break; 1297 case IEEE80211_M_STA: 1298 sc->sc_opmode = HAL_M_STA; 1299 break; 1300 case IEEE80211_M_AHDEMO: 1301 #ifdef IEEE80211_SUPPORT_TDMA 1302 if (vap->iv_caps & IEEE80211_C_TDMA) { 1303 sc->sc_tdma = 1; 1304 /* NB: disable tsf adjust */ 1305 sc->sc_stagbeacons = 0; 1306 } 1307 /* 1308 * NB: adhoc demo mode is a pseudo mode; to the hal it's 1309 * just ap mode. 1310 */ 1311 /* fall thru... */ 1312 #endif 1313 case IEEE80211_M_HOSTAP: 1314 case IEEE80211_M_MBSS: 1315 sc->sc_opmode = HAL_M_HOSTAP; 1316 break; 1317 case IEEE80211_M_MONITOR: 1318 sc->sc_opmode = HAL_M_MONITOR; 1319 break; 1320 default: 1321 /* XXX should not happen */ 1322 break; 1323 } 1324 if (sc->sc_hastsfadd) { 1325 /* 1326 * Configure whether or not TSF adjust should be done. 1327 */ 1328 ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons); 1329 } 1330 if (flags & IEEE80211_CLONE_NOBEACONS) { 1331 /* 1332 * Enable s/w beacon miss handling. 1333 */ 1334 sc->sc_swbmiss = 1; 1335 } 1336 ATH_UNLOCK(sc); 1337 1338 /* complete setup */ 1339 ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status); 1340 return vap; 1341 bad2: 1342 reclaim_address(sc, mac); 1343 ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask); 1344 bad: 1345 free(avp, M_80211_VAP); 1346 ATH_UNLOCK(sc); 1347 return NULL; 1348 } 1349 1350 static void 1351 ath_vap_delete(struct ieee80211vap *vap) 1352 { 1353 struct ieee80211com *ic = vap->iv_ic; 1354 struct ifnet *ifp = ic->ic_ifp; 1355 struct ath_softc *sc = ifp->if_softc; 1356 struct ath_hal *ah = sc->sc_ah; 1357 struct ath_vap *avp = ATH_VAP(vap); 1358 1359 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 1360 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1361 /* 1362 * Quiesce the hardware while we remove the vap. In 1363 * particular we need to reclaim all references to 1364 * the vap state by any frames pending on the tx queues. 1365 */ 1366 ath_hal_intrset(ah, 0); /* disable interrupts */ 1367 ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */ 1368 /* XXX Do all frames from all vaps/nodes need draining here? */ 1369 ath_stoprecv(sc, 1); /* stop recv side */ 1370 } 1371 1372 ieee80211_vap_detach(vap); 1373 1374 /* 1375 * XXX Danger Will Robinson! Danger! 1376 * 1377 * Because ieee80211_vap_detach() can queue a frame (the station 1378 * diassociate message?) after we've drained the TXQ and 1379 * flushed the software TXQ, we will end up with a frame queued 1380 * to a node whose vap is about to be freed. 1381 * 1382 * To work around this, flush the hardware/software again. 1383 * This may be racy - the ath task may be running and the packet 1384 * may be being scheduled between sw->hw txq. Tsk. 1385 * 1386 * TODO: figure out why a new node gets allocated somewhere around 1387 * here (after the ath_tx_swq() call; and after an ath_stop_locked() 1388 * call!) 1389 */ 1390 1391 ath_draintxq(sc, ATH_RESET_DEFAULT); 1392 1393 ATH_LOCK(sc); 1394 /* 1395 * Reclaim beacon state. Note this must be done before 1396 * the vap instance is reclaimed as we may have a reference 1397 * to it in the buffer for the beacon frame. 1398 */ 1399 if (avp->av_bcbuf != NULL) { 1400 if (avp->av_bslot != -1) { 1401 sc->sc_bslot[avp->av_bslot] = NULL; 1402 sc->sc_nbcnvaps--; 1403 } 1404 ath_beacon_return(sc, avp->av_bcbuf); 1405 avp->av_bcbuf = NULL; 1406 if (sc->sc_nbcnvaps == 0) { 1407 sc->sc_stagbeacons = 0; 1408 if (sc->sc_hastsfadd) 1409 ath_hal_settsfadjust(sc->sc_ah, 0); 1410 } 1411 /* 1412 * Reclaim any pending mcast frames for the vap. 1413 */ 1414 ath_tx_draintxq(sc, &avp->av_mcastq); 1415 } 1416 /* 1417 * Update bookkeeping. 1418 */ 1419 if (vap->iv_opmode == IEEE80211_M_STA) { 1420 sc->sc_nstavaps--; 1421 if (sc->sc_nstavaps == 0 && sc->sc_swbmiss) 1422 sc->sc_swbmiss = 0; 1423 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1424 vap->iv_opmode == IEEE80211_M_MBSS) { 1425 reclaim_address(sc, vap->iv_myaddr); 1426 ath_hal_setbssidmask(ah, sc->sc_hwbssidmask); 1427 if (vap->iv_opmode == IEEE80211_M_MBSS) 1428 sc->sc_nmeshvaps--; 1429 } 1430 if (vap->iv_opmode != IEEE80211_M_WDS) 1431 sc->sc_nvaps--; 1432 #ifdef IEEE80211_SUPPORT_TDMA 1433 /* TDMA operation ceases when the last vap is destroyed */ 1434 if (sc->sc_tdma && sc->sc_nvaps == 0) { 1435 sc->sc_tdma = 0; 1436 sc->sc_swbmiss = 0; 1437 } 1438 #endif 1439 free(avp, M_80211_VAP); 1440 1441 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1442 /* 1443 * Restart rx+tx machines if still running (RUNNING will 1444 * be reset if we just destroyed the last vap). 1445 */ 1446 if (ath_startrecv(sc) != 0) 1447 if_printf(ifp, "%s: unable to restart recv logic\n", 1448 __func__); 1449 if (sc->sc_beacons) { /* restart beacons */ 1450 #ifdef IEEE80211_SUPPORT_TDMA 1451 if (sc->sc_tdma) 1452 ath_tdma_config(sc, NULL); 1453 else 1454 #endif 1455 ath_beacon_config(sc, NULL); 1456 } 1457 ath_hal_intrset(ah, sc->sc_imask); 1458 } 1459 ATH_UNLOCK(sc); 1460 } 1461 1462 void 1463 ath_suspend(struct ath_softc *sc) 1464 { 1465 struct ifnet *ifp = sc->sc_ifp; 1466 struct ieee80211com *ic = ifp->if_l2com; 1467 1468 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1469 __func__, ifp->if_flags); 1470 1471 sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0; 1472 1473 ieee80211_suspend_all(ic); 1474 /* 1475 * NB: don't worry about putting the chip in low power 1476 * mode; pci will power off our socket on suspend and 1477 * CardBus detaches the device. 1478 */ 1479 1480 /* 1481 * XXX ensure none of the taskqueues are running 1482 * XXX ensure sc_invalid is 1 1483 * XXX ensure the calibration callout is disabled 1484 */ 1485 1486 /* Disable the PCIe PHY, complete with workarounds */ 1487 ath_hal_enablepcie(sc->sc_ah, 1, 1); 1488 } 1489 1490 /* 1491 * Reset the key cache since some parts do not reset the 1492 * contents on resume. First we clear all entries, then 1493 * re-load keys that the 802.11 layer assumes are setup 1494 * in h/w. 1495 */ 1496 static void 1497 ath_reset_keycache(struct ath_softc *sc) 1498 { 1499 struct ifnet *ifp = sc->sc_ifp; 1500 struct ieee80211com *ic = ifp->if_l2com; 1501 struct ath_hal *ah = sc->sc_ah; 1502 int i; 1503 1504 for (i = 0; i < sc->sc_keymax; i++) 1505 ath_hal_keyreset(ah, i); 1506 ieee80211_crypto_reload_keys(ic); 1507 } 1508 1509 /* 1510 * Fetch the current chainmask configuration based on the current 1511 * operating channel and options. 1512 */ 1513 static void 1514 ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan) 1515 { 1516 1517 /* 1518 * Set TX chainmask to the currently configured chainmask; 1519 * the TX chainmask depends upon the current operating mode. 1520 */ 1521 sc->sc_cur_rxchainmask = sc->sc_rxchainmask; 1522 if (IEEE80211_IS_CHAN_HT(chan)) { 1523 sc->sc_cur_txchainmask = sc->sc_txchainmask; 1524 } else { 1525 sc->sc_cur_txchainmask = 1; 1526 } 1527 } 1528 1529 void 1530 ath_resume(struct ath_softc *sc) 1531 { 1532 struct ifnet *ifp = sc->sc_ifp; 1533 struct ieee80211com *ic = ifp->if_l2com; 1534 struct ath_hal *ah = sc->sc_ah; 1535 HAL_STATUS status; 1536 1537 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1538 __func__, ifp->if_flags); 1539 1540 /* Re-enable PCIe, re-enable the PCIe bus */ 1541 ath_hal_enablepcie(ah, 0, 0); 1542 1543 /* 1544 * Must reset the chip before we reload the 1545 * keycache as we were powered down on suspend. 1546 */ 1547 ath_update_chainmasks(sc, 1548 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan); 1549 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1550 sc->sc_cur_rxchainmask); 1551 ath_hal_reset(ah, sc->sc_opmode, 1552 sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan, 1553 AH_FALSE, &status); 1554 ath_reset_keycache(sc); 1555 1556 /* Let DFS at it in case it's a DFS channel */ 1557 ath_dfs_radar_enable(sc, ic->ic_curchan); 1558 1559 /* Let spectral at in case spectral is enabled */ 1560 ath_spectral_enable(sc, ic->ic_curchan); 1561 1562 /* Restore the LED configuration */ 1563 ath_led_config(sc); 1564 ath_hal_setledstate(ah, HAL_LED_INIT); 1565 1566 if (sc->sc_resume_up) 1567 ieee80211_resume_all(ic); 1568 1569 /* XXX beacons ? */ 1570 } 1571 1572 void 1573 ath_shutdown(struct ath_softc *sc) 1574 { 1575 struct ifnet *ifp = sc->sc_ifp; 1576 1577 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n", 1578 __func__, ifp->if_flags); 1579 1580 ath_stop(ifp); 1581 /* NB: no point powering down chip as we're about to reboot */ 1582 } 1583 1584 /* 1585 * Interrupt handler. Most of the actual processing is deferred. 1586 */ 1587 void 1588 ath_intr(void *arg) 1589 { 1590 struct ath_softc *sc = arg; 1591 struct ifnet *ifp = sc->sc_ifp; 1592 struct ath_hal *ah = sc->sc_ah; 1593 HAL_INT status = 0; 1594 uint32_t txqs; 1595 1596 /* 1597 * If we're inside a reset path, just print a warning and 1598 * clear the ISR. The reset routine will finish it for us. 1599 */ 1600 ATH_PCU_LOCK(sc); 1601 if (sc->sc_inreset_cnt) { 1602 HAL_INT status; 1603 ath_hal_getisr(ah, &status); /* clear ISR */ 1604 ath_hal_intrset(ah, 0); /* disable further intr's */ 1605 DPRINTF(sc, ATH_DEBUG_ANY, 1606 "%s: in reset, ignoring: status=0x%x\n", 1607 __func__, status); 1608 ATH_PCU_UNLOCK(sc); 1609 return; 1610 } 1611 1612 if (sc->sc_invalid) { 1613 /* 1614 * The hardware is not ready/present, don't touch anything. 1615 * Note this can happen early on if the IRQ is shared. 1616 */ 1617 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__); 1618 ATH_PCU_UNLOCK(sc); 1619 return; 1620 } 1621 if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */ 1622 ATH_PCU_UNLOCK(sc); 1623 return; 1624 } 1625 1626 if ((ifp->if_flags & IFF_UP) == 0 || 1627 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1628 HAL_INT status; 1629 1630 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1631 __func__, ifp->if_flags); 1632 ath_hal_getisr(ah, &status); /* clear ISR */ 1633 ath_hal_intrset(ah, 0); /* disable further intr's */ 1634 ATH_PCU_UNLOCK(sc); 1635 return; 1636 } 1637 1638 /* 1639 * Figure out the reason(s) for the interrupt. Note 1640 * that the hal returns a pseudo-ISR that may include 1641 * bits we haven't explicitly enabled so we mask the 1642 * value to insure we only process bits we requested. 1643 */ 1644 ath_hal_getisr(ah, &status); /* NB: clears ISR too */ 1645 DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status); 1646 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status); 1647 #ifdef ATH_DEBUG_ALQ 1648 if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate, 1649 ah->ah_syncstate); 1650 #endif /* ATH_DEBUG_ALQ */ 1651 #ifdef ATH_KTR_INTR_DEBUG 1652 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5, 1653 "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x", 1654 ah->ah_intrstate[0], 1655 ah->ah_intrstate[1], 1656 ah->ah_intrstate[2], 1657 ah->ah_intrstate[3], 1658 ah->ah_intrstate[6]); 1659 #endif 1660 1661 /* Squirrel away SYNC interrupt debugging */ 1662 if (ah->ah_syncstate != 0) { 1663 int i; 1664 for (i = 0; i < 32; i++) 1665 if (ah->ah_syncstate & (i << i)) 1666 sc->sc_intr_stats.sync_intr[i]++; 1667 } 1668 1669 status &= sc->sc_imask; /* discard unasked for bits */ 1670 1671 /* Short-circuit un-handled interrupts */ 1672 if (status == 0x0) { 1673 ATH_PCU_UNLOCK(sc); 1674 return; 1675 } 1676 1677 /* 1678 * Take a note that we're inside the interrupt handler, so 1679 * the reset routines know to wait. 1680 */ 1681 sc->sc_intr_cnt++; 1682 ATH_PCU_UNLOCK(sc); 1683 1684 /* 1685 * Handle the interrupt. We won't run concurrent with the reset 1686 * or channel change routines as they'll wait for sc_intr_cnt 1687 * to be 0 before continuing. 1688 */ 1689 if (status & HAL_INT_FATAL) { 1690 sc->sc_stats.ast_hardware++; 1691 ath_hal_intrset(ah, 0); /* disable intr's until reset */ 1692 taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask); 1693 } else { 1694 if (status & HAL_INT_SWBA) { 1695 /* 1696 * Software beacon alert--time to send a beacon. 1697 * Handle beacon transmission directly; deferring 1698 * this is too slow to meet timing constraints 1699 * under load. 1700 */ 1701 #ifdef IEEE80211_SUPPORT_TDMA 1702 if (sc->sc_tdma) { 1703 if (sc->sc_tdmaswba == 0) { 1704 struct ieee80211com *ic = ifp->if_l2com; 1705 struct ieee80211vap *vap = 1706 TAILQ_FIRST(&ic->ic_vaps); 1707 ath_tdma_beacon_send(sc, vap); 1708 sc->sc_tdmaswba = 1709 vap->iv_tdma->tdma_bintval; 1710 } else 1711 sc->sc_tdmaswba--; 1712 } else 1713 #endif 1714 { 1715 ath_beacon_proc(sc, 0); 1716 #ifdef IEEE80211_SUPPORT_SUPERG 1717 /* 1718 * Schedule the rx taskq in case there's no 1719 * traffic so any frames held on the staging 1720 * queue are aged and potentially flushed. 1721 */ 1722 sc->sc_rx.recv_sched(sc, 1); 1723 #endif 1724 } 1725 } 1726 if (status & HAL_INT_RXEOL) { 1727 int imask; 1728 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL"); 1729 ATH_PCU_LOCK(sc); 1730 /* 1731 * NB: the hardware should re-read the link when 1732 * RXE bit is written, but it doesn't work at 1733 * least on older hardware revs. 1734 */ 1735 sc->sc_stats.ast_rxeol++; 1736 /* 1737 * Disable RXEOL/RXORN - prevent an interrupt 1738 * storm until the PCU logic can be reset. 1739 * In case the interface is reset some other 1740 * way before "sc_kickpcu" is called, don't 1741 * modify sc_imask - that way if it is reset 1742 * by a call to ath_reset() somehow, the 1743 * interrupt mask will be correctly reprogrammed. 1744 */ 1745 imask = sc->sc_imask; 1746 imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN); 1747 ath_hal_intrset(ah, imask); 1748 /* 1749 * Only blank sc_rxlink if we've not yet kicked 1750 * the PCU. 1751 * 1752 * This isn't entirely correct - the correct solution 1753 * would be to have a PCU lock and engage that for 1754 * the duration of the PCU fiddling; which would include 1755 * running the RX process. Otherwise we could end up 1756 * messing up the RX descriptor chain and making the 1757 * RX desc list much shorter. 1758 */ 1759 if (! sc->sc_kickpcu) 1760 sc->sc_rxlink = NULL; 1761 sc->sc_kickpcu = 1; 1762 ATH_PCU_UNLOCK(sc); 1763 /* 1764 * Enqueue an RX proc, to handled whatever 1765 * is in the RX queue. 1766 * This will then kick the PCU. 1767 */ 1768 sc->sc_rx.recv_sched(sc, 1); 1769 } 1770 if (status & HAL_INT_TXURN) { 1771 sc->sc_stats.ast_txurn++; 1772 /* bump tx trigger level */ 1773 ath_hal_updatetxtriglevel(ah, AH_TRUE); 1774 } 1775 /* 1776 * Handle both the legacy and RX EDMA interrupt bits. 1777 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC. 1778 */ 1779 if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) { 1780 sc->sc_stats.ast_rx_intr++; 1781 sc->sc_rx.recv_sched(sc, 1); 1782 } 1783 if (status & HAL_INT_TX) { 1784 sc->sc_stats.ast_tx_intr++; 1785 /* 1786 * Grab all the currently set bits in the HAL txq bitmap 1787 * and blank them. This is the only place we should be 1788 * doing this. 1789 */ 1790 if (! sc->sc_isedma) { 1791 ATH_PCU_LOCK(sc); 1792 txqs = 0xffffffff; 1793 ath_hal_gettxintrtxqs(sc->sc_ah, &txqs); 1794 ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3, 1795 "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x", 1796 txqs, 1797 sc->sc_txq_active, 1798 sc->sc_txq_active | txqs); 1799 sc->sc_txq_active |= txqs; 1800 ATH_PCU_UNLOCK(sc); 1801 } 1802 taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask); 1803 } 1804 if (status & HAL_INT_BMISS) { 1805 sc->sc_stats.ast_bmiss++; 1806 taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask); 1807 } 1808 if (status & HAL_INT_GTT) 1809 sc->sc_stats.ast_tx_timeout++; 1810 if (status & HAL_INT_CST) 1811 sc->sc_stats.ast_tx_cst++; 1812 if (status & HAL_INT_MIB) { 1813 sc->sc_stats.ast_mib++; 1814 ATH_PCU_LOCK(sc); 1815 /* 1816 * Disable interrupts until we service the MIB 1817 * interrupt; otherwise it will continue to fire. 1818 */ 1819 ath_hal_intrset(ah, 0); 1820 /* 1821 * Let the hal handle the event. We assume it will 1822 * clear whatever condition caused the interrupt. 1823 */ 1824 ath_hal_mibevent(ah, &sc->sc_halstats); 1825 /* 1826 * Don't reset the interrupt if we've just 1827 * kicked the PCU, or we may get a nested 1828 * RXEOL before the rxproc has had a chance 1829 * to run. 1830 */ 1831 if (sc->sc_kickpcu == 0) 1832 ath_hal_intrset(ah, sc->sc_imask); 1833 ATH_PCU_UNLOCK(sc); 1834 } 1835 if (status & HAL_INT_RXORN) { 1836 /* NB: hal marks HAL_INT_FATAL when RXORN is fatal */ 1837 ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN"); 1838 sc->sc_stats.ast_rxorn++; 1839 } 1840 } 1841 ATH_PCU_LOCK(sc); 1842 sc->sc_intr_cnt--; 1843 ATH_PCU_UNLOCK(sc); 1844 } 1845 1846 static void 1847 ath_fatal_proc(void *arg, int pending) 1848 { 1849 struct ath_softc *sc = arg; 1850 struct ifnet *ifp = sc->sc_ifp; 1851 u_int32_t *state; 1852 u_int32_t len; 1853 void *sp; 1854 1855 if_printf(ifp, "hardware error; resetting\n"); 1856 /* 1857 * Fatal errors are unrecoverable. Typically these 1858 * are caused by DMA errors. Collect h/w state from 1859 * the hal so we can diagnose what's going on. 1860 */ 1861 if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) { 1862 KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len)); 1863 state = sp; 1864 if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", 1865 state[0], state[1] , state[2], state[3], 1866 state[4], state[5]); 1867 } 1868 ath_reset(ifp, ATH_RESET_NOLOSS); 1869 } 1870 1871 static void 1872 ath_bmiss_vap(struct ieee80211vap *vap) 1873 { 1874 /* 1875 * Workaround phantom bmiss interrupts by sanity-checking 1876 * the time of our last rx'd frame. If it is within the 1877 * beacon miss interval then ignore the interrupt. If it's 1878 * truly a bmiss we'll get another interrupt soon and that'll 1879 * be dispatched up for processing. Note this applies only 1880 * for h/w beacon miss events. 1881 */ 1882 if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) { 1883 struct ifnet *ifp = vap->iv_ic->ic_ifp; 1884 struct ath_softc *sc = ifp->if_softc; 1885 u_int64_t lastrx = sc->sc_lastrx; 1886 u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah); 1887 /* XXX should take a locked ref to iv_bss */ 1888 u_int bmisstimeout = 1889 vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024; 1890 1891 DPRINTF(sc, ATH_DEBUG_BEACON, 1892 "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n", 1893 __func__, (unsigned long long) tsf, 1894 (unsigned long long)(tsf - lastrx), 1895 (unsigned long long) lastrx, bmisstimeout); 1896 1897 if (tsf - lastrx <= bmisstimeout) { 1898 sc->sc_stats.ast_bmiss_phantom++; 1899 return; 1900 } 1901 } 1902 ATH_VAP(vap)->av_bmiss(vap); 1903 } 1904 1905 int 1906 ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs) 1907 { 1908 uint32_t rsize; 1909 void *sp; 1910 1911 if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize)) 1912 return 0; 1913 KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize)); 1914 *hangs = *(uint32_t *)sp; 1915 return 1; 1916 } 1917 1918 static void 1919 ath_bmiss_proc(void *arg, int pending) 1920 { 1921 struct ath_softc *sc = arg; 1922 struct ifnet *ifp = sc->sc_ifp; 1923 uint32_t hangs; 1924 1925 DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending); 1926 1927 /* 1928 * Do a reset upon any becaon miss event. 1929 * 1930 * It may be a non-recognised RX clear hang which needs a reset 1931 * to clear. 1932 */ 1933 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) { 1934 ath_reset(ifp, ATH_RESET_NOLOSS); 1935 if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs); 1936 } else { 1937 ath_reset(ifp, ATH_RESET_NOLOSS); 1938 ieee80211_beacon_miss(ifp->if_l2com); 1939 } 1940 } 1941 1942 /* 1943 * Handle TKIP MIC setup to deal hardware that doesn't do MIC 1944 * calcs together with WME. If necessary disable the crypto 1945 * hardware and mark the 802.11 state so keys will be setup 1946 * with the MIC work done in software. 1947 */ 1948 static void 1949 ath_settkipmic(struct ath_softc *sc) 1950 { 1951 struct ifnet *ifp = sc->sc_ifp; 1952 struct ieee80211com *ic = ifp->if_l2com; 1953 1954 if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) { 1955 if (ic->ic_flags & IEEE80211_F_WME) { 1956 ath_hal_settkipmic(sc->sc_ah, AH_FALSE); 1957 ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC; 1958 } else { 1959 ath_hal_settkipmic(sc->sc_ah, AH_TRUE); 1960 ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC; 1961 } 1962 } 1963 } 1964 1965 static void 1966 ath_init(void *arg) 1967 { 1968 struct ath_softc *sc = (struct ath_softc *) arg; 1969 struct ifnet *ifp = sc->sc_ifp; 1970 struct ieee80211com *ic = ifp->if_l2com; 1971 struct ath_hal *ah = sc->sc_ah; 1972 HAL_STATUS status; 1973 1974 DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n", 1975 __func__, ifp->if_flags); 1976 1977 ATH_LOCK(sc); 1978 /* 1979 * Stop anything previously setup. This is safe 1980 * whether this is the first time through or not. 1981 */ 1982 ath_stop_locked(ifp); 1983 1984 /* 1985 * The basic interface to setting the hardware in a good 1986 * state is ``reset''. On return the hardware is known to 1987 * be powered up and with interrupts disabled. This must 1988 * be followed by initialization of the appropriate bits 1989 * and then setup of the interrupt mask. 1990 */ 1991 ath_settkipmic(sc); 1992 ath_update_chainmasks(sc, ic->ic_curchan); 1993 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 1994 sc->sc_cur_rxchainmask); 1995 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) { 1996 if_printf(ifp, "unable to reset hardware; hal status %u\n", 1997 status); 1998 ATH_UNLOCK(sc); 1999 return; 2000 } 2001 ath_chan_change(sc, ic->ic_curchan); 2002 2003 /* Let DFS at it in case it's a DFS channel */ 2004 ath_dfs_radar_enable(sc, ic->ic_curchan); 2005 2006 /* Let spectral at in case spectral is enabled */ 2007 ath_spectral_enable(sc, ic->ic_curchan); 2008 2009 /* 2010 * Likewise this is set during reset so update 2011 * state cached in the driver. 2012 */ 2013 sc->sc_diversity = ath_hal_getdiversity(ah); 2014 sc->sc_lastlongcal = 0; 2015 sc->sc_resetcal = 1; 2016 sc->sc_lastcalreset = 0; 2017 sc->sc_lastani = 0; 2018 sc->sc_lastshortcal = 0; 2019 sc->sc_doresetcal = AH_FALSE; 2020 /* 2021 * Beacon timers were cleared here; give ath_newstate() 2022 * a hint that the beacon timers should be poked when 2023 * things transition to the RUN state. 2024 */ 2025 sc->sc_beacons = 0; 2026 2027 /* 2028 * Setup the hardware after reset: the key cache 2029 * is filled as needed and the receive engine is 2030 * set going. Frame transmit is handled entirely 2031 * in the frame output path; there's nothing to do 2032 * here except setup the interrupt mask. 2033 */ 2034 if (ath_startrecv(sc) != 0) { 2035 if_printf(ifp, "unable to start recv logic\n"); 2036 ATH_UNLOCK(sc); 2037 return; 2038 } 2039 2040 /* 2041 * Enable interrupts. 2042 */ 2043 sc->sc_imask = HAL_INT_RX | HAL_INT_TX 2044 | HAL_INT_RXEOL | HAL_INT_RXORN 2045 | HAL_INT_TXURN 2046 | HAL_INT_FATAL | HAL_INT_GLOBAL; 2047 2048 /* 2049 * Enable RX EDMA bits. Note these overlap with 2050 * HAL_INT_RX and HAL_INT_RXDESC respectively. 2051 */ 2052 if (sc->sc_isedma) 2053 sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP); 2054 2055 /* 2056 * Enable MIB interrupts when there are hardware phy counters. 2057 * Note we only do this (at the moment) for station mode. 2058 */ 2059 if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA) 2060 sc->sc_imask |= HAL_INT_MIB; 2061 2062 /* Enable global TX timeout and carrier sense timeout if available */ 2063 if (ath_hal_gtxto_supported(ah)) 2064 sc->sc_imask |= HAL_INT_GTT; 2065 2066 DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n", 2067 __func__, sc->sc_imask); 2068 2069 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2070 callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc); 2071 ath_hal_intrset(ah, sc->sc_imask); 2072 2073 ATH_UNLOCK(sc); 2074 2075 #ifdef ATH_TX99_DIAG 2076 if (sc->sc_tx99 != NULL) 2077 sc->sc_tx99->start(sc->sc_tx99); 2078 else 2079 #endif 2080 ieee80211_start_all(ic); /* start all vap's */ 2081 } 2082 2083 static void 2084 ath_stop_locked(struct ifnet *ifp) 2085 { 2086 struct ath_softc *sc = ifp->if_softc; 2087 struct ath_hal *ah = sc->sc_ah; 2088 2089 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n", 2090 __func__, sc->sc_invalid, ifp->if_flags); 2091 2092 ATH_LOCK_ASSERT(sc); 2093 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2094 /* 2095 * Shutdown the hardware and driver: 2096 * reset 802.11 state machine 2097 * turn off timers 2098 * disable interrupts 2099 * turn off the radio 2100 * clear transmit machinery 2101 * clear receive machinery 2102 * drain and release tx queues 2103 * reclaim beacon resources 2104 * power down hardware 2105 * 2106 * Note that some of this work is not possible if the 2107 * hardware is gone (invalid). 2108 */ 2109 #ifdef ATH_TX99_DIAG 2110 if (sc->sc_tx99 != NULL) 2111 sc->sc_tx99->stop(sc->sc_tx99); 2112 #endif 2113 callout_stop(&sc->sc_wd_ch); 2114 sc->sc_wd_timer = 0; 2115 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2116 if (!sc->sc_invalid) { 2117 if (sc->sc_softled) { 2118 callout_stop(&sc->sc_ledtimer); 2119 ath_hal_gpioset(ah, sc->sc_ledpin, 2120 !sc->sc_ledon); 2121 sc->sc_blinking = 0; 2122 } 2123 ath_hal_intrset(ah, 0); 2124 } 2125 ath_draintxq(sc, ATH_RESET_DEFAULT); 2126 if (!sc->sc_invalid) { 2127 ath_stoprecv(sc, 1); 2128 ath_hal_phydisable(ah); 2129 } else 2130 sc->sc_rxlink = NULL; 2131 ath_beacon_free(sc); /* XXX not needed */ 2132 } 2133 } 2134 2135 #define MAX_TXRX_ITERATIONS 1000 2136 static void 2137 ath_txrx_stop_locked(struct ath_softc *sc) 2138 { 2139 int i = MAX_TXRX_ITERATIONS; 2140 2141 ATH_UNLOCK_ASSERT(sc); 2142 ATH_PCU_LOCK_ASSERT(sc); 2143 2144 /* 2145 * Sleep until all the pending operations have completed. 2146 * 2147 * The caller must ensure that reset has been incremented 2148 * or the pending operations may continue being queued. 2149 */ 2150 while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt || 2151 sc->sc_txstart_cnt || sc->sc_intr_cnt) { 2152 if (i <= 0) 2153 break; 2154 msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1); 2155 i--; 2156 } 2157 2158 if (i <= 0) 2159 device_printf(sc->sc_dev, 2160 "%s: didn't finish after %d iterations\n", 2161 __func__, MAX_TXRX_ITERATIONS); 2162 } 2163 #undef MAX_TXRX_ITERATIONS 2164 2165 #if 0 2166 static void 2167 ath_txrx_stop(struct ath_softc *sc) 2168 { 2169 ATH_UNLOCK_ASSERT(sc); 2170 ATH_PCU_UNLOCK_ASSERT(sc); 2171 2172 ATH_PCU_LOCK(sc); 2173 ath_txrx_stop_locked(sc); 2174 ATH_PCU_UNLOCK(sc); 2175 } 2176 #endif 2177 2178 static void 2179 ath_txrx_start(struct ath_softc *sc) 2180 { 2181 2182 taskqueue_unblock(sc->sc_tq); 2183 } 2184 2185 /* 2186 * Grab the reset lock, and wait around until noone else 2187 * is trying to do anything with it. 2188 * 2189 * This is totally horrible but we can't hold this lock for 2190 * long enough to do TX/RX or we end up with net80211/ip stack 2191 * LORs and eventual deadlock. 2192 * 2193 * "dowait" signals whether to spin, waiting for the reset 2194 * lock count to reach 0. This should (for now) only be used 2195 * during the reset path, as the rest of the code may not 2196 * be locking-reentrant enough to behave correctly. 2197 * 2198 * Another, cleaner way should be found to serialise all of 2199 * these operations. 2200 */ 2201 #define MAX_RESET_ITERATIONS 10 2202 static int 2203 ath_reset_grablock(struct ath_softc *sc, int dowait) 2204 { 2205 int w = 0; 2206 int i = MAX_RESET_ITERATIONS; 2207 2208 ATH_PCU_LOCK_ASSERT(sc); 2209 do { 2210 if (sc->sc_inreset_cnt == 0) { 2211 w = 1; 2212 break; 2213 } 2214 if (dowait == 0) { 2215 w = 0; 2216 break; 2217 } 2218 ATH_PCU_UNLOCK(sc); 2219 pause("ath_reset_grablock", 1); 2220 i--; 2221 ATH_PCU_LOCK(sc); 2222 } while (i > 0); 2223 2224 /* 2225 * We always increment the refcounter, regardless 2226 * of whether we succeeded to get it in an exclusive 2227 * way. 2228 */ 2229 sc->sc_inreset_cnt++; 2230 2231 if (i <= 0) 2232 device_printf(sc->sc_dev, 2233 "%s: didn't finish after %d iterations\n", 2234 __func__, MAX_RESET_ITERATIONS); 2235 2236 if (w == 0) 2237 device_printf(sc->sc_dev, 2238 "%s: warning, recursive reset path!\n", 2239 __func__); 2240 2241 return w; 2242 } 2243 #undef MAX_RESET_ITERATIONS 2244 2245 /* 2246 * XXX TODO: write ath_reset_releaselock 2247 */ 2248 2249 static void 2250 ath_stop(struct ifnet *ifp) 2251 { 2252 struct ath_softc *sc = ifp->if_softc; 2253 2254 ATH_LOCK(sc); 2255 ath_stop_locked(ifp); 2256 ATH_UNLOCK(sc); 2257 } 2258 2259 /* 2260 * Reset the hardware w/o losing operational state. This is 2261 * basically a more efficient way of doing ath_stop, ath_init, 2262 * followed by state transitions to the current 802.11 2263 * operational state. Used to recover from various errors and 2264 * to reset or reload hardware state. 2265 */ 2266 int 2267 ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type) 2268 { 2269 struct ath_softc *sc = ifp->if_softc; 2270 struct ieee80211com *ic = ifp->if_l2com; 2271 struct ath_hal *ah = sc->sc_ah; 2272 HAL_STATUS status; 2273 int i; 2274 2275 DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__); 2276 2277 /* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */ 2278 ATH_PCU_UNLOCK_ASSERT(sc); 2279 ATH_UNLOCK_ASSERT(sc); 2280 2281 /* Try to (stop any further TX/RX from occuring */ 2282 taskqueue_block(sc->sc_tq); 2283 2284 ATH_PCU_LOCK(sc); 2285 ath_hal_intrset(ah, 0); /* disable interrupts */ 2286 ath_txrx_stop_locked(sc); /* Ensure TX/RX is stopped */ 2287 if (ath_reset_grablock(sc, 1) == 0) { 2288 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 2289 __func__); 2290 } 2291 ATH_PCU_UNLOCK(sc); 2292 2293 /* 2294 * Should now wait for pending TX/RX to complete 2295 * and block future ones from occuring. This needs to be 2296 * done before the TX queue is drained. 2297 */ 2298 ath_draintxq(sc, reset_type); /* stop xmit side */ 2299 2300 /* 2301 * Regardless of whether we're doing a no-loss flush or 2302 * not, stop the PCU and handle what's in the RX queue. 2303 * That way frames aren't dropped which shouldn't be. 2304 */ 2305 ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS)); 2306 ath_rx_flush(sc); 2307 2308 ath_settkipmic(sc); /* configure TKIP MIC handling */ 2309 /* NB: indicate channel change so we do a full reset */ 2310 ath_update_chainmasks(sc, ic->ic_curchan); 2311 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 2312 sc->sc_cur_rxchainmask); 2313 if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status)) 2314 if_printf(ifp, "%s: unable to reset hardware; hal status %u\n", 2315 __func__, status); 2316 sc->sc_diversity = ath_hal_getdiversity(ah); 2317 2318 /* Let DFS at it in case it's a DFS channel */ 2319 ath_dfs_radar_enable(sc, ic->ic_curchan); 2320 2321 /* Let spectral at in case spectral is enabled */ 2322 ath_spectral_enable(sc, ic->ic_curchan); 2323 2324 if (ath_startrecv(sc) != 0) /* restart recv */ 2325 if_printf(ifp, "%s: unable to start recv logic\n", __func__); 2326 /* 2327 * We may be doing a reset in response to an ioctl 2328 * that changes the channel so update any state that 2329 * might change as a result. 2330 */ 2331 ath_chan_change(sc, ic->ic_curchan); 2332 if (sc->sc_beacons) { /* restart beacons */ 2333 #ifdef IEEE80211_SUPPORT_TDMA 2334 if (sc->sc_tdma) 2335 ath_tdma_config(sc, NULL); 2336 else 2337 #endif 2338 ath_beacon_config(sc, NULL); 2339 } 2340 2341 /* 2342 * Release the reset lock and re-enable interrupts here. 2343 * If an interrupt was being processed in ath_intr(), 2344 * it would disable interrupts at this point. So we have 2345 * to atomically enable interrupts and decrement the 2346 * reset counter - this way ath_intr() doesn't end up 2347 * disabling interrupts without a corresponding enable 2348 * in the rest or channel change path. 2349 */ 2350 ATH_PCU_LOCK(sc); 2351 sc->sc_inreset_cnt--; 2352 /* XXX only do this if sc_inreset_cnt == 0? */ 2353 ath_hal_intrset(ah, sc->sc_imask); 2354 ATH_PCU_UNLOCK(sc); 2355 2356 /* 2357 * TX and RX can be started here. If it were started with 2358 * sc_inreset_cnt > 0, the TX and RX path would abort. 2359 * Thus if this is a nested call through the reset or 2360 * channel change code, TX completion will occur but 2361 * RX completion and ath_start / ath_tx_start will not 2362 * run. 2363 */ 2364 2365 /* Restart TX/RX as needed */ 2366 ath_txrx_start(sc); 2367 2368 /* Restart TX completion and pending TX */ 2369 if (reset_type == ATH_RESET_NOLOSS) { 2370 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 2371 if (ATH_TXQ_SETUP(sc, i)) { 2372 ATH_TXQ_LOCK(&sc->sc_txq[i]); 2373 ath_txq_restart_dma(sc, &sc->sc_txq[i]); 2374 ATH_TXQ_UNLOCK(&sc->sc_txq[i]); 2375 2376 ATH_TX_LOCK(sc); 2377 ath_txq_sched(sc, &sc->sc_txq[i]); 2378 ATH_TX_UNLOCK(sc); 2379 } 2380 } 2381 } 2382 2383 /* 2384 * This may have been set during an ath_start() call which 2385 * set this once it detected a concurrent TX was going on. 2386 * So, clear it. 2387 */ 2388 IF_LOCK(&ifp->if_snd); 2389 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2390 IF_UNLOCK(&ifp->if_snd); 2391 2392 /* Handle any frames in the TX queue */ 2393 /* 2394 * XXX should this be done by the caller, rather than 2395 * ath_reset() ? 2396 */ 2397 ath_tx_kick(sc); /* restart xmit */ 2398 return 0; 2399 } 2400 2401 static int 2402 ath_reset_vap(struct ieee80211vap *vap, u_long cmd) 2403 { 2404 struct ieee80211com *ic = vap->iv_ic; 2405 struct ifnet *ifp = ic->ic_ifp; 2406 struct ath_softc *sc = ifp->if_softc; 2407 struct ath_hal *ah = sc->sc_ah; 2408 2409 switch (cmd) { 2410 case IEEE80211_IOC_TXPOWER: 2411 /* 2412 * If per-packet TPC is enabled, then we have nothing 2413 * to do; otherwise we need to force the global limit. 2414 * All this can happen directly; no need to reset. 2415 */ 2416 if (!ath_hal_gettpc(ah)) 2417 ath_hal_settxpowlimit(ah, ic->ic_txpowlimit); 2418 return 0; 2419 } 2420 /* XXX? Full or NOLOSS? */ 2421 return ath_reset(ifp, ATH_RESET_FULL); 2422 } 2423 2424 struct ath_buf * 2425 _ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype) 2426 { 2427 struct ath_buf *bf; 2428 2429 ATH_TXBUF_LOCK_ASSERT(sc); 2430 2431 if (btype == ATH_BUFTYPE_MGMT) 2432 bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt); 2433 else 2434 bf = TAILQ_FIRST(&sc->sc_txbuf); 2435 2436 if (bf == NULL) { 2437 sc->sc_stats.ast_tx_getnobuf++; 2438 } else { 2439 if (bf->bf_flags & ATH_BUF_BUSY) { 2440 sc->sc_stats.ast_tx_getbusybuf++; 2441 bf = NULL; 2442 } 2443 } 2444 2445 if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) { 2446 if (btype == ATH_BUFTYPE_MGMT) 2447 TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list); 2448 else { 2449 TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list); 2450 sc->sc_txbuf_cnt--; 2451 2452 /* 2453 * This shuldn't happen; however just to be 2454 * safe print a warning and fudge the txbuf 2455 * count. 2456 */ 2457 if (sc->sc_txbuf_cnt < 0) { 2458 device_printf(sc->sc_dev, 2459 "%s: sc_txbuf_cnt < 0?\n", 2460 __func__); 2461 sc->sc_txbuf_cnt = 0; 2462 } 2463 } 2464 } else 2465 bf = NULL; 2466 2467 if (bf == NULL) { 2468 /* XXX should check which list, mgmt or otherwise */ 2469 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__, 2470 TAILQ_FIRST(&sc->sc_txbuf) == NULL ? 2471 "out of xmit buffers" : "xmit buffer busy"); 2472 return NULL; 2473 } 2474 2475 /* XXX TODO: should do this at buffer list initialisation */ 2476 /* XXX (then, ensure the buffer has the right flag set) */ 2477 bf->bf_flags = 0; 2478 if (btype == ATH_BUFTYPE_MGMT) 2479 bf->bf_flags |= ATH_BUF_MGMT; 2480 else 2481 bf->bf_flags &= (~ATH_BUF_MGMT); 2482 2483 /* Valid bf here; clear some basic fields */ 2484 bf->bf_next = NULL; /* XXX just to be sure */ 2485 bf->bf_last = NULL; /* XXX again, just to be sure */ 2486 bf->bf_comp = NULL; /* XXX again, just to be sure */ 2487 bzero(&bf->bf_state, sizeof(bf->bf_state)); 2488 2489 /* 2490 * Track the descriptor ID only if doing EDMA 2491 */ 2492 if (sc->sc_isedma) { 2493 bf->bf_descid = sc->sc_txbuf_descid; 2494 sc->sc_txbuf_descid++; 2495 } 2496 2497 return bf; 2498 } 2499 2500 /* 2501 * When retrying a software frame, buffers marked ATH_BUF_BUSY 2502 * can't be thrown back on the queue as they could still be 2503 * in use by the hardware. 2504 * 2505 * This duplicates the buffer, or returns NULL. 2506 * 2507 * The descriptor is also copied but the link pointers and 2508 * the DMA segments aren't copied; this frame should thus 2509 * be again passed through the descriptor setup/chain routines 2510 * so the link is correct. 2511 * 2512 * The caller must free the buffer using ath_freebuf(). 2513 * 2514 * XXX TODO: this call shouldn't fail as it'll cause packet loss 2515 * XXX in the TX pathway when retries are needed. 2516 * XXX Figure out how to keep some buffers free, or factor the 2517 * XXX number of busy buffers into the xmit path (ath_start()) 2518 * XXX so we don't over-commit. 2519 */ 2520 struct ath_buf * 2521 ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf) 2522 { 2523 struct ath_buf *tbf; 2524 2525 tbf = ath_getbuf(sc, 2526 (bf->bf_flags & ATH_BUF_MGMT) ? 2527 ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL); 2528 if (tbf == NULL) 2529 return NULL; /* XXX failure? Why? */ 2530 2531 /* Copy basics */ 2532 tbf->bf_next = NULL; 2533 tbf->bf_nseg = bf->bf_nseg; 2534 tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE; 2535 tbf->bf_status = bf->bf_status; 2536 tbf->bf_m = bf->bf_m; 2537 /* 2538 * XXX Copy the node reference, the caller is responsible 2539 * for deleting the node reference before it frees its 2540 * buffer. 2541 * 2542 * XXX It's done like this so we don't call the net80211 2543 * code whilst having active TX queue locks held. 2544 */ 2545 tbf->bf_node = bf->bf_node; 2546 /* will be setup by the chain/setup function */ 2547 tbf->bf_lastds = NULL; 2548 /* for now, last == self */ 2549 tbf->bf_last = tbf; 2550 tbf->bf_comp = bf->bf_comp; 2551 2552 /* NOTE: DMA segments will be setup by the setup/chain functions */ 2553 2554 /* The caller has to re-init the descriptor + links */ 2555 2556 /* Copy state */ 2557 memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state)); 2558 2559 return tbf; 2560 } 2561 2562 struct ath_buf * 2563 ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype) 2564 { 2565 struct ath_buf *bf; 2566 2567 ATH_TXBUF_LOCK(sc); 2568 bf = _ath_getbuf_locked(sc, btype); 2569 /* 2570 * If a mgmt buffer was requested but we're out of those, 2571 * try requesting a normal one. 2572 */ 2573 if (bf == NULL && btype == ATH_BUFTYPE_MGMT) 2574 bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL); 2575 ATH_TXBUF_UNLOCK(sc); 2576 if (bf == NULL) { 2577 struct ifnet *ifp = sc->sc_ifp; 2578 2579 DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__); 2580 sc->sc_stats.ast_tx_qstop++; 2581 IF_LOCK(&ifp->if_snd); 2582 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2583 IF_UNLOCK(&ifp->if_snd); 2584 } 2585 return bf; 2586 } 2587 2588 static void 2589 ath_start_queue(struct ifnet *ifp) 2590 { 2591 struct ath_softc *sc = ifp->if_softc; 2592 2593 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start"); 2594 ath_tx_kick(sc); 2595 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished"); 2596 } 2597 2598 void 2599 ath_start_task(void *arg, int npending) 2600 { 2601 struct ath_softc *sc = (struct ath_softc *) arg; 2602 struct ifnet *ifp = sc->sc_ifp; 2603 2604 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start"); 2605 2606 /* XXX is it ok to hold the ATH_LOCK here? */ 2607 ATH_PCU_LOCK(sc); 2608 if (sc->sc_inreset_cnt > 0) { 2609 device_printf(sc->sc_dev, 2610 "%s: sc_inreset_cnt > 0; bailing\n", __func__); 2611 ATH_PCU_UNLOCK(sc); 2612 IF_LOCK(&ifp->if_snd); 2613 sc->sc_stats.ast_tx_qstop++; 2614 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2615 IF_UNLOCK(&ifp->if_snd); 2616 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish"); 2617 return; 2618 } 2619 sc->sc_txstart_cnt++; 2620 ATH_PCU_UNLOCK(sc); 2621 2622 ATH_TX_LOCK(sc); 2623 ath_start(sc->sc_ifp); 2624 ATH_TX_UNLOCK(sc); 2625 2626 ATH_PCU_LOCK(sc); 2627 sc->sc_txstart_cnt--; 2628 ATH_PCU_UNLOCK(sc); 2629 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished"); 2630 } 2631 2632 void 2633 ath_start(struct ifnet *ifp) 2634 { 2635 struct ath_softc *sc = ifp->if_softc; 2636 struct ieee80211_node *ni; 2637 struct ath_buf *bf; 2638 struct mbuf *m, *next; 2639 ath_bufhead frags; 2640 int npkts = 0; 2641 2642 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) 2643 return; 2644 2645 ATH_TX_LOCK_ASSERT(sc); 2646 2647 ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called"); 2648 2649 for (;;) { 2650 ATH_TXBUF_LOCK(sc); 2651 if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) { 2652 /* XXX increment counter? */ 2653 ATH_TXBUF_UNLOCK(sc); 2654 IF_LOCK(&ifp->if_snd); 2655 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2656 IF_UNLOCK(&ifp->if_snd); 2657 break; 2658 } 2659 ATH_TXBUF_UNLOCK(sc); 2660 2661 /* 2662 * Grab a TX buffer and associated resources. 2663 */ 2664 bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL); 2665 if (bf == NULL) 2666 break; 2667 2668 IFQ_DEQUEUE(&ifp->if_snd, m); 2669 if (m == NULL) { 2670 ATH_TXBUF_LOCK(sc); 2671 ath_returnbuf_head(sc, bf); 2672 ATH_TXBUF_UNLOCK(sc); 2673 break; 2674 } 2675 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 2676 npkts ++; 2677 /* 2678 * Check for fragmentation. If this frame 2679 * has been broken up verify we have enough 2680 * buffers to send all the fragments so all 2681 * go out or none... 2682 */ 2683 TAILQ_INIT(&frags); 2684 if ((m->m_flags & M_FRAG) && 2685 !ath_txfrag_setup(sc, &frags, m, ni)) { 2686 DPRINTF(sc, ATH_DEBUG_XMIT, 2687 "%s: out of txfrag buffers\n", __func__); 2688 sc->sc_stats.ast_tx_nofrag++; 2689 ifp->if_oerrors++; 2690 ath_freetx(m); 2691 goto bad; 2692 } 2693 ifp->if_opackets++; 2694 nextfrag: 2695 /* 2696 * Pass the frame to the h/w for transmission. 2697 * Fragmented frames have each frag chained together 2698 * with m_nextpkt. We know there are sufficient ath_buf's 2699 * to send all the frags because of work done by 2700 * ath_txfrag_setup. We leave m_nextpkt set while 2701 * calling ath_tx_start so it can use it to extend the 2702 * the tx duration to cover the subsequent frag and 2703 * so it can reclaim all the mbufs in case of an error; 2704 * ath_tx_start clears m_nextpkt once it commits to 2705 * handing the frame to the hardware. 2706 */ 2707 next = m->m_nextpkt; 2708 if (ath_tx_start(sc, ni, bf, m)) { 2709 bad: 2710 ifp->if_oerrors++; 2711 reclaim: 2712 bf->bf_m = NULL; 2713 bf->bf_node = NULL; 2714 ATH_TXBUF_LOCK(sc); 2715 ath_returnbuf_head(sc, bf); 2716 ath_txfrag_cleanup(sc, &frags, ni); 2717 ATH_TXBUF_UNLOCK(sc); 2718 /* 2719 * XXX todo, free the node outside of 2720 * the TX lock context! 2721 */ 2722 if (ni != NULL) 2723 ieee80211_free_node(ni); 2724 continue; 2725 } 2726 2727 /* 2728 * Check here if the node is in power save state. 2729 */ 2730 ath_tx_update_tim(sc, ni, 1); 2731 2732 if (next != NULL) { 2733 /* 2734 * Beware of state changing between frags. 2735 * XXX check sta power-save state? 2736 */ 2737 if (ni->ni_vap->iv_state != IEEE80211_S_RUN) { 2738 DPRINTF(sc, ATH_DEBUG_XMIT, 2739 "%s: flush fragmented packet, state %s\n", 2740 __func__, 2741 ieee80211_state_name[ni->ni_vap->iv_state]); 2742 ath_freetx(next); 2743 goto reclaim; 2744 } 2745 m = next; 2746 bf = TAILQ_FIRST(&frags); 2747 KASSERT(bf != NULL, ("no buf for txfrag")); 2748 TAILQ_REMOVE(&frags, bf, bf_list); 2749 goto nextfrag; 2750 } 2751 2752 sc->sc_wd_timer = 5; 2753 } 2754 ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts); 2755 } 2756 static int 2757 ath_media_change(struct ifnet *ifp) 2758 { 2759 int error = ieee80211_media_change(ifp); 2760 /* NB: only the fixed rate can change and that doesn't need a reset */ 2761 return (error == ENETRESET ? 0 : error); 2762 } 2763 2764 /* 2765 * Block/unblock tx+rx processing while a key change is done. 2766 * We assume the caller serializes key management operations 2767 * so we only need to worry about synchronization with other 2768 * uses that originate in the driver. 2769 */ 2770 static void 2771 ath_key_update_begin(struct ieee80211vap *vap) 2772 { 2773 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2774 struct ath_softc *sc = ifp->if_softc; 2775 2776 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2777 taskqueue_block(sc->sc_tq); 2778 IF_LOCK(&ifp->if_snd); /* NB: doesn't block mgmt frames */ 2779 } 2780 2781 static void 2782 ath_key_update_end(struct ieee80211vap *vap) 2783 { 2784 struct ifnet *ifp = vap->iv_ic->ic_ifp; 2785 struct ath_softc *sc = ifp->if_softc; 2786 2787 DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__); 2788 IF_UNLOCK(&ifp->if_snd); 2789 taskqueue_unblock(sc->sc_tq); 2790 } 2791 2792 static void 2793 ath_update_promisc(struct ifnet *ifp) 2794 { 2795 struct ath_softc *sc = ifp->if_softc; 2796 u_int32_t rfilt; 2797 2798 /* configure rx filter */ 2799 rfilt = ath_calcrxfilter(sc); 2800 ath_hal_setrxfilter(sc->sc_ah, rfilt); 2801 2802 DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt); 2803 } 2804 2805 static void 2806 ath_update_mcast(struct ifnet *ifp) 2807 { 2808 struct ath_softc *sc = ifp->if_softc; 2809 u_int32_t mfilt[2]; 2810 2811 /* calculate and install multicast filter */ 2812 if ((ifp->if_flags & IFF_ALLMULTI) == 0) { 2813 struct ifmultiaddr *ifma; 2814 /* 2815 * Merge multicast addresses to form the hardware filter. 2816 */ 2817 mfilt[0] = mfilt[1] = 0; 2818 if_maddr_rlock(ifp); /* XXX need some fiddling to remove? */ 2819 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 2820 caddr_t dl; 2821 u_int32_t val; 2822 u_int8_t pos; 2823 2824 /* calculate XOR of eight 6bit values */ 2825 dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr); 2826 val = LE_READ_4(dl + 0); 2827 pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2828 val = LE_READ_4(dl + 3); 2829 pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val; 2830 pos &= 0x3f; 2831 mfilt[pos / 32] |= (1 << (pos % 32)); 2832 } 2833 if_maddr_runlock(ifp); 2834 } else 2835 mfilt[0] = mfilt[1] = ~0; 2836 ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]); 2837 DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n", 2838 __func__, mfilt[0], mfilt[1]); 2839 } 2840 2841 void 2842 ath_mode_init(struct ath_softc *sc) 2843 { 2844 struct ifnet *ifp = sc->sc_ifp; 2845 struct ath_hal *ah = sc->sc_ah; 2846 u_int32_t rfilt; 2847 2848 /* configure rx filter */ 2849 rfilt = ath_calcrxfilter(sc); 2850 ath_hal_setrxfilter(ah, rfilt); 2851 2852 /* configure operational mode */ 2853 ath_hal_setopmode(ah); 2854 2855 DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE, 2856 "%s: ah=%p, ifp=%p, if_addr=%p\n", 2857 __func__, 2858 ah, 2859 ifp, 2860 (ifp == NULL) ? NULL : ifp->if_addr); 2861 2862 /* handle any link-level address change */ 2863 ath_hal_setmac(ah, IF_LLADDR(ifp)); 2864 2865 /* calculate and install multicast filter */ 2866 ath_update_mcast(ifp); 2867 } 2868 2869 /* 2870 * Set the slot time based on the current setting. 2871 */ 2872 void 2873 ath_setslottime(struct ath_softc *sc) 2874 { 2875 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 2876 struct ath_hal *ah = sc->sc_ah; 2877 u_int usec; 2878 2879 if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan)) 2880 usec = 13; 2881 else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan)) 2882 usec = 21; 2883 else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) { 2884 /* honor short/long slot time only in 11g */ 2885 /* XXX shouldn't honor on pure g or turbo g channel */ 2886 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2887 usec = HAL_SLOT_TIME_9; 2888 else 2889 usec = HAL_SLOT_TIME_20; 2890 } else 2891 usec = HAL_SLOT_TIME_9; 2892 2893 DPRINTF(sc, ATH_DEBUG_RESET, 2894 "%s: chan %u MHz flags 0x%x %s slot, %u usec\n", 2895 __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags, 2896 ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec); 2897 2898 ath_hal_setslottime(ah, usec); 2899 sc->sc_updateslot = OK; 2900 } 2901 2902 /* 2903 * Callback from the 802.11 layer to update the 2904 * slot time based on the current setting. 2905 */ 2906 static void 2907 ath_updateslot(struct ifnet *ifp) 2908 { 2909 struct ath_softc *sc = ifp->if_softc; 2910 struct ieee80211com *ic = ifp->if_l2com; 2911 2912 /* 2913 * When not coordinating the BSS, change the hardware 2914 * immediately. For other operation we defer the change 2915 * until beacon updates have propagated to the stations. 2916 */ 2917 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 2918 ic->ic_opmode == IEEE80211_M_MBSS) 2919 sc->sc_updateslot = UPDATE; 2920 else 2921 ath_setslottime(sc); 2922 } 2923 2924 /* 2925 * Append the contents of src to dst; both queues 2926 * are assumed to be locked. 2927 */ 2928 void 2929 ath_txqmove(struct ath_txq *dst, struct ath_txq *src) 2930 { 2931 2932 ATH_TXQ_LOCK_ASSERT(src); 2933 ATH_TXQ_LOCK_ASSERT(dst); 2934 2935 TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list); 2936 dst->axq_link = src->axq_link; 2937 src->axq_link = NULL; 2938 dst->axq_depth += src->axq_depth; 2939 dst->axq_aggr_depth += src->axq_aggr_depth; 2940 src->axq_depth = 0; 2941 src->axq_aggr_depth = 0; 2942 } 2943 2944 /* 2945 * Reset the hardware, with no loss. 2946 * 2947 * This can't be used for a general case reset. 2948 */ 2949 static void 2950 ath_reset_proc(void *arg, int pending) 2951 { 2952 struct ath_softc *sc = arg; 2953 struct ifnet *ifp = sc->sc_ifp; 2954 2955 #if 0 2956 if_printf(ifp, "%s: resetting\n", __func__); 2957 #endif 2958 ath_reset(ifp, ATH_RESET_NOLOSS); 2959 } 2960 2961 /* 2962 * Reset the hardware after detecting beacons have stopped. 2963 */ 2964 static void 2965 ath_bstuck_proc(void *arg, int pending) 2966 { 2967 struct ath_softc *sc = arg; 2968 struct ifnet *ifp = sc->sc_ifp; 2969 uint32_t hangs = 0; 2970 2971 if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) 2972 if_printf(ifp, "bb hang detected (0x%x)\n", hangs); 2973 2974 if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n", 2975 sc->sc_bmisscount); 2976 sc->sc_stats.ast_bstuck++; 2977 /* 2978 * This assumes that there's no simultaneous channel mode change 2979 * occuring. 2980 */ 2981 ath_reset(ifp, ATH_RESET_NOLOSS); 2982 } 2983 2984 static void 2985 ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 2986 { 2987 bus_addr_t *paddr = (bus_addr_t*) arg; 2988 KASSERT(error == 0, ("error %u on bus_dma callback", error)); 2989 *paddr = segs->ds_addr; 2990 } 2991 2992 /* 2993 * Allocate the descriptors and appropriate DMA tag/setup. 2994 * 2995 * For some situations (eg EDMA TX completion), there isn't a requirement 2996 * for the ath_buf entries to be allocated. 2997 */ 2998 int 2999 ath_descdma_alloc_desc(struct ath_softc *sc, 3000 struct ath_descdma *dd, ath_bufhead *head, 3001 const char *name, int ds_size, int ndesc) 3002 { 3003 #define DS2PHYS(_dd, _ds) \ 3004 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3005 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3006 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3007 struct ifnet *ifp = sc->sc_ifp; 3008 int error; 3009 3010 dd->dd_descsize = ds_size; 3011 3012 DPRINTF(sc, ATH_DEBUG_RESET, 3013 "%s: %s DMA: %u desc, %d bytes per descriptor\n", 3014 __func__, name, ndesc, dd->dd_descsize); 3015 3016 dd->dd_name = name; 3017 dd->dd_desc_len = dd->dd_descsize * ndesc; 3018 3019 /* 3020 * Merlin work-around: 3021 * Descriptors that cross the 4KB boundary can't be used. 3022 * Assume one skipped descriptor per 4KB page. 3023 */ 3024 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3025 int numpages = dd->dd_desc_len / 4096; 3026 dd->dd_desc_len += ds_size * numpages; 3027 } 3028 3029 /* 3030 * Setup DMA descriptor area. 3031 */ 3032 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), /* parent */ 3033 PAGE_SIZE, 0, /* alignment, bounds */ 3034 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 3035 BUS_SPACE_MAXADDR, /* highaddr */ 3036 NULL, NULL, /* filter, filterarg */ 3037 dd->dd_desc_len, /* maxsize */ 3038 1, /* nsegments */ 3039 dd->dd_desc_len, /* maxsegsize */ 3040 BUS_DMA_ALLOCNOW, /* flags */ 3041 NULL, /* lockfunc */ 3042 NULL, /* lockarg */ 3043 &dd->dd_dmat); 3044 if (error != 0) { 3045 if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name); 3046 return error; 3047 } 3048 3049 /* allocate descriptors */ 3050 error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc, 3051 BUS_DMA_NOWAIT | BUS_DMA_COHERENT, 3052 &dd->dd_dmamap); 3053 if (error != 0) { 3054 if_printf(ifp, "unable to alloc memory for %u %s descriptors, " 3055 "error %u\n", ndesc, dd->dd_name, error); 3056 goto fail1; 3057 } 3058 3059 error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap, 3060 dd->dd_desc, dd->dd_desc_len, 3061 ath_load_cb, &dd->dd_desc_paddr, 3062 BUS_DMA_NOWAIT); 3063 if (error != 0) { 3064 if_printf(ifp, "unable to map %s descriptors, error %u\n", 3065 dd->dd_name, error); 3066 goto fail2; 3067 } 3068 3069 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n", 3070 __func__, dd->dd_name, (uint8_t *) dd->dd_desc, 3071 (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr, 3072 /*XXX*/ (u_long) dd->dd_desc_len); 3073 3074 return (0); 3075 3076 fail2: 3077 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3078 fail1: 3079 bus_dma_tag_destroy(dd->dd_dmat); 3080 memset(dd, 0, sizeof(*dd)); 3081 return error; 3082 #undef DS2PHYS 3083 #undef ATH_DESC_4KB_BOUND_CHECK 3084 } 3085 3086 int 3087 ath_descdma_setup(struct ath_softc *sc, 3088 struct ath_descdma *dd, ath_bufhead *head, 3089 const char *name, int ds_size, int nbuf, int ndesc) 3090 { 3091 #define DS2PHYS(_dd, _ds) \ 3092 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) 3093 #define ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \ 3094 ((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0) 3095 struct ifnet *ifp = sc->sc_ifp; 3096 uint8_t *ds; 3097 struct ath_buf *bf; 3098 int i, bsize, error; 3099 3100 /* Allocate descriptors */ 3101 error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size, 3102 nbuf * ndesc); 3103 3104 /* Assume any errors during allocation were dealt with */ 3105 if (error != 0) { 3106 return (error); 3107 } 3108 3109 ds = (uint8_t *) dd->dd_desc; 3110 3111 /* allocate rx buffers */ 3112 bsize = sizeof(struct ath_buf) * nbuf; 3113 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3114 if (bf == NULL) { 3115 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3116 dd->dd_name, bsize); 3117 goto fail3; 3118 } 3119 dd->dd_bufptr = bf; 3120 3121 TAILQ_INIT(head); 3122 for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) { 3123 bf->bf_desc = (struct ath_desc *) ds; 3124 bf->bf_daddr = DS2PHYS(dd, ds); 3125 if (! ath_hal_split4ktrans(sc->sc_ah)) { 3126 /* 3127 * Merlin WAR: Skip descriptor addresses which 3128 * cause 4KB boundary crossing along any point 3129 * in the descriptor. 3130 */ 3131 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr, 3132 dd->dd_descsize)) { 3133 /* Start at the next page */ 3134 ds += 0x1000 - (bf->bf_daddr & 0xFFF); 3135 bf->bf_desc = (struct ath_desc *) ds; 3136 bf->bf_daddr = DS2PHYS(dd, ds); 3137 } 3138 } 3139 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3140 &bf->bf_dmamap); 3141 if (error != 0) { 3142 if_printf(ifp, "unable to create dmamap for %s " 3143 "buffer %u, error %u\n", dd->dd_name, i, error); 3144 ath_descdma_cleanup(sc, dd, head); 3145 return error; 3146 } 3147 bf->bf_lastds = bf->bf_desc; /* Just an initial value */ 3148 TAILQ_INSERT_TAIL(head, bf, bf_list); 3149 } 3150 3151 /* 3152 * XXX TODO: ensure that ds doesn't overflow the descriptor 3153 * allocation otherwise weird stuff will occur and crash your 3154 * machine. 3155 */ 3156 return 0; 3157 /* XXX this should likely just call ath_descdma_cleanup() */ 3158 fail3: 3159 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3160 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3161 bus_dma_tag_destroy(dd->dd_dmat); 3162 memset(dd, 0, sizeof(*dd)); 3163 return error; 3164 #undef DS2PHYS 3165 #undef ATH_DESC_4KB_BOUND_CHECK 3166 } 3167 3168 /* 3169 * Allocate ath_buf entries but no descriptor contents. 3170 * 3171 * This is for RX EDMA where the descriptors are the header part of 3172 * the RX buffer. 3173 */ 3174 int 3175 ath_descdma_setup_rx_edma(struct ath_softc *sc, 3176 struct ath_descdma *dd, ath_bufhead *head, 3177 const char *name, int nbuf, int rx_status_len) 3178 { 3179 struct ifnet *ifp = sc->sc_ifp; 3180 struct ath_buf *bf; 3181 int i, bsize, error; 3182 3183 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n", 3184 __func__, name, nbuf); 3185 3186 dd->dd_name = name; 3187 /* 3188 * This is (mostly) purely for show. We're not allocating any actual 3189 * descriptors here as EDMA RX has the descriptor be part 3190 * of the RX buffer. 3191 * 3192 * However, dd_desc_len is used by ath_descdma_free() to determine 3193 * whether we have already freed this DMA mapping. 3194 */ 3195 dd->dd_desc_len = rx_status_len * nbuf; 3196 dd->dd_descsize = rx_status_len; 3197 3198 /* allocate rx buffers */ 3199 bsize = sizeof(struct ath_buf) * nbuf; 3200 bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO); 3201 if (bf == NULL) { 3202 if_printf(ifp, "malloc of %s buffers failed, size %u\n", 3203 dd->dd_name, bsize); 3204 error = ENOMEM; 3205 goto fail3; 3206 } 3207 dd->dd_bufptr = bf; 3208 3209 TAILQ_INIT(head); 3210 for (i = 0; i < nbuf; i++, bf++) { 3211 bf->bf_desc = NULL; 3212 bf->bf_daddr = 0; 3213 bf->bf_lastds = NULL; /* Just an initial value */ 3214 3215 error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, 3216 &bf->bf_dmamap); 3217 if (error != 0) { 3218 if_printf(ifp, "unable to create dmamap for %s " 3219 "buffer %u, error %u\n", dd->dd_name, i, error); 3220 ath_descdma_cleanup(sc, dd, head); 3221 return error; 3222 } 3223 TAILQ_INSERT_TAIL(head, bf, bf_list); 3224 } 3225 return 0; 3226 fail3: 3227 memset(dd, 0, sizeof(*dd)); 3228 return error; 3229 } 3230 3231 void 3232 ath_descdma_cleanup(struct ath_softc *sc, 3233 struct ath_descdma *dd, ath_bufhead *head) 3234 { 3235 struct ath_buf *bf; 3236 struct ieee80211_node *ni; 3237 3238 if (dd->dd_dmamap != 0) { 3239 bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap); 3240 bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap); 3241 bus_dma_tag_destroy(dd->dd_dmat); 3242 } 3243 3244 if (head != NULL) { 3245 TAILQ_FOREACH(bf, head, bf_list) { 3246 if (bf->bf_m) { 3247 m_freem(bf->bf_m); 3248 bf->bf_m = NULL; 3249 } 3250 if (bf->bf_dmamap != NULL) { 3251 bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap); 3252 bf->bf_dmamap = NULL; 3253 } 3254 ni = bf->bf_node; 3255 bf->bf_node = NULL; 3256 if (ni != NULL) { 3257 /* 3258 * Reclaim node reference. 3259 */ 3260 ieee80211_free_node(ni); 3261 } 3262 } 3263 } 3264 3265 if (head != NULL) 3266 TAILQ_INIT(head); 3267 3268 if (dd->dd_bufptr != NULL) 3269 free(dd->dd_bufptr, M_ATHDEV); 3270 memset(dd, 0, sizeof(*dd)); 3271 } 3272 3273 static int 3274 ath_desc_alloc(struct ath_softc *sc) 3275 { 3276 int error; 3277 3278 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf, 3279 "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC); 3280 if (error != 0) { 3281 return error; 3282 } 3283 sc->sc_txbuf_cnt = ath_txbuf; 3284 3285 error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt, 3286 "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt, 3287 ATH_TXDESC); 3288 if (error != 0) { 3289 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3290 return error; 3291 } 3292 3293 /* 3294 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the 3295 * flag doesn't have to be set in ath_getbuf_locked(). 3296 */ 3297 3298 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf, 3299 "beacon", sc->sc_tx_desclen, ATH_BCBUF, 1); 3300 if (error != 0) { 3301 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3302 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3303 &sc->sc_txbuf_mgmt); 3304 return error; 3305 } 3306 return 0; 3307 } 3308 3309 static void 3310 ath_desc_free(struct ath_softc *sc) 3311 { 3312 3313 if (sc->sc_bdma.dd_desc_len != 0) 3314 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf); 3315 if (sc->sc_txdma.dd_desc_len != 0) 3316 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf); 3317 if (sc->sc_txdma_mgmt.dd_desc_len != 0) 3318 ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt, 3319 &sc->sc_txbuf_mgmt); 3320 } 3321 3322 static struct ieee80211_node * 3323 ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN]) 3324 { 3325 struct ieee80211com *ic = vap->iv_ic; 3326 struct ath_softc *sc = ic->ic_ifp->if_softc; 3327 const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space; 3328 struct ath_node *an; 3329 3330 an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO); 3331 if (an == NULL) { 3332 /* XXX stat+msg */ 3333 return NULL; 3334 } 3335 ath_rate_node_init(sc, an); 3336 3337 /* Setup the mutex - there's no associd yet so set the name to NULL */ 3338 snprintf(an->an_name, sizeof(an->an_name), "%s: node %p", 3339 device_get_nameunit(sc->sc_dev), an); 3340 mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF); 3341 3342 /* XXX setup ath_tid */ 3343 ath_tx_tid_init(sc, an); 3344 3345 DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an); 3346 return &an->an_node; 3347 } 3348 3349 static void 3350 ath_node_cleanup(struct ieee80211_node *ni) 3351 { 3352 struct ieee80211com *ic = ni->ni_ic; 3353 struct ath_softc *sc = ic->ic_ifp->if_softc; 3354 3355 /* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */ 3356 ath_tx_node_flush(sc, ATH_NODE(ni)); 3357 ath_rate_node_cleanup(sc, ATH_NODE(ni)); 3358 sc->sc_node_cleanup(ni); 3359 } 3360 3361 static void 3362 ath_node_free(struct ieee80211_node *ni) 3363 { 3364 struct ieee80211com *ic = ni->ni_ic; 3365 struct ath_softc *sc = ic->ic_ifp->if_softc; 3366 3367 DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni); 3368 mtx_destroy(&ATH_NODE(ni)->an_mtx); 3369 sc->sc_node_free(ni); 3370 } 3371 3372 static void 3373 ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise) 3374 { 3375 struct ieee80211com *ic = ni->ni_ic; 3376 struct ath_softc *sc = ic->ic_ifp->if_softc; 3377 struct ath_hal *ah = sc->sc_ah; 3378 3379 *rssi = ic->ic_node_getrssi(ni); 3380 if (ni->ni_chan != IEEE80211_CHAN_ANYC) 3381 *noise = ath_hal_getchannoise(ah, ni->ni_chan); 3382 else 3383 *noise = -95; /* nominally correct */ 3384 } 3385 3386 /* 3387 * Set the default antenna. 3388 */ 3389 void 3390 ath_setdefantenna(struct ath_softc *sc, u_int antenna) 3391 { 3392 struct ath_hal *ah = sc->sc_ah; 3393 3394 /* XXX block beacon interrupts */ 3395 ath_hal_setdefantenna(ah, antenna); 3396 if (sc->sc_defant != antenna) 3397 sc->sc_stats.ast_ant_defswitch++; 3398 sc->sc_defant = antenna; 3399 sc->sc_rxotherant = 0; 3400 } 3401 3402 static void 3403 ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum) 3404 { 3405 txq->axq_qnum = qnum; 3406 txq->axq_ac = 0; 3407 txq->axq_depth = 0; 3408 txq->axq_aggr_depth = 0; 3409 txq->axq_intrcnt = 0; 3410 txq->axq_link = NULL; 3411 txq->axq_softc = sc; 3412 TAILQ_INIT(&txq->axq_q); 3413 TAILQ_INIT(&txq->axq_tidq); 3414 TAILQ_INIT(&txq->fifo.axq_q); 3415 ATH_TXQ_LOCK_INIT(sc, txq); 3416 } 3417 3418 /* 3419 * Setup a h/w transmit queue. 3420 */ 3421 static struct ath_txq * 3422 ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 3423 { 3424 #define N(a) (sizeof(a)/sizeof(a[0])) 3425 struct ath_hal *ah = sc->sc_ah; 3426 HAL_TXQ_INFO qi; 3427 int qnum; 3428 3429 memset(&qi, 0, sizeof(qi)); 3430 qi.tqi_subtype = subtype; 3431 qi.tqi_aifs = HAL_TXQ_USEDEFAULT; 3432 qi.tqi_cwmin = HAL_TXQ_USEDEFAULT; 3433 qi.tqi_cwmax = HAL_TXQ_USEDEFAULT; 3434 /* 3435 * Enable interrupts only for EOL and DESC conditions. 3436 * We mark tx descriptors to receive a DESC interrupt 3437 * when a tx queue gets deep; otherwise waiting for the 3438 * EOL to reap descriptors. Note that this is done to 3439 * reduce interrupt load and this only defers reaping 3440 * descriptors, never transmitting frames. Aside from 3441 * reducing interrupts this also permits more concurrency. 3442 * The only potential downside is if the tx queue backs 3443 * up in which case the top half of the kernel may backup 3444 * due to a lack of tx descriptors. 3445 */ 3446 qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE; 3447 qnum = ath_hal_setuptxqueue(ah, qtype, &qi); 3448 if (qnum == -1) { 3449 /* 3450 * NB: don't print a message, this happens 3451 * normally on parts with too few tx queues 3452 */ 3453 return NULL; 3454 } 3455 if (qnum >= N(sc->sc_txq)) { 3456 device_printf(sc->sc_dev, 3457 "hal qnum %u out of range, max %zu!\n", 3458 qnum, N(sc->sc_txq)); 3459 ath_hal_releasetxqueue(ah, qnum); 3460 return NULL; 3461 } 3462 if (!ATH_TXQ_SETUP(sc, qnum)) { 3463 ath_txq_init(sc, &sc->sc_txq[qnum], qnum); 3464 sc->sc_txqsetup |= 1<<qnum; 3465 } 3466 return &sc->sc_txq[qnum]; 3467 #undef N 3468 } 3469 3470 /* 3471 * Setup a hardware data transmit queue for the specified 3472 * access control. The hal may not support all requested 3473 * queues in which case it will return a reference to a 3474 * previously setup queue. We record the mapping from ac's 3475 * to h/w queues for use by ath_tx_start and also track 3476 * the set of h/w queues being used to optimize work in the 3477 * transmit interrupt handler and related routines. 3478 */ 3479 static int 3480 ath_tx_setup(struct ath_softc *sc, int ac, int haltype) 3481 { 3482 #define N(a) (sizeof(a)/sizeof(a[0])) 3483 struct ath_txq *txq; 3484 3485 if (ac >= N(sc->sc_ac2q)) { 3486 device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n", 3487 ac, N(sc->sc_ac2q)); 3488 return 0; 3489 } 3490 txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype); 3491 if (txq != NULL) { 3492 txq->axq_ac = ac; 3493 sc->sc_ac2q[ac] = txq; 3494 return 1; 3495 } else 3496 return 0; 3497 #undef N 3498 } 3499 3500 /* 3501 * Update WME parameters for a transmit queue. 3502 */ 3503 static int 3504 ath_txq_update(struct ath_softc *sc, int ac) 3505 { 3506 #define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1) 3507 #define ATH_TXOP_TO_US(v) (v<<5) 3508 struct ifnet *ifp = sc->sc_ifp; 3509 struct ieee80211com *ic = ifp->if_l2com; 3510 struct ath_txq *txq = sc->sc_ac2q[ac]; 3511 struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac]; 3512 struct ath_hal *ah = sc->sc_ah; 3513 HAL_TXQ_INFO qi; 3514 3515 ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi); 3516 #ifdef IEEE80211_SUPPORT_TDMA 3517 if (sc->sc_tdma) { 3518 /* 3519 * AIFS is zero so there's no pre-transmit wait. The 3520 * burst time defines the slot duration and is configured 3521 * through net80211. The QCU is setup to not do post-xmit 3522 * back off, lockout all lower-priority QCU's, and fire 3523 * off the DMA beacon alert timer which is setup based 3524 * on the slot configuration. 3525 */ 3526 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3527 | HAL_TXQ_TXERRINT_ENABLE 3528 | HAL_TXQ_TXURNINT_ENABLE 3529 | HAL_TXQ_TXEOLINT_ENABLE 3530 | HAL_TXQ_DBA_GATED 3531 | HAL_TXQ_BACKOFF_DISABLE 3532 | HAL_TXQ_ARB_LOCKOUT_GLOBAL 3533 ; 3534 qi.tqi_aifs = 0; 3535 /* XXX +dbaprep? */ 3536 qi.tqi_readyTime = sc->sc_tdmaslotlen; 3537 qi.tqi_burstTime = qi.tqi_readyTime; 3538 } else { 3539 #endif 3540 /* 3541 * XXX shouldn't this just use the default flags 3542 * used in the previous queue setup? 3543 */ 3544 qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE 3545 | HAL_TXQ_TXERRINT_ENABLE 3546 | HAL_TXQ_TXDESCINT_ENABLE 3547 | HAL_TXQ_TXURNINT_ENABLE 3548 | HAL_TXQ_TXEOLINT_ENABLE 3549 ; 3550 qi.tqi_aifs = wmep->wmep_aifsn; 3551 qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin); 3552 qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax); 3553 qi.tqi_readyTime = 0; 3554 qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit); 3555 #ifdef IEEE80211_SUPPORT_TDMA 3556 } 3557 #endif 3558 3559 DPRINTF(sc, ATH_DEBUG_RESET, 3560 "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n", 3561 __func__, txq->axq_qnum, qi.tqi_qflags, 3562 qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime); 3563 3564 if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) { 3565 if_printf(ifp, "unable to update hardware queue " 3566 "parameters for %s traffic!\n", 3567 ieee80211_wme_acnames[ac]); 3568 return 0; 3569 } else { 3570 ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */ 3571 return 1; 3572 } 3573 #undef ATH_TXOP_TO_US 3574 #undef ATH_EXPONENT_TO_VALUE 3575 } 3576 3577 /* 3578 * Callback from the 802.11 layer to update WME parameters. 3579 */ 3580 int 3581 ath_wme_update(struct ieee80211com *ic) 3582 { 3583 struct ath_softc *sc = ic->ic_ifp->if_softc; 3584 3585 return !ath_txq_update(sc, WME_AC_BE) || 3586 !ath_txq_update(sc, WME_AC_BK) || 3587 !ath_txq_update(sc, WME_AC_VI) || 3588 !ath_txq_update(sc, WME_AC_VO) ? EIO : 0; 3589 } 3590 3591 /* 3592 * Reclaim resources for a setup queue. 3593 */ 3594 static void 3595 ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 3596 { 3597 3598 ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum); 3599 sc->sc_txqsetup &= ~(1<<txq->axq_qnum); 3600 ATH_TXQ_LOCK_DESTROY(txq); 3601 } 3602 3603 /* 3604 * Reclaim all tx queue resources. 3605 */ 3606 static void 3607 ath_tx_cleanup(struct ath_softc *sc) 3608 { 3609 int i; 3610 3611 ATH_TXBUF_LOCK_DESTROY(sc); 3612 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 3613 if (ATH_TXQ_SETUP(sc, i)) 3614 ath_tx_cleanupq(sc, &sc->sc_txq[i]); 3615 } 3616 3617 /* 3618 * Return h/w rate index for an IEEE rate (w/o basic rate bit) 3619 * using the current rates in sc_rixmap. 3620 */ 3621 int 3622 ath_tx_findrix(const struct ath_softc *sc, uint8_t rate) 3623 { 3624 int rix = sc->sc_rixmap[rate]; 3625 /* NB: return lowest rix for invalid rate */ 3626 return (rix == 0xff ? 0 : rix); 3627 } 3628 3629 static void 3630 ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts, 3631 struct ath_buf *bf) 3632 { 3633 struct ieee80211_node *ni = bf->bf_node; 3634 struct ifnet *ifp = sc->sc_ifp; 3635 struct ieee80211com *ic = ifp->if_l2com; 3636 int sr, lr, pri; 3637 3638 if (ts->ts_status == 0) { 3639 u_int8_t txant = ts->ts_antenna; 3640 sc->sc_stats.ast_ant_tx[txant]++; 3641 sc->sc_ant_tx[txant]++; 3642 if (ts->ts_finaltsi != 0) 3643 sc->sc_stats.ast_tx_altrate++; 3644 pri = M_WME_GETAC(bf->bf_m); 3645 if (pri >= WME_AC_VO) 3646 ic->ic_wme.wme_hipri_traffic++; 3647 if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) 3648 ni->ni_inact = ni->ni_inact_reload; 3649 } else { 3650 if (ts->ts_status & HAL_TXERR_XRETRY) 3651 sc->sc_stats.ast_tx_xretries++; 3652 if (ts->ts_status & HAL_TXERR_FIFO) 3653 sc->sc_stats.ast_tx_fifoerr++; 3654 if (ts->ts_status & HAL_TXERR_FILT) 3655 sc->sc_stats.ast_tx_filtered++; 3656 if (ts->ts_status & HAL_TXERR_XTXOP) 3657 sc->sc_stats.ast_tx_xtxop++; 3658 if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED) 3659 sc->sc_stats.ast_tx_timerexpired++; 3660 3661 if (bf->bf_m->m_flags & M_FF) 3662 sc->sc_stats.ast_ff_txerr++; 3663 } 3664 /* XXX when is this valid? */ 3665 if (ts->ts_flags & HAL_TX_DESC_CFG_ERR) 3666 sc->sc_stats.ast_tx_desccfgerr++; 3667 /* 3668 * This can be valid for successful frame transmission! 3669 * If there's a TX FIFO underrun during aggregate transmission, 3670 * the MAC will pad the rest of the aggregate with delimiters. 3671 * If a BA is returned, the frame is marked as "OK" and it's up 3672 * to the TX completion code to notice which frames weren't 3673 * successfully transmitted. 3674 */ 3675 if (ts->ts_flags & HAL_TX_DATA_UNDERRUN) 3676 sc->sc_stats.ast_tx_data_underrun++; 3677 if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN) 3678 sc->sc_stats.ast_tx_delim_underrun++; 3679 3680 sr = ts->ts_shortretry; 3681 lr = ts->ts_longretry; 3682 sc->sc_stats.ast_tx_shortretry += sr; 3683 sc->sc_stats.ast_tx_longretry += lr; 3684 3685 } 3686 3687 /* 3688 * The default completion. If fail is 1, this means 3689 * "please don't retry the frame, and just return -1 status 3690 * to the net80211 stack. 3691 */ 3692 void 3693 ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail) 3694 { 3695 struct ath_tx_status *ts = &bf->bf_status.ds_txstat; 3696 int st; 3697 3698 if (fail == 1) 3699 st = -1; 3700 else 3701 st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ? 3702 ts->ts_status : HAL_TXERR_XRETRY; 3703 3704 #if 0 3705 if (bf->bf_state.bfs_dobaw) 3706 device_printf(sc->sc_dev, 3707 "%s: bf %p: seqno %d: dobaw should've been cleared!\n", 3708 __func__, 3709 bf, 3710 SEQNO(bf->bf_state.bfs_seqno)); 3711 #endif 3712 if (bf->bf_next != NULL) 3713 device_printf(sc->sc_dev, 3714 "%s: bf %p: seqno %d: bf_next not NULL!\n", 3715 __func__, 3716 bf, 3717 SEQNO(bf->bf_state.bfs_seqno)); 3718 3719 /* 3720 * Check if the node software queue is empty; if so 3721 * then clear the TIM. 3722 * 3723 * This needs to be done before the buffer is freed as 3724 * otherwise the node reference will have been released 3725 * and the node may not actually exist any longer. 3726 * 3727 * XXX I don't like this belonging here, but it's cleaner 3728 * to do it here right now then all the other places 3729 * where ath_tx_default_comp() is called. 3730 * 3731 * XXX TODO: during drain, ensure that the callback is 3732 * being called so we get a chance to update the TIM. 3733 */ 3734 if (bf->bf_node) 3735 ath_tx_update_tim(sc, bf->bf_node, 0); 3736 3737 /* 3738 * Do any tx complete callback. Note this must 3739 * be done before releasing the node reference. 3740 * This will free the mbuf, release the net80211 3741 * node and recycle the ath_buf. 3742 */ 3743 ath_tx_freebuf(sc, bf, st); 3744 } 3745 3746 /* 3747 * Update rate control with the given completion status. 3748 */ 3749 void 3750 ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni, 3751 struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen, 3752 int nframes, int nbad) 3753 { 3754 struct ath_node *an; 3755 3756 /* Only for unicast frames */ 3757 if (ni == NULL) 3758 return; 3759 3760 an = ATH_NODE(ni); 3761 ATH_NODE_UNLOCK_ASSERT(an); 3762 3763 if ((ts->ts_status & HAL_TXERR_FILT) == 0) { 3764 ATH_NODE_LOCK(an); 3765 ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad); 3766 ATH_NODE_UNLOCK(an); 3767 } 3768 } 3769 3770 /* 3771 * Process the completion of the given buffer. 3772 * 3773 * This calls the rate control update and then the buffer completion. 3774 * This will either free the buffer or requeue it. In any case, the 3775 * bf pointer should be treated as invalid after this function is called. 3776 */ 3777 void 3778 ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq, 3779 struct ath_tx_status *ts, struct ath_buf *bf) 3780 { 3781 struct ieee80211_node *ni = bf->bf_node; 3782 struct ath_node *an = NULL; 3783 3784 ATH_TX_UNLOCK_ASSERT(sc); 3785 3786 /* If unicast frame, update general statistics */ 3787 if (ni != NULL) { 3788 an = ATH_NODE(ni); 3789 /* update statistics */ 3790 ath_tx_update_stats(sc, ts, bf); 3791 } 3792 3793 /* 3794 * Call the completion handler. 3795 * The completion handler is responsible for 3796 * calling the rate control code. 3797 * 3798 * Frames with no completion handler get the 3799 * rate control code called here. 3800 */ 3801 if (bf->bf_comp == NULL) { 3802 if ((ts->ts_status & HAL_TXERR_FILT) == 0 && 3803 (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) { 3804 /* 3805 * XXX assume this isn't an aggregate 3806 * frame. 3807 */ 3808 ath_tx_update_ratectrl(sc, ni, 3809 bf->bf_state.bfs_rc, ts, 3810 bf->bf_state.bfs_pktlen, 1, 3811 (ts->ts_status == 0 ? 0 : 1)); 3812 } 3813 ath_tx_default_comp(sc, bf, 0); 3814 } else 3815 bf->bf_comp(sc, bf, 0); 3816 } 3817 3818 3819 3820 /* 3821 * Process completed xmit descriptors from the specified queue. 3822 * Kick the packet scheduler if needed. This can occur from this 3823 * particular task. 3824 */ 3825 static int 3826 ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched) 3827 { 3828 struct ath_hal *ah = sc->sc_ah; 3829 struct ath_buf *bf; 3830 struct ath_desc *ds; 3831 struct ath_tx_status *ts; 3832 struct ieee80211_node *ni; 3833 #ifdef IEEE80211_SUPPORT_SUPERG 3834 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 3835 #endif /* IEEE80211_SUPPORT_SUPERG */ 3836 int nacked; 3837 HAL_STATUS status; 3838 3839 DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n", 3840 __func__, txq->axq_qnum, 3841 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3842 txq->axq_link); 3843 3844 ATH_KTR(sc, ATH_KTR_TXCOMP, 4, 3845 "ath_tx_processq: txq=%u head %p link %p depth %p", 3846 txq->axq_qnum, 3847 (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum), 3848 txq->axq_link, 3849 txq->axq_depth); 3850 3851 nacked = 0; 3852 for (;;) { 3853 ATH_TXQ_LOCK(txq); 3854 txq->axq_intrcnt = 0; /* reset periodic desc intr count */ 3855 bf = TAILQ_FIRST(&txq->axq_q); 3856 if (bf == NULL) { 3857 ATH_TXQ_UNLOCK(txq); 3858 break; 3859 } 3860 ds = bf->bf_lastds; /* XXX must be setup correctly! */ 3861 ts = &bf->bf_status.ds_txstat; 3862 3863 status = ath_hal_txprocdesc(ah, ds, ts); 3864 #ifdef ATH_DEBUG 3865 if (sc->sc_debug & ATH_DEBUG_XMIT_DESC) 3866 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3867 status == HAL_OK); 3868 else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) 3869 ath_printtxbuf(sc, bf, txq->axq_qnum, 0, 3870 status == HAL_OK); 3871 #endif 3872 #ifdef ATH_DEBUG_ALQ 3873 if (if_ath_alq_checkdebug(&sc->sc_alq, 3874 ATH_ALQ_EDMA_TXSTATUS)) { 3875 if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS, 3876 sc->sc_tx_statuslen, 3877 (char *) ds); 3878 } 3879 #endif 3880 3881 if (status == HAL_EINPROGRESS) { 3882 ATH_KTR(sc, ATH_KTR_TXCOMP, 3, 3883 "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS", 3884 txq->axq_qnum, bf, ds); 3885 ATH_TXQ_UNLOCK(txq); 3886 break; 3887 } 3888 ATH_TXQ_REMOVE(txq, bf, bf_list); 3889 if (txq->axq_depth > 0) { 3890 /* 3891 * More frames follow. Mark the buffer busy 3892 * so it's not re-used while the hardware may 3893 * still re-read the link field in the descriptor. 3894 * 3895 * Use the last buffer in an aggregate as that 3896 * is where the hardware may be - intermediate 3897 * descriptors won't be "busy". 3898 */ 3899 bf->bf_last->bf_flags |= ATH_BUF_BUSY; 3900 } else 3901 txq->axq_link = NULL; 3902 if (bf->bf_state.bfs_aggr) 3903 txq->axq_aggr_depth--; 3904 3905 ni = bf->bf_node; 3906 3907 ATH_KTR(sc, ATH_KTR_TXCOMP, 5, 3908 "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x", 3909 txq->axq_qnum, bf, ds, ni, ts->ts_status); 3910 /* 3911 * If unicast frame was ack'd update RSSI, 3912 * including the last rx time used to 3913 * workaround phantom bmiss interrupts. 3914 */ 3915 if (ni != NULL && ts->ts_status == 0 && 3916 ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) { 3917 nacked++; 3918 sc->sc_stats.ast_tx_rssi = ts->ts_rssi; 3919 ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi, 3920 ts->ts_rssi); 3921 } 3922 ATH_TXQ_UNLOCK(txq); 3923 3924 /* 3925 * Update statistics and call completion 3926 */ 3927 ath_tx_process_buf_completion(sc, txq, ts, bf); 3928 3929 /* XXX at this point, bf and ni may be totally invalid */ 3930 } 3931 #ifdef IEEE80211_SUPPORT_SUPERG 3932 /* 3933 * Flush fast-frame staging queue when traffic slows. 3934 */ 3935 if (txq->axq_depth <= 1) 3936 ieee80211_ff_flush(ic, txq->axq_ac); 3937 #endif 3938 3939 /* Kick the software TXQ scheduler */ 3940 if (dosched) { 3941 ATH_TX_LOCK(sc); 3942 ath_txq_sched(sc, txq); 3943 ATH_TX_UNLOCK(sc); 3944 } 3945 3946 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3947 "ath_tx_processq: txq=%u: done", 3948 txq->axq_qnum); 3949 3950 return nacked; 3951 } 3952 3953 #define TXQACTIVE(t, q) ( (t) & (1 << (q))) 3954 3955 /* 3956 * Deferred processing of transmit interrupt; special-cased 3957 * for a single hardware transmit queue (e.g. 5210 and 5211). 3958 */ 3959 static void 3960 ath_tx_proc_q0(void *arg, int npending) 3961 { 3962 struct ath_softc *sc = arg; 3963 struct ifnet *ifp = sc->sc_ifp; 3964 uint32_t txqs; 3965 3966 ATH_PCU_LOCK(sc); 3967 sc->sc_txproc_cnt++; 3968 txqs = sc->sc_txq_active; 3969 sc->sc_txq_active &= ~txqs; 3970 ATH_PCU_UNLOCK(sc); 3971 3972 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 3973 "ath_tx_proc_q0: txqs=0x%08x", txqs); 3974 3975 if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1)) 3976 /* XXX why is lastrx updated in tx code? */ 3977 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 3978 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 3979 ath_tx_processq(sc, sc->sc_cabq, 1); 3980 IF_LOCK(&ifp->if_snd); 3981 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3982 IF_UNLOCK(&ifp->if_snd); 3983 sc->sc_wd_timer = 0; 3984 3985 if (sc->sc_softled) 3986 ath_led_event(sc, sc->sc_txrix); 3987 3988 ATH_PCU_LOCK(sc); 3989 sc->sc_txproc_cnt--; 3990 ATH_PCU_UNLOCK(sc); 3991 3992 ath_tx_kick(sc); 3993 } 3994 3995 /* 3996 * Deferred processing of transmit interrupt; special-cased 3997 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support). 3998 */ 3999 static void 4000 ath_tx_proc_q0123(void *arg, int npending) 4001 { 4002 struct ath_softc *sc = arg; 4003 struct ifnet *ifp = sc->sc_ifp; 4004 int nacked; 4005 uint32_t txqs; 4006 4007 ATH_PCU_LOCK(sc); 4008 sc->sc_txproc_cnt++; 4009 txqs = sc->sc_txq_active; 4010 sc->sc_txq_active &= ~txqs; 4011 ATH_PCU_UNLOCK(sc); 4012 4013 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, 4014 "ath_tx_proc_q0123: txqs=0x%08x", txqs); 4015 4016 /* 4017 * Process each active queue. 4018 */ 4019 nacked = 0; 4020 if (TXQACTIVE(txqs, 0)) 4021 nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1); 4022 if (TXQACTIVE(txqs, 1)) 4023 nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1); 4024 if (TXQACTIVE(txqs, 2)) 4025 nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1); 4026 if (TXQACTIVE(txqs, 3)) 4027 nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1); 4028 if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum)) 4029 ath_tx_processq(sc, sc->sc_cabq, 1); 4030 if (nacked) 4031 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4032 4033 IF_LOCK(&ifp->if_snd); 4034 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4035 IF_UNLOCK(&ifp->if_snd); 4036 sc->sc_wd_timer = 0; 4037 4038 if (sc->sc_softled) 4039 ath_led_event(sc, sc->sc_txrix); 4040 4041 ATH_PCU_LOCK(sc); 4042 sc->sc_txproc_cnt--; 4043 ATH_PCU_UNLOCK(sc); 4044 4045 ath_tx_kick(sc); 4046 } 4047 4048 /* 4049 * Deferred processing of transmit interrupt. 4050 */ 4051 static void 4052 ath_tx_proc(void *arg, int npending) 4053 { 4054 struct ath_softc *sc = arg; 4055 struct ifnet *ifp = sc->sc_ifp; 4056 int i, nacked; 4057 uint32_t txqs; 4058 4059 ATH_PCU_LOCK(sc); 4060 sc->sc_txproc_cnt++; 4061 txqs = sc->sc_txq_active; 4062 sc->sc_txq_active &= ~txqs; 4063 ATH_PCU_UNLOCK(sc); 4064 4065 ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs); 4066 4067 /* 4068 * Process each active queue. 4069 */ 4070 nacked = 0; 4071 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4072 if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i)) 4073 nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1); 4074 if (nacked) 4075 sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah); 4076 4077 /* XXX check this inside of IF_LOCK? */ 4078 IF_LOCK(&ifp->if_snd); 4079 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4080 IF_UNLOCK(&ifp->if_snd); 4081 sc->sc_wd_timer = 0; 4082 4083 if (sc->sc_softled) 4084 ath_led_event(sc, sc->sc_txrix); 4085 4086 ATH_PCU_LOCK(sc); 4087 sc->sc_txproc_cnt--; 4088 ATH_PCU_UNLOCK(sc); 4089 4090 ath_tx_kick(sc); 4091 } 4092 #undef TXQACTIVE 4093 4094 /* 4095 * Deferred processing of TXQ rescheduling. 4096 */ 4097 static void 4098 ath_txq_sched_tasklet(void *arg, int npending) 4099 { 4100 struct ath_softc *sc = arg; 4101 int i; 4102 4103 /* XXX is skipping ok? */ 4104 ATH_PCU_LOCK(sc); 4105 #if 0 4106 if (sc->sc_inreset_cnt > 0) { 4107 device_printf(sc->sc_dev, 4108 "%s: sc_inreset_cnt > 0; skipping\n", __func__); 4109 ATH_PCU_UNLOCK(sc); 4110 return; 4111 } 4112 #endif 4113 sc->sc_txproc_cnt++; 4114 ATH_PCU_UNLOCK(sc); 4115 4116 ATH_TX_LOCK(sc); 4117 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4118 if (ATH_TXQ_SETUP(sc, i)) { 4119 ath_txq_sched(sc, &sc->sc_txq[i]); 4120 } 4121 } 4122 ATH_TX_UNLOCK(sc); 4123 4124 ATH_PCU_LOCK(sc); 4125 sc->sc_txproc_cnt--; 4126 ATH_PCU_UNLOCK(sc); 4127 } 4128 4129 void 4130 ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf) 4131 { 4132 4133 ATH_TXBUF_LOCK_ASSERT(sc); 4134 4135 if (bf->bf_flags & ATH_BUF_MGMT) 4136 TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list); 4137 else { 4138 TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list); 4139 sc->sc_txbuf_cnt++; 4140 if (sc->sc_txbuf_cnt > ath_txbuf) { 4141 device_printf(sc->sc_dev, 4142 "%s: sc_txbuf_cnt > %d?\n", 4143 __func__, 4144 ath_txbuf); 4145 sc->sc_txbuf_cnt = ath_txbuf; 4146 } 4147 } 4148 } 4149 4150 void 4151 ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf) 4152 { 4153 4154 ATH_TXBUF_LOCK_ASSERT(sc); 4155 4156 if (bf->bf_flags & ATH_BUF_MGMT) 4157 TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list); 4158 else { 4159 TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list); 4160 sc->sc_txbuf_cnt++; 4161 if (sc->sc_txbuf_cnt > ATH_TXBUF) { 4162 device_printf(sc->sc_dev, 4163 "%s: sc_txbuf_cnt > %d?\n", 4164 __func__, 4165 ATH_TXBUF); 4166 sc->sc_txbuf_cnt = ATH_TXBUF; 4167 } 4168 } 4169 } 4170 4171 /* 4172 * Free the holding buffer if it exists 4173 */ 4174 void 4175 ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq) 4176 { 4177 ATH_TXBUF_LOCK_ASSERT(sc); 4178 4179 if (txq->axq_holdingbf == NULL) 4180 return; 4181 4182 txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY; 4183 ath_returnbuf_tail(sc, txq->axq_holdingbf); 4184 txq->axq_holdingbf = NULL; 4185 } 4186 4187 /* 4188 * Add this buffer to the holding queue, freeing the previous 4189 * one if it exists. 4190 */ 4191 static void 4192 ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf) 4193 { 4194 struct ath_txq *txq; 4195 4196 ATH_TXBUF_LOCK_ASSERT(sc); 4197 4198 /* XXX assert ATH_BUF_BUSY is set */ 4199 4200 /* XXX assert the tx queue is under the max number */ 4201 if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) { 4202 device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n", 4203 __func__, 4204 bf, 4205 bf->bf_state.bfs_tx_queue); 4206 bf->bf_flags &= ~ATH_BUF_BUSY; 4207 ath_returnbuf_tail(sc, bf); 4208 return; 4209 } 4210 txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue]; 4211 ath_txq_freeholdingbuf(sc, txq); 4212 txq->axq_holdingbf = bf; 4213 } 4214 4215 /* 4216 * Return a buffer to the pool and update the 'busy' flag on the 4217 * previous 'tail' entry. 4218 * 4219 * This _must_ only be called when the buffer is involved in a completed 4220 * TX. The logic is that if it was part of an active TX, the previous 4221 * buffer on the list is now not involved in a halted TX DMA queue, waiting 4222 * for restart (eg for TDMA.) 4223 * 4224 * The caller must free the mbuf and recycle the node reference. 4225 */ 4226 void 4227 ath_freebuf(struct ath_softc *sc, struct ath_buf *bf) 4228 { 4229 bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap); 4230 bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE); 4231 4232 KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__)); 4233 KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__)); 4234 4235 /* 4236 * If this buffer is busy, push it onto the holding queue 4237 */ 4238 if (bf->bf_flags & ATH_BUF_BUSY) { 4239 ATH_TXBUF_LOCK(sc); 4240 ath_txq_addholdingbuf(sc, bf); 4241 ATH_TXBUF_UNLOCK(sc); 4242 return; 4243 } 4244 4245 /* 4246 * Not a busy buffer, so free normally 4247 */ 4248 ATH_TXBUF_LOCK(sc); 4249 ath_returnbuf_tail(sc, bf); 4250 ATH_TXBUF_UNLOCK(sc); 4251 } 4252 4253 /* 4254 * This is currently used by ath_tx_draintxq() and 4255 * ath_tx_tid_free_pkts(). 4256 * 4257 * It recycles a single ath_buf. 4258 */ 4259 void 4260 ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status) 4261 { 4262 struct ieee80211_node *ni = bf->bf_node; 4263 struct mbuf *m0 = bf->bf_m; 4264 4265 bf->bf_node = NULL; 4266 bf->bf_m = NULL; 4267 4268 /* Free the buffer, it's not needed any longer */ 4269 ath_freebuf(sc, bf); 4270 4271 if (ni != NULL) { 4272 /* 4273 * Do any callback and reclaim the node reference. 4274 */ 4275 if (m0->m_flags & M_TXCB) 4276 ieee80211_process_callback(ni, m0, status); 4277 ieee80211_free_node(ni); 4278 } 4279 m_freem(m0); 4280 4281 /* 4282 * XXX the buffer used to be freed -after-, but the DMA map was 4283 * freed where ath_freebuf() now is. I've no idea what this 4284 * will do. 4285 */ 4286 } 4287 4288 static struct ath_buf * 4289 ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq) 4290 { 4291 struct ath_buf *bf; 4292 4293 ATH_TXQ_LOCK_ASSERT(txq); 4294 4295 /* 4296 * Drain the FIFO queue first, then if it's 4297 * empty, move to the normal frame queue. 4298 */ 4299 bf = TAILQ_FIRST(&txq->fifo.axq_q); 4300 if (bf != NULL) { 4301 /* 4302 * Is it the last buffer in this set? 4303 * Decrement the FIFO counter. 4304 */ 4305 if (bf->bf_flags & ATH_BUF_FIFOEND) { 4306 if (txq->axq_fifo_depth == 0) { 4307 device_printf(sc->sc_dev, 4308 "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n", 4309 __func__, 4310 txq->axq_qnum, 4311 txq->fifo.axq_depth); 4312 } else 4313 txq->axq_fifo_depth--; 4314 } 4315 ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list); 4316 return (bf); 4317 } 4318 4319 /* 4320 * Debugging! 4321 */ 4322 if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) { 4323 device_printf(sc->sc_dev, 4324 "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n", 4325 __func__, 4326 txq->axq_qnum, 4327 txq->axq_fifo_depth, 4328 txq->fifo.axq_depth); 4329 } 4330 4331 /* 4332 * Now drain the pending queue. 4333 */ 4334 bf = TAILQ_FIRST(&txq->axq_q); 4335 if (bf == NULL) { 4336 txq->axq_link = NULL; 4337 return (NULL); 4338 } 4339 ATH_TXQ_REMOVE(txq, bf, bf_list); 4340 return (bf); 4341 } 4342 4343 void 4344 ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq) 4345 { 4346 #ifdef ATH_DEBUG 4347 struct ath_hal *ah = sc->sc_ah; 4348 #endif 4349 struct ath_buf *bf; 4350 u_int ix; 4351 4352 /* 4353 * NB: this assumes output has been stopped and 4354 * we do not need to block ath_tx_proc 4355 */ 4356 for (ix = 0;; ix++) { 4357 ATH_TXQ_LOCK(txq); 4358 bf = ath_tx_draintxq_get_one(sc, txq); 4359 if (bf == NULL) { 4360 ATH_TXQ_UNLOCK(txq); 4361 break; 4362 } 4363 if (bf->bf_state.bfs_aggr) 4364 txq->axq_aggr_depth--; 4365 #ifdef ATH_DEBUG 4366 if (sc->sc_debug & ATH_DEBUG_RESET) { 4367 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 4368 int status = 0; 4369 4370 /* 4371 * EDMA operation has a TX completion FIFO 4372 * separate from the TX descriptor, so this 4373 * method of checking the "completion" status 4374 * is wrong. 4375 */ 4376 if (! sc->sc_isedma) { 4377 status = (ath_hal_txprocdesc(ah, 4378 bf->bf_lastds, 4379 &bf->bf_status.ds_txstat) == HAL_OK); 4380 } 4381 ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status); 4382 ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *), 4383 bf->bf_m->m_len, 0, -1); 4384 } 4385 #endif /* ATH_DEBUG */ 4386 /* 4387 * Since we're now doing magic in the completion 4388 * functions, we -must- call it for aggregation 4389 * destinations or BAW tracking will get upset. 4390 */ 4391 /* 4392 * Clear ATH_BUF_BUSY; the completion handler 4393 * will free the buffer. 4394 */ 4395 ATH_TXQ_UNLOCK(txq); 4396 bf->bf_flags &= ~ATH_BUF_BUSY; 4397 if (bf->bf_comp) 4398 bf->bf_comp(sc, bf, 1); 4399 else 4400 ath_tx_default_comp(sc, bf, 1); 4401 } 4402 4403 /* 4404 * Free the holding buffer if it exists 4405 */ 4406 ATH_TXBUF_LOCK(sc); 4407 ath_txq_freeholdingbuf(sc, txq); 4408 ATH_TXBUF_UNLOCK(sc); 4409 4410 /* 4411 * Drain software queued frames which are on 4412 * active TIDs. 4413 */ 4414 ath_tx_txq_drain(sc, txq); 4415 } 4416 4417 static void 4418 ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq) 4419 { 4420 struct ath_hal *ah = sc->sc_ah; 4421 4422 DPRINTF(sc, ATH_DEBUG_RESET, 4423 "%s: tx queue [%u] %p, flags 0x%08x, link %p\n", 4424 __func__, 4425 txq->axq_qnum, 4426 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum), 4427 txq->axq_flags, 4428 txq->axq_link); 4429 (void) ath_hal_stoptxdma(ah, txq->axq_qnum); 4430 } 4431 4432 int 4433 ath_stoptxdma(struct ath_softc *sc) 4434 { 4435 struct ath_hal *ah = sc->sc_ah; 4436 int i; 4437 4438 /* XXX return value */ 4439 if (sc->sc_invalid) 4440 return 0; 4441 4442 if (!sc->sc_invalid) { 4443 /* don't touch the hardware if marked invalid */ 4444 DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n", 4445 __func__, sc->sc_bhalq, 4446 (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq), 4447 NULL); 4448 (void) ath_hal_stoptxdma(ah, sc->sc_bhalq); 4449 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) 4450 if (ATH_TXQ_SETUP(sc, i)) 4451 ath_tx_stopdma(sc, &sc->sc_txq[i]); 4452 } 4453 4454 return 1; 4455 } 4456 4457 /* 4458 * Drain the transmit queues and reclaim resources. 4459 */ 4460 void 4461 ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type) 4462 { 4463 #ifdef ATH_DEBUG 4464 struct ath_hal *ah = sc->sc_ah; 4465 #endif 4466 struct ifnet *ifp = sc->sc_ifp; 4467 int i; 4468 4469 (void) ath_stoptxdma(sc); 4470 4471 for (i = 0; i < HAL_NUM_TX_QUEUES; i++) { 4472 /* 4473 * XXX TODO: should we just handle the completed TX frames 4474 * here, whether or not the reset is a full one or not? 4475 */ 4476 if (ATH_TXQ_SETUP(sc, i)) { 4477 if (reset_type == ATH_RESET_NOLOSS) 4478 ath_tx_processq(sc, &sc->sc_txq[i], 0); 4479 else 4480 ath_tx_draintxq(sc, &sc->sc_txq[i]); 4481 } 4482 } 4483 #ifdef ATH_DEBUG 4484 if (sc->sc_debug & ATH_DEBUG_RESET) { 4485 struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf); 4486 if (bf != NULL && bf->bf_m != NULL) { 4487 ath_printtxbuf(sc, bf, sc->sc_bhalq, 0, 4488 ath_hal_txprocdesc(ah, bf->bf_lastds, 4489 &bf->bf_status.ds_txstat) == HAL_OK); 4490 ieee80211_dump_pkt(ifp->if_l2com, 4491 mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len, 4492 0, -1); 4493 } 4494 } 4495 #endif /* ATH_DEBUG */ 4496 IF_LOCK(&ifp->if_snd); 4497 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4498 IF_UNLOCK(&ifp->if_snd); 4499 sc->sc_wd_timer = 0; 4500 } 4501 4502 /* 4503 * Update internal state after a channel change. 4504 */ 4505 static void 4506 ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan) 4507 { 4508 enum ieee80211_phymode mode; 4509 4510 /* 4511 * Change channels and update the h/w rate map 4512 * if we're switching; e.g. 11a to 11b/g. 4513 */ 4514 mode = ieee80211_chan2mode(chan); 4515 if (mode != sc->sc_curmode) 4516 ath_setcurmode(sc, mode); 4517 sc->sc_curchan = chan; 4518 } 4519 4520 /* 4521 * Set/change channels. If the channel is really being changed, 4522 * it's done by resetting the chip. To accomplish this we must 4523 * first cleanup any pending DMA, then restart stuff after a la 4524 * ath_init. 4525 */ 4526 static int 4527 ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan) 4528 { 4529 struct ifnet *ifp = sc->sc_ifp; 4530 struct ieee80211com *ic = ifp->if_l2com; 4531 struct ath_hal *ah = sc->sc_ah; 4532 int ret = 0; 4533 4534 /* Treat this as an interface reset */ 4535 ATH_PCU_UNLOCK_ASSERT(sc); 4536 ATH_UNLOCK_ASSERT(sc); 4537 4538 /* (Try to) stop TX/RX from occuring */ 4539 taskqueue_block(sc->sc_tq); 4540 4541 ATH_PCU_LOCK(sc); 4542 ath_hal_intrset(ah, 0); /* Stop new RX/TX completion */ 4543 ath_txrx_stop_locked(sc); /* Stop pending RX/TX completion */ 4544 if (ath_reset_grablock(sc, 1) == 0) { 4545 device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n", 4546 __func__); 4547 } 4548 ATH_PCU_UNLOCK(sc); 4549 4550 DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n", 4551 __func__, ieee80211_chan2ieee(ic, chan), 4552 chan->ic_freq, chan->ic_flags); 4553 if (chan != sc->sc_curchan) { 4554 HAL_STATUS status; 4555 /* 4556 * To switch channels clear any pending DMA operations; 4557 * wait long enough for the RX fifo to drain, reset the 4558 * hardware at the new frequency, and then re-enable 4559 * the relevant bits of the h/w. 4560 */ 4561 #if 0 4562 ath_hal_intrset(ah, 0); /* disable interrupts */ 4563 #endif 4564 ath_stoprecv(sc, 1); /* turn off frame recv */ 4565 /* 4566 * First, handle completed TX/RX frames. 4567 */ 4568 ath_rx_flush(sc); 4569 ath_draintxq(sc, ATH_RESET_NOLOSS); 4570 /* 4571 * Next, flush the non-scheduled frames. 4572 */ 4573 ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */ 4574 4575 ath_update_chainmasks(sc, chan); 4576 ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask, 4577 sc->sc_cur_rxchainmask); 4578 if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) { 4579 if_printf(ifp, "%s: unable to reset " 4580 "channel %u (%u MHz, flags 0x%x), hal status %u\n", 4581 __func__, ieee80211_chan2ieee(ic, chan), 4582 chan->ic_freq, chan->ic_flags, status); 4583 ret = EIO; 4584 goto finish; 4585 } 4586 sc->sc_diversity = ath_hal_getdiversity(ah); 4587 4588 /* Let DFS at it in case it's a DFS channel */ 4589 ath_dfs_radar_enable(sc, chan); 4590 4591 /* Let spectral at in case spectral is enabled */ 4592 ath_spectral_enable(sc, chan); 4593 4594 /* 4595 * Re-enable rx framework. 4596 */ 4597 if (ath_startrecv(sc) != 0) { 4598 if_printf(ifp, "%s: unable to restart recv logic\n", 4599 __func__); 4600 ret = EIO; 4601 goto finish; 4602 } 4603 4604 /* 4605 * Change channels and update the h/w rate map 4606 * if we're switching; e.g. 11a to 11b/g. 4607 */ 4608 ath_chan_change(sc, chan); 4609 4610 /* 4611 * Reset clears the beacon timers; reset them 4612 * here if needed. 4613 */ 4614 if (sc->sc_beacons) { /* restart beacons */ 4615 #ifdef IEEE80211_SUPPORT_TDMA 4616 if (sc->sc_tdma) 4617 ath_tdma_config(sc, NULL); 4618 else 4619 #endif 4620 ath_beacon_config(sc, NULL); 4621 } 4622 4623 /* 4624 * Re-enable interrupts. 4625 */ 4626 #if 0 4627 ath_hal_intrset(ah, sc->sc_imask); 4628 #endif 4629 } 4630 4631 finish: 4632 ATH_PCU_LOCK(sc); 4633 sc->sc_inreset_cnt--; 4634 /* XXX only do this if sc_inreset_cnt == 0? */ 4635 ath_hal_intrset(ah, sc->sc_imask); 4636 ATH_PCU_UNLOCK(sc); 4637 4638 IF_LOCK(&ifp->if_snd); 4639 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 4640 IF_UNLOCK(&ifp->if_snd); 4641 ath_txrx_start(sc); 4642 /* XXX ath_start? */ 4643 4644 return ret; 4645 } 4646 4647 /* 4648 * Periodically recalibrate the PHY to account 4649 * for temperature/environment changes. 4650 */ 4651 static void 4652 ath_calibrate(void *arg) 4653 { 4654 struct ath_softc *sc = arg; 4655 struct ath_hal *ah = sc->sc_ah; 4656 struct ifnet *ifp = sc->sc_ifp; 4657 struct ieee80211com *ic = ifp->if_l2com; 4658 HAL_BOOL longCal, isCalDone = AH_TRUE; 4659 HAL_BOOL aniCal, shortCal = AH_FALSE; 4660 int nextcal; 4661 4662 if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */ 4663 goto restart; 4664 longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz); 4665 aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000); 4666 if (sc->sc_doresetcal) 4667 shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000); 4668 4669 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal); 4670 if (aniCal) { 4671 sc->sc_stats.ast_ani_cal++; 4672 sc->sc_lastani = ticks; 4673 ath_hal_ani_poll(ah, sc->sc_curchan); 4674 } 4675 4676 if (longCal) { 4677 sc->sc_stats.ast_per_cal++; 4678 sc->sc_lastlongcal = ticks; 4679 if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) { 4680 /* 4681 * Rfgain is out of bounds, reset the chip 4682 * to load new gain values. 4683 */ 4684 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 4685 "%s: rfgain change\n", __func__); 4686 sc->sc_stats.ast_per_rfgain++; 4687 sc->sc_resetcal = 0; 4688 sc->sc_doresetcal = AH_TRUE; 4689 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 4690 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 4691 return; 4692 } 4693 /* 4694 * If this long cal is after an idle period, then 4695 * reset the data collection state so we start fresh. 4696 */ 4697 if (sc->sc_resetcal) { 4698 (void) ath_hal_calreset(ah, sc->sc_curchan); 4699 sc->sc_lastcalreset = ticks; 4700 sc->sc_lastshortcal = ticks; 4701 sc->sc_resetcal = 0; 4702 sc->sc_doresetcal = AH_TRUE; 4703 } 4704 } 4705 4706 /* Only call if we're doing a short/long cal, not for ANI calibration */ 4707 if (shortCal || longCal) { 4708 isCalDone = AH_FALSE; 4709 if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) { 4710 if (longCal) { 4711 /* 4712 * Calibrate noise floor data again in case of change. 4713 */ 4714 ath_hal_process_noisefloor(ah); 4715 } 4716 } else { 4717 DPRINTF(sc, ATH_DEBUG_ANY, 4718 "%s: calibration of channel %u failed\n", 4719 __func__, sc->sc_curchan->ic_freq); 4720 sc->sc_stats.ast_per_calfail++; 4721 } 4722 if (shortCal) 4723 sc->sc_lastshortcal = ticks; 4724 } 4725 if (!isCalDone) { 4726 restart: 4727 /* 4728 * Use a shorter interval to potentially collect multiple 4729 * data samples required to complete calibration. Once 4730 * we're told the work is done we drop back to a longer 4731 * interval between requests. We're more aggressive doing 4732 * work when operating as an AP to improve operation right 4733 * after startup. 4734 */ 4735 sc->sc_lastshortcal = ticks; 4736 nextcal = ath_shortcalinterval*hz/1000; 4737 if (sc->sc_opmode != HAL_M_HOSTAP) 4738 nextcal *= 10; 4739 sc->sc_doresetcal = AH_TRUE; 4740 } else { 4741 /* nextcal should be the shortest time for next event */ 4742 nextcal = ath_longcalinterval*hz; 4743 if (sc->sc_lastcalreset == 0) 4744 sc->sc_lastcalreset = sc->sc_lastlongcal; 4745 else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz) 4746 sc->sc_resetcal = 1; /* setup reset next trip */ 4747 sc->sc_doresetcal = AH_FALSE; 4748 } 4749 /* ANI calibration may occur more often than short/long/resetcal */ 4750 if (ath_anicalinterval > 0) 4751 nextcal = MIN(nextcal, ath_anicalinterval*hz/1000); 4752 4753 if (nextcal != 0) { 4754 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n", 4755 __func__, nextcal, isCalDone ? "" : "!"); 4756 callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc); 4757 } else { 4758 DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n", 4759 __func__); 4760 /* NB: don't rearm timer */ 4761 } 4762 } 4763 4764 static void 4765 ath_scan_start(struct ieee80211com *ic) 4766 { 4767 struct ifnet *ifp = ic->ic_ifp; 4768 struct ath_softc *sc = ifp->if_softc; 4769 struct ath_hal *ah = sc->sc_ah; 4770 u_int32_t rfilt; 4771 4772 /* XXX calibration timer? */ 4773 4774 ATH_LOCK(sc); 4775 sc->sc_scanning = 1; 4776 sc->sc_syncbeacon = 0; 4777 rfilt = ath_calcrxfilter(sc); 4778 ATH_UNLOCK(sc); 4779 4780 ATH_PCU_LOCK(sc); 4781 ath_hal_setrxfilter(ah, rfilt); 4782 ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0); 4783 ATH_PCU_UNLOCK(sc); 4784 4785 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n", 4786 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr)); 4787 } 4788 4789 static void 4790 ath_scan_end(struct ieee80211com *ic) 4791 { 4792 struct ifnet *ifp = ic->ic_ifp; 4793 struct ath_softc *sc = ifp->if_softc; 4794 struct ath_hal *ah = sc->sc_ah; 4795 u_int32_t rfilt; 4796 4797 ATH_LOCK(sc); 4798 sc->sc_scanning = 0; 4799 rfilt = ath_calcrxfilter(sc); 4800 ATH_UNLOCK(sc); 4801 4802 ATH_PCU_LOCK(sc); 4803 ath_hal_setrxfilter(ah, rfilt); 4804 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4805 4806 ath_hal_process_noisefloor(ah); 4807 ATH_PCU_UNLOCK(sc); 4808 4809 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4810 __func__, rfilt, ether_sprintf(sc->sc_curbssid), 4811 sc->sc_curaid); 4812 } 4813 4814 #ifdef ATH_ENABLE_11N 4815 /* 4816 * For now, just do a channel change. 4817 * 4818 * Later, we'll go through the hard slog of suspending tx/rx, changing rate 4819 * control state and resetting the hardware without dropping frames out 4820 * of the queue. 4821 * 4822 * The unfortunate trouble here is making absolutely sure that the 4823 * channel width change has propagated enough so the hardware 4824 * absolutely isn't handed bogus frames for it's current operating 4825 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and 4826 * does occur in parallel, we need to make certain we've blocked 4827 * any further ongoing TX (and RX, that can cause raw TX) 4828 * before we do this. 4829 */ 4830 static void 4831 ath_update_chw(struct ieee80211com *ic) 4832 { 4833 struct ifnet *ifp = ic->ic_ifp; 4834 struct ath_softc *sc = ifp->if_softc; 4835 4836 DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__); 4837 ath_set_channel(ic); 4838 } 4839 #endif /* ATH_ENABLE_11N */ 4840 4841 static void 4842 ath_set_channel(struct ieee80211com *ic) 4843 { 4844 struct ifnet *ifp = ic->ic_ifp; 4845 struct ath_softc *sc = ifp->if_softc; 4846 4847 (void) ath_chan_set(sc, ic->ic_curchan); 4848 /* 4849 * If we are returning to our bss channel then mark state 4850 * so the next recv'd beacon's tsf will be used to sync the 4851 * beacon timers. Note that since we only hear beacons in 4852 * sta/ibss mode this has no effect in other operating modes. 4853 */ 4854 ATH_LOCK(sc); 4855 if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan) 4856 sc->sc_syncbeacon = 1; 4857 ATH_UNLOCK(sc); 4858 } 4859 4860 /* 4861 * Walk the vap list and check if there any vap's in RUN state. 4862 */ 4863 static int 4864 ath_isanyrunningvaps(struct ieee80211vap *this) 4865 { 4866 struct ieee80211com *ic = this->iv_ic; 4867 struct ieee80211vap *vap; 4868 4869 IEEE80211_LOCK_ASSERT(ic); 4870 4871 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 4872 if (vap != this && vap->iv_state >= IEEE80211_S_RUN) 4873 return 1; 4874 } 4875 return 0; 4876 } 4877 4878 static int 4879 ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) 4880 { 4881 struct ieee80211com *ic = vap->iv_ic; 4882 struct ath_softc *sc = ic->ic_ifp->if_softc; 4883 struct ath_vap *avp = ATH_VAP(vap); 4884 struct ath_hal *ah = sc->sc_ah; 4885 struct ieee80211_node *ni = NULL; 4886 int i, error, stamode; 4887 u_int32_t rfilt; 4888 int csa_run_transition = 0; 4889 4890 static const HAL_LED_STATE leds[] = { 4891 HAL_LED_INIT, /* IEEE80211_S_INIT */ 4892 HAL_LED_SCAN, /* IEEE80211_S_SCAN */ 4893 HAL_LED_AUTH, /* IEEE80211_S_AUTH */ 4894 HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */ 4895 HAL_LED_RUN, /* IEEE80211_S_CAC */ 4896 HAL_LED_RUN, /* IEEE80211_S_RUN */ 4897 HAL_LED_RUN, /* IEEE80211_S_CSA */ 4898 HAL_LED_RUN, /* IEEE80211_S_SLEEP */ 4899 }; 4900 4901 DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__, 4902 ieee80211_state_name[vap->iv_state], 4903 ieee80211_state_name[nstate]); 4904 4905 /* 4906 * net80211 _should_ have the comlock asserted at this point. 4907 * There are some comments around the calls to vap->iv_newstate 4908 * which indicate that it (newstate) may end up dropping the 4909 * lock. This and the subsequent lock assert check after newstate 4910 * are an attempt to catch these and figure out how/why. 4911 */ 4912 IEEE80211_LOCK_ASSERT(ic); 4913 4914 if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN) 4915 csa_run_transition = 1; 4916 4917 callout_drain(&sc->sc_cal_ch); 4918 ath_hal_setledstate(ah, leds[nstate]); /* set LED */ 4919 4920 if (nstate == IEEE80211_S_SCAN) { 4921 /* 4922 * Scanning: turn off beacon miss and don't beacon. 4923 * Mark beacon state so when we reach RUN state we'll 4924 * [re]setup beacons. Unblock the task q thread so 4925 * deferred interrupt processing is done. 4926 */ 4927 ath_hal_intrset(ah, 4928 sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS)); 4929 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 4930 sc->sc_beacons = 0; 4931 taskqueue_unblock(sc->sc_tq); 4932 } 4933 4934 ni = ieee80211_ref_node(vap->iv_bss); 4935 rfilt = ath_calcrxfilter(sc); 4936 stamode = (vap->iv_opmode == IEEE80211_M_STA || 4937 vap->iv_opmode == IEEE80211_M_AHDEMO || 4938 vap->iv_opmode == IEEE80211_M_IBSS); 4939 if (stamode && nstate == IEEE80211_S_RUN) { 4940 sc->sc_curaid = ni->ni_associd; 4941 IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid); 4942 ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid); 4943 } 4944 DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n", 4945 __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid); 4946 ath_hal_setrxfilter(ah, rfilt); 4947 4948 /* XXX is this to restore keycache on resume? */ 4949 if (vap->iv_opmode != IEEE80211_M_STA && 4950 (vap->iv_flags & IEEE80211_F_PRIVACY)) { 4951 for (i = 0; i < IEEE80211_WEP_NKID; i++) 4952 if (ath_hal_keyisvalid(ah, i)) 4953 ath_hal_keysetmac(ah, i, ni->ni_bssid); 4954 } 4955 4956 /* 4957 * Invoke the parent method to do net80211 work. 4958 */ 4959 error = avp->av_newstate(vap, nstate, arg); 4960 if (error != 0) 4961 goto bad; 4962 4963 /* 4964 * See above: ensure av_newstate() doesn't drop the lock 4965 * on us. 4966 */ 4967 IEEE80211_LOCK_ASSERT(ic); 4968 4969 if (nstate == IEEE80211_S_RUN) { 4970 /* NB: collect bss node again, it may have changed */ 4971 ieee80211_free_node(ni); 4972 ni = ieee80211_ref_node(vap->iv_bss); 4973 4974 DPRINTF(sc, ATH_DEBUG_STATE, 4975 "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s " 4976 "capinfo 0x%04x chan %d\n", __func__, 4977 vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid), 4978 ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan)); 4979 4980 switch (vap->iv_opmode) { 4981 #ifdef IEEE80211_SUPPORT_TDMA 4982 case IEEE80211_M_AHDEMO: 4983 if ((vap->iv_caps & IEEE80211_C_TDMA) == 0) 4984 break; 4985 /* fall thru... */ 4986 #endif 4987 case IEEE80211_M_HOSTAP: 4988 case IEEE80211_M_IBSS: 4989 case IEEE80211_M_MBSS: 4990 /* 4991 * Allocate and setup the beacon frame. 4992 * 4993 * Stop any previous beacon DMA. This may be 4994 * necessary, for example, when an ibss merge 4995 * causes reconfiguration; there will be a state 4996 * transition from RUN->RUN that means we may 4997 * be called with beacon transmission active. 4998 */ 4999 ath_hal_stoptxdma(ah, sc->sc_bhalq); 5000 5001 error = ath_beacon_alloc(sc, ni); 5002 if (error != 0) 5003 goto bad; 5004 /* 5005 * If joining an adhoc network defer beacon timer 5006 * configuration to the next beacon frame so we 5007 * have a current TSF to use. Otherwise we're 5008 * starting an ibss/bss so there's no need to delay; 5009 * if this is the first vap moving to RUN state, then 5010 * beacon state needs to be [re]configured. 5011 */ 5012 if (vap->iv_opmode == IEEE80211_M_IBSS && 5013 ni->ni_tstamp.tsf != 0) { 5014 sc->sc_syncbeacon = 1; 5015 } else if (!sc->sc_beacons) { 5016 #ifdef IEEE80211_SUPPORT_TDMA 5017 if (vap->iv_caps & IEEE80211_C_TDMA) 5018 ath_tdma_config(sc, vap); 5019 else 5020 #endif 5021 ath_beacon_config(sc, vap); 5022 sc->sc_beacons = 1; 5023 } 5024 break; 5025 case IEEE80211_M_STA: 5026 /* 5027 * Defer beacon timer configuration to the next 5028 * beacon frame so we have a current TSF to use 5029 * (any TSF collected when scanning is likely old). 5030 * However if it's due to a CSA -> RUN transition, 5031 * force a beacon update so we pick up a lack of 5032 * beacons from an AP in CAC and thus force a 5033 * scan. 5034 * 5035 * And, there's also corner cases here where 5036 * after a scan, the AP may have disappeared. 5037 * In that case, we may not receive an actual 5038 * beacon to update the beacon timer and thus we 5039 * won't get notified of the missing beacons. 5040 */ 5041 sc->sc_syncbeacon = 1; 5042 #if 0 5043 if (csa_run_transition) 5044 #endif 5045 ath_beacon_config(sc, vap); 5046 5047 /* 5048 * PR: kern/175227 5049 * 5050 * Reconfigure beacons during reset; as otherwise 5051 * we won't get the beacon timers reprogrammed 5052 * after a reset and thus we won't pick up a 5053 * beacon miss interrupt. 5054 * 5055 * Hopefully we'll see a beacon before the BMISS 5056 * timer fires (too often), leading to a STA 5057 * disassociation. 5058 */ 5059 sc->sc_beacons = 1; 5060 break; 5061 case IEEE80211_M_MONITOR: 5062 /* 5063 * Monitor mode vaps have only INIT->RUN and RUN->RUN 5064 * transitions so we must re-enable interrupts here to 5065 * handle the case of a single monitor mode vap. 5066 */ 5067 ath_hal_intrset(ah, sc->sc_imask); 5068 break; 5069 case IEEE80211_M_WDS: 5070 break; 5071 default: 5072 break; 5073 } 5074 /* 5075 * Let the hal process statistics collected during a 5076 * scan so it can provide calibrated noise floor data. 5077 */ 5078 ath_hal_process_noisefloor(ah); 5079 /* 5080 * Reset rssi stats; maybe not the best place... 5081 */ 5082 sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; 5083 sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; 5084 sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; 5085 /* 5086 * Finally, start any timers and the task q thread 5087 * (in case we didn't go through SCAN state). 5088 */ 5089 if (ath_longcalinterval != 0) { 5090 /* start periodic recalibration timer */ 5091 callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc); 5092 } else { 5093 DPRINTF(sc, ATH_DEBUG_CALIBRATE, 5094 "%s: calibration disabled\n", __func__); 5095 } 5096 taskqueue_unblock(sc->sc_tq); 5097 } else if (nstate == IEEE80211_S_INIT) { 5098 /* 5099 * If there are no vaps left in RUN state then 5100 * shutdown host/driver operation: 5101 * o disable interrupts 5102 * o disable the task queue thread 5103 * o mark beacon processing as stopped 5104 */ 5105 if (!ath_isanyrunningvaps(vap)) { 5106 sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS); 5107 /* disable interrupts */ 5108 ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL); 5109 taskqueue_block(sc->sc_tq); 5110 sc->sc_beacons = 0; 5111 } 5112 #ifdef IEEE80211_SUPPORT_TDMA 5113 ath_hal_setcca(ah, AH_TRUE); 5114 #endif 5115 } 5116 bad: 5117 ieee80211_free_node(ni); 5118 return error; 5119 } 5120 5121 /* 5122 * Allocate a key cache slot to the station so we can 5123 * setup a mapping from key index to node. The key cache 5124 * slot is needed for managing antenna state and for 5125 * compression when stations do not use crypto. We do 5126 * it uniliaterally here; if crypto is employed this slot 5127 * will be reassigned. 5128 */ 5129 static void 5130 ath_setup_stationkey(struct ieee80211_node *ni) 5131 { 5132 struct ieee80211vap *vap = ni->ni_vap; 5133 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5134 ieee80211_keyix keyix, rxkeyix; 5135 5136 /* XXX should take a locked ref to vap->iv_bss */ 5137 if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) { 5138 /* 5139 * Key cache is full; we'll fall back to doing 5140 * the more expensive lookup in software. Note 5141 * this also means no h/w compression. 5142 */ 5143 /* XXX msg+statistic */ 5144 } else { 5145 /* XXX locking? */ 5146 ni->ni_ucastkey.wk_keyix = keyix; 5147 ni->ni_ucastkey.wk_rxkeyix = rxkeyix; 5148 /* NB: must mark device key to get called back on delete */ 5149 ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY; 5150 IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr); 5151 /* NB: this will create a pass-thru key entry */ 5152 ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss); 5153 } 5154 } 5155 5156 /* 5157 * Setup driver-specific state for a newly associated node. 5158 * Note that we're called also on a re-associate, the isnew 5159 * param tells us if this is the first time or not. 5160 */ 5161 static void 5162 ath_newassoc(struct ieee80211_node *ni, int isnew) 5163 { 5164 struct ath_node *an = ATH_NODE(ni); 5165 struct ieee80211vap *vap = ni->ni_vap; 5166 struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc; 5167 const struct ieee80211_txparam *tp = ni->ni_txparms; 5168 5169 an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate); 5170 an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate); 5171 5172 ath_rate_newassoc(sc, an, isnew); 5173 if (isnew && 5174 (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey && 5175 ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE) 5176 ath_setup_stationkey(ni); 5177 } 5178 5179 static int 5180 ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg, 5181 int nchans, struct ieee80211_channel chans[]) 5182 { 5183 struct ath_softc *sc = ic->ic_ifp->if_softc; 5184 struct ath_hal *ah = sc->sc_ah; 5185 HAL_STATUS status; 5186 5187 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5188 "%s: rd %u cc %u location %c%s\n", 5189 __func__, reg->regdomain, reg->country, reg->location, 5190 reg->ecm ? " ecm" : ""); 5191 5192 status = ath_hal_set_channels(ah, chans, nchans, 5193 reg->country, reg->regdomain); 5194 if (status != HAL_OK) { 5195 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n", 5196 __func__, status); 5197 return EINVAL; /* XXX */ 5198 } 5199 5200 return 0; 5201 } 5202 5203 static void 5204 ath_getradiocaps(struct ieee80211com *ic, 5205 int maxchans, int *nchans, struct ieee80211_channel chans[]) 5206 { 5207 struct ath_softc *sc = ic->ic_ifp->if_softc; 5208 struct ath_hal *ah = sc->sc_ah; 5209 5210 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n", 5211 __func__, SKU_DEBUG, CTRY_DEFAULT); 5212 5213 /* XXX check return */ 5214 (void) ath_hal_getchannels(ah, chans, maxchans, nchans, 5215 HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE); 5216 5217 } 5218 5219 static int 5220 ath_getchannels(struct ath_softc *sc) 5221 { 5222 struct ifnet *ifp = sc->sc_ifp; 5223 struct ieee80211com *ic = ifp->if_l2com; 5224 struct ath_hal *ah = sc->sc_ah; 5225 HAL_STATUS status; 5226 5227 /* 5228 * Collect channel set based on EEPROM contents. 5229 */ 5230 status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX, 5231 &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE); 5232 if (status != HAL_OK) { 5233 if_printf(ifp, "%s: unable to collect channel list from hal, " 5234 "status %d\n", __func__, status); 5235 return EINVAL; 5236 } 5237 (void) ath_hal_getregdomain(ah, &sc->sc_eerd); 5238 ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */ 5239 /* XXX map Atheros sku's to net80211 SKU's */ 5240 /* XXX net80211 types too small */ 5241 ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd; 5242 ic->ic_regdomain.country = (uint16_t) sc->sc_eecc; 5243 ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */ 5244 ic->ic_regdomain.isocc[1] = ' '; 5245 5246 ic->ic_regdomain.ecm = 1; 5247 ic->ic_regdomain.location = 'I'; 5248 5249 DPRINTF(sc, ATH_DEBUG_REGDOMAIN, 5250 "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n", 5251 __func__, sc->sc_eerd, sc->sc_eecc, 5252 ic->ic_regdomain.regdomain, ic->ic_regdomain.country, 5253 ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : ""); 5254 return 0; 5255 } 5256 5257 static int 5258 ath_rate_setup(struct ath_softc *sc, u_int mode) 5259 { 5260 struct ath_hal *ah = sc->sc_ah; 5261 const HAL_RATE_TABLE *rt; 5262 5263 switch (mode) { 5264 case IEEE80211_MODE_11A: 5265 rt = ath_hal_getratetable(ah, HAL_MODE_11A); 5266 break; 5267 case IEEE80211_MODE_HALF: 5268 rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE); 5269 break; 5270 case IEEE80211_MODE_QUARTER: 5271 rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE); 5272 break; 5273 case IEEE80211_MODE_11B: 5274 rt = ath_hal_getratetable(ah, HAL_MODE_11B); 5275 break; 5276 case IEEE80211_MODE_11G: 5277 rt = ath_hal_getratetable(ah, HAL_MODE_11G); 5278 break; 5279 case IEEE80211_MODE_TURBO_A: 5280 rt = ath_hal_getratetable(ah, HAL_MODE_108A); 5281 break; 5282 case IEEE80211_MODE_TURBO_G: 5283 rt = ath_hal_getratetable(ah, HAL_MODE_108G); 5284 break; 5285 case IEEE80211_MODE_STURBO_A: 5286 rt = ath_hal_getratetable(ah, HAL_MODE_TURBO); 5287 break; 5288 case IEEE80211_MODE_11NA: 5289 rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20); 5290 break; 5291 case IEEE80211_MODE_11NG: 5292 rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20); 5293 break; 5294 default: 5295 DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n", 5296 __func__, mode); 5297 return 0; 5298 } 5299 sc->sc_rates[mode] = rt; 5300 return (rt != NULL); 5301 } 5302 5303 static void 5304 ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode) 5305 { 5306 #define N(a) (sizeof(a)/sizeof(a[0])) 5307 /* NB: on/off times from the Atheros NDIS driver, w/ permission */ 5308 static const struct { 5309 u_int rate; /* tx/rx 802.11 rate */ 5310 u_int16_t timeOn; /* LED on time (ms) */ 5311 u_int16_t timeOff; /* LED off time (ms) */ 5312 } blinkrates[] = { 5313 { 108, 40, 10 }, 5314 { 96, 44, 11 }, 5315 { 72, 50, 13 }, 5316 { 48, 57, 14 }, 5317 { 36, 67, 16 }, 5318 { 24, 80, 20 }, 5319 { 22, 100, 25 }, 5320 { 18, 133, 34 }, 5321 { 12, 160, 40 }, 5322 { 10, 200, 50 }, 5323 { 6, 240, 58 }, 5324 { 4, 267, 66 }, 5325 { 2, 400, 100 }, 5326 { 0, 500, 130 }, 5327 /* XXX half/quarter rates */ 5328 }; 5329 const HAL_RATE_TABLE *rt; 5330 int i, j; 5331 5332 memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap)); 5333 rt = sc->sc_rates[mode]; 5334 KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode)); 5335 for (i = 0; i < rt->rateCount; i++) { 5336 uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5337 if (rt->info[i].phy != IEEE80211_T_HT) 5338 sc->sc_rixmap[ieeerate] = i; 5339 else 5340 sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i; 5341 } 5342 memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap)); 5343 for (i = 0; i < N(sc->sc_hwmap); i++) { 5344 if (i >= rt->rateCount) { 5345 sc->sc_hwmap[i].ledon = (500 * hz) / 1000; 5346 sc->sc_hwmap[i].ledoff = (130 * hz) / 1000; 5347 continue; 5348 } 5349 sc->sc_hwmap[i].ieeerate = 5350 rt->info[i].dot11Rate & IEEE80211_RATE_VAL; 5351 if (rt->info[i].phy == IEEE80211_T_HT) 5352 sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS; 5353 sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD; 5354 if (rt->info[i].shortPreamble || 5355 rt->info[i].phy == IEEE80211_T_OFDM) 5356 sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE; 5357 sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags; 5358 for (j = 0; j < N(blinkrates)-1; j++) 5359 if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate) 5360 break; 5361 /* NB: this uses the last entry if the rate isn't found */ 5362 /* XXX beware of overlow */ 5363 sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000; 5364 sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000; 5365 } 5366 sc->sc_currates = rt; 5367 sc->sc_curmode = mode; 5368 /* 5369 * All protection frames are transmited at 2Mb/s for 5370 * 11g, otherwise at 1Mb/s. 5371 */ 5372 if (mode == IEEE80211_MODE_11G) 5373 sc->sc_protrix = ath_tx_findrix(sc, 2*2); 5374 else 5375 sc->sc_protrix = ath_tx_findrix(sc, 2*1); 5376 /* NB: caller is responsible for resetting rate control state */ 5377 #undef N 5378 } 5379 5380 static void 5381 ath_watchdog(void *arg) 5382 { 5383 struct ath_softc *sc = arg; 5384 int do_reset = 0; 5385 5386 if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) { 5387 struct ifnet *ifp = sc->sc_ifp; 5388 uint32_t hangs; 5389 5390 if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) && 5391 hangs != 0) { 5392 if_printf(ifp, "%s hang detected (0x%x)\n", 5393 hangs & 0xff ? "bb" : "mac", hangs); 5394 } else 5395 if_printf(ifp, "device timeout\n"); 5396 do_reset = 1; 5397 ifp->if_oerrors++; 5398 sc->sc_stats.ast_watchdog++; 5399 } 5400 5401 /* 5402 * We can't hold the lock across the ath_reset() call. 5403 * 5404 * And since this routine can't hold a lock and sleep, 5405 * do the reset deferred. 5406 */ 5407 if (do_reset) { 5408 taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask); 5409 } 5410 5411 callout_schedule(&sc->sc_wd_ch, hz); 5412 } 5413 5414 /* 5415 * Fetch the rate control statistics for the given node. 5416 */ 5417 static int 5418 ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs) 5419 { 5420 struct ath_node *an; 5421 struct ieee80211com *ic = sc->sc_ifp->if_l2com; 5422 struct ieee80211_node *ni; 5423 int error = 0; 5424 5425 /* Perform a lookup on the given node */ 5426 ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr); 5427 if (ni == NULL) { 5428 error = EINVAL; 5429 goto bad; 5430 } 5431 5432 /* Lock the ath_node */ 5433 an = ATH_NODE(ni); 5434 ATH_NODE_LOCK(an); 5435 5436 /* Fetch the rate control stats for this node */ 5437 error = ath_rate_fetch_node_stats(sc, an, rs); 5438 5439 /* No matter what happens here, just drop through */ 5440 5441 /* Unlock the ath_node */ 5442 ATH_NODE_UNLOCK(an); 5443 5444 /* Unref the node */ 5445 ieee80211_node_decref(ni); 5446 5447 bad: 5448 return (error); 5449 } 5450 5451 #ifdef ATH_DIAGAPI 5452 /* 5453 * Diagnostic interface to the HAL. This is used by various 5454 * tools to do things like retrieve register contents for 5455 * debugging. The mechanism is intentionally opaque so that 5456 * it can change frequently w/o concern for compatiblity. 5457 */ 5458 static int 5459 ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad) 5460 { 5461 struct ath_hal *ah = sc->sc_ah; 5462 u_int id = ad->ad_id & ATH_DIAG_ID; 5463 void *indata = NULL; 5464 void *outdata = NULL; 5465 u_int32_t insize = ad->ad_in_size; 5466 u_int32_t outsize = ad->ad_out_size; 5467 int error = 0; 5468 5469 if (ad->ad_id & ATH_DIAG_IN) { 5470 /* 5471 * Copy in data. 5472 */ 5473 indata = malloc(insize, M_TEMP, M_NOWAIT); 5474 if (indata == NULL) { 5475 error = ENOMEM; 5476 goto bad; 5477 } 5478 error = copyin(ad->ad_in_data, indata, insize); 5479 if (error) 5480 goto bad; 5481 } 5482 if (ad->ad_id & ATH_DIAG_DYN) { 5483 /* 5484 * Allocate a buffer for the results (otherwise the HAL 5485 * returns a pointer to a buffer where we can read the 5486 * results). Note that we depend on the HAL leaving this 5487 * pointer for us to use below in reclaiming the buffer; 5488 * may want to be more defensive. 5489 */ 5490 outdata = malloc(outsize, M_TEMP, M_NOWAIT); 5491 if (outdata == NULL) { 5492 error = ENOMEM; 5493 goto bad; 5494 } 5495 } 5496 if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) { 5497 if (outsize < ad->ad_out_size) 5498 ad->ad_out_size = outsize; 5499 if (outdata != NULL) 5500 error = copyout(outdata, ad->ad_out_data, 5501 ad->ad_out_size); 5502 } else { 5503 error = EINVAL; 5504 } 5505 bad: 5506 if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL) 5507 free(indata, M_TEMP); 5508 if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL) 5509 free(outdata, M_TEMP); 5510 return error; 5511 } 5512 #endif /* ATH_DIAGAPI */ 5513 5514 static int 5515 ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 5516 { 5517 #define IS_RUNNING(ifp) \ 5518 ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 5519 struct ath_softc *sc = ifp->if_softc; 5520 struct ieee80211com *ic = ifp->if_l2com; 5521 struct ifreq *ifr = (struct ifreq *)data; 5522 const HAL_RATE_TABLE *rt; 5523 int error = 0; 5524 5525 switch (cmd) { 5526 case SIOCSIFFLAGS: 5527 ATH_LOCK(sc); 5528 if (IS_RUNNING(ifp)) { 5529 /* 5530 * To avoid rescanning another access point, 5531 * do not call ath_init() here. Instead, 5532 * only reflect promisc mode settings. 5533 */ 5534 ath_mode_init(sc); 5535 } else if (ifp->if_flags & IFF_UP) { 5536 /* 5537 * Beware of being called during attach/detach 5538 * to reset promiscuous mode. In that case we 5539 * will still be marked UP but not RUNNING. 5540 * However trying to re-init the interface 5541 * is the wrong thing to do as we've already 5542 * torn down much of our state. There's 5543 * probably a better way to deal with this. 5544 */ 5545 if (!sc->sc_invalid) 5546 ath_init(sc); /* XXX lose error */ 5547 } else { 5548 ath_stop_locked(ifp); 5549 #ifdef notyet 5550 /* XXX must wakeup in places like ath_vap_delete */ 5551 if (!sc->sc_invalid) 5552 ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP); 5553 #endif 5554 } 5555 ATH_UNLOCK(sc); 5556 break; 5557 case SIOCGIFMEDIA: 5558 case SIOCSIFMEDIA: 5559 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 5560 break; 5561 case SIOCGATHSTATS: 5562 /* NB: embed these numbers to get a consistent view */ 5563 sc->sc_stats.ast_tx_packets = ifp->if_opackets; 5564 sc->sc_stats.ast_rx_packets = ifp->if_ipackets; 5565 sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi); 5566 sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi); 5567 #ifdef IEEE80211_SUPPORT_TDMA 5568 sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap); 5569 sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam); 5570 #endif 5571 rt = sc->sc_currates; 5572 sc->sc_stats.ast_tx_rate = 5573 rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC; 5574 if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT) 5575 sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS; 5576 return copyout(&sc->sc_stats, 5577 ifr->ifr_data, sizeof (sc->sc_stats)); 5578 case SIOCGATHAGSTATS: 5579 return copyout(&sc->sc_aggr_stats, 5580 ifr->ifr_data, sizeof (sc->sc_aggr_stats)); 5581 case SIOCZATHSTATS: 5582 error = priv_check(curthread, PRIV_DRIVER); 5583 if (error == 0) { 5584 memset(&sc->sc_stats, 0, sizeof(sc->sc_stats)); 5585 memset(&sc->sc_aggr_stats, 0, 5586 sizeof(sc->sc_aggr_stats)); 5587 memset(&sc->sc_intr_stats, 0, 5588 sizeof(sc->sc_intr_stats)); 5589 } 5590 break; 5591 #ifdef ATH_DIAGAPI 5592 case SIOCGATHDIAG: 5593 error = ath_ioctl_diag(sc, (struct ath_diag *) ifr); 5594 break; 5595 case SIOCGATHPHYERR: 5596 error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr); 5597 break; 5598 #endif 5599 case SIOCGATHSPECTRAL: 5600 error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr); 5601 break; 5602 case SIOCGATHNODERATESTATS: 5603 error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr); 5604 break; 5605 case SIOCGIFADDR: 5606 error = ether_ioctl(ifp, cmd, data); 5607 break; 5608 default: 5609 error = EINVAL; 5610 break; 5611 } 5612 return error; 5613 #undef IS_RUNNING 5614 } 5615 5616 /* 5617 * Announce various information on device/driver attach. 5618 */ 5619 static void 5620 ath_announce(struct ath_softc *sc) 5621 { 5622 struct ifnet *ifp = sc->sc_ifp; 5623 struct ath_hal *ah = sc->sc_ah; 5624 5625 if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n", 5626 ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev, 5627 ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf); 5628 if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n", 5629 ah->ah_analog2GhzRev, ah->ah_analog5GhzRev); 5630 if (bootverbose) { 5631 int i; 5632 for (i = 0; i <= WME_AC_VO; i++) { 5633 struct ath_txq *txq = sc->sc_ac2q[i]; 5634 if_printf(ifp, "Use hw queue %u for %s traffic\n", 5635 txq->axq_qnum, ieee80211_wme_acnames[i]); 5636 } 5637 if_printf(ifp, "Use hw queue %u for CAB traffic\n", 5638 sc->sc_cabq->axq_qnum); 5639 if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq); 5640 } 5641 if (ath_rxbuf != ATH_RXBUF) 5642 if_printf(ifp, "using %u rx buffers\n", ath_rxbuf); 5643 if (ath_txbuf != ATH_TXBUF) 5644 if_printf(ifp, "using %u tx buffers\n", ath_txbuf); 5645 if (sc->sc_mcastkey && bootverbose) 5646 if_printf(ifp, "using multicast key search\n"); 5647 } 5648 5649 static void 5650 ath_dfs_tasklet(void *p, int npending) 5651 { 5652 struct ath_softc *sc = (struct ath_softc *) p; 5653 struct ifnet *ifp = sc->sc_ifp; 5654 struct ieee80211com *ic = ifp->if_l2com; 5655 5656 /* 5657 * If previous processing has found a radar event, 5658 * signal this to the net80211 layer to begin DFS 5659 * processing. 5660 */ 5661 if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) { 5662 /* DFS event found, initiate channel change */ 5663 /* 5664 * XXX doesn't currently tell us whether the event 5665 * XXX was found in the primary or extension 5666 * XXX channel! 5667 */ 5668 IEEE80211_LOCK(ic); 5669 ieee80211_dfs_notify_radar(ic, sc->sc_curchan); 5670 IEEE80211_UNLOCK(ic); 5671 } 5672 } 5673 5674 /* 5675 * Enable/disable power save. This must be called with 5676 * no TX driver locks currently held, so it should only 5677 * be called from the RX path (which doesn't hold any 5678 * TX driver locks.) 5679 */ 5680 static void 5681 ath_node_powersave(struct ieee80211_node *ni, int enable) 5682 { 5683 #ifdef ATH_SW_PSQ 5684 struct ath_node *an = ATH_NODE(ni); 5685 struct ieee80211com *ic = ni->ni_ic; 5686 struct ath_softc *sc = ic->ic_ifp->if_softc; 5687 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5688 5689 ATH_NODE_UNLOCK_ASSERT(an); 5690 /* XXX and no TXQ locks should be held here */ 5691 5692 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n", 5693 __func__, ni, enable); 5694 5695 /* Suspend or resume software queue handling */ 5696 if (enable) 5697 ath_tx_node_sleep(sc, an); 5698 else 5699 ath_tx_node_wakeup(sc, an); 5700 5701 /* Update net80211 state */ 5702 avp->av_node_ps(ni, enable); 5703 #else 5704 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5705 5706 /* Update net80211 state */ 5707 avp->av_node_ps(ni, enable); 5708 #endif/* ATH_SW_PSQ */ 5709 } 5710 5711 /* 5712 * Notification from net80211 that the powersave queue state has 5713 * changed. 5714 * 5715 * Since the software queue also may have some frames: 5716 * 5717 * + if the node software queue has frames and the TID state 5718 * is 0, we set the TIM; 5719 * + if the node and the stack are both empty, we clear the TIM bit. 5720 * + If the stack tries to set the bit, always set it. 5721 * + If the stack tries to clear the bit, only clear it if the 5722 * software queue in question is also cleared. 5723 * 5724 * TODO: this is called during node teardown; so let's ensure this 5725 * is all correctly handled and that the TIM bit is cleared. 5726 * It may be that the node flush is called _AFTER_ the net80211 5727 * stack clears the TIM. 5728 * 5729 * Here is the racy part. Since it's possible >1 concurrent, 5730 * overlapping TXes will appear complete with a TX completion in 5731 * another thread, it's possible that the concurrent TIM calls will 5732 * clash. We can't hold the node lock here because setting the 5733 * TIM grabs the net80211 comlock and this may cause a LOR. 5734 * The solution is either to totally serialise _everything_ at 5735 * this point (ie, all TX, completion and any reset/flush go into 5736 * one taskqueue) or a new "ath TIM lock" needs to be created that 5737 * just wraps the driver state change and this call to avp->av_set_tim(). 5738 * 5739 * The same race exists in the net80211 power save queue handling 5740 * as well. Since multiple transmitting threads may queue frames 5741 * into the driver, as well as ps-poll and the driver transmitting 5742 * frames (and thus clearing the psq), it's quite possible that 5743 * a packet entering the PSQ and a ps-poll being handled will 5744 * race, causing the TIM to be cleared and not re-set. 5745 */ 5746 static int 5747 ath_node_set_tim(struct ieee80211_node *ni, int enable) 5748 { 5749 #ifdef ATH_SW_PSQ 5750 struct ieee80211com *ic = ni->ni_ic; 5751 struct ath_softc *sc = ic->ic_ifp->if_softc; 5752 struct ath_node *an = ATH_NODE(ni); 5753 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5754 int changed = 0; 5755 5756 ATH_NODE_UNLOCK_ASSERT(an); 5757 5758 /* 5759 * For now, just track and then update the TIM. 5760 */ 5761 ATH_NODE_LOCK(an); 5762 an->an_stack_psq = enable; 5763 5764 /* 5765 * This will get called for all operating modes, 5766 * even if avp->av_set_tim is unset. 5767 * It's currently set for hostap/ibss modes; but 5768 * the same infrastructure is used for both STA 5769 * and AP/IBSS node power save. 5770 */ 5771 if (avp->av_set_tim == NULL) { 5772 ATH_NODE_UNLOCK(an); 5773 return (0); 5774 } 5775 5776 /* 5777 * If setting the bit, always set it here. 5778 * If clearing the bit, only clear it if the 5779 * software queue is also empty. 5780 * 5781 * If the node has left power save, just clear the TIM 5782 * bit regardless of the state of the power save queue. 5783 * 5784 * XXX TODO: although atomics are used, it's quite possible 5785 * that a race will occur between this and setting/clearing 5786 * in another thread. TX completion will occur always in 5787 * one thread, however setting/clearing the TIM bit can come 5788 * from a variety of different process contexts! 5789 */ 5790 if (enable && an->an_tim_set == 1) { 5791 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5792 "%s: an=%p, enable=%d, tim_set=1, ignoring\n", 5793 __func__, an, enable); 5794 ATH_NODE_UNLOCK(an); 5795 } else if (enable) { 5796 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5797 "%s: an=%p, enable=%d, enabling TIM\n", 5798 __func__, an, enable); 5799 an->an_tim_set = 1; 5800 ATH_NODE_UNLOCK(an); 5801 changed = avp->av_set_tim(ni, enable); 5802 } else if (atomic_load_acq_int(&an->an_swq_depth) == 0) { 5803 /* disable */ 5804 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5805 "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n", 5806 __func__, an, enable); 5807 an->an_tim_set = 0; 5808 ATH_NODE_UNLOCK(an); 5809 changed = avp->av_set_tim(ni, enable); 5810 } else if (! an->an_is_powersave) { 5811 /* 5812 * disable regardless; the node isn't in powersave now 5813 */ 5814 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5815 "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n", 5816 __func__, an, enable); 5817 an->an_tim_set = 0; 5818 ATH_NODE_UNLOCK(an); 5819 changed = avp->av_set_tim(ni, enable); 5820 } else { 5821 /* 5822 * psq disable, node is currently in powersave, node 5823 * software queue isn't empty, so don't clear the TIM bit 5824 * for now. 5825 */ 5826 ATH_NODE_UNLOCK(an); 5827 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5828 "%s: enable=%d, an_swq_depth > 0, ignoring\n", 5829 __func__, enable); 5830 changed = 0; 5831 } 5832 5833 return (changed); 5834 #else 5835 struct ath_vap *avp = ATH_VAP(ni->ni_vap); 5836 5837 /* 5838 * Some operating modes don't set av_set_tim(), so don't 5839 * update it here. 5840 */ 5841 if (avp->av_set_tim == NULL) 5842 return (0); 5843 5844 return (avp->av_set_tim(ni, enable)); 5845 #endif /* ATH_SW_PSQ */ 5846 } 5847 5848 /* 5849 * Set or update the TIM from the software queue. 5850 * 5851 * Check the software queue depth before attempting to do lock 5852 * anything; that avoids trying to obtain the lock. Then, 5853 * re-check afterwards to ensure nothing has changed in the 5854 * meantime. 5855 * 5856 * set: This is designed to be called from the TX path, after 5857 * a frame has been queued; to see if the swq > 0. 5858 * 5859 * clear: This is designed to be called from the buffer completion point 5860 * (right now it's ath_tx_default_comp()) where the state of 5861 * a software queue has changed. 5862 * 5863 * It makes sense to place it at buffer free / completion rather 5864 * than after each software queue operation, as there's no real 5865 * point in churning the TIM bit as the last frames in the software 5866 * queue are transmitted. If they fail and we retry them, we'd 5867 * just be setting the TIM bit again anyway. 5868 */ 5869 void 5870 ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni, 5871 int enable) 5872 { 5873 #ifdef ATH_SW_PSQ 5874 struct ath_node *an; 5875 struct ath_vap *avp; 5876 5877 /* Don't do this for broadcast/etc frames */ 5878 if (ni == NULL) 5879 return; 5880 5881 an = ATH_NODE(ni); 5882 avp = ATH_VAP(ni->ni_vap); 5883 5884 /* 5885 * And for operating modes without the TIM handler set, let's 5886 * just skip those. 5887 */ 5888 if (avp->av_set_tim == NULL) 5889 return; 5890 5891 ATH_NODE_UNLOCK_ASSERT(an); 5892 5893 if (enable) { 5894 /* 5895 * Don't bother grabbing the lock unless the queue is not 5896 * empty. 5897 */ 5898 if (atomic_load_acq_int(&an->an_swq_depth) == 0) 5899 return; 5900 5901 ATH_NODE_LOCK(an); 5902 if (an->an_is_powersave && 5903 an->an_tim_set == 0 && 5904 atomic_load_acq_int(&an->an_swq_depth) != 0) { 5905 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5906 "%s: an=%p, swq_depth>0, tim_set=0, set!\n", 5907 __func__, an); 5908 an->an_tim_set = 1; 5909 ATH_NODE_UNLOCK(an); 5910 (void) avp->av_set_tim(ni, 1); 5911 } else { 5912 ATH_NODE_UNLOCK(an); 5913 } 5914 } else { 5915 /* 5916 * Don't bother grabbing the lock unless the queue is empty. 5917 */ 5918 if (atomic_load_acq_int(&an->an_swq_depth) != 0) 5919 return; 5920 5921 ATH_NODE_LOCK(an); 5922 if (an->an_is_powersave && 5923 an->an_stack_psq == 0 && 5924 an->an_tim_set == 1 && 5925 atomic_load_acq_int(&an->an_swq_depth) == 0) { 5926 DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, 5927 "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0," 5928 " clear!\n", 5929 __func__, an); 5930 an->an_tim_set = 0; 5931 ATH_NODE_UNLOCK(an); 5932 (void) avp->av_set_tim(ni, 0); 5933 } else { 5934 ATH_NODE_UNLOCK(an); 5935 } 5936 } 5937 #else 5938 return; 5939 #endif /* ATH_SW_PSQ */ 5940 } 5941 5942 MODULE_VERSION(if_ath, 1); 5943 MODULE_DEPEND(if_ath, wlan, 1, 1, 1); /* 802.11 media layer */ 5944 #if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) 5945 MODULE_DEPEND(if_ath, alq, 1, 1, 1); 5946 #endif 5947