1eda14cbcSMatt Macy /*
2eda14cbcSMatt Macy * CDDL HEADER START
3eda14cbcSMatt Macy *
4eda14cbcSMatt Macy * The contents of this file are subject to the terms of the
5eda14cbcSMatt Macy * Common Development and Distribution License (the "License").
6eda14cbcSMatt Macy * You may not use this file except in compliance with the License.
7eda14cbcSMatt Macy *
8eda14cbcSMatt Macy * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9271171e0SMartin Matuska * or https://opensource.org/licenses/CDDL-1.0.
10eda14cbcSMatt Macy * See the License for the specific language governing permissions
11eda14cbcSMatt Macy * and limitations under the License.
12eda14cbcSMatt Macy *
13eda14cbcSMatt Macy * When distributing Covered Code, include this CDDL HEADER in each
14eda14cbcSMatt Macy * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15eda14cbcSMatt Macy * If applicable, add the following below this CDDL HEADER, with the
16eda14cbcSMatt Macy * fields enclosed by brackets "[]" replaced with your own identifying
17eda14cbcSMatt Macy * information: Portions Copyright [yyyy] [name of copyright owner]
18eda14cbcSMatt Macy *
19eda14cbcSMatt Macy * CDDL HEADER END
20eda14cbcSMatt Macy */
21eda14cbcSMatt Macy /*
22eda14cbcSMatt Macy * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23eda14cbcSMatt Macy */
24eda14cbcSMatt Macy
25eda14cbcSMatt Macy #include <sys/zfs_context.h>
26eda14cbcSMatt Macy #include <sys/dmu.h>
27eda14cbcSMatt Macy #include <sys/avl.h>
28eda14cbcSMatt Macy #include <sys/zap.h>
29eda14cbcSMatt Macy #include <sys/nvpair.h>
30eda14cbcSMatt Macy #ifdef _KERNEL
31eda14cbcSMatt Macy #include <sys/sid.h>
32eda14cbcSMatt Macy #include <sys/zfs_vfsops.h>
33eda14cbcSMatt Macy #include <sys/zfs_znode.h>
34eda14cbcSMatt Macy #endif
35eda14cbcSMatt Macy #include <sys/zfs_fuid.h>
36eda14cbcSMatt Macy
37eda14cbcSMatt Macy /*
38eda14cbcSMatt Macy * FUID Domain table(s).
39eda14cbcSMatt Macy *
40eda14cbcSMatt Macy * The FUID table is stored as a packed nvlist of an array
41eda14cbcSMatt Macy * of nvlists which contain an index, domain string and offset
42eda14cbcSMatt Macy *
43eda14cbcSMatt Macy * During file system initialization the nvlist(s) are read and
44eda14cbcSMatt Macy * two AVL trees are created. One tree is keyed by the index number
45eda14cbcSMatt Macy * and the other by the domain string. Nodes are never removed from
46eda14cbcSMatt Macy * trees, but new entries may be added. If a new entry is added then
47eda14cbcSMatt Macy * the zfsvfs->z_fuid_dirty flag is set to true and the caller will then
48eda14cbcSMatt Macy * be responsible for calling zfs_fuid_sync() to sync the changes to disk.
49eda14cbcSMatt Macy *
50eda14cbcSMatt Macy */
51eda14cbcSMatt Macy
52eda14cbcSMatt Macy #define FUID_IDX "fuid_idx"
53eda14cbcSMatt Macy #define FUID_DOMAIN "fuid_domain"
54eda14cbcSMatt Macy #define FUID_OFFSET "fuid_offset"
55eda14cbcSMatt Macy #define FUID_NVP_ARRAY "fuid_nvlist"
56eda14cbcSMatt Macy
57eda14cbcSMatt Macy typedef struct fuid_domain {
58eda14cbcSMatt Macy avl_node_t f_domnode;
59eda14cbcSMatt Macy avl_node_t f_idxnode;
60eda14cbcSMatt Macy ksiddomain_t *f_ksid;
61eda14cbcSMatt Macy uint64_t f_idx;
62eda14cbcSMatt Macy } fuid_domain_t;
63eda14cbcSMatt Macy
64a0b956f5SMartin Matuska static const char *const nulldomain = "";
65eda14cbcSMatt Macy
66eda14cbcSMatt Macy /*
67eda14cbcSMatt Macy * Compare two indexes.
68eda14cbcSMatt Macy */
69eda14cbcSMatt Macy static int
idx_compare(const void * arg1,const void * arg2)70eda14cbcSMatt Macy idx_compare(const void *arg1, const void *arg2)
71eda14cbcSMatt Macy {
72eda14cbcSMatt Macy const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
73eda14cbcSMatt Macy const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
74eda14cbcSMatt Macy
75eda14cbcSMatt Macy return (TREE_CMP(node1->f_idx, node2->f_idx));
76eda14cbcSMatt Macy }
77eda14cbcSMatt Macy
78eda14cbcSMatt Macy /*
79eda14cbcSMatt Macy * Compare two domain strings.
80eda14cbcSMatt Macy */
81eda14cbcSMatt Macy static int
domain_compare(const void * arg1,const void * arg2)82eda14cbcSMatt Macy domain_compare(const void *arg1, const void *arg2)
83eda14cbcSMatt Macy {
84eda14cbcSMatt Macy const fuid_domain_t *node1 = (const fuid_domain_t *)arg1;
85eda14cbcSMatt Macy const fuid_domain_t *node2 = (const fuid_domain_t *)arg2;
86eda14cbcSMatt Macy int val;
87eda14cbcSMatt Macy
88eda14cbcSMatt Macy val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
89eda14cbcSMatt Macy
90eda14cbcSMatt Macy return (TREE_ISIGN(val));
91eda14cbcSMatt Macy }
92eda14cbcSMatt Macy
93eda14cbcSMatt Macy void
zfs_fuid_avl_tree_create(avl_tree_t * idx_tree,avl_tree_t * domain_tree)94eda14cbcSMatt Macy zfs_fuid_avl_tree_create(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
95eda14cbcSMatt Macy {
96eda14cbcSMatt Macy avl_create(idx_tree, idx_compare,
97eda14cbcSMatt Macy sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
98eda14cbcSMatt Macy avl_create(domain_tree, domain_compare,
99eda14cbcSMatt Macy sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
100eda14cbcSMatt Macy }
101eda14cbcSMatt Macy
102eda14cbcSMatt Macy /*
103eda14cbcSMatt Macy * load initial fuid domain and idx trees. This function is used by
104eda14cbcSMatt Macy * both the kernel and zdb.
105eda14cbcSMatt Macy */
106eda14cbcSMatt Macy uint64_t
zfs_fuid_table_load(objset_t * os,uint64_t fuid_obj,avl_tree_t * idx_tree,avl_tree_t * domain_tree)107eda14cbcSMatt Macy zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
108eda14cbcSMatt Macy avl_tree_t *domain_tree)
109eda14cbcSMatt Macy {
110eda14cbcSMatt Macy dmu_buf_t *db;
111eda14cbcSMatt Macy uint64_t fuid_size;
112eda14cbcSMatt Macy
113eda14cbcSMatt Macy ASSERT(fuid_obj != 0);
114eda14cbcSMatt Macy VERIFY(0 == dmu_bonus_hold(os, fuid_obj,
115eda14cbcSMatt Macy FTAG, &db));
116eda14cbcSMatt Macy fuid_size = *(uint64_t *)db->db_data;
117eda14cbcSMatt Macy dmu_buf_rele(db, FTAG);
118eda14cbcSMatt Macy
119eda14cbcSMatt Macy if (fuid_size) {
120eda14cbcSMatt Macy nvlist_t **fuidnvp;
121eda14cbcSMatt Macy nvlist_t *nvp = NULL;
122eda14cbcSMatt Macy uint_t count;
123eda14cbcSMatt Macy char *packed;
124eda14cbcSMatt Macy int i;
125eda14cbcSMatt Macy
126eda14cbcSMatt Macy packed = kmem_alloc(fuid_size, KM_SLEEP);
127eda14cbcSMatt Macy VERIFY(dmu_read(os, fuid_obj, 0,
128eda14cbcSMatt Macy fuid_size, packed, DMU_READ_PREFETCH) == 0);
129eda14cbcSMatt Macy VERIFY(nvlist_unpack(packed, fuid_size,
130eda14cbcSMatt Macy &nvp, 0) == 0);
131eda14cbcSMatt Macy VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
132eda14cbcSMatt Macy &fuidnvp, &count) == 0);
133eda14cbcSMatt Macy
134eda14cbcSMatt Macy for (i = 0; i != count; i++) {
135eda14cbcSMatt Macy fuid_domain_t *domnode;
1362a58b312SMartin Matuska const char *domain;
137eda14cbcSMatt Macy uint64_t idx;
138eda14cbcSMatt Macy
139eda14cbcSMatt Macy VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
140eda14cbcSMatt Macy &domain) == 0);
141eda14cbcSMatt Macy VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
142eda14cbcSMatt Macy &idx) == 0);
143eda14cbcSMatt Macy
144eda14cbcSMatt Macy domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
145eda14cbcSMatt Macy
146eda14cbcSMatt Macy domnode->f_idx = idx;
147eda14cbcSMatt Macy domnode->f_ksid = ksid_lookupdomain(domain);
148eda14cbcSMatt Macy avl_add(idx_tree, domnode);
149eda14cbcSMatt Macy avl_add(domain_tree, domnode);
150eda14cbcSMatt Macy }
151eda14cbcSMatt Macy nvlist_free(nvp);
152eda14cbcSMatt Macy kmem_free(packed, fuid_size);
153eda14cbcSMatt Macy }
154eda14cbcSMatt Macy return (fuid_size);
155eda14cbcSMatt Macy }
156eda14cbcSMatt Macy
157eda14cbcSMatt Macy void
zfs_fuid_table_destroy(avl_tree_t * idx_tree,avl_tree_t * domain_tree)158eda14cbcSMatt Macy zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
159eda14cbcSMatt Macy {
160eda14cbcSMatt Macy fuid_domain_t *domnode;
161eda14cbcSMatt Macy void *cookie;
162eda14cbcSMatt Macy
163eda14cbcSMatt Macy cookie = NULL;
164eda14cbcSMatt Macy while ((domnode = avl_destroy_nodes(domain_tree, &cookie)))
165eda14cbcSMatt Macy ksiddomain_rele(domnode->f_ksid);
166eda14cbcSMatt Macy
167eda14cbcSMatt Macy avl_destroy(domain_tree);
168eda14cbcSMatt Macy cookie = NULL;
169eda14cbcSMatt Macy while ((domnode = avl_destroy_nodes(idx_tree, &cookie)))
170eda14cbcSMatt Macy kmem_free(domnode, sizeof (fuid_domain_t));
171eda14cbcSMatt Macy avl_destroy(idx_tree);
172eda14cbcSMatt Macy }
173eda14cbcSMatt Macy
174a0b956f5SMartin Matuska const char *
zfs_fuid_idx_domain(avl_tree_t * idx_tree,uint32_t idx)175eda14cbcSMatt Macy zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
176eda14cbcSMatt Macy {
177eda14cbcSMatt Macy fuid_domain_t searchnode, *findnode;
178eda14cbcSMatt Macy avl_index_t loc;
179eda14cbcSMatt Macy
180eda14cbcSMatt Macy searchnode.f_idx = idx;
181eda14cbcSMatt Macy
182eda14cbcSMatt Macy findnode = avl_find(idx_tree, &searchnode, &loc);
183eda14cbcSMatt Macy
184eda14cbcSMatt Macy return (findnode ? findnode->f_ksid->kd_name : nulldomain);
185eda14cbcSMatt Macy }
186eda14cbcSMatt Macy
187eda14cbcSMatt Macy #ifdef _KERNEL
188eda14cbcSMatt Macy /*
189eda14cbcSMatt Macy * Load the fuid table(s) into memory.
190eda14cbcSMatt Macy */
191eda14cbcSMatt Macy static void
zfs_fuid_init(zfsvfs_t * zfsvfs)192eda14cbcSMatt Macy zfs_fuid_init(zfsvfs_t *zfsvfs)
193eda14cbcSMatt Macy {
194eda14cbcSMatt Macy rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
195eda14cbcSMatt Macy
196eda14cbcSMatt Macy if (zfsvfs->z_fuid_loaded) {
197eda14cbcSMatt Macy rw_exit(&zfsvfs->z_fuid_lock);
198eda14cbcSMatt Macy return;
199eda14cbcSMatt Macy }
200eda14cbcSMatt Macy
201eda14cbcSMatt Macy zfs_fuid_avl_tree_create(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
202eda14cbcSMatt Macy
203eda14cbcSMatt Macy (void) zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
204eda14cbcSMatt Macy ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
205eda14cbcSMatt Macy if (zfsvfs->z_fuid_obj != 0) {
206eda14cbcSMatt Macy zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
207eda14cbcSMatt Macy zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
208eda14cbcSMatt Macy &zfsvfs->z_fuid_domain);
209eda14cbcSMatt Macy }
210eda14cbcSMatt Macy
211eda14cbcSMatt Macy zfsvfs->z_fuid_loaded = B_TRUE;
212eda14cbcSMatt Macy rw_exit(&zfsvfs->z_fuid_lock);
213eda14cbcSMatt Macy }
214eda14cbcSMatt Macy
215eda14cbcSMatt Macy /*
216eda14cbcSMatt Macy * sync out AVL trees to persistent storage.
217eda14cbcSMatt Macy */
218eda14cbcSMatt Macy void
zfs_fuid_sync(zfsvfs_t * zfsvfs,dmu_tx_t * tx)219eda14cbcSMatt Macy zfs_fuid_sync(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
220eda14cbcSMatt Macy {
221eda14cbcSMatt Macy nvlist_t *nvp;
222eda14cbcSMatt Macy nvlist_t **fuids;
223eda14cbcSMatt Macy size_t nvsize = 0;
224eda14cbcSMatt Macy char *packed;
225eda14cbcSMatt Macy dmu_buf_t *db;
226eda14cbcSMatt Macy fuid_domain_t *domnode;
227eda14cbcSMatt Macy int numnodes;
228eda14cbcSMatt Macy int i;
229eda14cbcSMatt Macy
230eda14cbcSMatt Macy if (!zfsvfs->z_fuid_dirty) {
231eda14cbcSMatt Macy return;
232eda14cbcSMatt Macy }
233eda14cbcSMatt Macy
234eda14cbcSMatt Macy rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
235eda14cbcSMatt Macy
236eda14cbcSMatt Macy /*
237eda14cbcSMatt Macy * First see if table needs to be created?
238eda14cbcSMatt Macy */
239eda14cbcSMatt Macy if (zfsvfs->z_fuid_obj == 0) {
240eda14cbcSMatt Macy zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
241eda14cbcSMatt Macy DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
242eda14cbcSMatt Macy sizeof (uint64_t), tx);
243eda14cbcSMatt Macy VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
244eda14cbcSMatt Macy ZFS_FUID_TABLES, sizeof (uint64_t), 1,
245eda14cbcSMatt Macy &zfsvfs->z_fuid_obj, tx) == 0);
246eda14cbcSMatt Macy }
247eda14cbcSMatt Macy
248eda14cbcSMatt Macy VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
249eda14cbcSMatt Macy
250eda14cbcSMatt Macy numnodes = avl_numnodes(&zfsvfs->z_fuid_idx);
251eda14cbcSMatt Macy fuids = kmem_alloc(numnodes * sizeof (void *), KM_SLEEP);
252eda14cbcSMatt Macy for (i = 0, domnode = avl_first(&zfsvfs->z_fuid_domain); domnode; i++,
253eda14cbcSMatt Macy domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode)) {
254eda14cbcSMatt Macy VERIFY(nvlist_alloc(&fuids[i], NV_UNIQUE_NAME, KM_SLEEP) == 0);
255eda14cbcSMatt Macy VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
256eda14cbcSMatt Macy domnode->f_idx) == 0);
257eda14cbcSMatt Macy VERIFY(nvlist_add_uint64(fuids[i], FUID_OFFSET, 0) == 0);
258eda14cbcSMatt Macy VERIFY(nvlist_add_string(fuids[i], FUID_DOMAIN,
259eda14cbcSMatt Macy domnode->f_ksid->kd_name) == 0);
260eda14cbcSMatt Macy }
261681ce946SMartin Matuska fnvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
262681ce946SMartin Matuska (const nvlist_t * const *)fuids, numnodes);
263eda14cbcSMatt Macy for (i = 0; i != numnodes; i++)
264eda14cbcSMatt Macy nvlist_free(fuids[i]);
265eda14cbcSMatt Macy kmem_free(fuids, numnodes * sizeof (void *));
266eda14cbcSMatt Macy VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
267eda14cbcSMatt Macy packed = kmem_alloc(nvsize, KM_SLEEP);
268eda14cbcSMatt Macy VERIFY(nvlist_pack(nvp, &packed, &nvsize,
269eda14cbcSMatt Macy NV_ENCODE_XDR, KM_SLEEP) == 0);
270eda14cbcSMatt Macy nvlist_free(nvp);
271eda14cbcSMatt Macy zfsvfs->z_fuid_size = nvsize;
272eda14cbcSMatt Macy dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
273eda14cbcSMatt Macy zfsvfs->z_fuid_size, packed, tx);
274eda14cbcSMatt Macy kmem_free(packed, zfsvfs->z_fuid_size);
275eda14cbcSMatt Macy VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
276eda14cbcSMatt Macy FTAG, &db));
277eda14cbcSMatt Macy dmu_buf_will_dirty(db, tx);
278eda14cbcSMatt Macy *(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
279eda14cbcSMatt Macy dmu_buf_rele(db, FTAG);
280eda14cbcSMatt Macy
281eda14cbcSMatt Macy zfsvfs->z_fuid_dirty = B_FALSE;
282eda14cbcSMatt Macy rw_exit(&zfsvfs->z_fuid_lock);
283eda14cbcSMatt Macy }
284eda14cbcSMatt Macy
285eda14cbcSMatt Macy /*
286eda14cbcSMatt Macy * Query domain table for a given domain.
287eda14cbcSMatt Macy *
288eda14cbcSMatt Macy * If domain isn't found and addok is set, it is added to AVL trees and
289eda14cbcSMatt Macy * the zfsvfs->z_fuid_dirty flag will be set to TRUE. It will then be
290eda14cbcSMatt Macy * necessary for the caller or another thread to detect the dirty table
291eda14cbcSMatt Macy * and sync out the changes.
292eda14cbcSMatt Macy */
293a0b956f5SMartin Matuska static int
zfs_fuid_find_by_domain(zfsvfs_t * zfsvfs,const char * domain,const char ** retdomain,boolean_t addok)294eda14cbcSMatt Macy zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain,
295a0b956f5SMartin Matuska const char **retdomain, boolean_t addok)
296eda14cbcSMatt Macy {
297eda14cbcSMatt Macy fuid_domain_t searchnode, *findnode;
298eda14cbcSMatt Macy avl_index_t loc;
299eda14cbcSMatt Macy krw_t rw = RW_READER;
300eda14cbcSMatt Macy
301eda14cbcSMatt Macy /*
302eda14cbcSMatt Macy * If the dummy "nobody" domain then return an index of 0
303eda14cbcSMatt Macy * to cause the created FUID to be a standard POSIX id
304eda14cbcSMatt Macy * for the user nobody.
305eda14cbcSMatt Macy */
306eda14cbcSMatt Macy if (domain[0] == '\0') {
307eda14cbcSMatt Macy if (retdomain)
308eda14cbcSMatt Macy *retdomain = nulldomain;
309eda14cbcSMatt Macy return (0);
310eda14cbcSMatt Macy }
311eda14cbcSMatt Macy
312eda14cbcSMatt Macy searchnode.f_ksid = ksid_lookupdomain(domain);
313eda14cbcSMatt Macy if (retdomain)
314eda14cbcSMatt Macy *retdomain = searchnode.f_ksid->kd_name;
315eda14cbcSMatt Macy if (!zfsvfs->z_fuid_loaded)
316eda14cbcSMatt Macy zfs_fuid_init(zfsvfs);
317eda14cbcSMatt Macy
318eda14cbcSMatt Macy retry:
319eda14cbcSMatt Macy rw_enter(&zfsvfs->z_fuid_lock, rw);
320eda14cbcSMatt Macy findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
321eda14cbcSMatt Macy
322eda14cbcSMatt Macy if (findnode) {
323eda14cbcSMatt Macy rw_exit(&zfsvfs->z_fuid_lock);
324eda14cbcSMatt Macy ksiddomain_rele(searchnode.f_ksid);
325eda14cbcSMatt Macy return (findnode->f_idx);
326eda14cbcSMatt Macy } else if (addok) {
327eda14cbcSMatt Macy fuid_domain_t *domnode;
328eda14cbcSMatt Macy uint64_t retidx;
329eda14cbcSMatt Macy
330eda14cbcSMatt Macy if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
331eda14cbcSMatt Macy rw_exit(&zfsvfs->z_fuid_lock);
332eda14cbcSMatt Macy rw = RW_WRITER;
333eda14cbcSMatt Macy goto retry;
334eda14cbcSMatt Macy }
335eda14cbcSMatt Macy
336eda14cbcSMatt Macy domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
337eda14cbcSMatt Macy domnode->f_ksid = searchnode.f_ksid;
338eda14cbcSMatt Macy
339eda14cbcSMatt Macy retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
340eda14cbcSMatt Macy
341eda14cbcSMatt Macy avl_add(&zfsvfs->z_fuid_domain, domnode);
342eda14cbcSMatt Macy avl_add(&zfsvfs->z_fuid_idx, domnode);
343eda14cbcSMatt Macy zfsvfs->z_fuid_dirty = B_TRUE;
344eda14cbcSMatt Macy rw_exit(&zfsvfs->z_fuid_lock);
345eda14cbcSMatt Macy return (retidx);
346eda14cbcSMatt Macy } else {
347eda14cbcSMatt Macy rw_exit(&zfsvfs->z_fuid_lock);
348eda14cbcSMatt Macy return (-1);
349eda14cbcSMatt Macy }
350eda14cbcSMatt Macy }
351eda14cbcSMatt Macy
352eda14cbcSMatt Macy /*
353eda14cbcSMatt Macy * Query domain table by index, returning domain string
354eda14cbcSMatt Macy *
355eda14cbcSMatt Macy * Returns a pointer from an avl node of the domain string.
356eda14cbcSMatt Macy *
357eda14cbcSMatt Macy */
358eda14cbcSMatt Macy const char *
zfs_fuid_find_by_idx(zfsvfs_t * zfsvfs,uint32_t idx)359eda14cbcSMatt Macy zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
360eda14cbcSMatt Macy {
361a0b956f5SMartin Matuska const char *domain;
362eda14cbcSMatt Macy
363eda14cbcSMatt Macy if (idx == 0 || !zfsvfs->z_use_fuids)
364eda14cbcSMatt Macy return (NULL);
365eda14cbcSMatt Macy
366eda14cbcSMatt Macy if (!zfsvfs->z_fuid_loaded)
367eda14cbcSMatt Macy zfs_fuid_init(zfsvfs);
368eda14cbcSMatt Macy
369eda14cbcSMatt Macy rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
370eda14cbcSMatt Macy
371eda14cbcSMatt Macy if (zfsvfs->z_fuid_obj || zfsvfs->z_fuid_dirty)
372eda14cbcSMatt Macy domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
373eda14cbcSMatt Macy else
374eda14cbcSMatt Macy domain = nulldomain;
375eda14cbcSMatt Macy rw_exit(&zfsvfs->z_fuid_lock);
376eda14cbcSMatt Macy
377eda14cbcSMatt Macy ASSERT(domain);
378eda14cbcSMatt Macy return (domain);
379eda14cbcSMatt Macy }
380eda14cbcSMatt Macy
381eda14cbcSMatt Macy void
zfs_fuid_map_ids(znode_t * zp,cred_t * cr,uid_t * uidp,uid_t * gidp)382eda14cbcSMatt Macy zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
383eda14cbcSMatt Macy {
384eda14cbcSMatt Macy *uidp = zfs_fuid_map_id(ZTOZSB(zp), KUID_TO_SUID(ZTOUID(zp)),
385eda14cbcSMatt Macy cr, ZFS_OWNER);
386eda14cbcSMatt Macy *gidp = zfs_fuid_map_id(ZTOZSB(zp), KGID_TO_SGID(ZTOGID(zp)),
387eda14cbcSMatt Macy cr, ZFS_GROUP);
388eda14cbcSMatt Macy }
389eda14cbcSMatt Macy
390eda14cbcSMatt Macy #ifdef __FreeBSD__
391eda14cbcSMatt Macy uid_t
zfs_fuid_map_id(zfsvfs_t * zfsvfs,uint64_t fuid,cred_t * cr,zfs_fuid_type_t type)392eda14cbcSMatt Macy zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
393eda14cbcSMatt Macy cred_t *cr, zfs_fuid_type_t type)
394eda14cbcSMatt Macy {
395eda14cbcSMatt Macy uint32_t index = FUID_INDEX(fuid);
396eda14cbcSMatt Macy
397eda14cbcSMatt Macy if (index == 0)
398eda14cbcSMatt Macy return (fuid);
399eda14cbcSMatt Macy
400eda14cbcSMatt Macy return (UID_NOBODY);
401eda14cbcSMatt Macy }
402eda14cbcSMatt Macy #elif defined(__linux__)
403eda14cbcSMatt Macy uid_t
zfs_fuid_map_id(zfsvfs_t * zfsvfs,uint64_t fuid,cred_t * cr,zfs_fuid_type_t type)404eda14cbcSMatt Macy zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
405eda14cbcSMatt Macy cred_t *cr, zfs_fuid_type_t type)
406eda14cbcSMatt Macy {
407eda14cbcSMatt Macy /*
408eda14cbcSMatt Macy * The Linux port only supports POSIX IDs, use the passed id.
409eda14cbcSMatt Macy */
410eda14cbcSMatt Macy return (fuid);
411eda14cbcSMatt Macy }
412eda14cbcSMatt Macy
413eda14cbcSMatt Macy #else
414eda14cbcSMatt Macy uid_t
zfs_fuid_map_id(zfsvfs_t * zfsvfs,uint64_t fuid,cred_t * cr,zfs_fuid_type_t type)415eda14cbcSMatt Macy zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
416eda14cbcSMatt Macy cred_t *cr, zfs_fuid_type_t type)
417eda14cbcSMatt Macy {
418eda14cbcSMatt Macy uint32_t index = FUID_INDEX(fuid);
419eda14cbcSMatt Macy const char *domain;
420eda14cbcSMatt Macy uid_t id;
421eda14cbcSMatt Macy
422eda14cbcSMatt Macy if (index == 0)
423eda14cbcSMatt Macy return (fuid);
424eda14cbcSMatt Macy
425eda14cbcSMatt Macy domain = zfs_fuid_find_by_idx(zfsvfs, index);
426eda14cbcSMatt Macy ASSERT(domain != NULL);
427eda14cbcSMatt Macy
428eda14cbcSMatt Macy if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
429eda14cbcSMatt Macy (void) kidmap_getuidbysid(crgetzone(cr), domain,
430eda14cbcSMatt Macy FUID_RID(fuid), &id);
431eda14cbcSMatt Macy } else {
432eda14cbcSMatt Macy (void) kidmap_getgidbysid(crgetzone(cr), domain,
433eda14cbcSMatt Macy FUID_RID(fuid), &id);
434eda14cbcSMatt Macy }
435eda14cbcSMatt Macy return (id);
436eda14cbcSMatt Macy }
437eda14cbcSMatt Macy #endif
438eda14cbcSMatt Macy
439eda14cbcSMatt Macy /*
440eda14cbcSMatt Macy * Add a FUID node to the list of fuid's being created for this
441eda14cbcSMatt Macy * ACL
442eda14cbcSMatt Macy *
443eda14cbcSMatt Macy * If ACL has multiple domains, then keep only one copy of each unique
444eda14cbcSMatt Macy * domain.
445eda14cbcSMatt Macy */
446eda14cbcSMatt Macy void
zfs_fuid_node_add(zfs_fuid_info_t ** fuidpp,const char * domain,uint32_t rid,uint64_t idx,uint64_t id,zfs_fuid_type_t type)447eda14cbcSMatt Macy zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
448eda14cbcSMatt Macy uint64_t idx, uint64_t id, zfs_fuid_type_t type)
449eda14cbcSMatt Macy {
450eda14cbcSMatt Macy zfs_fuid_t *fuid;
451eda14cbcSMatt Macy zfs_fuid_domain_t *fuid_domain;
452eda14cbcSMatt Macy zfs_fuid_info_t *fuidp;
453eda14cbcSMatt Macy uint64_t fuididx;
454eda14cbcSMatt Macy boolean_t found = B_FALSE;
455eda14cbcSMatt Macy
456eda14cbcSMatt Macy if (*fuidpp == NULL)
457eda14cbcSMatt Macy *fuidpp = zfs_fuid_info_alloc();
458eda14cbcSMatt Macy
459eda14cbcSMatt Macy fuidp = *fuidpp;
460eda14cbcSMatt Macy /*
461eda14cbcSMatt Macy * First find fuid domain index in linked list
462eda14cbcSMatt Macy *
463eda14cbcSMatt Macy * If one isn't found then create an entry.
464eda14cbcSMatt Macy */
465eda14cbcSMatt Macy
466eda14cbcSMatt Macy for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
467eda14cbcSMatt Macy fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
468eda14cbcSMatt Macy fuid_domain), fuididx++) {
469eda14cbcSMatt Macy if (idx == fuid_domain->z_domidx) {
470eda14cbcSMatt Macy found = B_TRUE;
471eda14cbcSMatt Macy break;
472eda14cbcSMatt Macy }
473eda14cbcSMatt Macy }
474eda14cbcSMatt Macy
475eda14cbcSMatt Macy if (!found) {
476eda14cbcSMatt Macy fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
477eda14cbcSMatt Macy fuid_domain->z_domain = domain;
478eda14cbcSMatt Macy fuid_domain->z_domidx = idx;
479eda14cbcSMatt Macy list_insert_tail(&fuidp->z_domains, fuid_domain);
480eda14cbcSMatt Macy fuidp->z_domain_str_sz += strlen(domain) + 1;
481eda14cbcSMatt Macy fuidp->z_domain_cnt++;
482eda14cbcSMatt Macy }
483eda14cbcSMatt Macy
484eda14cbcSMatt Macy if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
485eda14cbcSMatt Macy
486eda14cbcSMatt Macy /*
487eda14cbcSMatt Macy * Now allocate fuid entry and add it on the end of the list
488eda14cbcSMatt Macy */
489eda14cbcSMatt Macy
490eda14cbcSMatt Macy fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
491eda14cbcSMatt Macy fuid->z_id = id;
492eda14cbcSMatt Macy fuid->z_domidx = idx;
493eda14cbcSMatt Macy fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
494eda14cbcSMatt Macy
495eda14cbcSMatt Macy list_insert_tail(&fuidp->z_fuids, fuid);
496eda14cbcSMatt Macy fuidp->z_fuid_cnt++;
497eda14cbcSMatt Macy } else {
498eda14cbcSMatt Macy if (type == ZFS_OWNER)
499eda14cbcSMatt Macy fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
500eda14cbcSMatt Macy else
501eda14cbcSMatt Macy fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
502eda14cbcSMatt Macy }
503eda14cbcSMatt Macy }
504eda14cbcSMatt Macy
505eda14cbcSMatt Macy #ifdef HAVE_KSID
506eda14cbcSMatt Macy /*
507eda14cbcSMatt Macy * Create a file system FUID, based on information in the users cred
508eda14cbcSMatt Macy *
509eda14cbcSMatt Macy * If cred contains KSID_OWNER then it should be used to determine
510eda14cbcSMatt Macy * the uid otherwise cred's uid will be used. By default cred's gid
511eda14cbcSMatt Macy * is used unless it's an ephemeral ID in which case KSID_GROUP will
512eda14cbcSMatt Macy * be used if it exists.
513eda14cbcSMatt Macy */
514eda14cbcSMatt Macy uint64_t
zfs_fuid_create_cred(zfsvfs_t * zfsvfs,zfs_fuid_type_t type,cred_t * cr,zfs_fuid_info_t ** fuidp)515eda14cbcSMatt Macy zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
516eda14cbcSMatt Macy cred_t *cr, zfs_fuid_info_t **fuidp)
517eda14cbcSMatt Macy {
518eda14cbcSMatt Macy uint64_t idx;
519eda14cbcSMatt Macy ksid_t *ksid;
520eda14cbcSMatt Macy uint32_t rid;
521a0b956f5SMartin Matuska const char *kdomain, *domain;
522eda14cbcSMatt Macy uid_t id;
523eda14cbcSMatt Macy
524eda14cbcSMatt Macy VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
525eda14cbcSMatt Macy
526eda14cbcSMatt Macy ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
527eda14cbcSMatt Macy
528eda14cbcSMatt Macy if (!zfsvfs->z_use_fuids || (ksid == NULL)) {
529eda14cbcSMatt Macy id = (type == ZFS_OWNER) ? crgetuid(cr) : crgetgid(cr);
530eda14cbcSMatt Macy
531eda14cbcSMatt Macy if (IS_EPHEMERAL(id))
532eda14cbcSMatt Macy return ((type == ZFS_OWNER) ? UID_NOBODY : GID_NOBODY);
533eda14cbcSMatt Macy
534eda14cbcSMatt Macy return ((uint64_t)id);
535eda14cbcSMatt Macy }
536eda14cbcSMatt Macy
537eda14cbcSMatt Macy /*
538eda14cbcSMatt Macy * ksid is present and FUID is supported
539eda14cbcSMatt Macy */
540eda14cbcSMatt Macy id = (type == ZFS_OWNER) ? ksid_getid(ksid) : crgetgid(cr);
541eda14cbcSMatt Macy
542eda14cbcSMatt Macy if (!IS_EPHEMERAL(id))
543eda14cbcSMatt Macy return ((uint64_t)id);
544eda14cbcSMatt Macy
545eda14cbcSMatt Macy if (type == ZFS_GROUP)
546eda14cbcSMatt Macy id = ksid_getid(ksid);
547eda14cbcSMatt Macy
548eda14cbcSMatt Macy rid = ksid_getrid(ksid);
549eda14cbcSMatt Macy domain = ksid_getdomain(ksid);
550eda14cbcSMatt Macy
551eda14cbcSMatt Macy idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
552eda14cbcSMatt Macy
553eda14cbcSMatt Macy zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
554eda14cbcSMatt Macy
555eda14cbcSMatt Macy return (FUID_ENCODE(idx, rid));
556eda14cbcSMatt Macy }
557eda14cbcSMatt Macy #endif /* HAVE_KSID */
558eda14cbcSMatt Macy
559eda14cbcSMatt Macy /*
560eda14cbcSMatt Macy * Create a file system FUID for an ACL ace
561eda14cbcSMatt Macy * or a chown/chgrp of the file.
562eda14cbcSMatt Macy * This is similar to zfs_fuid_create_cred, except that
563eda14cbcSMatt Macy * we can't find the domain + rid information in the
564eda14cbcSMatt Macy * cred. Instead we have to query Winchester for the
565eda14cbcSMatt Macy * domain and rid.
566eda14cbcSMatt Macy *
567eda14cbcSMatt Macy * During replay operations the domain+rid information is
568eda14cbcSMatt Macy * found in the zfs_fuid_info_t that the replay code has
569eda14cbcSMatt Macy * attached to the zfsvfs of the file system.
570eda14cbcSMatt Macy */
571eda14cbcSMatt Macy uint64_t
zfs_fuid_create(zfsvfs_t * zfsvfs,uint64_t id,cred_t * cr,zfs_fuid_type_t type,zfs_fuid_info_t ** fuidpp)572eda14cbcSMatt Macy zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
573eda14cbcSMatt Macy zfs_fuid_type_t type, zfs_fuid_info_t **fuidpp)
574eda14cbcSMatt Macy {
575eda14cbcSMatt Macy #ifdef HAVE_KSID
576a0b956f5SMartin Matuska const char *domain, *kdomain;
577eda14cbcSMatt Macy uint32_t fuid_idx = FUID_INDEX(id);
578eda14cbcSMatt Macy uint32_t rid = 0;
579eda14cbcSMatt Macy idmap_stat status;
580eda14cbcSMatt Macy uint64_t idx = UID_NOBODY;
581eda14cbcSMatt Macy zfs_fuid_t *zfuid = NULL;
582eda14cbcSMatt Macy zfs_fuid_info_t *fuidp = NULL;
583eda14cbcSMatt Macy
584eda14cbcSMatt Macy /*
585eda14cbcSMatt Macy * If POSIX ID, or entry is already a FUID then
586eda14cbcSMatt Macy * just return the id
587eda14cbcSMatt Macy *
588eda14cbcSMatt Macy * We may also be handed an already FUID'ized id via
589eda14cbcSMatt Macy * chmod.
590eda14cbcSMatt Macy */
591eda14cbcSMatt Macy
592eda14cbcSMatt Macy if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
593eda14cbcSMatt Macy return (id);
594eda14cbcSMatt Macy
595eda14cbcSMatt Macy if (zfsvfs->z_replay) {
596eda14cbcSMatt Macy fuidp = zfsvfs->z_fuid_replay;
597eda14cbcSMatt Macy
598eda14cbcSMatt Macy /*
599eda14cbcSMatt Macy * If we are passed an ephemeral id, but no
600eda14cbcSMatt Macy * fuid_info was logged then return NOBODY.
601eda14cbcSMatt Macy * This is most likely a result of idmap service
602eda14cbcSMatt Macy * not being available.
603eda14cbcSMatt Macy */
604eda14cbcSMatt Macy if (fuidp == NULL)
605eda14cbcSMatt Macy return (UID_NOBODY);
606eda14cbcSMatt Macy
607eda14cbcSMatt Macy VERIFY3U(type, >=, ZFS_OWNER);
608eda14cbcSMatt Macy VERIFY3U(type, <=, ZFS_ACE_GROUP);
609eda14cbcSMatt Macy
610eda14cbcSMatt Macy switch (type) {
611eda14cbcSMatt Macy case ZFS_ACE_USER:
612eda14cbcSMatt Macy case ZFS_ACE_GROUP:
613eda14cbcSMatt Macy zfuid = list_head(&fuidp->z_fuids);
614eda14cbcSMatt Macy rid = FUID_RID(zfuid->z_logfuid);
615eda14cbcSMatt Macy idx = FUID_INDEX(zfuid->z_logfuid);
616eda14cbcSMatt Macy break;
617eda14cbcSMatt Macy case ZFS_OWNER:
618eda14cbcSMatt Macy rid = FUID_RID(fuidp->z_fuid_owner);
619eda14cbcSMatt Macy idx = FUID_INDEX(fuidp->z_fuid_owner);
620eda14cbcSMatt Macy break;
621eda14cbcSMatt Macy case ZFS_GROUP:
622eda14cbcSMatt Macy rid = FUID_RID(fuidp->z_fuid_group);
623eda14cbcSMatt Macy idx = FUID_INDEX(fuidp->z_fuid_group);
624eda14cbcSMatt Macy break;
62515f0b8c3SMartin Matuska }
626eda14cbcSMatt Macy domain = fuidp->z_domain_table[idx - 1];
627eda14cbcSMatt Macy } else {
628eda14cbcSMatt Macy if (type == ZFS_OWNER || type == ZFS_ACE_USER)
629eda14cbcSMatt Macy status = kidmap_getsidbyuid(crgetzone(cr), id,
630eda14cbcSMatt Macy &domain, &rid);
631eda14cbcSMatt Macy else
632eda14cbcSMatt Macy status = kidmap_getsidbygid(crgetzone(cr), id,
633eda14cbcSMatt Macy &domain, &rid);
634eda14cbcSMatt Macy
635eda14cbcSMatt Macy if (status != 0) {
636eda14cbcSMatt Macy /*
637eda14cbcSMatt Macy * When returning nobody we will need to
638eda14cbcSMatt Macy * make a dummy fuid table entry for logging
639eda14cbcSMatt Macy * purposes.
640eda14cbcSMatt Macy */
641eda14cbcSMatt Macy rid = UID_NOBODY;
642eda14cbcSMatt Macy domain = nulldomain;
643eda14cbcSMatt Macy }
644eda14cbcSMatt Macy }
645eda14cbcSMatt Macy
646eda14cbcSMatt Macy idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, B_TRUE);
647eda14cbcSMatt Macy
648eda14cbcSMatt Macy if (!zfsvfs->z_replay)
649eda14cbcSMatt Macy zfs_fuid_node_add(fuidpp, kdomain,
650eda14cbcSMatt Macy rid, idx, id, type);
651eda14cbcSMatt Macy else if (zfuid != NULL) {
652eda14cbcSMatt Macy list_remove(&fuidp->z_fuids, zfuid);
653eda14cbcSMatt Macy kmem_free(zfuid, sizeof (zfs_fuid_t));
654eda14cbcSMatt Macy }
655eda14cbcSMatt Macy return (FUID_ENCODE(idx, rid));
656eda14cbcSMatt Macy #else
657eda14cbcSMatt Macy /*
658eda14cbcSMatt Macy * The Linux port only supports POSIX IDs, use the passed id.
659eda14cbcSMatt Macy */
660eda14cbcSMatt Macy return (id);
661eda14cbcSMatt Macy #endif
662eda14cbcSMatt Macy }
663eda14cbcSMatt Macy
664eda14cbcSMatt Macy void
zfs_fuid_destroy(zfsvfs_t * zfsvfs)665eda14cbcSMatt Macy zfs_fuid_destroy(zfsvfs_t *zfsvfs)
666eda14cbcSMatt Macy {
667eda14cbcSMatt Macy rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
668eda14cbcSMatt Macy if (!zfsvfs->z_fuid_loaded) {
669eda14cbcSMatt Macy rw_exit(&zfsvfs->z_fuid_lock);
670eda14cbcSMatt Macy return;
671eda14cbcSMatt Macy }
672eda14cbcSMatt Macy zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
673eda14cbcSMatt Macy rw_exit(&zfsvfs->z_fuid_lock);
674eda14cbcSMatt Macy }
675eda14cbcSMatt Macy
676eda14cbcSMatt Macy /*
677eda14cbcSMatt Macy * Allocate zfs_fuid_info for tracking FUIDs created during
678eda14cbcSMatt Macy * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
679eda14cbcSMatt Macy */
680eda14cbcSMatt Macy zfs_fuid_info_t *
zfs_fuid_info_alloc(void)681eda14cbcSMatt Macy zfs_fuid_info_alloc(void)
682eda14cbcSMatt Macy {
683eda14cbcSMatt Macy zfs_fuid_info_t *fuidp;
684eda14cbcSMatt Macy
685eda14cbcSMatt Macy fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
686eda14cbcSMatt Macy list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
687eda14cbcSMatt Macy offsetof(zfs_fuid_domain_t, z_next));
688eda14cbcSMatt Macy list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
689eda14cbcSMatt Macy offsetof(zfs_fuid_t, z_next));
690eda14cbcSMatt Macy return (fuidp);
691eda14cbcSMatt Macy }
692eda14cbcSMatt Macy
693eda14cbcSMatt Macy /*
694eda14cbcSMatt Macy * Release all memory associated with zfs_fuid_info_t
695eda14cbcSMatt Macy */
696eda14cbcSMatt Macy void
zfs_fuid_info_free(zfs_fuid_info_t * fuidp)697eda14cbcSMatt Macy zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
698eda14cbcSMatt Macy {
699eda14cbcSMatt Macy zfs_fuid_t *zfuid;
700eda14cbcSMatt Macy zfs_fuid_domain_t *zdomain;
701eda14cbcSMatt Macy
702*4e8d558cSMartin Matuska while ((zfuid = list_remove_head(&fuidp->z_fuids)) != NULL)
703eda14cbcSMatt Macy kmem_free(zfuid, sizeof (zfs_fuid_t));
704eda14cbcSMatt Macy
705eda14cbcSMatt Macy if (fuidp->z_domain_table != NULL)
706eda14cbcSMatt Macy kmem_free(fuidp->z_domain_table,
707eda14cbcSMatt Macy (sizeof (char *)) * fuidp->z_domain_cnt);
708eda14cbcSMatt Macy
709*4e8d558cSMartin Matuska while ((zdomain = list_remove_head(&fuidp->z_domains)) != NULL)
710eda14cbcSMatt Macy kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
711eda14cbcSMatt Macy
712eda14cbcSMatt Macy kmem_free(fuidp, sizeof (zfs_fuid_info_t));
713eda14cbcSMatt Macy }
714eda14cbcSMatt Macy
715eda14cbcSMatt Macy /*
716eda14cbcSMatt Macy * Check to see if id is a groupmember. If cred
717eda14cbcSMatt Macy * has ksid info then sidlist is checked first
718eda14cbcSMatt Macy * and if still not found then POSIX groups are checked
719eda14cbcSMatt Macy *
720eda14cbcSMatt Macy * Will use a straight FUID compare when possible.
721eda14cbcSMatt Macy */
722eda14cbcSMatt Macy boolean_t
zfs_groupmember(zfsvfs_t * zfsvfs,uint64_t id,cred_t * cr)723eda14cbcSMatt Macy zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
724eda14cbcSMatt Macy {
725eda14cbcSMatt Macy uid_t gid;
726eda14cbcSMatt Macy
727eda14cbcSMatt Macy #ifdef illumos
728eda14cbcSMatt Macy ksid_t *ksid = crgetsid(cr, KSID_GROUP);
729eda14cbcSMatt Macy ksidlist_t *ksidlist = crgetsidlist(cr);
730eda14cbcSMatt Macy
731eda14cbcSMatt Macy if (ksid && ksidlist) {
732eda14cbcSMatt Macy int i;
733eda14cbcSMatt Macy ksid_t *ksid_groups;
734eda14cbcSMatt Macy uint32_t idx = FUID_INDEX(id);
735eda14cbcSMatt Macy uint32_t rid = FUID_RID(id);
736eda14cbcSMatt Macy
737eda14cbcSMatt Macy ksid_groups = ksidlist->ksl_sids;
738eda14cbcSMatt Macy
739eda14cbcSMatt Macy for (i = 0; i != ksidlist->ksl_nsid; i++) {
740eda14cbcSMatt Macy if (idx == 0) {
741eda14cbcSMatt Macy if (id != IDMAP_WK_CREATOR_GROUP_GID &&
742eda14cbcSMatt Macy id == ksid_groups[i].ks_id) {
743eda14cbcSMatt Macy return (B_TRUE);
744eda14cbcSMatt Macy }
745eda14cbcSMatt Macy } else {
746eda14cbcSMatt Macy const char *domain;
747eda14cbcSMatt Macy
748eda14cbcSMatt Macy domain = zfs_fuid_find_by_idx(zfsvfs, idx);
749eda14cbcSMatt Macy ASSERT(domain != NULL);
750eda14cbcSMatt Macy
751eda14cbcSMatt Macy if (strcmp(domain,
752eda14cbcSMatt Macy IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
753eda14cbcSMatt Macy return (B_FALSE);
754eda14cbcSMatt Macy
755eda14cbcSMatt Macy if ((strcmp(domain,
756eda14cbcSMatt Macy ksid_groups[i].ks_domain->kd_name) == 0) &&
757eda14cbcSMatt Macy rid == ksid_groups[i].ks_rid)
758eda14cbcSMatt Macy return (B_TRUE);
759eda14cbcSMatt Macy }
760eda14cbcSMatt Macy }
761eda14cbcSMatt Macy }
762eda14cbcSMatt Macy #endif /* illumos */
763eda14cbcSMatt Macy
764eda14cbcSMatt Macy /*
765eda14cbcSMatt Macy * Not found in ksidlist, check posix groups
766eda14cbcSMatt Macy */
767eda14cbcSMatt Macy gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
768eda14cbcSMatt Macy return (groupmember(gid, cr));
769eda14cbcSMatt Macy }
770eda14cbcSMatt Macy
771eda14cbcSMatt Macy void
zfs_fuid_txhold(zfsvfs_t * zfsvfs,dmu_tx_t * tx)772eda14cbcSMatt Macy zfs_fuid_txhold(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
773eda14cbcSMatt Macy {
774eda14cbcSMatt Macy if (zfsvfs->z_fuid_obj == 0) {
775eda14cbcSMatt Macy dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
776eda14cbcSMatt Macy dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
777eda14cbcSMatt Macy FUID_SIZE_ESTIMATE(zfsvfs));
778eda14cbcSMatt Macy dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
779eda14cbcSMatt Macy } else {
780eda14cbcSMatt Macy dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
781eda14cbcSMatt Macy dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
782eda14cbcSMatt Macy FUID_SIZE_ESTIMATE(zfsvfs));
783eda14cbcSMatt Macy }
784eda14cbcSMatt Macy }
785eda14cbcSMatt Macy
786eda14cbcSMatt Macy /*
787eda14cbcSMatt Macy * buf must be big enough (eg, 32 bytes)
788eda14cbcSMatt Macy */
789eda14cbcSMatt Macy int
zfs_id_to_fuidstr(zfsvfs_t * zfsvfs,const char * domain,uid_t rid,char * buf,size_t len,boolean_t addok)790eda14cbcSMatt Macy zfs_id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
791eda14cbcSMatt Macy char *buf, size_t len, boolean_t addok)
792eda14cbcSMatt Macy {
793eda14cbcSMatt Macy uint64_t fuid;
794eda14cbcSMatt Macy int domainid = 0;
795eda14cbcSMatt Macy
796eda14cbcSMatt Macy if (domain && domain[0]) {
797eda14cbcSMatt Macy domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
798eda14cbcSMatt Macy if (domainid == -1)
799eda14cbcSMatt Macy return (SET_ERROR(ENOENT));
800eda14cbcSMatt Macy }
801eda14cbcSMatt Macy fuid = FUID_ENCODE(domainid, rid);
802eda14cbcSMatt Macy (void) snprintf(buf, len, "%llx", (longlong_t)fuid);
803eda14cbcSMatt Macy return (0);
804eda14cbcSMatt Macy }
805eda14cbcSMatt Macy #endif
806