1*eda14cbcSMatt Macy /* 2*eda14cbcSMatt Macy * CDDL HEADER START 3*eda14cbcSMatt Macy * 4*eda14cbcSMatt Macy * The contents of this file are subject to the terms of the 5*eda14cbcSMatt Macy * Common Development and Distribution License (the "License"). 6*eda14cbcSMatt Macy * You may not use this file except in compliance with the License. 7*eda14cbcSMatt Macy * 8*eda14cbcSMatt Macy * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9*eda14cbcSMatt Macy * or http://www.opensolaris.org/os/licensing. 10*eda14cbcSMatt Macy * See the License for the specific language governing permissions 11*eda14cbcSMatt Macy * and limitations under the License. 12*eda14cbcSMatt Macy * 13*eda14cbcSMatt Macy * When distributing Covered Code, include this CDDL HEADER in each 14*eda14cbcSMatt Macy * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15*eda14cbcSMatt Macy * If applicable, add the following below this CDDL HEADER, with the 16*eda14cbcSMatt Macy * fields enclosed by brackets "[]" replaced with your own identifying 17*eda14cbcSMatt Macy * information: Portions Copyright [yyyy] [name of copyright owner] 18*eda14cbcSMatt Macy * 19*eda14cbcSMatt Macy * CDDL HEADER END 20*eda14cbcSMatt Macy */ 21*eda14cbcSMatt Macy /* 22*eda14cbcSMatt Macy * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23*eda14cbcSMatt Macy * Use is subject to license terms. 24*eda14cbcSMatt Macy */ 25*eda14cbcSMatt Macy 26*eda14cbcSMatt Macy /* 27*eda14cbcSMatt Macy * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 28*eda14cbcSMatt Macy */ 29*eda14cbcSMatt Macy 30*eda14cbcSMatt Macy #include <sys/zfs_context.h> 31*eda14cbcSMatt Macy #include <sys/vdev_impl.h> 32*eda14cbcSMatt Macy #include <sys/spa_impl.h> 33*eda14cbcSMatt Macy #include <sys/zio.h> 34*eda14cbcSMatt Macy #include <sys/avl.h> 35*eda14cbcSMatt Macy #include <sys/dsl_pool.h> 36*eda14cbcSMatt Macy #include <sys/metaslab_impl.h> 37*eda14cbcSMatt Macy #include <sys/spa.h> 38*eda14cbcSMatt Macy #include <sys/spa_impl.h> 39*eda14cbcSMatt Macy #include <sys/kstat.h> 40*eda14cbcSMatt Macy #include <sys/abd.h> 41*eda14cbcSMatt Macy 42*eda14cbcSMatt Macy /* 43*eda14cbcSMatt Macy * ZFS I/O Scheduler 44*eda14cbcSMatt Macy * --------------- 45*eda14cbcSMatt Macy * 46*eda14cbcSMatt Macy * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The 47*eda14cbcSMatt Macy * I/O scheduler determines when and in what order those operations are 48*eda14cbcSMatt Macy * issued. The I/O scheduler divides operations into five I/O classes 49*eda14cbcSMatt Macy * prioritized in the following order: sync read, sync write, async read, 50*eda14cbcSMatt Macy * async write, and scrub/resilver. Each queue defines the minimum and 51*eda14cbcSMatt Macy * maximum number of concurrent operations that may be issued to the device. 52*eda14cbcSMatt Macy * In addition, the device has an aggregate maximum. Note that the sum of the 53*eda14cbcSMatt Macy * per-queue minimums must not exceed the aggregate maximum. If the 54*eda14cbcSMatt Macy * sum of the per-queue maximums exceeds the aggregate maximum, then the 55*eda14cbcSMatt Macy * number of active i/os may reach zfs_vdev_max_active, in which case no 56*eda14cbcSMatt Macy * further i/os will be issued regardless of whether all per-queue 57*eda14cbcSMatt Macy * minimums have been met. 58*eda14cbcSMatt Macy * 59*eda14cbcSMatt Macy * For many physical devices, throughput increases with the number of 60*eda14cbcSMatt Macy * concurrent operations, but latency typically suffers. Further, physical 61*eda14cbcSMatt Macy * devices typically have a limit at which more concurrent operations have no 62*eda14cbcSMatt Macy * effect on throughput or can actually cause it to decrease. 63*eda14cbcSMatt Macy * 64*eda14cbcSMatt Macy * The scheduler selects the next operation to issue by first looking for an 65*eda14cbcSMatt Macy * I/O class whose minimum has not been satisfied. Once all are satisfied and 66*eda14cbcSMatt Macy * the aggregate maximum has not been hit, the scheduler looks for classes 67*eda14cbcSMatt Macy * whose maximum has not been satisfied. Iteration through the I/O classes is 68*eda14cbcSMatt Macy * done in the order specified above. No further operations are issued if the 69*eda14cbcSMatt Macy * aggregate maximum number of concurrent operations has been hit or if there 70*eda14cbcSMatt Macy * are no operations queued for an I/O class that has not hit its maximum. 71*eda14cbcSMatt Macy * Every time an i/o is queued or an operation completes, the I/O scheduler 72*eda14cbcSMatt Macy * looks for new operations to issue. 73*eda14cbcSMatt Macy * 74*eda14cbcSMatt Macy * All I/O classes have a fixed maximum number of outstanding operations 75*eda14cbcSMatt Macy * except for the async write class. Asynchronous writes represent the data 76*eda14cbcSMatt Macy * that is committed to stable storage during the syncing stage for 77*eda14cbcSMatt Macy * transaction groups (see txg.c). Transaction groups enter the syncing state 78*eda14cbcSMatt Macy * periodically so the number of queued async writes will quickly burst up and 79*eda14cbcSMatt Macy * then bleed down to zero. Rather than servicing them as quickly as possible, 80*eda14cbcSMatt Macy * the I/O scheduler changes the maximum number of active async write i/os 81*eda14cbcSMatt Macy * according to the amount of dirty data in the pool (see dsl_pool.c). Since 82*eda14cbcSMatt Macy * both throughput and latency typically increase with the number of 83*eda14cbcSMatt Macy * concurrent operations issued to physical devices, reducing the burstiness 84*eda14cbcSMatt Macy * in the number of concurrent operations also stabilizes the response time of 85*eda14cbcSMatt Macy * operations from other -- and in particular synchronous -- queues. In broad 86*eda14cbcSMatt Macy * strokes, the I/O scheduler will issue more concurrent operations from the 87*eda14cbcSMatt Macy * async write queue as there's more dirty data in the pool. 88*eda14cbcSMatt Macy * 89*eda14cbcSMatt Macy * Async Writes 90*eda14cbcSMatt Macy * 91*eda14cbcSMatt Macy * The number of concurrent operations issued for the async write I/O class 92*eda14cbcSMatt Macy * follows a piece-wise linear function defined by a few adjustable points. 93*eda14cbcSMatt Macy * 94*eda14cbcSMatt Macy * | o---------| <-- zfs_vdev_async_write_max_active 95*eda14cbcSMatt Macy * ^ | /^ | 96*eda14cbcSMatt Macy * | | / | | 97*eda14cbcSMatt Macy * active | / | | 98*eda14cbcSMatt Macy * I/O | / | | 99*eda14cbcSMatt Macy * count | / | | 100*eda14cbcSMatt Macy * | / | | 101*eda14cbcSMatt Macy * |------------o | | <-- zfs_vdev_async_write_min_active 102*eda14cbcSMatt Macy * 0|____________^______|_________| 103*eda14cbcSMatt Macy * 0% | | 100% of zfs_dirty_data_max 104*eda14cbcSMatt Macy * | | 105*eda14cbcSMatt Macy * | `-- zfs_vdev_async_write_active_max_dirty_percent 106*eda14cbcSMatt Macy * `--------- zfs_vdev_async_write_active_min_dirty_percent 107*eda14cbcSMatt Macy * 108*eda14cbcSMatt Macy * Until the amount of dirty data exceeds a minimum percentage of the dirty 109*eda14cbcSMatt Macy * data allowed in the pool, the I/O scheduler will limit the number of 110*eda14cbcSMatt Macy * concurrent operations to the minimum. As that threshold is crossed, the 111*eda14cbcSMatt Macy * number of concurrent operations issued increases linearly to the maximum at 112*eda14cbcSMatt Macy * the specified maximum percentage of the dirty data allowed in the pool. 113*eda14cbcSMatt Macy * 114*eda14cbcSMatt Macy * Ideally, the amount of dirty data on a busy pool will stay in the sloped 115*eda14cbcSMatt Macy * part of the function between zfs_vdev_async_write_active_min_dirty_percent 116*eda14cbcSMatt Macy * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the 117*eda14cbcSMatt Macy * maximum percentage, this indicates that the rate of incoming data is 118*eda14cbcSMatt Macy * greater than the rate that the backend storage can handle. In this case, we 119*eda14cbcSMatt Macy * must further throttle incoming writes (see dmu_tx_delay() for details). 120*eda14cbcSMatt Macy */ 121*eda14cbcSMatt Macy 122*eda14cbcSMatt Macy /* 123*eda14cbcSMatt Macy * The maximum number of i/os active to each device. Ideally, this will be >= 124*eda14cbcSMatt Macy * the sum of each queue's max_active. It must be at least the sum of each 125*eda14cbcSMatt Macy * queue's min_active. 126*eda14cbcSMatt Macy */ 127*eda14cbcSMatt Macy uint32_t zfs_vdev_max_active = 1000; 128*eda14cbcSMatt Macy 129*eda14cbcSMatt Macy /* 130*eda14cbcSMatt Macy * Per-queue limits on the number of i/os active to each device. If the 131*eda14cbcSMatt Macy * number of active i/os is < zfs_vdev_max_active, then the min_active comes 132*eda14cbcSMatt Macy * into play. We will send min_active from each queue, and then select from 133*eda14cbcSMatt Macy * queues in the order defined by zio_priority_t. 134*eda14cbcSMatt Macy * 135*eda14cbcSMatt Macy * In general, smaller max_active's will lead to lower latency of synchronous 136*eda14cbcSMatt Macy * operations. Larger max_active's may lead to higher overall throughput, 137*eda14cbcSMatt Macy * depending on underlying storage. 138*eda14cbcSMatt Macy * 139*eda14cbcSMatt Macy * The ratio of the queues' max_actives determines the balance of performance 140*eda14cbcSMatt Macy * between reads, writes, and scrubs. E.g., increasing 141*eda14cbcSMatt Macy * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete 142*eda14cbcSMatt Macy * more quickly, but reads and writes to have higher latency and lower 143*eda14cbcSMatt Macy * throughput. 144*eda14cbcSMatt Macy */ 145*eda14cbcSMatt Macy uint32_t zfs_vdev_sync_read_min_active = 10; 146*eda14cbcSMatt Macy uint32_t zfs_vdev_sync_read_max_active = 10; 147*eda14cbcSMatt Macy uint32_t zfs_vdev_sync_write_min_active = 10; 148*eda14cbcSMatt Macy uint32_t zfs_vdev_sync_write_max_active = 10; 149*eda14cbcSMatt Macy uint32_t zfs_vdev_async_read_min_active = 1; 150*eda14cbcSMatt Macy uint32_t zfs_vdev_async_read_max_active = 3; 151*eda14cbcSMatt Macy uint32_t zfs_vdev_async_write_min_active = 2; 152*eda14cbcSMatt Macy uint32_t zfs_vdev_async_write_max_active = 10; 153*eda14cbcSMatt Macy uint32_t zfs_vdev_scrub_min_active = 1; 154*eda14cbcSMatt Macy uint32_t zfs_vdev_scrub_max_active = 2; 155*eda14cbcSMatt Macy uint32_t zfs_vdev_removal_min_active = 1; 156*eda14cbcSMatt Macy uint32_t zfs_vdev_removal_max_active = 2; 157*eda14cbcSMatt Macy uint32_t zfs_vdev_initializing_min_active = 1; 158*eda14cbcSMatt Macy uint32_t zfs_vdev_initializing_max_active = 1; 159*eda14cbcSMatt Macy uint32_t zfs_vdev_trim_min_active = 1; 160*eda14cbcSMatt Macy uint32_t zfs_vdev_trim_max_active = 2; 161*eda14cbcSMatt Macy uint32_t zfs_vdev_rebuild_min_active = 1; 162*eda14cbcSMatt Macy uint32_t zfs_vdev_rebuild_max_active = 3; 163*eda14cbcSMatt Macy 164*eda14cbcSMatt Macy /* 165*eda14cbcSMatt Macy * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent 166*eda14cbcSMatt Macy * dirty data, use zfs_vdev_async_write_min_active. When it has more than 167*eda14cbcSMatt Macy * zfs_vdev_async_write_active_max_dirty_percent, use 168*eda14cbcSMatt Macy * zfs_vdev_async_write_max_active. The value is linearly interpolated 169*eda14cbcSMatt Macy * between min and max. 170*eda14cbcSMatt Macy */ 171*eda14cbcSMatt Macy int zfs_vdev_async_write_active_min_dirty_percent = 30; 172*eda14cbcSMatt Macy int zfs_vdev_async_write_active_max_dirty_percent = 60; 173*eda14cbcSMatt Macy 174*eda14cbcSMatt Macy /* 175*eda14cbcSMatt Macy * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 176*eda14cbcSMatt Macy * For read I/Os, we also aggregate across small adjacency gaps; for writes 177*eda14cbcSMatt Macy * we include spans of optional I/Os to aid aggregation at the disk even when 178*eda14cbcSMatt Macy * they aren't able to help us aggregate at this level. 179*eda14cbcSMatt Macy */ 180*eda14cbcSMatt Macy int zfs_vdev_aggregation_limit = 1 << 20; 181*eda14cbcSMatt Macy int zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE; 182*eda14cbcSMatt Macy int zfs_vdev_read_gap_limit = 32 << 10; 183*eda14cbcSMatt Macy int zfs_vdev_write_gap_limit = 4 << 10; 184*eda14cbcSMatt Macy 185*eda14cbcSMatt Macy /* 186*eda14cbcSMatt Macy * Define the queue depth percentage for each top-level. This percentage is 187*eda14cbcSMatt Macy * used in conjunction with zfs_vdev_async_max_active to determine how many 188*eda14cbcSMatt Macy * allocations a specific top-level vdev should handle. Once the queue depth 189*eda14cbcSMatt Macy * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100 190*eda14cbcSMatt Macy * then allocator will stop allocating blocks on that top-level device. 191*eda14cbcSMatt Macy * The default kernel setting is 1000% which will yield 100 allocations per 192*eda14cbcSMatt Macy * device. For userland testing, the default setting is 300% which equates 193*eda14cbcSMatt Macy * to 30 allocations per device. 194*eda14cbcSMatt Macy */ 195*eda14cbcSMatt Macy #ifdef _KERNEL 196*eda14cbcSMatt Macy int zfs_vdev_queue_depth_pct = 1000; 197*eda14cbcSMatt Macy #else 198*eda14cbcSMatt Macy int zfs_vdev_queue_depth_pct = 300; 199*eda14cbcSMatt Macy #endif 200*eda14cbcSMatt Macy 201*eda14cbcSMatt Macy /* 202*eda14cbcSMatt Macy * When performing allocations for a given metaslab, we want to make sure that 203*eda14cbcSMatt Macy * there are enough IOs to aggregate together to improve throughput. We want to 204*eda14cbcSMatt Macy * ensure that there are at least 128k worth of IOs that can be aggregated, and 205*eda14cbcSMatt Macy * we assume that the average allocation size is 4k, so we need the queue depth 206*eda14cbcSMatt Macy * to be 32 per allocator to get good aggregation of sequential writes. 207*eda14cbcSMatt Macy */ 208*eda14cbcSMatt Macy int zfs_vdev_def_queue_depth = 32; 209*eda14cbcSMatt Macy 210*eda14cbcSMatt Macy /* 211*eda14cbcSMatt Macy * Allow TRIM I/Os to be aggregated. This should normally not be needed since 212*eda14cbcSMatt Macy * TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M) can be submitted 213*eda14cbcSMatt Macy * by the TRIM code in zfs_trim.c. 214*eda14cbcSMatt Macy */ 215*eda14cbcSMatt Macy int zfs_vdev_aggregate_trim = 0; 216*eda14cbcSMatt Macy 217*eda14cbcSMatt Macy static int 218*eda14cbcSMatt Macy vdev_queue_offset_compare(const void *x1, const void *x2) 219*eda14cbcSMatt Macy { 220*eda14cbcSMatt Macy const zio_t *z1 = (const zio_t *)x1; 221*eda14cbcSMatt Macy const zio_t *z2 = (const zio_t *)x2; 222*eda14cbcSMatt Macy 223*eda14cbcSMatt Macy int cmp = TREE_CMP(z1->io_offset, z2->io_offset); 224*eda14cbcSMatt Macy 225*eda14cbcSMatt Macy if (likely(cmp)) 226*eda14cbcSMatt Macy return (cmp); 227*eda14cbcSMatt Macy 228*eda14cbcSMatt Macy return (TREE_PCMP(z1, z2)); 229*eda14cbcSMatt Macy } 230*eda14cbcSMatt Macy 231*eda14cbcSMatt Macy static inline avl_tree_t * 232*eda14cbcSMatt Macy vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p) 233*eda14cbcSMatt Macy { 234*eda14cbcSMatt Macy return (&vq->vq_class[p].vqc_queued_tree); 235*eda14cbcSMatt Macy } 236*eda14cbcSMatt Macy 237*eda14cbcSMatt Macy static inline avl_tree_t * 238*eda14cbcSMatt Macy vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t) 239*eda14cbcSMatt Macy { 240*eda14cbcSMatt Macy ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE || t == ZIO_TYPE_TRIM); 241*eda14cbcSMatt Macy if (t == ZIO_TYPE_READ) 242*eda14cbcSMatt Macy return (&vq->vq_read_offset_tree); 243*eda14cbcSMatt Macy else if (t == ZIO_TYPE_WRITE) 244*eda14cbcSMatt Macy return (&vq->vq_write_offset_tree); 245*eda14cbcSMatt Macy else 246*eda14cbcSMatt Macy return (&vq->vq_trim_offset_tree); 247*eda14cbcSMatt Macy } 248*eda14cbcSMatt Macy 249*eda14cbcSMatt Macy static int 250*eda14cbcSMatt Macy vdev_queue_timestamp_compare(const void *x1, const void *x2) 251*eda14cbcSMatt Macy { 252*eda14cbcSMatt Macy const zio_t *z1 = (const zio_t *)x1; 253*eda14cbcSMatt Macy const zio_t *z2 = (const zio_t *)x2; 254*eda14cbcSMatt Macy 255*eda14cbcSMatt Macy int cmp = TREE_CMP(z1->io_timestamp, z2->io_timestamp); 256*eda14cbcSMatt Macy 257*eda14cbcSMatt Macy if (likely(cmp)) 258*eda14cbcSMatt Macy return (cmp); 259*eda14cbcSMatt Macy 260*eda14cbcSMatt Macy return (TREE_PCMP(z1, z2)); 261*eda14cbcSMatt Macy } 262*eda14cbcSMatt Macy 263*eda14cbcSMatt Macy static int 264*eda14cbcSMatt Macy vdev_queue_class_min_active(zio_priority_t p) 265*eda14cbcSMatt Macy { 266*eda14cbcSMatt Macy switch (p) { 267*eda14cbcSMatt Macy case ZIO_PRIORITY_SYNC_READ: 268*eda14cbcSMatt Macy return (zfs_vdev_sync_read_min_active); 269*eda14cbcSMatt Macy case ZIO_PRIORITY_SYNC_WRITE: 270*eda14cbcSMatt Macy return (zfs_vdev_sync_write_min_active); 271*eda14cbcSMatt Macy case ZIO_PRIORITY_ASYNC_READ: 272*eda14cbcSMatt Macy return (zfs_vdev_async_read_min_active); 273*eda14cbcSMatt Macy case ZIO_PRIORITY_ASYNC_WRITE: 274*eda14cbcSMatt Macy return (zfs_vdev_async_write_min_active); 275*eda14cbcSMatt Macy case ZIO_PRIORITY_SCRUB: 276*eda14cbcSMatt Macy return (zfs_vdev_scrub_min_active); 277*eda14cbcSMatt Macy case ZIO_PRIORITY_REMOVAL: 278*eda14cbcSMatt Macy return (zfs_vdev_removal_min_active); 279*eda14cbcSMatt Macy case ZIO_PRIORITY_INITIALIZING: 280*eda14cbcSMatt Macy return (zfs_vdev_initializing_min_active); 281*eda14cbcSMatt Macy case ZIO_PRIORITY_TRIM: 282*eda14cbcSMatt Macy return (zfs_vdev_trim_min_active); 283*eda14cbcSMatt Macy case ZIO_PRIORITY_REBUILD: 284*eda14cbcSMatt Macy return (zfs_vdev_rebuild_min_active); 285*eda14cbcSMatt Macy default: 286*eda14cbcSMatt Macy panic("invalid priority %u", p); 287*eda14cbcSMatt Macy return (0); 288*eda14cbcSMatt Macy } 289*eda14cbcSMatt Macy } 290*eda14cbcSMatt Macy 291*eda14cbcSMatt Macy static int 292*eda14cbcSMatt Macy vdev_queue_max_async_writes(spa_t *spa) 293*eda14cbcSMatt Macy { 294*eda14cbcSMatt Macy int writes; 295*eda14cbcSMatt Macy uint64_t dirty = 0; 296*eda14cbcSMatt Macy dsl_pool_t *dp = spa_get_dsl(spa); 297*eda14cbcSMatt Macy uint64_t min_bytes = zfs_dirty_data_max * 298*eda14cbcSMatt Macy zfs_vdev_async_write_active_min_dirty_percent / 100; 299*eda14cbcSMatt Macy uint64_t max_bytes = zfs_dirty_data_max * 300*eda14cbcSMatt Macy zfs_vdev_async_write_active_max_dirty_percent / 100; 301*eda14cbcSMatt Macy 302*eda14cbcSMatt Macy /* 303*eda14cbcSMatt Macy * Async writes may occur before the assignment of the spa's 304*eda14cbcSMatt Macy * dsl_pool_t if a self-healing zio is issued prior to the 305*eda14cbcSMatt Macy * completion of dmu_objset_open_impl(). 306*eda14cbcSMatt Macy */ 307*eda14cbcSMatt Macy if (dp == NULL) 308*eda14cbcSMatt Macy return (zfs_vdev_async_write_max_active); 309*eda14cbcSMatt Macy 310*eda14cbcSMatt Macy /* 311*eda14cbcSMatt Macy * Sync tasks correspond to interactive user actions. To reduce the 312*eda14cbcSMatt Macy * execution time of those actions we push data out as fast as possible. 313*eda14cbcSMatt Macy */ 314*eda14cbcSMatt Macy if (spa_has_pending_synctask(spa)) 315*eda14cbcSMatt Macy return (zfs_vdev_async_write_max_active); 316*eda14cbcSMatt Macy 317*eda14cbcSMatt Macy dirty = dp->dp_dirty_total; 318*eda14cbcSMatt Macy if (dirty < min_bytes) 319*eda14cbcSMatt Macy return (zfs_vdev_async_write_min_active); 320*eda14cbcSMatt Macy if (dirty > max_bytes) 321*eda14cbcSMatt Macy return (zfs_vdev_async_write_max_active); 322*eda14cbcSMatt Macy 323*eda14cbcSMatt Macy /* 324*eda14cbcSMatt Macy * linear interpolation: 325*eda14cbcSMatt Macy * slope = (max_writes - min_writes) / (max_bytes - min_bytes) 326*eda14cbcSMatt Macy * move right by min_bytes 327*eda14cbcSMatt Macy * move up by min_writes 328*eda14cbcSMatt Macy */ 329*eda14cbcSMatt Macy writes = (dirty - min_bytes) * 330*eda14cbcSMatt Macy (zfs_vdev_async_write_max_active - 331*eda14cbcSMatt Macy zfs_vdev_async_write_min_active) / 332*eda14cbcSMatt Macy (max_bytes - min_bytes) + 333*eda14cbcSMatt Macy zfs_vdev_async_write_min_active; 334*eda14cbcSMatt Macy ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); 335*eda14cbcSMatt Macy ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); 336*eda14cbcSMatt Macy return (writes); 337*eda14cbcSMatt Macy } 338*eda14cbcSMatt Macy 339*eda14cbcSMatt Macy static int 340*eda14cbcSMatt Macy vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) 341*eda14cbcSMatt Macy { 342*eda14cbcSMatt Macy switch (p) { 343*eda14cbcSMatt Macy case ZIO_PRIORITY_SYNC_READ: 344*eda14cbcSMatt Macy return (zfs_vdev_sync_read_max_active); 345*eda14cbcSMatt Macy case ZIO_PRIORITY_SYNC_WRITE: 346*eda14cbcSMatt Macy return (zfs_vdev_sync_write_max_active); 347*eda14cbcSMatt Macy case ZIO_PRIORITY_ASYNC_READ: 348*eda14cbcSMatt Macy return (zfs_vdev_async_read_max_active); 349*eda14cbcSMatt Macy case ZIO_PRIORITY_ASYNC_WRITE: 350*eda14cbcSMatt Macy return (vdev_queue_max_async_writes(spa)); 351*eda14cbcSMatt Macy case ZIO_PRIORITY_SCRUB: 352*eda14cbcSMatt Macy return (zfs_vdev_scrub_max_active); 353*eda14cbcSMatt Macy case ZIO_PRIORITY_REMOVAL: 354*eda14cbcSMatt Macy return (zfs_vdev_removal_max_active); 355*eda14cbcSMatt Macy case ZIO_PRIORITY_INITIALIZING: 356*eda14cbcSMatt Macy return (zfs_vdev_initializing_max_active); 357*eda14cbcSMatt Macy case ZIO_PRIORITY_TRIM: 358*eda14cbcSMatt Macy return (zfs_vdev_trim_max_active); 359*eda14cbcSMatt Macy case ZIO_PRIORITY_REBUILD: 360*eda14cbcSMatt Macy return (zfs_vdev_rebuild_max_active); 361*eda14cbcSMatt Macy default: 362*eda14cbcSMatt Macy panic("invalid priority %u", p); 363*eda14cbcSMatt Macy return (0); 364*eda14cbcSMatt Macy } 365*eda14cbcSMatt Macy } 366*eda14cbcSMatt Macy 367*eda14cbcSMatt Macy /* 368*eda14cbcSMatt Macy * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if 369*eda14cbcSMatt Macy * there is no eligible class. 370*eda14cbcSMatt Macy */ 371*eda14cbcSMatt Macy static zio_priority_t 372*eda14cbcSMatt Macy vdev_queue_class_to_issue(vdev_queue_t *vq) 373*eda14cbcSMatt Macy { 374*eda14cbcSMatt Macy spa_t *spa = vq->vq_vdev->vdev_spa; 375*eda14cbcSMatt Macy zio_priority_t p; 376*eda14cbcSMatt Macy 377*eda14cbcSMatt Macy if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) 378*eda14cbcSMatt Macy return (ZIO_PRIORITY_NUM_QUEUEABLE); 379*eda14cbcSMatt Macy 380*eda14cbcSMatt Macy /* find a queue that has not reached its minimum # outstanding i/os */ 381*eda14cbcSMatt Macy for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 382*eda14cbcSMatt Macy if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 383*eda14cbcSMatt Macy vq->vq_class[p].vqc_active < 384*eda14cbcSMatt Macy vdev_queue_class_min_active(p)) 385*eda14cbcSMatt Macy return (p); 386*eda14cbcSMatt Macy } 387*eda14cbcSMatt Macy 388*eda14cbcSMatt Macy /* 389*eda14cbcSMatt Macy * If we haven't found a queue, look for one that hasn't reached its 390*eda14cbcSMatt Macy * maximum # outstanding i/os. 391*eda14cbcSMatt Macy */ 392*eda14cbcSMatt Macy for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 393*eda14cbcSMatt Macy if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 && 394*eda14cbcSMatt Macy vq->vq_class[p].vqc_active < 395*eda14cbcSMatt Macy vdev_queue_class_max_active(spa, p)) 396*eda14cbcSMatt Macy return (p); 397*eda14cbcSMatt Macy } 398*eda14cbcSMatt Macy 399*eda14cbcSMatt Macy /* No eligible queued i/os */ 400*eda14cbcSMatt Macy return (ZIO_PRIORITY_NUM_QUEUEABLE); 401*eda14cbcSMatt Macy } 402*eda14cbcSMatt Macy 403*eda14cbcSMatt Macy void 404*eda14cbcSMatt Macy vdev_queue_init(vdev_t *vd) 405*eda14cbcSMatt Macy { 406*eda14cbcSMatt Macy vdev_queue_t *vq = &vd->vdev_queue; 407*eda14cbcSMatt Macy zio_priority_t p; 408*eda14cbcSMatt Macy 409*eda14cbcSMatt Macy mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 410*eda14cbcSMatt Macy vq->vq_vdev = vd; 411*eda14cbcSMatt Macy taskq_init_ent(&vd->vdev_queue.vq_io_search.io_tqent); 412*eda14cbcSMatt Macy 413*eda14cbcSMatt Macy avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, 414*eda14cbcSMatt Macy sizeof (zio_t), offsetof(struct zio, io_queue_node)); 415*eda14cbcSMatt Macy avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ), 416*eda14cbcSMatt Macy vdev_queue_offset_compare, sizeof (zio_t), 417*eda14cbcSMatt Macy offsetof(struct zio, io_offset_node)); 418*eda14cbcSMatt Macy avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE), 419*eda14cbcSMatt Macy vdev_queue_offset_compare, sizeof (zio_t), 420*eda14cbcSMatt Macy offsetof(struct zio, io_offset_node)); 421*eda14cbcSMatt Macy avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM), 422*eda14cbcSMatt Macy vdev_queue_offset_compare, sizeof (zio_t), 423*eda14cbcSMatt Macy offsetof(struct zio, io_offset_node)); 424*eda14cbcSMatt Macy 425*eda14cbcSMatt Macy for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 426*eda14cbcSMatt Macy int (*compfn) (const void *, const void *); 427*eda14cbcSMatt Macy 428*eda14cbcSMatt Macy /* 429*eda14cbcSMatt Macy * The synchronous/trim i/o queues are dispatched in FIFO rather 430*eda14cbcSMatt Macy * than LBA order. This provides more consistent latency for 431*eda14cbcSMatt Macy * these i/os. 432*eda14cbcSMatt Macy */ 433*eda14cbcSMatt Macy if (p == ZIO_PRIORITY_SYNC_READ || 434*eda14cbcSMatt Macy p == ZIO_PRIORITY_SYNC_WRITE || 435*eda14cbcSMatt Macy p == ZIO_PRIORITY_TRIM) { 436*eda14cbcSMatt Macy compfn = vdev_queue_timestamp_compare; 437*eda14cbcSMatt Macy } else { 438*eda14cbcSMatt Macy compfn = vdev_queue_offset_compare; 439*eda14cbcSMatt Macy } 440*eda14cbcSMatt Macy avl_create(vdev_queue_class_tree(vq, p), compfn, 441*eda14cbcSMatt Macy sizeof (zio_t), offsetof(struct zio, io_queue_node)); 442*eda14cbcSMatt Macy } 443*eda14cbcSMatt Macy 444*eda14cbcSMatt Macy vq->vq_last_offset = 0; 445*eda14cbcSMatt Macy } 446*eda14cbcSMatt Macy 447*eda14cbcSMatt Macy void 448*eda14cbcSMatt Macy vdev_queue_fini(vdev_t *vd) 449*eda14cbcSMatt Macy { 450*eda14cbcSMatt Macy vdev_queue_t *vq = &vd->vdev_queue; 451*eda14cbcSMatt Macy 452*eda14cbcSMatt Macy for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) 453*eda14cbcSMatt Macy avl_destroy(vdev_queue_class_tree(vq, p)); 454*eda14cbcSMatt Macy avl_destroy(&vq->vq_active_tree); 455*eda14cbcSMatt Macy avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ)); 456*eda14cbcSMatt Macy avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE)); 457*eda14cbcSMatt Macy avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM)); 458*eda14cbcSMatt Macy 459*eda14cbcSMatt Macy mutex_destroy(&vq->vq_lock); 460*eda14cbcSMatt Macy } 461*eda14cbcSMatt Macy 462*eda14cbcSMatt Macy static void 463*eda14cbcSMatt Macy vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 464*eda14cbcSMatt Macy { 465*eda14cbcSMatt Macy spa_t *spa = zio->io_spa; 466*eda14cbcSMatt Macy spa_history_kstat_t *shk = &spa->spa_stats.io_history; 467*eda14cbcSMatt Macy 468*eda14cbcSMatt Macy ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 469*eda14cbcSMatt Macy avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); 470*eda14cbcSMatt Macy avl_add(vdev_queue_type_tree(vq, zio->io_type), zio); 471*eda14cbcSMatt Macy 472*eda14cbcSMatt Macy if (shk->kstat != NULL) { 473*eda14cbcSMatt Macy mutex_enter(&shk->lock); 474*eda14cbcSMatt Macy kstat_waitq_enter(shk->kstat->ks_data); 475*eda14cbcSMatt Macy mutex_exit(&shk->lock); 476*eda14cbcSMatt Macy } 477*eda14cbcSMatt Macy } 478*eda14cbcSMatt Macy 479*eda14cbcSMatt Macy static void 480*eda14cbcSMatt Macy vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 481*eda14cbcSMatt Macy { 482*eda14cbcSMatt Macy spa_t *spa = zio->io_spa; 483*eda14cbcSMatt Macy spa_history_kstat_t *shk = &spa->spa_stats.io_history; 484*eda14cbcSMatt Macy 485*eda14cbcSMatt Macy ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 486*eda14cbcSMatt Macy avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); 487*eda14cbcSMatt Macy avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio); 488*eda14cbcSMatt Macy 489*eda14cbcSMatt Macy if (shk->kstat != NULL) { 490*eda14cbcSMatt Macy mutex_enter(&shk->lock); 491*eda14cbcSMatt Macy kstat_waitq_exit(shk->kstat->ks_data); 492*eda14cbcSMatt Macy mutex_exit(&shk->lock); 493*eda14cbcSMatt Macy } 494*eda14cbcSMatt Macy } 495*eda14cbcSMatt Macy 496*eda14cbcSMatt Macy static void 497*eda14cbcSMatt Macy vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 498*eda14cbcSMatt Macy { 499*eda14cbcSMatt Macy spa_t *spa = zio->io_spa; 500*eda14cbcSMatt Macy spa_history_kstat_t *shk = &spa->spa_stats.io_history; 501*eda14cbcSMatt Macy 502*eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&vq->vq_lock)); 503*eda14cbcSMatt Macy ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 504*eda14cbcSMatt Macy vq->vq_class[zio->io_priority].vqc_active++; 505*eda14cbcSMatt Macy avl_add(&vq->vq_active_tree, zio); 506*eda14cbcSMatt Macy 507*eda14cbcSMatt Macy if (shk->kstat != NULL) { 508*eda14cbcSMatt Macy mutex_enter(&shk->lock); 509*eda14cbcSMatt Macy kstat_runq_enter(shk->kstat->ks_data); 510*eda14cbcSMatt Macy mutex_exit(&shk->lock); 511*eda14cbcSMatt Macy } 512*eda14cbcSMatt Macy } 513*eda14cbcSMatt Macy 514*eda14cbcSMatt Macy static void 515*eda14cbcSMatt Macy vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 516*eda14cbcSMatt Macy { 517*eda14cbcSMatt Macy spa_t *spa = zio->io_spa; 518*eda14cbcSMatt Macy spa_history_kstat_t *shk = &spa->spa_stats.io_history; 519*eda14cbcSMatt Macy 520*eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&vq->vq_lock)); 521*eda14cbcSMatt Macy ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 522*eda14cbcSMatt Macy vq->vq_class[zio->io_priority].vqc_active--; 523*eda14cbcSMatt Macy avl_remove(&vq->vq_active_tree, zio); 524*eda14cbcSMatt Macy 525*eda14cbcSMatt Macy if (shk->kstat != NULL) { 526*eda14cbcSMatt Macy kstat_io_t *ksio = shk->kstat->ks_data; 527*eda14cbcSMatt Macy 528*eda14cbcSMatt Macy mutex_enter(&shk->lock); 529*eda14cbcSMatt Macy kstat_runq_exit(ksio); 530*eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_READ) { 531*eda14cbcSMatt Macy ksio->reads++; 532*eda14cbcSMatt Macy ksio->nread += zio->io_size; 533*eda14cbcSMatt Macy } else if (zio->io_type == ZIO_TYPE_WRITE) { 534*eda14cbcSMatt Macy ksio->writes++; 535*eda14cbcSMatt Macy ksio->nwritten += zio->io_size; 536*eda14cbcSMatt Macy } 537*eda14cbcSMatt Macy mutex_exit(&shk->lock); 538*eda14cbcSMatt Macy } 539*eda14cbcSMatt Macy } 540*eda14cbcSMatt Macy 541*eda14cbcSMatt Macy static void 542*eda14cbcSMatt Macy vdev_queue_agg_io_done(zio_t *aio) 543*eda14cbcSMatt Macy { 544*eda14cbcSMatt Macy abd_free(aio->io_abd); 545*eda14cbcSMatt Macy } 546*eda14cbcSMatt Macy 547*eda14cbcSMatt Macy /* 548*eda14cbcSMatt Macy * Compute the range spanned by two i/os, which is the endpoint of the last 549*eda14cbcSMatt Macy * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 550*eda14cbcSMatt Macy * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 551*eda14cbcSMatt Macy * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 552*eda14cbcSMatt Macy */ 553*eda14cbcSMatt Macy #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 554*eda14cbcSMatt Macy #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 555*eda14cbcSMatt Macy 556*eda14cbcSMatt Macy /* 557*eda14cbcSMatt Macy * Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this 558*eda14cbcSMatt Macy * by creating a gang ABD from the adjacent ZIOs io_abd's. By using 559*eda14cbcSMatt Macy * a gang ABD we avoid doing memory copies to and from the parent, 560*eda14cbcSMatt Macy * child ZIOs. The gang ABD also accounts for gaps between adjacent 561*eda14cbcSMatt Macy * io_offsets by simply getting the zero ABD for writes or allocating 562*eda14cbcSMatt Macy * a new ABD for reads and placing them in the gang ABD as well. 563*eda14cbcSMatt Macy */ 564*eda14cbcSMatt Macy static zio_t * 565*eda14cbcSMatt Macy vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) 566*eda14cbcSMatt Macy { 567*eda14cbcSMatt Macy zio_t *first, *last, *aio, *dio, *mandatory, *nio; 568*eda14cbcSMatt Macy zio_link_t *zl = NULL; 569*eda14cbcSMatt Macy uint64_t maxgap = 0; 570*eda14cbcSMatt Macy uint64_t size; 571*eda14cbcSMatt Macy uint64_t limit; 572*eda14cbcSMatt Macy int maxblocksize; 573*eda14cbcSMatt Macy boolean_t stretch = B_FALSE; 574*eda14cbcSMatt Macy avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type); 575*eda14cbcSMatt Macy enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; 576*eda14cbcSMatt Macy uint64_t next_offset; 577*eda14cbcSMatt Macy abd_t *abd; 578*eda14cbcSMatt Macy 579*eda14cbcSMatt Macy maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa); 580*eda14cbcSMatt Macy if (vq->vq_vdev->vdev_nonrot) 581*eda14cbcSMatt Macy limit = zfs_vdev_aggregation_limit_non_rotating; 582*eda14cbcSMatt Macy else 583*eda14cbcSMatt Macy limit = zfs_vdev_aggregation_limit; 584*eda14cbcSMatt Macy limit = MAX(MIN(limit, maxblocksize), 0); 585*eda14cbcSMatt Macy 586*eda14cbcSMatt Macy if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0) 587*eda14cbcSMatt Macy return (NULL); 588*eda14cbcSMatt Macy 589*eda14cbcSMatt Macy /* 590*eda14cbcSMatt Macy * While TRIM commands could be aggregated based on offset this 591*eda14cbcSMatt Macy * behavior is disabled until it's determined to be beneficial. 592*eda14cbcSMatt Macy */ 593*eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_TRIM && !zfs_vdev_aggregate_trim) 594*eda14cbcSMatt Macy return (NULL); 595*eda14cbcSMatt Macy 596*eda14cbcSMatt Macy first = last = zio; 597*eda14cbcSMatt Macy 598*eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_READ) 599*eda14cbcSMatt Macy maxgap = zfs_vdev_read_gap_limit; 600*eda14cbcSMatt Macy 601*eda14cbcSMatt Macy /* 602*eda14cbcSMatt Macy * We can aggregate I/Os that are sufficiently adjacent and of 603*eda14cbcSMatt Macy * the same flavor, as expressed by the AGG_INHERIT flags. 604*eda14cbcSMatt Macy * The latter requirement is necessary so that certain 605*eda14cbcSMatt Macy * attributes of the I/O, such as whether it's a normal I/O 606*eda14cbcSMatt Macy * or a scrub/resilver, can be preserved in the aggregate. 607*eda14cbcSMatt Macy * We can include optional I/Os, but don't allow them 608*eda14cbcSMatt Macy * to begin a range as they add no benefit in that situation. 609*eda14cbcSMatt Macy */ 610*eda14cbcSMatt Macy 611*eda14cbcSMatt Macy /* 612*eda14cbcSMatt Macy * We keep track of the last non-optional I/O. 613*eda14cbcSMatt Macy */ 614*eda14cbcSMatt Macy mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; 615*eda14cbcSMatt Macy 616*eda14cbcSMatt Macy /* 617*eda14cbcSMatt Macy * Walk backwards through sufficiently contiguous I/Os 618*eda14cbcSMatt Macy * recording the last non-optional I/O. 619*eda14cbcSMatt Macy */ 620*eda14cbcSMatt Macy while ((dio = AVL_PREV(t, first)) != NULL && 621*eda14cbcSMatt Macy (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 622*eda14cbcSMatt Macy IO_SPAN(dio, last) <= limit && 623*eda14cbcSMatt Macy IO_GAP(dio, first) <= maxgap && 624*eda14cbcSMatt Macy dio->io_type == zio->io_type) { 625*eda14cbcSMatt Macy first = dio; 626*eda14cbcSMatt Macy if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) 627*eda14cbcSMatt Macy mandatory = first; 628*eda14cbcSMatt Macy } 629*eda14cbcSMatt Macy 630*eda14cbcSMatt Macy /* 631*eda14cbcSMatt Macy * Skip any initial optional I/Os. 632*eda14cbcSMatt Macy */ 633*eda14cbcSMatt Macy while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { 634*eda14cbcSMatt Macy first = AVL_NEXT(t, first); 635*eda14cbcSMatt Macy ASSERT(first != NULL); 636*eda14cbcSMatt Macy } 637*eda14cbcSMatt Macy 638*eda14cbcSMatt Macy 639*eda14cbcSMatt Macy /* 640*eda14cbcSMatt Macy * Walk forward through sufficiently contiguous I/Os. 641*eda14cbcSMatt Macy * The aggregation limit does not apply to optional i/os, so that 642*eda14cbcSMatt Macy * we can issue contiguous writes even if they are larger than the 643*eda14cbcSMatt Macy * aggregation limit. 644*eda14cbcSMatt Macy */ 645*eda14cbcSMatt Macy while ((dio = AVL_NEXT(t, last)) != NULL && 646*eda14cbcSMatt Macy (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 647*eda14cbcSMatt Macy (IO_SPAN(first, dio) <= limit || 648*eda14cbcSMatt Macy (dio->io_flags & ZIO_FLAG_OPTIONAL)) && 649*eda14cbcSMatt Macy IO_SPAN(first, dio) <= maxblocksize && 650*eda14cbcSMatt Macy IO_GAP(last, dio) <= maxgap && 651*eda14cbcSMatt Macy dio->io_type == zio->io_type) { 652*eda14cbcSMatt Macy last = dio; 653*eda14cbcSMatt Macy if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) 654*eda14cbcSMatt Macy mandatory = last; 655*eda14cbcSMatt Macy } 656*eda14cbcSMatt Macy 657*eda14cbcSMatt Macy /* 658*eda14cbcSMatt Macy * Now that we've established the range of the I/O aggregation 659*eda14cbcSMatt Macy * we must decide what to do with trailing optional I/Os. 660*eda14cbcSMatt Macy * For reads, there's nothing to do. While we are unable to 661*eda14cbcSMatt Macy * aggregate further, it's possible that a trailing optional 662*eda14cbcSMatt Macy * I/O would allow the underlying device to aggregate with 663*eda14cbcSMatt Macy * subsequent I/Os. We must therefore determine if the next 664*eda14cbcSMatt Macy * non-optional I/O is close enough to make aggregation 665*eda14cbcSMatt Macy * worthwhile. 666*eda14cbcSMatt Macy */ 667*eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { 668*eda14cbcSMatt Macy zio_t *nio = last; 669*eda14cbcSMatt Macy while ((dio = AVL_NEXT(t, nio)) != NULL && 670*eda14cbcSMatt Macy IO_GAP(nio, dio) == 0 && 671*eda14cbcSMatt Macy IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { 672*eda14cbcSMatt Macy nio = dio; 673*eda14cbcSMatt Macy if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 674*eda14cbcSMatt Macy stretch = B_TRUE; 675*eda14cbcSMatt Macy break; 676*eda14cbcSMatt Macy } 677*eda14cbcSMatt Macy } 678*eda14cbcSMatt Macy } 679*eda14cbcSMatt Macy 680*eda14cbcSMatt Macy if (stretch) { 681*eda14cbcSMatt Macy /* 682*eda14cbcSMatt Macy * We are going to include an optional io in our aggregated 683*eda14cbcSMatt Macy * span, thus closing the write gap. Only mandatory i/os can 684*eda14cbcSMatt Macy * start aggregated spans, so make sure that the next i/o 685*eda14cbcSMatt Macy * after our span is mandatory. 686*eda14cbcSMatt Macy */ 687*eda14cbcSMatt Macy dio = AVL_NEXT(t, last); 688*eda14cbcSMatt Macy dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 689*eda14cbcSMatt Macy } else { 690*eda14cbcSMatt Macy /* do not include the optional i/o */ 691*eda14cbcSMatt Macy while (last != mandatory && last != first) { 692*eda14cbcSMatt Macy ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); 693*eda14cbcSMatt Macy last = AVL_PREV(t, last); 694*eda14cbcSMatt Macy ASSERT(last != NULL); 695*eda14cbcSMatt Macy } 696*eda14cbcSMatt Macy } 697*eda14cbcSMatt Macy 698*eda14cbcSMatt Macy if (first == last) 699*eda14cbcSMatt Macy return (NULL); 700*eda14cbcSMatt Macy 701*eda14cbcSMatt Macy size = IO_SPAN(first, last); 702*eda14cbcSMatt Macy ASSERT3U(size, <=, maxblocksize); 703*eda14cbcSMatt Macy 704*eda14cbcSMatt Macy abd = abd_alloc_gang_abd(); 705*eda14cbcSMatt Macy if (abd == NULL) 706*eda14cbcSMatt Macy return (NULL); 707*eda14cbcSMatt Macy 708*eda14cbcSMatt Macy aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, 709*eda14cbcSMatt Macy abd, size, first->io_type, zio->io_priority, 710*eda14cbcSMatt Macy flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, 711*eda14cbcSMatt Macy vdev_queue_agg_io_done, NULL); 712*eda14cbcSMatt Macy aio->io_timestamp = first->io_timestamp; 713*eda14cbcSMatt Macy 714*eda14cbcSMatt Macy nio = first; 715*eda14cbcSMatt Macy next_offset = first->io_offset; 716*eda14cbcSMatt Macy do { 717*eda14cbcSMatt Macy dio = nio; 718*eda14cbcSMatt Macy nio = AVL_NEXT(t, dio); 719*eda14cbcSMatt Macy zio_add_child(dio, aio); 720*eda14cbcSMatt Macy vdev_queue_io_remove(vq, dio); 721*eda14cbcSMatt Macy 722*eda14cbcSMatt Macy if (dio->io_offset != next_offset) { 723*eda14cbcSMatt Macy /* allocate a buffer for a read gap */ 724*eda14cbcSMatt Macy ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ); 725*eda14cbcSMatt Macy ASSERT3U(dio->io_offset, >, next_offset); 726*eda14cbcSMatt Macy abd = abd_alloc_for_io( 727*eda14cbcSMatt Macy dio->io_offset - next_offset, B_TRUE); 728*eda14cbcSMatt Macy abd_gang_add(aio->io_abd, abd, B_TRUE); 729*eda14cbcSMatt Macy } 730*eda14cbcSMatt Macy if (dio->io_abd && 731*eda14cbcSMatt Macy (dio->io_size != abd_get_size(dio->io_abd))) { 732*eda14cbcSMatt Macy /* abd size not the same as IO size */ 733*eda14cbcSMatt Macy ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size); 734*eda14cbcSMatt Macy abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size); 735*eda14cbcSMatt Macy abd_gang_add(aio->io_abd, abd, B_TRUE); 736*eda14cbcSMatt Macy } else { 737*eda14cbcSMatt Macy if (dio->io_flags & ZIO_FLAG_NODATA) { 738*eda14cbcSMatt Macy /* allocate a buffer for a write gap */ 739*eda14cbcSMatt Macy ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); 740*eda14cbcSMatt Macy ASSERT3P(dio->io_abd, ==, NULL); 741*eda14cbcSMatt Macy abd_gang_add(aio->io_abd, 742*eda14cbcSMatt Macy abd_get_zeros(dio->io_size), B_TRUE); 743*eda14cbcSMatt Macy } else { 744*eda14cbcSMatt Macy /* 745*eda14cbcSMatt Macy * We pass B_FALSE to abd_gang_add() 746*eda14cbcSMatt Macy * because we did not allocate a new 747*eda14cbcSMatt Macy * ABD, so it is assumed the caller 748*eda14cbcSMatt Macy * will free this ABD. 749*eda14cbcSMatt Macy */ 750*eda14cbcSMatt Macy abd_gang_add(aio->io_abd, dio->io_abd, 751*eda14cbcSMatt Macy B_FALSE); 752*eda14cbcSMatt Macy } 753*eda14cbcSMatt Macy } 754*eda14cbcSMatt Macy next_offset = dio->io_offset + dio->io_size; 755*eda14cbcSMatt Macy } while (dio != last); 756*eda14cbcSMatt Macy ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size); 757*eda14cbcSMatt Macy 758*eda14cbcSMatt Macy /* 759*eda14cbcSMatt Macy * We need to drop the vdev queue's lock during zio_execute() to 760*eda14cbcSMatt Macy * avoid a deadlock that we could encounter due to lock order 761*eda14cbcSMatt Macy * reversal between vq_lock and io_lock in zio_change_priority(). 762*eda14cbcSMatt Macy */ 763*eda14cbcSMatt Macy mutex_exit(&vq->vq_lock); 764*eda14cbcSMatt Macy while ((dio = zio_walk_parents(aio, &zl)) != NULL) { 765*eda14cbcSMatt Macy ASSERT3U(dio->io_type, ==, aio->io_type); 766*eda14cbcSMatt Macy 767*eda14cbcSMatt Macy zio_vdev_io_bypass(dio); 768*eda14cbcSMatt Macy zio_execute(dio); 769*eda14cbcSMatt Macy } 770*eda14cbcSMatt Macy mutex_enter(&vq->vq_lock); 771*eda14cbcSMatt Macy 772*eda14cbcSMatt Macy return (aio); 773*eda14cbcSMatt Macy } 774*eda14cbcSMatt Macy 775*eda14cbcSMatt Macy static zio_t * 776*eda14cbcSMatt Macy vdev_queue_io_to_issue(vdev_queue_t *vq) 777*eda14cbcSMatt Macy { 778*eda14cbcSMatt Macy zio_t *zio, *aio; 779*eda14cbcSMatt Macy zio_priority_t p; 780*eda14cbcSMatt Macy avl_index_t idx; 781*eda14cbcSMatt Macy avl_tree_t *tree; 782*eda14cbcSMatt Macy 783*eda14cbcSMatt Macy again: 784*eda14cbcSMatt Macy ASSERT(MUTEX_HELD(&vq->vq_lock)); 785*eda14cbcSMatt Macy 786*eda14cbcSMatt Macy p = vdev_queue_class_to_issue(vq); 787*eda14cbcSMatt Macy 788*eda14cbcSMatt Macy if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { 789*eda14cbcSMatt Macy /* No eligible queued i/os */ 790*eda14cbcSMatt Macy return (NULL); 791*eda14cbcSMatt Macy } 792*eda14cbcSMatt Macy 793*eda14cbcSMatt Macy /* 794*eda14cbcSMatt Macy * For LBA-ordered queues (async / scrub / initializing), issue the 795*eda14cbcSMatt Macy * i/o which follows the most recently issued i/o in LBA (offset) order. 796*eda14cbcSMatt Macy * 797*eda14cbcSMatt Macy * For FIFO queues (sync/trim), issue the i/o with the lowest timestamp. 798*eda14cbcSMatt Macy */ 799*eda14cbcSMatt Macy tree = vdev_queue_class_tree(vq, p); 800*eda14cbcSMatt Macy vq->vq_io_search.io_timestamp = 0; 801*eda14cbcSMatt Macy vq->vq_io_search.io_offset = vq->vq_last_offset - 1; 802*eda14cbcSMatt Macy VERIFY3P(avl_find(tree, &vq->vq_io_search, &idx), ==, NULL); 803*eda14cbcSMatt Macy zio = avl_nearest(tree, idx, AVL_AFTER); 804*eda14cbcSMatt Macy if (zio == NULL) 805*eda14cbcSMatt Macy zio = avl_first(tree); 806*eda14cbcSMatt Macy ASSERT3U(zio->io_priority, ==, p); 807*eda14cbcSMatt Macy 808*eda14cbcSMatt Macy aio = vdev_queue_aggregate(vq, zio); 809*eda14cbcSMatt Macy if (aio != NULL) 810*eda14cbcSMatt Macy zio = aio; 811*eda14cbcSMatt Macy else 812*eda14cbcSMatt Macy vdev_queue_io_remove(vq, zio); 813*eda14cbcSMatt Macy 814*eda14cbcSMatt Macy /* 815*eda14cbcSMatt Macy * If the I/O is or was optional and therefore has no data, we need to 816*eda14cbcSMatt Macy * simply discard it. We need to drop the vdev queue's lock to avoid a 817*eda14cbcSMatt Macy * deadlock that we could encounter since this I/O will complete 818*eda14cbcSMatt Macy * immediately. 819*eda14cbcSMatt Macy */ 820*eda14cbcSMatt Macy if (zio->io_flags & ZIO_FLAG_NODATA) { 821*eda14cbcSMatt Macy mutex_exit(&vq->vq_lock); 822*eda14cbcSMatt Macy zio_vdev_io_bypass(zio); 823*eda14cbcSMatt Macy zio_execute(zio); 824*eda14cbcSMatt Macy mutex_enter(&vq->vq_lock); 825*eda14cbcSMatt Macy goto again; 826*eda14cbcSMatt Macy } 827*eda14cbcSMatt Macy 828*eda14cbcSMatt Macy vdev_queue_pending_add(vq, zio); 829*eda14cbcSMatt Macy vq->vq_last_offset = zio->io_offset + zio->io_size; 830*eda14cbcSMatt Macy 831*eda14cbcSMatt Macy return (zio); 832*eda14cbcSMatt Macy } 833*eda14cbcSMatt Macy 834*eda14cbcSMatt Macy zio_t * 835*eda14cbcSMatt Macy vdev_queue_io(zio_t *zio) 836*eda14cbcSMatt Macy { 837*eda14cbcSMatt Macy vdev_queue_t *vq = &zio->io_vd->vdev_queue; 838*eda14cbcSMatt Macy zio_t *nio; 839*eda14cbcSMatt Macy 840*eda14cbcSMatt Macy if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 841*eda14cbcSMatt Macy return (zio); 842*eda14cbcSMatt Macy 843*eda14cbcSMatt Macy /* 844*eda14cbcSMatt Macy * Children i/os inherent their parent's priority, which might 845*eda14cbcSMatt Macy * not match the child's i/o type. Fix it up here. 846*eda14cbcSMatt Macy */ 847*eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_READ) { 848*eda14cbcSMatt Macy ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM); 849*eda14cbcSMatt Macy 850*eda14cbcSMatt Macy if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && 851*eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_ASYNC_READ && 852*eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_SCRUB && 853*eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_REMOVAL && 854*eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_INITIALIZING && 855*eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_REBUILD) { 856*eda14cbcSMatt Macy zio->io_priority = ZIO_PRIORITY_ASYNC_READ; 857*eda14cbcSMatt Macy } 858*eda14cbcSMatt Macy } else if (zio->io_type == ZIO_TYPE_WRITE) { 859*eda14cbcSMatt Macy ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM); 860*eda14cbcSMatt Macy 861*eda14cbcSMatt Macy if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 862*eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE && 863*eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_REMOVAL && 864*eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_INITIALIZING && 865*eda14cbcSMatt Macy zio->io_priority != ZIO_PRIORITY_REBUILD) { 866*eda14cbcSMatt Macy zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; 867*eda14cbcSMatt Macy } 868*eda14cbcSMatt Macy } else { 869*eda14cbcSMatt Macy ASSERT(zio->io_type == ZIO_TYPE_TRIM); 870*eda14cbcSMatt Macy ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM); 871*eda14cbcSMatt Macy } 872*eda14cbcSMatt Macy 873*eda14cbcSMatt Macy zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; 874*eda14cbcSMatt Macy 875*eda14cbcSMatt Macy mutex_enter(&vq->vq_lock); 876*eda14cbcSMatt Macy zio->io_timestamp = gethrtime(); 877*eda14cbcSMatt Macy vdev_queue_io_add(vq, zio); 878*eda14cbcSMatt Macy nio = vdev_queue_io_to_issue(vq); 879*eda14cbcSMatt Macy mutex_exit(&vq->vq_lock); 880*eda14cbcSMatt Macy 881*eda14cbcSMatt Macy if (nio == NULL) 882*eda14cbcSMatt Macy return (NULL); 883*eda14cbcSMatt Macy 884*eda14cbcSMatt Macy if (nio->io_done == vdev_queue_agg_io_done) { 885*eda14cbcSMatt Macy zio_nowait(nio); 886*eda14cbcSMatt Macy return (NULL); 887*eda14cbcSMatt Macy } 888*eda14cbcSMatt Macy 889*eda14cbcSMatt Macy return (nio); 890*eda14cbcSMatt Macy } 891*eda14cbcSMatt Macy 892*eda14cbcSMatt Macy void 893*eda14cbcSMatt Macy vdev_queue_io_done(zio_t *zio) 894*eda14cbcSMatt Macy { 895*eda14cbcSMatt Macy vdev_queue_t *vq = &zio->io_vd->vdev_queue; 896*eda14cbcSMatt Macy zio_t *nio; 897*eda14cbcSMatt Macy 898*eda14cbcSMatt Macy mutex_enter(&vq->vq_lock); 899*eda14cbcSMatt Macy 900*eda14cbcSMatt Macy vdev_queue_pending_remove(vq, zio); 901*eda14cbcSMatt Macy 902*eda14cbcSMatt Macy zio->io_delta = gethrtime() - zio->io_timestamp; 903*eda14cbcSMatt Macy vq->vq_io_complete_ts = gethrtime(); 904*eda14cbcSMatt Macy vq->vq_io_delta_ts = vq->vq_io_complete_ts - zio->io_timestamp; 905*eda14cbcSMatt Macy 906*eda14cbcSMatt Macy while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { 907*eda14cbcSMatt Macy mutex_exit(&vq->vq_lock); 908*eda14cbcSMatt Macy if (nio->io_done == vdev_queue_agg_io_done) { 909*eda14cbcSMatt Macy zio_nowait(nio); 910*eda14cbcSMatt Macy } else { 911*eda14cbcSMatt Macy zio_vdev_io_reissue(nio); 912*eda14cbcSMatt Macy zio_execute(nio); 913*eda14cbcSMatt Macy } 914*eda14cbcSMatt Macy mutex_enter(&vq->vq_lock); 915*eda14cbcSMatt Macy } 916*eda14cbcSMatt Macy 917*eda14cbcSMatt Macy mutex_exit(&vq->vq_lock); 918*eda14cbcSMatt Macy } 919*eda14cbcSMatt Macy 920*eda14cbcSMatt Macy void 921*eda14cbcSMatt Macy vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority) 922*eda14cbcSMatt Macy { 923*eda14cbcSMatt Macy vdev_queue_t *vq = &zio->io_vd->vdev_queue; 924*eda14cbcSMatt Macy avl_tree_t *tree; 925*eda14cbcSMatt Macy 926*eda14cbcSMatt Macy /* 927*eda14cbcSMatt Macy * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio 928*eda14cbcSMatt Macy * code to issue IOs without adding them to the vdev queue. In this 929*eda14cbcSMatt Macy * case, the zio is already going to be issued as quickly as possible 930*eda14cbcSMatt Macy * and so it doesn't need any reprioritization to help. 931*eda14cbcSMatt Macy */ 932*eda14cbcSMatt Macy if (zio->io_priority == ZIO_PRIORITY_NOW) 933*eda14cbcSMatt Macy return; 934*eda14cbcSMatt Macy 935*eda14cbcSMatt Macy ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 936*eda14cbcSMatt Macy ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 937*eda14cbcSMatt Macy 938*eda14cbcSMatt Macy if (zio->io_type == ZIO_TYPE_READ) { 939*eda14cbcSMatt Macy if (priority != ZIO_PRIORITY_SYNC_READ && 940*eda14cbcSMatt Macy priority != ZIO_PRIORITY_ASYNC_READ && 941*eda14cbcSMatt Macy priority != ZIO_PRIORITY_SCRUB) 942*eda14cbcSMatt Macy priority = ZIO_PRIORITY_ASYNC_READ; 943*eda14cbcSMatt Macy } else { 944*eda14cbcSMatt Macy ASSERT(zio->io_type == ZIO_TYPE_WRITE); 945*eda14cbcSMatt Macy if (priority != ZIO_PRIORITY_SYNC_WRITE && 946*eda14cbcSMatt Macy priority != ZIO_PRIORITY_ASYNC_WRITE) 947*eda14cbcSMatt Macy priority = ZIO_PRIORITY_ASYNC_WRITE; 948*eda14cbcSMatt Macy } 949*eda14cbcSMatt Macy 950*eda14cbcSMatt Macy mutex_enter(&vq->vq_lock); 951*eda14cbcSMatt Macy 952*eda14cbcSMatt Macy /* 953*eda14cbcSMatt Macy * If the zio is in none of the queues we can simply change 954*eda14cbcSMatt Macy * the priority. If the zio is waiting to be submitted we must 955*eda14cbcSMatt Macy * remove it from the queue and re-insert it with the new priority. 956*eda14cbcSMatt Macy * Otherwise, the zio is currently active and we cannot change its 957*eda14cbcSMatt Macy * priority. 958*eda14cbcSMatt Macy */ 959*eda14cbcSMatt Macy tree = vdev_queue_class_tree(vq, zio->io_priority); 960*eda14cbcSMatt Macy if (avl_find(tree, zio, NULL) == zio) { 961*eda14cbcSMatt Macy avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio); 962*eda14cbcSMatt Macy zio->io_priority = priority; 963*eda14cbcSMatt Macy avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio); 964*eda14cbcSMatt Macy } else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) { 965*eda14cbcSMatt Macy zio->io_priority = priority; 966*eda14cbcSMatt Macy } 967*eda14cbcSMatt Macy 968*eda14cbcSMatt Macy mutex_exit(&vq->vq_lock); 969*eda14cbcSMatt Macy } 970*eda14cbcSMatt Macy 971*eda14cbcSMatt Macy /* 972*eda14cbcSMatt Macy * As these two methods are only used for load calculations we're not 973*eda14cbcSMatt Macy * concerned if we get an incorrect value on 32bit platforms due to lack of 974*eda14cbcSMatt Macy * vq_lock mutex use here, instead we prefer to keep it lock free for 975*eda14cbcSMatt Macy * performance. 976*eda14cbcSMatt Macy */ 977*eda14cbcSMatt Macy int 978*eda14cbcSMatt Macy vdev_queue_length(vdev_t *vd) 979*eda14cbcSMatt Macy { 980*eda14cbcSMatt Macy return (avl_numnodes(&vd->vdev_queue.vq_active_tree)); 981*eda14cbcSMatt Macy } 982*eda14cbcSMatt Macy 983*eda14cbcSMatt Macy uint64_t 984*eda14cbcSMatt Macy vdev_queue_last_offset(vdev_t *vd) 985*eda14cbcSMatt Macy { 986*eda14cbcSMatt Macy return (vd->vdev_queue.vq_last_offset); 987*eda14cbcSMatt Macy } 988*eda14cbcSMatt Macy 989*eda14cbcSMatt Macy /* BEGIN CSTYLED */ 990*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit, INT, ZMOD_RW, 991*eda14cbcSMatt Macy "Max vdev I/O aggregation size"); 992*eda14cbcSMatt Macy 993*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit_non_rotating, INT, ZMOD_RW, 994*eda14cbcSMatt Macy "Max vdev I/O aggregation size for non-rotating media"); 995*eda14cbcSMatt Macy 996*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregate_trim, INT, ZMOD_RW, 997*eda14cbcSMatt Macy "Allow TRIM I/O to be aggregated"); 998*eda14cbcSMatt Macy 999*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, read_gap_limit, INT, ZMOD_RW, 1000*eda14cbcSMatt Macy "Aggregate read I/O over gap"); 1001*eda14cbcSMatt Macy 1002*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, write_gap_limit, INT, ZMOD_RW, 1003*eda14cbcSMatt Macy "Aggregate write I/O over gap"); 1004*eda14cbcSMatt Macy 1005*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_active, INT, ZMOD_RW, 1006*eda14cbcSMatt Macy "Maximum number of active I/Os per vdev"); 1007*eda14cbcSMatt Macy 1008*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_max_dirty_percent, INT, ZMOD_RW, 1009*eda14cbcSMatt Macy "Async write concurrency max threshold"); 1010*eda14cbcSMatt Macy 1011*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_min_dirty_percent, INT, ZMOD_RW, 1012*eda14cbcSMatt Macy "Async write concurrency min threshold"); 1013*eda14cbcSMatt Macy 1014*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_max_active, INT, ZMOD_RW, 1015*eda14cbcSMatt Macy "Max active async read I/Os per vdev"); 1016*eda14cbcSMatt Macy 1017*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_min_active, INT, ZMOD_RW, 1018*eda14cbcSMatt Macy "Min active async read I/Os per vdev"); 1019*eda14cbcSMatt Macy 1020*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_max_active, INT, ZMOD_RW, 1021*eda14cbcSMatt Macy "Max active async write I/Os per vdev"); 1022*eda14cbcSMatt Macy 1023*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_min_active, INT, ZMOD_RW, 1024*eda14cbcSMatt Macy "Min active async write I/Os per vdev"); 1025*eda14cbcSMatt Macy 1026*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_max_active, INT, ZMOD_RW, 1027*eda14cbcSMatt Macy "Max active initializing I/Os per vdev"); 1028*eda14cbcSMatt Macy 1029*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_min_active, INT, ZMOD_RW, 1030*eda14cbcSMatt Macy "Min active initializing I/Os per vdev"); 1031*eda14cbcSMatt Macy 1032*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_max_active, INT, ZMOD_RW, 1033*eda14cbcSMatt Macy "Max active removal I/Os per vdev"); 1034*eda14cbcSMatt Macy 1035*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_min_active, INT, ZMOD_RW, 1036*eda14cbcSMatt Macy "Min active removal I/Os per vdev"); 1037*eda14cbcSMatt Macy 1038*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_max_active, INT, ZMOD_RW, 1039*eda14cbcSMatt Macy "Max active scrub I/Os per vdev"); 1040*eda14cbcSMatt Macy 1041*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_min_active, INT, ZMOD_RW, 1042*eda14cbcSMatt Macy "Min active scrub I/Os per vdev"); 1043*eda14cbcSMatt Macy 1044*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_max_active, INT, ZMOD_RW, 1045*eda14cbcSMatt Macy "Max active sync read I/Os per vdev"); 1046*eda14cbcSMatt Macy 1047*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_min_active, INT, ZMOD_RW, 1048*eda14cbcSMatt Macy "Min active sync read I/Os per vdev"); 1049*eda14cbcSMatt Macy 1050*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_max_active, INT, ZMOD_RW, 1051*eda14cbcSMatt Macy "Max active sync write I/Os per vdev"); 1052*eda14cbcSMatt Macy 1053*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_min_active, INT, ZMOD_RW, 1054*eda14cbcSMatt Macy "Min active sync write I/Os per vdev"); 1055*eda14cbcSMatt Macy 1056*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_max_active, INT, ZMOD_RW, 1057*eda14cbcSMatt Macy "Max active trim/discard I/Os per vdev"); 1058*eda14cbcSMatt Macy 1059*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_min_active, INT, ZMOD_RW, 1060*eda14cbcSMatt Macy "Min active trim/discard I/Os per vdev"); 1061*eda14cbcSMatt Macy 1062*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_max_active, INT, ZMOD_RW, 1063*eda14cbcSMatt Macy "Max active rebuild I/Os per vdev"); 1064*eda14cbcSMatt Macy 1065*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_min_active, INT, ZMOD_RW, 1066*eda14cbcSMatt Macy "Min active rebuild I/Os per vdev"); 1067*eda14cbcSMatt Macy 1068*eda14cbcSMatt Macy ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, queue_depth_pct, INT, ZMOD_RW, 1069*eda14cbcSMatt Macy "Queue depth percentage for each top-level vdev"); 1070*eda14cbcSMatt Macy /* END CSTYLED */ 1071