1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 */ 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transaction groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * features_for_read 128 * An nvlist of the features necessary for reading the MOS. 129 * 130 * Each leaf device label also contains the following: 131 * 132 * top_guid Unique ID for top-level vdev in which this is contained 133 * guid Unique ID for the leaf vdev 134 * 135 * The 'vs' configuration follows the format described in 'spa_config.c'. 136 */ 137 138 #include <sys/zfs_context.h> 139 #include <sys/spa.h> 140 #include <sys/spa_impl.h> 141 #include <sys/dmu.h> 142 #include <sys/zap.h> 143 #include <sys/vdev.h> 144 #include <sys/vdev_impl.h> 145 #include <sys/uberblock_impl.h> 146 #include <sys/metaslab.h> 147 #include <sys/metaslab_impl.h> 148 #include <sys/zio.h> 149 #include <sys/dsl_scan.h> 150 #include <sys/abd.h> 151 #include <sys/fs/zfs.h> 152 153 /* 154 * Basic routines to read and write from a vdev label. 155 * Used throughout the rest of this file. 156 */ 157 uint64_t 158 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 159 { 160 ASSERT(offset < sizeof (vdev_label_t)); 161 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 162 163 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 164 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 165 } 166 167 /* 168 * Returns back the vdev label associated with the passed in offset. 169 */ 170 int 171 vdev_label_number(uint64_t psize, uint64_t offset) 172 { 173 int l; 174 175 if (offset >= psize - VDEV_LABEL_END_SIZE) { 176 offset -= psize - VDEV_LABEL_END_SIZE; 177 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 178 } 179 l = offset / sizeof (vdev_label_t); 180 return (l < VDEV_LABELS ? l : -1); 181 } 182 183 static void 184 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 185 uint64_t size, zio_done_func_t *done, void *private, int flags) 186 { 187 ASSERT( 188 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 189 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 190 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 191 192 zio_nowait(zio_read_phys(zio, vd, 193 vdev_label_offset(vd->vdev_psize, l, offset), 194 size, buf, ZIO_CHECKSUM_LABEL, done, private, 195 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 196 } 197 198 void 199 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset, 200 uint64_t size, zio_done_func_t *done, void *private, int flags) 201 { 202 ASSERT( 203 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE || 204 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE); 205 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 206 207 zio_nowait(zio_write_phys(zio, vd, 208 vdev_label_offset(vd->vdev_psize, l, offset), 209 size, buf, ZIO_CHECKSUM_LABEL, done, private, 210 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 211 } 212 213 /* 214 * Generate the nvlist representing this vdev's stats 215 */ 216 void 217 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv) 218 { 219 nvlist_t *nvx; 220 vdev_stat_t *vs; 221 vdev_stat_ex_t *vsx; 222 223 vs = kmem_alloc(sizeof (*vs), KM_SLEEP); 224 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP); 225 226 vdev_get_stats_ex(vd, vs, vsx); 227 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 228 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t)); 229 230 /* 231 * Add extended stats into a special extended stats nvlist. This keeps 232 * all the extended stats nicely grouped together. The extended stats 233 * nvlist is then added to the main nvlist. 234 */ 235 nvx = fnvlist_alloc(); 236 237 /* ZIOs in flight to disk */ 238 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE, 239 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]); 240 241 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE, 242 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]); 243 244 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE, 245 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]); 246 247 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE, 248 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]); 249 250 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE, 251 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]); 252 253 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE, 254 vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]); 255 256 /* ZIOs pending */ 257 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE, 258 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]); 259 260 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE, 261 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]); 262 263 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE, 264 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]); 265 266 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE, 267 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]); 268 269 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE, 270 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]); 271 272 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE, 273 vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]); 274 275 /* Histograms */ 276 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO, 277 vsx->vsx_total_histo[ZIO_TYPE_READ], 278 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ])); 279 280 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO, 281 vsx->vsx_total_histo[ZIO_TYPE_WRITE], 282 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE])); 283 284 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO, 285 vsx->vsx_disk_histo[ZIO_TYPE_READ], 286 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ])); 287 288 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO, 289 vsx->vsx_disk_histo[ZIO_TYPE_WRITE], 290 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE])); 291 292 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO, 293 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ], 294 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ])); 295 296 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO, 297 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE], 298 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE])); 299 300 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO, 301 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ], 302 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ])); 303 304 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO, 305 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE], 306 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE])); 307 308 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO, 309 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB], 310 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB])); 311 312 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO, 313 vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM], 314 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM])); 315 316 /* Request sizes */ 317 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO, 318 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ], 319 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ])); 320 321 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO, 322 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE], 323 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE])); 324 325 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO, 326 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ], 327 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ])); 328 329 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO, 330 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE], 331 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE])); 332 333 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO, 334 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB], 335 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB])); 336 337 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO, 338 vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM], 339 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM])); 340 341 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO, 342 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ], 343 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ])); 344 345 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO, 346 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE], 347 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE])); 348 349 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO, 350 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ], 351 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ])); 352 353 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO, 354 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE], 355 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE])); 356 357 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO, 358 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB], 359 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB])); 360 361 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO, 362 vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM], 363 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM])); 364 365 /* IO delays */ 366 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios); 367 368 /* Add extended stats nvlist to main nvlist */ 369 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx); 370 371 fnvlist_free(nvx); 372 kmem_free(vs, sizeof (*vs)); 373 kmem_free(vsx, sizeof (*vsx)); 374 } 375 376 static void 377 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 378 { 379 spa_t *spa = vd->vdev_spa; 380 381 if (vd != spa->spa_root_vdev) 382 return; 383 384 /* provide either current or previous scan information */ 385 pool_scan_stat_t ps; 386 if (spa_scan_get_stats(spa, &ps) == 0) { 387 fnvlist_add_uint64_array(nvl, 388 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 389 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 390 } 391 392 pool_removal_stat_t prs; 393 if (spa_removal_get_stats(spa, &prs) == 0) { 394 fnvlist_add_uint64_array(nvl, 395 ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs, 396 sizeof (prs) / sizeof (uint64_t)); 397 } 398 399 pool_checkpoint_stat_t pcs; 400 if (spa_checkpoint_get_stats(spa, &pcs) == 0) { 401 fnvlist_add_uint64_array(nvl, 402 ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs, 403 sizeof (pcs) / sizeof (uint64_t)); 404 } 405 } 406 407 static void 408 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl) 409 { 410 if (vd == vd->vdev_top) { 411 vdev_rebuild_stat_t vrs; 412 if (vdev_rebuild_get_stats(vd, &vrs) == 0) { 413 fnvlist_add_uint64_array(nvl, 414 ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs, 415 sizeof (vrs) / sizeof (uint64_t)); 416 } 417 } 418 } 419 420 /* 421 * Generate the nvlist representing this vdev's config. 422 */ 423 nvlist_t * 424 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 425 vdev_config_flag_t flags) 426 { 427 nvlist_t *nv = NULL; 428 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 429 430 nv = fnvlist_alloc(); 431 432 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 433 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 434 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 435 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 436 437 if (vd->vdev_path != NULL) 438 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 439 440 if (vd->vdev_devid != NULL) 441 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 442 443 if (vd->vdev_physpath != NULL) 444 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 445 vd->vdev_physpath); 446 447 if (vd->vdev_enc_sysfs_path != NULL) 448 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 449 vd->vdev_enc_sysfs_path); 450 451 if (vd->vdev_fru != NULL) 452 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 453 454 if (vd->vdev_nparity != 0) { 455 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 456 VDEV_TYPE_RAIDZ) == 0); 457 458 /* 459 * Make sure someone hasn't managed to sneak a fancy new vdev 460 * into a crufty old storage pool. 461 */ 462 ASSERT(vd->vdev_nparity == 1 || 463 (vd->vdev_nparity <= 2 && 464 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 465 (vd->vdev_nparity <= 3 && 466 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 467 468 /* 469 * Note that we'll add the nparity tag even on storage pools 470 * that only support a single parity device -- older software 471 * will just ignore it. 472 */ 473 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); 474 } 475 476 if (vd->vdev_wholedisk != -1ULL) 477 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 478 vd->vdev_wholedisk); 479 480 if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING)) 481 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 482 483 if (vd->vdev_isspare) 484 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 485 486 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 487 vd == vd->vdev_top) { 488 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 489 vd->vdev_ms_array); 490 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 491 vd->vdev_ms_shift); 492 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 493 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 494 vd->vdev_asize); 495 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 496 if (vd->vdev_removing) { 497 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 498 vd->vdev_removing); 499 } 500 501 /* zpool command expects alloc class data */ 502 if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) { 503 const char *bias = NULL; 504 505 switch (vd->vdev_alloc_bias) { 506 case VDEV_BIAS_LOG: 507 bias = VDEV_ALLOC_BIAS_LOG; 508 break; 509 case VDEV_BIAS_SPECIAL: 510 bias = VDEV_ALLOC_BIAS_SPECIAL; 511 break; 512 case VDEV_BIAS_DEDUP: 513 bias = VDEV_ALLOC_BIAS_DEDUP; 514 break; 515 default: 516 ASSERT3U(vd->vdev_alloc_bias, ==, 517 VDEV_BIAS_NONE); 518 } 519 fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, 520 bias); 521 } 522 } 523 524 if (vd->vdev_dtl_sm != NULL) { 525 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 526 space_map_object(vd->vdev_dtl_sm)); 527 } 528 529 if (vic->vic_mapping_object != 0) { 530 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, 531 vic->vic_mapping_object); 532 } 533 534 if (vic->vic_births_object != 0) { 535 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, 536 vic->vic_births_object); 537 } 538 539 if (vic->vic_prev_indirect_vdev != UINT64_MAX) { 540 fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, 541 vic->vic_prev_indirect_vdev); 542 } 543 544 if (vd->vdev_crtxg) 545 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 546 547 if (vd->vdev_expansion_time) 548 fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME, 549 vd->vdev_expansion_time); 550 551 if (flags & VDEV_CONFIG_MOS) { 552 if (vd->vdev_leaf_zap != 0) { 553 ASSERT(vd->vdev_ops->vdev_op_leaf); 554 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP, 555 vd->vdev_leaf_zap); 556 } 557 558 if (vd->vdev_top_zap != 0) { 559 ASSERT(vd == vd->vdev_top); 560 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, 561 vd->vdev_top_zap); 562 } 563 564 if (vd->vdev_resilver_deferred) { 565 ASSERT(vd->vdev_ops->vdev_op_leaf); 566 ASSERT(spa->spa_resilver_deferred); 567 fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER); 568 } 569 } 570 571 if (getstats) { 572 vdev_config_generate_stats(vd, nv); 573 574 root_vdev_actions_getprogress(vd, nv); 575 top_vdev_actions_getprogress(vd, nv); 576 577 /* 578 * Note: this can be called from open context 579 * (spa_get_stats()), so we need the rwlock to prevent 580 * the mapping from being changed by condensing. 581 */ 582 rw_enter(&vd->vdev_indirect_rwlock, RW_READER); 583 if (vd->vdev_indirect_mapping != NULL) { 584 ASSERT(vd->vdev_indirect_births != NULL); 585 vdev_indirect_mapping_t *vim = 586 vd->vdev_indirect_mapping; 587 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 588 vdev_indirect_mapping_size(vim)); 589 } 590 rw_exit(&vd->vdev_indirect_rwlock); 591 if (vd->vdev_mg != NULL && 592 vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) { 593 /* 594 * Compute approximately how much memory would be used 595 * for the indirect mapping if this device were to 596 * be removed. 597 * 598 * Note: If the frag metric is invalid, then not 599 * enough metaslabs have been converted to have 600 * histograms. 601 */ 602 uint64_t seg_count = 0; 603 uint64_t to_alloc = vd->vdev_stat.vs_alloc; 604 605 /* 606 * There are the same number of allocated segments 607 * as free segments, so we will have at least one 608 * entry per free segment. However, small free 609 * segments (smaller than vdev_removal_max_span) 610 * will be combined with adjacent allocated segments 611 * as a single mapping. 612 */ 613 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 614 if (1ULL << (i + 1) < vdev_removal_max_span) { 615 to_alloc += 616 vd->vdev_mg->mg_histogram[i] << 617 (i + 1); 618 } else { 619 seg_count += 620 vd->vdev_mg->mg_histogram[i]; 621 } 622 } 623 624 /* 625 * The maximum length of a mapping is 626 * zfs_remove_max_segment, so we need at least one entry 627 * per zfs_remove_max_segment of allocated data. 628 */ 629 seg_count += to_alloc / spa_remove_max_segment(spa); 630 631 fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE, 632 seg_count * 633 sizeof (vdev_indirect_mapping_entry_phys_t)); 634 } 635 } 636 637 if (!vd->vdev_ops->vdev_op_leaf) { 638 nvlist_t **child; 639 int c, idx; 640 641 ASSERT(!vd->vdev_ishole); 642 643 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 644 KM_SLEEP); 645 646 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 647 vdev_t *cvd = vd->vdev_child[c]; 648 649 /* 650 * If we're generating an nvlist of removing 651 * vdevs then skip over any device which is 652 * not being removed. 653 */ 654 if ((flags & VDEV_CONFIG_REMOVING) && 655 !cvd->vdev_removing) 656 continue; 657 658 child[idx++] = vdev_config_generate(spa, cvd, 659 getstats, flags); 660 } 661 662 if (idx) { 663 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 664 child, idx); 665 } 666 667 for (c = 0; c < idx; c++) 668 nvlist_free(child[c]); 669 670 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 671 672 } else { 673 const char *aux = NULL; 674 675 if (vd->vdev_offline && !vd->vdev_tmpoffline) 676 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 677 if (vd->vdev_resilver_txg != 0) 678 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 679 vd->vdev_resilver_txg); 680 if (vd->vdev_rebuild_txg != 0) 681 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, 682 vd->vdev_rebuild_txg); 683 if (vd->vdev_faulted) 684 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 685 if (vd->vdev_degraded) 686 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 687 if (vd->vdev_removed) 688 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 689 if (vd->vdev_unspare) 690 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 691 if (vd->vdev_ishole) 692 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 693 694 /* Set the reason why we're FAULTED/DEGRADED. */ 695 switch (vd->vdev_stat.vs_aux) { 696 case VDEV_AUX_ERR_EXCEEDED: 697 aux = "err_exceeded"; 698 break; 699 700 case VDEV_AUX_EXTERNAL: 701 aux = "external"; 702 break; 703 } 704 705 if (aux != NULL && !vd->vdev_tmpoffline) { 706 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 707 } else { 708 /* 709 * We're healthy - clear any previous AUX_STATE values. 710 */ 711 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE)) 712 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE); 713 } 714 715 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 716 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 717 vd->vdev_orig_guid); 718 } 719 } 720 721 return (nv); 722 } 723 724 /* 725 * Generate a view of the top-level vdevs. If we currently have holes 726 * in the namespace, then generate an array which contains a list of holey 727 * vdevs. Additionally, add the number of top-level children that currently 728 * exist. 729 */ 730 void 731 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 732 { 733 vdev_t *rvd = spa->spa_root_vdev; 734 uint64_t *array; 735 uint_t c, idx; 736 737 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 738 739 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 740 vdev_t *tvd = rvd->vdev_child[c]; 741 742 if (tvd->vdev_ishole) { 743 array[idx++] = c; 744 } 745 } 746 747 if (idx) { 748 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 749 array, idx) == 0); 750 } 751 752 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 753 rvd->vdev_children) == 0); 754 755 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 756 } 757 758 /* 759 * Returns the configuration from the label of the given vdev. For vdevs 760 * which don't have a txg value stored on their label (i.e. spares/cache) 761 * or have not been completely initialized (txg = 0) just return 762 * the configuration from the first valid label we find. Otherwise, 763 * find the most up-to-date label that does not exceed the specified 764 * 'txg' value. 765 */ 766 nvlist_t * 767 vdev_label_read_config(vdev_t *vd, uint64_t txg) 768 { 769 spa_t *spa = vd->vdev_spa; 770 nvlist_t *config = NULL; 771 vdev_phys_t *vp; 772 abd_t *vp_abd; 773 zio_t *zio; 774 uint64_t best_txg = 0; 775 uint64_t label_txg = 0; 776 int error = 0; 777 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 778 ZIO_FLAG_SPECULATIVE; 779 780 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 781 782 if (!vdev_readable(vd)) 783 return (NULL); 784 785 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 786 vp = abd_to_buf(vp_abd); 787 788 retry: 789 for (int l = 0; l < VDEV_LABELS; l++) { 790 nvlist_t *label = NULL; 791 792 zio = zio_root(spa, NULL, NULL, flags); 793 794 vdev_label_read(zio, vd, l, vp_abd, 795 offsetof(vdev_label_t, vl_vdev_phys), 796 sizeof (vdev_phys_t), NULL, NULL, flags); 797 798 if (zio_wait(zio) == 0 && 799 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 800 &label, 0) == 0) { 801 /* 802 * Auxiliary vdevs won't have txg values in their 803 * labels and newly added vdevs may not have been 804 * completely initialized so just return the 805 * configuration from the first valid label we 806 * encounter. 807 */ 808 error = nvlist_lookup_uint64(label, 809 ZPOOL_CONFIG_POOL_TXG, &label_txg); 810 if ((error || label_txg == 0) && !config) { 811 config = label; 812 break; 813 } else if (label_txg <= txg && label_txg > best_txg) { 814 best_txg = label_txg; 815 nvlist_free(config); 816 config = fnvlist_dup(label); 817 } 818 } 819 820 if (label != NULL) { 821 nvlist_free(label); 822 label = NULL; 823 } 824 } 825 826 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 827 flags |= ZIO_FLAG_TRYHARD; 828 goto retry; 829 } 830 831 /* 832 * We found a valid label but it didn't pass txg restrictions. 833 */ 834 if (config == NULL && label_txg != 0) { 835 vdev_dbgmsg(vd, "label discarded as txg is too large " 836 "(%llu > %llu)", (u_longlong_t)label_txg, 837 (u_longlong_t)txg); 838 } 839 840 abd_free(vp_abd); 841 842 return (config); 843 } 844 845 /* 846 * Determine if a device is in use. The 'spare_guid' parameter will be filled 847 * in with the device guid if this spare is active elsewhere on the system. 848 */ 849 static boolean_t 850 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 851 uint64_t *spare_guid, uint64_t *l2cache_guid) 852 { 853 spa_t *spa = vd->vdev_spa; 854 uint64_t state, pool_guid, device_guid, txg, spare_pool; 855 uint64_t vdtxg = 0; 856 nvlist_t *label; 857 858 if (spare_guid) 859 *spare_guid = 0ULL; 860 if (l2cache_guid) 861 *l2cache_guid = 0ULL; 862 863 /* 864 * Read the label, if any, and perform some basic sanity checks. 865 */ 866 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 867 return (B_FALSE); 868 869 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 870 &vdtxg); 871 872 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 873 &state) != 0 || 874 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 875 &device_guid) != 0) { 876 nvlist_free(label); 877 return (B_FALSE); 878 } 879 880 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 881 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 882 &pool_guid) != 0 || 883 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 884 &txg) != 0)) { 885 nvlist_free(label); 886 return (B_FALSE); 887 } 888 889 nvlist_free(label); 890 891 /* 892 * Check to see if this device indeed belongs to the pool it claims to 893 * be a part of. The only way this is allowed is if the device is a hot 894 * spare (which we check for later on). 895 */ 896 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 897 !spa_guid_exists(pool_guid, device_guid) && 898 !spa_spare_exists(device_guid, NULL, NULL) && 899 !spa_l2cache_exists(device_guid, NULL)) 900 return (B_FALSE); 901 902 /* 903 * If the transaction group is zero, then this an initialized (but 904 * unused) label. This is only an error if the create transaction 905 * on-disk is the same as the one we're using now, in which case the 906 * user has attempted to add the same vdev multiple times in the same 907 * transaction. 908 */ 909 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 910 txg == 0 && vdtxg == crtxg) 911 return (B_TRUE); 912 913 /* 914 * Check to see if this is a spare device. We do an explicit check for 915 * spa_has_spare() here because it may be on our pending list of spares 916 * to add. We also check if it is an l2cache device. 917 */ 918 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 919 spa_has_spare(spa, device_guid)) { 920 if (spare_guid) 921 *spare_guid = device_guid; 922 923 switch (reason) { 924 case VDEV_LABEL_CREATE: 925 case VDEV_LABEL_L2CACHE: 926 return (B_TRUE); 927 928 case VDEV_LABEL_REPLACE: 929 return (!spa_has_spare(spa, device_guid) || 930 spare_pool != 0ULL); 931 932 case VDEV_LABEL_SPARE: 933 return (spa_has_spare(spa, device_guid)); 934 default: 935 break; 936 } 937 } 938 939 /* 940 * Check to see if this is an l2cache device. 941 */ 942 if (spa_l2cache_exists(device_guid, NULL)) 943 return (B_TRUE); 944 945 /* 946 * We can't rely on a pool's state if it's been imported 947 * read-only. Instead we look to see if the pools is marked 948 * read-only in the namespace and set the state to active. 949 */ 950 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 951 (spa = spa_by_guid(pool_guid, device_guid)) != NULL && 952 spa_mode(spa) == SPA_MODE_READ) 953 state = POOL_STATE_ACTIVE; 954 955 /* 956 * If the device is marked ACTIVE, then this device is in use by another 957 * pool on the system. 958 */ 959 return (state == POOL_STATE_ACTIVE); 960 } 961 962 /* 963 * Initialize a vdev label. We check to make sure each leaf device is not in 964 * use, and writable. We put down an initial label which we will later 965 * overwrite with a complete label. Note that it's important to do this 966 * sequentially, not in parallel, so that we catch cases of multiple use of the 967 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 968 * itself. 969 */ 970 int 971 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 972 { 973 spa_t *spa = vd->vdev_spa; 974 nvlist_t *label; 975 vdev_phys_t *vp; 976 abd_t *vp_abd; 977 abd_t *bootenv; 978 uberblock_t *ub; 979 abd_t *ub_abd; 980 zio_t *zio; 981 char *buf; 982 size_t buflen; 983 int error; 984 uint64_t spare_guid = 0, l2cache_guid = 0; 985 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 986 987 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 988 989 for (int c = 0; c < vd->vdev_children; c++) 990 if ((error = vdev_label_init(vd->vdev_child[c], 991 crtxg, reason)) != 0) 992 return (error); 993 994 /* Track the creation time for this vdev */ 995 vd->vdev_crtxg = crtxg; 996 997 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 998 return (0); 999 1000 /* 1001 * Dead vdevs cannot be initialized. 1002 */ 1003 if (vdev_is_dead(vd)) 1004 return (SET_ERROR(EIO)); 1005 1006 /* 1007 * Determine if the vdev is in use. 1008 */ 1009 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 1010 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 1011 return (SET_ERROR(EBUSY)); 1012 1013 /* 1014 * If this is a request to add or replace a spare or l2cache device 1015 * that is in use elsewhere on the system, then we must update the 1016 * guid (which was initialized to a random value) to reflect the 1017 * actual GUID (which is shared between multiple pools). 1018 */ 1019 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 1020 spare_guid != 0ULL) { 1021 uint64_t guid_delta = spare_guid - vd->vdev_guid; 1022 1023 vd->vdev_guid += guid_delta; 1024 1025 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1026 pvd->vdev_guid_sum += guid_delta; 1027 1028 /* 1029 * If this is a replacement, then we want to fallthrough to the 1030 * rest of the code. If we're adding a spare, then it's already 1031 * labeled appropriately and we can just return. 1032 */ 1033 if (reason == VDEV_LABEL_SPARE) 1034 return (0); 1035 ASSERT(reason == VDEV_LABEL_REPLACE || 1036 reason == VDEV_LABEL_SPLIT); 1037 } 1038 1039 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 1040 l2cache_guid != 0ULL) { 1041 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 1042 1043 vd->vdev_guid += guid_delta; 1044 1045 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1046 pvd->vdev_guid_sum += guid_delta; 1047 1048 /* 1049 * If this is a replacement, then we want to fallthrough to the 1050 * rest of the code. If we're adding an l2cache, then it's 1051 * already labeled appropriately and we can just return. 1052 */ 1053 if (reason == VDEV_LABEL_L2CACHE) 1054 return (0); 1055 ASSERT(reason == VDEV_LABEL_REPLACE); 1056 } 1057 1058 /* 1059 * Initialize its label. 1060 */ 1061 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1062 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1063 vp = abd_to_buf(vp_abd); 1064 1065 /* 1066 * Generate a label describing the pool and our top-level vdev. 1067 * We mark it as being from txg 0 to indicate that it's not 1068 * really part of an active pool just yet. The labels will 1069 * be written again with a meaningful txg by spa_sync(). 1070 */ 1071 if (reason == VDEV_LABEL_SPARE || 1072 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 1073 /* 1074 * For inactive hot spares, we generate a special label that 1075 * identifies as a mutually shared hot spare. We write the 1076 * label if we are adding a hot spare, or if we are removing an 1077 * active hot spare (in which case we want to revert the 1078 * labels). 1079 */ 1080 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1081 1082 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1083 spa_version(spa)) == 0); 1084 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1085 POOL_STATE_SPARE) == 0); 1086 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1087 vd->vdev_guid) == 0); 1088 } else if (reason == VDEV_LABEL_L2CACHE || 1089 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 1090 /* 1091 * For level 2 ARC devices, add a special label. 1092 */ 1093 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1094 1095 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 1096 spa_version(spa)) == 0); 1097 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1098 POOL_STATE_L2CACHE) == 0); 1099 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 1100 vd->vdev_guid) == 0); 1101 } else { 1102 uint64_t txg = 0ULL; 1103 1104 if (reason == VDEV_LABEL_SPLIT) 1105 txg = spa->spa_uberblock.ub_txg; 1106 label = spa_config_generate(spa, vd, txg, B_FALSE); 1107 1108 /* 1109 * Add our creation time. This allows us to detect multiple 1110 * vdev uses as described above, and automatically expires if we 1111 * fail. 1112 */ 1113 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 1114 crtxg) == 0); 1115 } 1116 1117 buf = vp->vp_nvlist; 1118 buflen = sizeof (vp->vp_nvlist); 1119 1120 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 1121 if (error != 0) { 1122 nvlist_free(label); 1123 abd_free(vp_abd); 1124 /* EFAULT means nvlist_pack ran out of room */ 1125 return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL)); 1126 } 1127 1128 /* 1129 * Initialize uberblock template. 1130 */ 1131 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE); 1132 abd_zero(ub_abd, VDEV_UBERBLOCK_RING); 1133 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t)); 1134 ub = abd_to_buf(ub_abd); 1135 ub->ub_txg = 0; 1136 1137 /* Initialize the 2nd padding area. */ 1138 bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1139 abd_zero(bootenv, VDEV_PAD_SIZE); 1140 1141 /* 1142 * Write everything in parallel. 1143 */ 1144 retry: 1145 zio = zio_root(spa, NULL, NULL, flags); 1146 1147 for (int l = 0; l < VDEV_LABELS; l++) { 1148 1149 vdev_label_write(zio, vd, l, vp_abd, 1150 offsetof(vdev_label_t, vl_vdev_phys), 1151 sizeof (vdev_phys_t), NULL, NULL, flags); 1152 1153 /* 1154 * Skip the 1st padding area. 1155 * Zero out the 2nd padding area where it might have 1156 * left over data from previous filesystem format. 1157 */ 1158 vdev_label_write(zio, vd, l, bootenv, 1159 offsetof(vdev_label_t, vl_be), 1160 VDEV_PAD_SIZE, NULL, NULL, flags); 1161 1162 vdev_label_write(zio, vd, l, ub_abd, 1163 offsetof(vdev_label_t, vl_uberblock), 1164 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 1165 } 1166 1167 error = zio_wait(zio); 1168 1169 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1170 flags |= ZIO_FLAG_TRYHARD; 1171 goto retry; 1172 } 1173 1174 nvlist_free(label); 1175 abd_free(bootenv); 1176 abd_free(ub_abd); 1177 abd_free(vp_abd); 1178 1179 /* 1180 * If this vdev hasn't been previously identified as a spare, then we 1181 * mark it as such only if a) we are labeling it as a spare, or b) it 1182 * exists as a spare elsewhere in the system. Do the same for 1183 * level 2 ARC devices. 1184 */ 1185 if (error == 0 && !vd->vdev_isspare && 1186 (reason == VDEV_LABEL_SPARE || 1187 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 1188 spa_spare_add(vd); 1189 1190 if (error == 0 && !vd->vdev_isl2cache && 1191 (reason == VDEV_LABEL_L2CACHE || 1192 spa_l2cache_exists(vd->vdev_guid, NULL))) 1193 spa_l2cache_add(vd); 1194 1195 return (error); 1196 } 1197 1198 /* 1199 * Done callback for vdev_label_read_bootenv_impl. If this is the first 1200 * callback to finish, store our abd in the callback pointer. Otherwise, we 1201 * just free our abd and return. 1202 */ 1203 static void 1204 vdev_label_read_bootenv_done(zio_t *zio) 1205 { 1206 zio_t *rio = zio->io_private; 1207 abd_t **cbp = rio->io_private; 1208 1209 ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE); 1210 1211 if (zio->io_error == 0) { 1212 mutex_enter(&rio->io_lock); 1213 if (*cbp == NULL) { 1214 /* Will free this buffer in vdev_label_read_bootenv. */ 1215 *cbp = zio->io_abd; 1216 } else { 1217 abd_free(zio->io_abd); 1218 } 1219 mutex_exit(&rio->io_lock); 1220 } else { 1221 abd_free(zio->io_abd); 1222 } 1223 } 1224 1225 static void 1226 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags) 1227 { 1228 for (int c = 0; c < vd->vdev_children; c++) 1229 vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags); 1230 1231 /* 1232 * We just use the first label that has a correct checksum; the 1233 * bootloader should have rewritten them all to be the same on boot, 1234 * and any changes we made since boot have been the same across all 1235 * labels. 1236 * 1237 * While grub supports writing to all four labels, other bootloaders 1238 * don't, so we only use the first two labels to store boot 1239 * information. 1240 */ 1241 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1242 for (int l = 0; l < VDEV_LABELS / 2; l++) { 1243 vdev_label_read(zio, vd, l, 1244 abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE), 1245 offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE, 1246 vdev_label_read_bootenv_done, zio, flags); 1247 } 1248 } 1249 } 1250 1251 int 1252 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *command) 1253 { 1254 spa_t *spa = rvd->vdev_spa; 1255 abd_t *abd = NULL; 1256 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1257 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1258 1259 ASSERT(command); 1260 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1261 1262 zio_t *zio = zio_root(spa, NULL, &abd, flags); 1263 vdev_label_read_bootenv_impl(zio, rvd, flags); 1264 int err = zio_wait(zio); 1265 1266 if (abd != NULL) { 1267 vdev_boot_envblock_t *vbe = abd_to_buf(abd); 1268 if (vbe->vbe_version != VB_RAW) { 1269 abd_free(abd); 1270 return (SET_ERROR(ENOTSUP)); 1271 } 1272 vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0'; 1273 fnvlist_add_string(command, "envmap", vbe->vbe_bootenv); 1274 /* abd was allocated in vdev_label_read_bootenv_impl() */ 1275 abd_free(abd); 1276 /* If we managed to read any successfully, return success. */ 1277 return (0); 1278 } 1279 return (err); 1280 } 1281 1282 int 1283 vdev_label_write_bootenv(vdev_t *vd, char *envmap) 1284 { 1285 zio_t *zio; 1286 spa_t *spa = vd->vdev_spa; 1287 vdev_boot_envblock_t *bootenv; 1288 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1289 int error = ENXIO; 1290 1291 if (strlen(envmap) >= sizeof (bootenv->vbe_bootenv)) { 1292 return (SET_ERROR(E2BIG)); 1293 } 1294 1295 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1296 1297 for (int c = 0; c < vd->vdev_children; c++) { 1298 int child_err = vdev_label_write_bootenv(vd->vdev_child[c], 1299 envmap); 1300 /* 1301 * As long as any of the disks managed to write all of their 1302 * labels successfully, return success. 1303 */ 1304 if (child_err == 0) 1305 error = child_err; 1306 } 1307 1308 if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) || 1309 !vdev_writeable(vd)) { 1310 return (error); 1311 } 1312 ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE); 1313 abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE); 1314 abd_zero(abd, VDEV_PAD_SIZE); 1315 bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE); 1316 1317 char *buf = bootenv->vbe_bootenv; 1318 (void) strlcpy(buf, envmap, sizeof (bootenv->vbe_bootenv)); 1319 bootenv->vbe_version = VB_RAW; 1320 abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE); 1321 1322 retry: 1323 zio = zio_root(spa, NULL, NULL, flags); 1324 for (int l = 0; l < VDEV_LABELS / 2; l++) { 1325 vdev_label_write(zio, vd, l, abd, 1326 offsetof(vdev_label_t, vl_be), 1327 VDEV_PAD_SIZE, NULL, NULL, flags); 1328 } 1329 1330 error = zio_wait(zio); 1331 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 1332 flags |= ZIO_FLAG_TRYHARD; 1333 goto retry; 1334 } 1335 1336 abd_free(abd); 1337 return (error); 1338 } 1339 1340 /* 1341 * ========================================================================== 1342 * uberblock load/sync 1343 * ========================================================================== 1344 */ 1345 1346 /* 1347 * Consider the following situation: txg is safely synced to disk. We've 1348 * written the first uberblock for txg + 1, and then we lose power. When we 1349 * come back up, we fail to see the uberblock for txg + 1 because, say, 1350 * it was on a mirrored device and the replica to which we wrote txg + 1 1351 * is now offline. If we then make some changes and sync txg + 1, and then 1352 * the missing replica comes back, then for a few seconds we'll have two 1353 * conflicting uberblocks on disk with the same txg. The solution is simple: 1354 * among uberblocks with equal txg, choose the one with the latest timestamp. 1355 */ 1356 static int 1357 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2) 1358 { 1359 int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg); 1360 1361 if (likely(cmp)) 1362 return (cmp); 1363 1364 cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp); 1365 if (likely(cmp)) 1366 return (cmp); 1367 1368 /* 1369 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware 1370 * ZFS, e.g. zfsonlinux >= 0.7. 1371 * 1372 * If one ub has MMP and the other does not, they were written by 1373 * different hosts, which matters for MMP. So we treat no MMP/no SEQ as 1374 * a 0 value. 1375 * 1376 * Since timestamp and txg are the same if we get this far, either is 1377 * acceptable for importing the pool. 1378 */ 1379 unsigned int seq1 = 0; 1380 unsigned int seq2 = 0; 1381 1382 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1)) 1383 seq1 = MMP_SEQ(ub1); 1384 1385 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2)) 1386 seq2 = MMP_SEQ(ub2); 1387 1388 return (TREE_CMP(seq1, seq2)); 1389 } 1390 1391 struct ubl_cbdata { 1392 uberblock_t *ubl_ubbest; /* Best uberblock */ 1393 vdev_t *ubl_vd; /* vdev associated with the above */ 1394 }; 1395 1396 static void 1397 vdev_uberblock_load_done(zio_t *zio) 1398 { 1399 vdev_t *vd = zio->io_vd; 1400 spa_t *spa = zio->io_spa; 1401 zio_t *rio = zio->io_private; 1402 uberblock_t *ub = abd_to_buf(zio->io_abd); 1403 struct ubl_cbdata *cbp = rio->io_private; 1404 1405 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 1406 1407 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 1408 mutex_enter(&rio->io_lock); 1409 if (ub->ub_txg <= spa->spa_load_max_txg && 1410 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 1411 /* 1412 * Keep track of the vdev in which this uberblock 1413 * was found. We will use this information later 1414 * to obtain the config nvlist associated with 1415 * this uberblock. 1416 */ 1417 *cbp->ubl_ubbest = *ub; 1418 cbp->ubl_vd = vd; 1419 } 1420 mutex_exit(&rio->io_lock); 1421 } 1422 1423 abd_free(zio->io_abd); 1424 } 1425 1426 static void 1427 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 1428 struct ubl_cbdata *cbp) 1429 { 1430 for (int c = 0; c < vd->vdev_children; c++) 1431 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 1432 1433 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1434 for (int l = 0; l < VDEV_LABELS; l++) { 1435 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1436 vdev_label_read(zio, vd, l, 1437 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), 1438 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n), 1439 VDEV_UBERBLOCK_SIZE(vd), 1440 vdev_uberblock_load_done, zio, flags); 1441 } 1442 } 1443 } 1444 } 1445 1446 /* 1447 * Reads the 'best' uberblock from disk along with its associated 1448 * configuration. First, we read the uberblock array of each label of each 1449 * vdev, keeping track of the uberblock with the highest txg in each array. 1450 * Then, we read the configuration from the same vdev as the best uberblock. 1451 */ 1452 void 1453 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 1454 { 1455 zio_t *zio; 1456 spa_t *spa = rvd->vdev_spa; 1457 struct ubl_cbdata cb; 1458 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1459 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 1460 1461 ASSERT(ub); 1462 ASSERT(config); 1463 1464 bzero(ub, sizeof (uberblock_t)); 1465 *config = NULL; 1466 1467 cb.ubl_ubbest = ub; 1468 cb.ubl_vd = NULL; 1469 1470 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1471 zio = zio_root(spa, NULL, &cb, flags); 1472 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 1473 (void) zio_wait(zio); 1474 1475 /* 1476 * It's possible that the best uberblock was discovered on a label 1477 * that has a configuration which was written in a future txg. 1478 * Search all labels on this vdev to find the configuration that 1479 * matches the txg for our uberblock. 1480 */ 1481 if (cb.ubl_vd != NULL) { 1482 vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. " 1483 "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg); 1484 1485 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 1486 if (*config == NULL && spa->spa_extreme_rewind) { 1487 vdev_dbgmsg(cb.ubl_vd, "failed to read label config. " 1488 "Trying again without txg restrictions."); 1489 *config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX); 1490 } 1491 if (*config == NULL) { 1492 vdev_dbgmsg(cb.ubl_vd, "failed to read label config"); 1493 } 1494 } 1495 spa_config_exit(spa, SCL_ALL, FTAG); 1496 } 1497 1498 /* 1499 * For use when a leaf vdev is expanded. 1500 * The location of labels 2 and 3 changed, and at the new location the 1501 * uberblock rings are either empty or contain garbage. The sync will write 1502 * new configs there because the vdev is dirty, but expansion also needs the 1503 * uberblock rings copied. Read them from label 0 which did not move. 1504 * 1505 * Since the point is to populate labels {2,3} with valid uberblocks, 1506 * we zero uberblocks we fail to read or which are not valid. 1507 */ 1508 1509 static void 1510 vdev_copy_uberblocks(vdev_t *vd) 1511 { 1512 abd_t *ub_abd; 1513 zio_t *write_zio; 1514 int locks = (SCL_L2ARC | SCL_ZIO); 1515 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 1516 ZIO_FLAG_SPECULATIVE; 1517 1518 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) == 1519 SCL_STATE); 1520 ASSERT(vd->vdev_ops->vdev_op_leaf); 1521 1522 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER); 1523 1524 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1525 1526 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1527 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 1528 const int src_label = 0; 1529 zio_t *zio; 1530 1531 zio = zio_root(vd->vdev_spa, NULL, NULL, flags); 1532 vdev_label_read(zio, vd, src_label, ub_abd, 1533 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1534 NULL, NULL, flags); 1535 1536 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd))) 1537 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1538 1539 for (int l = 2; l < VDEV_LABELS; l++) 1540 vdev_label_write(write_zio, vd, l, ub_abd, 1541 VDEV_UBERBLOCK_OFFSET(vd, n), 1542 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, 1543 flags | ZIO_FLAG_DONT_PROPAGATE); 1544 } 1545 (void) zio_wait(write_zio); 1546 1547 spa_config_exit(vd->vdev_spa, locks, FTAG); 1548 1549 abd_free(ub_abd); 1550 } 1551 1552 /* 1553 * On success, increment root zio's count of good writes. 1554 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 1555 */ 1556 static void 1557 vdev_uberblock_sync_done(zio_t *zio) 1558 { 1559 uint64_t *good_writes = zio->io_private; 1560 1561 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 1562 atomic_inc_64(good_writes); 1563 } 1564 1565 /* 1566 * Write the uberblock to all labels of all leaves of the specified vdev. 1567 */ 1568 static void 1569 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes, 1570 uberblock_t *ub, vdev_t *vd, int flags) 1571 { 1572 for (uint64_t c = 0; c < vd->vdev_children; c++) { 1573 vdev_uberblock_sync(zio, good_writes, 1574 ub, vd->vdev_child[c], flags); 1575 } 1576 1577 if (!vd->vdev_ops->vdev_op_leaf) 1578 return; 1579 1580 if (!vdev_writeable(vd)) 1581 return; 1582 1583 /* If the vdev was expanded, need to copy uberblock rings. */ 1584 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1585 vd->vdev_copy_uberblocks == B_TRUE) { 1586 vdev_copy_uberblocks(vd); 1587 vd->vdev_copy_uberblocks = B_FALSE; 1588 } 1589 1590 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0; 1591 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m); 1592 1593 /* Copy the uberblock_t into the ABD */ 1594 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE); 1595 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd)); 1596 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t)); 1597 1598 for (int l = 0; l < VDEV_LABELS; l++) 1599 vdev_label_write(zio, vd, l, ub_abd, 1600 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1601 vdev_uberblock_sync_done, good_writes, 1602 flags | ZIO_FLAG_DONT_PROPAGATE); 1603 1604 abd_free(ub_abd); 1605 } 1606 1607 /* Sync the uberblocks to all vdevs in svd[] */ 1608 static int 1609 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1610 { 1611 spa_t *spa = svd[0]->vdev_spa; 1612 zio_t *zio; 1613 uint64_t good_writes = 0; 1614 1615 zio = zio_root(spa, NULL, NULL, flags); 1616 1617 for (int v = 0; v < svdcount; v++) 1618 vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags); 1619 1620 (void) zio_wait(zio); 1621 1622 /* 1623 * Flush the uberblocks to disk. This ensures that the odd labels 1624 * are no longer needed (because the new uberblocks and the even 1625 * labels are safely on disk), so it is safe to overwrite them. 1626 */ 1627 zio = zio_root(spa, NULL, NULL, flags); 1628 1629 for (int v = 0; v < svdcount; v++) { 1630 if (vdev_writeable(svd[v])) { 1631 zio_flush(zio, svd[v]); 1632 } 1633 } 1634 1635 (void) zio_wait(zio); 1636 1637 return (good_writes >= 1 ? 0 : EIO); 1638 } 1639 1640 /* 1641 * On success, increment the count of good writes for our top-level vdev. 1642 */ 1643 static void 1644 vdev_label_sync_done(zio_t *zio) 1645 { 1646 uint64_t *good_writes = zio->io_private; 1647 1648 if (zio->io_error == 0) 1649 atomic_inc_64(good_writes); 1650 } 1651 1652 /* 1653 * If there weren't enough good writes, indicate failure to the parent. 1654 */ 1655 static void 1656 vdev_label_sync_top_done(zio_t *zio) 1657 { 1658 uint64_t *good_writes = zio->io_private; 1659 1660 if (*good_writes == 0) 1661 zio->io_error = SET_ERROR(EIO); 1662 1663 kmem_free(good_writes, sizeof (uint64_t)); 1664 } 1665 1666 /* 1667 * We ignore errors for log and cache devices, simply free the private data. 1668 */ 1669 static void 1670 vdev_label_sync_ignore_done(zio_t *zio) 1671 { 1672 kmem_free(zio->io_private, sizeof (uint64_t)); 1673 } 1674 1675 /* 1676 * Write all even or odd labels to all leaves of the specified vdev. 1677 */ 1678 static void 1679 vdev_label_sync(zio_t *zio, uint64_t *good_writes, 1680 vdev_t *vd, int l, uint64_t txg, int flags) 1681 { 1682 nvlist_t *label; 1683 vdev_phys_t *vp; 1684 abd_t *vp_abd; 1685 char *buf; 1686 size_t buflen; 1687 1688 for (int c = 0; c < vd->vdev_children; c++) { 1689 vdev_label_sync(zio, good_writes, 1690 vd->vdev_child[c], l, txg, flags); 1691 } 1692 1693 if (!vd->vdev_ops->vdev_op_leaf) 1694 return; 1695 1696 if (!vdev_writeable(vd)) 1697 return; 1698 1699 /* 1700 * Generate a label describing the top-level config to which we belong. 1701 */ 1702 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1703 1704 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE); 1705 abd_zero(vp_abd, sizeof (vdev_phys_t)); 1706 vp = abd_to_buf(vp_abd); 1707 1708 buf = vp->vp_nvlist; 1709 buflen = sizeof (vp->vp_nvlist); 1710 1711 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) { 1712 for (; l < VDEV_LABELS; l += 2) { 1713 vdev_label_write(zio, vd, l, vp_abd, 1714 offsetof(vdev_label_t, vl_vdev_phys), 1715 sizeof (vdev_phys_t), 1716 vdev_label_sync_done, good_writes, 1717 flags | ZIO_FLAG_DONT_PROPAGATE); 1718 } 1719 } 1720 1721 abd_free(vp_abd); 1722 nvlist_free(label); 1723 } 1724 1725 static int 1726 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1727 { 1728 list_t *dl = &spa->spa_config_dirty_list; 1729 vdev_t *vd; 1730 zio_t *zio; 1731 int error; 1732 1733 /* 1734 * Write the new labels to disk. 1735 */ 1736 zio = zio_root(spa, NULL, NULL, flags); 1737 1738 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1739 uint64_t *good_writes; 1740 1741 ASSERT(!vd->vdev_ishole); 1742 1743 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 1744 zio_t *vio = zio_null(zio, spa, NULL, 1745 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1746 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1747 good_writes, flags); 1748 vdev_label_sync(vio, good_writes, vd, l, txg, flags); 1749 zio_nowait(vio); 1750 } 1751 1752 error = zio_wait(zio); 1753 1754 /* 1755 * Flush the new labels to disk. 1756 */ 1757 zio = zio_root(spa, NULL, NULL, flags); 1758 1759 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1760 zio_flush(zio, vd); 1761 1762 (void) zio_wait(zio); 1763 1764 return (error); 1765 } 1766 1767 /* 1768 * Sync the uberblock and any changes to the vdev configuration. 1769 * 1770 * The order of operations is carefully crafted to ensure that 1771 * if the system panics or loses power at any time, the state on disk 1772 * is still transactionally consistent. The in-line comments below 1773 * describe the failure semantics at each stage. 1774 * 1775 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1776 * at any time, you can just call it again, and it will resume its work. 1777 */ 1778 int 1779 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1780 { 1781 spa_t *spa = svd[0]->vdev_spa; 1782 uberblock_t *ub = &spa->spa_uberblock; 1783 int error = 0; 1784 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1785 1786 ASSERT(svdcount != 0); 1787 retry: 1788 /* 1789 * Normally, we don't want to try too hard to write every label and 1790 * uberblock. If there is a flaky disk, we don't want the rest of the 1791 * sync process to block while we retry. But if we can't write a 1792 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1793 * bailing out and declaring the pool faulted. 1794 */ 1795 if (error != 0) { 1796 if ((flags & ZIO_FLAG_TRYHARD) != 0) 1797 return (error); 1798 flags |= ZIO_FLAG_TRYHARD; 1799 } 1800 1801 ASSERT(ub->ub_txg <= txg); 1802 1803 /* 1804 * If this isn't a resync due to I/O errors, 1805 * and nothing changed in this transaction group, 1806 * and the vdev configuration hasn't changed, 1807 * then there's nothing to do. 1808 */ 1809 if (ub->ub_txg < txg) { 1810 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev, 1811 txg, spa->spa_mmp.mmp_delay); 1812 1813 if (!changed && list_is_empty(&spa->spa_config_dirty_list)) 1814 return (0); 1815 } 1816 1817 if (txg > spa_freeze_txg(spa)) 1818 return (0); 1819 1820 ASSERT(txg <= spa->spa_final_txg); 1821 1822 /* 1823 * Flush the write cache of every disk that's been written to 1824 * in this transaction group. This ensures that all blocks 1825 * written in this txg will be committed to stable storage 1826 * before any uberblock that references them. 1827 */ 1828 zio_t *zio = zio_root(spa, NULL, NULL, flags); 1829 1830 for (vdev_t *vd = 1831 txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL; 1832 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1833 zio_flush(zio, vd); 1834 1835 (void) zio_wait(zio); 1836 1837 /* 1838 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1839 * system dies in the middle of this process, that's OK: all of the 1840 * even labels that made it to disk will be newer than any uberblock, 1841 * and will therefore be considered invalid. The odd labels (L1, L3), 1842 * which have not yet been touched, will still be valid. We flush 1843 * the new labels to disk to ensure that all even-label updates 1844 * are committed to stable storage before the uberblock update. 1845 */ 1846 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) { 1847 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1848 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1849 "for pool '%s' when syncing out the even labels " 1850 "of dirty vdevs", error, spa_name(spa)); 1851 } 1852 goto retry; 1853 } 1854 1855 /* 1856 * Sync the uberblocks to all vdevs in svd[]. 1857 * If the system dies in the middle of this step, there are two cases 1858 * to consider, and the on-disk state is consistent either way: 1859 * 1860 * (1) If none of the new uberblocks made it to disk, then the 1861 * previous uberblock will be the newest, and the odd labels 1862 * (which had not yet been touched) will be valid with respect 1863 * to that uberblock. 1864 * 1865 * (2) If one or more new uberblocks made it to disk, then they 1866 * will be the newest, and the even labels (which had all 1867 * been successfully committed) will be valid with respect 1868 * to the new uberblocks. 1869 */ 1870 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) { 1871 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1872 zfs_dbgmsg("vdev_uberblock_sync_list() returned error " 1873 "%d for pool '%s'", error, spa_name(spa)); 1874 } 1875 goto retry; 1876 } 1877 1878 if (spa_multihost(spa)) 1879 mmp_update_uberblock(spa, ub); 1880 1881 /* 1882 * Sync out odd labels for every dirty vdev. If the system dies 1883 * in the middle of this process, the even labels and the new 1884 * uberblocks will suffice to open the pool. The next time 1885 * the pool is opened, the first thing we'll do -- before any 1886 * user data is modified -- is mark every vdev dirty so that 1887 * all labels will be brought up to date. We flush the new labels 1888 * to disk to ensure that all odd-label updates are committed to 1889 * stable storage before the next transaction group begins. 1890 */ 1891 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) { 1892 if ((flags & ZIO_FLAG_TRYHARD) != 0) { 1893 zfs_dbgmsg("vdev_label_sync_list() returned error %d " 1894 "for pool '%s' when syncing out the odd labels of " 1895 "dirty vdevs", error, spa_name(spa)); 1896 } 1897 goto retry; 1898 } 1899 1900 return (0); 1901 } 1902