xref: /freebsd-src/sys/contrib/openzfs/module/zfs/vdev_label.c (revision 16d6b3b3da62aa5baaf3c66c8d4e6f8c8f70aeb7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2017, Intel Corporation.
26  */
27 
28 /*
29  * Virtual Device Labels
30  * ---------------------
31  *
32  * The vdev label serves several distinct purposes:
33  *
34  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35  *	   identity within the pool.
36  *
37  *	2. Verify that all the devices given in a configuration are present
38  *         within the pool.
39  *
40  *	3. Determine the uberblock for the pool.
41  *
42  *	4. In case of an import operation, determine the configuration of the
43  *         toplevel vdev of which it is a part.
44  *
45  *	5. If an import operation cannot find all the devices in the pool,
46  *         provide enough information to the administrator to determine which
47  *         devices are missing.
48  *
49  * It is important to note that while the kernel is responsible for writing the
50  * label, it only consumes the information in the first three cases.  The
51  * latter information is only consumed in userland when determining the
52  * configuration to import a pool.
53  *
54  *
55  * Label Organization
56  * ------------------
57  *
58  * Before describing the contents of the label, it's important to understand how
59  * the labels are written and updated with respect to the uberblock.
60  *
61  * When the pool configuration is altered, either because it was newly created
62  * or a device was added, we want to update all the labels such that we can deal
63  * with fatal failure at any point.  To this end, each disk has two labels which
64  * are updated before and after the uberblock is synced.  Assuming we have
65  * labels and an uberblock with the following transaction groups:
66  *
67  *              L1          UB          L2
68  *           +------+    +------+    +------+
69  *           |      |    |      |    |      |
70  *           | t10  |    | t10  |    | t10  |
71  *           |      |    |      |    |      |
72  *           +------+    +------+    +------+
73  *
74  * In this stable state, the labels and the uberblock were all updated within
75  * the same transaction group (10).  Each label is mirrored and checksummed, so
76  * that we can detect when we fail partway through writing the label.
77  *
78  * In order to identify which labels are valid, the labels are written in the
79  * following manner:
80  *
81  *	1. For each vdev, update 'L1' to the new label
82  *	2. Update the uberblock
83  *	3. For each vdev, update 'L2' to the new label
84  *
85  * Given arbitrary failure, we can determine the correct label to use based on
86  * the transaction group.  If we fail after updating L1 but before updating the
87  * UB, we will notice that L1's transaction group is greater than the uberblock,
88  * so L2 must be valid.  If we fail after writing the uberblock but before
89  * writing L2, we will notice that L2's transaction group is less than L1, and
90  * therefore L1 is valid.
91  *
92  * Another added complexity is that not every label is updated when the config
93  * is synced.  If we add a single device, we do not want to have to re-write
94  * every label for every device in the pool.  This means that both L1 and L2 may
95  * be older than the pool uberblock, because the necessary information is stored
96  * on another vdev.
97  *
98  *
99  * On-disk Format
100  * --------------
101  *
102  * The vdev label consists of two distinct parts, and is wrapped within the
103  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104  * VTOC disk labels, but is otherwise ignored.
105  *
106  * The first half of the label is a packed nvlist which contains pool wide
107  * properties, per-vdev properties, and configuration information.  It is
108  * described in more detail below.
109  *
110  * The latter half of the label consists of a redundant array of uberblocks.
111  * These uberblocks are updated whenever a transaction group is committed,
112  * or when the configuration is updated.  When a pool is loaded, we scan each
113  * vdev for the 'best' uberblock.
114  *
115  *
116  * Configuration Information
117  * -------------------------
118  *
119  * The nvlist describing the pool and vdev contains the following elements:
120  *
121  *	version		ZFS on-disk version
122  *	name		Pool name
123  *	state		Pool state
124  *	txg		Transaction group in which this label was written
125  *	pool_guid	Unique identifier for this pool
126  *	vdev_tree	An nvlist describing vdev tree.
127  *	features_for_read
128  *			An nvlist of the features necessary for reading the MOS.
129  *
130  * Each leaf device label also contains the following:
131  *
132  *	top_guid	Unique ID for top-level vdev in which this is contained
133  *	guid		Unique ID for the leaf vdev
134  *
135  * The 'vs' configuration follows the format described in 'spa_config.c'.
136  */
137 
138 #include <sys/zfs_context.h>
139 #include <sys/spa.h>
140 #include <sys/spa_impl.h>
141 #include <sys/dmu.h>
142 #include <sys/zap.h>
143 #include <sys/vdev.h>
144 #include <sys/vdev_impl.h>
145 #include <sys/uberblock_impl.h>
146 #include <sys/metaslab.h>
147 #include <sys/metaslab_impl.h>
148 #include <sys/zio.h>
149 #include <sys/dsl_scan.h>
150 #include <sys/abd.h>
151 #include <sys/fs/zfs.h>
152 
153 /*
154  * Basic routines to read and write from a vdev label.
155  * Used throughout the rest of this file.
156  */
157 uint64_t
158 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
159 {
160 	ASSERT(offset < sizeof (vdev_label_t));
161 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
162 
163 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
164 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
165 }
166 
167 /*
168  * Returns back the vdev label associated with the passed in offset.
169  */
170 int
171 vdev_label_number(uint64_t psize, uint64_t offset)
172 {
173 	int l;
174 
175 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
176 		offset -= psize - VDEV_LABEL_END_SIZE;
177 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
178 	}
179 	l = offset / sizeof (vdev_label_t);
180 	return (l < VDEV_LABELS ? l : -1);
181 }
182 
183 static void
184 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
185     uint64_t size, zio_done_func_t *done, void *private, int flags)
186 {
187 	ASSERT(
188 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
189 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
190 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
191 
192 	zio_nowait(zio_read_phys(zio, vd,
193 	    vdev_label_offset(vd->vdev_psize, l, offset),
194 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
195 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
196 }
197 
198 void
199 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
200     uint64_t size, zio_done_func_t *done, void *private, int flags)
201 {
202 	ASSERT(
203 	    spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
204 	    spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
205 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
206 
207 	zio_nowait(zio_write_phys(zio, vd,
208 	    vdev_label_offset(vd->vdev_psize, l, offset),
209 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
210 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
211 }
212 
213 /*
214  * Generate the nvlist representing this vdev's stats
215  */
216 void
217 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
218 {
219 	nvlist_t *nvx;
220 	vdev_stat_t *vs;
221 	vdev_stat_ex_t *vsx;
222 
223 	vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
224 	vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
225 
226 	vdev_get_stats_ex(vd, vs, vsx);
227 	fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
228 	    (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
229 
230 	/*
231 	 * Add extended stats into a special extended stats nvlist.  This keeps
232 	 * all the extended stats nicely grouped together.  The extended stats
233 	 * nvlist is then added to the main nvlist.
234 	 */
235 	nvx = fnvlist_alloc();
236 
237 	/* ZIOs in flight to disk */
238 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
239 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
240 
241 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
242 	    vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
243 
244 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
245 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
246 
247 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
248 	    vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
249 
250 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
251 	    vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
252 
253 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_ACTIVE_QUEUE,
254 	    vsx->vsx_active_queue[ZIO_PRIORITY_TRIM]);
255 
256 	/* ZIOs pending */
257 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
258 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
259 
260 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
261 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
262 
263 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
264 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
265 
266 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
267 	    vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
268 
269 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
270 	    vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
271 
272 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_TRIM_PEND_QUEUE,
273 	    vsx->vsx_pend_queue[ZIO_PRIORITY_TRIM]);
274 
275 	/* Histograms */
276 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
277 	    vsx->vsx_total_histo[ZIO_TYPE_READ],
278 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
279 
280 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
281 	    vsx->vsx_total_histo[ZIO_TYPE_WRITE],
282 	    ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
283 
284 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
285 	    vsx->vsx_disk_histo[ZIO_TYPE_READ],
286 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
287 
288 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
289 	    vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
290 	    ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
291 
292 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
293 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
294 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
295 
296 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
297 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
298 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
299 
300 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
301 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
302 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
303 
304 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
305 	    vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
306 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
307 
308 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
309 	    vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
310 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
311 
312 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TRIM_LAT_HISTO,
313 	    vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM],
314 	    ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_TRIM]));
315 
316 	/* Request sizes */
317 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
318 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
319 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
320 
321 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
322 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
323 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
324 
325 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
326 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
327 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
328 
329 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
330 	    vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
331 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
332 
333 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
334 	    vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
335 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
336 
337 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_TRIM_HISTO,
338 	    vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM],
339 	    ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_TRIM]));
340 
341 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
342 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
343 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
344 
345 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
346 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
347 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
348 
349 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
350 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
351 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
352 
353 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
354 	    vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
355 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
356 
357 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
358 	    vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
359 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
360 
361 	fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_TRIM_HISTO,
362 	    vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM],
363 	    ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_TRIM]));
364 
365 	/* IO delays */
366 	fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SLOW_IOS, vs->vs_slow_ios);
367 
368 	/* Add extended stats nvlist to main nvlist */
369 	fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
370 
371 	fnvlist_free(nvx);
372 	kmem_free(vs, sizeof (*vs));
373 	kmem_free(vsx, sizeof (*vsx));
374 }
375 
376 static void
377 root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
378 {
379 	spa_t *spa = vd->vdev_spa;
380 
381 	if (vd != spa->spa_root_vdev)
382 		return;
383 
384 	/* provide either current or previous scan information */
385 	pool_scan_stat_t ps;
386 	if (spa_scan_get_stats(spa, &ps) == 0) {
387 		fnvlist_add_uint64_array(nvl,
388 		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
389 		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
390 	}
391 
392 	pool_removal_stat_t prs;
393 	if (spa_removal_get_stats(spa, &prs) == 0) {
394 		fnvlist_add_uint64_array(nvl,
395 		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
396 		    sizeof (prs) / sizeof (uint64_t));
397 	}
398 
399 	pool_checkpoint_stat_t pcs;
400 	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
401 		fnvlist_add_uint64_array(nvl,
402 		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
403 		    sizeof (pcs) / sizeof (uint64_t));
404 	}
405 }
406 
407 static void
408 top_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
409 {
410 	if (vd == vd->vdev_top) {
411 		vdev_rebuild_stat_t vrs;
412 		if (vdev_rebuild_get_stats(vd, &vrs) == 0) {
413 			fnvlist_add_uint64_array(nvl,
414 			    ZPOOL_CONFIG_REBUILD_STATS, (uint64_t *)&vrs,
415 			    sizeof (vrs) / sizeof (uint64_t));
416 		}
417 	}
418 }
419 
420 /*
421  * Generate the nvlist representing this vdev's config.
422  */
423 nvlist_t *
424 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
425     vdev_config_flag_t flags)
426 {
427 	nvlist_t *nv = NULL;
428 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
429 
430 	nv = fnvlist_alloc();
431 
432 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
433 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
434 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
435 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
436 
437 	if (vd->vdev_path != NULL)
438 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
439 
440 	if (vd->vdev_devid != NULL)
441 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
442 
443 	if (vd->vdev_physpath != NULL)
444 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445 		    vd->vdev_physpath);
446 
447 	if (vd->vdev_enc_sysfs_path != NULL)
448 		fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
449 		    vd->vdev_enc_sysfs_path);
450 
451 	if (vd->vdev_fru != NULL)
452 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
453 
454 	if (vd->vdev_nparity != 0) {
455 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
456 		    VDEV_TYPE_RAIDZ) == 0);
457 
458 		/*
459 		 * Make sure someone hasn't managed to sneak a fancy new vdev
460 		 * into a crufty old storage pool.
461 		 */
462 		ASSERT(vd->vdev_nparity == 1 ||
463 		    (vd->vdev_nparity <= 2 &&
464 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
465 		    (vd->vdev_nparity <= 3 &&
466 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
467 
468 		/*
469 		 * Note that we'll add the nparity tag even on storage pools
470 		 * that only support a single parity device -- older software
471 		 * will just ignore it.
472 		 */
473 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
474 	}
475 
476 	if (vd->vdev_wholedisk != -1ULL)
477 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
478 		    vd->vdev_wholedisk);
479 
480 	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
481 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
482 
483 	if (vd->vdev_isspare)
484 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
485 
486 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
487 	    vd == vd->vdev_top) {
488 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
489 		    vd->vdev_ms_array);
490 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
491 		    vd->vdev_ms_shift);
492 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
493 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
494 		    vd->vdev_asize);
495 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
496 		if (vd->vdev_removing) {
497 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
498 			    vd->vdev_removing);
499 		}
500 
501 		/* zpool command expects alloc class data */
502 		if (getstats && vd->vdev_alloc_bias != VDEV_BIAS_NONE) {
503 			const char *bias = NULL;
504 
505 			switch (vd->vdev_alloc_bias) {
506 			case VDEV_BIAS_LOG:
507 				bias = VDEV_ALLOC_BIAS_LOG;
508 				break;
509 			case VDEV_BIAS_SPECIAL:
510 				bias = VDEV_ALLOC_BIAS_SPECIAL;
511 				break;
512 			case VDEV_BIAS_DEDUP:
513 				bias = VDEV_ALLOC_BIAS_DEDUP;
514 				break;
515 			default:
516 				ASSERT3U(vd->vdev_alloc_bias, ==,
517 				    VDEV_BIAS_NONE);
518 			}
519 			fnvlist_add_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
520 			    bias);
521 		}
522 	}
523 
524 	if (vd->vdev_dtl_sm != NULL) {
525 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
526 		    space_map_object(vd->vdev_dtl_sm));
527 	}
528 
529 	if (vic->vic_mapping_object != 0) {
530 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
531 		    vic->vic_mapping_object);
532 	}
533 
534 	if (vic->vic_births_object != 0) {
535 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
536 		    vic->vic_births_object);
537 	}
538 
539 	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
540 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
541 		    vic->vic_prev_indirect_vdev);
542 	}
543 
544 	if (vd->vdev_crtxg)
545 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
546 
547 	if (vd->vdev_expansion_time)
548 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_EXPANSION_TIME,
549 		    vd->vdev_expansion_time);
550 
551 	if (flags & VDEV_CONFIG_MOS) {
552 		if (vd->vdev_leaf_zap != 0) {
553 			ASSERT(vd->vdev_ops->vdev_op_leaf);
554 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
555 			    vd->vdev_leaf_zap);
556 		}
557 
558 		if (vd->vdev_top_zap != 0) {
559 			ASSERT(vd == vd->vdev_top);
560 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
561 			    vd->vdev_top_zap);
562 		}
563 
564 		if (vd->vdev_resilver_deferred) {
565 			ASSERT(vd->vdev_ops->vdev_op_leaf);
566 			ASSERT(spa->spa_resilver_deferred);
567 			fnvlist_add_boolean(nv, ZPOOL_CONFIG_RESILVER_DEFER);
568 		}
569 	}
570 
571 	if (getstats) {
572 		vdev_config_generate_stats(vd, nv);
573 
574 		root_vdev_actions_getprogress(vd, nv);
575 		top_vdev_actions_getprogress(vd, nv);
576 
577 		/*
578 		 * Note: this can be called from open context
579 		 * (spa_get_stats()), so we need the rwlock to prevent
580 		 * the mapping from being changed by condensing.
581 		 */
582 		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
583 		if (vd->vdev_indirect_mapping != NULL) {
584 			ASSERT(vd->vdev_indirect_births != NULL);
585 			vdev_indirect_mapping_t *vim =
586 			    vd->vdev_indirect_mapping;
587 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
588 			    vdev_indirect_mapping_size(vim));
589 		}
590 		rw_exit(&vd->vdev_indirect_rwlock);
591 		if (vd->vdev_mg != NULL &&
592 		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
593 			/*
594 			 * Compute approximately how much memory would be used
595 			 * for the indirect mapping if this device were to
596 			 * be removed.
597 			 *
598 			 * Note: If the frag metric is invalid, then not
599 			 * enough metaslabs have been converted to have
600 			 * histograms.
601 			 */
602 			uint64_t seg_count = 0;
603 			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
604 
605 			/*
606 			 * There are the same number of allocated segments
607 			 * as free segments, so we will have at least one
608 			 * entry per free segment.  However, small free
609 			 * segments (smaller than vdev_removal_max_span)
610 			 * will be combined with adjacent allocated segments
611 			 * as a single mapping.
612 			 */
613 			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
614 				if (1ULL << (i + 1) < vdev_removal_max_span) {
615 					to_alloc +=
616 					    vd->vdev_mg->mg_histogram[i] <<
617 					    (i + 1);
618 				} else {
619 					seg_count +=
620 					    vd->vdev_mg->mg_histogram[i];
621 				}
622 			}
623 
624 			/*
625 			 * The maximum length of a mapping is
626 			 * zfs_remove_max_segment, so we need at least one entry
627 			 * per zfs_remove_max_segment of allocated data.
628 			 */
629 			seg_count += to_alloc / spa_remove_max_segment(spa);
630 
631 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
632 			    seg_count *
633 			    sizeof (vdev_indirect_mapping_entry_phys_t));
634 		}
635 	}
636 
637 	if (!vd->vdev_ops->vdev_op_leaf) {
638 		nvlist_t **child;
639 		int c, idx;
640 
641 		ASSERT(!vd->vdev_ishole);
642 
643 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
644 		    KM_SLEEP);
645 
646 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
647 			vdev_t *cvd = vd->vdev_child[c];
648 
649 			/*
650 			 * If we're generating an nvlist of removing
651 			 * vdevs then skip over any device which is
652 			 * not being removed.
653 			 */
654 			if ((flags & VDEV_CONFIG_REMOVING) &&
655 			    !cvd->vdev_removing)
656 				continue;
657 
658 			child[idx++] = vdev_config_generate(spa, cvd,
659 			    getstats, flags);
660 		}
661 
662 		if (idx) {
663 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
664 			    child, idx);
665 		}
666 
667 		for (c = 0; c < idx; c++)
668 			nvlist_free(child[c]);
669 
670 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
671 
672 	} else {
673 		const char *aux = NULL;
674 
675 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
676 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
677 		if (vd->vdev_resilver_txg != 0)
678 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
679 			    vd->vdev_resilver_txg);
680 		if (vd->vdev_rebuild_txg != 0)
681 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
682 			    vd->vdev_rebuild_txg);
683 		if (vd->vdev_faulted)
684 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
685 		if (vd->vdev_degraded)
686 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
687 		if (vd->vdev_removed)
688 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
689 		if (vd->vdev_unspare)
690 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
691 		if (vd->vdev_ishole)
692 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
693 
694 		/* Set the reason why we're FAULTED/DEGRADED. */
695 		switch (vd->vdev_stat.vs_aux) {
696 		case VDEV_AUX_ERR_EXCEEDED:
697 			aux = "err_exceeded";
698 			break;
699 
700 		case VDEV_AUX_EXTERNAL:
701 			aux = "external";
702 			break;
703 		}
704 
705 		if (aux != NULL && !vd->vdev_tmpoffline) {
706 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
707 		} else {
708 			/*
709 			 * We're healthy - clear any previous AUX_STATE values.
710 			 */
711 			if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
712 				nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
713 		}
714 
715 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
716 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
717 			    vd->vdev_orig_guid);
718 		}
719 	}
720 
721 	return (nv);
722 }
723 
724 /*
725  * Generate a view of the top-level vdevs.  If we currently have holes
726  * in the namespace, then generate an array which contains a list of holey
727  * vdevs.  Additionally, add the number of top-level children that currently
728  * exist.
729  */
730 void
731 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
732 {
733 	vdev_t *rvd = spa->spa_root_vdev;
734 	uint64_t *array;
735 	uint_t c, idx;
736 
737 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
738 
739 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
740 		vdev_t *tvd = rvd->vdev_child[c];
741 
742 		if (tvd->vdev_ishole) {
743 			array[idx++] = c;
744 		}
745 	}
746 
747 	if (idx) {
748 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
749 		    array, idx) == 0);
750 	}
751 
752 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
753 	    rvd->vdev_children) == 0);
754 
755 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
756 }
757 
758 /*
759  * Returns the configuration from the label of the given vdev. For vdevs
760  * which don't have a txg value stored on their label (i.e. spares/cache)
761  * or have not been completely initialized (txg = 0) just return
762  * the configuration from the first valid label we find. Otherwise,
763  * find the most up-to-date label that does not exceed the specified
764  * 'txg' value.
765  */
766 nvlist_t *
767 vdev_label_read_config(vdev_t *vd, uint64_t txg)
768 {
769 	spa_t *spa = vd->vdev_spa;
770 	nvlist_t *config = NULL;
771 	vdev_phys_t *vp;
772 	abd_t *vp_abd;
773 	zio_t *zio;
774 	uint64_t best_txg = 0;
775 	uint64_t label_txg = 0;
776 	int error = 0;
777 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
778 	    ZIO_FLAG_SPECULATIVE;
779 
780 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
781 
782 	if (!vdev_readable(vd))
783 		return (NULL);
784 
785 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
786 	vp = abd_to_buf(vp_abd);
787 
788 retry:
789 	for (int l = 0; l < VDEV_LABELS; l++) {
790 		nvlist_t *label = NULL;
791 
792 		zio = zio_root(spa, NULL, NULL, flags);
793 
794 		vdev_label_read(zio, vd, l, vp_abd,
795 		    offsetof(vdev_label_t, vl_vdev_phys),
796 		    sizeof (vdev_phys_t), NULL, NULL, flags);
797 
798 		if (zio_wait(zio) == 0 &&
799 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
800 		    &label, 0) == 0) {
801 			/*
802 			 * Auxiliary vdevs won't have txg values in their
803 			 * labels and newly added vdevs may not have been
804 			 * completely initialized so just return the
805 			 * configuration from the first valid label we
806 			 * encounter.
807 			 */
808 			error = nvlist_lookup_uint64(label,
809 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
810 			if ((error || label_txg == 0) && !config) {
811 				config = label;
812 				break;
813 			} else if (label_txg <= txg && label_txg > best_txg) {
814 				best_txg = label_txg;
815 				nvlist_free(config);
816 				config = fnvlist_dup(label);
817 			}
818 		}
819 
820 		if (label != NULL) {
821 			nvlist_free(label);
822 			label = NULL;
823 		}
824 	}
825 
826 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
827 		flags |= ZIO_FLAG_TRYHARD;
828 		goto retry;
829 	}
830 
831 	/*
832 	 * We found a valid label but it didn't pass txg restrictions.
833 	 */
834 	if (config == NULL && label_txg != 0) {
835 		vdev_dbgmsg(vd, "label discarded as txg is too large "
836 		    "(%llu > %llu)", (u_longlong_t)label_txg,
837 		    (u_longlong_t)txg);
838 	}
839 
840 	abd_free(vp_abd);
841 
842 	return (config);
843 }
844 
845 /*
846  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
847  * in with the device guid if this spare is active elsewhere on the system.
848  */
849 static boolean_t
850 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
851     uint64_t *spare_guid, uint64_t *l2cache_guid)
852 {
853 	spa_t *spa = vd->vdev_spa;
854 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
855 	uint64_t vdtxg = 0;
856 	nvlist_t *label;
857 
858 	if (spare_guid)
859 		*spare_guid = 0ULL;
860 	if (l2cache_guid)
861 		*l2cache_guid = 0ULL;
862 
863 	/*
864 	 * Read the label, if any, and perform some basic sanity checks.
865 	 */
866 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
867 		return (B_FALSE);
868 
869 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
870 	    &vdtxg);
871 
872 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
873 	    &state) != 0 ||
874 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
875 	    &device_guid) != 0) {
876 		nvlist_free(label);
877 		return (B_FALSE);
878 	}
879 
880 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
881 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
882 	    &pool_guid) != 0 ||
883 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
884 	    &txg) != 0)) {
885 		nvlist_free(label);
886 		return (B_FALSE);
887 	}
888 
889 	nvlist_free(label);
890 
891 	/*
892 	 * Check to see if this device indeed belongs to the pool it claims to
893 	 * be a part of.  The only way this is allowed is if the device is a hot
894 	 * spare (which we check for later on).
895 	 */
896 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
897 	    !spa_guid_exists(pool_guid, device_guid) &&
898 	    !spa_spare_exists(device_guid, NULL, NULL) &&
899 	    !spa_l2cache_exists(device_guid, NULL))
900 		return (B_FALSE);
901 
902 	/*
903 	 * If the transaction group is zero, then this an initialized (but
904 	 * unused) label.  This is only an error if the create transaction
905 	 * on-disk is the same as the one we're using now, in which case the
906 	 * user has attempted to add the same vdev multiple times in the same
907 	 * transaction.
908 	 */
909 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
910 	    txg == 0 && vdtxg == crtxg)
911 		return (B_TRUE);
912 
913 	/*
914 	 * Check to see if this is a spare device.  We do an explicit check for
915 	 * spa_has_spare() here because it may be on our pending list of spares
916 	 * to add.  We also check if it is an l2cache device.
917 	 */
918 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
919 	    spa_has_spare(spa, device_guid)) {
920 		if (spare_guid)
921 			*spare_guid = device_guid;
922 
923 		switch (reason) {
924 		case VDEV_LABEL_CREATE:
925 		case VDEV_LABEL_L2CACHE:
926 			return (B_TRUE);
927 
928 		case VDEV_LABEL_REPLACE:
929 			return (!spa_has_spare(spa, device_guid) ||
930 			    spare_pool != 0ULL);
931 
932 		case VDEV_LABEL_SPARE:
933 			return (spa_has_spare(spa, device_guid));
934 		default:
935 			break;
936 		}
937 	}
938 
939 	/*
940 	 * Check to see if this is an l2cache device.
941 	 */
942 	if (spa_l2cache_exists(device_guid, NULL))
943 		return (B_TRUE);
944 
945 	/*
946 	 * We can't rely on a pool's state if it's been imported
947 	 * read-only.  Instead we look to see if the pools is marked
948 	 * read-only in the namespace and set the state to active.
949 	 */
950 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
951 	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
952 	    spa_mode(spa) == SPA_MODE_READ)
953 		state = POOL_STATE_ACTIVE;
954 
955 	/*
956 	 * If the device is marked ACTIVE, then this device is in use by another
957 	 * pool on the system.
958 	 */
959 	return (state == POOL_STATE_ACTIVE);
960 }
961 
962 /*
963  * Initialize a vdev label.  We check to make sure each leaf device is not in
964  * use, and writable.  We put down an initial label which we will later
965  * overwrite with a complete label.  Note that it's important to do this
966  * sequentially, not in parallel, so that we catch cases of multiple use of the
967  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
968  * itself.
969  */
970 int
971 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
972 {
973 	spa_t *spa = vd->vdev_spa;
974 	nvlist_t *label;
975 	vdev_phys_t *vp;
976 	abd_t *vp_abd;
977 	abd_t *bootenv;
978 	uberblock_t *ub;
979 	abd_t *ub_abd;
980 	zio_t *zio;
981 	char *buf;
982 	size_t buflen;
983 	int error;
984 	uint64_t spare_guid = 0, l2cache_guid = 0;
985 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
986 
987 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
988 
989 	for (int c = 0; c < vd->vdev_children; c++)
990 		if ((error = vdev_label_init(vd->vdev_child[c],
991 		    crtxg, reason)) != 0)
992 			return (error);
993 
994 	/* Track the creation time for this vdev */
995 	vd->vdev_crtxg = crtxg;
996 
997 	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
998 		return (0);
999 
1000 	/*
1001 	 * Dead vdevs cannot be initialized.
1002 	 */
1003 	if (vdev_is_dead(vd))
1004 		return (SET_ERROR(EIO));
1005 
1006 	/*
1007 	 * Determine if the vdev is in use.
1008 	 */
1009 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
1010 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
1011 		return (SET_ERROR(EBUSY));
1012 
1013 	/*
1014 	 * If this is a request to add or replace a spare or l2cache device
1015 	 * that is in use elsewhere on the system, then we must update the
1016 	 * guid (which was initialized to a random value) to reflect the
1017 	 * actual GUID (which is shared between multiple pools).
1018 	 */
1019 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
1020 	    spare_guid != 0ULL) {
1021 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
1022 
1023 		vd->vdev_guid += guid_delta;
1024 
1025 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1026 			pvd->vdev_guid_sum += guid_delta;
1027 
1028 		/*
1029 		 * If this is a replacement, then we want to fallthrough to the
1030 		 * rest of the code.  If we're adding a spare, then it's already
1031 		 * labeled appropriately and we can just return.
1032 		 */
1033 		if (reason == VDEV_LABEL_SPARE)
1034 			return (0);
1035 		ASSERT(reason == VDEV_LABEL_REPLACE ||
1036 		    reason == VDEV_LABEL_SPLIT);
1037 	}
1038 
1039 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
1040 	    l2cache_guid != 0ULL) {
1041 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
1042 
1043 		vd->vdev_guid += guid_delta;
1044 
1045 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1046 			pvd->vdev_guid_sum += guid_delta;
1047 
1048 		/*
1049 		 * If this is a replacement, then we want to fallthrough to the
1050 		 * rest of the code.  If we're adding an l2cache, then it's
1051 		 * already labeled appropriately and we can just return.
1052 		 */
1053 		if (reason == VDEV_LABEL_L2CACHE)
1054 			return (0);
1055 		ASSERT(reason == VDEV_LABEL_REPLACE);
1056 	}
1057 
1058 	/*
1059 	 * Initialize its label.
1060 	 */
1061 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1062 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1063 	vp = abd_to_buf(vp_abd);
1064 
1065 	/*
1066 	 * Generate a label describing the pool and our top-level vdev.
1067 	 * We mark it as being from txg 0 to indicate that it's not
1068 	 * really part of an active pool just yet.  The labels will
1069 	 * be written again with a meaningful txg by spa_sync().
1070 	 */
1071 	if (reason == VDEV_LABEL_SPARE ||
1072 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
1073 		/*
1074 		 * For inactive hot spares, we generate a special label that
1075 		 * identifies as a mutually shared hot spare.  We write the
1076 		 * label if we are adding a hot spare, or if we are removing an
1077 		 * active hot spare (in which case we want to revert the
1078 		 * labels).
1079 		 */
1080 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1081 
1082 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1083 		    spa_version(spa)) == 0);
1084 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1085 		    POOL_STATE_SPARE) == 0);
1086 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1087 		    vd->vdev_guid) == 0);
1088 	} else if (reason == VDEV_LABEL_L2CACHE ||
1089 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
1090 		/*
1091 		 * For level 2 ARC devices, add a special label.
1092 		 */
1093 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1094 
1095 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
1096 		    spa_version(spa)) == 0);
1097 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1098 		    POOL_STATE_L2CACHE) == 0);
1099 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
1100 		    vd->vdev_guid) == 0);
1101 	} else {
1102 		uint64_t txg = 0ULL;
1103 
1104 		if (reason == VDEV_LABEL_SPLIT)
1105 			txg = spa->spa_uberblock.ub_txg;
1106 		label = spa_config_generate(spa, vd, txg, B_FALSE);
1107 
1108 		/*
1109 		 * Add our creation time.  This allows us to detect multiple
1110 		 * vdev uses as described above, and automatically expires if we
1111 		 * fail.
1112 		 */
1113 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
1114 		    crtxg) == 0);
1115 	}
1116 
1117 	buf = vp->vp_nvlist;
1118 	buflen = sizeof (vp->vp_nvlist);
1119 
1120 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
1121 	if (error != 0) {
1122 		nvlist_free(label);
1123 		abd_free(vp_abd);
1124 		/* EFAULT means nvlist_pack ran out of room */
1125 		return (SET_ERROR(error == EFAULT ? ENAMETOOLONG : EINVAL));
1126 	}
1127 
1128 	/*
1129 	 * Initialize uberblock template.
1130 	 */
1131 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
1132 	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
1133 	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
1134 	ub = abd_to_buf(ub_abd);
1135 	ub->ub_txg = 0;
1136 
1137 	/* Initialize the 2nd padding area. */
1138 	bootenv = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1139 	abd_zero(bootenv, VDEV_PAD_SIZE);
1140 
1141 	/*
1142 	 * Write everything in parallel.
1143 	 */
1144 retry:
1145 	zio = zio_root(spa, NULL, NULL, flags);
1146 
1147 	for (int l = 0; l < VDEV_LABELS; l++) {
1148 
1149 		vdev_label_write(zio, vd, l, vp_abd,
1150 		    offsetof(vdev_label_t, vl_vdev_phys),
1151 		    sizeof (vdev_phys_t), NULL, NULL, flags);
1152 
1153 		/*
1154 		 * Skip the 1st padding area.
1155 		 * Zero out the 2nd padding area where it might have
1156 		 * left over data from previous filesystem format.
1157 		 */
1158 		vdev_label_write(zio, vd, l, bootenv,
1159 		    offsetof(vdev_label_t, vl_be),
1160 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1161 
1162 		vdev_label_write(zio, vd, l, ub_abd,
1163 		    offsetof(vdev_label_t, vl_uberblock),
1164 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
1165 	}
1166 
1167 	error = zio_wait(zio);
1168 
1169 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1170 		flags |= ZIO_FLAG_TRYHARD;
1171 		goto retry;
1172 	}
1173 
1174 	nvlist_free(label);
1175 	abd_free(bootenv);
1176 	abd_free(ub_abd);
1177 	abd_free(vp_abd);
1178 
1179 	/*
1180 	 * If this vdev hasn't been previously identified as a spare, then we
1181 	 * mark it as such only if a) we are labeling it as a spare, or b) it
1182 	 * exists as a spare elsewhere in the system.  Do the same for
1183 	 * level 2 ARC devices.
1184 	 */
1185 	if (error == 0 && !vd->vdev_isspare &&
1186 	    (reason == VDEV_LABEL_SPARE ||
1187 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1188 		spa_spare_add(vd);
1189 
1190 	if (error == 0 && !vd->vdev_isl2cache &&
1191 	    (reason == VDEV_LABEL_L2CACHE ||
1192 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
1193 		spa_l2cache_add(vd);
1194 
1195 	return (error);
1196 }
1197 
1198 /*
1199  * Done callback for vdev_label_read_bootenv_impl. If this is the first
1200  * callback to finish, store our abd in the callback pointer. Otherwise, we
1201  * just free our abd and return.
1202  */
1203 static void
1204 vdev_label_read_bootenv_done(zio_t *zio)
1205 {
1206 	zio_t *rio = zio->io_private;
1207 	abd_t **cbp = rio->io_private;
1208 
1209 	ASSERT3U(zio->io_size, ==, VDEV_PAD_SIZE);
1210 
1211 	if (zio->io_error == 0) {
1212 		mutex_enter(&rio->io_lock);
1213 		if (*cbp == NULL) {
1214 			/* Will free this buffer in vdev_label_read_bootenv. */
1215 			*cbp = zio->io_abd;
1216 		} else {
1217 			abd_free(zio->io_abd);
1218 		}
1219 		mutex_exit(&rio->io_lock);
1220 	} else {
1221 		abd_free(zio->io_abd);
1222 	}
1223 }
1224 
1225 static void
1226 vdev_label_read_bootenv_impl(zio_t *zio, vdev_t *vd, int flags)
1227 {
1228 	for (int c = 0; c < vd->vdev_children; c++)
1229 		vdev_label_read_bootenv_impl(zio, vd->vdev_child[c], flags);
1230 
1231 	/*
1232 	 * We just use the first label that has a correct checksum; the
1233 	 * bootloader should have rewritten them all to be the same on boot,
1234 	 * and any changes we made since boot have been the same across all
1235 	 * labels.
1236 	 *
1237 	 * While grub supports writing to all four labels, other bootloaders
1238 	 * don't, so we only use the first two labels to store boot
1239 	 * information.
1240 	 */
1241 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1242 		for (int l = 0; l < VDEV_LABELS / 2; l++) {
1243 			vdev_label_read(zio, vd, l,
1244 			    abd_alloc_linear(VDEV_PAD_SIZE, B_FALSE),
1245 			    offsetof(vdev_label_t, vl_be), VDEV_PAD_SIZE,
1246 			    vdev_label_read_bootenv_done, zio, flags);
1247 		}
1248 	}
1249 }
1250 
1251 int
1252 vdev_label_read_bootenv(vdev_t *rvd, nvlist_t *command)
1253 {
1254 	spa_t *spa = rvd->vdev_spa;
1255 	abd_t *abd = NULL;
1256 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1257 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1258 
1259 	ASSERT(command);
1260 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1261 
1262 	zio_t *zio = zio_root(spa, NULL, &abd, flags);
1263 	vdev_label_read_bootenv_impl(zio, rvd, flags);
1264 	int err = zio_wait(zio);
1265 
1266 	if (abd != NULL) {
1267 		vdev_boot_envblock_t *vbe = abd_to_buf(abd);
1268 		if (vbe->vbe_version != VB_RAW) {
1269 			abd_free(abd);
1270 			return (SET_ERROR(ENOTSUP));
1271 		}
1272 		vbe->vbe_bootenv[sizeof (vbe->vbe_bootenv) - 1] = '\0';
1273 		fnvlist_add_string(command, "envmap", vbe->vbe_bootenv);
1274 		/* abd was allocated in vdev_label_read_bootenv_impl() */
1275 		abd_free(abd);
1276 		/* If we managed to read any successfully, return success. */
1277 		return (0);
1278 	}
1279 	return (err);
1280 }
1281 
1282 int
1283 vdev_label_write_bootenv(vdev_t *vd, char *envmap)
1284 {
1285 	zio_t *zio;
1286 	spa_t *spa = vd->vdev_spa;
1287 	vdev_boot_envblock_t *bootenv;
1288 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1289 	int error = ENXIO;
1290 
1291 	if (strlen(envmap) >= sizeof (bootenv->vbe_bootenv)) {
1292 		return (SET_ERROR(E2BIG));
1293 	}
1294 
1295 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1296 
1297 	for (int c = 0; c < vd->vdev_children; c++) {
1298 		int child_err = vdev_label_write_bootenv(vd->vdev_child[c],
1299 		    envmap);
1300 		/*
1301 		 * As long as any of the disks managed to write all of their
1302 		 * labels successfully, return success.
1303 		 */
1304 		if (child_err == 0)
1305 			error = child_err;
1306 	}
1307 
1308 	if (!vd->vdev_ops->vdev_op_leaf || vdev_is_dead(vd) ||
1309 	    !vdev_writeable(vd)) {
1310 		return (error);
1311 	}
1312 	ASSERT3U(sizeof (*bootenv), ==, VDEV_PAD_SIZE);
1313 	abd_t *abd = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1314 	abd_zero(abd, VDEV_PAD_SIZE);
1315 	bootenv = abd_borrow_buf_copy(abd, VDEV_PAD_SIZE);
1316 
1317 	char *buf = bootenv->vbe_bootenv;
1318 	(void) strlcpy(buf, envmap, sizeof (bootenv->vbe_bootenv));
1319 	bootenv->vbe_version = VB_RAW;
1320 	abd_return_buf_copy(abd, bootenv, VDEV_PAD_SIZE);
1321 
1322 retry:
1323 	zio = zio_root(spa, NULL, NULL, flags);
1324 	for (int l = 0; l < VDEV_LABELS / 2; l++) {
1325 		vdev_label_write(zio, vd, l, abd,
1326 		    offsetof(vdev_label_t, vl_be),
1327 		    VDEV_PAD_SIZE, NULL, NULL, flags);
1328 	}
1329 
1330 	error = zio_wait(zio);
1331 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1332 		flags |= ZIO_FLAG_TRYHARD;
1333 		goto retry;
1334 	}
1335 
1336 	abd_free(abd);
1337 	return (error);
1338 }
1339 
1340 /*
1341  * ==========================================================================
1342  * uberblock load/sync
1343  * ==========================================================================
1344  */
1345 
1346 /*
1347  * Consider the following situation: txg is safely synced to disk.  We've
1348  * written the first uberblock for txg + 1, and then we lose power.  When we
1349  * come back up, we fail to see the uberblock for txg + 1 because, say,
1350  * it was on a mirrored device and the replica to which we wrote txg + 1
1351  * is now offline.  If we then make some changes and sync txg + 1, and then
1352  * the missing replica comes back, then for a few seconds we'll have two
1353  * conflicting uberblocks on disk with the same txg.  The solution is simple:
1354  * among uberblocks with equal txg, choose the one with the latest timestamp.
1355  */
1356 static int
1357 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1358 {
1359 	int cmp = TREE_CMP(ub1->ub_txg, ub2->ub_txg);
1360 
1361 	if (likely(cmp))
1362 		return (cmp);
1363 
1364 	cmp = TREE_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1365 	if (likely(cmp))
1366 		return (cmp);
1367 
1368 	/*
1369 	 * If MMP_VALID(ub) && MMP_SEQ_VALID(ub) then the host has an MMP-aware
1370 	 * ZFS, e.g. zfsonlinux >= 0.7.
1371 	 *
1372 	 * If one ub has MMP and the other does not, they were written by
1373 	 * different hosts, which matters for MMP.  So we treat no MMP/no SEQ as
1374 	 * a 0 value.
1375 	 *
1376 	 * Since timestamp and txg are the same if we get this far, either is
1377 	 * acceptable for importing the pool.
1378 	 */
1379 	unsigned int seq1 = 0;
1380 	unsigned int seq2 = 0;
1381 
1382 	if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1383 		seq1 = MMP_SEQ(ub1);
1384 
1385 	if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1386 		seq2 = MMP_SEQ(ub2);
1387 
1388 	return (TREE_CMP(seq1, seq2));
1389 }
1390 
1391 struct ubl_cbdata {
1392 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
1393 	vdev_t		*ubl_vd;	/* vdev associated with the above */
1394 };
1395 
1396 static void
1397 vdev_uberblock_load_done(zio_t *zio)
1398 {
1399 	vdev_t *vd = zio->io_vd;
1400 	spa_t *spa = zio->io_spa;
1401 	zio_t *rio = zio->io_private;
1402 	uberblock_t *ub = abd_to_buf(zio->io_abd);
1403 	struct ubl_cbdata *cbp = rio->io_private;
1404 
1405 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1406 
1407 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1408 		mutex_enter(&rio->io_lock);
1409 		if (ub->ub_txg <= spa->spa_load_max_txg &&
1410 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1411 			/*
1412 			 * Keep track of the vdev in which this uberblock
1413 			 * was found. We will use this information later
1414 			 * to obtain the config nvlist associated with
1415 			 * this uberblock.
1416 			 */
1417 			*cbp->ubl_ubbest = *ub;
1418 			cbp->ubl_vd = vd;
1419 		}
1420 		mutex_exit(&rio->io_lock);
1421 	}
1422 
1423 	abd_free(zio->io_abd);
1424 }
1425 
1426 static void
1427 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1428     struct ubl_cbdata *cbp)
1429 {
1430 	for (int c = 0; c < vd->vdev_children; c++)
1431 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1432 
1433 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1434 		for (int l = 0; l < VDEV_LABELS; l++) {
1435 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1436 				vdev_label_read(zio, vd, l,
1437 				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1438 				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1439 				    VDEV_UBERBLOCK_SIZE(vd),
1440 				    vdev_uberblock_load_done, zio, flags);
1441 			}
1442 		}
1443 	}
1444 }
1445 
1446 /*
1447  * Reads the 'best' uberblock from disk along with its associated
1448  * configuration. First, we read the uberblock array of each label of each
1449  * vdev, keeping track of the uberblock with the highest txg in each array.
1450  * Then, we read the configuration from the same vdev as the best uberblock.
1451  */
1452 void
1453 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1454 {
1455 	zio_t *zio;
1456 	spa_t *spa = rvd->vdev_spa;
1457 	struct ubl_cbdata cb;
1458 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1459 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1460 
1461 	ASSERT(ub);
1462 	ASSERT(config);
1463 
1464 	bzero(ub, sizeof (uberblock_t));
1465 	*config = NULL;
1466 
1467 	cb.ubl_ubbest = ub;
1468 	cb.ubl_vd = NULL;
1469 
1470 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1471 	zio = zio_root(spa, NULL, &cb, flags);
1472 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1473 	(void) zio_wait(zio);
1474 
1475 	/*
1476 	 * It's possible that the best uberblock was discovered on a label
1477 	 * that has a configuration which was written in a future txg.
1478 	 * Search all labels on this vdev to find the configuration that
1479 	 * matches the txg for our uberblock.
1480 	 */
1481 	if (cb.ubl_vd != NULL) {
1482 		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1483 		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1484 
1485 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1486 		if (*config == NULL && spa->spa_extreme_rewind) {
1487 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1488 			    "Trying again without txg restrictions.");
1489 			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1490 		}
1491 		if (*config == NULL) {
1492 			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1493 		}
1494 	}
1495 	spa_config_exit(spa, SCL_ALL, FTAG);
1496 }
1497 
1498 /*
1499  * For use when a leaf vdev is expanded.
1500  * The location of labels 2 and 3 changed, and at the new location the
1501  * uberblock rings are either empty or contain garbage.  The sync will write
1502  * new configs there because the vdev is dirty, but expansion also needs the
1503  * uberblock rings copied.  Read them from label 0 which did not move.
1504  *
1505  * Since the point is to populate labels {2,3} with valid uberblocks,
1506  * we zero uberblocks we fail to read or which are not valid.
1507  */
1508 
1509 static void
1510 vdev_copy_uberblocks(vdev_t *vd)
1511 {
1512 	abd_t *ub_abd;
1513 	zio_t *write_zio;
1514 	int locks = (SCL_L2ARC | SCL_ZIO);
1515 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1516 	    ZIO_FLAG_SPECULATIVE;
1517 
1518 	ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1519 	    SCL_STATE);
1520 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1521 
1522 	spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1523 
1524 	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1525 
1526 	write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1527 	for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1528 		const int src_label = 0;
1529 		zio_t *zio;
1530 
1531 		zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1532 		vdev_label_read(zio, vd, src_label, ub_abd,
1533 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1534 		    NULL, NULL, flags);
1535 
1536 		if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1537 			abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1538 
1539 		for (int l = 2; l < VDEV_LABELS; l++)
1540 			vdev_label_write(write_zio, vd, l, ub_abd,
1541 			    VDEV_UBERBLOCK_OFFSET(vd, n),
1542 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1543 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1544 	}
1545 	(void) zio_wait(write_zio);
1546 
1547 	spa_config_exit(vd->vdev_spa, locks, FTAG);
1548 
1549 	abd_free(ub_abd);
1550 }
1551 
1552 /*
1553  * On success, increment root zio's count of good writes.
1554  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1555  */
1556 static void
1557 vdev_uberblock_sync_done(zio_t *zio)
1558 {
1559 	uint64_t *good_writes = zio->io_private;
1560 
1561 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1562 		atomic_inc_64(good_writes);
1563 }
1564 
1565 /*
1566  * Write the uberblock to all labels of all leaves of the specified vdev.
1567  */
1568 static void
1569 vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1570     uberblock_t *ub, vdev_t *vd, int flags)
1571 {
1572 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1573 		vdev_uberblock_sync(zio, good_writes,
1574 		    ub, vd->vdev_child[c], flags);
1575 	}
1576 
1577 	if (!vd->vdev_ops->vdev_op_leaf)
1578 		return;
1579 
1580 	if (!vdev_writeable(vd))
1581 		return;
1582 
1583 	/* If the vdev was expanded, need to copy uberblock rings. */
1584 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1585 	    vd->vdev_copy_uberblocks == B_TRUE) {
1586 		vdev_copy_uberblocks(vd);
1587 		vd->vdev_copy_uberblocks = B_FALSE;
1588 	}
1589 
1590 	int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1591 	int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1592 
1593 	/* Copy the uberblock_t into the ABD */
1594 	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1595 	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1596 	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1597 
1598 	for (int l = 0; l < VDEV_LABELS; l++)
1599 		vdev_label_write(zio, vd, l, ub_abd,
1600 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1601 		    vdev_uberblock_sync_done, good_writes,
1602 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1603 
1604 	abd_free(ub_abd);
1605 }
1606 
1607 /* Sync the uberblocks to all vdevs in svd[] */
1608 static int
1609 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1610 {
1611 	spa_t *spa = svd[0]->vdev_spa;
1612 	zio_t *zio;
1613 	uint64_t good_writes = 0;
1614 
1615 	zio = zio_root(spa, NULL, NULL, flags);
1616 
1617 	for (int v = 0; v < svdcount; v++)
1618 		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1619 
1620 	(void) zio_wait(zio);
1621 
1622 	/*
1623 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1624 	 * are no longer needed (because the new uberblocks and the even
1625 	 * labels are safely on disk), so it is safe to overwrite them.
1626 	 */
1627 	zio = zio_root(spa, NULL, NULL, flags);
1628 
1629 	for (int v = 0; v < svdcount; v++) {
1630 		if (vdev_writeable(svd[v])) {
1631 			zio_flush(zio, svd[v]);
1632 		}
1633 	}
1634 
1635 	(void) zio_wait(zio);
1636 
1637 	return (good_writes >= 1 ? 0 : EIO);
1638 }
1639 
1640 /*
1641  * On success, increment the count of good writes for our top-level vdev.
1642  */
1643 static void
1644 vdev_label_sync_done(zio_t *zio)
1645 {
1646 	uint64_t *good_writes = zio->io_private;
1647 
1648 	if (zio->io_error == 0)
1649 		atomic_inc_64(good_writes);
1650 }
1651 
1652 /*
1653  * If there weren't enough good writes, indicate failure to the parent.
1654  */
1655 static void
1656 vdev_label_sync_top_done(zio_t *zio)
1657 {
1658 	uint64_t *good_writes = zio->io_private;
1659 
1660 	if (*good_writes == 0)
1661 		zio->io_error = SET_ERROR(EIO);
1662 
1663 	kmem_free(good_writes, sizeof (uint64_t));
1664 }
1665 
1666 /*
1667  * We ignore errors for log and cache devices, simply free the private data.
1668  */
1669 static void
1670 vdev_label_sync_ignore_done(zio_t *zio)
1671 {
1672 	kmem_free(zio->io_private, sizeof (uint64_t));
1673 }
1674 
1675 /*
1676  * Write all even or odd labels to all leaves of the specified vdev.
1677  */
1678 static void
1679 vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1680     vdev_t *vd, int l, uint64_t txg, int flags)
1681 {
1682 	nvlist_t *label;
1683 	vdev_phys_t *vp;
1684 	abd_t *vp_abd;
1685 	char *buf;
1686 	size_t buflen;
1687 
1688 	for (int c = 0; c < vd->vdev_children; c++) {
1689 		vdev_label_sync(zio, good_writes,
1690 		    vd->vdev_child[c], l, txg, flags);
1691 	}
1692 
1693 	if (!vd->vdev_ops->vdev_op_leaf)
1694 		return;
1695 
1696 	if (!vdev_writeable(vd))
1697 		return;
1698 
1699 	/*
1700 	 * Generate a label describing the top-level config to which we belong.
1701 	 */
1702 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1703 
1704 	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1705 	abd_zero(vp_abd, sizeof (vdev_phys_t));
1706 	vp = abd_to_buf(vp_abd);
1707 
1708 	buf = vp->vp_nvlist;
1709 	buflen = sizeof (vp->vp_nvlist);
1710 
1711 	if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1712 		for (; l < VDEV_LABELS; l += 2) {
1713 			vdev_label_write(zio, vd, l, vp_abd,
1714 			    offsetof(vdev_label_t, vl_vdev_phys),
1715 			    sizeof (vdev_phys_t),
1716 			    vdev_label_sync_done, good_writes,
1717 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1718 		}
1719 	}
1720 
1721 	abd_free(vp_abd);
1722 	nvlist_free(label);
1723 }
1724 
1725 static int
1726 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1727 {
1728 	list_t *dl = &spa->spa_config_dirty_list;
1729 	vdev_t *vd;
1730 	zio_t *zio;
1731 	int error;
1732 
1733 	/*
1734 	 * Write the new labels to disk.
1735 	 */
1736 	zio = zio_root(spa, NULL, NULL, flags);
1737 
1738 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1739 		uint64_t *good_writes;
1740 
1741 		ASSERT(!vd->vdev_ishole);
1742 
1743 		good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1744 		zio_t *vio = zio_null(zio, spa, NULL,
1745 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1746 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1747 		    good_writes, flags);
1748 		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1749 		zio_nowait(vio);
1750 	}
1751 
1752 	error = zio_wait(zio);
1753 
1754 	/*
1755 	 * Flush the new labels to disk.
1756 	 */
1757 	zio = zio_root(spa, NULL, NULL, flags);
1758 
1759 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1760 		zio_flush(zio, vd);
1761 
1762 	(void) zio_wait(zio);
1763 
1764 	return (error);
1765 }
1766 
1767 /*
1768  * Sync the uberblock and any changes to the vdev configuration.
1769  *
1770  * The order of operations is carefully crafted to ensure that
1771  * if the system panics or loses power at any time, the state on disk
1772  * is still transactionally consistent.  The in-line comments below
1773  * describe the failure semantics at each stage.
1774  *
1775  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1776  * at any time, you can just call it again, and it will resume its work.
1777  */
1778 int
1779 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1780 {
1781 	spa_t *spa = svd[0]->vdev_spa;
1782 	uberblock_t *ub = &spa->spa_uberblock;
1783 	int error = 0;
1784 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1785 
1786 	ASSERT(svdcount != 0);
1787 retry:
1788 	/*
1789 	 * Normally, we don't want to try too hard to write every label and
1790 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1791 	 * sync process to block while we retry.  But if we can't write a
1792 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1793 	 * bailing out and declaring the pool faulted.
1794 	 */
1795 	if (error != 0) {
1796 		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1797 			return (error);
1798 		flags |= ZIO_FLAG_TRYHARD;
1799 	}
1800 
1801 	ASSERT(ub->ub_txg <= txg);
1802 
1803 	/*
1804 	 * If this isn't a resync due to I/O errors,
1805 	 * and nothing changed in this transaction group,
1806 	 * and the vdev configuration hasn't changed,
1807 	 * then there's nothing to do.
1808 	 */
1809 	if (ub->ub_txg < txg) {
1810 		boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1811 		    txg, spa->spa_mmp.mmp_delay);
1812 
1813 		if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1814 			return (0);
1815 	}
1816 
1817 	if (txg > spa_freeze_txg(spa))
1818 		return (0);
1819 
1820 	ASSERT(txg <= spa->spa_final_txg);
1821 
1822 	/*
1823 	 * Flush the write cache of every disk that's been written to
1824 	 * in this transaction group.  This ensures that all blocks
1825 	 * written in this txg will be committed to stable storage
1826 	 * before any uberblock that references them.
1827 	 */
1828 	zio_t *zio = zio_root(spa, NULL, NULL, flags);
1829 
1830 	for (vdev_t *vd =
1831 	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1832 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1833 		zio_flush(zio, vd);
1834 
1835 	(void) zio_wait(zio);
1836 
1837 	/*
1838 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1839 	 * system dies in the middle of this process, that's OK: all of the
1840 	 * even labels that made it to disk will be newer than any uberblock,
1841 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1842 	 * which have not yet been touched, will still be valid.  We flush
1843 	 * the new labels to disk to ensure that all even-label updates
1844 	 * are committed to stable storage before the uberblock update.
1845 	 */
1846 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1847 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1848 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1849 			    "for pool '%s' when syncing out the even labels "
1850 			    "of dirty vdevs", error, spa_name(spa));
1851 		}
1852 		goto retry;
1853 	}
1854 
1855 	/*
1856 	 * Sync the uberblocks to all vdevs in svd[].
1857 	 * If the system dies in the middle of this step, there are two cases
1858 	 * to consider, and the on-disk state is consistent either way:
1859 	 *
1860 	 * (1)	If none of the new uberblocks made it to disk, then the
1861 	 *	previous uberblock will be the newest, and the odd labels
1862 	 *	(which had not yet been touched) will be valid with respect
1863 	 *	to that uberblock.
1864 	 *
1865 	 * (2)	If one or more new uberblocks made it to disk, then they
1866 	 *	will be the newest, and the even labels (which had all
1867 	 *	been successfully committed) will be valid with respect
1868 	 *	to the new uberblocks.
1869 	 */
1870 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1871 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1872 			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1873 			    "%d for pool '%s'", error, spa_name(spa));
1874 		}
1875 		goto retry;
1876 	}
1877 
1878 	if (spa_multihost(spa))
1879 		mmp_update_uberblock(spa, ub);
1880 
1881 	/*
1882 	 * Sync out odd labels for every dirty vdev.  If the system dies
1883 	 * in the middle of this process, the even labels and the new
1884 	 * uberblocks will suffice to open the pool.  The next time
1885 	 * the pool is opened, the first thing we'll do -- before any
1886 	 * user data is modified -- is mark every vdev dirty so that
1887 	 * all labels will be brought up to date.  We flush the new labels
1888 	 * to disk to ensure that all odd-label updates are committed to
1889 	 * stable storage before the next transaction group begins.
1890 	 */
1891 	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1892 		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1893 			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1894 			    "for pool '%s' when syncing out the odd labels of "
1895 			    "dirty vdevs", error, spa_name(spa));
1896 		}
1897 		goto retry;
1898 	}
1899 
1900 	return (0);
1901 }
1902