xref: /freebsd-src/sys/contrib/openzfs/module/zfs/spa_misc.c (revision 2aa3ef285a23d802f0bd6c7281612e16834e9b68)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2017 Datto Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/spa_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_initialize.h>
43 #include <sys/vdev_trim.h>
44 #include <sys/vdev_file.h>
45 #include <sys/vdev_raidz.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dir.h>
53 #include <sys/dsl_prop.h>
54 #include <sys/fm/util.h>
55 #include <sys/dsl_scan.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/metaslab_impl.h>
58 #include <sys/arc.h>
59 #include <sys/ddt.h>
60 #include <sys/kstat.h>
61 #include "zfs_prop.h"
62 #include <sys/btree.h>
63 #include <sys/zfeature.h>
64 #include <sys/qat.h>
65 #include <sys/zstd/zstd.h>
66 
67 /*
68  * SPA locking
69  *
70  * There are three basic locks for managing spa_t structures:
71  *
72  * spa_namespace_lock (global mutex)
73  *
74  *	This lock must be acquired to do any of the following:
75  *
76  *		- Lookup a spa_t by name
77  *		- Add or remove a spa_t from the namespace
78  *		- Increase spa_refcount from non-zero
79  *		- Check if spa_refcount is zero
80  *		- Rename a spa_t
81  *		- add/remove/attach/detach devices
82  *		- Held for the duration of create/destroy/import/export
83  *
84  *	It does not need to handle recursion.  A create or destroy may
85  *	reference objects (files or zvols) in other pools, but by
86  *	definition they must have an existing reference, and will never need
87  *	to lookup a spa_t by name.
88  *
89  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
90  *
91  *	This reference count keep track of any active users of the spa_t.  The
92  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
93  *	the refcount is never really 'zero' - opening a pool implicitly keeps
94  *	some references in the DMU.  Internally we check against spa_minref, but
95  *	present the image of a zero/non-zero value to consumers.
96  *
97  * spa_config_lock[] (per-spa array of rwlocks)
98  *
99  *	This protects the spa_t from config changes, and must be held in
100  *	the following circumstances:
101  *
102  *		- RW_READER to perform I/O to the spa
103  *		- RW_WRITER to change the vdev config
104  *
105  * The locking order is fairly straightforward:
106  *
107  *		spa_namespace_lock	->	spa_refcount
108  *
109  *	The namespace lock must be acquired to increase the refcount from 0
110  *	or to check if it is zero.
111  *
112  *		spa_refcount		->	spa_config_lock[]
113  *
114  *	There must be at least one valid reference on the spa_t to acquire
115  *	the config lock.
116  *
117  *		spa_namespace_lock	->	spa_config_lock[]
118  *
119  *	The namespace lock must always be taken before the config lock.
120  *
121  *
122  * The spa_namespace_lock can be acquired directly and is globally visible.
123  *
124  * The namespace is manipulated using the following functions, all of which
125  * require the spa_namespace_lock to be held.
126  *
127  *	spa_lookup()		Lookup a spa_t by name.
128  *
129  *	spa_add()		Create a new spa_t in the namespace.
130  *
131  *	spa_remove()		Remove a spa_t from the namespace.  This also
132  *				frees up any memory associated with the spa_t.
133  *
134  *	spa_next()		Returns the next spa_t in the system, or the
135  *				first if NULL is passed.
136  *
137  *	spa_evict_all()		Shutdown and remove all spa_t structures in
138  *				the system.
139  *
140  *	spa_guid_exists()	Determine whether a pool/device guid exists.
141  *
142  * The spa_refcount is manipulated using the following functions:
143  *
144  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
145  *				called with spa_namespace_lock held if the
146  *				refcount is currently zero.
147  *
148  *	spa_close()		Remove a reference from the spa_t.  This will
149  *				not free the spa_t or remove it from the
150  *				namespace.  No locking is required.
151  *
152  *	spa_refcount_zero()	Returns true if the refcount is currently
153  *				zero.  Must be called with spa_namespace_lock
154  *				held.
155  *
156  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
157  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
158  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
159  *
160  * To read the configuration, it suffices to hold one of these locks as reader.
161  * To modify the configuration, you must hold all locks as writer.  To modify
162  * vdev state without altering the vdev tree's topology (e.g. online/offline),
163  * you must hold SCL_STATE and SCL_ZIO as writer.
164  *
165  * We use these distinct config locks to avoid recursive lock entry.
166  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
167  * block allocations (SCL_ALLOC), which may require reading space maps
168  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
169  *
170  * The spa config locks cannot be normal rwlocks because we need the
171  * ability to hand off ownership.  For example, SCL_ZIO is acquired
172  * by the issuing thread and later released by an interrupt thread.
173  * They do, however, obey the usual write-wanted semantics to prevent
174  * writer (i.e. system administrator) starvation.
175  *
176  * The lock acquisition rules are as follows:
177  *
178  * SCL_CONFIG
179  *	Protects changes to the vdev tree topology, such as vdev
180  *	add/remove/attach/detach.  Protects the dirty config list
181  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
182  *
183  * SCL_STATE
184  *	Protects changes to pool state and vdev state, such as vdev
185  *	online/offline/fault/degrade/clear.  Protects the dirty state list
186  *	(spa_state_dirty_list) and global pool state (spa_state).
187  *
188  * SCL_ALLOC
189  *	Protects changes to metaslab groups and classes.
190  *	Held as reader by metaslab_alloc() and metaslab_claim().
191  *
192  * SCL_ZIO
193  *	Held by bp-level zios (those which have no io_vd upon entry)
194  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
195  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
196  *
197  * SCL_FREE
198  *	Protects changes to metaslab groups and classes.
199  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
200  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
201  *	blocks in zio_done() while another i/o that holds either
202  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
203  *
204  * SCL_VDEV
205  *	Held as reader to prevent changes to the vdev tree during trivial
206  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
207  *	other locks, and lower than all of them, to ensure that it's safe
208  *	to acquire regardless of caller context.
209  *
210  * In addition, the following rules apply:
211  *
212  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
213  *	The lock ordering is SCL_CONFIG > spa_props_lock.
214  *
215  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
216  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
217  *	or zio_write_phys() -- the caller must ensure that the config cannot
218  *	cannot change in the interim, and that the vdev cannot be reopened.
219  *	SCL_STATE as reader suffices for both.
220  *
221  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
222  *
223  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
224  *				for writing.
225  *
226  *	spa_vdev_exit()		Release the config lock, wait for all I/O
227  *				to complete, sync the updated configs to the
228  *				cache, and release the namespace lock.
229  *
230  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
231  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
232  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
233  */
234 
235 static avl_tree_t spa_namespace_avl;
236 kmutex_t spa_namespace_lock;
237 static kcondvar_t spa_namespace_cv;
238 int spa_max_replication_override = SPA_DVAS_PER_BP;
239 
240 static kmutex_t spa_spare_lock;
241 static avl_tree_t spa_spare_avl;
242 static kmutex_t spa_l2cache_lock;
243 static avl_tree_t spa_l2cache_avl;
244 
245 kmem_cache_t *spa_buffer_pool;
246 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
247 
248 #ifdef ZFS_DEBUG
249 /*
250  * Everything except dprintf, set_error, spa, and indirect_remap is on
251  * by default in debug builds.
252  */
253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
254     ZFS_DEBUG_INDIRECT_REMAP);
255 #else
256 int zfs_flags = 0;
257 #endif
258 
259 /*
260  * zfs_recover can be set to nonzero to attempt to recover from
261  * otherwise-fatal errors, typically caused by on-disk corruption.  When
262  * set, calls to zfs_panic_recover() will turn into warning messages.
263  * This should only be used as a last resort, as it typically results
264  * in leaked space, or worse.
265  */
266 int zfs_recover = B_FALSE;
267 
268 /*
269  * If destroy encounters an EIO while reading metadata (e.g. indirect
270  * blocks), space referenced by the missing metadata can not be freed.
271  * Normally this causes the background destroy to become "stalled", as
272  * it is unable to make forward progress.  While in this stalled state,
273  * all remaining space to free from the error-encountering filesystem is
274  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
275  * permanently leak the space from indirect blocks that can not be read,
276  * and continue to free everything else that it can.
277  *
278  * The default, "stalling" behavior is useful if the storage partially
279  * fails (i.e. some but not all i/os fail), and then later recovers.  In
280  * this case, we will be able to continue pool operations while it is
281  * partially failed, and when it recovers, we can continue to free the
282  * space, with no leaks.  However, note that this case is actually
283  * fairly rare.
284  *
285  * Typically pools either (a) fail completely (but perhaps temporarily,
286  * e.g. a top-level vdev going offline), or (b) have localized,
287  * permanent errors (e.g. disk returns the wrong data due to bit flip or
288  * firmware bug).  In case (a), this setting does not matter because the
289  * pool will be suspended and the sync thread will not be able to make
290  * forward progress regardless.  In case (b), because the error is
291  * permanent, the best we can do is leak the minimum amount of space,
292  * which is what setting this flag will do.  Therefore, it is reasonable
293  * for this flag to normally be set, but we chose the more conservative
294  * approach of not setting it, so that there is no possibility of
295  * leaking space in the "partial temporary" failure case.
296  */
297 int zfs_free_leak_on_eio = B_FALSE;
298 
299 /*
300  * Expiration time in milliseconds. This value has two meanings. First it is
301  * used to determine when the spa_deadman() logic should fire. By default the
302  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
303  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
304  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
305  * in one of three behaviors controlled by zfs_deadman_failmode.
306  */
307 unsigned long zfs_deadman_synctime_ms = 600000UL;
308 
309 /*
310  * This value controls the maximum amount of time zio_wait() will block for an
311  * outstanding IO.  By default this is 300 seconds at which point the "hung"
312  * behavior will be applied as described for zfs_deadman_synctime_ms.
313  */
314 unsigned long zfs_deadman_ziotime_ms = 300000UL;
315 
316 /*
317  * Check time in milliseconds. This defines the frequency at which we check
318  * for hung I/O.
319  */
320 unsigned long zfs_deadman_checktime_ms = 60000UL;
321 
322 /*
323  * By default the deadman is enabled.
324  */
325 int zfs_deadman_enabled = 1;
326 
327 /*
328  * Controls the behavior of the deadman when it detects a "hung" I/O.
329  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
330  *
331  * wait     - Wait for the "hung" I/O (default)
332  * continue - Attempt to recover from a "hung" I/O
333  * panic    - Panic the system
334  */
335 char *zfs_deadman_failmode = "wait";
336 
337 /*
338  * The worst case is single-sector max-parity RAID-Z blocks, in which
339  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
340  * times the size; so just assume that.  Add to this the fact that
341  * we can have up to 3 DVAs per bp, and one more factor of 2 because
342  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
343  * the worst case is:
344  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
345  */
346 int spa_asize_inflation = 24;
347 
348 /*
349  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
350  * the pool to be consumed.  This ensures that we don't run the pool
351  * completely out of space, due to unaccounted changes (e.g. to the MOS).
352  * It also limits the worst-case time to allocate space.  If we have less than
353  * this amount of free space, most ZPL operations (e.g. write, create) will
354  * return ENOSPC.  The ZIL metaslabs (spa_embedded_log_class) are also part of
355  * this 3.2% of space which can't be consumed by normal writes; the slop space
356  * "proper" (spa_get_slop_space()) is decreased by the embedded log space.
357  *
358  * Certain operations (e.g. file removal, most administrative actions) can
359  * use half the slop space.  They will only return ENOSPC if less than half
360  * the slop space is free.  Typically, once the pool has less than the slop
361  * space free, the user will use these operations to free up space in the pool.
362  * These are the operations that call dsl_pool_adjustedsize() with the netfree
363  * argument set to TRUE.
364  *
365  * Operations that are almost guaranteed to free up space in the absence of
366  * a pool checkpoint can use up to three quarters of the slop space
367  * (e.g zfs destroy).
368  *
369  * A very restricted set of operations are always permitted, regardless of
370  * the amount of free space.  These are the operations that call
371  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
372  * increase in the amount of space used, it is possible to run the pool
373  * completely out of space, causing it to be permanently read-only.
374  *
375  * Note that on very small pools, the slop space will be larger than
376  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
377  * but we never allow it to be more than half the pool size.
378  *
379  * See also the comments in zfs_space_check_t.
380  */
381 int spa_slop_shift = 5;
382 uint64_t spa_min_slop = 128 * 1024 * 1024;
383 int spa_allocators = 4;
384 
385 
386 /*PRINTFLIKE2*/
387 void
388 spa_load_failed(spa_t *spa, const char *fmt, ...)
389 {
390 	va_list adx;
391 	char buf[256];
392 
393 	va_start(adx, fmt);
394 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
395 	va_end(adx);
396 
397 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
398 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
399 }
400 
401 /*PRINTFLIKE2*/
402 void
403 spa_load_note(spa_t *spa, const char *fmt, ...)
404 {
405 	va_list adx;
406 	char buf[256];
407 
408 	va_start(adx, fmt);
409 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
410 	va_end(adx);
411 
412 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
413 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
414 }
415 
416 /*
417  * By default dedup and user data indirects land in the special class
418  */
419 int zfs_ddt_data_is_special = B_TRUE;
420 int zfs_user_indirect_is_special = B_TRUE;
421 
422 /*
423  * The percentage of special class final space reserved for metadata only.
424  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
425  * let metadata into the class.
426  */
427 int zfs_special_class_metadata_reserve_pct = 25;
428 
429 /*
430  * ==========================================================================
431  * SPA config locking
432  * ==========================================================================
433  */
434 static void
435 spa_config_lock_init(spa_t *spa)
436 {
437 	for (int i = 0; i < SCL_LOCKS; i++) {
438 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
439 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
440 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
441 		zfs_refcount_create_untracked(&scl->scl_count);
442 		scl->scl_writer = NULL;
443 		scl->scl_write_wanted = 0;
444 	}
445 }
446 
447 static void
448 spa_config_lock_destroy(spa_t *spa)
449 {
450 	for (int i = 0; i < SCL_LOCKS; i++) {
451 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
452 		mutex_destroy(&scl->scl_lock);
453 		cv_destroy(&scl->scl_cv);
454 		zfs_refcount_destroy(&scl->scl_count);
455 		ASSERT(scl->scl_writer == NULL);
456 		ASSERT(scl->scl_write_wanted == 0);
457 	}
458 }
459 
460 int
461 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
462 {
463 	for (int i = 0; i < SCL_LOCKS; i++) {
464 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
465 		if (!(locks & (1 << i)))
466 			continue;
467 		mutex_enter(&scl->scl_lock);
468 		if (rw == RW_READER) {
469 			if (scl->scl_writer || scl->scl_write_wanted) {
470 				mutex_exit(&scl->scl_lock);
471 				spa_config_exit(spa, locks & ((1 << i) - 1),
472 				    tag);
473 				return (0);
474 			}
475 		} else {
476 			ASSERT(scl->scl_writer != curthread);
477 			if (!zfs_refcount_is_zero(&scl->scl_count)) {
478 				mutex_exit(&scl->scl_lock);
479 				spa_config_exit(spa, locks & ((1 << i) - 1),
480 				    tag);
481 				return (0);
482 			}
483 			scl->scl_writer = curthread;
484 		}
485 		(void) zfs_refcount_add(&scl->scl_count, tag);
486 		mutex_exit(&scl->scl_lock);
487 	}
488 	return (1);
489 }
490 
491 void
492 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
493 {
494 	int wlocks_held = 0;
495 
496 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
497 
498 	for (int i = 0; i < SCL_LOCKS; i++) {
499 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
500 		if (scl->scl_writer == curthread)
501 			wlocks_held |= (1 << i);
502 		if (!(locks & (1 << i)))
503 			continue;
504 		mutex_enter(&scl->scl_lock);
505 		if (rw == RW_READER) {
506 			while (scl->scl_writer || scl->scl_write_wanted) {
507 				cv_wait(&scl->scl_cv, &scl->scl_lock);
508 			}
509 		} else {
510 			ASSERT(scl->scl_writer != curthread);
511 			while (!zfs_refcount_is_zero(&scl->scl_count)) {
512 				scl->scl_write_wanted++;
513 				cv_wait(&scl->scl_cv, &scl->scl_lock);
514 				scl->scl_write_wanted--;
515 			}
516 			scl->scl_writer = curthread;
517 		}
518 		(void) zfs_refcount_add(&scl->scl_count, tag);
519 		mutex_exit(&scl->scl_lock);
520 	}
521 	ASSERT3U(wlocks_held, <=, locks);
522 }
523 
524 void
525 spa_config_exit(spa_t *spa, int locks, const void *tag)
526 {
527 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
528 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
529 		if (!(locks & (1 << i)))
530 			continue;
531 		mutex_enter(&scl->scl_lock);
532 		ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
533 		if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
534 			ASSERT(scl->scl_writer == NULL ||
535 			    scl->scl_writer == curthread);
536 			scl->scl_writer = NULL;	/* OK in either case */
537 			cv_broadcast(&scl->scl_cv);
538 		}
539 		mutex_exit(&scl->scl_lock);
540 	}
541 }
542 
543 int
544 spa_config_held(spa_t *spa, int locks, krw_t rw)
545 {
546 	int locks_held = 0;
547 
548 	for (int i = 0; i < SCL_LOCKS; i++) {
549 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
550 		if (!(locks & (1 << i)))
551 			continue;
552 		if ((rw == RW_READER &&
553 		    !zfs_refcount_is_zero(&scl->scl_count)) ||
554 		    (rw == RW_WRITER && scl->scl_writer == curthread))
555 			locks_held |= 1 << i;
556 	}
557 
558 	return (locks_held);
559 }
560 
561 /*
562  * ==========================================================================
563  * SPA namespace functions
564  * ==========================================================================
565  */
566 
567 /*
568  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
569  * Returns NULL if no matching spa_t is found.
570  */
571 spa_t *
572 spa_lookup(const char *name)
573 {
574 	static spa_t search;	/* spa_t is large; don't allocate on stack */
575 	spa_t *spa;
576 	avl_index_t where;
577 	char *cp;
578 
579 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
580 
581 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
582 
583 	/*
584 	 * If it's a full dataset name, figure out the pool name and
585 	 * just use that.
586 	 */
587 	cp = strpbrk(search.spa_name, "/@#");
588 	if (cp != NULL)
589 		*cp = '\0';
590 
591 	spa = avl_find(&spa_namespace_avl, &search, &where);
592 
593 	return (spa);
594 }
595 
596 /*
597  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
598  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
599  * looking for potentially hung I/Os.
600  */
601 void
602 spa_deadman(void *arg)
603 {
604 	spa_t *spa = arg;
605 
606 	/* Disable the deadman if the pool is suspended. */
607 	if (spa_suspended(spa))
608 		return;
609 
610 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
611 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
612 	    ++spa->spa_deadman_calls);
613 	if (zfs_deadman_enabled)
614 		vdev_deadman(spa->spa_root_vdev, FTAG);
615 
616 	spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
617 	    spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
618 	    MSEC_TO_TICK(zfs_deadman_checktime_ms));
619 }
620 
621 static int
622 spa_log_sm_sort_by_txg(const void *va, const void *vb)
623 {
624 	const spa_log_sm_t *a = va;
625 	const spa_log_sm_t *b = vb;
626 
627 	return (TREE_CMP(a->sls_txg, b->sls_txg));
628 }
629 
630 /*
631  * Create an uninitialized spa_t with the given name.  Requires
632  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
633  * exist by calling spa_lookup() first.
634  */
635 spa_t *
636 spa_add(const char *name, nvlist_t *config, const char *altroot)
637 {
638 	spa_t *spa;
639 	spa_config_dirent_t *dp;
640 
641 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
642 
643 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
644 
645 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
646 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
647 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
648 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
649 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
650 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
651 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
652 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
653 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
654 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
655 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
656 	mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
657 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
658 	mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
659 
660 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
661 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
662 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
663 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
664 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
665 	cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
666 	cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
667 
668 	for (int t = 0; t < TXG_SIZE; t++)
669 		bplist_create(&spa->spa_free_bplist[t]);
670 
671 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
672 	spa->spa_state = POOL_STATE_UNINITIALIZED;
673 	spa->spa_freeze_txg = UINT64_MAX;
674 	spa->spa_final_txg = UINT64_MAX;
675 	spa->spa_load_max_txg = UINT64_MAX;
676 	spa->spa_proc = &p0;
677 	spa->spa_proc_state = SPA_PROC_NONE;
678 	spa->spa_trust_config = B_TRUE;
679 	spa->spa_hostid = zone_get_hostid(NULL);
680 
681 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
682 	spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
683 	spa_set_deadman_failmode(spa, zfs_deadman_failmode);
684 
685 	zfs_refcount_create(&spa->spa_refcount);
686 	spa_config_lock_init(spa);
687 	spa_stats_init(spa);
688 
689 	avl_add(&spa_namespace_avl, spa);
690 
691 	/*
692 	 * Set the alternate root, if there is one.
693 	 */
694 	if (altroot)
695 		spa->spa_root = spa_strdup(altroot);
696 
697 	spa->spa_alloc_count = spa_allocators;
698 	spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
699 	    sizeof (kmutex_t), KM_SLEEP);
700 	spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
701 	    sizeof (avl_tree_t), KM_SLEEP);
702 	for (int i = 0; i < spa->spa_alloc_count; i++) {
703 		mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
704 		avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
705 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
706 	}
707 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
708 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
709 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
710 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
711 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
712 	    offsetof(log_summary_entry_t, lse_node));
713 
714 	/*
715 	 * Every pool starts with the default cachefile
716 	 */
717 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
718 	    offsetof(spa_config_dirent_t, scd_link));
719 
720 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
721 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
722 	list_insert_head(&spa->spa_config_list, dp);
723 
724 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
725 	    KM_SLEEP) == 0);
726 
727 	if (config != NULL) {
728 		nvlist_t *features;
729 
730 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
731 		    &features) == 0) {
732 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
733 			    0) == 0);
734 		}
735 
736 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
737 	}
738 
739 	if (spa->spa_label_features == NULL) {
740 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
741 		    KM_SLEEP) == 0);
742 	}
743 
744 	spa->spa_min_ashift = INT_MAX;
745 	spa->spa_max_ashift = 0;
746 	spa->spa_min_alloc = INT_MAX;
747 
748 	/* Reset cached value */
749 	spa->spa_dedup_dspace = ~0ULL;
750 
751 	/*
752 	 * As a pool is being created, treat all features as disabled by
753 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
754 	 * refcount cache.
755 	 */
756 	for (int i = 0; i < SPA_FEATURES; i++) {
757 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
758 	}
759 
760 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
761 	    offsetof(vdev_t, vdev_leaf_node));
762 
763 	return (spa);
764 }
765 
766 /*
767  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
768  * spa_namespace_lock.  This is called only after the spa_t has been closed and
769  * deactivated.
770  */
771 void
772 spa_remove(spa_t *spa)
773 {
774 	spa_config_dirent_t *dp;
775 
776 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
777 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
778 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
779 	ASSERT0(spa->spa_waiters);
780 
781 	nvlist_free(spa->spa_config_splitting);
782 
783 	avl_remove(&spa_namespace_avl, spa);
784 	cv_broadcast(&spa_namespace_cv);
785 
786 	if (spa->spa_root)
787 		spa_strfree(spa->spa_root);
788 
789 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
790 		list_remove(&spa->spa_config_list, dp);
791 		if (dp->scd_path != NULL)
792 			spa_strfree(dp->scd_path);
793 		kmem_free(dp, sizeof (spa_config_dirent_t));
794 	}
795 
796 	for (int i = 0; i < spa->spa_alloc_count; i++) {
797 		avl_destroy(&spa->spa_alloc_trees[i]);
798 		mutex_destroy(&spa->spa_alloc_locks[i]);
799 	}
800 	kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
801 	    sizeof (kmutex_t));
802 	kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
803 	    sizeof (avl_tree_t));
804 
805 	avl_destroy(&spa->spa_metaslabs_by_flushed);
806 	avl_destroy(&spa->spa_sm_logs_by_txg);
807 	list_destroy(&spa->spa_log_summary);
808 	list_destroy(&spa->spa_config_list);
809 	list_destroy(&spa->spa_leaf_list);
810 
811 	nvlist_free(spa->spa_label_features);
812 	nvlist_free(spa->spa_load_info);
813 	nvlist_free(spa->spa_feat_stats);
814 	spa_config_set(spa, NULL);
815 
816 	zfs_refcount_destroy(&spa->spa_refcount);
817 
818 	spa_stats_destroy(spa);
819 	spa_config_lock_destroy(spa);
820 
821 	for (int t = 0; t < TXG_SIZE; t++)
822 		bplist_destroy(&spa->spa_free_bplist[t]);
823 
824 	zio_checksum_templates_free(spa);
825 
826 	cv_destroy(&spa->spa_async_cv);
827 	cv_destroy(&spa->spa_evicting_os_cv);
828 	cv_destroy(&spa->spa_proc_cv);
829 	cv_destroy(&spa->spa_scrub_io_cv);
830 	cv_destroy(&spa->spa_suspend_cv);
831 	cv_destroy(&spa->spa_activities_cv);
832 	cv_destroy(&spa->spa_waiters_cv);
833 
834 	mutex_destroy(&spa->spa_flushed_ms_lock);
835 	mutex_destroy(&spa->spa_async_lock);
836 	mutex_destroy(&spa->spa_errlist_lock);
837 	mutex_destroy(&spa->spa_errlog_lock);
838 	mutex_destroy(&spa->spa_evicting_os_lock);
839 	mutex_destroy(&spa->spa_history_lock);
840 	mutex_destroy(&spa->spa_proc_lock);
841 	mutex_destroy(&spa->spa_props_lock);
842 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
843 	mutex_destroy(&spa->spa_scrub_lock);
844 	mutex_destroy(&spa->spa_suspend_lock);
845 	mutex_destroy(&spa->spa_vdev_top_lock);
846 	mutex_destroy(&spa->spa_feat_stats_lock);
847 	mutex_destroy(&spa->spa_activities_lock);
848 
849 	kmem_free(spa, sizeof (spa_t));
850 }
851 
852 /*
853  * Given a pool, return the next pool in the namespace, or NULL if there is
854  * none.  If 'prev' is NULL, return the first pool.
855  */
856 spa_t *
857 spa_next(spa_t *prev)
858 {
859 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
860 
861 	if (prev)
862 		return (AVL_NEXT(&spa_namespace_avl, prev));
863 	else
864 		return (avl_first(&spa_namespace_avl));
865 }
866 
867 /*
868  * ==========================================================================
869  * SPA refcount functions
870  * ==========================================================================
871  */
872 
873 /*
874  * Add a reference to the given spa_t.  Must have at least one reference, or
875  * have the namespace lock held.
876  */
877 void
878 spa_open_ref(spa_t *spa, void *tag)
879 {
880 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
881 	    MUTEX_HELD(&spa_namespace_lock));
882 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
883 }
884 
885 /*
886  * Remove a reference to the given spa_t.  Must have at least one reference, or
887  * have the namespace lock held.
888  */
889 void
890 spa_close(spa_t *spa, void *tag)
891 {
892 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
893 	    MUTEX_HELD(&spa_namespace_lock));
894 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
895 }
896 
897 /*
898  * Remove a reference to the given spa_t held by a dsl dir that is
899  * being asynchronously released.  Async releases occur from a taskq
900  * performing eviction of dsl datasets and dirs.  The namespace lock
901  * isn't held and the hold by the object being evicted may contribute to
902  * spa_minref (e.g. dataset or directory released during pool export),
903  * so the asserts in spa_close() do not apply.
904  */
905 void
906 spa_async_close(spa_t *spa, void *tag)
907 {
908 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
909 }
910 
911 /*
912  * Check to see if the spa refcount is zero.  Must be called with
913  * spa_namespace_lock held.  We really compare against spa_minref, which is the
914  * number of references acquired when opening a pool
915  */
916 boolean_t
917 spa_refcount_zero(spa_t *spa)
918 {
919 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
920 
921 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
922 }
923 
924 /*
925  * ==========================================================================
926  * SPA spare and l2cache tracking
927  * ==========================================================================
928  */
929 
930 /*
931  * Hot spares and cache devices are tracked using the same code below,
932  * for 'auxiliary' devices.
933  */
934 
935 typedef struct spa_aux {
936 	uint64_t	aux_guid;
937 	uint64_t	aux_pool;
938 	avl_node_t	aux_avl;
939 	int		aux_count;
940 } spa_aux_t;
941 
942 static inline int
943 spa_aux_compare(const void *a, const void *b)
944 {
945 	const spa_aux_t *sa = (const spa_aux_t *)a;
946 	const spa_aux_t *sb = (const spa_aux_t *)b;
947 
948 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
949 }
950 
951 static void
952 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
953 {
954 	avl_index_t where;
955 	spa_aux_t search;
956 	spa_aux_t *aux;
957 
958 	search.aux_guid = vd->vdev_guid;
959 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
960 		aux->aux_count++;
961 	} else {
962 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
963 		aux->aux_guid = vd->vdev_guid;
964 		aux->aux_count = 1;
965 		avl_insert(avl, aux, where);
966 	}
967 }
968 
969 static void
970 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
971 {
972 	spa_aux_t search;
973 	spa_aux_t *aux;
974 	avl_index_t where;
975 
976 	search.aux_guid = vd->vdev_guid;
977 	aux = avl_find(avl, &search, &where);
978 
979 	ASSERT(aux != NULL);
980 
981 	if (--aux->aux_count == 0) {
982 		avl_remove(avl, aux);
983 		kmem_free(aux, sizeof (spa_aux_t));
984 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
985 		aux->aux_pool = 0ULL;
986 	}
987 }
988 
989 static boolean_t
990 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
991 {
992 	spa_aux_t search, *found;
993 
994 	search.aux_guid = guid;
995 	found = avl_find(avl, &search, NULL);
996 
997 	if (pool) {
998 		if (found)
999 			*pool = found->aux_pool;
1000 		else
1001 			*pool = 0ULL;
1002 	}
1003 
1004 	if (refcnt) {
1005 		if (found)
1006 			*refcnt = found->aux_count;
1007 		else
1008 			*refcnt = 0;
1009 	}
1010 
1011 	return (found != NULL);
1012 }
1013 
1014 static void
1015 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1016 {
1017 	spa_aux_t search, *found;
1018 	avl_index_t where;
1019 
1020 	search.aux_guid = vd->vdev_guid;
1021 	found = avl_find(avl, &search, &where);
1022 	ASSERT(found != NULL);
1023 	ASSERT(found->aux_pool == 0ULL);
1024 
1025 	found->aux_pool = spa_guid(vd->vdev_spa);
1026 }
1027 
1028 /*
1029  * Spares are tracked globally due to the following constraints:
1030  *
1031  *	- A spare may be part of multiple pools.
1032  *	- A spare may be added to a pool even if it's actively in use within
1033  *	  another pool.
1034  *	- A spare in use in any pool can only be the source of a replacement if
1035  *	  the target is a spare in the same pool.
1036  *
1037  * We keep track of all spares on the system through the use of a reference
1038  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1039  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1040  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1041  * inactive).  When a spare is made active (used to replace a device in the
1042  * pool), we also keep track of which pool its been made a part of.
1043  *
1044  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1045  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1046  * separate spare lock exists for the status query path, which does not need to
1047  * be completely consistent with respect to other vdev configuration changes.
1048  */
1049 
1050 static int
1051 spa_spare_compare(const void *a, const void *b)
1052 {
1053 	return (spa_aux_compare(a, b));
1054 }
1055 
1056 void
1057 spa_spare_add(vdev_t *vd)
1058 {
1059 	mutex_enter(&spa_spare_lock);
1060 	ASSERT(!vd->vdev_isspare);
1061 	spa_aux_add(vd, &spa_spare_avl);
1062 	vd->vdev_isspare = B_TRUE;
1063 	mutex_exit(&spa_spare_lock);
1064 }
1065 
1066 void
1067 spa_spare_remove(vdev_t *vd)
1068 {
1069 	mutex_enter(&spa_spare_lock);
1070 	ASSERT(vd->vdev_isspare);
1071 	spa_aux_remove(vd, &spa_spare_avl);
1072 	vd->vdev_isspare = B_FALSE;
1073 	mutex_exit(&spa_spare_lock);
1074 }
1075 
1076 boolean_t
1077 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1078 {
1079 	boolean_t found;
1080 
1081 	mutex_enter(&spa_spare_lock);
1082 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1083 	mutex_exit(&spa_spare_lock);
1084 
1085 	return (found);
1086 }
1087 
1088 void
1089 spa_spare_activate(vdev_t *vd)
1090 {
1091 	mutex_enter(&spa_spare_lock);
1092 	ASSERT(vd->vdev_isspare);
1093 	spa_aux_activate(vd, &spa_spare_avl);
1094 	mutex_exit(&spa_spare_lock);
1095 }
1096 
1097 /*
1098  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1099  * Cache devices currently only support one pool per cache device, and so
1100  * for these devices the aux reference count is currently unused beyond 1.
1101  */
1102 
1103 static int
1104 spa_l2cache_compare(const void *a, const void *b)
1105 {
1106 	return (spa_aux_compare(a, b));
1107 }
1108 
1109 void
1110 spa_l2cache_add(vdev_t *vd)
1111 {
1112 	mutex_enter(&spa_l2cache_lock);
1113 	ASSERT(!vd->vdev_isl2cache);
1114 	spa_aux_add(vd, &spa_l2cache_avl);
1115 	vd->vdev_isl2cache = B_TRUE;
1116 	mutex_exit(&spa_l2cache_lock);
1117 }
1118 
1119 void
1120 spa_l2cache_remove(vdev_t *vd)
1121 {
1122 	mutex_enter(&spa_l2cache_lock);
1123 	ASSERT(vd->vdev_isl2cache);
1124 	spa_aux_remove(vd, &spa_l2cache_avl);
1125 	vd->vdev_isl2cache = B_FALSE;
1126 	mutex_exit(&spa_l2cache_lock);
1127 }
1128 
1129 boolean_t
1130 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1131 {
1132 	boolean_t found;
1133 
1134 	mutex_enter(&spa_l2cache_lock);
1135 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1136 	mutex_exit(&spa_l2cache_lock);
1137 
1138 	return (found);
1139 }
1140 
1141 void
1142 spa_l2cache_activate(vdev_t *vd)
1143 {
1144 	mutex_enter(&spa_l2cache_lock);
1145 	ASSERT(vd->vdev_isl2cache);
1146 	spa_aux_activate(vd, &spa_l2cache_avl);
1147 	mutex_exit(&spa_l2cache_lock);
1148 }
1149 
1150 /*
1151  * ==========================================================================
1152  * SPA vdev locking
1153  * ==========================================================================
1154  */
1155 
1156 /*
1157  * Lock the given spa_t for the purpose of adding or removing a vdev.
1158  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1159  * It returns the next transaction group for the spa_t.
1160  */
1161 uint64_t
1162 spa_vdev_enter(spa_t *spa)
1163 {
1164 	mutex_enter(&spa->spa_vdev_top_lock);
1165 	mutex_enter(&spa_namespace_lock);
1166 
1167 	vdev_autotrim_stop_all(spa);
1168 
1169 	return (spa_vdev_config_enter(spa));
1170 }
1171 
1172 /*
1173  * The same as spa_vdev_enter() above but additionally takes the guid of
1174  * the vdev being detached.  When there is a rebuild in process it will be
1175  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1176  * The rebuild is canceled if only a single child remains after the detach.
1177  */
1178 uint64_t
1179 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1180 {
1181 	mutex_enter(&spa->spa_vdev_top_lock);
1182 	mutex_enter(&spa_namespace_lock);
1183 
1184 	vdev_autotrim_stop_all(spa);
1185 
1186 	if (guid != 0) {
1187 		vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1188 		if (vd) {
1189 			vdev_rebuild_stop_wait(vd->vdev_top);
1190 		}
1191 	}
1192 
1193 	return (spa_vdev_config_enter(spa));
1194 }
1195 
1196 /*
1197  * Internal implementation for spa_vdev_enter().  Used when a vdev
1198  * operation requires multiple syncs (i.e. removing a device) while
1199  * keeping the spa_namespace_lock held.
1200  */
1201 uint64_t
1202 spa_vdev_config_enter(spa_t *spa)
1203 {
1204 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1205 
1206 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1207 
1208 	return (spa_last_synced_txg(spa) + 1);
1209 }
1210 
1211 /*
1212  * Used in combination with spa_vdev_config_enter() to allow the syncing
1213  * of multiple transactions without releasing the spa_namespace_lock.
1214  */
1215 void
1216 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1217 {
1218 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1219 
1220 	int config_changed = B_FALSE;
1221 
1222 	ASSERT(txg > spa_last_synced_txg(spa));
1223 
1224 	spa->spa_pending_vdev = NULL;
1225 
1226 	/*
1227 	 * Reassess the DTLs.
1228 	 */
1229 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1230 
1231 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1232 		config_changed = B_TRUE;
1233 		spa->spa_config_generation++;
1234 	}
1235 
1236 	/*
1237 	 * Verify the metaslab classes.
1238 	 */
1239 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1240 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1241 	ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1242 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1243 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1244 
1245 	spa_config_exit(spa, SCL_ALL, spa);
1246 
1247 	/*
1248 	 * Panic the system if the specified tag requires it.  This
1249 	 * is useful for ensuring that configurations are updated
1250 	 * transactionally.
1251 	 */
1252 	if (zio_injection_enabled)
1253 		zio_handle_panic_injection(spa, tag, 0);
1254 
1255 	/*
1256 	 * Note: this txg_wait_synced() is important because it ensures
1257 	 * that there won't be more than one config change per txg.
1258 	 * This allows us to use the txg as the generation number.
1259 	 */
1260 	if (error == 0)
1261 		txg_wait_synced(spa->spa_dsl_pool, txg);
1262 
1263 	if (vd != NULL) {
1264 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1265 		if (vd->vdev_ops->vdev_op_leaf) {
1266 			mutex_enter(&vd->vdev_initialize_lock);
1267 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1268 			    NULL);
1269 			mutex_exit(&vd->vdev_initialize_lock);
1270 
1271 			mutex_enter(&vd->vdev_trim_lock);
1272 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1273 			mutex_exit(&vd->vdev_trim_lock);
1274 		}
1275 
1276 		/*
1277 		 * The vdev may be both a leaf and top-level device.
1278 		 */
1279 		vdev_autotrim_stop_wait(vd);
1280 
1281 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1282 		vdev_free(vd);
1283 		spa_config_exit(spa, SCL_ALL, spa);
1284 	}
1285 
1286 	/*
1287 	 * If the config changed, update the config cache.
1288 	 */
1289 	if (config_changed)
1290 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1291 }
1292 
1293 /*
1294  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1295  * locking of spa_vdev_enter(), we also want make sure the transactions have
1296  * synced to disk, and then update the global configuration cache with the new
1297  * information.
1298  */
1299 int
1300 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1301 {
1302 	vdev_autotrim_restart(spa);
1303 	vdev_rebuild_restart(spa);
1304 
1305 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1306 	mutex_exit(&spa_namespace_lock);
1307 	mutex_exit(&spa->spa_vdev_top_lock);
1308 
1309 	return (error);
1310 }
1311 
1312 /*
1313  * Lock the given spa_t for the purpose of changing vdev state.
1314  */
1315 void
1316 spa_vdev_state_enter(spa_t *spa, int oplocks)
1317 {
1318 	int locks = SCL_STATE_ALL | oplocks;
1319 
1320 	/*
1321 	 * Root pools may need to read of the underlying devfs filesystem
1322 	 * when opening up a vdev.  Unfortunately if we're holding the
1323 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1324 	 * the read from the root filesystem.  Instead we "prefetch"
1325 	 * the associated vnodes that we need prior to opening the
1326 	 * underlying devices and cache them so that we can prevent
1327 	 * any I/O when we are doing the actual open.
1328 	 */
1329 	if (spa_is_root(spa)) {
1330 		int low = locks & ~(SCL_ZIO - 1);
1331 		int high = locks & ~low;
1332 
1333 		spa_config_enter(spa, high, spa, RW_WRITER);
1334 		vdev_hold(spa->spa_root_vdev);
1335 		spa_config_enter(spa, low, spa, RW_WRITER);
1336 	} else {
1337 		spa_config_enter(spa, locks, spa, RW_WRITER);
1338 	}
1339 	spa->spa_vdev_locks = locks;
1340 }
1341 
1342 int
1343 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1344 {
1345 	boolean_t config_changed = B_FALSE;
1346 	vdev_t *vdev_top;
1347 
1348 	if (vd == NULL || vd == spa->spa_root_vdev) {
1349 		vdev_top = spa->spa_root_vdev;
1350 	} else {
1351 		vdev_top = vd->vdev_top;
1352 	}
1353 
1354 	if (vd != NULL || error == 0)
1355 		vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1356 
1357 	if (vd != NULL) {
1358 		if (vd != spa->spa_root_vdev)
1359 			vdev_state_dirty(vdev_top);
1360 
1361 		config_changed = B_TRUE;
1362 		spa->spa_config_generation++;
1363 	}
1364 
1365 	if (spa_is_root(spa))
1366 		vdev_rele(spa->spa_root_vdev);
1367 
1368 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1369 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1370 
1371 	/*
1372 	 * If anything changed, wait for it to sync.  This ensures that,
1373 	 * from the system administrator's perspective, zpool(8) commands
1374 	 * are synchronous.  This is important for things like zpool offline:
1375 	 * when the command completes, you expect no further I/O from ZFS.
1376 	 */
1377 	if (vd != NULL)
1378 		txg_wait_synced(spa->spa_dsl_pool, 0);
1379 
1380 	/*
1381 	 * If the config changed, update the config cache.
1382 	 */
1383 	if (config_changed) {
1384 		mutex_enter(&spa_namespace_lock);
1385 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1386 		mutex_exit(&spa_namespace_lock);
1387 	}
1388 
1389 	return (error);
1390 }
1391 
1392 /*
1393  * ==========================================================================
1394  * Miscellaneous functions
1395  * ==========================================================================
1396  */
1397 
1398 void
1399 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1400 {
1401 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1402 		fnvlist_add_boolean(spa->spa_label_features, feature);
1403 		/*
1404 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1405 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1406 		 * Thankfully, in this case we don't need to dirty the config
1407 		 * because it will be written out anyway when we finish
1408 		 * creating the pool.
1409 		 */
1410 		if (tx->tx_txg != TXG_INITIAL)
1411 			vdev_config_dirty(spa->spa_root_vdev);
1412 	}
1413 }
1414 
1415 void
1416 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1417 {
1418 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1419 		vdev_config_dirty(spa->spa_root_vdev);
1420 }
1421 
1422 /*
1423  * Return the spa_t associated with given pool_guid, if it exists.  If
1424  * device_guid is non-zero, determine whether the pool exists *and* contains
1425  * a device with the specified device_guid.
1426  */
1427 spa_t *
1428 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1429 {
1430 	spa_t *spa;
1431 	avl_tree_t *t = &spa_namespace_avl;
1432 
1433 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1434 
1435 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1436 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1437 			continue;
1438 		if (spa->spa_root_vdev == NULL)
1439 			continue;
1440 		if (spa_guid(spa) == pool_guid) {
1441 			if (device_guid == 0)
1442 				break;
1443 
1444 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1445 			    device_guid) != NULL)
1446 				break;
1447 
1448 			/*
1449 			 * Check any devices we may be in the process of adding.
1450 			 */
1451 			if (spa->spa_pending_vdev) {
1452 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1453 				    device_guid) != NULL)
1454 					break;
1455 			}
1456 		}
1457 	}
1458 
1459 	return (spa);
1460 }
1461 
1462 /*
1463  * Determine whether a pool with the given pool_guid exists.
1464  */
1465 boolean_t
1466 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1467 {
1468 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1469 }
1470 
1471 char *
1472 spa_strdup(const char *s)
1473 {
1474 	size_t len;
1475 	char *new;
1476 
1477 	len = strlen(s);
1478 	new = kmem_alloc(len + 1, KM_SLEEP);
1479 	bcopy(s, new, len);
1480 	new[len] = '\0';
1481 
1482 	return (new);
1483 }
1484 
1485 void
1486 spa_strfree(char *s)
1487 {
1488 	kmem_free(s, strlen(s) + 1);
1489 }
1490 
1491 uint64_t
1492 spa_get_random(uint64_t range)
1493 {
1494 	uint64_t r;
1495 
1496 	ASSERT(range != 0);
1497 
1498 	if (range == 1)
1499 		return (0);
1500 
1501 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1502 
1503 	return (r % range);
1504 }
1505 
1506 uint64_t
1507 spa_generate_guid(spa_t *spa)
1508 {
1509 	uint64_t guid = spa_get_random(-1ULL);
1510 
1511 	if (spa != NULL) {
1512 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1513 			guid = spa_get_random(-1ULL);
1514 	} else {
1515 		while (guid == 0 || spa_guid_exists(guid, 0))
1516 			guid = spa_get_random(-1ULL);
1517 	}
1518 
1519 	return (guid);
1520 }
1521 
1522 void
1523 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1524 {
1525 	char type[256];
1526 	char *checksum = NULL;
1527 	char *compress = NULL;
1528 
1529 	if (bp != NULL) {
1530 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1531 			dmu_object_byteswap_t bswap =
1532 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1533 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1534 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1535 			    "metadata" : "data",
1536 			    dmu_ot_byteswap[bswap].ob_name);
1537 		} else {
1538 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1539 			    sizeof (type));
1540 		}
1541 		if (!BP_IS_EMBEDDED(bp)) {
1542 			checksum =
1543 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1544 		}
1545 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1546 	}
1547 
1548 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1549 	    compress);
1550 }
1551 
1552 void
1553 spa_freeze(spa_t *spa)
1554 {
1555 	uint64_t freeze_txg = 0;
1556 
1557 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1558 	if (spa->spa_freeze_txg == UINT64_MAX) {
1559 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1560 		spa->spa_freeze_txg = freeze_txg;
1561 	}
1562 	spa_config_exit(spa, SCL_ALL, FTAG);
1563 	if (freeze_txg != 0)
1564 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1565 }
1566 
1567 void
1568 zfs_panic_recover(const char *fmt, ...)
1569 {
1570 	va_list adx;
1571 
1572 	va_start(adx, fmt);
1573 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1574 	va_end(adx);
1575 }
1576 
1577 /*
1578  * This is a stripped-down version of strtoull, suitable only for converting
1579  * lowercase hexadecimal numbers that don't overflow.
1580  */
1581 uint64_t
1582 zfs_strtonum(const char *str, char **nptr)
1583 {
1584 	uint64_t val = 0;
1585 	char c;
1586 	int digit;
1587 
1588 	while ((c = *str) != '\0') {
1589 		if (c >= '0' && c <= '9')
1590 			digit = c - '0';
1591 		else if (c >= 'a' && c <= 'f')
1592 			digit = 10 + c - 'a';
1593 		else
1594 			break;
1595 
1596 		val *= 16;
1597 		val += digit;
1598 
1599 		str++;
1600 	}
1601 
1602 	if (nptr)
1603 		*nptr = (char *)str;
1604 
1605 	return (val);
1606 }
1607 
1608 void
1609 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1610 {
1611 	/*
1612 	 * We bump the feature refcount for each special vdev added to the pool
1613 	 */
1614 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1615 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1616 }
1617 
1618 /*
1619  * ==========================================================================
1620  * Accessor functions
1621  * ==========================================================================
1622  */
1623 
1624 boolean_t
1625 spa_shutting_down(spa_t *spa)
1626 {
1627 	return (spa->spa_async_suspended);
1628 }
1629 
1630 dsl_pool_t *
1631 spa_get_dsl(spa_t *spa)
1632 {
1633 	return (spa->spa_dsl_pool);
1634 }
1635 
1636 boolean_t
1637 spa_is_initializing(spa_t *spa)
1638 {
1639 	return (spa->spa_is_initializing);
1640 }
1641 
1642 boolean_t
1643 spa_indirect_vdevs_loaded(spa_t *spa)
1644 {
1645 	return (spa->spa_indirect_vdevs_loaded);
1646 }
1647 
1648 blkptr_t *
1649 spa_get_rootblkptr(spa_t *spa)
1650 {
1651 	return (&spa->spa_ubsync.ub_rootbp);
1652 }
1653 
1654 void
1655 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1656 {
1657 	spa->spa_uberblock.ub_rootbp = *bp;
1658 }
1659 
1660 void
1661 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1662 {
1663 	if (spa->spa_root == NULL)
1664 		buf[0] = '\0';
1665 	else
1666 		(void) strncpy(buf, spa->spa_root, buflen);
1667 }
1668 
1669 int
1670 spa_sync_pass(spa_t *spa)
1671 {
1672 	return (spa->spa_sync_pass);
1673 }
1674 
1675 char *
1676 spa_name(spa_t *spa)
1677 {
1678 	return (spa->spa_name);
1679 }
1680 
1681 uint64_t
1682 spa_guid(spa_t *spa)
1683 {
1684 	dsl_pool_t *dp = spa_get_dsl(spa);
1685 	uint64_t guid;
1686 
1687 	/*
1688 	 * If we fail to parse the config during spa_load(), we can go through
1689 	 * the error path (which posts an ereport) and end up here with no root
1690 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1691 	 * this case.
1692 	 */
1693 	if (spa->spa_root_vdev == NULL)
1694 		return (spa->spa_config_guid);
1695 
1696 	guid = spa->spa_last_synced_guid != 0 ?
1697 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1698 
1699 	/*
1700 	 * Return the most recently synced out guid unless we're
1701 	 * in syncing context.
1702 	 */
1703 	if (dp && dsl_pool_sync_context(dp))
1704 		return (spa->spa_root_vdev->vdev_guid);
1705 	else
1706 		return (guid);
1707 }
1708 
1709 uint64_t
1710 spa_load_guid(spa_t *spa)
1711 {
1712 	/*
1713 	 * This is a GUID that exists solely as a reference for the
1714 	 * purposes of the arc.  It is generated at load time, and
1715 	 * is never written to persistent storage.
1716 	 */
1717 	return (spa->spa_load_guid);
1718 }
1719 
1720 uint64_t
1721 spa_last_synced_txg(spa_t *spa)
1722 {
1723 	return (spa->spa_ubsync.ub_txg);
1724 }
1725 
1726 uint64_t
1727 spa_first_txg(spa_t *spa)
1728 {
1729 	return (spa->spa_first_txg);
1730 }
1731 
1732 uint64_t
1733 spa_syncing_txg(spa_t *spa)
1734 {
1735 	return (spa->spa_syncing_txg);
1736 }
1737 
1738 /*
1739  * Return the last txg where data can be dirtied. The final txgs
1740  * will be used to just clear out any deferred frees that remain.
1741  */
1742 uint64_t
1743 spa_final_dirty_txg(spa_t *spa)
1744 {
1745 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1746 }
1747 
1748 pool_state_t
1749 spa_state(spa_t *spa)
1750 {
1751 	return (spa->spa_state);
1752 }
1753 
1754 spa_load_state_t
1755 spa_load_state(spa_t *spa)
1756 {
1757 	return (spa->spa_load_state);
1758 }
1759 
1760 uint64_t
1761 spa_freeze_txg(spa_t *spa)
1762 {
1763 	return (spa->spa_freeze_txg);
1764 }
1765 
1766 /*
1767  * Return the inflated asize for a logical write in bytes. This is used by the
1768  * DMU to calculate the space a logical write will require on disk.
1769  * If lsize is smaller than the largest physical block size allocatable on this
1770  * pool we use its value instead, since the write will end up using the whole
1771  * block anyway.
1772  */
1773 uint64_t
1774 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1775 {
1776 	if (lsize == 0)
1777 		return (0);	/* No inflation needed */
1778 	return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1779 }
1780 
1781 /*
1782  * Return the amount of slop space in bytes.  It is typically 1/32 of the pool
1783  * (3.2%), minus the embedded log space.  On very small pools, it may be
1784  * slightly larger than this. The embedded log space is not included in
1785  * spa_dspace.  By subtracting it, the usable space (per "zfs list") is a
1786  * constant 97% of the total space, regardless of metaslab size (assuming the
1787  * default spa_slop_shift=5 and a non-tiny pool).
1788  *
1789  * See the comment above spa_slop_shift for more details.
1790  */
1791 uint64_t
1792 spa_get_slop_space(spa_t *spa)
1793 {
1794 	uint64_t space = spa_get_dspace(spa);
1795 	uint64_t slop = space >> spa_slop_shift;
1796 
1797 	/*
1798 	 * Subtract the embedded log space, but no more than half the (3.2%)
1799 	 * unusable space.  Note, the "no more than half" is only relevant if
1800 	 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1801 	 * default.
1802 	 */
1803 	uint64_t embedded_log =
1804 	    metaslab_class_get_dspace(spa_embedded_log_class(spa));
1805 	slop -= MIN(embedded_log, slop >> 1);
1806 
1807 	/*
1808 	 * Slop space should be at least spa_min_slop, but no more than half
1809 	 * the entire pool.
1810 	 */
1811 	slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1812 	return (slop);
1813 }
1814 
1815 uint64_t
1816 spa_get_dspace(spa_t *spa)
1817 {
1818 	return (spa->spa_dspace);
1819 }
1820 
1821 uint64_t
1822 spa_get_checkpoint_space(spa_t *spa)
1823 {
1824 	return (spa->spa_checkpoint_info.sci_dspace);
1825 }
1826 
1827 void
1828 spa_update_dspace(spa_t *spa)
1829 {
1830 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1831 	    ddt_get_dedup_dspace(spa);
1832 	if (spa->spa_vdev_removal != NULL) {
1833 		/*
1834 		 * We can't allocate from the removing device, so subtract
1835 		 * its size if it was included in dspace (i.e. if this is a
1836 		 * normal-class vdev, not special/dedup).  This prevents the
1837 		 * DMU/DSL from filling up the (now smaller) pool while we
1838 		 * are in the middle of removing the device.
1839 		 *
1840 		 * Note that the DMU/DSL doesn't actually know or care
1841 		 * how much space is allocated (it does its own tracking
1842 		 * of how much space has been logically used).  So it
1843 		 * doesn't matter that the data we are moving may be
1844 		 * allocated twice (on the old device and the new
1845 		 * device).
1846 		 */
1847 		spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1848 		vdev_t *vd =
1849 		    vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1850 		if (vd->vdev_mg->mg_class == spa_normal_class(spa)) {
1851 			spa->spa_dspace -= spa_deflate(spa) ?
1852 			    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1853 		}
1854 		spa_config_exit(spa, SCL_VDEV, FTAG);
1855 	}
1856 }
1857 
1858 /*
1859  * Return the failure mode that has been set to this pool. The default
1860  * behavior will be to block all I/Os when a complete failure occurs.
1861  */
1862 uint64_t
1863 spa_get_failmode(spa_t *spa)
1864 {
1865 	return (spa->spa_failmode);
1866 }
1867 
1868 boolean_t
1869 spa_suspended(spa_t *spa)
1870 {
1871 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1872 }
1873 
1874 uint64_t
1875 spa_version(spa_t *spa)
1876 {
1877 	return (spa->spa_ubsync.ub_version);
1878 }
1879 
1880 boolean_t
1881 spa_deflate(spa_t *spa)
1882 {
1883 	return (spa->spa_deflate);
1884 }
1885 
1886 metaslab_class_t *
1887 spa_normal_class(spa_t *spa)
1888 {
1889 	return (spa->spa_normal_class);
1890 }
1891 
1892 metaslab_class_t *
1893 spa_log_class(spa_t *spa)
1894 {
1895 	return (spa->spa_log_class);
1896 }
1897 
1898 metaslab_class_t *
1899 spa_embedded_log_class(spa_t *spa)
1900 {
1901 	return (spa->spa_embedded_log_class);
1902 }
1903 
1904 metaslab_class_t *
1905 spa_special_class(spa_t *spa)
1906 {
1907 	return (spa->spa_special_class);
1908 }
1909 
1910 metaslab_class_t *
1911 spa_dedup_class(spa_t *spa)
1912 {
1913 	return (spa->spa_dedup_class);
1914 }
1915 
1916 /*
1917  * Locate an appropriate allocation class
1918  */
1919 metaslab_class_t *
1920 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1921     uint_t level, uint_t special_smallblk)
1922 {
1923 	/*
1924 	 * ZIL allocations determine their class in zio_alloc_zil().
1925 	 */
1926 	ASSERT(objtype != DMU_OT_INTENT_LOG);
1927 
1928 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1929 
1930 	if (DMU_OT_IS_DDT(objtype)) {
1931 		if (spa->spa_dedup_class->mc_groups != 0)
1932 			return (spa_dedup_class(spa));
1933 		else if (has_special_class && zfs_ddt_data_is_special)
1934 			return (spa_special_class(spa));
1935 		else
1936 			return (spa_normal_class(spa));
1937 	}
1938 
1939 	/* Indirect blocks for user data can land in special if allowed */
1940 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1941 		if (has_special_class && zfs_user_indirect_is_special)
1942 			return (spa_special_class(spa));
1943 		else
1944 			return (spa_normal_class(spa));
1945 	}
1946 
1947 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1948 		if (has_special_class)
1949 			return (spa_special_class(spa));
1950 		else
1951 			return (spa_normal_class(spa));
1952 	}
1953 
1954 	/*
1955 	 * Allow small file blocks in special class in some cases (like
1956 	 * for the dRAID vdev feature). But always leave a reserve of
1957 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1958 	 */
1959 	if (DMU_OT_IS_FILE(objtype) &&
1960 	    has_special_class && size <= special_smallblk) {
1961 		metaslab_class_t *special = spa_special_class(spa);
1962 		uint64_t alloc = metaslab_class_get_alloc(special);
1963 		uint64_t space = metaslab_class_get_space(special);
1964 		uint64_t limit =
1965 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
1966 		    / 100;
1967 
1968 		if (alloc < limit)
1969 			return (special);
1970 	}
1971 
1972 	return (spa_normal_class(spa));
1973 }
1974 
1975 void
1976 spa_evicting_os_register(spa_t *spa, objset_t *os)
1977 {
1978 	mutex_enter(&spa->spa_evicting_os_lock);
1979 	list_insert_head(&spa->spa_evicting_os_list, os);
1980 	mutex_exit(&spa->spa_evicting_os_lock);
1981 }
1982 
1983 void
1984 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1985 {
1986 	mutex_enter(&spa->spa_evicting_os_lock);
1987 	list_remove(&spa->spa_evicting_os_list, os);
1988 	cv_broadcast(&spa->spa_evicting_os_cv);
1989 	mutex_exit(&spa->spa_evicting_os_lock);
1990 }
1991 
1992 void
1993 spa_evicting_os_wait(spa_t *spa)
1994 {
1995 	mutex_enter(&spa->spa_evicting_os_lock);
1996 	while (!list_is_empty(&spa->spa_evicting_os_list))
1997 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1998 	mutex_exit(&spa->spa_evicting_os_lock);
1999 
2000 	dmu_buf_user_evict_wait();
2001 }
2002 
2003 int
2004 spa_max_replication(spa_t *spa)
2005 {
2006 	/*
2007 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2008 	 * handle BPs with more than one DVA allocated.  Set our max
2009 	 * replication level accordingly.
2010 	 */
2011 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2012 		return (1);
2013 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2014 }
2015 
2016 int
2017 spa_prev_software_version(spa_t *spa)
2018 {
2019 	return (spa->spa_prev_software_version);
2020 }
2021 
2022 uint64_t
2023 spa_deadman_synctime(spa_t *spa)
2024 {
2025 	return (spa->spa_deadman_synctime);
2026 }
2027 
2028 spa_autotrim_t
2029 spa_get_autotrim(spa_t *spa)
2030 {
2031 	return (spa->spa_autotrim);
2032 }
2033 
2034 uint64_t
2035 spa_deadman_ziotime(spa_t *spa)
2036 {
2037 	return (spa->spa_deadman_ziotime);
2038 }
2039 
2040 uint64_t
2041 spa_get_deadman_failmode(spa_t *spa)
2042 {
2043 	return (spa->spa_deadman_failmode);
2044 }
2045 
2046 void
2047 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2048 {
2049 	if (strcmp(failmode, "wait") == 0)
2050 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2051 	else if (strcmp(failmode, "continue") == 0)
2052 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2053 	else if (strcmp(failmode, "panic") == 0)
2054 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2055 	else
2056 		spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2057 }
2058 
2059 void
2060 spa_set_deadman_ziotime(hrtime_t ns)
2061 {
2062 	spa_t *spa = NULL;
2063 
2064 	if (spa_mode_global != SPA_MODE_UNINIT) {
2065 		mutex_enter(&spa_namespace_lock);
2066 		while ((spa = spa_next(spa)) != NULL)
2067 			spa->spa_deadman_ziotime = ns;
2068 		mutex_exit(&spa_namespace_lock);
2069 	}
2070 }
2071 
2072 void
2073 spa_set_deadman_synctime(hrtime_t ns)
2074 {
2075 	spa_t *spa = NULL;
2076 
2077 	if (spa_mode_global != SPA_MODE_UNINIT) {
2078 		mutex_enter(&spa_namespace_lock);
2079 		while ((spa = spa_next(spa)) != NULL)
2080 			spa->spa_deadman_synctime = ns;
2081 		mutex_exit(&spa_namespace_lock);
2082 	}
2083 }
2084 
2085 uint64_t
2086 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2087 {
2088 	uint64_t asize = DVA_GET_ASIZE(dva);
2089 	uint64_t dsize = asize;
2090 
2091 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2092 
2093 	if (asize != 0 && spa->spa_deflate) {
2094 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2095 		if (vd != NULL)
2096 			dsize = (asize >> SPA_MINBLOCKSHIFT) *
2097 			    vd->vdev_deflate_ratio;
2098 	}
2099 
2100 	return (dsize);
2101 }
2102 
2103 uint64_t
2104 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2105 {
2106 	uint64_t dsize = 0;
2107 
2108 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2109 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2110 
2111 	return (dsize);
2112 }
2113 
2114 uint64_t
2115 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2116 {
2117 	uint64_t dsize = 0;
2118 
2119 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2120 
2121 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2122 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2123 
2124 	spa_config_exit(spa, SCL_VDEV, FTAG);
2125 
2126 	return (dsize);
2127 }
2128 
2129 uint64_t
2130 spa_dirty_data(spa_t *spa)
2131 {
2132 	return (spa->spa_dsl_pool->dp_dirty_total);
2133 }
2134 
2135 /*
2136  * ==========================================================================
2137  * SPA Import Progress Routines
2138  * ==========================================================================
2139  */
2140 
2141 typedef struct spa_import_progress {
2142 	uint64_t		pool_guid;	/* unique id for updates */
2143 	char			*pool_name;
2144 	spa_load_state_t	spa_load_state;
2145 	uint64_t		mmp_sec_remaining;	/* MMP activity check */
2146 	uint64_t		spa_load_max_txg;	/* rewind txg */
2147 	procfs_list_node_t	smh_node;
2148 } spa_import_progress_t;
2149 
2150 spa_history_list_t *spa_import_progress_list = NULL;
2151 
2152 static int
2153 spa_import_progress_show_header(struct seq_file *f)
2154 {
2155 	seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2156 	    "load_state", "multihost_secs", "max_txg",
2157 	    "pool_name");
2158 	return (0);
2159 }
2160 
2161 static int
2162 spa_import_progress_show(struct seq_file *f, void *data)
2163 {
2164 	spa_import_progress_t *sip = (spa_import_progress_t *)data;
2165 
2166 	seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2167 	    (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2168 	    (u_longlong_t)sip->mmp_sec_remaining,
2169 	    (u_longlong_t)sip->spa_load_max_txg,
2170 	    (sip->pool_name ? sip->pool_name : "-"));
2171 
2172 	return (0);
2173 }
2174 
2175 /* Remove oldest elements from list until there are no more than 'size' left */
2176 static void
2177 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2178 {
2179 	spa_import_progress_t *sip;
2180 	while (shl->size > size) {
2181 		sip = list_remove_head(&shl->procfs_list.pl_list);
2182 		if (sip->pool_name)
2183 			spa_strfree(sip->pool_name);
2184 		kmem_free(sip, sizeof (spa_import_progress_t));
2185 		shl->size--;
2186 	}
2187 
2188 	IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2189 }
2190 
2191 static void
2192 spa_import_progress_init(void)
2193 {
2194 	spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2195 	    KM_SLEEP);
2196 
2197 	spa_import_progress_list->size = 0;
2198 
2199 	spa_import_progress_list->procfs_list.pl_private =
2200 	    spa_import_progress_list;
2201 
2202 	procfs_list_install("zfs",
2203 	    NULL,
2204 	    "import_progress",
2205 	    0644,
2206 	    &spa_import_progress_list->procfs_list,
2207 	    spa_import_progress_show,
2208 	    spa_import_progress_show_header,
2209 	    NULL,
2210 	    offsetof(spa_import_progress_t, smh_node));
2211 }
2212 
2213 static void
2214 spa_import_progress_destroy(void)
2215 {
2216 	spa_history_list_t *shl = spa_import_progress_list;
2217 	procfs_list_uninstall(&shl->procfs_list);
2218 	spa_import_progress_truncate(shl, 0);
2219 	procfs_list_destroy(&shl->procfs_list);
2220 	kmem_free(shl, sizeof (spa_history_list_t));
2221 }
2222 
2223 int
2224 spa_import_progress_set_state(uint64_t pool_guid,
2225     spa_load_state_t load_state)
2226 {
2227 	spa_history_list_t *shl = spa_import_progress_list;
2228 	spa_import_progress_t *sip;
2229 	int error = ENOENT;
2230 
2231 	if (shl->size == 0)
2232 		return (0);
2233 
2234 	mutex_enter(&shl->procfs_list.pl_lock);
2235 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2236 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2237 		if (sip->pool_guid == pool_guid) {
2238 			sip->spa_load_state = load_state;
2239 			error = 0;
2240 			break;
2241 		}
2242 	}
2243 	mutex_exit(&shl->procfs_list.pl_lock);
2244 
2245 	return (error);
2246 }
2247 
2248 int
2249 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2250 {
2251 	spa_history_list_t *shl = spa_import_progress_list;
2252 	spa_import_progress_t *sip;
2253 	int error = ENOENT;
2254 
2255 	if (shl->size == 0)
2256 		return (0);
2257 
2258 	mutex_enter(&shl->procfs_list.pl_lock);
2259 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2260 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2261 		if (sip->pool_guid == pool_guid) {
2262 			sip->spa_load_max_txg = load_max_txg;
2263 			error = 0;
2264 			break;
2265 		}
2266 	}
2267 	mutex_exit(&shl->procfs_list.pl_lock);
2268 
2269 	return (error);
2270 }
2271 
2272 int
2273 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2274     uint64_t mmp_sec_remaining)
2275 {
2276 	spa_history_list_t *shl = spa_import_progress_list;
2277 	spa_import_progress_t *sip;
2278 	int error = ENOENT;
2279 
2280 	if (shl->size == 0)
2281 		return (0);
2282 
2283 	mutex_enter(&shl->procfs_list.pl_lock);
2284 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2285 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2286 		if (sip->pool_guid == pool_guid) {
2287 			sip->mmp_sec_remaining = mmp_sec_remaining;
2288 			error = 0;
2289 			break;
2290 		}
2291 	}
2292 	mutex_exit(&shl->procfs_list.pl_lock);
2293 
2294 	return (error);
2295 }
2296 
2297 /*
2298  * A new import is in progress, add an entry.
2299  */
2300 void
2301 spa_import_progress_add(spa_t *spa)
2302 {
2303 	spa_history_list_t *shl = spa_import_progress_list;
2304 	spa_import_progress_t *sip;
2305 	char *poolname = NULL;
2306 
2307 	sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2308 	sip->pool_guid = spa_guid(spa);
2309 
2310 	(void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2311 	    &poolname);
2312 	if (poolname == NULL)
2313 		poolname = spa_name(spa);
2314 	sip->pool_name = spa_strdup(poolname);
2315 	sip->spa_load_state = spa_load_state(spa);
2316 
2317 	mutex_enter(&shl->procfs_list.pl_lock);
2318 	procfs_list_add(&shl->procfs_list, sip);
2319 	shl->size++;
2320 	mutex_exit(&shl->procfs_list.pl_lock);
2321 }
2322 
2323 void
2324 spa_import_progress_remove(uint64_t pool_guid)
2325 {
2326 	spa_history_list_t *shl = spa_import_progress_list;
2327 	spa_import_progress_t *sip;
2328 
2329 	mutex_enter(&shl->procfs_list.pl_lock);
2330 	for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2331 	    sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2332 		if (sip->pool_guid == pool_guid) {
2333 			if (sip->pool_name)
2334 				spa_strfree(sip->pool_name);
2335 			list_remove(&shl->procfs_list.pl_list, sip);
2336 			shl->size--;
2337 			kmem_free(sip, sizeof (spa_import_progress_t));
2338 			break;
2339 		}
2340 	}
2341 	mutex_exit(&shl->procfs_list.pl_lock);
2342 }
2343 
2344 /*
2345  * ==========================================================================
2346  * Initialization and Termination
2347  * ==========================================================================
2348  */
2349 
2350 static int
2351 spa_name_compare(const void *a1, const void *a2)
2352 {
2353 	const spa_t *s1 = a1;
2354 	const spa_t *s2 = a2;
2355 	int s;
2356 
2357 	s = strcmp(s1->spa_name, s2->spa_name);
2358 
2359 	return (TREE_ISIGN(s));
2360 }
2361 
2362 void
2363 spa_boot_init(void)
2364 {
2365 	spa_config_load();
2366 }
2367 
2368 void
2369 spa_init(spa_mode_t mode)
2370 {
2371 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2372 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2373 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2374 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2375 
2376 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2377 	    offsetof(spa_t, spa_avl));
2378 
2379 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2380 	    offsetof(spa_aux_t, aux_avl));
2381 
2382 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2383 	    offsetof(spa_aux_t, aux_avl));
2384 
2385 	spa_mode_global = mode;
2386 
2387 #ifndef _KERNEL
2388 	if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2389 		struct sigaction sa;
2390 
2391 		sa.sa_flags = SA_SIGINFO;
2392 		sigemptyset(&sa.sa_mask);
2393 		sa.sa_sigaction = arc_buf_sigsegv;
2394 
2395 		if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2396 			perror("could not enable watchpoints: "
2397 			    "sigaction(SIGSEGV, ...) = ");
2398 		} else {
2399 			arc_watch = B_TRUE;
2400 		}
2401 	}
2402 #endif
2403 
2404 	fm_init();
2405 	zfs_refcount_init();
2406 	unique_init();
2407 	zfs_btree_init();
2408 	metaslab_stat_init();
2409 	ddt_init();
2410 	zio_init();
2411 	dmu_init();
2412 	zil_init();
2413 	vdev_cache_stat_init();
2414 	vdev_mirror_stat_init();
2415 	vdev_raidz_math_init();
2416 	vdev_file_init();
2417 	zfs_prop_init();
2418 	zpool_prop_init();
2419 	zpool_feature_init();
2420 	spa_config_load();
2421 	l2arc_start();
2422 	scan_init();
2423 	qat_init();
2424 	spa_import_progress_init();
2425 }
2426 
2427 void
2428 spa_fini(void)
2429 {
2430 	l2arc_stop();
2431 
2432 	spa_evict_all();
2433 
2434 	vdev_file_fini();
2435 	vdev_cache_stat_fini();
2436 	vdev_mirror_stat_fini();
2437 	vdev_raidz_math_fini();
2438 	zil_fini();
2439 	dmu_fini();
2440 	zio_fini();
2441 	ddt_fini();
2442 	metaslab_stat_fini();
2443 	zfs_btree_fini();
2444 	unique_fini();
2445 	zfs_refcount_fini();
2446 	fm_fini();
2447 	scan_fini();
2448 	qat_fini();
2449 	spa_import_progress_destroy();
2450 
2451 	avl_destroy(&spa_namespace_avl);
2452 	avl_destroy(&spa_spare_avl);
2453 	avl_destroy(&spa_l2cache_avl);
2454 
2455 	cv_destroy(&spa_namespace_cv);
2456 	mutex_destroy(&spa_namespace_lock);
2457 	mutex_destroy(&spa_spare_lock);
2458 	mutex_destroy(&spa_l2cache_lock);
2459 }
2460 
2461 /*
2462  * Return whether this pool has a dedicated slog device. No locking needed.
2463  * It's not a problem if the wrong answer is returned as it's only for
2464  * performance and not correctness.
2465  */
2466 boolean_t
2467 spa_has_slogs(spa_t *spa)
2468 {
2469 	return (spa->spa_log_class->mc_groups != 0);
2470 }
2471 
2472 spa_log_state_t
2473 spa_get_log_state(spa_t *spa)
2474 {
2475 	return (spa->spa_log_state);
2476 }
2477 
2478 void
2479 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2480 {
2481 	spa->spa_log_state = state;
2482 }
2483 
2484 boolean_t
2485 spa_is_root(spa_t *spa)
2486 {
2487 	return (spa->spa_is_root);
2488 }
2489 
2490 boolean_t
2491 spa_writeable(spa_t *spa)
2492 {
2493 	return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2494 }
2495 
2496 /*
2497  * Returns true if there is a pending sync task in any of the current
2498  * syncing txg, the current quiescing txg, or the current open txg.
2499  */
2500 boolean_t
2501 spa_has_pending_synctask(spa_t *spa)
2502 {
2503 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2504 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2505 }
2506 
2507 spa_mode_t
2508 spa_mode(spa_t *spa)
2509 {
2510 	return (spa->spa_mode);
2511 }
2512 
2513 uint64_t
2514 spa_bootfs(spa_t *spa)
2515 {
2516 	return (spa->spa_bootfs);
2517 }
2518 
2519 uint64_t
2520 spa_delegation(spa_t *spa)
2521 {
2522 	return (spa->spa_delegation);
2523 }
2524 
2525 objset_t *
2526 spa_meta_objset(spa_t *spa)
2527 {
2528 	return (spa->spa_meta_objset);
2529 }
2530 
2531 enum zio_checksum
2532 spa_dedup_checksum(spa_t *spa)
2533 {
2534 	return (spa->spa_dedup_checksum);
2535 }
2536 
2537 /*
2538  * Reset pool scan stat per scan pass (or reboot).
2539  */
2540 void
2541 spa_scan_stat_init(spa_t *spa)
2542 {
2543 	/* data not stored on disk */
2544 	spa->spa_scan_pass_start = gethrestime_sec();
2545 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2546 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2547 	else
2548 		spa->spa_scan_pass_scrub_pause = 0;
2549 	spa->spa_scan_pass_scrub_spent_paused = 0;
2550 	spa->spa_scan_pass_exam = 0;
2551 	spa->spa_scan_pass_issued = 0;
2552 	vdev_scan_stat_init(spa->spa_root_vdev);
2553 }
2554 
2555 /*
2556  * Get scan stats for zpool status reports
2557  */
2558 int
2559 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2560 {
2561 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2562 
2563 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2564 		return (SET_ERROR(ENOENT));
2565 	bzero(ps, sizeof (pool_scan_stat_t));
2566 
2567 	/* data stored on disk */
2568 	ps->pss_func = scn->scn_phys.scn_func;
2569 	ps->pss_state = scn->scn_phys.scn_state;
2570 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2571 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2572 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2573 	ps->pss_examined = scn->scn_phys.scn_examined;
2574 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2575 	ps->pss_processed = scn->scn_phys.scn_processed;
2576 	ps->pss_errors = scn->scn_phys.scn_errors;
2577 
2578 	/* data not stored on disk */
2579 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2580 	ps->pss_pass_start = spa->spa_scan_pass_start;
2581 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2582 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2583 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2584 	ps->pss_issued =
2585 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2586 
2587 	return (0);
2588 }
2589 
2590 int
2591 spa_maxblocksize(spa_t *spa)
2592 {
2593 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2594 		return (SPA_MAXBLOCKSIZE);
2595 	else
2596 		return (SPA_OLD_MAXBLOCKSIZE);
2597 }
2598 
2599 
2600 /*
2601  * Returns the txg that the last device removal completed. No indirect mappings
2602  * have been added since this txg.
2603  */
2604 uint64_t
2605 spa_get_last_removal_txg(spa_t *spa)
2606 {
2607 	uint64_t vdevid;
2608 	uint64_t ret = -1ULL;
2609 
2610 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2611 	/*
2612 	 * sr_prev_indirect_vdev is only modified while holding all the
2613 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2614 	 * examining it.
2615 	 */
2616 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2617 
2618 	while (vdevid != -1ULL) {
2619 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2620 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2621 
2622 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2623 
2624 		/*
2625 		 * If the removal did not remap any data, we don't care.
2626 		 */
2627 		if (vdev_indirect_births_count(vib) != 0) {
2628 			ret = vdev_indirect_births_last_entry_txg(vib);
2629 			break;
2630 		}
2631 
2632 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2633 	}
2634 	spa_config_exit(spa, SCL_VDEV, FTAG);
2635 
2636 	IMPLY(ret != -1ULL,
2637 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2638 
2639 	return (ret);
2640 }
2641 
2642 int
2643 spa_maxdnodesize(spa_t *spa)
2644 {
2645 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2646 		return (DNODE_MAX_SIZE);
2647 	else
2648 		return (DNODE_MIN_SIZE);
2649 }
2650 
2651 boolean_t
2652 spa_multihost(spa_t *spa)
2653 {
2654 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2655 }
2656 
2657 uint32_t
2658 spa_get_hostid(spa_t *spa)
2659 {
2660 	return (spa->spa_hostid);
2661 }
2662 
2663 boolean_t
2664 spa_trust_config(spa_t *spa)
2665 {
2666 	return (spa->spa_trust_config);
2667 }
2668 
2669 uint64_t
2670 spa_missing_tvds_allowed(spa_t *spa)
2671 {
2672 	return (spa->spa_missing_tvds_allowed);
2673 }
2674 
2675 space_map_t *
2676 spa_syncing_log_sm(spa_t *spa)
2677 {
2678 	return (spa->spa_syncing_log_sm);
2679 }
2680 
2681 void
2682 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2683 {
2684 	spa->spa_missing_tvds = missing;
2685 }
2686 
2687 /*
2688  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2689  */
2690 const char *
2691 spa_state_to_name(spa_t *spa)
2692 {
2693 	ASSERT3P(spa, !=, NULL);
2694 
2695 	/*
2696 	 * it is possible for the spa to exist, without root vdev
2697 	 * as the spa transitions during import/export
2698 	 */
2699 	vdev_t *rvd = spa->spa_root_vdev;
2700 	if (rvd == NULL) {
2701 		return ("TRANSITIONING");
2702 	}
2703 	vdev_state_t state = rvd->vdev_state;
2704 	vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2705 
2706 	if (spa_suspended(spa) &&
2707 	    (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2708 		return ("SUSPENDED");
2709 
2710 	switch (state) {
2711 	case VDEV_STATE_CLOSED:
2712 	case VDEV_STATE_OFFLINE:
2713 		return ("OFFLINE");
2714 	case VDEV_STATE_REMOVED:
2715 		return ("REMOVED");
2716 	case VDEV_STATE_CANT_OPEN:
2717 		if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2718 			return ("FAULTED");
2719 		else if (aux == VDEV_AUX_SPLIT_POOL)
2720 			return ("SPLIT");
2721 		else
2722 			return ("UNAVAIL");
2723 	case VDEV_STATE_FAULTED:
2724 		return ("FAULTED");
2725 	case VDEV_STATE_DEGRADED:
2726 		return ("DEGRADED");
2727 	case VDEV_STATE_HEALTHY:
2728 		return ("ONLINE");
2729 	default:
2730 		break;
2731 	}
2732 
2733 	return ("UNKNOWN");
2734 }
2735 
2736 boolean_t
2737 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2738 {
2739 	vdev_t *rvd = spa->spa_root_vdev;
2740 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2741 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2742 			return (B_FALSE);
2743 	}
2744 	return (B_TRUE);
2745 }
2746 
2747 boolean_t
2748 spa_has_checkpoint(spa_t *spa)
2749 {
2750 	return (spa->spa_checkpoint_txg != 0);
2751 }
2752 
2753 boolean_t
2754 spa_importing_readonly_checkpoint(spa_t *spa)
2755 {
2756 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2757 	    spa->spa_mode == SPA_MODE_READ);
2758 }
2759 
2760 uint64_t
2761 spa_min_claim_txg(spa_t *spa)
2762 {
2763 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2764 
2765 	if (checkpoint_txg != 0)
2766 		return (checkpoint_txg + 1);
2767 
2768 	return (spa->spa_first_txg);
2769 }
2770 
2771 /*
2772  * If there is a checkpoint, async destroys may consume more space from
2773  * the pool instead of freeing it. In an attempt to save the pool from
2774  * getting suspended when it is about to run out of space, we stop
2775  * processing async destroys.
2776  */
2777 boolean_t
2778 spa_suspend_async_destroy(spa_t *spa)
2779 {
2780 	dsl_pool_t *dp = spa_get_dsl(spa);
2781 
2782 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2783 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2784 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2785 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2786 
2787 	if (spa_has_checkpoint(spa) && avail == 0)
2788 		return (B_TRUE);
2789 
2790 	return (B_FALSE);
2791 }
2792 
2793 #if defined(_KERNEL)
2794 
2795 int
2796 param_set_deadman_failmode_common(const char *val)
2797 {
2798 	spa_t *spa = NULL;
2799 	char *p;
2800 
2801 	if (val == NULL)
2802 		return (SET_ERROR(EINVAL));
2803 
2804 	if ((p = strchr(val, '\n')) != NULL)
2805 		*p = '\0';
2806 
2807 	if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2808 	    strcmp(val, "panic"))
2809 		return (SET_ERROR(EINVAL));
2810 
2811 	if (spa_mode_global != SPA_MODE_UNINIT) {
2812 		mutex_enter(&spa_namespace_lock);
2813 		while ((spa = spa_next(spa)) != NULL)
2814 			spa_set_deadman_failmode(spa, val);
2815 		mutex_exit(&spa_namespace_lock);
2816 	}
2817 
2818 	return (0);
2819 }
2820 #endif
2821 
2822 /* Namespace manipulation */
2823 EXPORT_SYMBOL(spa_lookup);
2824 EXPORT_SYMBOL(spa_add);
2825 EXPORT_SYMBOL(spa_remove);
2826 EXPORT_SYMBOL(spa_next);
2827 
2828 /* Refcount functions */
2829 EXPORT_SYMBOL(spa_open_ref);
2830 EXPORT_SYMBOL(spa_close);
2831 EXPORT_SYMBOL(spa_refcount_zero);
2832 
2833 /* Pool configuration lock */
2834 EXPORT_SYMBOL(spa_config_tryenter);
2835 EXPORT_SYMBOL(spa_config_enter);
2836 EXPORT_SYMBOL(spa_config_exit);
2837 EXPORT_SYMBOL(spa_config_held);
2838 
2839 /* Pool vdev add/remove lock */
2840 EXPORT_SYMBOL(spa_vdev_enter);
2841 EXPORT_SYMBOL(spa_vdev_exit);
2842 
2843 /* Pool vdev state change lock */
2844 EXPORT_SYMBOL(spa_vdev_state_enter);
2845 EXPORT_SYMBOL(spa_vdev_state_exit);
2846 
2847 /* Accessor functions */
2848 EXPORT_SYMBOL(spa_shutting_down);
2849 EXPORT_SYMBOL(spa_get_dsl);
2850 EXPORT_SYMBOL(spa_get_rootblkptr);
2851 EXPORT_SYMBOL(spa_set_rootblkptr);
2852 EXPORT_SYMBOL(spa_altroot);
2853 EXPORT_SYMBOL(spa_sync_pass);
2854 EXPORT_SYMBOL(spa_name);
2855 EXPORT_SYMBOL(spa_guid);
2856 EXPORT_SYMBOL(spa_last_synced_txg);
2857 EXPORT_SYMBOL(spa_first_txg);
2858 EXPORT_SYMBOL(spa_syncing_txg);
2859 EXPORT_SYMBOL(spa_version);
2860 EXPORT_SYMBOL(spa_state);
2861 EXPORT_SYMBOL(spa_load_state);
2862 EXPORT_SYMBOL(spa_freeze_txg);
2863 EXPORT_SYMBOL(spa_get_dspace);
2864 EXPORT_SYMBOL(spa_update_dspace);
2865 EXPORT_SYMBOL(spa_deflate);
2866 EXPORT_SYMBOL(spa_normal_class);
2867 EXPORT_SYMBOL(spa_log_class);
2868 EXPORT_SYMBOL(spa_special_class);
2869 EXPORT_SYMBOL(spa_preferred_class);
2870 EXPORT_SYMBOL(spa_max_replication);
2871 EXPORT_SYMBOL(spa_prev_software_version);
2872 EXPORT_SYMBOL(spa_get_failmode);
2873 EXPORT_SYMBOL(spa_suspended);
2874 EXPORT_SYMBOL(spa_bootfs);
2875 EXPORT_SYMBOL(spa_delegation);
2876 EXPORT_SYMBOL(spa_meta_objset);
2877 EXPORT_SYMBOL(spa_maxblocksize);
2878 EXPORT_SYMBOL(spa_maxdnodesize);
2879 
2880 /* Miscellaneous support routines */
2881 EXPORT_SYMBOL(spa_guid_exists);
2882 EXPORT_SYMBOL(spa_strdup);
2883 EXPORT_SYMBOL(spa_strfree);
2884 EXPORT_SYMBOL(spa_get_random);
2885 EXPORT_SYMBOL(spa_generate_guid);
2886 EXPORT_SYMBOL(snprintf_blkptr);
2887 EXPORT_SYMBOL(spa_freeze);
2888 EXPORT_SYMBOL(spa_upgrade);
2889 EXPORT_SYMBOL(spa_evict_all);
2890 EXPORT_SYMBOL(spa_lookup_by_guid);
2891 EXPORT_SYMBOL(spa_has_spare);
2892 EXPORT_SYMBOL(dva_get_dsize_sync);
2893 EXPORT_SYMBOL(bp_get_dsize_sync);
2894 EXPORT_SYMBOL(bp_get_dsize);
2895 EXPORT_SYMBOL(spa_has_slogs);
2896 EXPORT_SYMBOL(spa_is_root);
2897 EXPORT_SYMBOL(spa_writeable);
2898 EXPORT_SYMBOL(spa_mode);
2899 EXPORT_SYMBOL(spa_namespace_lock);
2900 EXPORT_SYMBOL(spa_trust_config);
2901 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2902 EXPORT_SYMBOL(spa_set_missing_tvds);
2903 EXPORT_SYMBOL(spa_state_to_name);
2904 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2905 EXPORT_SYMBOL(spa_min_claim_txg);
2906 EXPORT_SYMBOL(spa_suspend_async_destroy);
2907 EXPORT_SYMBOL(spa_has_checkpoint);
2908 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
2909 
2910 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2911 	"Set additional debugging flags");
2912 
2913 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2914 	"Set to attempt to recover from fatal errors");
2915 
2916 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
2917 	"Set to ignore IO errors during free and permanently leak the space");
2918 
2919 ZFS_MODULE_PARAM(zfs, zfs_, deadman_checktime_ms, ULONG, ZMOD_RW,
2920 	"Dead I/O check interval in milliseconds");
2921 
2922 ZFS_MODULE_PARAM(zfs, zfs_, deadman_enabled, INT, ZMOD_RW,
2923 	"Enable deadman timer");
2924 
2925 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW,
2926 	"SPA size estimate multiplication factor");
2927 
2928 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2929 	"Place DDT data into the special class");
2930 
2931 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2932 	"Place user data indirect blocks into the special class");
2933 
2934 /* BEGIN CSTYLED */
2935 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2936 	param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2937 	"Failmode for deadman timer");
2938 
2939 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2940 	param_set_deadman_synctime, param_get_ulong, ZMOD_RW,
2941 	"Pool sync expiration time in milliseconds");
2942 
2943 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
2944 	param_set_deadman_ziotime, param_get_ulong, ZMOD_RW,
2945 	"IO expiration time in milliseconds");
2946 
2947 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW,
2948 	"Small file blocks in special vdevs depends on this much "
2949 	"free space available");
2950 /* END CSTYLED */
2951 
2952 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
2953 	param_get_int, ZMOD_RW, "Reserved free space in pool");
2954