1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 26 * Copyright 2013 Saso Kiselkov. All rights reserved. 27 * Copyright (c) 2017 Datto Inc. 28 * Copyright (c) 2017, Intel Corporation. 29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 30 */ 31 32 #include <sys/zfs_context.h> 33 #include <sys/spa_impl.h> 34 #include <sys/zio.h> 35 #include <sys/zio_checksum.h> 36 #include <sys/zio_compress.h> 37 #include <sys/dmu.h> 38 #include <sys/dmu_tx.h> 39 #include <sys/zap.h> 40 #include <sys/zil.h> 41 #include <sys/vdev_impl.h> 42 #include <sys/vdev_initialize.h> 43 #include <sys/vdev_trim.h> 44 #include <sys/vdev_file.h> 45 #include <sys/vdev_raidz.h> 46 #include <sys/metaslab.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/unique.h> 51 #include <sys/dsl_pool.h> 52 #include <sys/dsl_dir.h> 53 #include <sys/dsl_prop.h> 54 #include <sys/fm/util.h> 55 #include <sys/dsl_scan.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/metaslab_impl.h> 58 #include <sys/arc.h> 59 #include <sys/ddt.h> 60 #include <sys/kstat.h> 61 #include "zfs_prop.h" 62 #include <sys/btree.h> 63 #include <sys/zfeature.h> 64 #include <sys/qat.h> 65 #include <sys/zstd/zstd.h> 66 67 /* 68 * SPA locking 69 * 70 * There are three basic locks for managing spa_t structures: 71 * 72 * spa_namespace_lock (global mutex) 73 * 74 * This lock must be acquired to do any of the following: 75 * 76 * - Lookup a spa_t by name 77 * - Add or remove a spa_t from the namespace 78 * - Increase spa_refcount from non-zero 79 * - Check if spa_refcount is zero 80 * - Rename a spa_t 81 * - add/remove/attach/detach devices 82 * - Held for the duration of create/destroy/import/export 83 * 84 * It does not need to handle recursion. A create or destroy may 85 * reference objects (files or zvols) in other pools, but by 86 * definition they must have an existing reference, and will never need 87 * to lookup a spa_t by name. 88 * 89 * spa_refcount (per-spa zfs_refcount_t protected by mutex) 90 * 91 * This reference count keep track of any active users of the spa_t. The 92 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 93 * the refcount is never really 'zero' - opening a pool implicitly keeps 94 * some references in the DMU. Internally we check against spa_minref, but 95 * present the image of a zero/non-zero value to consumers. 96 * 97 * spa_config_lock[] (per-spa array of rwlocks) 98 * 99 * This protects the spa_t from config changes, and must be held in 100 * the following circumstances: 101 * 102 * - RW_READER to perform I/O to the spa 103 * - RW_WRITER to change the vdev config 104 * 105 * The locking order is fairly straightforward: 106 * 107 * spa_namespace_lock -> spa_refcount 108 * 109 * The namespace lock must be acquired to increase the refcount from 0 110 * or to check if it is zero. 111 * 112 * spa_refcount -> spa_config_lock[] 113 * 114 * There must be at least one valid reference on the spa_t to acquire 115 * the config lock. 116 * 117 * spa_namespace_lock -> spa_config_lock[] 118 * 119 * The namespace lock must always be taken before the config lock. 120 * 121 * 122 * The spa_namespace_lock can be acquired directly and is globally visible. 123 * 124 * The namespace is manipulated using the following functions, all of which 125 * require the spa_namespace_lock to be held. 126 * 127 * spa_lookup() Lookup a spa_t by name. 128 * 129 * spa_add() Create a new spa_t in the namespace. 130 * 131 * spa_remove() Remove a spa_t from the namespace. This also 132 * frees up any memory associated with the spa_t. 133 * 134 * spa_next() Returns the next spa_t in the system, or the 135 * first if NULL is passed. 136 * 137 * spa_evict_all() Shutdown and remove all spa_t structures in 138 * the system. 139 * 140 * spa_guid_exists() Determine whether a pool/device guid exists. 141 * 142 * The spa_refcount is manipulated using the following functions: 143 * 144 * spa_open_ref() Adds a reference to the given spa_t. Must be 145 * called with spa_namespace_lock held if the 146 * refcount is currently zero. 147 * 148 * spa_close() Remove a reference from the spa_t. This will 149 * not free the spa_t or remove it from the 150 * namespace. No locking is required. 151 * 152 * spa_refcount_zero() Returns true if the refcount is currently 153 * zero. Must be called with spa_namespace_lock 154 * held. 155 * 156 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 157 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 158 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 159 * 160 * To read the configuration, it suffices to hold one of these locks as reader. 161 * To modify the configuration, you must hold all locks as writer. To modify 162 * vdev state without altering the vdev tree's topology (e.g. online/offline), 163 * you must hold SCL_STATE and SCL_ZIO as writer. 164 * 165 * We use these distinct config locks to avoid recursive lock entry. 166 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 167 * block allocations (SCL_ALLOC), which may require reading space maps 168 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 169 * 170 * The spa config locks cannot be normal rwlocks because we need the 171 * ability to hand off ownership. For example, SCL_ZIO is acquired 172 * by the issuing thread and later released by an interrupt thread. 173 * They do, however, obey the usual write-wanted semantics to prevent 174 * writer (i.e. system administrator) starvation. 175 * 176 * The lock acquisition rules are as follows: 177 * 178 * SCL_CONFIG 179 * Protects changes to the vdev tree topology, such as vdev 180 * add/remove/attach/detach. Protects the dirty config list 181 * (spa_config_dirty_list) and the set of spares and l2arc devices. 182 * 183 * SCL_STATE 184 * Protects changes to pool state and vdev state, such as vdev 185 * online/offline/fault/degrade/clear. Protects the dirty state list 186 * (spa_state_dirty_list) and global pool state (spa_state). 187 * 188 * SCL_ALLOC 189 * Protects changes to metaslab groups and classes. 190 * Held as reader by metaslab_alloc() and metaslab_claim(). 191 * 192 * SCL_ZIO 193 * Held by bp-level zios (those which have no io_vd upon entry) 194 * to prevent changes to the vdev tree. The bp-level zio implicitly 195 * protects all of its vdev child zios, which do not hold SCL_ZIO. 196 * 197 * SCL_FREE 198 * Protects changes to metaslab groups and classes. 199 * Held as reader by metaslab_free(). SCL_FREE is distinct from 200 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 201 * blocks in zio_done() while another i/o that holds either 202 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 203 * 204 * SCL_VDEV 205 * Held as reader to prevent changes to the vdev tree during trivial 206 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 207 * other locks, and lower than all of them, to ensure that it's safe 208 * to acquire regardless of caller context. 209 * 210 * In addition, the following rules apply: 211 * 212 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 213 * The lock ordering is SCL_CONFIG > spa_props_lock. 214 * 215 * (b) I/O operations on leaf vdevs. For any zio operation that takes 216 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 217 * or zio_write_phys() -- the caller must ensure that the config cannot 218 * cannot change in the interim, and that the vdev cannot be reopened. 219 * SCL_STATE as reader suffices for both. 220 * 221 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 222 * 223 * spa_vdev_enter() Acquire the namespace lock and the config lock 224 * for writing. 225 * 226 * spa_vdev_exit() Release the config lock, wait for all I/O 227 * to complete, sync the updated configs to the 228 * cache, and release the namespace lock. 229 * 230 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 231 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 232 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 233 */ 234 235 static avl_tree_t spa_namespace_avl; 236 kmutex_t spa_namespace_lock; 237 static kcondvar_t spa_namespace_cv; 238 int spa_max_replication_override = SPA_DVAS_PER_BP; 239 240 static kmutex_t spa_spare_lock; 241 static avl_tree_t spa_spare_avl; 242 static kmutex_t spa_l2cache_lock; 243 static avl_tree_t spa_l2cache_avl; 244 245 kmem_cache_t *spa_buffer_pool; 246 spa_mode_t spa_mode_global = SPA_MODE_UNINIT; 247 248 #ifdef ZFS_DEBUG 249 /* 250 * Everything except dprintf, set_error, spa, and indirect_remap is on 251 * by default in debug builds. 252 */ 253 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR | 254 ZFS_DEBUG_INDIRECT_REMAP); 255 #else 256 int zfs_flags = 0; 257 #endif 258 259 /* 260 * zfs_recover can be set to nonzero to attempt to recover from 261 * otherwise-fatal errors, typically caused by on-disk corruption. When 262 * set, calls to zfs_panic_recover() will turn into warning messages. 263 * This should only be used as a last resort, as it typically results 264 * in leaked space, or worse. 265 */ 266 int zfs_recover = B_FALSE; 267 268 /* 269 * If destroy encounters an EIO while reading metadata (e.g. indirect 270 * blocks), space referenced by the missing metadata can not be freed. 271 * Normally this causes the background destroy to become "stalled", as 272 * it is unable to make forward progress. While in this stalled state, 273 * all remaining space to free from the error-encountering filesystem is 274 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 275 * permanently leak the space from indirect blocks that can not be read, 276 * and continue to free everything else that it can. 277 * 278 * The default, "stalling" behavior is useful if the storage partially 279 * fails (i.e. some but not all i/os fail), and then later recovers. In 280 * this case, we will be able to continue pool operations while it is 281 * partially failed, and when it recovers, we can continue to free the 282 * space, with no leaks. However, note that this case is actually 283 * fairly rare. 284 * 285 * Typically pools either (a) fail completely (but perhaps temporarily, 286 * e.g. a top-level vdev going offline), or (b) have localized, 287 * permanent errors (e.g. disk returns the wrong data due to bit flip or 288 * firmware bug). In case (a), this setting does not matter because the 289 * pool will be suspended and the sync thread will not be able to make 290 * forward progress regardless. In case (b), because the error is 291 * permanent, the best we can do is leak the minimum amount of space, 292 * which is what setting this flag will do. Therefore, it is reasonable 293 * for this flag to normally be set, but we chose the more conservative 294 * approach of not setting it, so that there is no possibility of 295 * leaking space in the "partial temporary" failure case. 296 */ 297 int zfs_free_leak_on_eio = B_FALSE; 298 299 /* 300 * Expiration time in milliseconds. This value has two meanings. First it is 301 * used to determine when the spa_deadman() logic should fire. By default the 302 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds. 303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 305 * in one of three behaviors controlled by zfs_deadman_failmode. 306 */ 307 unsigned long zfs_deadman_synctime_ms = 600000UL; 308 309 /* 310 * This value controls the maximum amount of time zio_wait() will block for an 311 * outstanding IO. By default this is 300 seconds at which point the "hung" 312 * behavior will be applied as described for zfs_deadman_synctime_ms. 313 */ 314 unsigned long zfs_deadman_ziotime_ms = 300000UL; 315 316 /* 317 * Check time in milliseconds. This defines the frequency at which we check 318 * for hung I/O. 319 */ 320 unsigned long zfs_deadman_checktime_ms = 60000UL; 321 322 /* 323 * By default the deadman is enabled. 324 */ 325 int zfs_deadman_enabled = 1; 326 327 /* 328 * Controls the behavior of the deadman when it detects a "hung" I/O. 329 * Valid values are zfs_deadman_failmode=<wait|continue|panic>. 330 * 331 * wait - Wait for the "hung" I/O (default) 332 * continue - Attempt to recover from a "hung" I/O 333 * panic - Panic the system 334 */ 335 char *zfs_deadman_failmode = "wait"; 336 337 /* 338 * The worst case is single-sector max-parity RAID-Z blocks, in which 339 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 340 * times the size; so just assume that. Add to this the fact that 341 * we can have up to 3 DVAs per bp, and one more factor of 2 because 342 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 343 * the worst case is: 344 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 345 */ 346 int spa_asize_inflation = 24; 347 348 /* 349 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in 350 * the pool to be consumed. This ensures that we don't run the pool 351 * completely out of space, due to unaccounted changes (e.g. to the MOS). 352 * It also limits the worst-case time to allocate space. If we have less than 353 * this amount of free space, most ZPL operations (e.g. write, create) will 354 * return ENOSPC. The ZIL metaslabs (spa_embedded_log_class) are also part of 355 * this 3.2% of space which can't be consumed by normal writes; the slop space 356 * "proper" (spa_get_slop_space()) is decreased by the embedded log space. 357 * 358 * Certain operations (e.g. file removal, most administrative actions) can 359 * use half the slop space. They will only return ENOSPC if less than half 360 * the slop space is free. Typically, once the pool has less than the slop 361 * space free, the user will use these operations to free up space in the pool. 362 * These are the operations that call dsl_pool_adjustedsize() with the netfree 363 * argument set to TRUE. 364 * 365 * Operations that are almost guaranteed to free up space in the absence of 366 * a pool checkpoint can use up to three quarters of the slop space 367 * (e.g zfs destroy). 368 * 369 * A very restricted set of operations are always permitted, regardless of 370 * the amount of free space. These are the operations that call 371 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net 372 * increase in the amount of space used, it is possible to run the pool 373 * completely out of space, causing it to be permanently read-only. 374 * 375 * Note that on very small pools, the slop space will be larger than 376 * 3.2%, in an effort to have it be at least spa_min_slop (128MB), 377 * but we never allow it to be more than half the pool size. 378 * 379 * See also the comments in zfs_space_check_t. 380 */ 381 int spa_slop_shift = 5; 382 uint64_t spa_min_slop = 128 * 1024 * 1024; 383 int spa_allocators = 4; 384 385 386 /*PRINTFLIKE2*/ 387 void 388 spa_load_failed(spa_t *spa, const char *fmt, ...) 389 { 390 va_list adx; 391 char buf[256]; 392 393 va_start(adx, fmt); 394 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 395 va_end(adx); 396 397 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name, 398 spa->spa_trust_config ? "trusted" : "untrusted", buf); 399 } 400 401 /*PRINTFLIKE2*/ 402 void 403 spa_load_note(spa_t *spa, const char *fmt, ...) 404 { 405 va_list adx; 406 char buf[256]; 407 408 va_start(adx, fmt); 409 (void) vsnprintf(buf, sizeof (buf), fmt, adx); 410 va_end(adx); 411 412 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name, 413 spa->spa_trust_config ? "trusted" : "untrusted", buf); 414 } 415 416 /* 417 * By default dedup and user data indirects land in the special class 418 */ 419 int zfs_ddt_data_is_special = B_TRUE; 420 int zfs_user_indirect_is_special = B_TRUE; 421 422 /* 423 * The percentage of special class final space reserved for metadata only. 424 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only 425 * let metadata into the class. 426 */ 427 int zfs_special_class_metadata_reserve_pct = 25; 428 429 /* 430 * ========================================================================== 431 * SPA config locking 432 * ========================================================================== 433 */ 434 static void 435 spa_config_lock_init(spa_t *spa) 436 { 437 for (int i = 0; i < SCL_LOCKS; i++) { 438 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 439 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 440 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 441 zfs_refcount_create_untracked(&scl->scl_count); 442 scl->scl_writer = NULL; 443 scl->scl_write_wanted = 0; 444 } 445 } 446 447 static void 448 spa_config_lock_destroy(spa_t *spa) 449 { 450 for (int i = 0; i < SCL_LOCKS; i++) { 451 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 452 mutex_destroy(&scl->scl_lock); 453 cv_destroy(&scl->scl_cv); 454 zfs_refcount_destroy(&scl->scl_count); 455 ASSERT(scl->scl_writer == NULL); 456 ASSERT(scl->scl_write_wanted == 0); 457 } 458 } 459 460 int 461 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 462 { 463 for (int i = 0; i < SCL_LOCKS; i++) { 464 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 465 if (!(locks & (1 << i))) 466 continue; 467 mutex_enter(&scl->scl_lock); 468 if (rw == RW_READER) { 469 if (scl->scl_writer || scl->scl_write_wanted) { 470 mutex_exit(&scl->scl_lock); 471 spa_config_exit(spa, locks & ((1 << i) - 1), 472 tag); 473 return (0); 474 } 475 } else { 476 ASSERT(scl->scl_writer != curthread); 477 if (!zfs_refcount_is_zero(&scl->scl_count)) { 478 mutex_exit(&scl->scl_lock); 479 spa_config_exit(spa, locks & ((1 << i) - 1), 480 tag); 481 return (0); 482 } 483 scl->scl_writer = curthread; 484 } 485 (void) zfs_refcount_add(&scl->scl_count, tag); 486 mutex_exit(&scl->scl_lock); 487 } 488 return (1); 489 } 490 491 void 492 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw) 493 { 494 int wlocks_held = 0; 495 496 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 497 498 for (int i = 0; i < SCL_LOCKS; i++) { 499 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 500 if (scl->scl_writer == curthread) 501 wlocks_held |= (1 << i); 502 if (!(locks & (1 << i))) 503 continue; 504 mutex_enter(&scl->scl_lock); 505 if (rw == RW_READER) { 506 while (scl->scl_writer || scl->scl_write_wanted) { 507 cv_wait(&scl->scl_cv, &scl->scl_lock); 508 } 509 } else { 510 ASSERT(scl->scl_writer != curthread); 511 while (!zfs_refcount_is_zero(&scl->scl_count)) { 512 scl->scl_write_wanted++; 513 cv_wait(&scl->scl_cv, &scl->scl_lock); 514 scl->scl_write_wanted--; 515 } 516 scl->scl_writer = curthread; 517 } 518 (void) zfs_refcount_add(&scl->scl_count, tag); 519 mutex_exit(&scl->scl_lock); 520 } 521 ASSERT3U(wlocks_held, <=, locks); 522 } 523 524 void 525 spa_config_exit(spa_t *spa, int locks, const void *tag) 526 { 527 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 528 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 529 if (!(locks & (1 << i))) 530 continue; 531 mutex_enter(&scl->scl_lock); 532 ASSERT(!zfs_refcount_is_zero(&scl->scl_count)); 533 if (zfs_refcount_remove(&scl->scl_count, tag) == 0) { 534 ASSERT(scl->scl_writer == NULL || 535 scl->scl_writer == curthread); 536 scl->scl_writer = NULL; /* OK in either case */ 537 cv_broadcast(&scl->scl_cv); 538 } 539 mutex_exit(&scl->scl_lock); 540 } 541 } 542 543 int 544 spa_config_held(spa_t *spa, int locks, krw_t rw) 545 { 546 int locks_held = 0; 547 548 for (int i = 0; i < SCL_LOCKS; i++) { 549 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 550 if (!(locks & (1 << i))) 551 continue; 552 if ((rw == RW_READER && 553 !zfs_refcount_is_zero(&scl->scl_count)) || 554 (rw == RW_WRITER && scl->scl_writer == curthread)) 555 locks_held |= 1 << i; 556 } 557 558 return (locks_held); 559 } 560 561 /* 562 * ========================================================================== 563 * SPA namespace functions 564 * ========================================================================== 565 */ 566 567 /* 568 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 569 * Returns NULL if no matching spa_t is found. 570 */ 571 spa_t * 572 spa_lookup(const char *name) 573 { 574 static spa_t search; /* spa_t is large; don't allocate on stack */ 575 spa_t *spa; 576 avl_index_t where; 577 char *cp; 578 579 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 580 581 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 582 583 /* 584 * If it's a full dataset name, figure out the pool name and 585 * just use that. 586 */ 587 cp = strpbrk(search.spa_name, "/@#"); 588 if (cp != NULL) 589 *cp = '\0'; 590 591 spa = avl_find(&spa_namespace_avl, &search, &where); 592 593 return (spa); 594 } 595 596 /* 597 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 598 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 599 * looking for potentially hung I/Os. 600 */ 601 void 602 spa_deadman(void *arg) 603 { 604 spa_t *spa = arg; 605 606 /* Disable the deadman if the pool is suspended. */ 607 if (spa_suspended(spa)) 608 return; 609 610 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 611 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 612 ++spa->spa_deadman_calls); 613 if (zfs_deadman_enabled) 614 vdev_deadman(spa->spa_root_vdev, FTAG); 615 616 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 617 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 618 MSEC_TO_TICK(zfs_deadman_checktime_ms)); 619 } 620 621 static int 622 spa_log_sm_sort_by_txg(const void *va, const void *vb) 623 { 624 const spa_log_sm_t *a = va; 625 const spa_log_sm_t *b = vb; 626 627 return (TREE_CMP(a->sls_txg, b->sls_txg)); 628 } 629 630 /* 631 * Create an uninitialized spa_t with the given name. Requires 632 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 633 * exist by calling spa_lookup() first. 634 */ 635 spa_t * 636 spa_add(const char *name, nvlist_t *config, const char *altroot) 637 { 638 spa_t *spa; 639 spa_config_dirent_t *dp; 640 641 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 642 643 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 644 645 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 646 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 647 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 648 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL); 649 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 650 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 651 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 652 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL); 653 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 654 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 655 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 656 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL); 657 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL); 658 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL); 659 660 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 661 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL); 662 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 663 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 664 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 665 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL); 666 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL); 667 668 for (int t = 0; t < TXG_SIZE; t++) 669 bplist_create(&spa->spa_free_bplist[t]); 670 671 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 672 spa->spa_state = POOL_STATE_UNINITIALIZED; 673 spa->spa_freeze_txg = UINT64_MAX; 674 spa->spa_final_txg = UINT64_MAX; 675 spa->spa_load_max_txg = UINT64_MAX; 676 spa->spa_proc = &p0; 677 spa->spa_proc_state = SPA_PROC_NONE; 678 spa->spa_trust_config = B_TRUE; 679 spa->spa_hostid = zone_get_hostid(NULL); 680 681 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 682 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms); 683 spa_set_deadman_failmode(spa, zfs_deadman_failmode); 684 685 zfs_refcount_create(&spa->spa_refcount); 686 spa_config_lock_init(spa); 687 spa_stats_init(spa); 688 689 avl_add(&spa_namespace_avl, spa); 690 691 /* 692 * Set the alternate root, if there is one. 693 */ 694 if (altroot) 695 spa->spa_root = spa_strdup(altroot); 696 697 spa->spa_alloc_count = spa_allocators; 698 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count * 699 sizeof (kmutex_t), KM_SLEEP); 700 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count * 701 sizeof (avl_tree_t), KM_SLEEP); 702 for (int i = 0; i < spa->spa_alloc_count; i++) { 703 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL); 704 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare, 705 sizeof (zio_t), offsetof(zio_t, io_alloc_node)); 706 } 707 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed, 708 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node)); 709 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg, 710 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node)); 711 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t), 712 offsetof(log_summary_entry_t, lse_node)); 713 714 /* 715 * Every pool starts with the default cachefile 716 */ 717 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 718 offsetof(spa_config_dirent_t, scd_link)); 719 720 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 721 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 722 list_insert_head(&spa->spa_config_list, dp); 723 724 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 725 KM_SLEEP) == 0); 726 727 if (config != NULL) { 728 nvlist_t *features; 729 730 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 731 &features) == 0) { 732 VERIFY(nvlist_dup(features, &spa->spa_label_features, 733 0) == 0); 734 } 735 736 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 737 } 738 739 if (spa->spa_label_features == NULL) { 740 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 741 KM_SLEEP) == 0); 742 } 743 744 spa->spa_min_ashift = INT_MAX; 745 spa->spa_max_ashift = 0; 746 spa->spa_min_alloc = INT_MAX; 747 748 /* Reset cached value */ 749 spa->spa_dedup_dspace = ~0ULL; 750 751 /* 752 * As a pool is being created, treat all features as disabled by 753 * setting SPA_FEATURE_DISABLED for all entries in the feature 754 * refcount cache. 755 */ 756 for (int i = 0; i < SPA_FEATURES; i++) { 757 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 758 } 759 760 list_create(&spa->spa_leaf_list, sizeof (vdev_t), 761 offsetof(vdev_t, vdev_leaf_node)); 762 763 return (spa); 764 } 765 766 /* 767 * Removes a spa_t from the namespace, freeing up any memory used. Requires 768 * spa_namespace_lock. This is called only after the spa_t has been closed and 769 * deactivated. 770 */ 771 void 772 spa_remove(spa_t *spa) 773 { 774 spa_config_dirent_t *dp; 775 776 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 777 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED); 778 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0); 779 ASSERT0(spa->spa_waiters); 780 781 nvlist_free(spa->spa_config_splitting); 782 783 avl_remove(&spa_namespace_avl, spa); 784 cv_broadcast(&spa_namespace_cv); 785 786 if (spa->spa_root) 787 spa_strfree(spa->spa_root); 788 789 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 790 list_remove(&spa->spa_config_list, dp); 791 if (dp->scd_path != NULL) 792 spa_strfree(dp->scd_path); 793 kmem_free(dp, sizeof (spa_config_dirent_t)); 794 } 795 796 for (int i = 0; i < spa->spa_alloc_count; i++) { 797 avl_destroy(&spa->spa_alloc_trees[i]); 798 mutex_destroy(&spa->spa_alloc_locks[i]); 799 } 800 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count * 801 sizeof (kmutex_t)); 802 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count * 803 sizeof (avl_tree_t)); 804 805 avl_destroy(&spa->spa_metaslabs_by_flushed); 806 avl_destroy(&spa->spa_sm_logs_by_txg); 807 list_destroy(&spa->spa_log_summary); 808 list_destroy(&spa->spa_config_list); 809 list_destroy(&spa->spa_leaf_list); 810 811 nvlist_free(spa->spa_label_features); 812 nvlist_free(spa->spa_load_info); 813 nvlist_free(spa->spa_feat_stats); 814 spa_config_set(spa, NULL); 815 816 zfs_refcount_destroy(&spa->spa_refcount); 817 818 spa_stats_destroy(spa); 819 spa_config_lock_destroy(spa); 820 821 for (int t = 0; t < TXG_SIZE; t++) 822 bplist_destroy(&spa->spa_free_bplist[t]); 823 824 zio_checksum_templates_free(spa); 825 826 cv_destroy(&spa->spa_async_cv); 827 cv_destroy(&spa->spa_evicting_os_cv); 828 cv_destroy(&spa->spa_proc_cv); 829 cv_destroy(&spa->spa_scrub_io_cv); 830 cv_destroy(&spa->spa_suspend_cv); 831 cv_destroy(&spa->spa_activities_cv); 832 cv_destroy(&spa->spa_waiters_cv); 833 834 mutex_destroy(&spa->spa_flushed_ms_lock); 835 mutex_destroy(&spa->spa_async_lock); 836 mutex_destroy(&spa->spa_errlist_lock); 837 mutex_destroy(&spa->spa_errlog_lock); 838 mutex_destroy(&spa->spa_evicting_os_lock); 839 mutex_destroy(&spa->spa_history_lock); 840 mutex_destroy(&spa->spa_proc_lock); 841 mutex_destroy(&spa->spa_props_lock); 842 mutex_destroy(&spa->spa_cksum_tmpls_lock); 843 mutex_destroy(&spa->spa_scrub_lock); 844 mutex_destroy(&spa->spa_suspend_lock); 845 mutex_destroy(&spa->spa_vdev_top_lock); 846 mutex_destroy(&spa->spa_feat_stats_lock); 847 mutex_destroy(&spa->spa_activities_lock); 848 849 kmem_free(spa, sizeof (spa_t)); 850 } 851 852 /* 853 * Given a pool, return the next pool in the namespace, or NULL if there is 854 * none. If 'prev' is NULL, return the first pool. 855 */ 856 spa_t * 857 spa_next(spa_t *prev) 858 { 859 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 860 861 if (prev) 862 return (AVL_NEXT(&spa_namespace_avl, prev)); 863 else 864 return (avl_first(&spa_namespace_avl)); 865 } 866 867 /* 868 * ========================================================================== 869 * SPA refcount functions 870 * ========================================================================== 871 */ 872 873 /* 874 * Add a reference to the given spa_t. Must have at least one reference, or 875 * have the namespace lock held. 876 */ 877 void 878 spa_open_ref(spa_t *spa, void *tag) 879 { 880 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref || 881 MUTEX_HELD(&spa_namespace_lock)); 882 (void) zfs_refcount_add(&spa->spa_refcount, tag); 883 } 884 885 /* 886 * Remove a reference to the given spa_t. Must have at least one reference, or 887 * have the namespace lock held. 888 */ 889 void 890 spa_close(spa_t *spa, void *tag) 891 { 892 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref || 893 MUTEX_HELD(&spa_namespace_lock)); 894 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 895 } 896 897 /* 898 * Remove a reference to the given spa_t held by a dsl dir that is 899 * being asynchronously released. Async releases occur from a taskq 900 * performing eviction of dsl datasets and dirs. The namespace lock 901 * isn't held and the hold by the object being evicted may contribute to 902 * spa_minref (e.g. dataset or directory released during pool export), 903 * so the asserts in spa_close() do not apply. 904 */ 905 void 906 spa_async_close(spa_t *spa, void *tag) 907 { 908 (void) zfs_refcount_remove(&spa->spa_refcount, tag); 909 } 910 911 /* 912 * Check to see if the spa refcount is zero. Must be called with 913 * spa_namespace_lock held. We really compare against spa_minref, which is the 914 * number of references acquired when opening a pool 915 */ 916 boolean_t 917 spa_refcount_zero(spa_t *spa) 918 { 919 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 920 921 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref); 922 } 923 924 /* 925 * ========================================================================== 926 * SPA spare and l2cache tracking 927 * ========================================================================== 928 */ 929 930 /* 931 * Hot spares and cache devices are tracked using the same code below, 932 * for 'auxiliary' devices. 933 */ 934 935 typedef struct spa_aux { 936 uint64_t aux_guid; 937 uint64_t aux_pool; 938 avl_node_t aux_avl; 939 int aux_count; 940 } spa_aux_t; 941 942 static inline int 943 spa_aux_compare(const void *a, const void *b) 944 { 945 const spa_aux_t *sa = (const spa_aux_t *)a; 946 const spa_aux_t *sb = (const spa_aux_t *)b; 947 948 return (TREE_CMP(sa->aux_guid, sb->aux_guid)); 949 } 950 951 static void 952 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 953 { 954 avl_index_t where; 955 spa_aux_t search; 956 spa_aux_t *aux; 957 958 search.aux_guid = vd->vdev_guid; 959 if ((aux = avl_find(avl, &search, &where)) != NULL) { 960 aux->aux_count++; 961 } else { 962 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 963 aux->aux_guid = vd->vdev_guid; 964 aux->aux_count = 1; 965 avl_insert(avl, aux, where); 966 } 967 } 968 969 static void 970 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 971 { 972 spa_aux_t search; 973 spa_aux_t *aux; 974 avl_index_t where; 975 976 search.aux_guid = vd->vdev_guid; 977 aux = avl_find(avl, &search, &where); 978 979 ASSERT(aux != NULL); 980 981 if (--aux->aux_count == 0) { 982 avl_remove(avl, aux); 983 kmem_free(aux, sizeof (spa_aux_t)); 984 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 985 aux->aux_pool = 0ULL; 986 } 987 } 988 989 static boolean_t 990 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 991 { 992 spa_aux_t search, *found; 993 994 search.aux_guid = guid; 995 found = avl_find(avl, &search, NULL); 996 997 if (pool) { 998 if (found) 999 *pool = found->aux_pool; 1000 else 1001 *pool = 0ULL; 1002 } 1003 1004 if (refcnt) { 1005 if (found) 1006 *refcnt = found->aux_count; 1007 else 1008 *refcnt = 0; 1009 } 1010 1011 return (found != NULL); 1012 } 1013 1014 static void 1015 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 1016 { 1017 spa_aux_t search, *found; 1018 avl_index_t where; 1019 1020 search.aux_guid = vd->vdev_guid; 1021 found = avl_find(avl, &search, &where); 1022 ASSERT(found != NULL); 1023 ASSERT(found->aux_pool == 0ULL); 1024 1025 found->aux_pool = spa_guid(vd->vdev_spa); 1026 } 1027 1028 /* 1029 * Spares are tracked globally due to the following constraints: 1030 * 1031 * - A spare may be part of multiple pools. 1032 * - A spare may be added to a pool even if it's actively in use within 1033 * another pool. 1034 * - A spare in use in any pool can only be the source of a replacement if 1035 * the target is a spare in the same pool. 1036 * 1037 * We keep track of all spares on the system through the use of a reference 1038 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 1039 * spare, then we bump the reference count in the AVL tree. In addition, we set 1040 * the 'vdev_isspare' member to indicate that the device is a spare (active or 1041 * inactive). When a spare is made active (used to replace a device in the 1042 * pool), we also keep track of which pool its been made a part of. 1043 * 1044 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 1045 * called under the spa_namespace lock as part of vdev reconfiguration. The 1046 * separate spare lock exists for the status query path, which does not need to 1047 * be completely consistent with respect to other vdev configuration changes. 1048 */ 1049 1050 static int 1051 spa_spare_compare(const void *a, const void *b) 1052 { 1053 return (spa_aux_compare(a, b)); 1054 } 1055 1056 void 1057 spa_spare_add(vdev_t *vd) 1058 { 1059 mutex_enter(&spa_spare_lock); 1060 ASSERT(!vd->vdev_isspare); 1061 spa_aux_add(vd, &spa_spare_avl); 1062 vd->vdev_isspare = B_TRUE; 1063 mutex_exit(&spa_spare_lock); 1064 } 1065 1066 void 1067 spa_spare_remove(vdev_t *vd) 1068 { 1069 mutex_enter(&spa_spare_lock); 1070 ASSERT(vd->vdev_isspare); 1071 spa_aux_remove(vd, &spa_spare_avl); 1072 vd->vdev_isspare = B_FALSE; 1073 mutex_exit(&spa_spare_lock); 1074 } 1075 1076 boolean_t 1077 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 1078 { 1079 boolean_t found; 1080 1081 mutex_enter(&spa_spare_lock); 1082 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 1083 mutex_exit(&spa_spare_lock); 1084 1085 return (found); 1086 } 1087 1088 void 1089 spa_spare_activate(vdev_t *vd) 1090 { 1091 mutex_enter(&spa_spare_lock); 1092 ASSERT(vd->vdev_isspare); 1093 spa_aux_activate(vd, &spa_spare_avl); 1094 mutex_exit(&spa_spare_lock); 1095 } 1096 1097 /* 1098 * Level 2 ARC devices are tracked globally for the same reasons as spares. 1099 * Cache devices currently only support one pool per cache device, and so 1100 * for these devices the aux reference count is currently unused beyond 1. 1101 */ 1102 1103 static int 1104 spa_l2cache_compare(const void *a, const void *b) 1105 { 1106 return (spa_aux_compare(a, b)); 1107 } 1108 1109 void 1110 spa_l2cache_add(vdev_t *vd) 1111 { 1112 mutex_enter(&spa_l2cache_lock); 1113 ASSERT(!vd->vdev_isl2cache); 1114 spa_aux_add(vd, &spa_l2cache_avl); 1115 vd->vdev_isl2cache = B_TRUE; 1116 mutex_exit(&spa_l2cache_lock); 1117 } 1118 1119 void 1120 spa_l2cache_remove(vdev_t *vd) 1121 { 1122 mutex_enter(&spa_l2cache_lock); 1123 ASSERT(vd->vdev_isl2cache); 1124 spa_aux_remove(vd, &spa_l2cache_avl); 1125 vd->vdev_isl2cache = B_FALSE; 1126 mutex_exit(&spa_l2cache_lock); 1127 } 1128 1129 boolean_t 1130 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 1131 { 1132 boolean_t found; 1133 1134 mutex_enter(&spa_l2cache_lock); 1135 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 1136 mutex_exit(&spa_l2cache_lock); 1137 1138 return (found); 1139 } 1140 1141 void 1142 spa_l2cache_activate(vdev_t *vd) 1143 { 1144 mutex_enter(&spa_l2cache_lock); 1145 ASSERT(vd->vdev_isl2cache); 1146 spa_aux_activate(vd, &spa_l2cache_avl); 1147 mutex_exit(&spa_l2cache_lock); 1148 } 1149 1150 /* 1151 * ========================================================================== 1152 * SPA vdev locking 1153 * ========================================================================== 1154 */ 1155 1156 /* 1157 * Lock the given spa_t for the purpose of adding or removing a vdev. 1158 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1159 * It returns the next transaction group for the spa_t. 1160 */ 1161 uint64_t 1162 spa_vdev_enter(spa_t *spa) 1163 { 1164 mutex_enter(&spa->spa_vdev_top_lock); 1165 mutex_enter(&spa_namespace_lock); 1166 1167 vdev_autotrim_stop_all(spa); 1168 1169 return (spa_vdev_config_enter(spa)); 1170 } 1171 1172 /* 1173 * The same as spa_vdev_enter() above but additionally takes the guid of 1174 * the vdev being detached. When there is a rebuild in process it will be 1175 * suspended while the vdev tree is modified then resumed by spa_vdev_exit(). 1176 * The rebuild is canceled if only a single child remains after the detach. 1177 */ 1178 uint64_t 1179 spa_vdev_detach_enter(spa_t *spa, uint64_t guid) 1180 { 1181 mutex_enter(&spa->spa_vdev_top_lock); 1182 mutex_enter(&spa_namespace_lock); 1183 1184 vdev_autotrim_stop_all(spa); 1185 1186 if (guid != 0) { 1187 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 1188 if (vd) { 1189 vdev_rebuild_stop_wait(vd->vdev_top); 1190 } 1191 } 1192 1193 return (spa_vdev_config_enter(spa)); 1194 } 1195 1196 /* 1197 * Internal implementation for spa_vdev_enter(). Used when a vdev 1198 * operation requires multiple syncs (i.e. removing a device) while 1199 * keeping the spa_namespace_lock held. 1200 */ 1201 uint64_t 1202 spa_vdev_config_enter(spa_t *spa) 1203 { 1204 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1205 1206 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1207 1208 return (spa_last_synced_txg(spa) + 1); 1209 } 1210 1211 /* 1212 * Used in combination with spa_vdev_config_enter() to allow the syncing 1213 * of multiple transactions without releasing the spa_namespace_lock. 1214 */ 1215 void 1216 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1217 { 1218 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1219 1220 int config_changed = B_FALSE; 1221 1222 ASSERT(txg > spa_last_synced_txg(spa)); 1223 1224 spa->spa_pending_vdev = NULL; 1225 1226 /* 1227 * Reassess the DTLs. 1228 */ 1229 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE); 1230 1231 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1232 config_changed = B_TRUE; 1233 spa->spa_config_generation++; 1234 } 1235 1236 /* 1237 * Verify the metaslab classes. 1238 */ 1239 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1240 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1241 ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0); 1242 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0); 1243 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0); 1244 1245 spa_config_exit(spa, SCL_ALL, spa); 1246 1247 /* 1248 * Panic the system if the specified tag requires it. This 1249 * is useful for ensuring that configurations are updated 1250 * transactionally. 1251 */ 1252 if (zio_injection_enabled) 1253 zio_handle_panic_injection(spa, tag, 0); 1254 1255 /* 1256 * Note: this txg_wait_synced() is important because it ensures 1257 * that there won't be more than one config change per txg. 1258 * This allows us to use the txg as the generation number. 1259 */ 1260 if (error == 0) 1261 txg_wait_synced(spa->spa_dsl_pool, txg); 1262 1263 if (vd != NULL) { 1264 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1265 if (vd->vdev_ops->vdev_op_leaf) { 1266 mutex_enter(&vd->vdev_initialize_lock); 1267 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, 1268 NULL); 1269 mutex_exit(&vd->vdev_initialize_lock); 1270 1271 mutex_enter(&vd->vdev_trim_lock); 1272 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL); 1273 mutex_exit(&vd->vdev_trim_lock); 1274 } 1275 1276 /* 1277 * The vdev may be both a leaf and top-level device. 1278 */ 1279 vdev_autotrim_stop_wait(vd); 1280 1281 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1282 vdev_free(vd); 1283 spa_config_exit(spa, SCL_ALL, spa); 1284 } 1285 1286 /* 1287 * If the config changed, update the config cache. 1288 */ 1289 if (config_changed) 1290 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1291 } 1292 1293 /* 1294 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1295 * locking of spa_vdev_enter(), we also want make sure the transactions have 1296 * synced to disk, and then update the global configuration cache with the new 1297 * information. 1298 */ 1299 int 1300 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1301 { 1302 vdev_autotrim_restart(spa); 1303 vdev_rebuild_restart(spa); 1304 1305 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1306 mutex_exit(&spa_namespace_lock); 1307 mutex_exit(&spa->spa_vdev_top_lock); 1308 1309 return (error); 1310 } 1311 1312 /* 1313 * Lock the given spa_t for the purpose of changing vdev state. 1314 */ 1315 void 1316 spa_vdev_state_enter(spa_t *spa, int oplocks) 1317 { 1318 int locks = SCL_STATE_ALL | oplocks; 1319 1320 /* 1321 * Root pools may need to read of the underlying devfs filesystem 1322 * when opening up a vdev. Unfortunately if we're holding the 1323 * SCL_ZIO lock it will result in a deadlock when we try to issue 1324 * the read from the root filesystem. Instead we "prefetch" 1325 * the associated vnodes that we need prior to opening the 1326 * underlying devices and cache them so that we can prevent 1327 * any I/O when we are doing the actual open. 1328 */ 1329 if (spa_is_root(spa)) { 1330 int low = locks & ~(SCL_ZIO - 1); 1331 int high = locks & ~low; 1332 1333 spa_config_enter(spa, high, spa, RW_WRITER); 1334 vdev_hold(spa->spa_root_vdev); 1335 spa_config_enter(spa, low, spa, RW_WRITER); 1336 } else { 1337 spa_config_enter(spa, locks, spa, RW_WRITER); 1338 } 1339 spa->spa_vdev_locks = locks; 1340 } 1341 1342 int 1343 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1344 { 1345 boolean_t config_changed = B_FALSE; 1346 vdev_t *vdev_top; 1347 1348 if (vd == NULL || vd == spa->spa_root_vdev) { 1349 vdev_top = spa->spa_root_vdev; 1350 } else { 1351 vdev_top = vd->vdev_top; 1352 } 1353 1354 if (vd != NULL || error == 0) 1355 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE); 1356 1357 if (vd != NULL) { 1358 if (vd != spa->spa_root_vdev) 1359 vdev_state_dirty(vdev_top); 1360 1361 config_changed = B_TRUE; 1362 spa->spa_config_generation++; 1363 } 1364 1365 if (spa_is_root(spa)) 1366 vdev_rele(spa->spa_root_vdev); 1367 1368 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1369 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1370 1371 /* 1372 * If anything changed, wait for it to sync. This ensures that, 1373 * from the system administrator's perspective, zpool(8) commands 1374 * are synchronous. This is important for things like zpool offline: 1375 * when the command completes, you expect no further I/O from ZFS. 1376 */ 1377 if (vd != NULL) 1378 txg_wait_synced(spa->spa_dsl_pool, 0); 1379 1380 /* 1381 * If the config changed, update the config cache. 1382 */ 1383 if (config_changed) { 1384 mutex_enter(&spa_namespace_lock); 1385 spa_write_cachefile(spa, B_FALSE, B_TRUE); 1386 mutex_exit(&spa_namespace_lock); 1387 } 1388 1389 return (error); 1390 } 1391 1392 /* 1393 * ========================================================================== 1394 * Miscellaneous functions 1395 * ========================================================================== 1396 */ 1397 1398 void 1399 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1400 { 1401 if (!nvlist_exists(spa->spa_label_features, feature)) { 1402 fnvlist_add_boolean(spa->spa_label_features, feature); 1403 /* 1404 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1405 * dirty the vdev config because lock SCL_CONFIG is not held. 1406 * Thankfully, in this case we don't need to dirty the config 1407 * because it will be written out anyway when we finish 1408 * creating the pool. 1409 */ 1410 if (tx->tx_txg != TXG_INITIAL) 1411 vdev_config_dirty(spa->spa_root_vdev); 1412 } 1413 } 1414 1415 void 1416 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1417 { 1418 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1419 vdev_config_dirty(spa->spa_root_vdev); 1420 } 1421 1422 /* 1423 * Return the spa_t associated with given pool_guid, if it exists. If 1424 * device_guid is non-zero, determine whether the pool exists *and* contains 1425 * a device with the specified device_guid. 1426 */ 1427 spa_t * 1428 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1429 { 1430 spa_t *spa; 1431 avl_tree_t *t = &spa_namespace_avl; 1432 1433 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1434 1435 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1436 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1437 continue; 1438 if (spa->spa_root_vdev == NULL) 1439 continue; 1440 if (spa_guid(spa) == pool_guid) { 1441 if (device_guid == 0) 1442 break; 1443 1444 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1445 device_guid) != NULL) 1446 break; 1447 1448 /* 1449 * Check any devices we may be in the process of adding. 1450 */ 1451 if (spa->spa_pending_vdev) { 1452 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1453 device_guid) != NULL) 1454 break; 1455 } 1456 } 1457 } 1458 1459 return (spa); 1460 } 1461 1462 /* 1463 * Determine whether a pool with the given pool_guid exists. 1464 */ 1465 boolean_t 1466 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1467 { 1468 return (spa_by_guid(pool_guid, device_guid) != NULL); 1469 } 1470 1471 char * 1472 spa_strdup(const char *s) 1473 { 1474 size_t len; 1475 char *new; 1476 1477 len = strlen(s); 1478 new = kmem_alloc(len + 1, KM_SLEEP); 1479 bcopy(s, new, len); 1480 new[len] = '\0'; 1481 1482 return (new); 1483 } 1484 1485 void 1486 spa_strfree(char *s) 1487 { 1488 kmem_free(s, strlen(s) + 1); 1489 } 1490 1491 uint64_t 1492 spa_get_random(uint64_t range) 1493 { 1494 uint64_t r; 1495 1496 ASSERT(range != 0); 1497 1498 if (range == 1) 1499 return (0); 1500 1501 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1502 1503 return (r % range); 1504 } 1505 1506 uint64_t 1507 spa_generate_guid(spa_t *spa) 1508 { 1509 uint64_t guid = spa_get_random(-1ULL); 1510 1511 if (spa != NULL) { 1512 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1513 guid = spa_get_random(-1ULL); 1514 } else { 1515 while (guid == 0 || spa_guid_exists(guid, 0)) 1516 guid = spa_get_random(-1ULL); 1517 } 1518 1519 return (guid); 1520 } 1521 1522 void 1523 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1524 { 1525 char type[256]; 1526 char *checksum = NULL; 1527 char *compress = NULL; 1528 1529 if (bp != NULL) { 1530 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1531 dmu_object_byteswap_t bswap = 1532 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1533 (void) snprintf(type, sizeof (type), "bswap %s %s", 1534 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1535 "metadata" : "data", 1536 dmu_ot_byteswap[bswap].ob_name); 1537 } else { 1538 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1539 sizeof (type)); 1540 } 1541 if (!BP_IS_EMBEDDED(bp)) { 1542 checksum = 1543 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1544 } 1545 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1546 } 1547 1548 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1549 compress); 1550 } 1551 1552 void 1553 spa_freeze(spa_t *spa) 1554 { 1555 uint64_t freeze_txg = 0; 1556 1557 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1558 if (spa->spa_freeze_txg == UINT64_MAX) { 1559 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1560 spa->spa_freeze_txg = freeze_txg; 1561 } 1562 spa_config_exit(spa, SCL_ALL, FTAG); 1563 if (freeze_txg != 0) 1564 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1565 } 1566 1567 void 1568 zfs_panic_recover(const char *fmt, ...) 1569 { 1570 va_list adx; 1571 1572 va_start(adx, fmt); 1573 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1574 va_end(adx); 1575 } 1576 1577 /* 1578 * This is a stripped-down version of strtoull, suitable only for converting 1579 * lowercase hexadecimal numbers that don't overflow. 1580 */ 1581 uint64_t 1582 zfs_strtonum(const char *str, char **nptr) 1583 { 1584 uint64_t val = 0; 1585 char c; 1586 int digit; 1587 1588 while ((c = *str) != '\0') { 1589 if (c >= '0' && c <= '9') 1590 digit = c - '0'; 1591 else if (c >= 'a' && c <= 'f') 1592 digit = 10 + c - 'a'; 1593 else 1594 break; 1595 1596 val *= 16; 1597 val += digit; 1598 1599 str++; 1600 } 1601 1602 if (nptr) 1603 *nptr = (char *)str; 1604 1605 return (val); 1606 } 1607 1608 void 1609 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx) 1610 { 1611 /* 1612 * We bump the feature refcount for each special vdev added to the pool 1613 */ 1614 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)); 1615 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx); 1616 } 1617 1618 /* 1619 * ========================================================================== 1620 * Accessor functions 1621 * ========================================================================== 1622 */ 1623 1624 boolean_t 1625 spa_shutting_down(spa_t *spa) 1626 { 1627 return (spa->spa_async_suspended); 1628 } 1629 1630 dsl_pool_t * 1631 spa_get_dsl(spa_t *spa) 1632 { 1633 return (spa->spa_dsl_pool); 1634 } 1635 1636 boolean_t 1637 spa_is_initializing(spa_t *spa) 1638 { 1639 return (spa->spa_is_initializing); 1640 } 1641 1642 boolean_t 1643 spa_indirect_vdevs_loaded(spa_t *spa) 1644 { 1645 return (spa->spa_indirect_vdevs_loaded); 1646 } 1647 1648 blkptr_t * 1649 spa_get_rootblkptr(spa_t *spa) 1650 { 1651 return (&spa->spa_ubsync.ub_rootbp); 1652 } 1653 1654 void 1655 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1656 { 1657 spa->spa_uberblock.ub_rootbp = *bp; 1658 } 1659 1660 void 1661 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1662 { 1663 if (spa->spa_root == NULL) 1664 buf[0] = '\0'; 1665 else 1666 (void) strncpy(buf, spa->spa_root, buflen); 1667 } 1668 1669 int 1670 spa_sync_pass(spa_t *spa) 1671 { 1672 return (spa->spa_sync_pass); 1673 } 1674 1675 char * 1676 spa_name(spa_t *spa) 1677 { 1678 return (spa->spa_name); 1679 } 1680 1681 uint64_t 1682 spa_guid(spa_t *spa) 1683 { 1684 dsl_pool_t *dp = spa_get_dsl(spa); 1685 uint64_t guid; 1686 1687 /* 1688 * If we fail to parse the config during spa_load(), we can go through 1689 * the error path (which posts an ereport) and end up here with no root 1690 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1691 * this case. 1692 */ 1693 if (spa->spa_root_vdev == NULL) 1694 return (spa->spa_config_guid); 1695 1696 guid = spa->spa_last_synced_guid != 0 ? 1697 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1698 1699 /* 1700 * Return the most recently synced out guid unless we're 1701 * in syncing context. 1702 */ 1703 if (dp && dsl_pool_sync_context(dp)) 1704 return (spa->spa_root_vdev->vdev_guid); 1705 else 1706 return (guid); 1707 } 1708 1709 uint64_t 1710 spa_load_guid(spa_t *spa) 1711 { 1712 /* 1713 * This is a GUID that exists solely as a reference for the 1714 * purposes of the arc. It is generated at load time, and 1715 * is never written to persistent storage. 1716 */ 1717 return (spa->spa_load_guid); 1718 } 1719 1720 uint64_t 1721 spa_last_synced_txg(spa_t *spa) 1722 { 1723 return (spa->spa_ubsync.ub_txg); 1724 } 1725 1726 uint64_t 1727 spa_first_txg(spa_t *spa) 1728 { 1729 return (spa->spa_first_txg); 1730 } 1731 1732 uint64_t 1733 spa_syncing_txg(spa_t *spa) 1734 { 1735 return (spa->spa_syncing_txg); 1736 } 1737 1738 /* 1739 * Return the last txg where data can be dirtied. The final txgs 1740 * will be used to just clear out any deferred frees that remain. 1741 */ 1742 uint64_t 1743 spa_final_dirty_txg(spa_t *spa) 1744 { 1745 return (spa->spa_final_txg - TXG_DEFER_SIZE); 1746 } 1747 1748 pool_state_t 1749 spa_state(spa_t *spa) 1750 { 1751 return (spa->spa_state); 1752 } 1753 1754 spa_load_state_t 1755 spa_load_state(spa_t *spa) 1756 { 1757 return (spa->spa_load_state); 1758 } 1759 1760 uint64_t 1761 spa_freeze_txg(spa_t *spa) 1762 { 1763 return (spa->spa_freeze_txg); 1764 } 1765 1766 /* 1767 * Return the inflated asize for a logical write in bytes. This is used by the 1768 * DMU to calculate the space a logical write will require on disk. 1769 * If lsize is smaller than the largest physical block size allocatable on this 1770 * pool we use its value instead, since the write will end up using the whole 1771 * block anyway. 1772 */ 1773 uint64_t 1774 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize) 1775 { 1776 if (lsize == 0) 1777 return (0); /* No inflation needed */ 1778 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation); 1779 } 1780 1781 /* 1782 * Return the amount of slop space in bytes. It is typically 1/32 of the pool 1783 * (3.2%), minus the embedded log space. On very small pools, it may be 1784 * slightly larger than this. The embedded log space is not included in 1785 * spa_dspace. By subtracting it, the usable space (per "zfs list") is a 1786 * constant 97% of the total space, regardless of metaslab size (assuming the 1787 * default spa_slop_shift=5 and a non-tiny pool). 1788 * 1789 * See the comment above spa_slop_shift for more details. 1790 */ 1791 uint64_t 1792 spa_get_slop_space(spa_t *spa) 1793 { 1794 uint64_t space = spa_get_dspace(spa); 1795 uint64_t slop = space >> spa_slop_shift; 1796 1797 /* 1798 * Subtract the embedded log space, but no more than half the (3.2%) 1799 * unusable space. Note, the "no more than half" is only relevant if 1800 * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by 1801 * default. 1802 */ 1803 uint64_t embedded_log = 1804 metaslab_class_get_dspace(spa_embedded_log_class(spa)); 1805 slop -= MIN(embedded_log, slop >> 1); 1806 1807 /* 1808 * Slop space should be at least spa_min_slop, but no more than half 1809 * the entire pool. 1810 */ 1811 slop = MAX(slop, MIN(space >> 1, spa_min_slop)); 1812 return (slop); 1813 } 1814 1815 uint64_t 1816 spa_get_dspace(spa_t *spa) 1817 { 1818 return (spa->spa_dspace); 1819 } 1820 1821 uint64_t 1822 spa_get_checkpoint_space(spa_t *spa) 1823 { 1824 return (spa->spa_checkpoint_info.sci_dspace); 1825 } 1826 1827 void 1828 spa_update_dspace(spa_t *spa) 1829 { 1830 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1831 ddt_get_dedup_dspace(spa); 1832 if (spa->spa_vdev_removal != NULL) { 1833 /* 1834 * We can't allocate from the removing device, so subtract 1835 * its size if it was included in dspace (i.e. if this is a 1836 * normal-class vdev, not special/dedup). This prevents the 1837 * DMU/DSL from filling up the (now smaller) pool while we 1838 * are in the middle of removing the device. 1839 * 1840 * Note that the DMU/DSL doesn't actually know or care 1841 * how much space is allocated (it does its own tracking 1842 * of how much space has been logically used). So it 1843 * doesn't matter that the data we are moving may be 1844 * allocated twice (on the old device and the new 1845 * device). 1846 */ 1847 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1848 vdev_t *vd = 1849 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id); 1850 if (vd->vdev_mg->mg_class == spa_normal_class(spa)) { 1851 spa->spa_dspace -= spa_deflate(spa) ? 1852 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; 1853 } 1854 spa_config_exit(spa, SCL_VDEV, FTAG); 1855 } 1856 } 1857 1858 /* 1859 * Return the failure mode that has been set to this pool. The default 1860 * behavior will be to block all I/Os when a complete failure occurs. 1861 */ 1862 uint64_t 1863 spa_get_failmode(spa_t *spa) 1864 { 1865 return (spa->spa_failmode); 1866 } 1867 1868 boolean_t 1869 spa_suspended(spa_t *spa) 1870 { 1871 return (spa->spa_suspended != ZIO_SUSPEND_NONE); 1872 } 1873 1874 uint64_t 1875 spa_version(spa_t *spa) 1876 { 1877 return (spa->spa_ubsync.ub_version); 1878 } 1879 1880 boolean_t 1881 spa_deflate(spa_t *spa) 1882 { 1883 return (spa->spa_deflate); 1884 } 1885 1886 metaslab_class_t * 1887 spa_normal_class(spa_t *spa) 1888 { 1889 return (spa->spa_normal_class); 1890 } 1891 1892 metaslab_class_t * 1893 spa_log_class(spa_t *spa) 1894 { 1895 return (spa->spa_log_class); 1896 } 1897 1898 metaslab_class_t * 1899 spa_embedded_log_class(spa_t *spa) 1900 { 1901 return (spa->spa_embedded_log_class); 1902 } 1903 1904 metaslab_class_t * 1905 spa_special_class(spa_t *spa) 1906 { 1907 return (spa->spa_special_class); 1908 } 1909 1910 metaslab_class_t * 1911 spa_dedup_class(spa_t *spa) 1912 { 1913 return (spa->spa_dedup_class); 1914 } 1915 1916 /* 1917 * Locate an appropriate allocation class 1918 */ 1919 metaslab_class_t * 1920 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype, 1921 uint_t level, uint_t special_smallblk) 1922 { 1923 /* 1924 * ZIL allocations determine their class in zio_alloc_zil(). 1925 */ 1926 ASSERT(objtype != DMU_OT_INTENT_LOG); 1927 1928 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0; 1929 1930 if (DMU_OT_IS_DDT(objtype)) { 1931 if (spa->spa_dedup_class->mc_groups != 0) 1932 return (spa_dedup_class(spa)); 1933 else if (has_special_class && zfs_ddt_data_is_special) 1934 return (spa_special_class(spa)); 1935 else 1936 return (spa_normal_class(spa)); 1937 } 1938 1939 /* Indirect blocks for user data can land in special if allowed */ 1940 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) { 1941 if (has_special_class && zfs_user_indirect_is_special) 1942 return (spa_special_class(spa)); 1943 else 1944 return (spa_normal_class(spa)); 1945 } 1946 1947 if (DMU_OT_IS_METADATA(objtype) || level > 0) { 1948 if (has_special_class) 1949 return (spa_special_class(spa)); 1950 else 1951 return (spa_normal_class(spa)); 1952 } 1953 1954 /* 1955 * Allow small file blocks in special class in some cases (like 1956 * for the dRAID vdev feature). But always leave a reserve of 1957 * zfs_special_class_metadata_reserve_pct exclusively for metadata. 1958 */ 1959 if (DMU_OT_IS_FILE(objtype) && 1960 has_special_class && size <= special_smallblk) { 1961 metaslab_class_t *special = spa_special_class(spa); 1962 uint64_t alloc = metaslab_class_get_alloc(special); 1963 uint64_t space = metaslab_class_get_space(special); 1964 uint64_t limit = 1965 (space * (100 - zfs_special_class_metadata_reserve_pct)) 1966 / 100; 1967 1968 if (alloc < limit) 1969 return (special); 1970 } 1971 1972 return (spa_normal_class(spa)); 1973 } 1974 1975 void 1976 spa_evicting_os_register(spa_t *spa, objset_t *os) 1977 { 1978 mutex_enter(&spa->spa_evicting_os_lock); 1979 list_insert_head(&spa->spa_evicting_os_list, os); 1980 mutex_exit(&spa->spa_evicting_os_lock); 1981 } 1982 1983 void 1984 spa_evicting_os_deregister(spa_t *spa, objset_t *os) 1985 { 1986 mutex_enter(&spa->spa_evicting_os_lock); 1987 list_remove(&spa->spa_evicting_os_list, os); 1988 cv_broadcast(&spa->spa_evicting_os_cv); 1989 mutex_exit(&spa->spa_evicting_os_lock); 1990 } 1991 1992 void 1993 spa_evicting_os_wait(spa_t *spa) 1994 { 1995 mutex_enter(&spa->spa_evicting_os_lock); 1996 while (!list_is_empty(&spa->spa_evicting_os_list)) 1997 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock); 1998 mutex_exit(&spa->spa_evicting_os_lock); 1999 2000 dmu_buf_user_evict_wait(); 2001 } 2002 2003 int 2004 spa_max_replication(spa_t *spa) 2005 { 2006 /* 2007 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 2008 * handle BPs with more than one DVA allocated. Set our max 2009 * replication level accordingly. 2010 */ 2011 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 2012 return (1); 2013 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 2014 } 2015 2016 int 2017 spa_prev_software_version(spa_t *spa) 2018 { 2019 return (spa->spa_prev_software_version); 2020 } 2021 2022 uint64_t 2023 spa_deadman_synctime(spa_t *spa) 2024 { 2025 return (spa->spa_deadman_synctime); 2026 } 2027 2028 spa_autotrim_t 2029 spa_get_autotrim(spa_t *spa) 2030 { 2031 return (spa->spa_autotrim); 2032 } 2033 2034 uint64_t 2035 spa_deadman_ziotime(spa_t *spa) 2036 { 2037 return (spa->spa_deadman_ziotime); 2038 } 2039 2040 uint64_t 2041 spa_get_deadman_failmode(spa_t *spa) 2042 { 2043 return (spa->spa_deadman_failmode); 2044 } 2045 2046 void 2047 spa_set_deadman_failmode(spa_t *spa, const char *failmode) 2048 { 2049 if (strcmp(failmode, "wait") == 0) 2050 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2051 else if (strcmp(failmode, "continue") == 0) 2052 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE; 2053 else if (strcmp(failmode, "panic") == 0) 2054 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC; 2055 else 2056 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT; 2057 } 2058 2059 void 2060 spa_set_deadman_ziotime(hrtime_t ns) 2061 { 2062 spa_t *spa = NULL; 2063 2064 if (spa_mode_global != SPA_MODE_UNINIT) { 2065 mutex_enter(&spa_namespace_lock); 2066 while ((spa = spa_next(spa)) != NULL) 2067 spa->spa_deadman_ziotime = ns; 2068 mutex_exit(&spa_namespace_lock); 2069 } 2070 } 2071 2072 void 2073 spa_set_deadman_synctime(hrtime_t ns) 2074 { 2075 spa_t *spa = NULL; 2076 2077 if (spa_mode_global != SPA_MODE_UNINIT) { 2078 mutex_enter(&spa_namespace_lock); 2079 while ((spa = spa_next(spa)) != NULL) 2080 spa->spa_deadman_synctime = ns; 2081 mutex_exit(&spa_namespace_lock); 2082 } 2083 } 2084 2085 uint64_t 2086 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 2087 { 2088 uint64_t asize = DVA_GET_ASIZE(dva); 2089 uint64_t dsize = asize; 2090 2091 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2092 2093 if (asize != 0 && spa->spa_deflate) { 2094 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 2095 if (vd != NULL) 2096 dsize = (asize >> SPA_MINBLOCKSHIFT) * 2097 vd->vdev_deflate_ratio; 2098 } 2099 2100 return (dsize); 2101 } 2102 2103 uint64_t 2104 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 2105 { 2106 uint64_t dsize = 0; 2107 2108 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2109 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2110 2111 return (dsize); 2112 } 2113 2114 uint64_t 2115 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 2116 { 2117 uint64_t dsize = 0; 2118 2119 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2120 2121 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 2122 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 2123 2124 spa_config_exit(spa, SCL_VDEV, FTAG); 2125 2126 return (dsize); 2127 } 2128 2129 uint64_t 2130 spa_dirty_data(spa_t *spa) 2131 { 2132 return (spa->spa_dsl_pool->dp_dirty_total); 2133 } 2134 2135 /* 2136 * ========================================================================== 2137 * SPA Import Progress Routines 2138 * ========================================================================== 2139 */ 2140 2141 typedef struct spa_import_progress { 2142 uint64_t pool_guid; /* unique id for updates */ 2143 char *pool_name; 2144 spa_load_state_t spa_load_state; 2145 uint64_t mmp_sec_remaining; /* MMP activity check */ 2146 uint64_t spa_load_max_txg; /* rewind txg */ 2147 procfs_list_node_t smh_node; 2148 } spa_import_progress_t; 2149 2150 spa_history_list_t *spa_import_progress_list = NULL; 2151 2152 static int 2153 spa_import_progress_show_header(struct seq_file *f) 2154 { 2155 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid", 2156 "load_state", "multihost_secs", "max_txg", 2157 "pool_name"); 2158 return (0); 2159 } 2160 2161 static int 2162 spa_import_progress_show(struct seq_file *f, void *data) 2163 { 2164 spa_import_progress_t *sip = (spa_import_progress_t *)data; 2165 2166 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n", 2167 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state, 2168 (u_longlong_t)sip->mmp_sec_remaining, 2169 (u_longlong_t)sip->spa_load_max_txg, 2170 (sip->pool_name ? sip->pool_name : "-")); 2171 2172 return (0); 2173 } 2174 2175 /* Remove oldest elements from list until there are no more than 'size' left */ 2176 static void 2177 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size) 2178 { 2179 spa_import_progress_t *sip; 2180 while (shl->size > size) { 2181 sip = list_remove_head(&shl->procfs_list.pl_list); 2182 if (sip->pool_name) 2183 spa_strfree(sip->pool_name); 2184 kmem_free(sip, sizeof (spa_import_progress_t)); 2185 shl->size--; 2186 } 2187 2188 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list)); 2189 } 2190 2191 static void 2192 spa_import_progress_init(void) 2193 { 2194 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t), 2195 KM_SLEEP); 2196 2197 spa_import_progress_list->size = 0; 2198 2199 spa_import_progress_list->procfs_list.pl_private = 2200 spa_import_progress_list; 2201 2202 procfs_list_install("zfs", 2203 NULL, 2204 "import_progress", 2205 0644, 2206 &spa_import_progress_list->procfs_list, 2207 spa_import_progress_show, 2208 spa_import_progress_show_header, 2209 NULL, 2210 offsetof(spa_import_progress_t, smh_node)); 2211 } 2212 2213 static void 2214 spa_import_progress_destroy(void) 2215 { 2216 spa_history_list_t *shl = spa_import_progress_list; 2217 procfs_list_uninstall(&shl->procfs_list); 2218 spa_import_progress_truncate(shl, 0); 2219 procfs_list_destroy(&shl->procfs_list); 2220 kmem_free(shl, sizeof (spa_history_list_t)); 2221 } 2222 2223 int 2224 spa_import_progress_set_state(uint64_t pool_guid, 2225 spa_load_state_t load_state) 2226 { 2227 spa_history_list_t *shl = spa_import_progress_list; 2228 spa_import_progress_t *sip; 2229 int error = ENOENT; 2230 2231 if (shl->size == 0) 2232 return (0); 2233 2234 mutex_enter(&shl->procfs_list.pl_lock); 2235 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2236 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2237 if (sip->pool_guid == pool_guid) { 2238 sip->spa_load_state = load_state; 2239 error = 0; 2240 break; 2241 } 2242 } 2243 mutex_exit(&shl->procfs_list.pl_lock); 2244 2245 return (error); 2246 } 2247 2248 int 2249 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg) 2250 { 2251 spa_history_list_t *shl = spa_import_progress_list; 2252 spa_import_progress_t *sip; 2253 int error = ENOENT; 2254 2255 if (shl->size == 0) 2256 return (0); 2257 2258 mutex_enter(&shl->procfs_list.pl_lock); 2259 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2260 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2261 if (sip->pool_guid == pool_guid) { 2262 sip->spa_load_max_txg = load_max_txg; 2263 error = 0; 2264 break; 2265 } 2266 } 2267 mutex_exit(&shl->procfs_list.pl_lock); 2268 2269 return (error); 2270 } 2271 2272 int 2273 spa_import_progress_set_mmp_check(uint64_t pool_guid, 2274 uint64_t mmp_sec_remaining) 2275 { 2276 spa_history_list_t *shl = spa_import_progress_list; 2277 spa_import_progress_t *sip; 2278 int error = ENOENT; 2279 2280 if (shl->size == 0) 2281 return (0); 2282 2283 mutex_enter(&shl->procfs_list.pl_lock); 2284 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2285 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2286 if (sip->pool_guid == pool_guid) { 2287 sip->mmp_sec_remaining = mmp_sec_remaining; 2288 error = 0; 2289 break; 2290 } 2291 } 2292 mutex_exit(&shl->procfs_list.pl_lock); 2293 2294 return (error); 2295 } 2296 2297 /* 2298 * A new import is in progress, add an entry. 2299 */ 2300 void 2301 spa_import_progress_add(spa_t *spa) 2302 { 2303 spa_history_list_t *shl = spa_import_progress_list; 2304 spa_import_progress_t *sip; 2305 char *poolname = NULL; 2306 2307 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP); 2308 sip->pool_guid = spa_guid(spa); 2309 2310 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME, 2311 &poolname); 2312 if (poolname == NULL) 2313 poolname = spa_name(spa); 2314 sip->pool_name = spa_strdup(poolname); 2315 sip->spa_load_state = spa_load_state(spa); 2316 2317 mutex_enter(&shl->procfs_list.pl_lock); 2318 procfs_list_add(&shl->procfs_list, sip); 2319 shl->size++; 2320 mutex_exit(&shl->procfs_list.pl_lock); 2321 } 2322 2323 void 2324 spa_import_progress_remove(uint64_t pool_guid) 2325 { 2326 spa_history_list_t *shl = spa_import_progress_list; 2327 spa_import_progress_t *sip; 2328 2329 mutex_enter(&shl->procfs_list.pl_lock); 2330 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL; 2331 sip = list_prev(&shl->procfs_list.pl_list, sip)) { 2332 if (sip->pool_guid == pool_guid) { 2333 if (sip->pool_name) 2334 spa_strfree(sip->pool_name); 2335 list_remove(&shl->procfs_list.pl_list, sip); 2336 shl->size--; 2337 kmem_free(sip, sizeof (spa_import_progress_t)); 2338 break; 2339 } 2340 } 2341 mutex_exit(&shl->procfs_list.pl_lock); 2342 } 2343 2344 /* 2345 * ========================================================================== 2346 * Initialization and Termination 2347 * ========================================================================== 2348 */ 2349 2350 static int 2351 spa_name_compare(const void *a1, const void *a2) 2352 { 2353 const spa_t *s1 = a1; 2354 const spa_t *s2 = a2; 2355 int s; 2356 2357 s = strcmp(s1->spa_name, s2->spa_name); 2358 2359 return (TREE_ISIGN(s)); 2360 } 2361 2362 void 2363 spa_boot_init(void) 2364 { 2365 spa_config_load(); 2366 } 2367 2368 void 2369 spa_init(spa_mode_t mode) 2370 { 2371 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 2372 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 2373 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 2374 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 2375 2376 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 2377 offsetof(spa_t, spa_avl)); 2378 2379 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 2380 offsetof(spa_aux_t, aux_avl)); 2381 2382 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 2383 offsetof(spa_aux_t, aux_avl)); 2384 2385 spa_mode_global = mode; 2386 2387 #ifndef _KERNEL 2388 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) { 2389 struct sigaction sa; 2390 2391 sa.sa_flags = SA_SIGINFO; 2392 sigemptyset(&sa.sa_mask); 2393 sa.sa_sigaction = arc_buf_sigsegv; 2394 2395 if (sigaction(SIGSEGV, &sa, NULL) == -1) { 2396 perror("could not enable watchpoints: " 2397 "sigaction(SIGSEGV, ...) = "); 2398 } else { 2399 arc_watch = B_TRUE; 2400 } 2401 } 2402 #endif 2403 2404 fm_init(); 2405 zfs_refcount_init(); 2406 unique_init(); 2407 zfs_btree_init(); 2408 metaslab_stat_init(); 2409 ddt_init(); 2410 zio_init(); 2411 dmu_init(); 2412 zil_init(); 2413 vdev_cache_stat_init(); 2414 vdev_mirror_stat_init(); 2415 vdev_raidz_math_init(); 2416 vdev_file_init(); 2417 zfs_prop_init(); 2418 zpool_prop_init(); 2419 zpool_feature_init(); 2420 spa_config_load(); 2421 l2arc_start(); 2422 scan_init(); 2423 qat_init(); 2424 spa_import_progress_init(); 2425 } 2426 2427 void 2428 spa_fini(void) 2429 { 2430 l2arc_stop(); 2431 2432 spa_evict_all(); 2433 2434 vdev_file_fini(); 2435 vdev_cache_stat_fini(); 2436 vdev_mirror_stat_fini(); 2437 vdev_raidz_math_fini(); 2438 zil_fini(); 2439 dmu_fini(); 2440 zio_fini(); 2441 ddt_fini(); 2442 metaslab_stat_fini(); 2443 zfs_btree_fini(); 2444 unique_fini(); 2445 zfs_refcount_fini(); 2446 fm_fini(); 2447 scan_fini(); 2448 qat_fini(); 2449 spa_import_progress_destroy(); 2450 2451 avl_destroy(&spa_namespace_avl); 2452 avl_destroy(&spa_spare_avl); 2453 avl_destroy(&spa_l2cache_avl); 2454 2455 cv_destroy(&spa_namespace_cv); 2456 mutex_destroy(&spa_namespace_lock); 2457 mutex_destroy(&spa_spare_lock); 2458 mutex_destroy(&spa_l2cache_lock); 2459 } 2460 2461 /* 2462 * Return whether this pool has a dedicated slog device. No locking needed. 2463 * It's not a problem if the wrong answer is returned as it's only for 2464 * performance and not correctness. 2465 */ 2466 boolean_t 2467 spa_has_slogs(spa_t *spa) 2468 { 2469 return (spa->spa_log_class->mc_groups != 0); 2470 } 2471 2472 spa_log_state_t 2473 spa_get_log_state(spa_t *spa) 2474 { 2475 return (spa->spa_log_state); 2476 } 2477 2478 void 2479 spa_set_log_state(spa_t *spa, spa_log_state_t state) 2480 { 2481 spa->spa_log_state = state; 2482 } 2483 2484 boolean_t 2485 spa_is_root(spa_t *spa) 2486 { 2487 return (spa->spa_is_root); 2488 } 2489 2490 boolean_t 2491 spa_writeable(spa_t *spa) 2492 { 2493 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config); 2494 } 2495 2496 /* 2497 * Returns true if there is a pending sync task in any of the current 2498 * syncing txg, the current quiescing txg, or the current open txg. 2499 */ 2500 boolean_t 2501 spa_has_pending_synctask(spa_t *spa) 2502 { 2503 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) || 2504 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks)); 2505 } 2506 2507 spa_mode_t 2508 spa_mode(spa_t *spa) 2509 { 2510 return (spa->spa_mode); 2511 } 2512 2513 uint64_t 2514 spa_bootfs(spa_t *spa) 2515 { 2516 return (spa->spa_bootfs); 2517 } 2518 2519 uint64_t 2520 spa_delegation(spa_t *spa) 2521 { 2522 return (spa->spa_delegation); 2523 } 2524 2525 objset_t * 2526 spa_meta_objset(spa_t *spa) 2527 { 2528 return (spa->spa_meta_objset); 2529 } 2530 2531 enum zio_checksum 2532 spa_dedup_checksum(spa_t *spa) 2533 { 2534 return (spa->spa_dedup_checksum); 2535 } 2536 2537 /* 2538 * Reset pool scan stat per scan pass (or reboot). 2539 */ 2540 void 2541 spa_scan_stat_init(spa_t *spa) 2542 { 2543 /* data not stored on disk */ 2544 spa->spa_scan_pass_start = gethrestime_sec(); 2545 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan)) 2546 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start; 2547 else 2548 spa->spa_scan_pass_scrub_pause = 0; 2549 spa->spa_scan_pass_scrub_spent_paused = 0; 2550 spa->spa_scan_pass_exam = 0; 2551 spa->spa_scan_pass_issued = 0; 2552 vdev_scan_stat_init(spa->spa_root_vdev); 2553 } 2554 2555 /* 2556 * Get scan stats for zpool status reports 2557 */ 2558 int 2559 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 2560 { 2561 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 2562 2563 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 2564 return (SET_ERROR(ENOENT)); 2565 bzero(ps, sizeof (pool_scan_stat_t)); 2566 2567 /* data stored on disk */ 2568 ps->pss_func = scn->scn_phys.scn_func; 2569 ps->pss_state = scn->scn_phys.scn_state; 2570 ps->pss_start_time = scn->scn_phys.scn_start_time; 2571 ps->pss_end_time = scn->scn_phys.scn_end_time; 2572 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 2573 ps->pss_examined = scn->scn_phys.scn_examined; 2574 ps->pss_to_process = scn->scn_phys.scn_to_process; 2575 ps->pss_processed = scn->scn_phys.scn_processed; 2576 ps->pss_errors = scn->scn_phys.scn_errors; 2577 2578 /* data not stored on disk */ 2579 ps->pss_pass_exam = spa->spa_scan_pass_exam; 2580 ps->pss_pass_start = spa->spa_scan_pass_start; 2581 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause; 2582 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused; 2583 ps->pss_pass_issued = spa->spa_scan_pass_issued; 2584 ps->pss_issued = 2585 scn->scn_issued_before_pass + spa->spa_scan_pass_issued; 2586 2587 return (0); 2588 } 2589 2590 int 2591 spa_maxblocksize(spa_t *spa) 2592 { 2593 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) 2594 return (SPA_MAXBLOCKSIZE); 2595 else 2596 return (SPA_OLD_MAXBLOCKSIZE); 2597 } 2598 2599 2600 /* 2601 * Returns the txg that the last device removal completed. No indirect mappings 2602 * have been added since this txg. 2603 */ 2604 uint64_t 2605 spa_get_last_removal_txg(spa_t *spa) 2606 { 2607 uint64_t vdevid; 2608 uint64_t ret = -1ULL; 2609 2610 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2611 /* 2612 * sr_prev_indirect_vdev is only modified while holding all the 2613 * config locks, so it is sufficient to hold SCL_VDEV as reader when 2614 * examining it. 2615 */ 2616 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev; 2617 2618 while (vdevid != -1ULL) { 2619 vdev_t *vd = vdev_lookup_top(spa, vdevid); 2620 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 2621 2622 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 2623 2624 /* 2625 * If the removal did not remap any data, we don't care. 2626 */ 2627 if (vdev_indirect_births_count(vib) != 0) { 2628 ret = vdev_indirect_births_last_entry_txg(vib); 2629 break; 2630 } 2631 2632 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev; 2633 } 2634 spa_config_exit(spa, SCL_VDEV, FTAG); 2635 2636 IMPLY(ret != -1ULL, 2637 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL)); 2638 2639 return (ret); 2640 } 2641 2642 int 2643 spa_maxdnodesize(spa_t *spa) 2644 { 2645 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) 2646 return (DNODE_MAX_SIZE); 2647 else 2648 return (DNODE_MIN_SIZE); 2649 } 2650 2651 boolean_t 2652 spa_multihost(spa_t *spa) 2653 { 2654 return (spa->spa_multihost ? B_TRUE : B_FALSE); 2655 } 2656 2657 uint32_t 2658 spa_get_hostid(spa_t *spa) 2659 { 2660 return (spa->spa_hostid); 2661 } 2662 2663 boolean_t 2664 spa_trust_config(spa_t *spa) 2665 { 2666 return (spa->spa_trust_config); 2667 } 2668 2669 uint64_t 2670 spa_missing_tvds_allowed(spa_t *spa) 2671 { 2672 return (spa->spa_missing_tvds_allowed); 2673 } 2674 2675 space_map_t * 2676 spa_syncing_log_sm(spa_t *spa) 2677 { 2678 return (spa->spa_syncing_log_sm); 2679 } 2680 2681 void 2682 spa_set_missing_tvds(spa_t *spa, uint64_t missing) 2683 { 2684 spa->spa_missing_tvds = missing; 2685 } 2686 2687 /* 2688 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc). 2689 */ 2690 const char * 2691 spa_state_to_name(spa_t *spa) 2692 { 2693 ASSERT3P(spa, !=, NULL); 2694 2695 /* 2696 * it is possible for the spa to exist, without root vdev 2697 * as the spa transitions during import/export 2698 */ 2699 vdev_t *rvd = spa->spa_root_vdev; 2700 if (rvd == NULL) { 2701 return ("TRANSITIONING"); 2702 } 2703 vdev_state_t state = rvd->vdev_state; 2704 vdev_aux_t aux = rvd->vdev_stat.vs_aux; 2705 2706 if (spa_suspended(spa) && 2707 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)) 2708 return ("SUSPENDED"); 2709 2710 switch (state) { 2711 case VDEV_STATE_CLOSED: 2712 case VDEV_STATE_OFFLINE: 2713 return ("OFFLINE"); 2714 case VDEV_STATE_REMOVED: 2715 return ("REMOVED"); 2716 case VDEV_STATE_CANT_OPEN: 2717 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG) 2718 return ("FAULTED"); 2719 else if (aux == VDEV_AUX_SPLIT_POOL) 2720 return ("SPLIT"); 2721 else 2722 return ("UNAVAIL"); 2723 case VDEV_STATE_FAULTED: 2724 return ("FAULTED"); 2725 case VDEV_STATE_DEGRADED: 2726 return ("DEGRADED"); 2727 case VDEV_STATE_HEALTHY: 2728 return ("ONLINE"); 2729 default: 2730 break; 2731 } 2732 2733 return ("UNKNOWN"); 2734 } 2735 2736 boolean_t 2737 spa_top_vdevs_spacemap_addressable(spa_t *spa) 2738 { 2739 vdev_t *rvd = spa->spa_root_vdev; 2740 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2741 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c])) 2742 return (B_FALSE); 2743 } 2744 return (B_TRUE); 2745 } 2746 2747 boolean_t 2748 spa_has_checkpoint(spa_t *spa) 2749 { 2750 return (spa->spa_checkpoint_txg != 0); 2751 } 2752 2753 boolean_t 2754 spa_importing_readonly_checkpoint(spa_t *spa) 2755 { 2756 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) && 2757 spa->spa_mode == SPA_MODE_READ); 2758 } 2759 2760 uint64_t 2761 spa_min_claim_txg(spa_t *spa) 2762 { 2763 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg; 2764 2765 if (checkpoint_txg != 0) 2766 return (checkpoint_txg + 1); 2767 2768 return (spa->spa_first_txg); 2769 } 2770 2771 /* 2772 * If there is a checkpoint, async destroys may consume more space from 2773 * the pool instead of freeing it. In an attempt to save the pool from 2774 * getting suspended when it is about to run out of space, we stop 2775 * processing async destroys. 2776 */ 2777 boolean_t 2778 spa_suspend_async_destroy(spa_t *spa) 2779 { 2780 dsl_pool_t *dp = spa_get_dsl(spa); 2781 2782 uint64_t unreserved = dsl_pool_unreserved_space(dp, 2783 ZFS_SPACE_CHECK_EXTRA_RESERVED); 2784 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes; 2785 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0; 2786 2787 if (spa_has_checkpoint(spa) && avail == 0) 2788 return (B_TRUE); 2789 2790 return (B_FALSE); 2791 } 2792 2793 #if defined(_KERNEL) 2794 2795 int 2796 param_set_deadman_failmode_common(const char *val) 2797 { 2798 spa_t *spa = NULL; 2799 char *p; 2800 2801 if (val == NULL) 2802 return (SET_ERROR(EINVAL)); 2803 2804 if ((p = strchr(val, '\n')) != NULL) 2805 *p = '\0'; 2806 2807 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 && 2808 strcmp(val, "panic")) 2809 return (SET_ERROR(EINVAL)); 2810 2811 if (spa_mode_global != SPA_MODE_UNINIT) { 2812 mutex_enter(&spa_namespace_lock); 2813 while ((spa = spa_next(spa)) != NULL) 2814 spa_set_deadman_failmode(spa, val); 2815 mutex_exit(&spa_namespace_lock); 2816 } 2817 2818 return (0); 2819 } 2820 #endif 2821 2822 /* Namespace manipulation */ 2823 EXPORT_SYMBOL(spa_lookup); 2824 EXPORT_SYMBOL(spa_add); 2825 EXPORT_SYMBOL(spa_remove); 2826 EXPORT_SYMBOL(spa_next); 2827 2828 /* Refcount functions */ 2829 EXPORT_SYMBOL(spa_open_ref); 2830 EXPORT_SYMBOL(spa_close); 2831 EXPORT_SYMBOL(spa_refcount_zero); 2832 2833 /* Pool configuration lock */ 2834 EXPORT_SYMBOL(spa_config_tryenter); 2835 EXPORT_SYMBOL(spa_config_enter); 2836 EXPORT_SYMBOL(spa_config_exit); 2837 EXPORT_SYMBOL(spa_config_held); 2838 2839 /* Pool vdev add/remove lock */ 2840 EXPORT_SYMBOL(spa_vdev_enter); 2841 EXPORT_SYMBOL(spa_vdev_exit); 2842 2843 /* Pool vdev state change lock */ 2844 EXPORT_SYMBOL(spa_vdev_state_enter); 2845 EXPORT_SYMBOL(spa_vdev_state_exit); 2846 2847 /* Accessor functions */ 2848 EXPORT_SYMBOL(spa_shutting_down); 2849 EXPORT_SYMBOL(spa_get_dsl); 2850 EXPORT_SYMBOL(spa_get_rootblkptr); 2851 EXPORT_SYMBOL(spa_set_rootblkptr); 2852 EXPORT_SYMBOL(spa_altroot); 2853 EXPORT_SYMBOL(spa_sync_pass); 2854 EXPORT_SYMBOL(spa_name); 2855 EXPORT_SYMBOL(spa_guid); 2856 EXPORT_SYMBOL(spa_last_synced_txg); 2857 EXPORT_SYMBOL(spa_first_txg); 2858 EXPORT_SYMBOL(spa_syncing_txg); 2859 EXPORT_SYMBOL(spa_version); 2860 EXPORT_SYMBOL(spa_state); 2861 EXPORT_SYMBOL(spa_load_state); 2862 EXPORT_SYMBOL(spa_freeze_txg); 2863 EXPORT_SYMBOL(spa_get_dspace); 2864 EXPORT_SYMBOL(spa_update_dspace); 2865 EXPORT_SYMBOL(spa_deflate); 2866 EXPORT_SYMBOL(spa_normal_class); 2867 EXPORT_SYMBOL(spa_log_class); 2868 EXPORT_SYMBOL(spa_special_class); 2869 EXPORT_SYMBOL(spa_preferred_class); 2870 EXPORT_SYMBOL(spa_max_replication); 2871 EXPORT_SYMBOL(spa_prev_software_version); 2872 EXPORT_SYMBOL(spa_get_failmode); 2873 EXPORT_SYMBOL(spa_suspended); 2874 EXPORT_SYMBOL(spa_bootfs); 2875 EXPORT_SYMBOL(spa_delegation); 2876 EXPORT_SYMBOL(spa_meta_objset); 2877 EXPORT_SYMBOL(spa_maxblocksize); 2878 EXPORT_SYMBOL(spa_maxdnodesize); 2879 2880 /* Miscellaneous support routines */ 2881 EXPORT_SYMBOL(spa_guid_exists); 2882 EXPORT_SYMBOL(spa_strdup); 2883 EXPORT_SYMBOL(spa_strfree); 2884 EXPORT_SYMBOL(spa_get_random); 2885 EXPORT_SYMBOL(spa_generate_guid); 2886 EXPORT_SYMBOL(snprintf_blkptr); 2887 EXPORT_SYMBOL(spa_freeze); 2888 EXPORT_SYMBOL(spa_upgrade); 2889 EXPORT_SYMBOL(spa_evict_all); 2890 EXPORT_SYMBOL(spa_lookup_by_guid); 2891 EXPORT_SYMBOL(spa_has_spare); 2892 EXPORT_SYMBOL(dva_get_dsize_sync); 2893 EXPORT_SYMBOL(bp_get_dsize_sync); 2894 EXPORT_SYMBOL(bp_get_dsize); 2895 EXPORT_SYMBOL(spa_has_slogs); 2896 EXPORT_SYMBOL(spa_is_root); 2897 EXPORT_SYMBOL(spa_writeable); 2898 EXPORT_SYMBOL(spa_mode); 2899 EXPORT_SYMBOL(spa_namespace_lock); 2900 EXPORT_SYMBOL(spa_trust_config); 2901 EXPORT_SYMBOL(spa_missing_tvds_allowed); 2902 EXPORT_SYMBOL(spa_set_missing_tvds); 2903 EXPORT_SYMBOL(spa_state_to_name); 2904 EXPORT_SYMBOL(spa_importing_readonly_checkpoint); 2905 EXPORT_SYMBOL(spa_min_claim_txg); 2906 EXPORT_SYMBOL(spa_suspend_async_destroy); 2907 EXPORT_SYMBOL(spa_has_checkpoint); 2908 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable); 2909 2910 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW, 2911 "Set additional debugging flags"); 2912 2913 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW, 2914 "Set to attempt to recover from fatal errors"); 2915 2916 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW, 2917 "Set to ignore IO errors during free and permanently leak the space"); 2918 2919 ZFS_MODULE_PARAM(zfs, zfs_, deadman_checktime_ms, ULONG, ZMOD_RW, 2920 "Dead I/O check interval in milliseconds"); 2921 2922 ZFS_MODULE_PARAM(zfs, zfs_, deadman_enabled, INT, ZMOD_RW, 2923 "Enable deadman timer"); 2924 2925 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW, 2926 "SPA size estimate multiplication factor"); 2927 2928 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW, 2929 "Place DDT data into the special class"); 2930 2931 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW, 2932 "Place user data indirect blocks into the special class"); 2933 2934 /* BEGIN CSTYLED */ 2935 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode, 2936 param_set_deadman_failmode, param_get_charp, ZMOD_RW, 2937 "Failmode for deadman timer"); 2938 2939 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms, 2940 param_set_deadman_synctime, param_get_ulong, ZMOD_RW, 2941 "Pool sync expiration time in milliseconds"); 2942 2943 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms, 2944 param_set_deadman_ziotime, param_get_ulong, ZMOD_RW, 2945 "IO expiration time in milliseconds"); 2946 2947 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW, 2948 "Small file blocks in special vdevs depends on this much " 2949 "free space available"); 2950 /* END CSTYLED */ 2951 2952 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift, 2953 param_get_int, ZMOD_RW, "Reserved free space in pool"); 2954