1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 27 * Copyright 2013 Saso Kiselkov. All rights reserved. 28 * Copyright (c) 2014 Integros [integros.com] 29 * Copyright 2016 Toomas Soome <tsoome@me.com> 30 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 31 * Copyright 2018 Joyent, Inc. 32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved. 33 * Copyright 2017 Joyent, Inc. 34 * Copyright (c) 2017, Intel Corporation. 35 */ 36 37 /* 38 * SPA: Storage Pool Allocator 39 * 40 * This file contains all the routines used when modifying on-disk SPA state. 41 * This includes opening, importing, destroying, exporting a pool, and syncing a 42 * pool. 43 */ 44 45 #include <sys/zfs_context.h> 46 #include <sys/fm/fs/zfs.h> 47 #include <sys/spa_impl.h> 48 #include <sys/zio.h> 49 #include <sys/zio_checksum.h> 50 #include <sys/dmu.h> 51 #include <sys/dmu_tx.h> 52 #include <sys/zap.h> 53 #include <sys/zil.h> 54 #include <sys/ddt.h> 55 #include <sys/vdev_impl.h> 56 #include <sys/vdev_removal.h> 57 #include <sys/vdev_indirect_mapping.h> 58 #include <sys/vdev_indirect_births.h> 59 #include <sys/vdev_initialize.h> 60 #include <sys/vdev_rebuild.h> 61 #include <sys/vdev_trim.h> 62 #include <sys/vdev_disk.h> 63 #include <sys/metaslab.h> 64 #include <sys/metaslab_impl.h> 65 #include <sys/mmp.h> 66 #include <sys/uberblock_impl.h> 67 #include <sys/txg.h> 68 #include <sys/avl.h> 69 #include <sys/bpobj.h> 70 #include <sys/dmu_traverse.h> 71 #include <sys/dmu_objset.h> 72 #include <sys/unique.h> 73 #include <sys/dsl_pool.h> 74 #include <sys/dsl_dataset.h> 75 #include <sys/dsl_dir.h> 76 #include <sys/dsl_prop.h> 77 #include <sys/dsl_synctask.h> 78 #include <sys/fs/zfs.h> 79 #include <sys/arc.h> 80 #include <sys/callb.h> 81 #include <sys/systeminfo.h> 82 #include <sys/spa_boot.h> 83 #include <sys/zfs_ioctl.h> 84 #include <sys/dsl_scan.h> 85 #include <sys/zfeature.h> 86 #include <sys/dsl_destroy.h> 87 #include <sys/zvol.h> 88 89 #ifdef _KERNEL 90 #include <sys/fm/protocol.h> 91 #include <sys/fm/util.h> 92 #include <sys/callb.h> 93 #include <sys/zone.h> 94 #include <sys/vmsystm.h> 95 #endif /* _KERNEL */ 96 97 #include "zfs_prop.h" 98 #include "zfs_comutil.h" 99 100 /* 101 * The interval, in seconds, at which failed configuration cache file writes 102 * should be retried. 103 */ 104 int zfs_ccw_retry_interval = 300; 105 106 typedef enum zti_modes { 107 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 108 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 109 ZTI_MODE_NULL, /* don't create a taskq */ 110 ZTI_NMODES 111 } zti_modes_t; 112 113 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 114 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 } 115 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 116 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 117 118 #define ZTI_N(n) ZTI_P(n, 1) 119 #define ZTI_ONE ZTI_N(1) 120 121 typedef struct zio_taskq_info { 122 zti_modes_t zti_mode; 123 uint_t zti_value; 124 uint_t zti_count; 125 } zio_taskq_info_t; 126 127 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 128 "iss", "iss_h", "int", "int_h" 129 }; 130 131 /* 132 * This table defines the taskq settings for each ZFS I/O type. When 133 * initializing a pool, we use this table to create an appropriately sized 134 * taskq. Some operations are low volume and therefore have a small, static 135 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 136 * macros. Other operations process a large amount of data; the ZTI_BATCH 137 * macro causes us to create a taskq oriented for throughput. Some operations 138 * are so high frequency and short-lived that the taskq itself can become a 139 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 140 * additional degree of parallelism specified by the number of threads per- 141 * taskq and the number of taskqs; when dispatching an event in this case, the 142 * particular taskq is chosen at random. 143 * 144 * The different taskq priorities are to handle the different contexts (issue 145 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 146 * need to be handled with minimum delay. 147 */ 148 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 149 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 150 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 151 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 152 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */ 153 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 154 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 155 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 156 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */ 157 }; 158 159 static void spa_sync_version(void *arg, dmu_tx_t *tx); 160 static void spa_sync_props(void *arg, dmu_tx_t *tx); 161 static boolean_t spa_has_active_shared_spare(spa_t *spa); 162 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport); 163 static void spa_vdev_resilver_done(spa_t *spa); 164 165 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 166 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 167 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 168 169 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 170 171 /* 172 * Report any spa_load_verify errors found, but do not fail spa_load. 173 * This is used by zdb to analyze non-idle pools. 174 */ 175 boolean_t spa_load_verify_dryrun = B_FALSE; 176 177 /* 178 * This (illegal) pool name is used when temporarily importing a spa_t in order 179 * to get the vdev stats associated with the imported devices. 180 */ 181 #define TRYIMPORT_NAME "$import" 182 183 /* 184 * For debugging purposes: print out vdev tree during pool import. 185 */ 186 int spa_load_print_vdev_tree = B_FALSE; 187 188 /* 189 * A non-zero value for zfs_max_missing_tvds means that we allow importing 190 * pools with missing top-level vdevs. This is strictly intended for advanced 191 * pool recovery cases since missing data is almost inevitable. Pools with 192 * missing devices can only be imported read-only for safety reasons, and their 193 * fail-mode will be automatically set to "continue". 194 * 195 * With 1 missing vdev we should be able to import the pool and mount all 196 * datasets. User data that was not modified after the missing device has been 197 * added should be recoverable. This means that snapshots created prior to the 198 * addition of that device should be completely intact. 199 * 200 * With 2 missing vdevs, some datasets may fail to mount since there are 201 * dataset statistics that are stored as regular metadata. Some data might be 202 * recoverable if those vdevs were added recently. 203 * 204 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries 205 * may be missing entirely. Chances of data recovery are very low. Note that 206 * there are also risks of performing an inadvertent rewind as we might be 207 * missing all the vdevs with the latest uberblocks. 208 */ 209 unsigned long zfs_max_missing_tvds = 0; 210 211 /* 212 * The parameters below are similar to zfs_max_missing_tvds but are only 213 * intended for a preliminary open of the pool with an untrusted config which 214 * might be incomplete or out-dated. 215 * 216 * We are more tolerant for pools opened from a cachefile since we could have 217 * an out-dated cachefile where a device removal was not registered. 218 * We could have set the limit arbitrarily high but in the case where devices 219 * are really missing we would want to return the proper error codes; we chose 220 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available 221 * and we get a chance to retrieve the trusted config. 222 */ 223 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1; 224 225 /* 226 * In the case where config was assembled by scanning device paths (/dev/dsks 227 * by default) we are less tolerant since all the existing devices should have 228 * been detected and we want spa_load to return the right error codes. 229 */ 230 uint64_t zfs_max_missing_tvds_scan = 0; 231 232 /* 233 * Debugging aid that pauses spa_sync() towards the end. 234 */ 235 boolean_t zfs_pause_spa_sync = B_FALSE; 236 237 /* 238 * Variables to indicate the livelist condense zthr func should wait at certain 239 * points for the livelist to be removed - used to test condense/destroy races 240 */ 241 int zfs_livelist_condense_zthr_pause = 0; 242 int zfs_livelist_condense_sync_pause = 0; 243 244 /* 245 * Variables to track whether or not condense cancellation has been 246 * triggered in testing. 247 */ 248 int zfs_livelist_condense_sync_cancel = 0; 249 int zfs_livelist_condense_zthr_cancel = 0; 250 251 /* 252 * Variable to track whether or not extra ALLOC blkptrs were added to a 253 * livelist entry while it was being condensed (caused by the way we track 254 * remapped blkptrs in dbuf_remap_impl) 255 */ 256 int zfs_livelist_condense_new_alloc = 0; 257 258 /* 259 * ========================================================================== 260 * SPA properties routines 261 * ========================================================================== 262 */ 263 264 /* 265 * Add a (source=src, propname=propval) list to an nvlist. 266 */ 267 static void 268 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 269 uint64_t intval, zprop_source_t src) 270 { 271 const char *propname = zpool_prop_to_name(prop); 272 nvlist_t *propval; 273 274 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 275 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 276 277 if (strval != NULL) 278 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 279 else 280 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 281 282 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 283 nvlist_free(propval); 284 } 285 286 /* 287 * Get property values from the spa configuration. 288 */ 289 static void 290 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 291 { 292 vdev_t *rvd = spa->spa_root_vdev; 293 dsl_pool_t *pool = spa->spa_dsl_pool; 294 uint64_t size, alloc, cap, version; 295 const zprop_source_t src = ZPROP_SRC_NONE; 296 spa_config_dirent_t *dp; 297 metaslab_class_t *mc = spa_normal_class(spa); 298 299 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 300 301 if (rvd != NULL) { 302 alloc = metaslab_class_get_alloc(mc); 303 alloc += metaslab_class_get_alloc(spa_special_class(spa)); 304 alloc += metaslab_class_get_alloc(spa_dedup_class(spa)); 305 306 size = metaslab_class_get_space(mc); 307 size += metaslab_class_get_space(spa_special_class(spa)); 308 size += metaslab_class_get_space(spa_dedup_class(spa)); 309 310 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 311 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 312 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 313 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 314 size - alloc, src); 315 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL, 316 spa->spa_checkpoint_info.sci_dspace, src); 317 318 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 319 metaslab_class_fragmentation(mc), src); 320 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 321 metaslab_class_expandable_space(mc), src); 322 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 323 (spa_mode(spa) == SPA_MODE_READ), src); 324 325 cap = (size == 0) ? 0 : (alloc * 100 / size); 326 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 327 328 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 329 ddt_get_pool_dedup_ratio(spa), src); 330 331 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 332 rvd->vdev_state, src); 333 334 version = spa_version(spa); 335 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) { 336 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 337 version, ZPROP_SRC_DEFAULT); 338 } else { 339 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, 340 version, ZPROP_SRC_LOCAL); 341 } 342 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID, 343 NULL, spa_load_guid(spa), src); 344 } 345 346 if (pool != NULL) { 347 /* 348 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 349 * when opening pools before this version freedir will be NULL. 350 */ 351 if (pool->dp_free_dir != NULL) { 352 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 353 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes, 354 src); 355 } else { 356 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 357 NULL, 0, src); 358 } 359 360 if (pool->dp_leak_dir != NULL) { 361 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 362 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes, 363 src); 364 } else { 365 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 366 NULL, 0, src); 367 } 368 } 369 370 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 371 372 if (spa->spa_comment != NULL) { 373 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 374 0, ZPROP_SRC_LOCAL); 375 } 376 377 if (spa->spa_root != NULL) 378 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 379 0, ZPROP_SRC_LOCAL); 380 381 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 382 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 383 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE); 384 } else { 385 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL, 386 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE); 387 } 388 389 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) { 390 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 391 DNODE_MAX_SIZE, ZPROP_SRC_NONE); 392 } else { 393 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL, 394 DNODE_MIN_SIZE, ZPROP_SRC_NONE); 395 } 396 397 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 398 if (dp->scd_path == NULL) { 399 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 400 "none", 0, ZPROP_SRC_LOCAL); 401 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 402 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 403 dp->scd_path, 0, ZPROP_SRC_LOCAL); 404 } 405 } 406 } 407 408 /* 409 * Get zpool property values. 410 */ 411 int 412 spa_prop_get(spa_t *spa, nvlist_t **nvp) 413 { 414 objset_t *mos = spa->spa_meta_objset; 415 zap_cursor_t zc; 416 zap_attribute_t za; 417 dsl_pool_t *dp; 418 int err; 419 420 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP); 421 if (err) 422 return (err); 423 424 dp = spa_get_dsl(spa); 425 dsl_pool_config_enter(dp, FTAG); 426 mutex_enter(&spa->spa_props_lock); 427 428 /* 429 * Get properties from the spa config. 430 */ 431 spa_prop_get_config(spa, nvp); 432 433 /* If no pool property object, no more prop to get. */ 434 if (mos == NULL || spa->spa_pool_props_object == 0) 435 goto out; 436 437 /* 438 * Get properties from the MOS pool property object. 439 */ 440 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 441 (err = zap_cursor_retrieve(&zc, &za)) == 0; 442 zap_cursor_advance(&zc)) { 443 uint64_t intval = 0; 444 char *strval = NULL; 445 zprop_source_t src = ZPROP_SRC_DEFAULT; 446 zpool_prop_t prop; 447 448 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL) 449 continue; 450 451 switch (za.za_integer_length) { 452 case 8: 453 /* integer property */ 454 if (za.za_first_integer != 455 zpool_prop_default_numeric(prop)) 456 src = ZPROP_SRC_LOCAL; 457 458 if (prop == ZPOOL_PROP_BOOTFS) { 459 dsl_dataset_t *ds = NULL; 460 461 err = dsl_dataset_hold_obj(dp, 462 za.za_first_integer, FTAG, &ds); 463 if (err != 0) 464 break; 465 466 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, 467 KM_SLEEP); 468 dsl_dataset_name(ds, strval); 469 dsl_dataset_rele(ds, FTAG); 470 } else { 471 strval = NULL; 472 intval = za.za_first_integer; 473 } 474 475 spa_prop_add_list(*nvp, prop, strval, intval, src); 476 477 if (strval != NULL) 478 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN); 479 480 break; 481 482 case 1: 483 /* string property */ 484 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 485 err = zap_lookup(mos, spa->spa_pool_props_object, 486 za.za_name, 1, za.za_num_integers, strval); 487 if (err) { 488 kmem_free(strval, za.za_num_integers); 489 break; 490 } 491 spa_prop_add_list(*nvp, prop, strval, 0, src); 492 kmem_free(strval, za.za_num_integers); 493 break; 494 495 default: 496 break; 497 } 498 } 499 zap_cursor_fini(&zc); 500 out: 501 mutex_exit(&spa->spa_props_lock); 502 dsl_pool_config_exit(dp, FTAG); 503 if (err && err != ENOENT) { 504 nvlist_free(*nvp); 505 *nvp = NULL; 506 return (err); 507 } 508 509 return (0); 510 } 511 512 /* 513 * Validate the given pool properties nvlist and modify the list 514 * for the property values to be set. 515 */ 516 static int 517 spa_prop_validate(spa_t *spa, nvlist_t *props) 518 { 519 nvpair_t *elem; 520 int error = 0, reset_bootfs = 0; 521 uint64_t objnum = 0; 522 boolean_t has_feature = B_FALSE; 523 524 elem = NULL; 525 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 526 uint64_t intval; 527 char *strval, *slash, *check, *fname; 528 const char *propname = nvpair_name(elem); 529 zpool_prop_t prop = zpool_name_to_prop(propname); 530 531 switch (prop) { 532 case ZPOOL_PROP_INVAL: 533 if (!zpool_prop_feature(propname)) { 534 error = SET_ERROR(EINVAL); 535 break; 536 } 537 538 /* 539 * Sanitize the input. 540 */ 541 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 542 error = SET_ERROR(EINVAL); 543 break; 544 } 545 546 if (nvpair_value_uint64(elem, &intval) != 0) { 547 error = SET_ERROR(EINVAL); 548 break; 549 } 550 551 if (intval != 0) { 552 error = SET_ERROR(EINVAL); 553 break; 554 } 555 556 fname = strchr(propname, '@') + 1; 557 if (zfeature_lookup_name(fname, NULL) != 0) { 558 error = SET_ERROR(EINVAL); 559 break; 560 } 561 562 has_feature = B_TRUE; 563 break; 564 565 case ZPOOL_PROP_VERSION: 566 error = nvpair_value_uint64(elem, &intval); 567 if (!error && 568 (intval < spa_version(spa) || 569 intval > SPA_VERSION_BEFORE_FEATURES || 570 has_feature)) 571 error = SET_ERROR(EINVAL); 572 break; 573 574 case ZPOOL_PROP_DELEGATION: 575 case ZPOOL_PROP_AUTOREPLACE: 576 case ZPOOL_PROP_LISTSNAPS: 577 case ZPOOL_PROP_AUTOEXPAND: 578 case ZPOOL_PROP_AUTOTRIM: 579 error = nvpair_value_uint64(elem, &intval); 580 if (!error && intval > 1) 581 error = SET_ERROR(EINVAL); 582 break; 583 584 case ZPOOL_PROP_MULTIHOST: 585 error = nvpair_value_uint64(elem, &intval); 586 if (!error && intval > 1) 587 error = SET_ERROR(EINVAL); 588 589 if (!error) { 590 uint32_t hostid = zone_get_hostid(NULL); 591 if (hostid) 592 spa->spa_hostid = hostid; 593 else 594 error = SET_ERROR(ENOTSUP); 595 } 596 597 break; 598 599 case ZPOOL_PROP_BOOTFS: 600 /* 601 * If the pool version is less than SPA_VERSION_BOOTFS, 602 * or the pool is still being created (version == 0), 603 * the bootfs property cannot be set. 604 */ 605 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 606 error = SET_ERROR(ENOTSUP); 607 break; 608 } 609 610 /* 611 * Make sure the vdev config is bootable 612 */ 613 if (!vdev_is_bootable(spa->spa_root_vdev)) { 614 error = SET_ERROR(ENOTSUP); 615 break; 616 } 617 618 reset_bootfs = 1; 619 620 error = nvpair_value_string(elem, &strval); 621 622 if (!error) { 623 objset_t *os; 624 625 if (strval == NULL || strval[0] == '\0') { 626 objnum = zpool_prop_default_numeric( 627 ZPOOL_PROP_BOOTFS); 628 break; 629 } 630 631 error = dmu_objset_hold(strval, FTAG, &os); 632 if (error != 0) 633 break; 634 635 /* Must be ZPL. */ 636 if (dmu_objset_type(os) != DMU_OST_ZFS) { 637 error = SET_ERROR(ENOTSUP); 638 } else { 639 objnum = dmu_objset_id(os); 640 } 641 dmu_objset_rele(os, FTAG); 642 } 643 break; 644 645 case ZPOOL_PROP_FAILUREMODE: 646 error = nvpair_value_uint64(elem, &intval); 647 if (!error && intval > ZIO_FAILURE_MODE_PANIC) 648 error = SET_ERROR(EINVAL); 649 650 /* 651 * This is a special case which only occurs when 652 * the pool has completely failed. This allows 653 * the user to change the in-core failmode property 654 * without syncing it out to disk (I/Os might 655 * currently be blocked). We do this by returning 656 * EIO to the caller (spa_prop_set) to trick it 657 * into thinking we encountered a property validation 658 * error. 659 */ 660 if (!error && spa_suspended(spa)) { 661 spa->spa_failmode = intval; 662 error = SET_ERROR(EIO); 663 } 664 break; 665 666 case ZPOOL_PROP_CACHEFILE: 667 if ((error = nvpair_value_string(elem, &strval)) != 0) 668 break; 669 670 if (strval[0] == '\0') 671 break; 672 673 if (strcmp(strval, "none") == 0) 674 break; 675 676 if (strval[0] != '/') { 677 error = SET_ERROR(EINVAL); 678 break; 679 } 680 681 slash = strrchr(strval, '/'); 682 ASSERT(slash != NULL); 683 684 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 685 strcmp(slash, "/..") == 0) 686 error = SET_ERROR(EINVAL); 687 break; 688 689 case ZPOOL_PROP_COMMENT: 690 if ((error = nvpair_value_string(elem, &strval)) != 0) 691 break; 692 for (check = strval; *check != '\0'; check++) { 693 if (!isprint(*check)) { 694 error = SET_ERROR(EINVAL); 695 break; 696 } 697 } 698 if (strlen(strval) > ZPROP_MAX_COMMENT) 699 error = SET_ERROR(E2BIG); 700 break; 701 702 default: 703 break; 704 } 705 706 if (error) 707 break; 708 } 709 710 (void) nvlist_remove_all(props, 711 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO)); 712 713 if (!error && reset_bootfs) { 714 error = nvlist_remove(props, 715 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 716 717 if (!error) { 718 error = nvlist_add_uint64(props, 719 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 720 } 721 } 722 723 return (error); 724 } 725 726 void 727 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 728 { 729 char *cachefile; 730 spa_config_dirent_t *dp; 731 732 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 733 &cachefile) != 0) 734 return; 735 736 dp = kmem_alloc(sizeof (spa_config_dirent_t), 737 KM_SLEEP); 738 739 if (cachefile[0] == '\0') 740 dp->scd_path = spa_strdup(spa_config_path); 741 else if (strcmp(cachefile, "none") == 0) 742 dp->scd_path = NULL; 743 else 744 dp->scd_path = spa_strdup(cachefile); 745 746 list_insert_head(&spa->spa_config_list, dp); 747 if (need_sync) 748 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 749 } 750 751 int 752 spa_prop_set(spa_t *spa, nvlist_t *nvp) 753 { 754 int error; 755 nvpair_t *elem = NULL; 756 boolean_t need_sync = B_FALSE; 757 758 if ((error = spa_prop_validate(spa, nvp)) != 0) 759 return (error); 760 761 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 762 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 763 764 if (prop == ZPOOL_PROP_CACHEFILE || 765 prop == ZPOOL_PROP_ALTROOT || 766 prop == ZPOOL_PROP_READONLY) 767 continue; 768 769 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) { 770 uint64_t ver; 771 772 if (prop == ZPOOL_PROP_VERSION) { 773 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 774 } else { 775 ASSERT(zpool_prop_feature(nvpair_name(elem))); 776 ver = SPA_VERSION_FEATURES; 777 need_sync = B_TRUE; 778 } 779 780 /* Save time if the version is already set. */ 781 if (ver == spa_version(spa)) 782 continue; 783 784 /* 785 * In addition to the pool directory object, we might 786 * create the pool properties object, the features for 787 * read object, the features for write object, or the 788 * feature descriptions object. 789 */ 790 error = dsl_sync_task(spa->spa_name, NULL, 791 spa_sync_version, &ver, 792 6, ZFS_SPACE_CHECK_RESERVED); 793 if (error) 794 return (error); 795 continue; 796 } 797 798 need_sync = B_TRUE; 799 break; 800 } 801 802 if (need_sync) { 803 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 804 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 805 } 806 807 return (0); 808 } 809 810 /* 811 * If the bootfs property value is dsobj, clear it. 812 */ 813 void 814 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 815 { 816 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 817 VERIFY(zap_remove(spa->spa_meta_objset, 818 spa->spa_pool_props_object, 819 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 820 spa->spa_bootfs = 0; 821 } 822 } 823 824 /*ARGSUSED*/ 825 static int 826 spa_change_guid_check(void *arg, dmu_tx_t *tx) 827 { 828 uint64_t *newguid __maybe_unused = arg; 829 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 830 vdev_t *rvd = spa->spa_root_vdev; 831 uint64_t vdev_state; 832 833 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 834 int error = (spa_has_checkpoint(spa)) ? 835 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 836 return (SET_ERROR(error)); 837 } 838 839 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 840 vdev_state = rvd->vdev_state; 841 spa_config_exit(spa, SCL_STATE, FTAG); 842 843 if (vdev_state != VDEV_STATE_HEALTHY) 844 return (SET_ERROR(ENXIO)); 845 846 ASSERT3U(spa_guid(spa), !=, *newguid); 847 848 return (0); 849 } 850 851 static void 852 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 853 { 854 uint64_t *newguid = arg; 855 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 856 uint64_t oldguid; 857 vdev_t *rvd = spa->spa_root_vdev; 858 859 oldguid = spa_guid(spa); 860 861 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 862 rvd->vdev_guid = *newguid; 863 rvd->vdev_guid_sum += (*newguid - oldguid); 864 vdev_config_dirty(rvd); 865 spa_config_exit(spa, SCL_STATE, FTAG); 866 867 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 868 (u_longlong_t)oldguid, (u_longlong_t)*newguid); 869 } 870 871 /* 872 * Change the GUID for the pool. This is done so that we can later 873 * re-import a pool built from a clone of our own vdevs. We will modify 874 * the root vdev's guid, our own pool guid, and then mark all of our 875 * vdevs dirty. Note that we must make sure that all our vdevs are 876 * online when we do this, or else any vdevs that weren't present 877 * would be orphaned from our pool. We are also going to issue a 878 * sysevent to update any watchers. 879 */ 880 int 881 spa_change_guid(spa_t *spa) 882 { 883 int error; 884 uint64_t guid; 885 886 mutex_enter(&spa->spa_vdev_top_lock); 887 mutex_enter(&spa_namespace_lock); 888 guid = spa_generate_guid(NULL); 889 890 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 891 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 892 893 if (error == 0) { 894 spa_write_cachefile(spa, B_FALSE, B_TRUE); 895 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID); 896 } 897 898 mutex_exit(&spa_namespace_lock); 899 mutex_exit(&spa->spa_vdev_top_lock); 900 901 return (error); 902 } 903 904 /* 905 * ========================================================================== 906 * SPA state manipulation (open/create/destroy/import/export) 907 * ========================================================================== 908 */ 909 910 static int 911 spa_error_entry_compare(const void *a, const void *b) 912 { 913 const spa_error_entry_t *sa = (const spa_error_entry_t *)a; 914 const spa_error_entry_t *sb = (const spa_error_entry_t *)b; 915 int ret; 916 917 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark, 918 sizeof (zbookmark_phys_t)); 919 920 return (TREE_ISIGN(ret)); 921 } 922 923 /* 924 * Utility function which retrieves copies of the current logs and 925 * re-initializes them in the process. 926 */ 927 void 928 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 929 { 930 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 931 932 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 933 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 934 935 avl_create(&spa->spa_errlist_scrub, 936 spa_error_entry_compare, sizeof (spa_error_entry_t), 937 offsetof(spa_error_entry_t, se_avl)); 938 avl_create(&spa->spa_errlist_last, 939 spa_error_entry_compare, sizeof (spa_error_entry_t), 940 offsetof(spa_error_entry_t, se_avl)); 941 } 942 943 static void 944 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 945 { 946 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 947 enum zti_modes mode = ztip->zti_mode; 948 uint_t value = ztip->zti_value; 949 uint_t count = ztip->zti_count; 950 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 951 uint_t flags = 0; 952 boolean_t batch = B_FALSE; 953 954 if (mode == ZTI_MODE_NULL) { 955 tqs->stqs_count = 0; 956 tqs->stqs_taskq = NULL; 957 return; 958 } 959 960 ASSERT3U(count, >, 0); 961 962 tqs->stqs_count = count; 963 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 964 965 switch (mode) { 966 case ZTI_MODE_FIXED: 967 ASSERT3U(value, >=, 1); 968 value = MAX(value, 1); 969 flags |= TASKQ_DYNAMIC; 970 break; 971 972 case ZTI_MODE_BATCH: 973 batch = B_TRUE; 974 flags |= TASKQ_THREADS_CPU_PCT; 975 value = MIN(zio_taskq_batch_pct, 100); 976 break; 977 978 default: 979 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 980 "spa_activate()", 981 zio_type_name[t], zio_taskq_types[q], mode, value); 982 break; 983 } 984 985 for (uint_t i = 0; i < count; i++) { 986 taskq_t *tq; 987 char name[32]; 988 989 (void) snprintf(name, sizeof (name), "%s_%s", 990 zio_type_name[t], zio_taskq_types[q]); 991 992 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 993 if (batch) 994 flags |= TASKQ_DC_BATCH; 995 996 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 997 spa->spa_proc, zio_taskq_basedc, flags); 998 } else { 999 pri_t pri = maxclsyspri; 1000 /* 1001 * The write issue taskq can be extremely CPU 1002 * intensive. Run it at slightly less important 1003 * priority than the other taskqs. Under Linux this 1004 * means incrementing the priority value on platforms 1005 * like illumos it should be decremented. 1006 */ 1007 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 1008 pri++; 1009 1010 tq = taskq_create_proc(name, value, pri, 50, 1011 INT_MAX, spa->spa_proc, flags); 1012 } 1013 1014 tqs->stqs_taskq[i] = tq; 1015 } 1016 } 1017 1018 static void 1019 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 1020 { 1021 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1022 1023 if (tqs->stqs_taskq == NULL) { 1024 ASSERT3U(tqs->stqs_count, ==, 0); 1025 return; 1026 } 1027 1028 for (uint_t i = 0; i < tqs->stqs_count; i++) { 1029 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 1030 taskq_destroy(tqs->stqs_taskq[i]); 1031 } 1032 1033 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 1034 tqs->stqs_taskq = NULL; 1035 } 1036 1037 /* 1038 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 1039 * Note that a type may have multiple discrete taskqs to avoid lock contention 1040 * on the taskq itself. In that case we choose which taskq at random by using 1041 * the low bits of gethrtime(). 1042 */ 1043 void 1044 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1045 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 1046 { 1047 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1048 taskq_t *tq; 1049 1050 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1051 ASSERT3U(tqs->stqs_count, !=, 0); 1052 1053 if (tqs->stqs_count == 1) { 1054 tq = tqs->stqs_taskq[0]; 1055 } else { 1056 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1057 } 1058 1059 taskq_dispatch_ent(tq, func, arg, flags, ent); 1060 } 1061 1062 /* 1063 * Same as spa_taskq_dispatch_ent() but block on the task until completion. 1064 */ 1065 void 1066 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 1067 task_func_t *func, void *arg, uint_t flags) 1068 { 1069 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 1070 taskq_t *tq; 1071 taskqid_t id; 1072 1073 ASSERT3P(tqs->stqs_taskq, !=, NULL); 1074 ASSERT3U(tqs->stqs_count, !=, 0); 1075 1076 if (tqs->stqs_count == 1) { 1077 tq = tqs->stqs_taskq[0]; 1078 } else { 1079 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count]; 1080 } 1081 1082 id = taskq_dispatch(tq, func, arg, flags); 1083 if (id) 1084 taskq_wait_id(tq, id); 1085 } 1086 1087 static void 1088 spa_create_zio_taskqs(spa_t *spa) 1089 { 1090 for (int t = 0; t < ZIO_TYPES; t++) { 1091 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1092 spa_taskqs_init(spa, t, q); 1093 } 1094 } 1095 } 1096 1097 /* 1098 * Disabled until spa_thread() can be adapted for Linux. 1099 */ 1100 #undef HAVE_SPA_THREAD 1101 1102 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD) 1103 static void 1104 spa_thread(void *arg) 1105 { 1106 psetid_t zio_taskq_psrset_bind = PS_NONE; 1107 callb_cpr_t cprinfo; 1108 1109 spa_t *spa = arg; 1110 user_t *pu = PTOU(curproc); 1111 1112 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 1113 spa->spa_name); 1114 1115 ASSERT(curproc != &p0); 1116 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 1117 "zpool-%s", spa->spa_name); 1118 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 1119 1120 /* bind this thread to the requested psrset */ 1121 if (zio_taskq_psrset_bind != PS_NONE) { 1122 pool_lock(); 1123 mutex_enter(&cpu_lock); 1124 mutex_enter(&pidlock); 1125 mutex_enter(&curproc->p_lock); 1126 1127 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 1128 0, NULL, NULL) == 0) { 1129 curthread->t_bind_pset = zio_taskq_psrset_bind; 1130 } else { 1131 cmn_err(CE_WARN, 1132 "Couldn't bind process for zfs pool \"%s\" to " 1133 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 1134 } 1135 1136 mutex_exit(&curproc->p_lock); 1137 mutex_exit(&pidlock); 1138 mutex_exit(&cpu_lock); 1139 pool_unlock(); 1140 } 1141 1142 if (zio_taskq_sysdc) { 1143 sysdc_thread_enter(curthread, 100, 0); 1144 } 1145 1146 spa->spa_proc = curproc; 1147 spa->spa_did = curthread->t_did; 1148 1149 spa_create_zio_taskqs(spa); 1150 1151 mutex_enter(&spa->spa_proc_lock); 1152 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1153 1154 spa->spa_proc_state = SPA_PROC_ACTIVE; 1155 cv_broadcast(&spa->spa_proc_cv); 1156 1157 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1158 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1159 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1160 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1161 1162 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1163 spa->spa_proc_state = SPA_PROC_GONE; 1164 spa->spa_proc = &p0; 1165 cv_broadcast(&spa->spa_proc_cv); 1166 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1167 1168 mutex_enter(&curproc->p_lock); 1169 lwp_exit(); 1170 } 1171 #endif 1172 1173 /* 1174 * Activate an uninitialized pool. 1175 */ 1176 static void 1177 spa_activate(spa_t *spa, spa_mode_t mode) 1178 { 1179 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1180 1181 spa->spa_state = POOL_STATE_ACTIVE; 1182 spa->spa_mode = mode; 1183 1184 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1185 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1186 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops); 1187 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops); 1188 1189 /* Try to create a covering process */ 1190 mutex_enter(&spa->spa_proc_lock); 1191 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1192 ASSERT(spa->spa_proc == &p0); 1193 spa->spa_did = 0; 1194 1195 #ifdef HAVE_SPA_THREAD 1196 /* Only create a process if we're going to be around a while. */ 1197 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1198 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1199 NULL, 0) == 0) { 1200 spa->spa_proc_state = SPA_PROC_CREATED; 1201 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1202 cv_wait(&spa->spa_proc_cv, 1203 &spa->spa_proc_lock); 1204 } 1205 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1206 ASSERT(spa->spa_proc != &p0); 1207 ASSERT(spa->spa_did != 0); 1208 } else { 1209 #ifdef _KERNEL 1210 cmn_err(CE_WARN, 1211 "Couldn't create process for zfs pool \"%s\"\n", 1212 spa->spa_name); 1213 #endif 1214 } 1215 } 1216 #endif /* HAVE_SPA_THREAD */ 1217 mutex_exit(&spa->spa_proc_lock); 1218 1219 /* If we didn't create a process, we need to create our taskqs. */ 1220 if (spa->spa_proc == &p0) { 1221 spa_create_zio_taskqs(spa); 1222 } 1223 1224 for (size_t i = 0; i < TXG_SIZE; i++) { 1225 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 1226 ZIO_FLAG_CANFAIL); 1227 } 1228 1229 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1230 offsetof(vdev_t, vdev_config_dirty_node)); 1231 list_create(&spa->spa_evicting_os_list, sizeof (objset_t), 1232 offsetof(objset_t, os_evicting_node)); 1233 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1234 offsetof(vdev_t, vdev_state_dirty_node)); 1235 1236 txg_list_create(&spa->spa_vdev_txg_list, spa, 1237 offsetof(struct vdev, vdev_txg_node)); 1238 1239 avl_create(&spa->spa_errlist_scrub, 1240 spa_error_entry_compare, sizeof (spa_error_entry_t), 1241 offsetof(spa_error_entry_t, se_avl)); 1242 avl_create(&spa->spa_errlist_last, 1243 spa_error_entry_compare, sizeof (spa_error_entry_t), 1244 offsetof(spa_error_entry_t, se_avl)); 1245 1246 spa_keystore_init(&spa->spa_keystore); 1247 1248 /* 1249 * This taskq is used to perform zvol-minor-related tasks 1250 * asynchronously. This has several advantages, including easy 1251 * resolution of various deadlocks (zfsonlinux bug #3681). 1252 * 1253 * The taskq must be single threaded to ensure tasks are always 1254 * processed in the order in which they were dispatched. 1255 * 1256 * A taskq per pool allows one to keep the pools independent. 1257 * This way if one pool is suspended, it will not impact another. 1258 * 1259 * The preferred location to dispatch a zvol minor task is a sync 1260 * task. In this context, there is easy access to the spa_t and minimal 1261 * error handling is required because the sync task must succeed. 1262 */ 1263 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri, 1264 1, INT_MAX, 0); 1265 1266 /* 1267 * Taskq dedicated to prefetcher threads: this is used to prevent the 1268 * pool traverse code from monopolizing the global (and limited) 1269 * system_taskq by inappropriately scheduling long running tasks on it. 1270 */ 1271 spa->spa_prefetch_taskq = taskq_create("z_prefetch", boot_ncpus, 1272 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC); 1273 1274 /* 1275 * The taskq to upgrade datasets in this pool. Currently used by 1276 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA. 1277 */ 1278 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus, 1279 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC); 1280 } 1281 1282 /* 1283 * Opposite of spa_activate(). 1284 */ 1285 static void 1286 spa_deactivate(spa_t *spa) 1287 { 1288 ASSERT(spa->spa_sync_on == B_FALSE); 1289 ASSERT(spa->spa_dsl_pool == NULL); 1290 ASSERT(spa->spa_root_vdev == NULL); 1291 ASSERT(spa->spa_async_zio_root == NULL); 1292 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1293 1294 spa_evicting_os_wait(spa); 1295 1296 if (spa->spa_zvol_taskq) { 1297 taskq_destroy(spa->spa_zvol_taskq); 1298 spa->spa_zvol_taskq = NULL; 1299 } 1300 1301 if (spa->spa_prefetch_taskq) { 1302 taskq_destroy(spa->spa_prefetch_taskq); 1303 spa->spa_prefetch_taskq = NULL; 1304 } 1305 1306 if (spa->spa_upgrade_taskq) { 1307 taskq_destroy(spa->spa_upgrade_taskq); 1308 spa->spa_upgrade_taskq = NULL; 1309 } 1310 1311 txg_list_destroy(&spa->spa_vdev_txg_list); 1312 1313 list_destroy(&spa->spa_config_dirty_list); 1314 list_destroy(&spa->spa_evicting_os_list); 1315 list_destroy(&spa->spa_state_dirty_list); 1316 1317 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 1318 1319 for (int t = 0; t < ZIO_TYPES; t++) { 1320 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1321 spa_taskqs_fini(spa, t, q); 1322 } 1323 } 1324 1325 for (size_t i = 0; i < TXG_SIZE; i++) { 1326 ASSERT3P(spa->spa_txg_zio[i], !=, NULL); 1327 VERIFY0(zio_wait(spa->spa_txg_zio[i])); 1328 spa->spa_txg_zio[i] = NULL; 1329 } 1330 1331 metaslab_class_destroy(spa->spa_normal_class); 1332 spa->spa_normal_class = NULL; 1333 1334 metaslab_class_destroy(spa->spa_log_class); 1335 spa->spa_log_class = NULL; 1336 1337 metaslab_class_destroy(spa->spa_special_class); 1338 spa->spa_special_class = NULL; 1339 1340 metaslab_class_destroy(spa->spa_dedup_class); 1341 spa->spa_dedup_class = NULL; 1342 1343 /* 1344 * If this was part of an import or the open otherwise failed, we may 1345 * still have errors left in the queues. Empty them just in case. 1346 */ 1347 spa_errlog_drain(spa); 1348 avl_destroy(&spa->spa_errlist_scrub); 1349 avl_destroy(&spa->spa_errlist_last); 1350 1351 spa_keystore_fini(&spa->spa_keystore); 1352 1353 spa->spa_state = POOL_STATE_UNINITIALIZED; 1354 1355 mutex_enter(&spa->spa_proc_lock); 1356 if (spa->spa_proc_state != SPA_PROC_NONE) { 1357 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1358 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1359 cv_broadcast(&spa->spa_proc_cv); 1360 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1361 ASSERT(spa->spa_proc != &p0); 1362 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1363 } 1364 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1365 spa->spa_proc_state = SPA_PROC_NONE; 1366 } 1367 ASSERT(spa->spa_proc == &p0); 1368 mutex_exit(&spa->spa_proc_lock); 1369 1370 /* 1371 * We want to make sure spa_thread() has actually exited the ZFS 1372 * module, so that the module can't be unloaded out from underneath 1373 * it. 1374 */ 1375 if (spa->spa_did != 0) { 1376 thread_join(spa->spa_did); 1377 spa->spa_did = 0; 1378 } 1379 } 1380 1381 /* 1382 * Verify a pool configuration, and construct the vdev tree appropriately. This 1383 * will create all the necessary vdevs in the appropriate layout, with each vdev 1384 * in the CLOSED state. This will prep the pool before open/creation/import. 1385 * All vdev validation is done by the vdev_alloc() routine. 1386 */ 1387 int 1388 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1389 uint_t id, int atype) 1390 { 1391 nvlist_t **child; 1392 uint_t children; 1393 int error; 1394 1395 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1396 return (error); 1397 1398 if ((*vdp)->vdev_ops->vdev_op_leaf) 1399 return (0); 1400 1401 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1402 &child, &children); 1403 1404 if (error == ENOENT) 1405 return (0); 1406 1407 if (error) { 1408 vdev_free(*vdp); 1409 *vdp = NULL; 1410 return (SET_ERROR(EINVAL)); 1411 } 1412 1413 for (int c = 0; c < children; c++) { 1414 vdev_t *vd; 1415 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1416 atype)) != 0) { 1417 vdev_free(*vdp); 1418 *vdp = NULL; 1419 return (error); 1420 } 1421 } 1422 1423 ASSERT(*vdp != NULL); 1424 1425 return (0); 1426 } 1427 1428 static boolean_t 1429 spa_should_flush_logs_on_unload(spa_t *spa) 1430 { 1431 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1432 return (B_FALSE); 1433 1434 if (!spa_writeable(spa)) 1435 return (B_FALSE); 1436 1437 if (!spa->spa_sync_on) 1438 return (B_FALSE); 1439 1440 if (spa_state(spa) != POOL_STATE_EXPORTED) 1441 return (B_FALSE); 1442 1443 if (zfs_keep_log_spacemaps_at_export) 1444 return (B_FALSE); 1445 1446 return (B_TRUE); 1447 } 1448 1449 /* 1450 * Opens a transaction that will set the flag that will instruct 1451 * spa_sync to attempt to flush all the metaslabs for that txg. 1452 */ 1453 static void 1454 spa_unload_log_sm_flush_all(spa_t *spa) 1455 { 1456 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 1457 VERIFY0(dmu_tx_assign(tx, TXG_WAIT)); 1458 1459 ASSERT3U(spa->spa_log_flushall_txg, ==, 0); 1460 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx); 1461 1462 dmu_tx_commit(tx); 1463 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg); 1464 } 1465 1466 static void 1467 spa_unload_log_sm_metadata(spa_t *spa) 1468 { 1469 void *cookie = NULL; 1470 spa_log_sm_t *sls; 1471 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg, 1472 &cookie)) != NULL) { 1473 VERIFY0(sls->sls_mscount); 1474 kmem_free(sls, sizeof (spa_log_sm_t)); 1475 } 1476 1477 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary); 1478 e != NULL; e = list_head(&spa->spa_log_summary)) { 1479 VERIFY0(e->lse_mscount); 1480 list_remove(&spa->spa_log_summary, e); 1481 kmem_free(e, sizeof (log_summary_entry_t)); 1482 } 1483 1484 spa->spa_unflushed_stats.sus_nblocks = 0; 1485 spa->spa_unflushed_stats.sus_memused = 0; 1486 spa->spa_unflushed_stats.sus_blocklimit = 0; 1487 } 1488 1489 static void 1490 spa_destroy_aux_threads(spa_t *spa) 1491 { 1492 if (spa->spa_condense_zthr != NULL) { 1493 zthr_destroy(spa->spa_condense_zthr); 1494 spa->spa_condense_zthr = NULL; 1495 } 1496 if (spa->spa_checkpoint_discard_zthr != NULL) { 1497 zthr_destroy(spa->spa_checkpoint_discard_zthr); 1498 spa->spa_checkpoint_discard_zthr = NULL; 1499 } 1500 if (spa->spa_livelist_delete_zthr != NULL) { 1501 zthr_destroy(spa->spa_livelist_delete_zthr); 1502 spa->spa_livelist_delete_zthr = NULL; 1503 } 1504 if (spa->spa_livelist_condense_zthr != NULL) { 1505 zthr_destroy(spa->spa_livelist_condense_zthr); 1506 spa->spa_livelist_condense_zthr = NULL; 1507 } 1508 } 1509 1510 /* 1511 * Opposite of spa_load(). 1512 */ 1513 static void 1514 spa_unload(spa_t *spa) 1515 { 1516 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1517 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED); 1518 1519 spa_import_progress_remove(spa_guid(spa)); 1520 spa_load_note(spa, "UNLOADING"); 1521 1522 spa_wake_waiters(spa); 1523 1524 /* 1525 * If the log space map feature is enabled and the pool is getting 1526 * exported (but not destroyed), we want to spend some time flushing 1527 * as many metaslabs as we can in an attempt to destroy log space 1528 * maps and save import time. 1529 */ 1530 if (spa_should_flush_logs_on_unload(spa)) 1531 spa_unload_log_sm_flush_all(spa); 1532 1533 /* 1534 * Stop async tasks. 1535 */ 1536 spa_async_suspend(spa); 1537 1538 if (spa->spa_root_vdev) { 1539 vdev_t *root_vdev = spa->spa_root_vdev; 1540 vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE); 1541 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE); 1542 vdev_autotrim_stop_all(spa); 1543 vdev_rebuild_stop_all(spa); 1544 } 1545 1546 /* 1547 * Stop syncing. 1548 */ 1549 if (spa->spa_sync_on) { 1550 txg_sync_stop(spa->spa_dsl_pool); 1551 spa->spa_sync_on = B_FALSE; 1552 } 1553 1554 /* 1555 * This ensures that there is no async metaslab prefetching 1556 * while we attempt to unload the spa. 1557 */ 1558 if (spa->spa_root_vdev != NULL) { 1559 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) { 1560 vdev_t *vc = spa->spa_root_vdev->vdev_child[c]; 1561 if (vc->vdev_mg != NULL) 1562 taskq_wait(vc->vdev_mg->mg_taskq); 1563 } 1564 } 1565 1566 if (spa->spa_mmp.mmp_thread) 1567 mmp_thread_stop(spa); 1568 1569 /* 1570 * Wait for any outstanding async I/O to complete. 1571 */ 1572 if (spa->spa_async_zio_root != NULL) { 1573 for (int i = 0; i < max_ncpus; i++) 1574 (void) zio_wait(spa->spa_async_zio_root[i]); 1575 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *)); 1576 spa->spa_async_zio_root = NULL; 1577 } 1578 1579 if (spa->spa_vdev_removal != NULL) { 1580 spa_vdev_removal_destroy(spa->spa_vdev_removal); 1581 spa->spa_vdev_removal = NULL; 1582 } 1583 1584 spa_destroy_aux_threads(spa); 1585 1586 spa_condense_fini(spa); 1587 1588 bpobj_close(&spa->spa_deferred_bpobj); 1589 1590 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1591 1592 /* 1593 * Close all vdevs. 1594 */ 1595 if (spa->spa_root_vdev) 1596 vdev_free(spa->spa_root_vdev); 1597 ASSERT(spa->spa_root_vdev == NULL); 1598 1599 /* 1600 * Close the dsl pool. 1601 */ 1602 if (spa->spa_dsl_pool) { 1603 dsl_pool_close(spa->spa_dsl_pool); 1604 spa->spa_dsl_pool = NULL; 1605 spa->spa_meta_objset = NULL; 1606 } 1607 1608 ddt_unload(spa); 1609 spa_unload_log_sm_metadata(spa); 1610 1611 /* 1612 * Drop and purge level 2 cache 1613 */ 1614 spa_l2cache_drop(spa); 1615 1616 for (int i = 0; i < spa->spa_spares.sav_count; i++) 1617 vdev_free(spa->spa_spares.sav_vdevs[i]); 1618 if (spa->spa_spares.sav_vdevs) { 1619 kmem_free(spa->spa_spares.sav_vdevs, 1620 spa->spa_spares.sav_count * sizeof (void *)); 1621 spa->spa_spares.sav_vdevs = NULL; 1622 } 1623 if (spa->spa_spares.sav_config) { 1624 nvlist_free(spa->spa_spares.sav_config); 1625 spa->spa_spares.sav_config = NULL; 1626 } 1627 spa->spa_spares.sav_count = 0; 1628 1629 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 1630 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1631 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1632 } 1633 if (spa->spa_l2cache.sav_vdevs) { 1634 kmem_free(spa->spa_l2cache.sav_vdevs, 1635 spa->spa_l2cache.sav_count * sizeof (void *)); 1636 spa->spa_l2cache.sav_vdevs = NULL; 1637 } 1638 if (spa->spa_l2cache.sav_config) { 1639 nvlist_free(spa->spa_l2cache.sav_config); 1640 spa->spa_l2cache.sav_config = NULL; 1641 } 1642 spa->spa_l2cache.sav_count = 0; 1643 1644 spa->spa_async_suspended = 0; 1645 1646 spa->spa_indirect_vdevs_loaded = B_FALSE; 1647 1648 if (spa->spa_comment != NULL) { 1649 spa_strfree(spa->spa_comment); 1650 spa->spa_comment = NULL; 1651 } 1652 1653 spa_config_exit(spa, SCL_ALL, spa); 1654 } 1655 1656 /* 1657 * Load (or re-load) the current list of vdevs describing the active spares for 1658 * this pool. When this is called, we have some form of basic information in 1659 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1660 * then re-generate a more complete list including status information. 1661 */ 1662 void 1663 spa_load_spares(spa_t *spa) 1664 { 1665 nvlist_t **spares; 1666 uint_t nspares; 1667 int i; 1668 vdev_t *vd, *tvd; 1669 1670 #ifndef _KERNEL 1671 /* 1672 * zdb opens both the current state of the pool and the 1673 * checkpointed state (if present), with a different spa_t. 1674 * 1675 * As spare vdevs are shared among open pools, we skip loading 1676 * them when we load the checkpointed state of the pool. 1677 */ 1678 if (!spa_writeable(spa)) 1679 return; 1680 #endif 1681 1682 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1683 1684 /* 1685 * First, close and free any existing spare vdevs. 1686 */ 1687 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1688 vd = spa->spa_spares.sav_vdevs[i]; 1689 1690 /* Undo the call to spa_activate() below */ 1691 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1692 B_FALSE)) != NULL && tvd->vdev_isspare) 1693 spa_spare_remove(tvd); 1694 vdev_close(vd); 1695 vdev_free(vd); 1696 } 1697 1698 if (spa->spa_spares.sav_vdevs) 1699 kmem_free(spa->spa_spares.sav_vdevs, 1700 spa->spa_spares.sav_count * sizeof (void *)); 1701 1702 if (spa->spa_spares.sav_config == NULL) 1703 nspares = 0; 1704 else 1705 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1706 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1707 1708 spa->spa_spares.sav_count = (int)nspares; 1709 spa->spa_spares.sav_vdevs = NULL; 1710 1711 if (nspares == 0) 1712 return; 1713 1714 /* 1715 * Construct the array of vdevs, opening them to get status in the 1716 * process. For each spare, there is potentially two different vdev_t 1717 * structures associated with it: one in the list of spares (used only 1718 * for basic validation purposes) and one in the active vdev 1719 * configuration (if it's spared in). During this phase we open and 1720 * validate each vdev on the spare list. If the vdev also exists in the 1721 * active configuration, then we also mark this vdev as an active spare. 1722 */ 1723 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *), 1724 KM_SLEEP); 1725 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1726 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1727 VDEV_ALLOC_SPARE) == 0); 1728 ASSERT(vd != NULL); 1729 1730 spa->spa_spares.sav_vdevs[i] = vd; 1731 1732 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1733 B_FALSE)) != NULL) { 1734 if (!tvd->vdev_isspare) 1735 spa_spare_add(tvd); 1736 1737 /* 1738 * We only mark the spare active if we were successfully 1739 * able to load the vdev. Otherwise, importing a pool 1740 * with a bad active spare would result in strange 1741 * behavior, because multiple pool would think the spare 1742 * is actively in use. 1743 * 1744 * There is a vulnerability here to an equally bizarre 1745 * circumstance, where a dead active spare is later 1746 * brought back to life (onlined or otherwise). Given 1747 * the rarity of this scenario, and the extra complexity 1748 * it adds, we ignore the possibility. 1749 */ 1750 if (!vdev_is_dead(tvd)) 1751 spa_spare_activate(tvd); 1752 } 1753 1754 vd->vdev_top = vd; 1755 vd->vdev_aux = &spa->spa_spares; 1756 1757 if (vdev_open(vd) != 0) 1758 continue; 1759 1760 if (vdev_validate_aux(vd) == 0) 1761 spa_spare_add(vd); 1762 } 1763 1764 /* 1765 * Recompute the stashed list of spares, with status information 1766 * this time. 1767 */ 1768 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1769 DATA_TYPE_NVLIST_ARRAY) == 0); 1770 1771 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1772 KM_SLEEP); 1773 for (i = 0; i < spa->spa_spares.sav_count; i++) 1774 spares[i] = vdev_config_generate(spa, 1775 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1776 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1777 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1778 for (i = 0; i < spa->spa_spares.sav_count; i++) 1779 nvlist_free(spares[i]); 1780 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1781 } 1782 1783 /* 1784 * Load (or re-load) the current list of vdevs describing the active l2cache for 1785 * this pool. When this is called, we have some form of basic information in 1786 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1787 * then re-generate a more complete list including status information. 1788 * Devices which are already active have their details maintained, and are 1789 * not re-opened. 1790 */ 1791 void 1792 spa_load_l2cache(spa_t *spa) 1793 { 1794 nvlist_t **l2cache = NULL; 1795 uint_t nl2cache; 1796 int i, j, oldnvdevs; 1797 uint64_t guid; 1798 vdev_t *vd, **oldvdevs, **newvdevs; 1799 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1800 1801 #ifndef _KERNEL 1802 /* 1803 * zdb opens both the current state of the pool and the 1804 * checkpointed state (if present), with a different spa_t. 1805 * 1806 * As L2 caches are part of the ARC which is shared among open 1807 * pools, we skip loading them when we load the checkpointed 1808 * state of the pool. 1809 */ 1810 if (!spa_writeable(spa)) 1811 return; 1812 #endif 1813 1814 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1815 1816 oldvdevs = sav->sav_vdevs; 1817 oldnvdevs = sav->sav_count; 1818 sav->sav_vdevs = NULL; 1819 sav->sav_count = 0; 1820 1821 if (sav->sav_config == NULL) { 1822 nl2cache = 0; 1823 newvdevs = NULL; 1824 goto out; 1825 } 1826 1827 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1828 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1829 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1830 1831 /* 1832 * Process new nvlist of vdevs. 1833 */ 1834 for (i = 0; i < nl2cache; i++) { 1835 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1836 &guid) == 0); 1837 1838 newvdevs[i] = NULL; 1839 for (j = 0; j < oldnvdevs; j++) { 1840 vd = oldvdevs[j]; 1841 if (vd != NULL && guid == vd->vdev_guid) { 1842 /* 1843 * Retain previous vdev for add/remove ops. 1844 */ 1845 newvdevs[i] = vd; 1846 oldvdevs[j] = NULL; 1847 break; 1848 } 1849 } 1850 1851 if (newvdevs[i] == NULL) { 1852 /* 1853 * Create new vdev 1854 */ 1855 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1856 VDEV_ALLOC_L2CACHE) == 0); 1857 ASSERT(vd != NULL); 1858 newvdevs[i] = vd; 1859 1860 /* 1861 * Commit this vdev as an l2cache device, 1862 * even if it fails to open. 1863 */ 1864 spa_l2cache_add(vd); 1865 1866 vd->vdev_top = vd; 1867 vd->vdev_aux = sav; 1868 1869 spa_l2cache_activate(vd); 1870 1871 if (vdev_open(vd) != 0) 1872 continue; 1873 1874 (void) vdev_validate_aux(vd); 1875 1876 if (!vdev_is_dead(vd)) 1877 l2arc_add_vdev(spa, vd); 1878 1879 /* 1880 * Upon cache device addition to a pool or pool 1881 * creation with a cache device or if the header 1882 * of the device is invalid we issue an async 1883 * TRIM command for the whole device which will 1884 * execute if l2arc_trim_ahead > 0. 1885 */ 1886 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); 1887 } 1888 } 1889 1890 sav->sav_vdevs = newvdevs; 1891 sav->sav_count = (int)nl2cache; 1892 1893 /* 1894 * Recompute the stashed list of l2cache devices, with status 1895 * information this time. 1896 */ 1897 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1898 DATA_TYPE_NVLIST_ARRAY) == 0); 1899 1900 if (sav->sav_count > 0) 1901 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), 1902 KM_SLEEP); 1903 for (i = 0; i < sav->sav_count; i++) 1904 l2cache[i] = vdev_config_generate(spa, 1905 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1906 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1907 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1908 1909 out: 1910 /* 1911 * Purge vdevs that were dropped 1912 */ 1913 for (i = 0; i < oldnvdevs; i++) { 1914 uint64_t pool; 1915 1916 vd = oldvdevs[i]; 1917 if (vd != NULL) { 1918 ASSERT(vd->vdev_isl2cache); 1919 1920 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1921 pool != 0ULL && l2arc_vdev_present(vd)) 1922 l2arc_remove_vdev(vd); 1923 vdev_clear_stats(vd); 1924 vdev_free(vd); 1925 } 1926 } 1927 1928 if (oldvdevs) 1929 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1930 1931 for (i = 0; i < sav->sav_count; i++) 1932 nvlist_free(l2cache[i]); 1933 if (sav->sav_count) 1934 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1935 } 1936 1937 static int 1938 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1939 { 1940 dmu_buf_t *db; 1941 char *packed = NULL; 1942 size_t nvsize = 0; 1943 int error; 1944 *value = NULL; 1945 1946 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db); 1947 if (error) 1948 return (error); 1949 1950 nvsize = *(uint64_t *)db->db_data; 1951 dmu_buf_rele(db, FTAG); 1952 1953 packed = vmem_alloc(nvsize, KM_SLEEP); 1954 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1955 DMU_READ_PREFETCH); 1956 if (error == 0) 1957 error = nvlist_unpack(packed, nvsize, value, 0); 1958 vmem_free(packed, nvsize); 1959 1960 return (error); 1961 } 1962 1963 /* 1964 * Concrete top-level vdevs that are not missing and are not logs. At every 1965 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds. 1966 */ 1967 static uint64_t 1968 spa_healthy_core_tvds(spa_t *spa) 1969 { 1970 vdev_t *rvd = spa->spa_root_vdev; 1971 uint64_t tvds = 0; 1972 1973 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 1974 vdev_t *vd = rvd->vdev_child[i]; 1975 if (vd->vdev_islog) 1976 continue; 1977 if (vdev_is_concrete(vd) && !vdev_is_dead(vd)) 1978 tvds++; 1979 } 1980 1981 return (tvds); 1982 } 1983 1984 /* 1985 * Checks to see if the given vdev could not be opened, in which case we post a 1986 * sysevent to notify the autoreplace code that the device has been removed. 1987 */ 1988 static void 1989 spa_check_removed(vdev_t *vd) 1990 { 1991 for (uint64_t c = 0; c < vd->vdev_children; c++) 1992 spa_check_removed(vd->vdev_child[c]); 1993 1994 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1995 vdev_is_concrete(vd)) { 1996 zfs_post_autoreplace(vd->vdev_spa, vd); 1997 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK); 1998 } 1999 } 2000 2001 static int 2002 spa_check_for_missing_logs(spa_t *spa) 2003 { 2004 vdev_t *rvd = spa->spa_root_vdev; 2005 2006 /* 2007 * If we're doing a normal import, then build up any additional 2008 * diagnostic information about missing log devices. 2009 * We'll pass this up to the user for further processing. 2010 */ 2011 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 2012 nvlist_t **child, *nv; 2013 uint64_t idx = 0; 2014 2015 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *), 2016 KM_SLEEP); 2017 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2018 2019 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2020 vdev_t *tvd = rvd->vdev_child[c]; 2021 2022 /* 2023 * We consider a device as missing only if it failed 2024 * to open (i.e. offline or faulted is not considered 2025 * as missing). 2026 */ 2027 if (tvd->vdev_islog && 2028 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2029 child[idx++] = vdev_config_generate(spa, tvd, 2030 B_FALSE, VDEV_CONFIG_MISSING); 2031 } 2032 } 2033 2034 if (idx > 0) { 2035 fnvlist_add_nvlist_array(nv, 2036 ZPOOL_CONFIG_CHILDREN, child, idx); 2037 fnvlist_add_nvlist(spa->spa_load_info, 2038 ZPOOL_CONFIG_MISSING_DEVICES, nv); 2039 2040 for (uint64_t i = 0; i < idx; i++) 2041 nvlist_free(child[i]); 2042 } 2043 nvlist_free(nv); 2044 kmem_free(child, rvd->vdev_children * sizeof (char **)); 2045 2046 if (idx > 0) { 2047 spa_load_failed(spa, "some log devices are missing"); 2048 vdev_dbgmsg_print_tree(rvd, 2); 2049 return (SET_ERROR(ENXIO)); 2050 } 2051 } else { 2052 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 2053 vdev_t *tvd = rvd->vdev_child[c]; 2054 2055 if (tvd->vdev_islog && 2056 tvd->vdev_state == VDEV_STATE_CANT_OPEN) { 2057 spa_set_log_state(spa, SPA_LOG_CLEAR); 2058 spa_load_note(spa, "some log devices are " 2059 "missing, ZIL is dropped."); 2060 vdev_dbgmsg_print_tree(rvd, 2); 2061 break; 2062 } 2063 } 2064 } 2065 2066 return (0); 2067 } 2068 2069 /* 2070 * Check for missing log devices 2071 */ 2072 static boolean_t 2073 spa_check_logs(spa_t *spa) 2074 { 2075 boolean_t rv = B_FALSE; 2076 dsl_pool_t *dp = spa_get_dsl(spa); 2077 2078 switch (spa->spa_log_state) { 2079 default: 2080 break; 2081 case SPA_LOG_MISSING: 2082 /* need to recheck in case slog has been restored */ 2083 case SPA_LOG_UNKNOWN: 2084 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 2085 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0); 2086 if (rv) 2087 spa_set_log_state(spa, SPA_LOG_MISSING); 2088 break; 2089 } 2090 return (rv); 2091 } 2092 2093 static boolean_t 2094 spa_passivate_log(spa_t *spa) 2095 { 2096 vdev_t *rvd = spa->spa_root_vdev; 2097 boolean_t slog_found = B_FALSE; 2098 2099 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2100 2101 if (!spa_has_slogs(spa)) 2102 return (B_FALSE); 2103 2104 for (int c = 0; c < rvd->vdev_children; c++) { 2105 vdev_t *tvd = rvd->vdev_child[c]; 2106 metaslab_group_t *mg = tvd->vdev_mg; 2107 2108 if (tvd->vdev_islog) { 2109 metaslab_group_passivate(mg); 2110 slog_found = B_TRUE; 2111 } 2112 } 2113 2114 return (slog_found); 2115 } 2116 2117 static void 2118 spa_activate_log(spa_t *spa) 2119 { 2120 vdev_t *rvd = spa->spa_root_vdev; 2121 2122 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 2123 2124 for (int c = 0; c < rvd->vdev_children; c++) { 2125 vdev_t *tvd = rvd->vdev_child[c]; 2126 metaslab_group_t *mg = tvd->vdev_mg; 2127 2128 if (tvd->vdev_islog) 2129 metaslab_group_activate(mg); 2130 } 2131 } 2132 2133 int 2134 spa_reset_logs(spa_t *spa) 2135 { 2136 int error; 2137 2138 error = dmu_objset_find(spa_name(spa), zil_reset, 2139 NULL, DS_FIND_CHILDREN); 2140 if (error == 0) { 2141 /* 2142 * We successfully offlined the log device, sync out the 2143 * current txg so that the "stubby" block can be removed 2144 * by zil_sync(). 2145 */ 2146 txg_wait_synced(spa->spa_dsl_pool, 0); 2147 } 2148 return (error); 2149 } 2150 2151 static void 2152 spa_aux_check_removed(spa_aux_vdev_t *sav) 2153 { 2154 for (int i = 0; i < sav->sav_count; i++) 2155 spa_check_removed(sav->sav_vdevs[i]); 2156 } 2157 2158 void 2159 spa_claim_notify(zio_t *zio) 2160 { 2161 spa_t *spa = zio->io_spa; 2162 2163 if (zio->io_error) 2164 return; 2165 2166 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 2167 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 2168 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 2169 mutex_exit(&spa->spa_props_lock); 2170 } 2171 2172 typedef struct spa_load_error { 2173 uint64_t sle_meta_count; 2174 uint64_t sle_data_count; 2175 } spa_load_error_t; 2176 2177 static void 2178 spa_load_verify_done(zio_t *zio) 2179 { 2180 blkptr_t *bp = zio->io_bp; 2181 spa_load_error_t *sle = zio->io_private; 2182 dmu_object_type_t type = BP_GET_TYPE(bp); 2183 int error = zio->io_error; 2184 spa_t *spa = zio->io_spa; 2185 2186 abd_free(zio->io_abd); 2187 if (error) { 2188 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 2189 type != DMU_OT_INTENT_LOG) 2190 atomic_inc_64(&sle->sle_meta_count); 2191 else 2192 atomic_inc_64(&sle->sle_data_count); 2193 } 2194 2195 mutex_enter(&spa->spa_scrub_lock); 2196 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 2197 cv_broadcast(&spa->spa_scrub_io_cv); 2198 mutex_exit(&spa->spa_scrub_lock); 2199 } 2200 2201 /* 2202 * Maximum number of inflight bytes is the log2 fraction of the arc size. 2203 * By default, we set it to 1/16th of the arc. 2204 */ 2205 int spa_load_verify_shift = 4; 2206 int spa_load_verify_metadata = B_TRUE; 2207 int spa_load_verify_data = B_TRUE; 2208 2209 /*ARGSUSED*/ 2210 static int 2211 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 2212 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 2213 { 2214 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 2215 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp)) 2216 return (0); 2217 /* 2218 * Note: normally this routine will not be called if 2219 * spa_load_verify_metadata is not set. However, it may be useful 2220 * to manually set the flag after the traversal has begun. 2221 */ 2222 if (!spa_load_verify_metadata) 2223 return (0); 2224 if (!BP_IS_METADATA(bp) && !spa_load_verify_data) 2225 return (0); 2226 2227 uint64_t maxinflight_bytes = 2228 arc_target_bytes() >> spa_load_verify_shift; 2229 zio_t *rio = arg; 2230 size_t size = BP_GET_PSIZE(bp); 2231 2232 mutex_enter(&spa->spa_scrub_lock); 2233 while (spa->spa_load_verify_bytes >= maxinflight_bytes) 2234 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2235 spa->spa_load_verify_bytes += size; 2236 mutex_exit(&spa->spa_scrub_lock); 2237 2238 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size, 2239 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 2240 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 2241 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 2242 return (0); 2243 } 2244 2245 /* ARGSUSED */ 2246 static int 2247 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 2248 { 2249 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN) 2250 return (SET_ERROR(ENAMETOOLONG)); 2251 2252 return (0); 2253 } 2254 2255 static int 2256 spa_load_verify(spa_t *spa) 2257 { 2258 zio_t *rio; 2259 spa_load_error_t sle = { 0 }; 2260 zpool_load_policy_t policy; 2261 boolean_t verify_ok = B_FALSE; 2262 int error = 0; 2263 2264 zpool_get_load_policy(spa->spa_config, &policy); 2265 2266 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND) 2267 return (0); 2268 2269 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 2270 error = dmu_objset_find_dp(spa->spa_dsl_pool, 2271 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL, 2272 DS_FIND_CHILDREN); 2273 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 2274 if (error != 0) 2275 return (error); 2276 2277 rio = zio_root(spa, NULL, &sle, 2278 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 2279 2280 if (spa_load_verify_metadata) { 2281 if (spa->spa_extreme_rewind) { 2282 spa_load_note(spa, "performing a complete scan of the " 2283 "pool since extreme rewind is on. This may take " 2284 "a very long time.\n (spa_load_verify_data=%u, " 2285 "spa_load_verify_metadata=%u)", 2286 spa_load_verify_data, spa_load_verify_metadata); 2287 } 2288 2289 error = traverse_pool(spa, spa->spa_verify_min_txg, 2290 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 2291 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio); 2292 } 2293 2294 (void) zio_wait(rio); 2295 ASSERT0(spa->spa_load_verify_bytes); 2296 2297 spa->spa_load_meta_errors = sle.sle_meta_count; 2298 spa->spa_load_data_errors = sle.sle_data_count; 2299 2300 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) { 2301 spa_load_note(spa, "spa_load_verify found %llu metadata errors " 2302 "and %llu data errors", (u_longlong_t)sle.sle_meta_count, 2303 (u_longlong_t)sle.sle_data_count); 2304 } 2305 2306 if (spa_load_verify_dryrun || 2307 (!error && sle.sle_meta_count <= policy.zlp_maxmeta && 2308 sle.sle_data_count <= policy.zlp_maxdata)) { 2309 int64_t loss = 0; 2310 2311 verify_ok = B_TRUE; 2312 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 2313 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 2314 2315 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 2316 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2317 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 2318 VERIFY(nvlist_add_int64(spa->spa_load_info, 2319 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 2320 VERIFY(nvlist_add_uint64(spa->spa_load_info, 2321 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 2322 } else { 2323 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 2324 } 2325 2326 if (spa_load_verify_dryrun) 2327 return (0); 2328 2329 if (error) { 2330 if (error != ENXIO && error != EIO) 2331 error = SET_ERROR(EIO); 2332 return (error); 2333 } 2334 2335 return (verify_ok ? 0 : EIO); 2336 } 2337 2338 /* 2339 * Find a value in the pool props object. 2340 */ 2341 static void 2342 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 2343 { 2344 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 2345 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 2346 } 2347 2348 /* 2349 * Find a value in the pool directory object. 2350 */ 2351 static int 2352 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent) 2353 { 2354 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 2355 name, sizeof (uint64_t), 1, val); 2356 2357 if (error != 0 && (error != ENOENT || log_enoent)) { 2358 spa_load_failed(spa, "couldn't get '%s' value in MOS directory " 2359 "[error=%d]", name, error); 2360 } 2361 2362 return (error); 2363 } 2364 2365 static int 2366 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 2367 { 2368 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 2369 return (SET_ERROR(err)); 2370 } 2371 2372 boolean_t 2373 spa_livelist_delete_check(spa_t *spa) 2374 { 2375 return (spa->spa_livelists_to_delete != 0); 2376 } 2377 2378 /* ARGSUSED */ 2379 static boolean_t 2380 spa_livelist_delete_cb_check(void *arg, zthr_t *z) 2381 { 2382 spa_t *spa = arg; 2383 return (spa_livelist_delete_check(spa)); 2384 } 2385 2386 static int 2387 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2388 { 2389 spa_t *spa = arg; 2390 zio_free(spa, tx->tx_txg, bp); 2391 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD, 2392 -bp_get_dsize_sync(spa, bp), 2393 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx); 2394 return (0); 2395 } 2396 2397 static int 2398 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp) 2399 { 2400 int err; 2401 zap_cursor_t zc; 2402 zap_attribute_t za; 2403 zap_cursor_init(&zc, os, zap_obj); 2404 err = zap_cursor_retrieve(&zc, &za); 2405 zap_cursor_fini(&zc); 2406 if (err == 0) 2407 *llp = za.za_first_integer; 2408 return (err); 2409 } 2410 2411 /* 2412 * Components of livelist deletion that must be performed in syncing 2413 * context: freeing block pointers and updating the pool-wide data 2414 * structures to indicate how much work is left to do 2415 */ 2416 typedef struct sublist_delete_arg { 2417 spa_t *spa; 2418 dsl_deadlist_t *ll; 2419 uint64_t key; 2420 bplist_t *to_free; 2421 } sublist_delete_arg_t; 2422 2423 static void 2424 sublist_delete_sync(void *arg, dmu_tx_t *tx) 2425 { 2426 sublist_delete_arg_t *sda = arg; 2427 spa_t *spa = sda->spa; 2428 dsl_deadlist_t *ll = sda->ll; 2429 uint64_t key = sda->key; 2430 bplist_t *to_free = sda->to_free; 2431 2432 bplist_iterate(to_free, delete_blkptr_cb, spa, tx); 2433 dsl_deadlist_remove_entry(ll, key, tx); 2434 } 2435 2436 typedef struct livelist_delete_arg { 2437 spa_t *spa; 2438 uint64_t ll_obj; 2439 uint64_t zap_obj; 2440 } livelist_delete_arg_t; 2441 2442 static void 2443 livelist_delete_sync(void *arg, dmu_tx_t *tx) 2444 { 2445 livelist_delete_arg_t *lda = arg; 2446 spa_t *spa = lda->spa; 2447 uint64_t ll_obj = lda->ll_obj; 2448 uint64_t zap_obj = lda->zap_obj; 2449 objset_t *mos = spa->spa_meta_objset; 2450 uint64_t count; 2451 2452 /* free the livelist and decrement the feature count */ 2453 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx)); 2454 dsl_deadlist_free(mos, ll_obj, tx); 2455 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx); 2456 VERIFY0(zap_count(mos, zap_obj, &count)); 2457 if (count == 0) { 2458 /* no more livelists to delete */ 2459 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT, 2460 DMU_POOL_DELETED_CLONES, tx)); 2461 VERIFY0(zap_destroy(mos, zap_obj, tx)); 2462 spa->spa_livelists_to_delete = 0; 2463 spa_notify_waiters(spa); 2464 } 2465 } 2466 2467 /* 2468 * Load in the value for the livelist to be removed and open it. Then, 2469 * load its first sublist and determine which block pointers should actually 2470 * be freed. Then, call a synctask which performs the actual frees and updates 2471 * the pool-wide livelist data. 2472 */ 2473 /* ARGSUSED */ 2474 static void 2475 spa_livelist_delete_cb(void *arg, zthr_t *z) 2476 { 2477 spa_t *spa = arg; 2478 uint64_t ll_obj = 0, count; 2479 objset_t *mos = spa->spa_meta_objset; 2480 uint64_t zap_obj = spa->spa_livelists_to_delete; 2481 /* 2482 * Determine the next livelist to delete. This function should only 2483 * be called if there is at least one deleted clone. 2484 */ 2485 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj)); 2486 VERIFY0(zap_count(mos, ll_obj, &count)); 2487 if (count > 0) { 2488 dsl_deadlist_t ll = { 0 }; 2489 dsl_deadlist_entry_t *dle; 2490 bplist_t to_free; 2491 dsl_deadlist_open(&ll, mos, ll_obj); 2492 dle = dsl_deadlist_first(&ll); 2493 ASSERT3P(dle, !=, NULL); 2494 bplist_create(&to_free); 2495 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free, 2496 z, NULL); 2497 if (err == 0) { 2498 sublist_delete_arg_t sync_arg = { 2499 .spa = spa, 2500 .ll = &ll, 2501 .key = dle->dle_mintxg, 2502 .to_free = &to_free 2503 }; 2504 zfs_dbgmsg("deleting sublist (id %llu) from" 2505 " livelist %llu, %d remaining", 2506 dle->dle_bpobj.bpo_object, ll_obj, count - 1); 2507 VERIFY0(dsl_sync_task(spa_name(spa), NULL, 2508 sublist_delete_sync, &sync_arg, 0, 2509 ZFS_SPACE_CHECK_DESTROY)); 2510 } else { 2511 VERIFY3U(err, ==, EINTR); 2512 } 2513 bplist_clear(&to_free); 2514 bplist_destroy(&to_free); 2515 dsl_deadlist_close(&ll); 2516 } else { 2517 livelist_delete_arg_t sync_arg = { 2518 .spa = spa, 2519 .ll_obj = ll_obj, 2520 .zap_obj = zap_obj 2521 }; 2522 zfs_dbgmsg("deletion of livelist %llu completed", ll_obj); 2523 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync, 2524 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY)); 2525 } 2526 } 2527 2528 static void 2529 spa_start_livelist_destroy_thread(spa_t *spa) 2530 { 2531 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL); 2532 spa->spa_livelist_delete_zthr = 2533 zthr_create("z_livelist_destroy", 2534 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa); 2535 } 2536 2537 typedef struct livelist_new_arg { 2538 bplist_t *allocs; 2539 bplist_t *frees; 2540 } livelist_new_arg_t; 2541 2542 static int 2543 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 2544 dmu_tx_t *tx) 2545 { 2546 ASSERT(tx == NULL); 2547 livelist_new_arg_t *lna = arg; 2548 if (bp_freed) { 2549 bplist_append(lna->frees, bp); 2550 } else { 2551 bplist_append(lna->allocs, bp); 2552 zfs_livelist_condense_new_alloc++; 2553 } 2554 return (0); 2555 } 2556 2557 typedef struct livelist_condense_arg { 2558 spa_t *spa; 2559 bplist_t to_keep; 2560 uint64_t first_size; 2561 uint64_t next_size; 2562 } livelist_condense_arg_t; 2563 2564 static void 2565 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx) 2566 { 2567 livelist_condense_arg_t *lca = arg; 2568 spa_t *spa = lca->spa; 2569 bplist_t new_frees; 2570 dsl_dataset_t *ds = spa->spa_to_condense.ds; 2571 2572 /* Have we been cancelled? */ 2573 if (spa->spa_to_condense.cancelled) { 2574 zfs_livelist_condense_sync_cancel++; 2575 goto out; 2576 } 2577 2578 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 2579 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 2580 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist; 2581 2582 /* 2583 * It's possible that the livelist was changed while the zthr was 2584 * running. Therefore, we need to check for new blkptrs in the two 2585 * entries being condensed and continue to track them in the livelist. 2586 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl), 2587 * it's possible that the newly added blkptrs are FREEs or ALLOCs so 2588 * we need to sort them into two different bplists. 2589 */ 2590 uint64_t first_obj = first->dle_bpobj.bpo_object; 2591 uint64_t next_obj = next->dle_bpobj.bpo_object; 2592 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs; 2593 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs; 2594 2595 bplist_create(&new_frees); 2596 livelist_new_arg_t new_bps = { 2597 .allocs = &lca->to_keep, 2598 .frees = &new_frees, 2599 }; 2600 2601 if (cur_first_size > lca->first_size) { 2602 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj, 2603 livelist_track_new_cb, &new_bps, lca->first_size)); 2604 } 2605 if (cur_next_size > lca->next_size) { 2606 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj, 2607 livelist_track_new_cb, &new_bps, lca->next_size)); 2608 } 2609 2610 dsl_deadlist_clear_entry(first, ll, tx); 2611 ASSERT(bpobj_is_empty(&first->dle_bpobj)); 2612 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx); 2613 2614 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx); 2615 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx); 2616 bplist_destroy(&new_frees); 2617 2618 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 2619 dsl_dataset_name(ds, dsname); 2620 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu " 2621 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu " 2622 "(%llu blkptrs)", tx->tx_txg, dsname, ds->ds_object, first_obj, 2623 cur_first_size, next_obj, cur_next_size, 2624 first->dle_bpobj.bpo_object, 2625 first->dle_bpobj.bpo_phys->bpo_num_blkptrs); 2626 out: 2627 dmu_buf_rele(ds->ds_dbuf, spa); 2628 spa->spa_to_condense.ds = NULL; 2629 bplist_clear(&lca->to_keep); 2630 bplist_destroy(&lca->to_keep); 2631 kmem_free(lca, sizeof (livelist_condense_arg_t)); 2632 spa->spa_to_condense.syncing = B_FALSE; 2633 } 2634 2635 static void 2636 spa_livelist_condense_cb(void *arg, zthr_t *t) 2637 { 2638 while (zfs_livelist_condense_zthr_pause && 2639 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 2640 delay(1); 2641 2642 spa_t *spa = arg; 2643 dsl_deadlist_entry_t *first = spa->spa_to_condense.first; 2644 dsl_deadlist_entry_t *next = spa->spa_to_condense.next; 2645 uint64_t first_size, next_size; 2646 2647 livelist_condense_arg_t *lca = 2648 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP); 2649 bplist_create(&lca->to_keep); 2650 2651 /* 2652 * Process the livelists (matching FREEs and ALLOCs) in open context 2653 * so we have minimal work in syncing context to condense. 2654 * 2655 * We save bpobj sizes (first_size and next_size) to use later in 2656 * syncing context to determine if entries were added to these sublists 2657 * while in open context. This is possible because the clone is still 2658 * active and open for normal writes and we want to make sure the new, 2659 * unprocessed blockpointers are inserted into the livelist normally. 2660 * 2661 * Note that dsl_process_sub_livelist() both stores the size number of 2662 * blockpointers and iterates over them while the bpobj's lock held, so 2663 * the sizes returned to us are consistent which what was actually 2664 * processed. 2665 */ 2666 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t, 2667 &first_size); 2668 if (err == 0) 2669 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep, 2670 t, &next_size); 2671 2672 if (err == 0) { 2673 while (zfs_livelist_condense_sync_pause && 2674 !(zthr_has_waiters(t) || zthr_iscancelled(t))) 2675 delay(1); 2676 2677 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 2678 dmu_tx_mark_netfree(tx); 2679 dmu_tx_hold_space(tx, 1); 2680 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE); 2681 if (err == 0) { 2682 /* 2683 * Prevent the condense zthr restarting before 2684 * the synctask completes. 2685 */ 2686 spa->spa_to_condense.syncing = B_TRUE; 2687 lca->spa = spa; 2688 lca->first_size = first_size; 2689 lca->next_size = next_size; 2690 dsl_sync_task_nowait(spa_get_dsl(spa), 2691 spa_livelist_condense_sync, lca, 0, 2692 ZFS_SPACE_CHECK_NONE, tx); 2693 dmu_tx_commit(tx); 2694 return; 2695 } 2696 } 2697 /* 2698 * Condensing can not continue: either it was externally stopped or 2699 * we were unable to assign to a tx because the pool has run out of 2700 * space. In the second case, we'll just end up trying to condense 2701 * again in a later txg. 2702 */ 2703 ASSERT(err != 0); 2704 bplist_clear(&lca->to_keep); 2705 bplist_destroy(&lca->to_keep); 2706 kmem_free(lca, sizeof (livelist_condense_arg_t)); 2707 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa); 2708 spa->spa_to_condense.ds = NULL; 2709 if (err == EINTR) 2710 zfs_livelist_condense_zthr_cancel++; 2711 } 2712 2713 /* ARGSUSED */ 2714 /* 2715 * Check that there is something to condense but that a condense is not 2716 * already in progress and that condensing has not been cancelled. 2717 */ 2718 static boolean_t 2719 spa_livelist_condense_cb_check(void *arg, zthr_t *z) 2720 { 2721 spa_t *spa = arg; 2722 if ((spa->spa_to_condense.ds != NULL) && 2723 (spa->spa_to_condense.syncing == B_FALSE) && 2724 (spa->spa_to_condense.cancelled == B_FALSE)) { 2725 return (B_TRUE); 2726 } 2727 return (B_FALSE); 2728 } 2729 2730 static void 2731 spa_start_livelist_condensing_thread(spa_t *spa) 2732 { 2733 spa->spa_to_condense.ds = NULL; 2734 spa->spa_to_condense.first = NULL; 2735 spa->spa_to_condense.next = NULL; 2736 spa->spa_to_condense.syncing = B_FALSE; 2737 spa->spa_to_condense.cancelled = B_FALSE; 2738 2739 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL); 2740 spa->spa_livelist_condense_zthr = 2741 zthr_create("z_livelist_condense", 2742 spa_livelist_condense_cb_check, 2743 spa_livelist_condense_cb, spa); 2744 } 2745 2746 static void 2747 spa_spawn_aux_threads(spa_t *spa) 2748 { 2749 ASSERT(spa_writeable(spa)); 2750 2751 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2752 2753 spa_start_indirect_condensing_thread(spa); 2754 spa_start_livelist_destroy_thread(spa); 2755 spa_start_livelist_condensing_thread(spa); 2756 2757 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL); 2758 spa->spa_checkpoint_discard_zthr = 2759 zthr_create("z_checkpoint_discard", 2760 spa_checkpoint_discard_thread_check, 2761 spa_checkpoint_discard_thread, spa); 2762 } 2763 2764 /* 2765 * Fix up config after a partly-completed split. This is done with the 2766 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 2767 * pool have that entry in their config, but only the splitting one contains 2768 * a list of all the guids of the vdevs that are being split off. 2769 * 2770 * This function determines what to do with that list: either rejoin 2771 * all the disks to the pool, or complete the splitting process. To attempt 2772 * the rejoin, each disk that is offlined is marked online again, and 2773 * we do a reopen() call. If the vdev label for every disk that was 2774 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 2775 * then we call vdev_split() on each disk, and complete the split. 2776 * 2777 * Otherwise we leave the config alone, with all the vdevs in place in 2778 * the original pool. 2779 */ 2780 static void 2781 spa_try_repair(spa_t *spa, nvlist_t *config) 2782 { 2783 uint_t extracted; 2784 uint64_t *glist; 2785 uint_t i, gcount; 2786 nvlist_t *nvl; 2787 vdev_t **vd; 2788 boolean_t attempt_reopen; 2789 2790 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 2791 return; 2792 2793 /* check that the config is complete */ 2794 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 2795 &glist, &gcount) != 0) 2796 return; 2797 2798 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 2799 2800 /* attempt to online all the vdevs & validate */ 2801 attempt_reopen = B_TRUE; 2802 for (i = 0; i < gcount; i++) { 2803 if (glist[i] == 0) /* vdev is hole */ 2804 continue; 2805 2806 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2807 if (vd[i] == NULL) { 2808 /* 2809 * Don't bother attempting to reopen the disks; 2810 * just do the split. 2811 */ 2812 attempt_reopen = B_FALSE; 2813 } else { 2814 /* attempt to re-online it */ 2815 vd[i]->vdev_offline = B_FALSE; 2816 } 2817 } 2818 2819 if (attempt_reopen) { 2820 vdev_reopen(spa->spa_root_vdev); 2821 2822 /* check each device to see what state it's in */ 2823 for (extracted = 0, i = 0; i < gcount; i++) { 2824 if (vd[i] != NULL && 2825 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2826 break; 2827 ++extracted; 2828 } 2829 } 2830 2831 /* 2832 * If every disk has been moved to the new pool, or if we never 2833 * even attempted to look at them, then we split them off for 2834 * good. 2835 */ 2836 if (!attempt_reopen || gcount == extracted) { 2837 for (i = 0; i < gcount; i++) 2838 if (vd[i] != NULL) 2839 vdev_split(vd[i]); 2840 vdev_reopen(spa->spa_root_vdev); 2841 } 2842 2843 kmem_free(vd, gcount * sizeof (vdev_t *)); 2844 } 2845 2846 static int 2847 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type) 2848 { 2849 char *ereport = FM_EREPORT_ZFS_POOL; 2850 int error; 2851 2852 spa->spa_load_state = state; 2853 (void) spa_import_progress_set_state(spa_guid(spa), 2854 spa_load_state(spa)); 2855 2856 gethrestime(&spa->spa_loaded_ts); 2857 error = spa_load_impl(spa, type, &ereport); 2858 2859 /* 2860 * Don't count references from objsets that are already closed 2861 * and are making their way through the eviction process. 2862 */ 2863 spa_evicting_os_wait(spa); 2864 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 2865 if (error) { 2866 if (error != EEXIST) { 2867 spa->spa_loaded_ts.tv_sec = 0; 2868 spa->spa_loaded_ts.tv_nsec = 0; 2869 } 2870 if (error != EBADF) { 2871 (void) zfs_ereport_post(ereport, spa, 2872 NULL, NULL, NULL, 0, 0); 2873 } 2874 } 2875 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2876 spa->spa_ena = 0; 2877 2878 (void) spa_import_progress_set_state(spa_guid(spa), 2879 spa_load_state(spa)); 2880 2881 return (error); 2882 } 2883 2884 #ifdef ZFS_DEBUG 2885 /* 2886 * Count the number of per-vdev ZAPs associated with all of the vdevs in the 2887 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the 2888 * spa's per-vdev ZAP list. 2889 */ 2890 static uint64_t 2891 vdev_count_verify_zaps(vdev_t *vd) 2892 { 2893 spa_t *spa = vd->vdev_spa; 2894 uint64_t total = 0; 2895 2896 if (vd->vdev_top_zap != 0) { 2897 total++; 2898 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2899 spa->spa_all_vdev_zaps, vd->vdev_top_zap)); 2900 } 2901 if (vd->vdev_leaf_zap != 0) { 2902 total++; 2903 ASSERT0(zap_lookup_int(spa->spa_meta_objset, 2904 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap)); 2905 } 2906 2907 for (uint64_t i = 0; i < vd->vdev_children; i++) { 2908 total += vdev_count_verify_zaps(vd->vdev_child[i]); 2909 } 2910 2911 return (total); 2912 } 2913 #endif 2914 2915 /* 2916 * Determine whether the activity check is required. 2917 */ 2918 static boolean_t 2919 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label, 2920 nvlist_t *config) 2921 { 2922 uint64_t state = 0; 2923 uint64_t hostid = 0; 2924 uint64_t tryconfig_txg = 0; 2925 uint64_t tryconfig_timestamp = 0; 2926 uint16_t tryconfig_mmp_seq = 0; 2927 nvlist_t *nvinfo; 2928 2929 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 2930 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO); 2931 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG, 2932 &tryconfig_txg); 2933 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 2934 &tryconfig_timestamp); 2935 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ, 2936 &tryconfig_mmp_seq); 2937 } 2938 2939 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state); 2940 2941 /* 2942 * Disable the MMP activity check - This is used by zdb which 2943 * is intended to be used on potentially active pools. 2944 */ 2945 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) 2946 return (B_FALSE); 2947 2948 /* 2949 * Skip the activity check when the MMP feature is disabled. 2950 */ 2951 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0) 2952 return (B_FALSE); 2953 2954 /* 2955 * If the tryconfig_ values are nonzero, they are the results of an 2956 * earlier tryimport. If they all match the uberblock we just found, 2957 * then the pool has not changed and we return false so we do not test 2958 * a second time. 2959 */ 2960 if (tryconfig_txg && tryconfig_txg == ub->ub_txg && 2961 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp && 2962 tryconfig_mmp_seq && tryconfig_mmp_seq == 2963 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) 2964 return (B_FALSE); 2965 2966 /* 2967 * Allow the activity check to be skipped when importing the pool 2968 * on the same host which last imported it. Since the hostid from 2969 * configuration may be stale use the one read from the label. 2970 */ 2971 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID)) 2972 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID); 2973 2974 if (hostid == spa_get_hostid(spa)) 2975 return (B_FALSE); 2976 2977 /* 2978 * Skip the activity test when the pool was cleanly exported. 2979 */ 2980 if (state != POOL_STATE_ACTIVE) 2981 return (B_FALSE); 2982 2983 return (B_TRUE); 2984 } 2985 2986 /* 2987 * Nanoseconds the activity check must watch for changes on-disk. 2988 */ 2989 static uint64_t 2990 spa_activity_check_duration(spa_t *spa, uberblock_t *ub) 2991 { 2992 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1); 2993 uint64_t multihost_interval = MSEC2NSEC( 2994 MMP_INTERVAL_OK(zfs_multihost_interval)); 2995 uint64_t import_delay = MAX(NANOSEC, import_intervals * 2996 multihost_interval); 2997 2998 /* 2999 * Local tunables determine a minimum duration except for the case 3000 * where we know when the remote host will suspend the pool if MMP 3001 * writes do not land. 3002 * 3003 * See Big Theory comment at the top of mmp.c for the reasoning behind 3004 * these cases and times. 3005 */ 3006 3007 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100); 3008 3009 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3010 MMP_FAIL_INT(ub) > 0) { 3011 3012 /* MMP on remote host will suspend pool after failed writes */ 3013 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) * 3014 MMP_IMPORT_SAFETY_FACTOR / 100; 3015 3016 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp " 3017 "mmp_fails=%llu ub_mmp mmp_interval=%llu " 3018 "import_intervals=%u", import_delay, MMP_FAIL_INT(ub), 3019 MMP_INTERVAL(ub), import_intervals); 3020 3021 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) && 3022 MMP_FAIL_INT(ub) == 0) { 3023 3024 /* MMP on remote host will never suspend pool */ 3025 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) + 3026 ub->ub_mmp_delay) * import_intervals); 3027 3028 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp " 3029 "mmp_interval=%llu ub_mmp_delay=%llu " 3030 "import_intervals=%u", import_delay, MMP_INTERVAL(ub), 3031 ub->ub_mmp_delay, import_intervals); 3032 3033 } else if (MMP_VALID(ub)) { 3034 /* 3035 * zfs-0.7 compatibility case 3036 */ 3037 3038 import_delay = MAX(import_delay, (multihost_interval + 3039 ub->ub_mmp_delay) * import_intervals); 3040 3041 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu " 3042 "import_intervals=%u leaves=%u", import_delay, 3043 ub->ub_mmp_delay, import_intervals, 3044 vdev_count_leaves(spa)); 3045 } else { 3046 /* Using local tunings is the only reasonable option */ 3047 zfs_dbgmsg("pool last imported on non-MMP aware " 3048 "host using import_delay=%llu multihost_interval=%llu " 3049 "import_intervals=%u", import_delay, multihost_interval, 3050 import_intervals); 3051 } 3052 3053 return (import_delay); 3054 } 3055 3056 /* 3057 * Perform the import activity check. If the user canceled the import or 3058 * we detected activity then fail. 3059 */ 3060 static int 3061 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config) 3062 { 3063 uint64_t txg = ub->ub_txg; 3064 uint64_t timestamp = ub->ub_timestamp; 3065 uint64_t mmp_config = ub->ub_mmp_config; 3066 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0; 3067 uint64_t import_delay; 3068 hrtime_t import_expire; 3069 nvlist_t *mmp_label = NULL; 3070 vdev_t *rvd = spa->spa_root_vdev; 3071 kcondvar_t cv; 3072 kmutex_t mtx; 3073 int error = 0; 3074 3075 cv_init(&cv, NULL, CV_DEFAULT, NULL); 3076 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL); 3077 mutex_enter(&mtx); 3078 3079 /* 3080 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed 3081 * during the earlier tryimport. If the txg recorded there is 0 then 3082 * the pool is known to be active on another host. 3083 * 3084 * Otherwise, the pool might be in use on another host. Check for 3085 * changes in the uberblocks on disk if necessary. 3086 */ 3087 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) { 3088 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config, 3089 ZPOOL_CONFIG_LOAD_INFO); 3090 3091 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) && 3092 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) { 3093 vdev_uberblock_load(rvd, ub, &mmp_label); 3094 error = SET_ERROR(EREMOTEIO); 3095 goto out; 3096 } 3097 } 3098 3099 import_delay = spa_activity_check_duration(spa, ub); 3100 3101 /* Add a small random factor in case of simultaneous imports (0-25%) */ 3102 import_delay += import_delay * spa_get_random(250) / 1000; 3103 3104 import_expire = gethrtime() + import_delay; 3105 3106 while (gethrtime() < import_expire) { 3107 (void) spa_import_progress_set_mmp_check(spa_guid(spa), 3108 NSEC2SEC(import_expire - gethrtime())); 3109 3110 vdev_uberblock_load(rvd, ub, &mmp_label); 3111 3112 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp || 3113 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) { 3114 zfs_dbgmsg("multihost activity detected " 3115 "txg %llu ub_txg %llu " 3116 "timestamp %llu ub_timestamp %llu " 3117 "mmp_config %#llx ub_mmp_config %#llx", 3118 txg, ub->ub_txg, timestamp, ub->ub_timestamp, 3119 mmp_config, ub->ub_mmp_config); 3120 3121 error = SET_ERROR(EREMOTEIO); 3122 break; 3123 } 3124 3125 if (mmp_label) { 3126 nvlist_free(mmp_label); 3127 mmp_label = NULL; 3128 } 3129 3130 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz); 3131 if (error != -1) { 3132 error = SET_ERROR(EINTR); 3133 break; 3134 } 3135 error = 0; 3136 } 3137 3138 out: 3139 mutex_exit(&mtx); 3140 mutex_destroy(&mtx); 3141 cv_destroy(&cv); 3142 3143 /* 3144 * If the pool is determined to be active store the status in the 3145 * spa->spa_load_info nvlist. If the remote hostname or hostid are 3146 * available from configuration read from disk store them as well. 3147 * This allows 'zpool import' to generate a more useful message. 3148 * 3149 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory) 3150 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool 3151 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool 3152 */ 3153 if (error == EREMOTEIO) { 3154 char *hostname = "<unknown>"; 3155 uint64_t hostid = 0; 3156 3157 if (mmp_label) { 3158 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) { 3159 hostname = fnvlist_lookup_string(mmp_label, 3160 ZPOOL_CONFIG_HOSTNAME); 3161 fnvlist_add_string(spa->spa_load_info, 3162 ZPOOL_CONFIG_MMP_HOSTNAME, hostname); 3163 } 3164 3165 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) { 3166 hostid = fnvlist_lookup_uint64(mmp_label, 3167 ZPOOL_CONFIG_HOSTID); 3168 fnvlist_add_uint64(spa->spa_load_info, 3169 ZPOOL_CONFIG_MMP_HOSTID, hostid); 3170 } 3171 } 3172 3173 fnvlist_add_uint64(spa->spa_load_info, 3174 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE); 3175 fnvlist_add_uint64(spa->spa_load_info, 3176 ZPOOL_CONFIG_MMP_TXG, 0); 3177 3178 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO); 3179 } 3180 3181 if (mmp_label) 3182 nvlist_free(mmp_label); 3183 3184 return (error); 3185 } 3186 3187 static int 3188 spa_verify_host(spa_t *spa, nvlist_t *mos_config) 3189 { 3190 uint64_t hostid; 3191 char *hostname; 3192 uint64_t myhostid = 0; 3193 3194 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config, 3195 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 3196 hostname = fnvlist_lookup_string(mos_config, 3197 ZPOOL_CONFIG_HOSTNAME); 3198 3199 myhostid = zone_get_hostid(NULL); 3200 3201 if (hostid != 0 && myhostid != 0 && hostid != myhostid) { 3202 cmn_err(CE_WARN, "pool '%s' could not be " 3203 "loaded as it was last accessed by " 3204 "another system (host: %s hostid: 0x%llx). " 3205 "See: https://openzfs.github.io/openzfs-docs/msg/" 3206 "ZFS-8000-EY", 3207 spa_name(spa), hostname, (u_longlong_t)hostid); 3208 spa_load_failed(spa, "hostid verification failed: pool " 3209 "last accessed by host: %s (hostid: 0x%llx)", 3210 hostname, (u_longlong_t)hostid); 3211 return (SET_ERROR(EBADF)); 3212 } 3213 } 3214 3215 return (0); 3216 } 3217 3218 static int 3219 spa_ld_parse_config(spa_t *spa, spa_import_type_t type) 3220 { 3221 int error = 0; 3222 nvlist_t *nvtree, *nvl, *config = spa->spa_config; 3223 int parse; 3224 vdev_t *rvd; 3225 uint64_t pool_guid; 3226 char *comment; 3227 3228 /* 3229 * Versioning wasn't explicitly added to the label until later, so if 3230 * it's not present treat it as the initial version. 3231 */ 3232 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 3233 &spa->spa_ubsync.ub_version) != 0) 3234 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 3235 3236 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 3237 spa_load_failed(spa, "invalid config provided: '%s' missing", 3238 ZPOOL_CONFIG_POOL_GUID); 3239 return (SET_ERROR(EINVAL)); 3240 } 3241 3242 /* 3243 * If we are doing an import, ensure that the pool is not already 3244 * imported by checking if its pool guid already exists in the 3245 * spa namespace. 3246 * 3247 * The only case that we allow an already imported pool to be 3248 * imported again, is when the pool is checkpointed and we want to 3249 * look at its checkpointed state from userland tools like zdb. 3250 */ 3251 #ifdef _KERNEL 3252 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3253 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3254 spa_guid_exists(pool_guid, 0)) { 3255 #else 3256 if ((spa->spa_load_state == SPA_LOAD_IMPORT || 3257 spa->spa_load_state == SPA_LOAD_TRYIMPORT) && 3258 spa_guid_exists(pool_guid, 0) && 3259 !spa_importing_readonly_checkpoint(spa)) { 3260 #endif 3261 spa_load_failed(spa, "a pool with guid %llu is already open", 3262 (u_longlong_t)pool_guid); 3263 return (SET_ERROR(EEXIST)); 3264 } 3265 3266 spa->spa_config_guid = pool_guid; 3267 3268 nvlist_free(spa->spa_load_info); 3269 spa->spa_load_info = fnvlist_alloc(); 3270 3271 ASSERT(spa->spa_comment == NULL); 3272 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 3273 spa->spa_comment = spa_strdup(comment); 3274 3275 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 3276 &spa->spa_config_txg); 3277 3278 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0) 3279 spa->spa_config_splitting = fnvlist_dup(nvl); 3280 3281 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) { 3282 spa_load_failed(spa, "invalid config provided: '%s' missing", 3283 ZPOOL_CONFIG_VDEV_TREE); 3284 return (SET_ERROR(EINVAL)); 3285 } 3286 3287 /* 3288 * Create "The Godfather" zio to hold all async IOs 3289 */ 3290 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 3291 KM_SLEEP); 3292 for (int i = 0; i < max_ncpus; i++) { 3293 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 3294 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 3295 ZIO_FLAG_GODFATHER); 3296 } 3297 3298 /* 3299 * Parse the configuration into a vdev tree. We explicitly set the 3300 * value that will be returned by spa_version() since parsing the 3301 * configuration requires knowing the version number. 3302 */ 3303 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3304 parse = (type == SPA_IMPORT_EXISTING ? 3305 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 3306 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse); 3307 spa_config_exit(spa, SCL_ALL, FTAG); 3308 3309 if (error != 0) { 3310 spa_load_failed(spa, "unable to parse config [error=%d]", 3311 error); 3312 return (error); 3313 } 3314 3315 ASSERT(spa->spa_root_vdev == rvd); 3316 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT); 3317 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT); 3318 3319 if (type != SPA_IMPORT_ASSEMBLE) { 3320 ASSERT(spa_guid(spa) == pool_guid); 3321 } 3322 3323 return (0); 3324 } 3325 3326 /* 3327 * Recursively open all vdevs in the vdev tree. This function is called twice: 3328 * first with the untrusted config, then with the trusted config. 3329 */ 3330 static int 3331 spa_ld_open_vdevs(spa_t *spa) 3332 { 3333 int error = 0; 3334 3335 /* 3336 * spa_missing_tvds_allowed defines how many top-level vdevs can be 3337 * missing/unopenable for the root vdev to be still considered openable. 3338 */ 3339 if (spa->spa_trust_config) { 3340 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds; 3341 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) { 3342 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile; 3343 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) { 3344 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan; 3345 } else { 3346 spa->spa_missing_tvds_allowed = 0; 3347 } 3348 3349 spa->spa_missing_tvds_allowed = 3350 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed); 3351 3352 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3353 error = vdev_open(spa->spa_root_vdev); 3354 spa_config_exit(spa, SCL_ALL, FTAG); 3355 3356 if (spa->spa_missing_tvds != 0) { 3357 spa_load_note(spa, "vdev tree has %lld missing top-level " 3358 "vdevs.", (u_longlong_t)spa->spa_missing_tvds); 3359 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) { 3360 /* 3361 * Although theoretically we could allow users to open 3362 * incomplete pools in RW mode, we'd need to add a lot 3363 * of extra logic (e.g. adjust pool space to account 3364 * for missing vdevs). 3365 * This limitation also prevents users from accidentally 3366 * opening the pool in RW mode during data recovery and 3367 * damaging it further. 3368 */ 3369 spa_load_note(spa, "pools with missing top-level " 3370 "vdevs can only be opened in read-only mode."); 3371 error = SET_ERROR(ENXIO); 3372 } else { 3373 spa_load_note(spa, "current settings allow for maximum " 3374 "%lld missing top-level vdevs at this stage.", 3375 (u_longlong_t)spa->spa_missing_tvds_allowed); 3376 } 3377 } 3378 if (error != 0) { 3379 spa_load_failed(spa, "unable to open vdev tree [error=%d]", 3380 error); 3381 } 3382 if (spa->spa_missing_tvds != 0 || error != 0) 3383 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2); 3384 3385 return (error); 3386 } 3387 3388 /* 3389 * We need to validate the vdev labels against the configuration that 3390 * we have in hand. This function is called twice: first with an untrusted 3391 * config, then with a trusted config. The validation is more strict when the 3392 * config is trusted. 3393 */ 3394 static int 3395 spa_ld_validate_vdevs(spa_t *spa) 3396 { 3397 int error = 0; 3398 vdev_t *rvd = spa->spa_root_vdev; 3399 3400 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3401 error = vdev_validate(rvd); 3402 spa_config_exit(spa, SCL_ALL, FTAG); 3403 3404 if (error != 0) { 3405 spa_load_failed(spa, "vdev_validate failed [error=%d]", error); 3406 return (error); 3407 } 3408 3409 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 3410 spa_load_failed(spa, "cannot open vdev tree after invalidating " 3411 "some vdevs"); 3412 vdev_dbgmsg_print_tree(rvd, 2); 3413 return (SET_ERROR(ENXIO)); 3414 } 3415 3416 return (0); 3417 } 3418 3419 static void 3420 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub) 3421 { 3422 spa->spa_state = POOL_STATE_ACTIVE; 3423 spa->spa_ubsync = spa->spa_uberblock; 3424 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 3425 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 3426 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 3427 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 3428 spa->spa_claim_max_txg = spa->spa_first_txg; 3429 spa->spa_prev_software_version = ub->ub_software_version; 3430 } 3431 3432 static int 3433 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type) 3434 { 3435 vdev_t *rvd = spa->spa_root_vdev; 3436 nvlist_t *label; 3437 uberblock_t *ub = &spa->spa_uberblock; 3438 boolean_t activity_check = B_FALSE; 3439 3440 /* 3441 * If we are opening the checkpointed state of the pool by 3442 * rewinding to it, at this point we will have written the 3443 * checkpointed uberblock to the vdev labels, so searching 3444 * the labels will find the right uberblock. However, if 3445 * we are opening the checkpointed state read-only, we have 3446 * not modified the labels. Therefore, we must ignore the 3447 * labels and continue using the spa_uberblock that was set 3448 * by spa_ld_checkpoint_rewind. 3449 * 3450 * Note that it would be fine to ignore the labels when 3451 * rewinding (opening writeable) as well. However, if we 3452 * crash just after writing the labels, we will end up 3453 * searching the labels. Doing so in the common case means 3454 * that this code path gets exercised normally, rather than 3455 * just in the edge case. 3456 */ 3457 if (ub->ub_checkpoint_txg != 0 && 3458 spa_importing_readonly_checkpoint(spa)) { 3459 spa_ld_select_uberblock_done(spa, ub); 3460 return (0); 3461 } 3462 3463 /* 3464 * Find the best uberblock. 3465 */ 3466 vdev_uberblock_load(rvd, ub, &label); 3467 3468 /* 3469 * If we weren't able to find a single valid uberblock, return failure. 3470 */ 3471 if (ub->ub_txg == 0) { 3472 nvlist_free(label); 3473 spa_load_failed(spa, "no valid uberblock found"); 3474 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 3475 } 3476 3477 if (spa->spa_load_max_txg != UINT64_MAX) { 3478 (void) spa_import_progress_set_max_txg(spa_guid(spa), 3479 (u_longlong_t)spa->spa_load_max_txg); 3480 } 3481 spa_load_note(spa, "using uberblock with txg=%llu", 3482 (u_longlong_t)ub->ub_txg); 3483 3484 3485 /* 3486 * For pools which have the multihost property on determine if the 3487 * pool is truly inactive and can be safely imported. Prevent 3488 * hosts which don't have a hostid set from importing the pool. 3489 */ 3490 activity_check = spa_activity_check_required(spa, ub, label, 3491 spa->spa_config); 3492 if (activity_check) { 3493 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay && 3494 spa_get_hostid(spa) == 0) { 3495 nvlist_free(label); 3496 fnvlist_add_uint64(spa->spa_load_info, 3497 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 3498 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 3499 } 3500 3501 int error = spa_activity_check(spa, ub, spa->spa_config); 3502 if (error) { 3503 nvlist_free(label); 3504 return (error); 3505 } 3506 3507 fnvlist_add_uint64(spa->spa_load_info, 3508 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE); 3509 fnvlist_add_uint64(spa->spa_load_info, 3510 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg); 3511 fnvlist_add_uint16(spa->spa_load_info, 3512 ZPOOL_CONFIG_MMP_SEQ, 3513 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)); 3514 } 3515 3516 /* 3517 * If the pool has an unsupported version we can't open it. 3518 */ 3519 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 3520 nvlist_free(label); 3521 spa_load_failed(spa, "version %llu is not supported", 3522 (u_longlong_t)ub->ub_version); 3523 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 3524 } 3525 3526 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3527 nvlist_t *features; 3528 3529 /* 3530 * If we weren't able to find what's necessary for reading the 3531 * MOS in the label, return failure. 3532 */ 3533 if (label == NULL) { 3534 spa_load_failed(spa, "label config unavailable"); 3535 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3536 ENXIO)); 3537 } 3538 3539 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ, 3540 &features) != 0) { 3541 nvlist_free(label); 3542 spa_load_failed(spa, "invalid label: '%s' missing", 3543 ZPOOL_CONFIG_FEATURES_FOR_READ); 3544 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 3545 ENXIO)); 3546 } 3547 3548 /* 3549 * Update our in-core representation with the definitive values 3550 * from the label. 3551 */ 3552 nvlist_free(spa->spa_label_features); 3553 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 3554 } 3555 3556 nvlist_free(label); 3557 3558 /* 3559 * Look through entries in the label nvlist's features_for_read. If 3560 * there is a feature listed there which we don't understand then we 3561 * cannot open a pool. 3562 */ 3563 if (ub->ub_version >= SPA_VERSION_FEATURES) { 3564 nvlist_t *unsup_feat; 3565 3566 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 3567 0); 3568 3569 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 3570 NULL); nvp != NULL; 3571 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 3572 if (!zfeature_is_supported(nvpair_name(nvp))) { 3573 VERIFY(nvlist_add_string(unsup_feat, 3574 nvpair_name(nvp), "") == 0); 3575 } 3576 } 3577 3578 if (!nvlist_empty(unsup_feat)) { 3579 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 3580 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 3581 nvlist_free(unsup_feat); 3582 spa_load_failed(spa, "some features are unsupported"); 3583 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3584 ENOTSUP)); 3585 } 3586 3587 nvlist_free(unsup_feat); 3588 } 3589 3590 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 3591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3592 spa_try_repair(spa, spa->spa_config); 3593 spa_config_exit(spa, SCL_ALL, FTAG); 3594 nvlist_free(spa->spa_config_splitting); 3595 spa->spa_config_splitting = NULL; 3596 } 3597 3598 /* 3599 * Initialize internal SPA structures. 3600 */ 3601 spa_ld_select_uberblock_done(spa, ub); 3602 3603 return (0); 3604 } 3605 3606 static int 3607 spa_ld_open_rootbp(spa_t *spa) 3608 { 3609 int error = 0; 3610 vdev_t *rvd = spa->spa_root_vdev; 3611 3612 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 3613 if (error != 0) { 3614 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init " 3615 "[error=%d]", error); 3616 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3617 } 3618 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 3619 3620 return (0); 3621 } 3622 3623 static int 3624 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type, 3625 boolean_t reloading) 3626 { 3627 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 3628 nvlist_t *nv, *mos_config, *policy; 3629 int error = 0, copy_error; 3630 uint64_t healthy_tvds, healthy_tvds_mos; 3631 uint64_t mos_config_txg; 3632 3633 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE) 3634 != 0) 3635 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3636 3637 /* 3638 * If we're assembling a pool from a split, the config provided is 3639 * already trusted so there is nothing to do. 3640 */ 3641 if (type == SPA_IMPORT_ASSEMBLE) 3642 return (0); 3643 3644 healthy_tvds = spa_healthy_core_tvds(spa); 3645 3646 if (load_nvlist(spa, spa->spa_config_object, &mos_config) 3647 != 0) { 3648 spa_load_failed(spa, "unable to retrieve MOS config"); 3649 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3650 } 3651 3652 /* 3653 * If we are doing an open, pool owner wasn't verified yet, thus do 3654 * the verification here. 3655 */ 3656 if (spa->spa_load_state == SPA_LOAD_OPEN) { 3657 error = spa_verify_host(spa, mos_config); 3658 if (error != 0) { 3659 nvlist_free(mos_config); 3660 return (error); 3661 } 3662 } 3663 3664 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE); 3665 3666 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3667 3668 /* 3669 * Build a new vdev tree from the trusted config 3670 */ 3671 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 3672 3673 /* 3674 * Vdev paths in the MOS may be obsolete. If the untrusted config was 3675 * obtained by scanning /dev/dsk, then it will have the right vdev 3676 * paths. We update the trusted MOS config with this information. 3677 * We first try to copy the paths with vdev_copy_path_strict, which 3678 * succeeds only when both configs have exactly the same vdev tree. 3679 * If that fails, we fall back to a more flexible method that has a 3680 * best effort policy. 3681 */ 3682 copy_error = vdev_copy_path_strict(rvd, mrvd); 3683 if (copy_error != 0 || spa_load_print_vdev_tree) { 3684 spa_load_note(spa, "provided vdev tree:"); 3685 vdev_dbgmsg_print_tree(rvd, 2); 3686 spa_load_note(spa, "MOS vdev tree:"); 3687 vdev_dbgmsg_print_tree(mrvd, 2); 3688 } 3689 if (copy_error != 0) { 3690 spa_load_note(spa, "vdev_copy_path_strict failed, falling " 3691 "back to vdev_copy_path_relaxed"); 3692 vdev_copy_path_relaxed(rvd, mrvd); 3693 } 3694 3695 vdev_close(rvd); 3696 vdev_free(rvd); 3697 spa->spa_root_vdev = mrvd; 3698 rvd = mrvd; 3699 spa_config_exit(spa, SCL_ALL, FTAG); 3700 3701 /* 3702 * We will use spa_config if we decide to reload the spa or if spa_load 3703 * fails and we rewind. We must thus regenerate the config using the 3704 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to 3705 * pass settings on how to load the pool and is not stored in the MOS. 3706 * We copy it over to our new, trusted config. 3707 */ 3708 mos_config_txg = fnvlist_lookup_uint64(mos_config, 3709 ZPOOL_CONFIG_POOL_TXG); 3710 nvlist_free(mos_config); 3711 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE); 3712 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY, 3713 &policy) == 0) 3714 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy); 3715 spa_config_set(spa, mos_config); 3716 spa->spa_config_source = SPA_CONFIG_SRC_MOS; 3717 3718 /* 3719 * Now that we got the config from the MOS, we should be more strict 3720 * in checking blkptrs and can make assumptions about the consistency 3721 * of the vdev tree. spa_trust_config must be set to true before opening 3722 * vdevs in order for them to be writeable. 3723 */ 3724 spa->spa_trust_config = B_TRUE; 3725 3726 /* 3727 * Open and validate the new vdev tree 3728 */ 3729 error = spa_ld_open_vdevs(spa); 3730 if (error != 0) 3731 return (error); 3732 3733 error = spa_ld_validate_vdevs(spa); 3734 if (error != 0) 3735 return (error); 3736 3737 if (copy_error != 0 || spa_load_print_vdev_tree) { 3738 spa_load_note(spa, "final vdev tree:"); 3739 vdev_dbgmsg_print_tree(rvd, 2); 3740 } 3741 3742 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT && 3743 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) { 3744 /* 3745 * Sanity check to make sure that we are indeed loading the 3746 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds 3747 * in the config provided and they happened to be the only ones 3748 * to have the latest uberblock, we could involuntarily perform 3749 * an extreme rewind. 3750 */ 3751 healthy_tvds_mos = spa_healthy_core_tvds(spa); 3752 if (healthy_tvds_mos - healthy_tvds >= 3753 SPA_SYNC_MIN_VDEVS) { 3754 spa_load_note(spa, "config provided misses too many " 3755 "top-level vdevs compared to MOS (%lld vs %lld). ", 3756 (u_longlong_t)healthy_tvds, 3757 (u_longlong_t)healthy_tvds_mos); 3758 spa_load_note(spa, "vdev tree:"); 3759 vdev_dbgmsg_print_tree(rvd, 2); 3760 if (reloading) { 3761 spa_load_failed(spa, "config was already " 3762 "provided from MOS. Aborting."); 3763 return (spa_vdev_err(rvd, 3764 VDEV_AUX_CORRUPT_DATA, EIO)); 3765 } 3766 spa_load_note(spa, "spa must be reloaded using MOS " 3767 "config"); 3768 return (SET_ERROR(EAGAIN)); 3769 } 3770 } 3771 3772 error = spa_check_for_missing_logs(spa); 3773 if (error != 0) 3774 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 3775 3776 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) { 3777 spa_load_failed(spa, "uberblock guid sum doesn't match MOS " 3778 "guid sum (%llu != %llu)", 3779 (u_longlong_t)spa->spa_uberblock.ub_guid_sum, 3780 (u_longlong_t)rvd->vdev_guid_sum); 3781 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 3782 ENXIO)); 3783 } 3784 3785 return (0); 3786 } 3787 3788 static int 3789 spa_ld_open_indirect_vdev_metadata(spa_t *spa) 3790 { 3791 int error = 0; 3792 vdev_t *rvd = spa->spa_root_vdev; 3793 3794 /* 3795 * Everything that we read before spa_remove_init() must be stored 3796 * on concreted vdevs. Therefore we do this as early as possible. 3797 */ 3798 error = spa_remove_init(spa); 3799 if (error != 0) { 3800 spa_load_failed(spa, "spa_remove_init failed [error=%d]", 3801 error); 3802 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3803 } 3804 3805 /* 3806 * Retrieve information needed to condense indirect vdev mappings. 3807 */ 3808 error = spa_condense_init(spa); 3809 if (error != 0) { 3810 spa_load_failed(spa, "spa_condense_init failed [error=%d]", 3811 error); 3812 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 3813 } 3814 3815 return (0); 3816 } 3817 3818 static int 3819 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep) 3820 { 3821 int error = 0; 3822 vdev_t *rvd = spa->spa_root_vdev; 3823 3824 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 3825 boolean_t missing_feat_read = B_FALSE; 3826 nvlist_t *unsup_feat, *enabled_feat; 3827 3828 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 3829 &spa->spa_feat_for_read_obj, B_TRUE) != 0) { 3830 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3831 } 3832 3833 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 3834 &spa->spa_feat_for_write_obj, B_TRUE) != 0) { 3835 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3836 } 3837 3838 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 3839 &spa->spa_feat_desc_obj, B_TRUE) != 0) { 3840 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3841 } 3842 3843 enabled_feat = fnvlist_alloc(); 3844 unsup_feat = fnvlist_alloc(); 3845 3846 if (!spa_features_check(spa, B_FALSE, 3847 unsup_feat, enabled_feat)) 3848 missing_feat_read = B_TRUE; 3849 3850 if (spa_writeable(spa) || 3851 spa->spa_load_state == SPA_LOAD_TRYIMPORT) { 3852 if (!spa_features_check(spa, B_TRUE, 3853 unsup_feat, enabled_feat)) { 3854 *missing_feat_writep = B_TRUE; 3855 } 3856 } 3857 3858 fnvlist_add_nvlist(spa->spa_load_info, 3859 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 3860 3861 if (!nvlist_empty(unsup_feat)) { 3862 fnvlist_add_nvlist(spa->spa_load_info, 3863 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 3864 } 3865 3866 fnvlist_free(enabled_feat); 3867 fnvlist_free(unsup_feat); 3868 3869 if (!missing_feat_read) { 3870 fnvlist_add_boolean(spa->spa_load_info, 3871 ZPOOL_CONFIG_CAN_RDONLY); 3872 } 3873 3874 /* 3875 * If the state is SPA_LOAD_TRYIMPORT, our objective is 3876 * twofold: to determine whether the pool is available for 3877 * import in read-write mode and (if it is not) whether the 3878 * pool is available for import in read-only mode. If the pool 3879 * is available for import in read-write mode, it is displayed 3880 * as available in userland; if it is not available for import 3881 * in read-only mode, it is displayed as unavailable in 3882 * userland. If the pool is available for import in read-only 3883 * mode but not read-write mode, it is displayed as unavailable 3884 * in userland with a special note that the pool is actually 3885 * available for open in read-only mode. 3886 * 3887 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 3888 * missing a feature for write, we must first determine whether 3889 * the pool can be opened read-only before returning to 3890 * userland in order to know whether to display the 3891 * abovementioned note. 3892 */ 3893 if (missing_feat_read || (*missing_feat_writep && 3894 spa_writeable(spa))) { 3895 spa_load_failed(spa, "pool uses unsupported features"); 3896 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 3897 ENOTSUP)); 3898 } 3899 3900 /* 3901 * Load refcounts for ZFS features from disk into an in-memory 3902 * cache during SPA initialization. 3903 */ 3904 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 3905 uint64_t refcount; 3906 3907 error = feature_get_refcount_from_disk(spa, 3908 &spa_feature_table[i], &refcount); 3909 if (error == 0) { 3910 spa->spa_feat_refcount_cache[i] = refcount; 3911 } else if (error == ENOTSUP) { 3912 spa->spa_feat_refcount_cache[i] = 3913 SPA_FEATURE_DISABLED; 3914 } else { 3915 spa_load_failed(spa, "error getting refcount " 3916 "for feature %s [error=%d]", 3917 spa_feature_table[i].fi_guid, error); 3918 return (spa_vdev_err(rvd, 3919 VDEV_AUX_CORRUPT_DATA, EIO)); 3920 } 3921 } 3922 } 3923 3924 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 3925 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 3926 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0) 3927 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3928 } 3929 3930 /* 3931 * Encryption was added before bookmark_v2, even though bookmark_v2 3932 * is now a dependency. If this pool has encryption enabled without 3933 * bookmark_v2, trigger an errata message. 3934 */ 3935 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) && 3936 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) { 3937 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION; 3938 } 3939 3940 return (0); 3941 } 3942 3943 static int 3944 spa_ld_load_special_directories(spa_t *spa) 3945 { 3946 int error = 0; 3947 vdev_t *rvd = spa->spa_root_vdev; 3948 3949 spa->spa_is_initializing = B_TRUE; 3950 error = dsl_pool_open(spa->spa_dsl_pool); 3951 spa->spa_is_initializing = B_FALSE; 3952 if (error != 0) { 3953 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error); 3954 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3955 } 3956 3957 return (0); 3958 } 3959 3960 static int 3961 spa_ld_get_props(spa_t *spa) 3962 { 3963 int error = 0; 3964 uint64_t obj; 3965 vdev_t *rvd = spa->spa_root_vdev; 3966 3967 /* Grab the checksum salt from the MOS. */ 3968 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 3969 DMU_POOL_CHECKSUM_SALT, 1, 3970 sizeof (spa->spa_cksum_salt.zcs_bytes), 3971 spa->spa_cksum_salt.zcs_bytes); 3972 if (error == ENOENT) { 3973 /* Generate a new salt for subsequent use */ 3974 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 3975 sizeof (spa->spa_cksum_salt.zcs_bytes)); 3976 } else if (error != 0) { 3977 spa_load_failed(spa, "unable to retrieve checksum salt from " 3978 "MOS [error=%d]", error); 3979 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3980 } 3981 3982 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0) 3983 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3984 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 3985 if (error != 0) { 3986 spa_load_failed(spa, "error opening deferred-frees bpobj " 3987 "[error=%d]", error); 3988 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3989 } 3990 3991 /* 3992 * Load the bit that tells us to use the new accounting function 3993 * (raid-z deflation). If we have an older pool, this will not 3994 * be present. 3995 */ 3996 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE); 3997 if (error != 0 && error != ENOENT) 3998 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 3999 4000 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 4001 &spa->spa_creation_version, B_FALSE); 4002 if (error != 0 && error != ENOENT) 4003 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4004 4005 /* 4006 * Load the persistent error log. If we have an older pool, this will 4007 * not be present. 4008 */ 4009 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last, 4010 B_FALSE); 4011 if (error != 0 && error != ENOENT) 4012 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4013 4014 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 4015 &spa->spa_errlog_scrub, B_FALSE); 4016 if (error != 0 && error != ENOENT) 4017 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4018 4019 /* 4020 * Load the livelist deletion field. If a livelist is queued for 4021 * deletion, indicate that in the spa 4022 */ 4023 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES, 4024 &spa->spa_livelists_to_delete, B_FALSE); 4025 if (error != 0 && error != ENOENT) 4026 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4027 4028 /* 4029 * Load the history object. If we have an older pool, this 4030 * will not be present. 4031 */ 4032 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE); 4033 if (error != 0 && error != ENOENT) 4034 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4035 4036 /* 4037 * Load the per-vdev ZAP map. If we have an older pool, this will not 4038 * be present; in this case, defer its creation to a later time to 4039 * avoid dirtying the MOS this early / out of sync context. See 4040 * spa_sync_config_object. 4041 */ 4042 4043 /* The sentinel is only available in the MOS config. */ 4044 nvlist_t *mos_config; 4045 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) { 4046 spa_load_failed(spa, "unable to retrieve MOS config"); 4047 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4048 } 4049 4050 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP, 4051 &spa->spa_all_vdev_zaps, B_FALSE); 4052 4053 if (error == ENOENT) { 4054 VERIFY(!nvlist_exists(mos_config, 4055 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 4056 spa->spa_avz_action = AVZ_ACTION_INITIALIZE; 4057 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4058 } else if (error != 0) { 4059 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4060 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) { 4061 /* 4062 * An older version of ZFS overwrote the sentinel value, so 4063 * we have orphaned per-vdev ZAPs in the MOS. Defer their 4064 * destruction to later; see spa_sync_config_object. 4065 */ 4066 spa->spa_avz_action = AVZ_ACTION_DESTROY; 4067 /* 4068 * We're assuming that no vdevs have had their ZAPs created 4069 * before this. Better be sure of it. 4070 */ 4071 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev)); 4072 } 4073 nvlist_free(mos_config); 4074 4075 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 4076 4077 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object, 4078 B_FALSE); 4079 if (error && error != ENOENT) 4080 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4081 4082 if (error == 0) { 4083 uint64_t autoreplace; 4084 4085 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 4086 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 4087 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 4088 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 4089 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 4090 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost); 4091 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim); 4092 spa->spa_autoreplace = (autoreplace != 0); 4093 } 4094 4095 /* 4096 * If we are importing a pool with missing top-level vdevs, 4097 * we enforce that the pool doesn't panic or get suspended on 4098 * error since the likelihood of missing data is extremely high. 4099 */ 4100 if (spa->spa_missing_tvds > 0 && 4101 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE && 4102 spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4103 spa_load_note(spa, "forcing failmode to 'continue' " 4104 "as some top level vdevs are missing"); 4105 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE; 4106 } 4107 4108 return (0); 4109 } 4110 4111 static int 4112 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type) 4113 { 4114 int error = 0; 4115 vdev_t *rvd = spa->spa_root_vdev; 4116 4117 /* 4118 * If we're assembling the pool from the split-off vdevs of 4119 * an existing pool, we don't want to attach the spares & cache 4120 * devices. 4121 */ 4122 4123 /* 4124 * Load any hot spares for this pool. 4125 */ 4126 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object, 4127 B_FALSE); 4128 if (error != 0 && error != ENOENT) 4129 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4130 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4131 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 4132 if (load_nvlist(spa, spa->spa_spares.sav_object, 4133 &spa->spa_spares.sav_config) != 0) { 4134 spa_load_failed(spa, "error loading spares nvlist"); 4135 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4136 } 4137 4138 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4139 spa_load_spares(spa); 4140 spa_config_exit(spa, SCL_ALL, FTAG); 4141 } else if (error == 0) { 4142 spa->spa_spares.sav_sync = B_TRUE; 4143 } 4144 4145 /* 4146 * Load any level 2 ARC devices for this pool. 4147 */ 4148 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 4149 &spa->spa_l2cache.sav_object, B_FALSE); 4150 if (error != 0 && error != ENOENT) 4151 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4152 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 4153 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 4154 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 4155 &spa->spa_l2cache.sav_config) != 0) { 4156 spa_load_failed(spa, "error loading l2cache nvlist"); 4157 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4158 } 4159 4160 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4161 spa_load_l2cache(spa); 4162 spa_config_exit(spa, SCL_ALL, FTAG); 4163 } else if (error == 0) { 4164 spa->spa_l2cache.sav_sync = B_TRUE; 4165 } 4166 4167 return (0); 4168 } 4169 4170 static int 4171 spa_ld_load_vdev_metadata(spa_t *spa) 4172 { 4173 int error = 0; 4174 vdev_t *rvd = spa->spa_root_vdev; 4175 4176 /* 4177 * If the 'multihost' property is set, then never allow a pool to 4178 * be imported when the system hostid is zero. The exception to 4179 * this rule is zdb which is always allowed to access pools. 4180 */ 4181 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 && 4182 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) { 4183 fnvlist_add_uint64(spa->spa_load_info, 4184 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID); 4185 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO)); 4186 } 4187 4188 /* 4189 * If the 'autoreplace' property is set, then post a resource notifying 4190 * the ZFS DE that it should not issue any faults for unopenable 4191 * devices. We also iterate over the vdevs, and post a sysevent for any 4192 * unopenable vdevs so that the normal autoreplace handler can take 4193 * over. 4194 */ 4195 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4196 spa_check_removed(spa->spa_root_vdev); 4197 /* 4198 * For the import case, this is done in spa_import(), because 4199 * at this point we're using the spare definitions from 4200 * the MOS config, not necessarily from the userland config. 4201 */ 4202 if (spa->spa_load_state != SPA_LOAD_IMPORT) { 4203 spa_aux_check_removed(&spa->spa_spares); 4204 spa_aux_check_removed(&spa->spa_l2cache); 4205 } 4206 } 4207 4208 /* 4209 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc. 4210 */ 4211 error = vdev_load(rvd); 4212 if (error != 0) { 4213 spa_load_failed(spa, "vdev_load failed [error=%d]", error); 4214 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4215 } 4216 4217 error = spa_ld_log_spacemaps(spa); 4218 if (error != 0) { 4219 spa_load_failed(spa, "spa_ld_log_sm_data failed [error=%d]", 4220 error); 4221 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error)); 4222 } 4223 4224 /* 4225 * Propagate the leaf DTLs we just loaded all the way up the vdev tree. 4226 */ 4227 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4228 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE); 4229 spa_config_exit(spa, SCL_ALL, FTAG); 4230 4231 return (0); 4232 } 4233 4234 static int 4235 spa_ld_load_dedup_tables(spa_t *spa) 4236 { 4237 int error = 0; 4238 vdev_t *rvd = spa->spa_root_vdev; 4239 4240 error = ddt_load(spa); 4241 if (error != 0) { 4242 spa_load_failed(spa, "ddt_load failed [error=%d]", error); 4243 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 4244 } 4245 4246 return (0); 4247 } 4248 4249 static int 4250 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport) 4251 { 4252 vdev_t *rvd = spa->spa_root_vdev; 4253 4254 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) { 4255 boolean_t missing = spa_check_logs(spa); 4256 if (missing) { 4257 if (spa->spa_missing_tvds != 0) { 4258 spa_load_note(spa, "spa_check_logs failed " 4259 "so dropping the logs"); 4260 } else { 4261 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 4262 spa_load_failed(spa, "spa_check_logs failed"); 4263 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, 4264 ENXIO)); 4265 } 4266 } 4267 } 4268 4269 return (0); 4270 } 4271 4272 static int 4273 spa_ld_verify_pool_data(spa_t *spa) 4274 { 4275 int error = 0; 4276 vdev_t *rvd = spa->spa_root_vdev; 4277 4278 /* 4279 * We've successfully opened the pool, verify that we're ready 4280 * to start pushing transactions. 4281 */ 4282 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) { 4283 error = spa_load_verify(spa); 4284 if (error != 0) { 4285 spa_load_failed(spa, "spa_load_verify failed " 4286 "[error=%d]", error); 4287 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 4288 error)); 4289 } 4290 } 4291 4292 return (0); 4293 } 4294 4295 static void 4296 spa_ld_claim_log_blocks(spa_t *spa) 4297 { 4298 dmu_tx_t *tx; 4299 dsl_pool_t *dp = spa_get_dsl(spa); 4300 4301 /* 4302 * Claim log blocks that haven't been committed yet. 4303 * This must all happen in a single txg. 4304 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 4305 * invoked from zil_claim_log_block()'s i/o done callback. 4306 * Price of rollback is that we abandon the log. 4307 */ 4308 spa->spa_claiming = B_TRUE; 4309 4310 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa)); 4311 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj, 4312 zil_claim, tx, DS_FIND_CHILDREN); 4313 dmu_tx_commit(tx); 4314 4315 spa->spa_claiming = B_FALSE; 4316 4317 spa_set_log_state(spa, SPA_LOG_GOOD); 4318 } 4319 4320 static void 4321 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg, 4322 boolean_t update_config_cache) 4323 { 4324 vdev_t *rvd = spa->spa_root_vdev; 4325 int need_update = B_FALSE; 4326 4327 /* 4328 * If the config cache is stale, or we have uninitialized 4329 * metaslabs (see spa_vdev_add()), then update the config. 4330 * 4331 * If this is a verbatim import, trust the current 4332 * in-core spa_config and update the disk labels. 4333 */ 4334 if (update_config_cache || config_cache_txg != spa->spa_config_txg || 4335 spa->spa_load_state == SPA_LOAD_IMPORT || 4336 spa->spa_load_state == SPA_LOAD_RECOVER || 4337 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 4338 need_update = B_TRUE; 4339 4340 for (int c = 0; c < rvd->vdev_children; c++) 4341 if (rvd->vdev_child[c]->vdev_ms_array == 0) 4342 need_update = B_TRUE; 4343 4344 /* 4345 * Update the config cache asynchronously in case we're the 4346 * root pool, in which case the config cache isn't writable yet. 4347 */ 4348 if (need_update) 4349 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 4350 } 4351 4352 static void 4353 spa_ld_prepare_for_reload(spa_t *spa) 4354 { 4355 spa_mode_t mode = spa->spa_mode; 4356 int async_suspended = spa->spa_async_suspended; 4357 4358 spa_unload(spa); 4359 spa_deactivate(spa); 4360 spa_activate(spa, mode); 4361 4362 /* 4363 * We save the value of spa_async_suspended as it gets reset to 0 by 4364 * spa_unload(). We want to restore it back to the original value before 4365 * returning as we might be calling spa_async_resume() later. 4366 */ 4367 spa->spa_async_suspended = async_suspended; 4368 } 4369 4370 static int 4371 spa_ld_read_checkpoint_txg(spa_t *spa) 4372 { 4373 uberblock_t checkpoint; 4374 int error = 0; 4375 4376 ASSERT0(spa->spa_checkpoint_txg); 4377 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4378 4379 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4380 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4381 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4382 4383 if (error == ENOENT) 4384 return (0); 4385 4386 if (error != 0) 4387 return (error); 4388 4389 ASSERT3U(checkpoint.ub_txg, !=, 0); 4390 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0); 4391 ASSERT3U(checkpoint.ub_timestamp, !=, 0); 4392 spa->spa_checkpoint_txg = checkpoint.ub_txg; 4393 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp; 4394 4395 return (0); 4396 } 4397 4398 static int 4399 spa_ld_mos_init(spa_t *spa, spa_import_type_t type) 4400 { 4401 int error = 0; 4402 4403 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4404 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4405 4406 /* 4407 * Never trust the config that is provided unless we are assembling 4408 * a pool following a split. 4409 * This means don't trust blkptrs and the vdev tree in general. This 4410 * also effectively puts the spa in read-only mode since 4411 * spa_writeable() checks for spa_trust_config to be true. 4412 * We will later load a trusted config from the MOS. 4413 */ 4414 if (type != SPA_IMPORT_ASSEMBLE) 4415 spa->spa_trust_config = B_FALSE; 4416 4417 /* 4418 * Parse the config provided to create a vdev tree. 4419 */ 4420 error = spa_ld_parse_config(spa, type); 4421 if (error != 0) 4422 return (error); 4423 4424 spa_import_progress_add(spa); 4425 4426 /* 4427 * Now that we have the vdev tree, try to open each vdev. This involves 4428 * opening the underlying physical device, retrieving its geometry and 4429 * probing the vdev with a dummy I/O. The state of each vdev will be set 4430 * based on the success of those operations. After this we'll be ready 4431 * to read from the vdevs. 4432 */ 4433 error = spa_ld_open_vdevs(spa); 4434 if (error != 0) 4435 return (error); 4436 4437 /* 4438 * Read the label of each vdev and make sure that the GUIDs stored 4439 * there match the GUIDs in the config provided. 4440 * If we're assembling a new pool that's been split off from an 4441 * existing pool, the labels haven't yet been updated so we skip 4442 * validation for now. 4443 */ 4444 if (type != SPA_IMPORT_ASSEMBLE) { 4445 error = spa_ld_validate_vdevs(spa); 4446 if (error != 0) 4447 return (error); 4448 } 4449 4450 /* 4451 * Read all vdev labels to find the best uberblock (i.e. latest, 4452 * unless spa_load_max_txg is set) and store it in spa_uberblock. We 4453 * get the list of features required to read blkptrs in the MOS from 4454 * the vdev label with the best uberblock and verify that our version 4455 * of zfs supports them all. 4456 */ 4457 error = spa_ld_select_uberblock(spa, type); 4458 if (error != 0) 4459 return (error); 4460 4461 /* 4462 * Pass that uberblock to the dsl_pool layer which will open the root 4463 * blkptr. This blkptr points to the latest version of the MOS and will 4464 * allow us to read its contents. 4465 */ 4466 error = spa_ld_open_rootbp(spa); 4467 if (error != 0) 4468 return (error); 4469 4470 return (0); 4471 } 4472 4473 static int 4474 spa_ld_checkpoint_rewind(spa_t *spa) 4475 { 4476 uberblock_t checkpoint; 4477 int error = 0; 4478 4479 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4480 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4481 4482 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 4483 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 4484 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 4485 4486 if (error != 0) { 4487 spa_load_failed(spa, "unable to retrieve checkpointed " 4488 "uberblock from the MOS config [error=%d]", error); 4489 4490 if (error == ENOENT) 4491 error = ZFS_ERR_NO_CHECKPOINT; 4492 4493 return (error); 4494 } 4495 4496 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg); 4497 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg); 4498 4499 /* 4500 * We need to update the txg and timestamp of the checkpointed 4501 * uberblock to be higher than the latest one. This ensures that 4502 * the checkpointed uberblock is selected if we were to close and 4503 * reopen the pool right after we've written it in the vdev labels. 4504 * (also see block comment in vdev_uberblock_compare) 4505 */ 4506 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1; 4507 checkpoint.ub_timestamp = gethrestime_sec(); 4508 4509 /* 4510 * Set current uberblock to be the checkpointed uberblock. 4511 */ 4512 spa->spa_uberblock = checkpoint; 4513 4514 /* 4515 * If we are doing a normal rewind, then the pool is open for 4516 * writing and we sync the "updated" checkpointed uberblock to 4517 * disk. Once this is done, we've basically rewound the whole 4518 * pool and there is no way back. 4519 * 4520 * There are cases when we don't want to attempt and sync the 4521 * checkpointed uberblock to disk because we are opening a 4522 * pool as read-only. Specifically, verifying the checkpointed 4523 * state with zdb, and importing the checkpointed state to get 4524 * a "preview" of its content. 4525 */ 4526 if (spa_writeable(spa)) { 4527 vdev_t *rvd = spa->spa_root_vdev; 4528 4529 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4530 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 4531 int svdcount = 0; 4532 int children = rvd->vdev_children; 4533 int c0 = spa_get_random(children); 4534 4535 for (int c = 0; c < children; c++) { 4536 vdev_t *vd = rvd->vdev_child[(c0 + c) % children]; 4537 4538 /* Stop when revisiting the first vdev */ 4539 if (c > 0 && svd[0] == vd) 4540 break; 4541 4542 if (vd->vdev_ms_array == 0 || vd->vdev_islog || 4543 !vdev_is_concrete(vd)) 4544 continue; 4545 4546 svd[svdcount++] = vd; 4547 if (svdcount == SPA_SYNC_MIN_VDEVS) 4548 break; 4549 } 4550 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg); 4551 if (error == 0) 4552 spa->spa_last_synced_guid = rvd->vdev_guid; 4553 spa_config_exit(spa, SCL_ALL, FTAG); 4554 4555 if (error != 0) { 4556 spa_load_failed(spa, "failed to write checkpointed " 4557 "uberblock to the vdev labels [error=%d]", error); 4558 return (error); 4559 } 4560 } 4561 4562 return (0); 4563 } 4564 4565 static int 4566 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type, 4567 boolean_t *update_config_cache) 4568 { 4569 int error; 4570 4571 /* 4572 * Parse the config for pool, open and validate vdevs, 4573 * select an uberblock, and use that uberblock to open 4574 * the MOS. 4575 */ 4576 error = spa_ld_mos_init(spa, type); 4577 if (error != 0) 4578 return (error); 4579 4580 /* 4581 * Retrieve the trusted config stored in the MOS and use it to create 4582 * a new, exact version of the vdev tree, then reopen all vdevs. 4583 */ 4584 error = spa_ld_trusted_config(spa, type, B_FALSE); 4585 if (error == EAGAIN) { 4586 if (update_config_cache != NULL) 4587 *update_config_cache = B_TRUE; 4588 4589 /* 4590 * Redo the loading process with the trusted config if it is 4591 * too different from the untrusted config. 4592 */ 4593 spa_ld_prepare_for_reload(spa); 4594 spa_load_note(spa, "RELOADING"); 4595 error = spa_ld_mos_init(spa, type); 4596 if (error != 0) 4597 return (error); 4598 4599 error = spa_ld_trusted_config(spa, type, B_TRUE); 4600 if (error != 0) 4601 return (error); 4602 4603 } else if (error != 0) { 4604 return (error); 4605 } 4606 4607 return (0); 4608 } 4609 4610 /* 4611 * Load an existing storage pool, using the config provided. This config 4612 * describes which vdevs are part of the pool and is later validated against 4613 * partial configs present in each vdev's label and an entire copy of the 4614 * config stored in the MOS. 4615 */ 4616 static int 4617 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport) 4618 { 4619 int error = 0; 4620 boolean_t missing_feat_write = B_FALSE; 4621 boolean_t checkpoint_rewind = 4622 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4623 boolean_t update_config_cache = B_FALSE; 4624 4625 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4626 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE); 4627 4628 spa_load_note(spa, "LOADING"); 4629 4630 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache); 4631 if (error != 0) 4632 return (error); 4633 4634 /* 4635 * If we are rewinding to the checkpoint then we need to repeat 4636 * everything we've done so far in this function but this time 4637 * selecting the checkpointed uberblock and using that to open 4638 * the MOS. 4639 */ 4640 if (checkpoint_rewind) { 4641 /* 4642 * If we are rewinding to the checkpoint update config cache 4643 * anyway. 4644 */ 4645 update_config_cache = B_TRUE; 4646 4647 /* 4648 * Extract the checkpointed uberblock from the current MOS 4649 * and use this as the pool's uberblock from now on. If the 4650 * pool is imported as writeable we also write the checkpoint 4651 * uberblock to the labels, making the rewind permanent. 4652 */ 4653 error = spa_ld_checkpoint_rewind(spa); 4654 if (error != 0) 4655 return (error); 4656 4657 /* 4658 * Redo the loading process again with the 4659 * checkpointed uberblock. 4660 */ 4661 spa_ld_prepare_for_reload(spa); 4662 spa_load_note(spa, "LOADING checkpointed uberblock"); 4663 error = spa_ld_mos_with_trusted_config(spa, type, NULL); 4664 if (error != 0) 4665 return (error); 4666 } 4667 4668 /* 4669 * Retrieve the checkpoint txg if the pool has a checkpoint. 4670 */ 4671 error = spa_ld_read_checkpoint_txg(spa); 4672 if (error != 0) 4673 return (error); 4674 4675 /* 4676 * Retrieve the mapping of indirect vdevs. Those vdevs were removed 4677 * from the pool and their contents were re-mapped to other vdevs. Note 4678 * that everything that we read before this step must have been 4679 * rewritten on concrete vdevs after the last device removal was 4680 * initiated. Otherwise we could be reading from indirect vdevs before 4681 * we have loaded their mappings. 4682 */ 4683 error = spa_ld_open_indirect_vdev_metadata(spa); 4684 if (error != 0) 4685 return (error); 4686 4687 /* 4688 * Retrieve the full list of active features from the MOS and check if 4689 * they are all supported. 4690 */ 4691 error = spa_ld_check_features(spa, &missing_feat_write); 4692 if (error != 0) 4693 return (error); 4694 4695 /* 4696 * Load several special directories from the MOS needed by the dsl_pool 4697 * layer. 4698 */ 4699 error = spa_ld_load_special_directories(spa); 4700 if (error != 0) 4701 return (error); 4702 4703 /* 4704 * Retrieve pool properties from the MOS. 4705 */ 4706 error = spa_ld_get_props(spa); 4707 if (error != 0) 4708 return (error); 4709 4710 /* 4711 * Retrieve the list of auxiliary devices - cache devices and spares - 4712 * and open them. 4713 */ 4714 error = spa_ld_open_aux_vdevs(spa, type); 4715 if (error != 0) 4716 return (error); 4717 4718 /* 4719 * Load the metadata for all vdevs. Also check if unopenable devices 4720 * should be autoreplaced. 4721 */ 4722 error = spa_ld_load_vdev_metadata(spa); 4723 if (error != 0) 4724 return (error); 4725 4726 error = spa_ld_load_dedup_tables(spa); 4727 if (error != 0) 4728 return (error); 4729 4730 /* 4731 * Verify the logs now to make sure we don't have any unexpected errors 4732 * when we claim log blocks later. 4733 */ 4734 error = spa_ld_verify_logs(spa, type, ereport); 4735 if (error != 0) 4736 return (error); 4737 4738 if (missing_feat_write) { 4739 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT); 4740 4741 /* 4742 * At this point, we know that we can open the pool in 4743 * read-only mode but not read-write mode. We now have enough 4744 * information and can return to userland. 4745 */ 4746 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT, 4747 ENOTSUP)); 4748 } 4749 4750 /* 4751 * Traverse the last txgs to make sure the pool was left off in a safe 4752 * state. When performing an extreme rewind, we verify the whole pool, 4753 * which can take a very long time. 4754 */ 4755 error = spa_ld_verify_pool_data(spa); 4756 if (error != 0) 4757 return (error); 4758 4759 /* 4760 * Calculate the deflated space for the pool. This must be done before 4761 * we write anything to the pool because we'd need to update the space 4762 * accounting using the deflated sizes. 4763 */ 4764 spa_update_dspace(spa); 4765 4766 /* 4767 * We have now retrieved all the information we needed to open the 4768 * pool. If we are importing the pool in read-write mode, a few 4769 * additional steps must be performed to finish the import. 4770 */ 4771 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER || 4772 spa->spa_load_max_txg == UINT64_MAX)) { 4773 uint64_t config_cache_txg = spa->spa_config_txg; 4774 4775 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT); 4776 4777 /* 4778 * In case of a checkpoint rewind, log the original txg 4779 * of the checkpointed uberblock. 4780 */ 4781 if (checkpoint_rewind) { 4782 spa_history_log_internal(spa, "checkpoint rewind", 4783 NULL, "rewound state to txg=%llu", 4784 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg); 4785 } 4786 4787 /* 4788 * Traverse the ZIL and claim all blocks. 4789 */ 4790 spa_ld_claim_log_blocks(spa); 4791 4792 /* 4793 * Kick-off the syncing thread. 4794 */ 4795 spa->spa_sync_on = B_TRUE; 4796 txg_sync_start(spa->spa_dsl_pool); 4797 mmp_thread_start(spa); 4798 4799 /* 4800 * Wait for all claims to sync. We sync up to the highest 4801 * claimed log block birth time so that claimed log blocks 4802 * don't appear to be from the future. spa_claim_max_txg 4803 * will have been set for us by ZIL traversal operations 4804 * performed above. 4805 */ 4806 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 4807 4808 /* 4809 * Check if we need to request an update of the config. On the 4810 * next sync, we would update the config stored in vdev labels 4811 * and the cachefile (by default /etc/zfs/zpool.cache). 4812 */ 4813 spa_ld_check_for_config_update(spa, config_cache_txg, 4814 update_config_cache); 4815 4816 /* 4817 * Check if a rebuild was in progress and if so resume it. 4818 * Then check all DTLs to see if anything needs resilvering. 4819 * The resilver will be deferred if a rebuild was started. 4820 */ 4821 if (vdev_rebuild_active(spa->spa_root_vdev)) { 4822 vdev_rebuild_restart(spa); 4823 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 4824 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4825 spa_async_request(spa, SPA_ASYNC_RESILVER); 4826 } 4827 4828 /* 4829 * Log the fact that we booted up (so that we can detect if 4830 * we rebooted in the middle of an operation). 4831 */ 4832 spa_history_log_version(spa, "open", NULL); 4833 4834 spa_restart_removal(spa); 4835 spa_spawn_aux_threads(spa); 4836 4837 /* 4838 * Delete any inconsistent datasets. 4839 * 4840 * Note: 4841 * Since we may be issuing deletes for clones here, 4842 * we make sure to do so after we've spawned all the 4843 * auxiliary threads above (from which the livelist 4844 * deletion zthr is part of). 4845 */ 4846 (void) dmu_objset_find(spa_name(spa), 4847 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 4848 4849 /* 4850 * Clean up any stale temporary dataset userrefs. 4851 */ 4852 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 4853 4854 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4855 vdev_initialize_restart(spa->spa_root_vdev); 4856 vdev_trim_restart(spa->spa_root_vdev); 4857 vdev_autotrim_restart(spa); 4858 spa_config_exit(spa, SCL_CONFIG, FTAG); 4859 } 4860 4861 spa_import_progress_remove(spa_guid(spa)); 4862 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); 4863 4864 spa_load_note(spa, "LOADED"); 4865 4866 return (0); 4867 } 4868 4869 static int 4870 spa_load_retry(spa_t *spa, spa_load_state_t state) 4871 { 4872 spa_mode_t mode = spa->spa_mode; 4873 4874 spa_unload(spa); 4875 spa_deactivate(spa); 4876 4877 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 4878 4879 spa_activate(spa, mode); 4880 spa_async_suspend(spa); 4881 4882 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu", 4883 (u_longlong_t)spa->spa_load_max_txg); 4884 4885 return (spa_load(spa, state, SPA_IMPORT_EXISTING)); 4886 } 4887 4888 /* 4889 * If spa_load() fails this function will try loading prior txg's. If 4890 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 4891 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 4892 * function will not rewind the pool and will return the same error as 4893 * spa_load(). 4894 */ 4895 static int 4896 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request, 4897 int rewind_flags) 4898 { 4899 nvlist_t *loadinfo = NULL; 4900 nvlist_t *config = NULL; 4901 int load_error, rewind_error; 4902 uint64_t safe_rewind_txg; 4903 uint64_t min_txg; 4904 4905 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 4906 spa->spa_load_max_txg = spa->spa_load_txg; 4907 spa_set_log_state(spa, SPA_LOG_CLEAR); 4908 } else { 4909 spa->spa_load_max_txg = max_request; 4910 if (max_request != UINT64_MAX) 4911 spa->spa_extreme_rewind = B_TRUE; 4912 } 4913 4914 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING); 4915 if (load_error == 0) 4916 return (0); 4917 if (load_error == ZFS_ERR_NO_CHECKPOINT) { 4918 /* 4919 * When attempting checkpoint-rewind on a pool with no 4920 * checkpoint, we should not attempt to load uberblocks 4921 * from previous txgs when spa_load fails. 4922 */ 4923 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT); 4924 spa_import_progress_remove(spa_guid(spa)); 4925 return (load_error); 4926 } 4927 4928 if (spa->spa_root_vdev != NULL) 4929 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4930 4931 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 4932 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 4933 4934 if (rewind_flags & ZPOOL_NEVER_REWIND) { 4935 nvlist_free(config); 4936 spa_import_progress_remove(spa_guid(spa)); 4937 return (load_error); 4938 } 4939 4940 if (state == SPA_LOAD_RECOVER) { 4941 /* Price of rolling back is discarding txgs, including log */ 4942 spa_set_log_state(spa, SPA_LOG_CLEAR); 4943 } else { 4944 /* 4945 * If we aren't rolling back save the load info from our first 4946 * import attempt so that we can restore it after attempting 4947 * to rewind. 4948 */ 4949 loadinfo = spa->spa_load_info; 4950 spa->spa_load_info = fnvlist_alloc(); 4951 } 4952 4953 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 4954 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 4955 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 4956 TXG_INITIAL : safe_rewind_txg; 4957 4958 /* 4959 * Continue as long as we're finding errors, we're still within 4960 * the acceptable rewind range, and we're still finding uberblocks 4961 */ 4962 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 4963 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 4964 if (spa->spa_load_max_txg < safe_rewind_txg) 4965 spa->spa_extreme_rewind = B_TRUE; 4966 rewind_error = spa_load_retry(spa, state); 4967 } 4968 4969 spa->spa_extreme_rewind = B_FALSE; 4970 spa->spa_load_max_txg = UINT64_MAX; 4971 4972 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 4973 spa_config_set(spa, config); 4974 else 4975 nvlist_free(config); 4976 4977 if (state == SPA_LOAD_RECOVER) { 4978 ASSERT3P(loadinfo, ==, NULL); 4979 spa_import_progress_remove(spa_guid(spa)); 4980 return (rewind_error); 4981 } else { 4982 /* Store the rewind info as part of the initial load info */ 4983 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 4984 spa->spa_load_info); 4985 4986 /* Restore the initial load info */ 4987 fnvlist_free(spa->spa_load_info); 4988 spa->spa_load_info = loadinfo; 4989 4990 spa_import_progress_remove(spa_guid(spa)); 4991 return (load_error); 4992 } 4993 } 4994 4995 /* 4996 * Pool Open/Import 4997 * 4998 * The import case is identical to an open except that the configuration is sent 4999 * down from userland, instead of grabbed from the configuration cache. For the 5000 * case of an open, the pool configuration will exist in the 5001 * POOL_STATE_UNINITIALIZED state. 5002 * 5003 * The stats information (gen/count/ustats) is used to gather vdev statistics at 5004 * the same time open the pool, without having to keep around the spa_t in some 5005 * ambiguous state. 5006 */ 5007 static int 5008 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 5009 nvlist_t **config) 5010 { 5011 spa_t *spa; 5012 spa_load_state_t state = SPA_LOAD_OPEN; 5013 int error; 5014 int locked = B_FALSE; 5015 int firstopen = B_FALSE; 5016 5017 *spapp = NULL; 5018 5019 /* 5020 * As disgusting as this is, we need to support recursive calls to this 5021 * function because dsl_dir_open() is called during spa_load(), and ends 5022 * up calling spa_open() again. The real fix is to figure out how to 5023 * avoid dsl_dir_open() calling this in the first place. 5024 */ 5025 if (MUTEX_NOT_HELD(&spa_namespace_lock)) { 5026 mutex_enter(&spa_namespace_lock); 5027 locked = B_TRUE; 5028 } 5029 5030 if ((spa = spa_lookup(pool)) == NULL) { 5031 if (locked) 5032 mutex_exit(&spa_namespace_lock); 5033 return (SET_ERROR(ENOENT)); 5034 } 5035 5036 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 5037 zpool_load_policy_t policy; 5038 5039 firstopen = B_TRUE; 5040 5041 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config, 5042 &policy); 5043 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5044 state = SPA_LOAD_RECOVER; 5045 5046 spa_activate(spa, spa_mode_global); 5047 5048 if (state != SPA_LOAD_RECOVER) 5049 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5050 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 5051 5052 zfs_dbgmsg("spa_open_common: opening %s", pool); 5053 error = spa_load_best(spa, state, policy.zlp_txg, 5054 policy.zlp_rewind); 5055 5056 if (error == EBADF) { 5057 /* 5058 * If vdev_validate() returns failure (indicated by 5059 * EBADF), it indicates that one of the vdevs indicates 5060 * that the pool has been exported or destroyed. If 5061 * this is the case, the config cache is out of sync and 5062 * we should remove the pool from the namespace. 5063 */ 5064 spa_unload(spa); 5065 spa_deactivate(spa); 5066 spa_write_cachefile(spa, B_TRUE, B_TRUE); 5067 spa_remove(spa); 5068 if (locked) 5069 mutex_exit(&spa_namespace_lock); 5070 return (SET_ERROR(ENOENT)); 5071 } 5072 5073 if (error) { 5074 /* 5075 * We can't open the pool, but we still have useful 5076 * information: the state of each vdev after the 5077 * attempted vdev_open(). Return this to the user. 5078 */ 5079 if (config != NULL && spa->spa_config) { 5080 VERIFY(nvlist_dup(spa->spa_config, config, 5081 KM_SLEEP) == 0); 5082 VERIFY(nvlist_add_nvlist(*config, 5083 ZPOOL_CONFIG_LOAD_INFO, 5084 spa->spa_load_info) == 0); 5085 } 5086 spa_unload(spa); 5087 spa_deactivate(spa); 5088 spa->spa_last_open_failed = error; 5089 if (locked) 5090 mutex_exit(&spa_namespace_lock); 5091 *spapp = NULL; 5092 return (error); 5093 } 5094 } 5095 5096 spa_open_ref(spa, tag); 5097 5098 if (config != NULL) 5099 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 5100 5101 /* 5102 * If we've recovered the pool, pass back any information we 5103 * gathered while doing the load. 5104 */ 5105 if (state == SPA_LOAD_RECOVER) { 5106 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 5107 spa->spa_load_info) == 0); 5108 } 5109 5110 if (locked) { 5111 spa->spa_last_open_failed = 0; 5112 spa->spa_last_ubsync_txg = 0; 5113 spa->spa_load_txg = 0; 5114 mutex_exit(&spa_namespace_lock); 5115 } 5116 5117 if (firstopen) 5118 zvol_create_minors_recursive(spa_name(spa)); 5119 5120 *spapp = spa; 5121 5122 return (0); 5123 } 5124 5125 int 5126 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 5127 nvlist_t **config) 5128 { 5129 return (spa_open_common(name, spapp, tag, policy, config)); 5130 } 5131 5132 int 5133 spa_open(const char *name, spa_t **spapp, void *tag) 5134 { 5135 return (spa_open_common(name, spapp, tag, NULL, NULL)); 5136 } 5137 5138 /* 5139 * Lookup the given spa_t, incrementing the inject count in the process, 5140 * preventing it from being exported or destroyed. 5141 */ 5142 spa_t * 5143 spa_inject_addref(char *name) 5144 { 5145 spa_t *spa; 5146 5147 mutex_enter(&spa_namespace_lock); 5148 if ((spa = spa_lookup(name)) == NULL) { 5149 mutex_exit(&spa_namespace_lock); 5150 return (NULL); 5151 } 5152 spa->spa_inject_ref++; 5153 mutex_exit(&spa_namespace_lock); 5154 5155 return (spa); 5156 } 5157 5158 void 5159 spa_inject_delref(spa_t *spa) 5160 { 5161 mutex_enter(&spa_namespace_lock); 5162 spa->spa_inject_ref--; 5163 mutex_exit(&spa_namespace_lock); 5164 } 5165 5166 /* 5167 * Add spares device information to the nvlist. 5168 */ 5169 static void 5170 spa_add_spares(spa_t *spa, nvlist_t *config) 5171 { 5172 nvlist_t **spares; 5173 uint_t i, nspares; 5174 nvlist_t *nvroot; 5175 uint64_t guid; 5176 vdev_stat_t *vs; 5177 uint_t vsc; 5178 uint64_t pool; 5179 5180 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5181 5182 if (spa->spa_spares.sav_count == 0) 5183 return; 5184 5185 VERIFY(nvlist_lookup_nvlist(config, 5186 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 5187 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5188 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 5189 if (nspares != 0) { 5190 VERIFY(nvlist_add_nvlist_array(nvroot, 5191 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 5192 VERIFY(nvlist_lookup_nvlist_array(nvroot, 5193 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 5194 5195 /* 5196 * Go through and find any spares which have since been 5197 * repurposed as an active spare. If this is the case, update 5198 * their status appropriately. 5199 */ 5200 for (i = 0; i < nspares; i++) { 5201 VERIFY(nvlist_lookup_uint64(spares[i], 5202 ZPOOL_CONFIG_GUID, &guid) == 0); 5203 if (spa_spare_exists(guid, &pool, NULL) && 5204 pool != 0ULL) { 5205 VERIFY(nvlist_lookup_uint64_array( 5206 spares[i], ZPOOL_CONFIG_VDEV_STATS, 5207 (uint64_t **)&vs, &vsc) == 0); 5208 vs->vs_state = VDEV_STATE_CANT_OPEN; 5209 vs->vs_aux = VDEV_AUX_SPARED; 5210 } 5211 } 5212 } 5213 } 5214 5215 /* 5216 * Add l2cache device information to the nvlist, including vdev stats. 5217 */ 5218 static void 5219 spa_add_l2cache(spa_t *spa, nvlist_t *config) 5220 { 5221 nvlist_t **l2cache; 5222 uint_t i, j, nl2cache; 5223 nvlist_t *nvroot; 5224 uint64_t guid; 5225 vdev_t *vd; 5226 vdev_stat_t *vs; 5227 uint_t vsc; 5228 5229 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5230 5231 if (spa->spa_l2cache.sav_count == 0) 5232 return; 5233 5234 VERIFY(nvlist_lookup_nvlist(config, 5235 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 5236 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5237 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 5238 if (nl2cache != 0) { 5239 VERIFY(nvlist_add_nvlist_array(nvroot, 5240 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 5241 VERIFY(nvlist_lookup_nvlist_array(nvroot, 5242 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 5243 5244 /* 5245 * Update level 2 cache device stats. 5246 */ 5247 5248 for (i = 0; i < nl2cache; i++) { 5249 VERIFY(nvlist_lookup_uint64(l2cache[i], 5250 ZPOOL_CONFIG_GUID, &guid) == 0); 5251 5252 vd = NULL; 5253 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 5254 if (guid == 5255 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 5256 vd = spa->spa_l2cache.sav_vdevs[j]; 5257 break; 5258 } 5259 } 5260 ASSERT(vd != NULL); 5261 5262 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 5263 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 5264 == 0); 5265 vdev_get_stats(vd, vs); 5266 vdev_config_generate_stats(vd, l2cache[i]); 5267 5268 } 5269 } 5270 } 5271 5272 static void 5273 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features) 5274 { 5275 zap_cursor_t zc; 5276 zap_attribute_t za; 5277 5278 if (spa->spa_feat_for_read_obj != 0) { 5279 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5280 spa->spa_feat_for_read_obj); 5281 zap_cursor_retrieve(&zc, &za) == 0; 5282 zap_cursor_advance(&zc)) { 5283 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5284 za.za_num_integers == 1); 5285 VERIFY0(nvlist_add_uint64(features, za.za_name, 5286 za.za_first_integer)); 5287 } 5288 zap_cursor_fini(&zc); 5289 } 5290 5291 if (spa->spa_feat_for_write_obj != 0) { 5292 for (zap_cursor_init(&zc, spa->spa_meta_objset, 5293 spa->spa_feat_for_write_obj); 5294 zap_cursor_retrieve(&zc, &za) == 0; 5295 zap_cursor_advance(&zc)) { 5296 ASSERT(za.za_integer_length == sizeof (uint64_t) && 5297 za.za_num_integers == 1); 5298 VERIFY0(nvlist_add_uint64(features, za.za_name, 5299 za.za_first_integer)); 5300 } 5301 zap_cursor_fini(&zc); 5302 } 5303 } 5304 5305 static void 5306 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features) 5307 { 5308 int i; 5309 5310 for (i = 0; i < SPA_FEATURES; i++) { 5311 zfeature_info_t feature = spa_feature_table[i]; 5312 uint64_t refcount; 5313 5314 if (feature_get_refcount(spa, &feature, &refcount) != 0) 5315 continue; 5316 5317 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount)); 5318 } 5319 } 5320 5321 /* 5322 * Store a list of pool features and their reference counts in the 5323 * config. 5324 * 5325 * The first time this is called on a spa, allocate a new nvlist, fetch 5326 * the pool features and reference counts from disk, then save the list 5327 * in the spa. In subsequent calls on the same spa use the saved nvlist 5328 * and refresh its values from the cached reference counts. This 5329 * ensures we don't block here on I/O on a suspended pool so 'zpool 5330 * clear' can resume the pool. 5331 */ 5332 static void 5333 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 5334 { 5335 nvlist_t *features; 5336 5337 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 5338 5339 mutex_enter(&spa->spa_feat_stats_lock); 5340 features = spa->spa_feat_stats; 5341 5342 if (features != NULL) { 5343 spa_feature_stats_from_cache(spa, features); 5344 } else { 5345 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP)); 5346 spa->spa_feat_stats = features; 5347 spa_feature_stats_from_disk(spa, features); 5348 } 5349 5350 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 5351 features)); 5352 5353 mutex_exit(&spa->spa_feat_stats_lock); 5354 } 5355 5356 int 5357 spa_get_stats(const char *name, nvlist_t **config, 5358 char *altroot, size_t buflen) 5359 { 5360 int error; 5361 spa_t *spa; 5362 5363 *config = NULL; 5364 error = spa_open_common(name, &spa, FTAG, NULL, config); 5365 5366 if (spa != NULL) { 5367 /* 5368 * This still leaves a window of inconsistency where the spares 5369 * or l2cache devices could change and the config would be 5370 * self-inconsistent. 5371 */ 5372 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5373 5374 if (*config != NULL) { 5375 uint64_t loadtimes[2]; 5376 5377 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 5378 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 5379 VERIFY(nvlist_add_uint64_array(*config, 5380 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 5381 5382 VERIFY(nvlist_add_uint64(*config, 5383 ZPOOL_CONFIG_ERRCOUNT, 5384 spa_get_errlog_size(spa)) == 0); 5385 5386 if (spa_suspended(spa)) { 5387 VERIFY(nvlist_add_uint64(*config, 5388 ZPOOL_CONFIG_SUSPENDED, 5389 spa->spa_failmode) == 0); 5390 VERIFY(nvlist_add_uint64(*config, 5391 ZPOOL_CONFIG_SUSPENDED_REASON, 5392 spa->spa_suspended) == 0); 5393 } 5394 5395 spa_add_spares(spa, *config); 5396 spa_add_l2cache(spa, *config); 5397 spa_add_feature_stats(spa, *config); 5398 } 5399 } 5400 5401 /* 5402 * We want to get the alternate root even for faulted pools, so we cheat 5403 * and call spa_lookup() directly. 5404 */ 5405 if (altroot) { 5406 if (spa == NULL) { 5407 mutex_enter(&spa_namespace_lock); 5408 spa = spa_lookup(name); 5409 if (spa) 5410 spa_altroot(spa, altroot, buflen); 5411 else 5412 altroot[0] = '\0'; 5413 spa = NULL; 5414 mutex_exit(&spa_namespace_lock); 5415 } else { 5416 spa_altroot(spa, altroot, buflen); 5417 } 5418 } 5419 5420 if (spa != NULL) { 5421 spa_config_exit(spa, SCL_CONFIG, FTAG); 5422 spa_close(spa, FTAG); 5423 } 5424 5425 return (error); 5426 } 5427 5428 /* 5429 * Validate that the auxiliary device array is well formed. We must have an 5430 * array of nvlists, each which describes a valid leaf vdev. If this is an 5431 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 5432 * specified, as long as they are well-formed. 5433 */ 5434 static int 5435 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 5436 spa_aux_vdev_t *sav, const char *config, uint64_t version, 5437 vdev_labeltype_t label) 5438 { 5439 nvlist_t **dev; 5440 uint_t i, ndev; 5441 vdev_t *vd; 5442 int error; 5443 5444 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5445 5446 /* 5447 * It's acceptable to have no devs specified. 5448 */ 5449 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 5450 return (0); 5451 5452 if (ndev == 0) 5453 return (SET_ERROR(EINVAL)); 5454 5455 /* 5456 * Make sure the pool is formatted with a version that supports this 5457 * device type. 5458 */ 5459 if (spa_version(spa) < version) 5460 return (SET_ERROR(ENOTSUP)); 5461 5462 /* 5463 * Set the pending device list so we correctly handle device in-use 5464 * checking. 5465 */ 5466 sav->sav_pending = dev; 5467 sav->sav_npending = ndev; 5468 5469 for (i = 0; i < ndev; i++) { 5470 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 5471 mode)) != 0) 5472 goto out; 5473 5474 if (!vd->vdev_ops->vdev_op_leaf) { 5475 vdev_free(vd); 5476 error = SET_ERROR(EINVAL); 5477 goto out; 5478 } 5479 5480 vd->vdev_top = vd; 5481 5482 if ((error = vdev_open(vd)) == 0 && 5483 (error = vdev_label_init(vd, crtxg, label)) == 0) { 5484 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 5485 vd->vdev_guid) == 0); 5486 } 5487 5488 vdev_free(vd); 5489 5490 if (error && 5491 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 5492 goto out; 5493 else 5494 error = 0; 5495 } 5496 5497 out: 5498 sav->sav_pending = NULL; 5499 sav->sav_npending = 0; 5500 return (error); 5501 } 5502 5503 static int 5504 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 5505 { 5506 int error; 5507 5508 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5509 5510 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 5511 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 5512 VDEV_LABEL_SPARE)) != 0) { 5513 return (error); 5514 } 5515 5516 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 5517 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 5518 VDEV_LABEL_L2CACHE)); 5519 } 5520 5521 static void 5522 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 5523 const char *config) 5524 { 5525 int i; 5526 5527 if (sav->sav_config != NULL) { 5528 nvlist_t **olddevs; 5529 uint_t oldndevs; 5530 nvlist_t **newdevs; 5531 5532 /* 5533 * Generate new dev list by concatenating with the 5534 * current dev list. 5535 */ 5536 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 5537 &olddevs, &oldndevs) == 0); 5538 5539 newdevs = kmem_alloc(sizeof (void *) * 5540 (ndevs + oldndevs), KM_SLEEP); 5541 for (i = 0; i < oldndevs; i++) 5542 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 5543 KM_SLEEP) == 0); 5544 for (i = 0; i < ndevs; i++) 5545 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 5546 KM_SLEEP) == 0); 5547 5548 VERIFY(nvlist_remove(sav->sav_config, config, 5549 DATA_TYPE_NVLIST_ARRAY) == 0); 5550 5551 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 5552 config, newdevs, ndevs + oldndevs) == 0); 5553 for (i = 0; i < oldndevs + ndevs; i++) 5554 nvlist_free(newdevs[i]); 5555 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 5556 } else { 5557 /* 5558 * Generate a new dev list. 5559 */ 5560 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 5561 KM_SLEEP) == 0); 5562 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 5563 devs, ndevs) == 0); 5564 } 5565 } 5566 5567 /* 5568 * Stop and drop level 2 ARC devices 5569 */ 5570 void 5571 spa_l2cache_drop(spa_t *spa) 5572 { 5573 vdev_t *vd; 5574 int i; 5575 spa_aux_vdev_t *sav = &spa->spa_l2cache; 5576 5577 for (i = 0; i < sav->sav_count; i++) { 5578 uint64_t pool; 5579 5580 vd = sav->sav_vdevs[i]; 5581 ASSERT(vd != NULL); 5582 5583 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 5584 pool != 0ULL && l2arc_vdev_present(vd)) 5585 l2arc_remove_vdev(vd); 5586 } 5587 } 5588 5589 /* 5590 * Verify encryption parameters for spa creation. If we are encrypting, we must 5591 * have the encryption feature flag enabled. 5592 */ 5593 static int 5594 spa_create_check_encryption_params(dsl_crypto_params_t *dcp, 5595 boolean_t has_encryption) 5596 { 5597 if (dcp->cp_crypt != ZIO_CRYPT_OFF && 5598 dcp->cp_crypt != ZIO_CRYPT_INHERIT && 5599 !has_encryption) 5600 return (SET_ERROR(ENOTSUP)); 5601 5602 return (dmu_objset_create_crypt_check(NULL, dcp, NULL)); 5603 } 5604 5605 /* 5606 * Pool Creation 5607 */ 5608 int 5609 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 5610 nvlist_t *zplprops, dsl_crypto_params_t *dcp) 5611 { 5612 spa_t *spa; 5613 char *altroot = NULL; 5614 vdev_t *rvd; 5615 dsl_pool_t *dp; 5616 dmu_tx_t *tx; 5617 int error = 0; 5618 uint64_t txg = TXG_INITIAL; 5619 nvlist_t **spares, **l2cache; 5620 uint_t nspares, nl2cache; 5621 uint64_t version, obj; 5622 boolean_t has_features; 5623 boolean_t has_encryption; 5624 boolean_t has_allocclass; 5625 spa_feature_t feat; 5626 char *feat_name; 5627 char *poolname; 5628 nvlist_t *nvl; 5629 5630 if (props == NULL || 5631 nvlist_lookup_string(props, "tname", &poolname) != 0) 5632 poolname = (char *)pool; 5633 5634 /* 5635 * If this pool already exists, return failure. 5636 */ 5637 mutex_enter(&spa_namespace_lock); 5638 if (spa_lookup(poolname) != NULL) { 5639 mutex_exit(&spa_namespace_lock); 5640 return (SET_ERROR(EEXIST)); 5641 } 5642 5643 /* 5644 * Allocate a new spa_t structure. 5645 */ 5646 nvl = fnvlist_alloc(); 5647 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool); 5648 (void) nvlist_lookup_string(props, 5649 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5650 spa = spa_add(poolname, nvl, altroot); 5651 fnvlist_free(nvl); 5652 spa_activate(spa, spa_mode_global); 5653 5654 if (props && (error = spa_prop_validate(spa, props))) { 5655 spa_deactivate(spa); 5656 spa_remove(spa); 5657 mutex_exit(&spa_namespace_lock); 5658 return (error); 5659 } 5660 5661 /* 5662 * Temporary pool names should never be written to disk. 5663 */ 5664 if (poolname != pool) 5665 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME; 5666 5667 has_features = B_FALSE; 5668 has_encryption = B_FALSE; 5669 has_allocclass = B_FALSE; 5670 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 5671 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 5672 if (zpool_prop_feature(nvpair_name(elem))) { 5673 has_features = B_TRUE; 5674 5675 feat_name = strchr(nvpair_name(elem), '@') + 1; 5676 VERIFY0(zfeature_lookup_name(feat_name, &feat)); 5677 if (feat == SPA_FEATURE_ENCRYPTION) 5678 has_encryption = B_TRUE; 5679 if (feat == SPA_FEATURE_ALLOCATION_CLASSES) 5680 has_allocclass = B_TRUE; 5681 } 5682 } 5683 5684 /* verify encryption params, if they were provided */ 5685 if (dcp != NULL) { 5686 error = spa_create_check_encryption_params(dcp, has_encryption); 5687 if (error != 0) { 5688 spa_deactivate(spa); 5689 spa_remove(spa); 5690 mutex_exit(&spa_namespace_lock); 5691 return (error); 5692 } 5693 } 5694 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) { 5695 spa_deactivate(spa); 5696 spa_remove(spa); 5697 mutex_exit(&spa_namespace_lock); 5698 return (ENOTSUP); 5699 } 5700 5701 if (has_features || nvlist_lookup_uint64(props, 5702 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 5703 version = SPA_VERSION; 5704 } 5705 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5706 5707 spa->spa_first_txg = txg; 5708 spa->spa_uberblock.ub_txg = txg - 1; 5709 spa->spa_uberblock.ub_version = version; 5710 spa->spa_ubsync = spa->spa_uberblock; 5711 spa->spa_load_state = SPA_LOAD_CREATE; 5712 spa->spa_removing_phys.sr_state = DSS_NONE; 5713 spa->spa_removing_phys.sr_removing_vdev = -1; 5714 spa->spa_removing_phys.sr_prev_indirect_vdev = -1; 5715 spa->spa_indirect_vdevs_loaded = B_TRUE; 5716 5717 /* 5718 * Create "The Godfather" zio to hold all async IOs 5719 */ 5720 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *), 5721 KM_SLEEP); 5722 for (int i = 0; i < max_ncpus; i++) { 5723 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL, 5724 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 5725 ZIO_FLAG_GODFATHER); 5726 } 5727 5728 /* 5729 * Create the root vdev. 5730 */ 5731 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5732 5733 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 5734 5735 ASSERT(error != 0 || rvd != NULL); 5736 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 5737 5738 if (error == 0 && !zfs_allocatable_devs(nvroot)) 5739 error = SET_ERROR(EINVAL); 5740 5741 if (error == 0 && 5742 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 5743 (error = spa_validate_aux(spa, nvroot, txg, 5744 VDEV_ALLOC_ADD)) == 0) { 5745 /* 5746 * instantiate the metaslab groups (this will dirty the vdevs) 5747 * we can no longer error exit past this point 5748 */ 5749 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) { 5750 vdev_t *vd = rvd->vdev_child[c]; 5751 5752 vdev_ashift_optimize(vd); 5753 vdev_metaslab_set_size(vd); 5754 vdev_expand(vd, txg); 5755 } 5756 } 5757 5758 spa_config_exit(spa, SCL_ALL, FTAG); 5759 5760 if (error != 0) { 5761 spa_unload(spa); 5762 spa_deactivate(spa); 5763 spa_remove(spa); 5764 mutex_exit(&spa_namespace_lock); 5765 return (error); 5766 } 5767 5768 /* 5769 * Get the list of spares, if specified. 5770 */ 5771 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 5772 &spares, &nspares) == 0) { 5773 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 5774 KM_SLEEP) == 0); 5775 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 5776 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 5777 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5778 spa_load_spares(spa); 5779 spa_config_exit(spa, SCL_ALL, FTAG); 5780 spa->spa_spares.sav_sync = B_TRUE; 5781 } 5782 5783 /* 5784 * Get the list of level 2 cache devices, if specified. 5785 */ 5786 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 5787 &l2cache, &nl2cache) == 0) { 5788 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 5789 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5790 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 5791 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 5792 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5793 spa_load_l2cache(spa); 5794 spa_config_exit(spa, SCL_ALL, FTAG); 5795 spa->spa_l2cache.sav_sync = B_TRUE; 5796 } 5797 5798 spa->spa_is_initializing = B_TRUE; 5799 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg); 5800 spa->spa_is_initializing = B_FALSE; 5801 5802 /* 5803 * Create DDTs (dedup tables). 5804 */ 5805 ddt_create(spa); 5806 5807 spa_update_dspace(spa); 5808 5809 tx = dmu_tx_create_assigned(dp, txg); 5810 5811 /* 5812 * Create the pool's history object. 5813 */ 5814 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history) 5815 spa_history_create_obj(spa, tx); 5816 5817 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE); 5818 spa_history_log_version(spa, "create", tx); 5819 5820 /* 5821 * Create the pool config object. 5822 */ 5823 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 5824 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 5825 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 5826 5827 if (zap_add(spa->spa_meta_objset, 5828 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 5829 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 5830 cmn_err(CE_PANIC, "failed to add pool config"); 5831 } 5832 5833 if (zap_add(spa->spa_meta_objset, 5834 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 5835 sizeof (uint64_t), 1, &version, tx) != 0) { 5836 cmn_err(CE_PANIC, "failed to add pool version"); 5837 } 5838 5839 /* Newly created pools with the right version are always deflated. */ 5840 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 5841 spa->spa_deflate = TRUE; 5842 if (zap_add(spa->spa_meta_objset, 5843 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5844 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 5845 cmn_err(CE_PANIC, "failed to add deflate"); 5846 } 5847 } 5848 5849 /* 5850 * Create the deferred-free bpobj. Turn off compression 5851 * because sync-to-convergence takes longer if the blocksize 5852 * keeps changing. 5853 */ 5854 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 5855 dmu_object_set_compress(spa->spa_meta_objset, obj, 5856 ZIO_COMPRESS_OFF, tx); 5857 if (zap_add(spa->spa_meta_objset, 5858 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 5859 sizeof (uint64_t), 1, &obj, tx) != 0) { 5860 cmn_err(CE_PANIC, "failed to add bpobj"); 5861 } 5862 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 5863 spa->spa_meta_objset, obj)); 5864 5865 /* 5866 * Generate some random noise for salted checksums to operate on. 5867 */ 5868 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes, 5869 sizeof (spa->spa_cksum_salt.zcs_bytes)); 5870 5871 /* 5872 * Set pool properties. 5873 */ 5874 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 5875 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 5876 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 5877 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 5878 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST); 5879 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM); 5880 5881 if (props != NULL) { 5882 spa_configfile_set(spa, props, B_FALSE); 5883 spa_sync_props(props, tx); 5884 } 5885 5886 dmu_tx_commit(tx); 5887 5888 spa->spa_sync_on = B_TRUE; 5889 txg_sync_start(dp); 5890 mmp_thread_start(spa); 5891 txg_wait_synced(dp, txg); 5892 5893 spa_spawn_aux_threads(spa); 5894 5895 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5896 5897 /* 5898 * Don't count references from objsets that are already closed 5899 * and are making their way through the eviction process. 5900 */ 5901 spa_evicting_os_wait(spa); 5902 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount); 5903 spa->spa_load_state = SPA_LOAD_NONE; 5904 5905 mutex_exit(&spa_namespace_lock); 5906 5907 return (0); 5908 } 5909 5910 /* 5911 * Import a non-root pool into the system. 5912 */ 5913 int 5914 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 5915 { 5916 spa_t *spa; 5917 char *altroot = NULL; 5918 spa_load_state_t state = SPA_LOAD_IMPORT; 5919 zpool_load_policy_t policy; 5920 spa_mode_t mode = spa_mode_global; 5921 uint64_t readonly = B_FALSE; 5922 int error; 5923 nvlist_t *nvroot; 5924 nvlist_t **spares, **l2cache; 5925 uint_t nspares, nl2cache; 5926 5927 /* 5928 * If a pool with this name exists, return failure. 5929 */ 5930 mutex_enter(&spa_namespace_lock); 5931 if (spa_lookup(pool) != NULL) { 5932 mutex_exit(&spa_namespace_lock); 5933 return (SET_ERROR(EEXIST)); 5934 } 5935 5936 /* 5937 * Create and initialize the spa structure. 5938 */ 5939 (void) nvlist_lookup_string(props, 5940 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5941 (void) nvlist_lookup_uint64(props, 5942 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 5943 if (readonly) 5944 mode = SPA_MODE_READ; 5945 spa = spa_add(pool, config, altroot); 5946 spa->spa_import_flags = flags; 5947 5948 /* 5949 * Verbatim import - Take a pool and insert it into the namespace 5950 * as if it had been loaded at boot. 5951 */ 5952 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 5953 if (props != NULL) 5954 spa_configfile_set(spa, props, B_FALSE); 5955 5956 spa_write_cachefile(spa, B_FALSE, B_TRUE); 5957 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 5958 zfs_dbgmsg("spa_import: verbatim import of %s", pool); 5959 mutex_exit(&spa_namespace_lock); 5960 return (0); 5961 } 5962 5963 spa_activate(spa, mode); 5964 5965 /* 5966 * Don't start async tasks until we know everything is healthy. 5967 */ 5968 spa_async_suspend(spa); 5969 5970 zpool_get_load_policy(config, &policy); 5971 if (policy.zlp_rewind & ZPOOL_DO_REWIND) 5972 state = SPA_LOAD_RECOVER; 5973 5974 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT; 5975 5976 if (state != SPA_LOAD_RECOVER) { 5977 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 5978 zfs_dbgmsg("spa_import: importing %s", pool); 5979 } else { 5980 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld " 5981 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg); 5982 } 5983 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind); 5984 5985 /* 5986 * Propagate anything learned while loading the pool and pass it 5987 * back to caller (i.e. rewind info, missing devices, etc). 5988 */ 5989 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 5990 spa->spa_load_info) == 0); 5991 5992 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5993 /* 5994 * Toss any existing sparelist, as it doesn't have any validity 5995 * anymore, and conflicts with spa_has_spare(). 5996 */ 5997 if (spa->spa_spares.sav_config) { 5998 nvlist_free(spa->spa_spares.sav_config); 5999 spa->spa_spares.sav_config = NULL; 6000 spa_load_spares(spa); 6001 } 6002 if (spa->spa_l2cache.sav_config) { 6003 nvlist_free(spa->spa_l2cache.sav_config); 6004 spa->spa_l2cache.sav_config = NULL; 6005 spa_load_l2cache(spa); 6006 } 6007 6008 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 6009 &nvroot) == 0); 6010 spa_config_exit(spa, SCL_ALL, FTAG); 6011 6012 if (props != NULL) 6013 spa_configfile_set(spa, props, B_FALSE); 6014 6015 if (error != 0 || (props && spa_writeable(spa) && 6016 (error = spa_prop_set(spa, props)))) { 6017 spa_unload(spa); 6018 spa_deactivate(spa); 6019 spa_remove(spa); 6020 mutex_exit(&spa_namespace_lock); 6021 return (error); 6022 } 6023 6024 spa_async_resume(spa); 6025 6026 /* 6027 * Override any spares and level 2 cache devices as specified by 6028 * the user, as these may have correct device names/devids, etc. 6029 */ 6030 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 6031 &spares, &nspares) == 0) { 6032 if (spa->spa_spares.sav_config) 6033 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 6034 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 6035 else 6036 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 6037 NV_UNIQUE_NAME, KM_SLEEP) == 0); 6038 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 6039 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 6040 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6041 spa_load_spares(spa); 6042 spa_config_exit(spa, SCL_ALL, FTAG); 6043 spa->spa_spares.sav_sync = B_TRUE; 6044 } 6045 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 6046 &l2cache, &nl2cache) == 0) { 6047 if (spa->spa_l2cache.sav_config) 6048 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 6049 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 6050 else 6051 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 6052 NV_UNIQUE_NAME, KM_SLEEP) == 0); 6053 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 6054 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 6055 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6056 spa_load_l2cache(spa); 6057 spa_config_exit(spa, SCL_ALL, FTAG); 6058 spa->spa_l2cache.sav_sync = B_TRUE; 6059 } 6060 6061 /* 6062 * Check for any removed devices. 6063 */ 6064 if (spa->spa_autoreplace) { 6065 spa_aux_check_removed(&spa->spa_spares); 6066 spa_aux_check_removed(&spa->spa_l2cache); 6067 } 6068 6069 if (spa_writeable(spa)) { 6070 /* 6071 * Update the config cache to include the newly-imported pool. 6072 */ 6073 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6074 } 6075 6076 /* 6077 * It's possible that the pool was expanded while it was exported. 6078 * We kick off an async task to handle this for us. 6079 */ 6080 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 6081 6082 spa_history_log_version(spa, "import", NULL); 6083 6084 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT); 6085 6086 mutex_exit(&spa_namespace_lock); 6087 6088 zvol_create_minors_recursive(pool); 6089 6090 return (0); 6091 } 6092 6093 nvlist_t * 6094 spa_tryimport(nvlist_t *tryconfig) 6095 { 6096 nvlist_t *config = NULL; 6097 char *poolname, *cachefile; 6098 spa_t *spa; 6099 uint64_t state; 6100 int error; 6101 zpool_load_policy_t policy; 6102 6103 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 6104 return (NULL); 6105 6106 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 6107 return (NULL); 6108 6109 /* 6110 * Create and initialize the spa structure. 6111 */ 6112 mutex_enter(&spa_namespace_lock); 6113 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 6114 spa_activate(spa, SPA_MODE_READ); 6115 6116 /* 6117 * Rewind pool if a max txg was provided. 6118 */ 6119 zpool_get_load_policy(spa->spa_config, &policy); 6120 if (policy.zlp_txg != UINT64_MAX) { 6121 spa->spa_load_max_txg = policy.zlp_txg; 6122 spa->spa_extreme_rewind = B_TRUE; 6123 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld", 6124 poolname, (longlong_t)policy.zlp_txg); 6125 } else { 6126 zfs_dbgmsg("spa_tryimport: importing %s", poolname); 6127 } 6128 6129 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile) 6130 == 0) { 6131 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile); 6132 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE; 6133 } else { 6134 spa->spa_config_source = SPA_CONFIG_SRC_SCAN; 6135 } 6136 6137 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING); 6138 6139 /* 6140 * If 'tryconfig' was at least parsable, return the current config. 6141 */ 6142 if (spa->spa_root_vdev != NULL) { 6143 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 6144 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 6145 poolname) == 0); 6146 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 6147 state) == 0); 6148 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 6149 spa->spa_uberblock.ub_timestamp) == 0); 6150 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 6151 spa->spa_load_info) == 0); 6152 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA, 6153 spa->spa_errata) == 0); 6154 6155 /* 6156 * If the bootfs property exists on this pool then we 6157 * copy it out so that external consumers can tell which 6158 * pools are bootable. 6159 */ 6160 if ((!error || error == EEXIST) && spa->spa_bootfs) { 6161 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6162 6163 /* 6164 * We have to play games with the name since the 6165 * pool was opened as TRYIMPORT_NAME. 6166 */ 6167 if (dsl_dsobj_to_dsname(spa_name(spa), 6168 spa->spa_bootfs, tmpname) == 0) { 6169 char *cp; 6170 char *dsname; 6171 6172 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 6173 6174 cp = strchr(tmpname, '/'); 6175 if (cp == NULL) { 6176 (void) strlcpy(dsname, tmpname, 6177 MAXPATHLEN); 6178 } else { 6179 (void) snprintf(dsname, MAXPATHLEN, 6180 "%s/%s", poolname, ++cp); 6181 } 6182 VERIFY(nvlist_add_string(config, 6183 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 6184 kmem_free(dsname, MAXPATHLEN); 6185 } 6186 kmem_free(tmpname, MAXPATHLEN); 6187 } 6188 6189 /* 6190 * Add the list of hot spares and level 2 cache devices. 6191 */ 6192 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6193 spa_add_spares(spa, config); 6194 spa_add_l2cache(spa, config); 6195 spa_config_exit(spa, SCL_CONFIG, FTAG); 6196 } 6197 6198 spa_unload(spa); 6199 spa_deactivate(spa); 6200 spa_remove(spa); 6201 mutex_exit(&spa_namespace_lock); 6202 6203 return (config); 6204 } 6205 6206 /* 6207 * Pool export/destroy 6208 * 6209 * The act of destroying or exporting a pool is very simple. We make sure there 6210 * is no more pending I/O and any references to the pool are gone. Then, we 6211 * update the pool state and sync all the labels to disk, removing the 6212 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 6213 * we don't sync the labels or remove the configuration cache. 6214 */ 6215 static int 6216 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 6217 boolean_t force, boolean_t hardforce) 6218 { 6219 spa_t *spa; 6220 6221 if (oldconfig) 6222 *oldconfig = NULL; 6223 6224 if (!(spa_mode_global & SPA_MODE_WRITE)) 6225 return (SET_ERROR(EROFS)); 6226 6227 mutex_enter(&spa_namespace_lock); 6228 if ((spa = spa_lookup(pool)) == NULL) { 6229 mutex_exit(&spa_namespace_lock); 6230 return (SET_ERROR(ENOENT)); 6231 } 6232 6233 if (spa->spa_is_exporting) { 6234 /* the pool is being exported by another thread */ 6235 mutex_exit(&spa_namespace_lock); 6236 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS)); 6237 } 6238 spa->spa_is_exporting = B_TRUE; 6239 6240 /* 6241 * Put a hold on the pool, drop the namespace lock, stop async tasks, 6242 * reacquire the namespace lock, and see if we can export. 6243 */ 6244 spa_open_ref(spa, FTAG); 6245 mutex_exit(&spa_namespace_lock); 6246 spa_async_suspend(spa); 6247 if (spa->spa_zvol_taskq) { 6248 zvol_remove_minors(spa, spa_name(spa), B_TRUE); 6249 taskq_wait(spa->spa_zvol_taskq); 6250 } 6251 mutex_enter(&spa_namespace_lock); 6252 spa_close(spa, FTAG); 6253 6254 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 6255 goto export_spa; 6256 /* 6257 * The pool will be in core if it's openable, in which case we can 6258 * modify its state. Objsets may be open only because they're dirty, 6259 * so we have to force it to sync before checking spa_refcnt. 6260 */ 6261 if (spa->spa_sync_on) { 6262 txg_wait_synced(spa->spa_dsl_pool, 0); 6263 spa_evicting_os_wait(spa); 6264 } 6265 6266 /* 6267 * A pool cannot be exported or destroyed if there are active 6268 * references. If we are resetting a pool, allow references by 6269 * fault injection handlers. 6270 */ 6271 if (!spa_refcount_zero(spa) || 6272 (spa->spa_inject_ref != 0 && 6273 new_state != POOL_STATE_UNINITIALIZED)) { 6274 spa_async_resume(spa); 6275 spa->spa_is_exporting = B_FALSE; 6276 mutex_exit(&spa_namespace_lock); 6277 return (SET_ERROR(EBUSY)); 6278 } 6279 6280 if (spa->spa_sync_on) { 6281 /* 6282 * A pool cannot be exported if it has an active shared spare. 6283 * This is to prevent other pools stealing the active spare 6284 * from an exported pool. At user's own will, such pool can 6285 * be forcedly exported. 6286 */ 6287 if (!force && new_state == POOL_STATE_EXPORTED && 6288 spa_has_active_shared_spare(spa)) { 6289 spa_async_resume(spa); 6290 spa->spa_is_exporting = B_FALSE; 6291 mutex_exit(&spa_namespace_lock); 6292 return (SET_ERROR(EXDEV)); 6293 } 6294 6295 /* 6296 * We're about to export or destroy this pool. Make sure 6297 * we stop all initialization and trim activity here before 6298 * we set the spa_final_txg. This will ensure that all 6299 * dirty data resulting from the initialization is 6300 * committed to disk before we unload the pool. 6301 */ 6302 if (spa->spa_root_vdev != NULL) { 6303 vdev_t *rvd = spa->spa_root_vdev; 6304 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE); 6305 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE); 6306 vdev_autotrim_stop_all(spa); 6307 vdev_rebuild_stop_all(spa); 6308 } 6309 6310 /* 6311 * We want this to be reflected on every label, 6312 * so mark them all dirty. spa_unload() will do the 6313 * final sync that pushes these changes out. 6314 */ 6315 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 6316 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6317 spa->spa_state = new_state; 6318 spa->spa_final_txg = spa_last_synced_txg(spa) + 6319 TXG_DEFER_SIZE + 1; 6320 vdev_config_dirty(spa->spa_root_vdev); 6321 spa_config_exit(spa, SCL_ALL, FTAG); 6322 } 6323 } 6324 6325 export_spa: 6326 if (new_state == POOL_STATE_DESTROYED) 6327 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY); 6328 else if (new_state == POOL_STATE_EXPORTED) 6329 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT); 6330 6331 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6332 spa_unload(spa); 6333 spa_deactivate(spa); 6334 } 6335 6336 if (oldconfig && spa->spa_config) 6337 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 6338 6339 if (new_state != POOL_STATE_UNINITIALIZED) { 6340 if (!hardforce) 6341 spa_write_cachefile(spa, B_TRUE, B_TRUE); 6342 spa_remove(spa); 6343 } else { 6344 /* 6345 * If spa_remove() is not called for this spa_t and 6346 * there is any possibility that it can be reused, 6347 * we make sure to reset the exporting flag. 6348 */ 6349 spa->spa_is_exporting = B_FALSE; 6350 } 6351 6352 mutex_exit(&spa_namespace_lock); 6353 return (0); 6354 } 6355 6356 /* 6357 * Destroy a storage pool. 6358 */ 6359 int 6360 spa_destroy(char *pool) 6361 { 6362 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 6363 B_FALSE, B_FALSE)); 6364 } 6365 6366 /* 6367 * Export a storage pool. 6368 */ 6369 int 6370 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 6371 boolean_t hardforce) 6372 { 6373 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 6374 force, hardforce)); 6375 } 6376 6377 /* 6378 * Similar to spa_export(), this unloads the spa_t without actually removing it 6379 * from the namespace in any way. 6380 */ 6381 int 6382 spa_reset(char *pool) 6383 { 6384 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 6385 B_FALSE, B_FALSE)); 6386 } 6387 6388 /* 6389 * ========================================================================== 6390 * Device manipulation 6391 * ========================================================================== 6392 */ 6393 6394 /* 6395 * Add a device to a storage pool. 6396 */ 6397 int 6398 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 6399 { 6400 uint64_t txg; 6401 int error; 6402 vdev_t *rvd = spa->spa_root_vdev; 6403 vdev_t *vd, *tvd; 6404 nvlist_t **spares, **l2cache; 6405 uint_t nspares, nl2cache; 6406 6407 ASSERT(spa_writeable(spa)); 6408 6409 txg = spa_vdev_enter(spa); 6410 6411 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 6412 VDEV_ALLOC_ADD)) != 0) 6413 return (spa_vdev_exit(spa, NULL, txg, error)); 6414 6415 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 6416 6417 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 6418 &nspares) != 0) 6419 nspares = 0; 6420 6421 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 6422 &nl2cache) != 0) 6423 nl2cache = 0; 6424 6425 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 6426 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6427 6428 if (vd->vdev_children != 0 && 6429 (error = vdev_create(vd, txg, B_FALSE)) != 0) 6430 return (spa_vdev_exit(spa, vd, txg, error)); 6431 6432 /* 6433 * We must validate the spares and l2cache devices after checking the 6434 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 6435 */ 6436 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 6437 return (spa_vdev_exit(spa, vd, txg, error)); 6438 6439 /* 6440 * If we are in the middle of a device removal, we can only add 6441 * devices which match the existing devices in the pool. 6442 * If we are in the middle of a removal, or have some indirect 6443 * vdevs, we can not add raidz toplevels. 6444 */ 6445 if (spa->spa_vdev_removal != NULL || 6446 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) { 6447 for (int c = 0; c < vd->vdev_children; c++) { 6448 tvd = vd->vdev_child[c]; 6449 if (spa->spa_vdev_removal != NULL && 6450 tvd->vdev_ashift != spa->spa_max_ashift) { 6451 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6452 } 6453 /* Fail if top level vdev is raidz */ 6454 if (tvd->vdev_ops == &vdev_raidz_ops) { 6455 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 6456 } 6457 /* 6458 * Need the top level mirror to be 6459 * a mirror of leaf vdevs only 6460 */ 6461 if (tvd->vdev_ops == &vdev_mirror_ops) { 6462 for (uint64_t cid = 0; 6463 cid < tvd->vdev_children; cid++) { 6464 vdev_t *cvd = tvd->vdev_child[cid]; 6465 if (!cvd->vdev_ops->vdev_op_leaf) { 6466 return (spa_vdev_exit(spa, vd, 6467 txg, EINVAL)); 6468 } 6469 } 6470 } 6471 } 6472 } 6473 6474 for (int c = 0; c < vd->vdev_children; c++) { 6475 tvd = vd->vdev_child[c]; 6476 vdev_remove_child(vd, tvd); 6477 tvd->vdev_id = rvd->vdev_children; 6478 vdev_add_child(rvd, tvd); 6479 vdev_config_dirty(tvd); 6480 } 6481 6482 if (nspares != 0) { 6483 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 6484 ZPOOL_CONFIG_SPARES); 6485 spa_load_spares(spa); 6486 spa->spa_spares.sav_sync = B_TRUE; 6487 } 6488 6489 if (nl2cache != 0) { 6490 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 6491 ZPOOL_CONFIG_L2CACHE); 6492 spa_load_l2cache(spa); 6493 spa->spa_l2cache.sav_sync = B_TRUE; 6494 } 6495 6496 /* 6497 * We have to be careful when adding new vdevs to an existing pool. 6498 * If other threads start allocating from these vdevs before we 6499 * sync the config cache, and we lose power, then upon reboot we may 6500 * fail to open the pool because there are DVAs that the config cache 6501 * can't translate. Therefore, we first add the vdevs without 6502 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 6503 * and then let spa_config_update() initialize the new metaslabs. 6504 * 6505 * spa_load() checks for added-but-not-initialized vdevs, so that 6506 * if we lose power at any point in this sequence, the remaining 6507 * steps will be completed the next time we load the pool. 6508 */ 6509 (void) spa_vdev_exit(spa, vd, txg, 0); 6510 6511 mutex_enter(&spa_namespace_lock); 6512 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 6513 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD); 6514 mutex_exit(&spa_namespace_lock); 6515 6516 return (0); 6517 } 6518 6519 /* 6520 * Attach a device to a mirror. The arguments are the path to any device 6521 * in the mirror, and the nvroot for the new device. If the path specifies 6522 * a device that is not mirrored, we automatically insert the mirror vdev. 6523 * 6524 * If 'replacing' is specified, the new device is intended to replace the 6525 * existing device; in this case the two devices are made into their own 6526 * mirror using the 'replacing' vdev, which is functionally identical to 6527 * the mirror vdev (it actually reuses all the same ops) but has a few 6528 * extra rules: you can't attach to it after it's been created, and upon 6529 * completion of resilvering, the first disk (the one being replaced) 6530 * is automatically detached. 6531 * 6532 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild) 6533 * should be performed instead of traditional healing reconstruction. From 6534 * an administrators perspective these are both resilver operations. 6535 */ 6536 int 6537 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing, 6538 int rebuild) 6539 { 6540 uint64_t txg, dtl_max_txg; 6541 vdev_t *rvd = spa->spa_root_vdev; 6542 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 6543 vdev_ops_t *pvops; 6544 char *oldvdpath, *newvdpath; 6545 int newvd_isspare; 6546 int error; 6547 6548 ASSERT(spa_writeable(spa)); 6549 6550 txg = spa_vdev_enter(spa); 6551 6552 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 6553 6554 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6555 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6556 error = (spa_has_checkpoint(spa)) ? 6557 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6558 return (spa_vdev_exit(spa, NULL, txg, error)); 6559 } 6560 6561 if (rebuild) { 6562 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD)) 6563 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6564 6565 if (dsl_scan_resilvering(spa_get_dsl(spa))) 6566 return (spa_vdev_exit(spa, NULL, txg, 6567 ZFS_ERR_RESILVER_IN_PROGRESS)); 6568 } else { 6569 if (vdev_rebuild_active(rvd)) 6570 return (spa_vdev_exit(spa, NULL, txg, 6571 ZFS_ERR_REBUILD_IN_PROGRESS)); 6572 } 6573 6574 if (spa->spa_vdev_removal != NULL) 6575 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6576 6577 if (oldvd == NULL) 6578 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 6579 6580 if (!oldvd->vdev_ops->vdev_op_leaf) 6581 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6582 6583 pvd = oldvd->vdev_parent; 6584 6585 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 6586 VDEV_ALLOC_ATTACH)) != 0) 6587 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 6588 6589 if (newrootvd->vdev_children != 1) 6590 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6591 6592 newvd = newrootvd->vdev_child[0]; 6593 6594 if (!newvd->vdev_ops->vdev_op_leaf) 6595 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 6596 6597 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 6598 return (spa_vdev_exit(spa, newrootvd, txg, error)); 6599 6600 /* 6601 * Spares can't replace logs 6602 */ 6603 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 6604 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6605 6606 if (rebuild) { 6607 /* 6608 * For rebuilds, the parent vdev must support reconstruction 6609 * using only space maps. This means the only allowable 6610 * parents are the root vdev or a mirror vdev. 6611 */ 6612 if (pvd->vdev_ops != &vdev_mirror_ops && 6613 pvd->vdev_ops != &vdev_root_ops) { 6614 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6615 } 6616 } 6617 6618 if (!replacing) { 6619 /* 6620 * For attach, the only allowable parent is a mirror or the root 6621 * vdev. 6622 */ 6623 if (pvd->vdev_ops != &vdev_mirror_ops && 6624 pvd->vdev_ops != &vdev_root_ops) 6625 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6626 6627 pvops = &vdev_mirror_ops; 6628 } else { 6629 /* 6630 * Active hot spares can only be replaced by inactive hot 6631 * spares. 6632 */ 6633 if (pvd->vdev_ops == &vdev_spare_ops && 6634 oldvd->vdev_isspare && 6635 !spa_has_spare(spa, newvd->vdev_guid)) 6636 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6637 6638 /* 6639 * If the source is a hot spare, and the parent isn't already a 6640 * spare, then we want to create a new hot spare. Otherwise, we 6641 * want to create a replacing vdev. The user is not allowed to 6642 * attach to a spared vdev child unless the 'isspare' state is 6643 * the same (spare replaces spare, non-spare replaces 6644 * non-spare). 6645 */ 6646 if (pvd->vdev_ops == &vdev_replacing_ops && 6647 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 6648 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6649 } else if (pvd->vdev_ops == &vdev_spare_ops && 6650 newvd->vdev_isspare != oldvd->vdev_isspare) { 6651 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6652 } 6653 6654 if (newvd->vdev_isspare) 6655 pvops = &vdev_spare_ops; 6656 else 6657 pvops = &vdev_replacing_ops; 6658 } 6659 6660 /* 6661 * Make sure the new device is big enough. 6662 */ 6663 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 6664 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 6665 6666 /* 6667 * The new device cannot have a higher alignment requirement 6668 * than the top-level vdev. 6669 */ 6670 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 6671 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 6672 6673 /* 6674 * If this is an in-place replacement, update oldvd's path and devid 6675 * to make it distinguishable from newvd, and unopenable from now on. 6676 */ 6677 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 6678 spa_strfree(oldvd->vdev_path); 6679 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 6680 KM_SLEEP); 6681 (void) snprintf(oldvd->vdev_path, strlen(newvd->vdev_path) + 5, 6682 "%s/%s", newvd->vdev_path, "old"); 6683 if (oldvd->vdev_devid != NULL) { 6684 spa_strfree(oldvd->vdev_devid); 6685 oldvd->vdev_devid = NULL; 6686 } 6687 } 6688 6689 /* 6690 * If the parent is not a mirror, or if we're replacing, insert the new 6691 * mirror/replacing/spare vdev above oldvd. 6692 */ 6693 if (pvd->vdev_ops != pvops) 6694 pvd = vdev_add_parent(oldvd, pvops); 6695 6696 ASSERT(pvd->vdev_top->vdev_parent == rvd); 6697 ASSERT(pvd->vdev_ops == pvops); 6698 ASSERT(oldvd->vdev_parent == pvd); 6699 6700 /* 6701 * Extract the new device from its root and add it to pvd. 6702 */ 6703 vdev_remove_child(newrootvd, newvd); 6704 newvd->vdev_id = pvd->vdev_children; 6705 newvd->vdev_crtxg = oldvd->vdev_crtxg; 6706 vdev_add_child(pvd, newvd); 6707 6708 /* 6709 * Reevaluate the parent vdev state. 6710 */ 6711 vdev_propagate_state(pvd); 6712 6713 tvd = newvd->vdev_top; 6714 ASSERT(pvd->vdev_top == tvd); 6715 ASSERT(tvd->vdev_parent == rvd); 6716 6717 vdev_config_dirty(tvd); 6718 6719 /* 6720 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 6721 * for any dmu_sync-ed blocks. It will propagate upward when 6722 * spa_vdev_exit() calls vdev_dtl_reassess(). 6723 */ 6724 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 6725 6726 vdev_dtl_dirty(newvd, DTL_MISSING, 6727 TXG_INITIAL, dtl_max_txg - TXG_INITIAL); 6728 6729 if (newvd->vdev_isspare) { 6730 spa_spare_activate(newvd); 6731 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE); 6732 } 6733 6734 oldvdpath = spa_strdup(oldvd->vdev_path); 6735 newvdpath = spa_strdup(newvd->vdev_path); 6736 newvd_isspare = newvd->vdev_isspare; 6737 6738 /* 6739 * Mark newvd's DTL dirty in this txg. 6740 */ 6741 vdev_dirty(tvd, VDD_DTL, newvd, txg); 6742 6743 /* 6744 * Schedule the resilver or rebuild to restart in the future. We do 6745 * this to ensure that dmu_sync-ed blocks have been stitched into the 6746 * respective datasets. 6747 */ 6748 if (rebuild) { 6749 newvd->vdev_rebuild_txg = txg; 6750 6751 vdev_rebuild(tvd); 6752 } else { 6753 newvd->vdev_resilver_txg = txg; 6754 6755 if (dsl_scan_resilvering(spa_get_dsl(spa)) && 6756 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) { 6757 vdev_defer_resilver(newvd); 6758 } else { 6759 dsl_scan_restart_resilver(spa->spa_dsl_pool, 6760 dtl_max_txg); 6761 } 6762 } 6763 6764 if (spa->spa_bootfs) 6765 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH); 6766 6767 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH); 6768 6769 /* 6770 * Commit the config 6771 */ 6772 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 6773 6774 spa_history_log_internal(spa, "vdev attach", NULL, 6775 "%s vdev=%s %s vdev=%s", 6776 replacing && newvd_isspare ? "spare in" : 6777 replacing ? "replace" : "attach", newvdpath, 6778 replacing ? "for" : "to", oldvdpath); 6779 6780 spa_strfree(oldvdpath); 6781 spa_strfree(newvdpath); 6782 6783 return (0); 6784 } 6785 6786 /* 6787 * Detach a device from a mirror or replacing vdev. 6788 * 6789 * If 'replace_done' is specified, only detach if the parent 6790 * is a replacing vdev. 6791 */ 6792 int 6793 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 6794 { 6795 uint64_t txg; 6796 int error; 6797 vdev_t *rvd __maybe_unused = spa->spa_root_vdev; 6798 vdev_t *vd, *pvd, *cvd, *tvd; 6799 boolean_t unspare = B_FALSE; 6800 uint64_t unspare_guid = 0; 6801 char *vdpath; 6802 6803 ASSERT(spa_writeable(spa)); 6804 6805 txg = spa_vdev_detach_enter(spa, guid); 6806 6807 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 6808 6809 /* 6810 * Besides being called directly from the userland through the 6811 * ioctl interface, spa_vdev_detach() can be potentially called 6812 * at the end of spa_vdev_resilver_done(). 6813 * 6814 * In the regular case, when we have a checkpoint this shouldn't 6815 * happen as we never empty the DTLs of a vdev during the scrub 6816 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done() 6817 * should never get here when we have a checkpoint. 6818 * 6819 * That said, even in a case when we checkpoint the pool exactly 6820 * as spa_vdev_resilver_done() calls this function everything 6821 * should be fine as the resilver will return right away. 6822 */ 6823 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 6824 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 6825 error = (spa_has_checkpoint(spa)) ? 6826 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 6827 return (spa_vdev_exit(spa, NULL, txg, error)); 6828 } 6829 6830 if (vd == NULL) 6831 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 6832 6833 if (!vd->vdev_ops->vdev_op_leaf) 6834 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6835 6836 pvd = vd->vdev_parent; 6837 6838 /* 6839 * If the parent/child relationship is not as expected, don't do it. 6840 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 6841 * vdev that's replacing B with C. The user's intent in replacing 6842 * is to go from M(A,B) to M(A,C). If the user decides to cancel 6843 * the replace by detaching C, the expected behavior is to end up 6844 * M(A,B). But suppose that right after deciding to detach C, 6845 * the replacement of B completes. We would have M(A,C), and then 6846 * ask to detach C, which would leave us with just A -- not what 6847 * the user wanted. To prevent this, we make sure that the 6848 * parent/child relationship hasn't changed -- in this example, 6849 * that C's parent is still the replacing vdev R. 6850 */ 6851 if (pvd->vdev_guid != pguid && pguid != 0) 6852 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6853 6854 /* 6855 * Only 'replacing' or 'spare' vdevs can be replaced. 6856 */ 6857 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 6858 pvd->vdev_ops != &vdev_spare_ops) 6859 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6860 6861 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 6862 spa_version(spa) >= SPA_VERSION_SPARES); 6863 6864 /* 6865 * Only mirror, replacing, and spare vdevs support detach. 6866 */ 6867 if (pvd->vdev_ops != &vdev_replacing_ops && 6868 pvd->vdev_ops != &vdev_mirror_ops && 6869 pvd->vdev_ops != &vdev_spare_ops) 6870 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 6871 6872 /* 6873 * If this device has the only valid copy of some data, 6874 * we cannot safely detach it. 6875 */ 6876 if (vdev_dtl_required(vd)) 6877 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 6878 6879 ASSERT(pvd->vdev_children >= 2); 6880 6881 /* 6882 * If we are detaching the second disk from a replacing vdev, then 6883 * check to see if we changed the original vdev's path to have "/old" 6884 * at the end in spa_vdev_attach(). If so, undo that change now. 6885 */ 6886 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 6887 vd->vdev_path != NULL) { 6888 size_t len = strlen(vd->vdev_path); 6889 6890 for (int c = 0; c < pvd->vdev_children; c++) { 6891 cvd = pvd->vdev_child[c]; 6892 6893 if (cvd == vd || cvd->vdev_path == NULL) 6894 continue; 6895 6896 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 6897 strcmp(cvd->vdev_path + len, "/old") == 0) { 6898 spa_strfree(cvd->vdev_path); 6899 cvd->vdev_path = spa_strdup(vd->vdev_path); 6900 break; 6901 } 6902 } 6903 } 6904 6905 /* 6906 * If we are detaching the original disk from a spare, then it implies 6907 * that the spare should become a real disk, and be removed from the 6908 * active spare list for the pool. 6909 */ 6910 if (pvd->vdev_ops == &vdev_spare_ops && 6911 vd->vdev_id == 0 && 6912 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 6913 unspare = B_TRUE; 6914 6915 /* 6916 * Erase the disk labels so the disk can be used for other things. 6917 * This must be done after all other error cases are handled, 6918 * but before we disembowel vd (so we can still do I/O to it). 6919 * But if we can't do it, don't treat the error as fatal -- 6920 * it may be that the unwritability of the disk is the reason 6921 * it's being detached! 6922 */ 6923 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 6924 6925 /* 6926 * Remove vd from its parent and compact the parent's children. 6927 */ 6928 vdev_remove_child(pvd, vd); 6929 vdev_compact_children(pvd); 6930 6931 /* 6932 * Remember one of the remaining children so we can get tvd below. 6933 */ 6934 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 6935 6936 /* 6937 * If we need to remove the remaining child from the list of hot spares, 6938 * do it now, marking the vdev as no longer a spare in the process. 6939 * We must do this before vdev_remove_parent(), because that can 6940 * change the GUID if it creates a new toplevel GUID. For a similar 6941 * reason, we must remove the spare now, in the same txg as the detach; 6942 * otherwise someone could attach a new sibling, change the GUID, and 6943 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 6944 */ 6945 if (unspare) { 6946 ASSERT(cvd->vdev_isspare); 6947 spa_spare_remove(cvd); 6948 unspare_guid = cvd->vdev_guid; 6949 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 6950 cvd->vdev_unspare = B_TRUE; 6951 } 6952 6953 /* 6954 * If the parent mirror/replacing vdev only has one child, 6955 * the parent is no longer needed. Remove it from the tree. 6956 */ 6957 if (pvd->vdev_children == 1) { 6958 if (pvd->vdev_ops == &vdev_spare_ops) 6959 cvd->vdev_unspare = B_FALSE; 6960 vdev_remove_parent(cvd); 6961 } 6962 6963 /* 6964 * We don't set tvd until now because the parent we just removed 6965 * may have been the previous top-level vdev. 6966 */ 6967 tvd = cvd->vdev_top; 6968 ASSERT(tvd->vdev_parent == rvd); 6969 6970 /* 6971 * Reevaluate the parent vdev state. 6972 */ 6973 vdev_propagate_state(cvd); 6974 6975 /* 6976 * If the 'autoexpand' property is set on the pool then automatically 6977 * try to expand the size of the pool. For example if the device we 6978 * just detached was smaller than the others, it may be possible to 6979 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 6980 * first so that we can obtain the updated sizes of the leaf vdevs. 6981 */ 6982 if (spa->spa_autoexpand) { 6983 vdev_reopen(tvd); 6984 vdev_expand(tvd, txg); 6985 } 6986 6987 vdev_config_dirty(tvd); 6988 6989 /* 6990 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 6991 * vd->vdev_detached is set and free vd's DTL object in syncing context. 6992 * But first make sure we're not on any *other* txg's DTL list, to 6993 * prevent vd from being accessed after it's freed. 6994 */ 6995 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none"); 6996 for (int t = 0; t < TXG_SIZE; t++) 6997 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 6998 vd->vdev_detached = B_TRUE; 6999 vdev_dirty(tvd, VDD_DTL, vd, txg); 7000 7001 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE); 7002 spa_notify_waiters(spa); 7003 7004 /* hang on to the spa before we release the lock */ 7005 spa_open_ref(spa, FTAG); 7006 7007 error = spa_vdev_exit(spa, vd, txg, 0); 7008 7009 spa_history_log_internal(spa, "detach", NULL, 7010 "vdev=%s", vdpath); 7011 spa_strfree(vdpath); 7012 7013 /* 7014 * If this was the removal of the original device in a hot spare vdev, 7015 * then we want to go through and remove the device from the hot spare 7016 * list of every other pool. 7017 */ 7018 if (unspare) { 7019 spa_t *altspa = NULL; 7020 7021 mutex_enter(&spa_namespace_lock); 7022 while ((altspa = spa_next(altspa)) != NULL) { 7023 if (altspa->spa_state != POOL_STATE_ACTIVE || 7024 altspa == spa) 7025 continue; 7026 7027 spa_open_ref(altspa, FTAG); 7028 mutex_exit(&spa_namespace_lock); 7029 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 7030 mutex_enter(&spa_namespace_lock); 7031 spa_close(altspa, FTAG); 7032 } 7033 mutex_exit(&spa_namespace_lock); 7034 7035 /* search the rest of the vdevs for spares to remove */ 7036 spa_vdev_resilver_done(spa); 7037 } 7038 7039 /* all done with the spa; OK to release */ 7040 mutex_enter(&spa_namespace_lock); 7041 spa_close(spa, FTAG); 7042 mutex_exit(&spa_namespace_lock); 7043 7044 return (error); 7045 } 7046 7047 static int 7048 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7049 list_t *vd_list) 7050 { 7051 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7052 7053 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7054 7055 /* Look up vdev and ensure it's a leaf. */ 7056 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7057 if (vd == NULL || vd->vdev_detached) { 7058 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7059 return (SET_ERROR(ENODEV)); 7060 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 7061 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7062 return (SET_ERROR(EINVAL)); 7063 } else if (!vdev_writeable(vd)) { 7064 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7065 return (SET_ERROR(EROFS)); 7066 } 7067 mutex_enter(&vd->vdev_initialize_lock); 7068 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7069 7070 /* 7071 * When we activate an initialize action we check to see 7072 * if the vdev_initialize_thread is NULL. We do this instead 7073 * of using the vdev_initialize_state since there might be 7074 * a previous initialization process which has completed but 7075 * the thread is not exited. 7076 */ 7077 if (cmd_type == POOL_INITIALIZE_START && 7078 (vd->vdev_initialize_thread != NULL || 7079 vd->vdev_top->vdev_removing)) { 7080 mutex_exit(&vd->vdev_initialize_lock); 7081 return (SET_ERROR(EBUSY)); 7082 } else if (cmd_type == POOL_INITIALIZE_CANCEL && 7083 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE && 7084 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) { 7085 mutex_exit(&vd->vdev_initialize_lock); 7086 return (SET_ERROR(ESRCH)); 7087 } else if (cmd_type == POOL_INITIALIZE_SUSPEND && 7088 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) { 7089 mutex_exit(&vd->vdev_initialize_lock); 7090 return (SET_ERROR(ESRCH)); 7091 } 7092 7093 switch (cmd_type) { 7094 case POOL_INITIALIZE_START: 7095 vdev_initialize(vd); 7096 break; 7097 case POOL_INITIALIZE_CANCEL: 7098 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list); 7099 break; 7100 case POOL_INITIALIZE_SUSPEND: 7101 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list); 7102 break; 7103 default: 7104 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 7105 } 7106 mutex_exit(&vd->vdev_initialize_lock); 7107 7108 return (0); 7109 } 7110 7111 int 7112 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, 7113 nvlist_t *vdev_errlist) 7114 { 7115 int total_errors = 0; 7116 list_t vd_list; 7117 7118 list_create(&vd_list, sizeof (vdev_t), 7119 offsetof(vdev_t, vdev_initialize_node)); 7120 7121 /* 7122 * We hold the namespace lock through the whole function 7123 * to prevent any changes to the pool while we're starting or 7124 * stopping initialization. The config and state locks are held so that 7125 * we can properly assess the vdev state before we commit to 7126 * the initializing operation. 7127 */ 7128 mutex_enter(&spa_namespace_lock); 7129 7130 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 7131 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 7132 uint64_t vdev_guid = fnvpair_value_uint64(pair); 7133 7134 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type, 7135 &vd_list); 7136 if (error != 0) { 7137 char guid_as_str[MAXNAMELEN]; 7138 7139 (void) snprintf(guid_as_str, sizeof (guid_as_str), 7140 "%llu", (unsigned long long)vdev_guid); 7141 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 7142 total_errors++; 7143 } 7144 } 7145 7146 /* Wait for all initialize threads to stop. */ 7147 vdev_initialize_stop_wait(spa, &vd_list); 7148 7149 /* Sync out the initializing state */ 7150 txg_wait_synced(spa->spa_dsl_pool, 0); 7151 mutex_exit(&spa_namespace_lock); 7152 7153 list_destroy(&vd_list); 7154 7155 return (total_errors); 7156 } 7157 7158 static int 7159 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type, 7160 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list) 7161 { 7162 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7163 7164 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 7165 7166 /* Look up vdev and ensure it's a leaf. */ 7167 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE); 7168 if (vd == NULL || vd->vdev_detached) { 7169 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7170 return (SET_ERROR(ENODEV)); 7171 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) { 7172 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7173 return (SET_ERROR(EINVAL)); 7174 } else if (!vdev_writeable(vd)) { 7175 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7176 return (SET_ERROR(EROFS)); 7177 } else if (!vd->vdev_has_trim) { 7178 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7179 return (SET_ERROR(EOPNOTSUPP)); 7180 } else if (secure && !vd->vdev_has_securetrim) { 7181 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7182 return (SET_ERROR(EOPNOTSUPP)); 7183 } 7184 mutex_enter(&vd->vdev_trim_lock); 7185 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 7186 7187 /* 7188 * When we activate a TRIM action we check to see if the 7189 * vdev_trim_thread is NULL. We do this instead of using the 7190 * vdev_trim_state since there might be a previous TRIM process 7191 * which has completed but the thread is not exited. 7192 */ 7193 if (cmd_type == POOL_TRIM_START && 7194 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing)) { 7195 mutex_exit(&vd->vdev_trim_lock); 7196 return (SET_ERROR(EBUSY)); 7197 } else if (cmd_type == POOL_TRIM_CANCEL && 7198 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE && 7199 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) { 7200 mutex_exit(&vd->vdev_trim_lock); 7201 return (SET_ERROR(ESRCH)); 7202 } else if (cmd_type == POOL_TRIM_SUSPEND && 7203 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) { 7204 mutex_exit(&vd->vdev_trim_lock); 7205 return (SET_ERROR(ESRCH)); 7206 } 7207 7208 switch (cmd_type) { 7209 case POOL_TRIM_START: 7210 vdev_trim(vd, rate, partial, secure); 7211 break; 7212 case POOL_TRIM_CANCEL: 7213 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list); 7214 break; 7215 case POOL_TRIM_SUSPEND: 7216 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list); 7217 break; 7218 default: 7219 panic("invalid cmd_type %llu", (unsigned long long)cmd_type); 7220 } 7221 mutex_exit(&vd->vdev_trim_lock); 7222 7223 return (0); 7224 } 7225 7226 /* 7227 * Initiates a manual TRIM for the requested vdevs. This kicks off individual 7228 * TRIM threads for each child vdev. These threads pass over all of the free 7229 * space in the vdev's metaslabs and issues TRIM commands for that space. 7230 */ 7231 int 7232 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate, 7233 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist) 7234 { 7235 int total_errors = 0; 7236 list_t vd_list; 7237 7238 list_create(&vd_list, sizeof (vdev_t), 7239 offsetof(vdev_t, vdev_trim_node)); 7240 7241 /* 7242 * We hold the namespace lock through the whole function 7243 * to prevent any changes to the pool while we're starting or 7244 * stopping TRIM. The config and state locks are held so that 7245 * we can properly assess the vdev state before we commit to 7246 * the TRIM operation. 7247 */ 7248 mutex_enter(&spa_namespace_lock); 7249 7250 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL); 7251 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) { 7252 uint64_t vdev_guid = fnvpair_value_uint64(pair); 7253 7254 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type, 7255 rate, partial, secure, &vd_list); 7256 if (error != 0) { 7257 char guid_as_str[MAXNAMELEN]; 7258 7259 (void) snprintf(guid_as_str, sizeof (guid_as_str), 7260 "%llu", (unsigned long long)vdev_guid); 7261 fnvlist_add_int64(vdev_errlist, guid_as_str, error); 7262 total_errors++; 7263 } 7264 } 7265 7266 /* Wait for all TRIM threads to stop. */ 7267 vdev_trim_stop_wait(spa, &vd_list); 7268 7269 /* Sync out the TRIM state */ 7270 txg_wait_synced(spa->spa_dsl_pool, 0); 7271 mutex_exit(&spa_namespace_lock); 7272 7273 list_destroy(&vd_list); 7274 7275 return (total_errors); 7276 } 7277 7278 /* 7279 * Split a set of devices from their mirrors, and create a new pool from them. 7280 */ 7281 int 7282 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 7283 nvlist_t *props, boolean_t exp) 7284 { 7285 int error = 0; 7286 uint64_t txg, *glist; 7287 spa_t *newspa; 7288 uint_t c, children, lastlog; 7289 nvlist_t **child, *nvl, *tmp; 7290 dmu_tx_t *tx; 7291 char *altroot = NULL; 7292 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 7293 boolean_t activate_slog; 7294 7295 ASSERT(spa_writeable(spa)); 7296 7297 txg = spa_vdev_enter(spa); 7298 7299 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 7300 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) { 7301 error = (spa_has_checkpoint(spa)) ? 7302 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT; 7303 return (spa_vdev_exit(spa, NULL, txg, error)); 7304 } 7305 7306 /* clear the log and flush everything up to now */ 7307 activate_slog = spa_passivate_log(spa); 7308 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 7309 error = spa_reset_logs(spa); 7310 txg = spa_vdev_config_enter(spa); 7311 7312 if (activate_slog) 7313 spa_activate_log(spa); 7314 7315 if (error != 0) 7316 return (spa_vdev_exit(spa, NULL, txg, error)); 7317 7318 /* check new spa name before going any further */ 7319 if (spa_lookup(newname) != NULL) 7320 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 7321 7322 /* 7323 * scan through all the children to ensure they're all mirrors 7324 */ 7325 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 7326 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 7327 &children) != 0) 7328 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7329 7330 /* first, check to ensure we've got the right child count */ 7331 rvd = spa->spa_root_vdev; 7332 lastlog = 0; 7333 for (c = 0; c < rvd->vdev_children; c++) { 7334 vdev_t *vd = rvd->vdev_child[c]; 7335 7336 /* don't count the holes & logs as children */ 7337 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops && 7338 !vdev_is_concrete(vd))) { 7339 if (lastlog == 0) 7340 lastlog = c; 7341 continue; 7342 } 7343 7344 lastlog = 0; 7345 } 7346 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 7347 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7348 7349 /* next, ensure no spare or cache devices are part of the split */ 7350 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 7351 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 7352 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 7353 7354 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 7355 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 7356 7357 /* then, loop over each vdev and validate it */ 7358 for (c = 0; c < children; c++) { 7359 uint64_t is_hole = 0; 7360 7361 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 7362 &is_hole); 7363 7364 if (is_hole != 0) { 7365 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 7366 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 7367 continue; 7368 } else { 7369 error = SET_ERROR(EINVAL); 7370 break; 7371 } 7372 } 7373 7374 /* deal with indirect vdevs */ 7375 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops == 7376 &vdev_indirect_ops) 7377 continue; 7378 7379 /* which disk is going to be split? */ 7380 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 7381 &glist[c]) != 0) { 7382 error = SET_ERROR(EINVAL); 7383 break; 7384 } 7385 7386 /* look it up in the spa */ 7387 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 7388 if (vml[c] == NULL) { 7389 error = SET_ERROR(ENODEV); 7390 break; 7391 } 7392 7393 /* make sure there's nothing stopping the split */ 7394 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 7395 vml[c]->vdev_islog || 7396 !vdev_is_concrete(vml[c]) || 7397 vml[c]->vdev_isspare || 7398 vml[c]->vdev_isl2cache || 7399 !vdev_writeable(vml[c]) || 7400 vml[c]->vdev_children != 0 || 7401 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 7402 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 7403 error = SET_ERROR(EINVAL); 7404 break; 7405 } 7406 7407 if (vdev_dtl_required(vml[c]) || 7408 vdev_resilver_needed(vml[c], NULL, NULL)) { 7409 error = SET_ERROR(EBUSY); 7410 break; 7411 } 7412 7413 /* we need certain info from the top level */ 7414 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 7415 vml[c]->vdev_top->vdev_ms_array) == 0); 7416 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 7417 vml[c]->vdev_top->vdev_ms_shift) == 0); 7418 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 7419 vml[c]->vdev_top->vdev_asize) == 0); 7420 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 7421 vml[c]->vdev_top->vdev_ashift) == 0); 7422 7423 /* transfer per-vdev ZAPs */ 7424 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0); 7425 VERIFY0(nvlist_add_uint64(child[c], 7426 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap)); 7427 7428 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0); 7429 VERIFY0(nvlist_add_uint64(child[c], 7430 ZPOOL_CONFIG_VDEV_TOP_ZAP, 7431 vml[c]->vdev_parent->vdev_top_zap)); 7432 } 7433 7434 if (error != 0) { 7435 kmem_free(vml, children * sizeof (vdev_t *)); 7436 kmem_free(glist, children * sizeof (uint64_t)); 7437 return (spa_vdev_exit(spa, NULL, txg, error)); 7438 } 7439 7440 /* stop writers from using the disks */ 7441 for (c = 0; c < children; c++) { 7442 if (vml[c] != NULL) 7443 vml[c]->vdev_offline = B_TRUE; 7444 } 7445 vdev_reopen(spa->spa_root_vdev); 7446 7447 /* 7448 * Temporarily record the splitting vdevs in the spa config. This 7449 * will disappear once the config is regenerated. 7450 */ 7451 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 7452 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 7453 glist, children) == 0); 7454 kmem_free(glist, children * sizeof (uint64_t)); 7455 7456 mutex_enter(&spa->spa_props_lock); 7457 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 7458 nvl) == 0); 7459 mutex_exit(&spa->spa_props_lock); 7460 spa->spa_config_splitting = nvl; 7461 vdev_config_dirty(spa->spa_root_vdev); 7462 7463 /* configure and create the new pool */ 7464 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 7465 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 7466 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 7467 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 7468 spa_version(spa)) == 0); 7469 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 7470 spa->spa_config_txg) == 0); 7471 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 7472 spa_generate_guid(NULL)) == 0); 7473 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)); 7474 (void) nvlist_lookup_string(props, 7475 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 7476 7477 /* add the new pool to the namespace */ 7478 newspa = spa_add(newname, config, altroot); 7479 newspa->spa_avz_action = AVZ_ACTION_REBUILD; 7480 newspa->spa_config_txg = spa->spa_config_txg; 7481 spa_set_log_state(newspa, SPA_LOG_CLEAR); 7482 7483 /* release the spa config lock, retaining the namespace lock */ 7484 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 7485 7486 if (zio_injection_enabled) 7487 zio_handle_panic_injection(spa, FTAG, 1); 7488 7489 spa_activate(newspa, spa_mode_global); 7490 spa_async_suspend(newspa); 7491 7492 /* 7493 * Temporarily stop the initializing and TRIM activity. We set the 7494 * state to ACTIVE so that we know to resume initializing or TRIM 7495 * once the split has completed. 7496 */ 7497 list_t vd_initialize_list; 7498 list_create(&vd_initialize_list, sizeof (vdev_t), 7499 offsetof(vdev_t, vdev_initialize_node)); 7500 7501 list_t vd_trim_list; 7502 list_create(&vd_trim_list, sizeof (vdev_t), 7503 offsetof(vdev_t, vdev_trim_node)); 7504 7505 for (c = 0; c < children; c++) { 7506 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 7507 mutex_enter(&vml[c]->vdev_initialize_lock); 7508 vdev_initialize_stop(vml[c], 7509 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list); 7510 mutex_exit(&vml[c]->vdev_initialize_lock); 7511 7512 mutex_enter(&vml[c]->vdev_trim_lock); 7513 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list); 7514 mutex_exit(&vml[c]->vdev_trim_lock); 7515 } 7516 } 7517 7518 vdev_initialize_stop_wait(spa, &vd_initialize_list); 7519 vdev_trim_stop_wait(spa, &vd_trim_list); 7520 7521 list_destroy(&vd_initialize_list); 7522 list_destroy(&vd_trim_list); 7523 7524 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT; 7525 newspa->spa_is_splitting = B_TRUE; 7526 7527 /* create the new pool from the disks of the original pool */ 7528 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE); 7529 if (error) 7530 goto out; 7531 7532 /* if that worked, generate a real config for the new pool */ 7533 if (newspa->spa_root_vdev != NULL) { 7534 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 7535 NV_UNIQUE_NAME, KM_SLEEP) == 0); 7536 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 7537 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 7538 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 7539 B_TRUE)); 7540 } 7541 7542 /* set the props */ 7543 if (props != NULL) { 7544 spa_configfile_set(newspa, props, B_FALSE); 7545 error = spa_prop_set(newspa, props); 7546 if (error) 7547 goto out; 7548 } 7549 7550 /* flush everything */ 7551 txg = spa_vdev_config_enter(newspa); 7552 vdev_config_dirty(newspa->spa_root_vdev); 7553 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 7554 7555 if (zio_injection_enabled) 7556 zio_handle_panic_injection(spa, FTAG, 2); 7557 7558 spa_async_resume(newspa); 7559 7560 /* finally, update the original pool's config */ 7561 txg = spa_vdev_config_enter(spa); 7562 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 7563 error = dmu_tx_assign(tx, TXG_WAIT); 7564 if (error != 0) 7565 dmu_tx_abort(tx); 7566 for (c = 0; c < children; c++) { 7567 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) { 7568 vdev_t *tvd = vml[c]->vdev_top; 7569 7570 /* 7571 * Need to be sure the detachable VDEV is not 7572 * on any *other* txg's DTL list to prevent it 7573 * from being accessed after it's freed. 7574 */ 7575 for (int t = 0; t < TXG_SIZE; t++) { 7576 (void) txg_list_remove_this( 7577 &tvd->vdev_dtl_list, vml[c], t); 7578 } 7579 7580 vdev_split(vml[c]); 7581 if (error == 0) 7582 spa_history_log_internal(spa, "detach", tx, 7583 "vdev=%s", vml[c]->vdev_path); 7584 7585 vdev_free(vml[c]); 7586 } 7587 } 7588 spa->spa_avz_action = AVZ_ACTION_REBUILD; 7589 vdev_config_dirty(spa->spa_root_vdev); 7590 spa->spa_config_splitting = NULL; 7591 nvlist_free(nvl); 7592 if (error == 0) 7593 dmu_tx_commit(tx); 7594 (void) spa_vdev_exit(spa, NULL, txg, 0); 7595 7596 if (zio_injection_enabled) 7597 zio_handle_panic_injection(spa, FTAG, 3); 7598 7599 /* split is complete; log a history record */ 7600 spa_history_log_internal(newspa, "split", NULL, 7601 "from pool %s", spa_name(spa)); 7602 7603 newspa->spa_is_splitting = B_FALSE; 7604 kmem_free(vml, children * sizeof (vdev_t *)); 7605 7606 /* if we're not going to mount the filesystems in userland, export */ 7607 if (exp) 7608 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 7609 B_FALSE, B_FALSE); 7610 7611 return (error); 7612 7613 out: 7614 spa_unload(newspa); 7615 spa_deactivate(newspa); 7616 spa_remove(newspa); 7617 7618 txg = spa_vdev_config_enter(spa); 7619 7620 /* re-online all offlined disks */ 7621 for (c = 0; c < children; c++) { 7622 if (vml[c] != NULL) 7623 vml[c]->vdev_offline = B_FALSE; 7624 } 7625 7626 /* restart initializing or trimming disks as necessary */ 7627 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART); 7628 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART); 7629 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART); 7630 7631 vdev_reopen(spa->spa_root_vdev); 7632 7633 nvlist_free(spa->spa_config_splitting); 7634 spa->spa_config_splitting = NULL; 7635 (void) spa_vdev_exit(spa, NULL, txg, error); 7636 7637 kmem_free(vml, children * sizeof (vdev_t *)); 7638 return (error); 7639 } 7640 7641 /* 7642 * Find any device that's done replacing, or a vdev marked 'unspare' that's 7643 * currently spared, so we can detach it. 7644 */ 7645 static vdev_t * 7646 spa_vdev_resilver_done_hunt(vdev_t *vd) 7647 { 7648 vdev_t *newvd, *oldvd; 7649 7650 for (int c = 0; c < vd->vdev_children; c++) { 7651 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 7652 if (oldvd != NULL) 7653 return (oldvd); 7654 } 7655 7656 /* 7657 * Check for a completed replacement. We always consider the first 7658 * vdev in the list to be the oldest vdev, and the last one to be 7659 * the newest (see spa_vdev_attach() for how that works). In 7660 * the case where the newest vdev is faulted, we will not automatically 7661 * remove it after a resilver completes. This is OK as it will require 7662 * user intervention to determine which disk the admin wishes to keep. 7663 */ 7664 if (vd->vdev_ops == &vdev_replacing_ops) { 7665 ASSERT(vd->vdev_children > 1); 7666 7667 newvd = vd->vdev_child[vd->vdev_children - 1]; 7668 oldvd = vd->vdev_child[0]; 7669 7670 if (vdev_dtl_empty(newvd, DTL_MISSING) && 7671 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7672 !vdev_dtl_required(oldvd)) 7673 return (oldvd); 7674 } 7675 7676 /* 7677 * Check for a completed resilver with the 'unspare' flag set. 7678 * Also potentially update faulted state. 7679 */ 7680 if (vd->vdev_ops == &vdev_spare_ops) { 7681 vdev_t *first = vd->vdev_child[0]; 7682 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 7683 7684 if (last->vdev_unspare) { 7685 oldvd = first; 7686 newvd = last; 7687 } else if (first->vdev_unspare) { 7688 oldvd = last; 7689 newvd = first; 7690 } else { 7691 oldvd = NULL; 7692 } 7693 7694 if (oldvd != NULL && 7695 vdev_dtl_empty(newvd, DTL_MISSING) && 7696 vdev_dtl_empty(newvd, DTL_OUTAGE) && 7697 !vdev_dtl_required(oldvd)) 7698 return (oldvd); 7699 7700 vdev_propagate_state(vd); 7701 7702 /* 7703 * If there are more than two spares attached to a disk, 7704 * and those spares are not required, then we want to 7705 * attempt to free them up now so that they can be used 7706 * by other pools. Once we're back down to a single 7707 * disk+spare, we stop removing them. 7708 */ 7709 if (vd->vdev_children > 2) { 7710 newvd = vd->vdev_child[1]; 7711 7712 if (newvd->vdev_isspare && last->vdev_isspare && 7713 vdev_dtl_empty(last, DTL_MISSING) && 7714 vdev_dtl_empty(last, DTL_OUTAGE) && 7715 !vdev_dtl_required(newvd)) 7716 return (newvd); 7717 } 7718 } 7719 7720 return (NULL); 7721 } 7722 7723 static void 7724 spa_vdev_resilver_done(spa_t *spa) 7725 { 7726 vdev_t *vd, *pvd, *ppvd; 7727 uint64_t guid, sguid, pguid, ppguid; 7728 7729 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7730 7731 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 7732 pvd = vd->vdev_parent; 7733 ppvd = pvd->vdev_parent; 7734 guid = vd->vdev_guid; 7735 pguid = pvd->vdev_guid; 7736 ppguid = ppvd->vdev_guid; 7737 sguid = 0; 7738 /* 7739 * If we have just finished replacing a hot spared device, then 7740 * we need to detach the parent's first child (the original hot 7741 * spare) as well. 7742 */ 7743 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 7744 ppvd->vdev_children == 2) { 7745 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 7746 sguid = ppvd->vdev_child[1]->vdev_guid; 7747 } 7748 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 7749 7750 spa_config_exit(spa, SCL_ALL, FTAG); 7751 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 7752 return; 7753 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 7754 return; 7755 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 7756 } 7757 7758 spa_config_exit(spa, SCL_ALL, FTAG); 7759 7760 /* 7761 * If a detach was not performed above replace waiters will not have 7762 * been notified. In which case we must do so now. 7763 */ 7764 spa_notify_waiters(spa); 7765 } 7766 7767 /* 7768 * Update the stored path or FRU for this vdev. 7769 */ 7770 static int 7771 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 7772 boolean_t ispath) 7773 { 7774 vdev_t *vd; 7775 boolean_t sync = B_FALSE; 7776 7777 ASSERT(spa_writeable(spa)); 7778 7779 spa_vdev_state_enter(spa, SCL_ALL); 7780 7781 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 7782 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 7783 7784 if (!vd->vdev_ops->vdev_op_leaf) 7785 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 7786 7787 if (ispath) { 7788 if (strcmp(value, vd->vdev_path) != 0) { 7789 spa_strfree(vd->vdev_path); 7790 vd->vdev_path = spa_strdup(value); 7791 sync = B_TRUE; 7792 } 7793 } else { 7794 if (vd->vdev_fru == NULL) { 7795 vd->vdev_fru = spa_strdup(value); 7796 sync = B_TRUE; 7797 } else if (strcmp(value, vd->vdev_fru) != 0) { 7798 spa_strfree(vd->vdev_fru); 7799 vd->vdev_fru = spa_strdup(value); 7800 sync = B_TRUE; 7801 } 7802 } 7803 7804 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 7805 } 7806 7807 int 7808 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 7809 { 7810 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 7811 } 7812 7813 int 7814 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 7815 { 7816 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 7817 } 7818 7819 /* 7820 * ========================================================================== 7821 * SPA Scanning 7822 * ========================================================================== 7823 */ 7824 int 7825 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd) 7826 { 7827 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7828 7829 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 7830 return (SET_ERROR(EBUSY)); 7831 7832 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd)); 7833 } 7834 7835 int 7836 spa_scan_stop(spa_t *spa) 7837 { 7838 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7839 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 7840 return (SET_ERROR(EBUSY)); 7841 return (dsl_scan_cancel(spa->spa_dsl_pool)); 7842 } 7843 7844 int 7845 spa_scan(spa_t *spa, pool_scan_func_t func) 7846 { 7847 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 7848 7849 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 7850 return (SET_ERROR(ENOTSUP)); 7851 7852 if (func == POOL_SCAN_RESILVER && 7853 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER)) 7854 return (SET_ERROR(ENOTSUP)); 7855 7856 /* 7857 * If a resilver was requested, but there is no DTL on a 7858 * writeable leaf device, we have nothing to do. 7859 */ 7860 if (func == POOL_SCAN_RESILVER && 7861 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 7862 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 7863 return (0); 7864 } 7865 7866 return (dsl_scan(spa->spa_dsl_pool, func)); 7867 } 7868 7869 /* 7870 * ========================================================================== 7871 * SPA async task processing 7872 * ========================================================================== 7873 */ 7874 7875 static void 7876 spa_async_remove(spa_t *spa, vdev_t *vd) 7877 { 7878 if (vd->vdev_remove_wanted) { 7879 vd->vdev_remove_wanted = B_FALSE; 7880 vd->vdev_delayed_close = B_FALSE; 7881 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 7882 7883 /* 7884 * We want to clear the stats, but we don't want to do a full 7885 * vdev_clear() as that will cause us to throw away 7886 * degraded/faulted state as well as attempt to reopen the 7887 * device, all of which is a waste. 7888 */ 7889 vd->vdev_stat.vs_read_errors = 0; 7890 vd->vdev_stat.vs_write_errors = 0; 7891 vd->vdev_stat.vs_checksum_errors = 0; 7892 7893 vdev_state_dirty(vd->vdev_top); 7894 } 7895 7896 for (int c = 0; c < vd->vdev_children; c++) 7897 spa_async_remove(spa, vd->vdev_child[c]); 7898 } 7899 7900 static void 7901 spa_async_probe(spa_t *spa, vdev_t *vd) 7902 { 7903 if (vd->vdev_probe_wanted) { 7904 vd->vdev_probe_wanted = B_FALSE; 7905 vdev_reopen(vd); /* vdev_open() does the actual probe */ 7906 } 7907 7908 for (int c = 0; c < vd->vdev_children; c++) 7909 spa_async_probe(spa, vd->vdev_child[c]); 7910 } 7911 7912 static void 7913 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 7914 { 7915 if (!spa->spa_autoexpand) 7916 return; 7917 7918 for (int c = 0; c < vd->vdev_children; c++) { 7919 vdev_t *cvd = vd->vdev_child[c]; 7920 spa_async_autoexpand(spa, cvd); 7921 } 7922 7923 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 7924 return; 7925 7926 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND); 7927 } 7928 7929 static void 7930 spa_async_thread(void *arg) 7931 { 7932 spa_t *spa = (spa_t *)arg; 7933 dsl_pool_t *dp = spa->spa_dsl_pool; 7934 int tasks; 7935 7936 ASSERT(spa->spa_sync_on); 7937 7938 mutex_enter(&spa->spa_async_lock); 7939 tasks = spa->spa_async_tasks; 7940 spa->spa_async_tasks = 0; 7941 mutex_exit(&spa->spa_async_lock); 7942 7943 /* 7944 * See if the config needs to be updated. 7945 */ 7946 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 7947 uint64_t old_space, new_space; 7948 7949 mutex_enter(&spa_namespace_lock); 7950 old_space = metaslab_class_get_space(spa_normal_class(spa)); 7951 old_space += metaslab_class_get_space(spa_special_class(spa)); 7952 old_space += metaslab_class_get_space(spa_dedup_class(spa)); 7953 7954 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 7955 7956 new_space = metaslab_class_get_space(spa_normal_class(spa)); 7957 new_space += metaslab_class_get_space(spa_special_class(spa)); 7958 new_space += metaslab_class_get_space(spa_dedup_class(spa)); 7959 mutex_exit(&spa_namespace_lock); 7960 7961 /* 7962 * If the pool grew as a result of the config update, 7963 * then log an internal history event. 7964 */ 7965 if (new_space != old_space) { 7966 spa_history_log_internal(spa, "vdev online", NULL, 7967 "pool '%s' size: %llu(+%llu)", 7968 spa_name(spa), (u_longlong_t)new_space, 7969 (u_longlong_t)(new_space - old_space)); 7970 } 7971 } 7972 7973 /* 7974 * See if any devices need to be marked REMOVED. 7975 */ 7976 if (tasks & SPA_ASYNC_REMOVE) { 7977 spa_vdev_state_enter(spa, SCL_NONE); 7978 spa_async_remove(spa, spa->spa_root_vdev); 7979 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 7980 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 7981 for (int i = 0; i < spa->spa_spares.sav_count; i++) 7982 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 7983 (void) spa_vdev_state_exit(spa, NULL, 0); 7984 } 7985 7986 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 7987 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7988 spa_async_autoexpand(spa, spa->spa_root_vdev); 7989 spa_config_exit(spa, SCL_CONFIG, FTAG); 7990 } 7991 7992 /* 7993 * See if any devices need to be probed. 7994 */ 7995 if (tasks & SPA_ASYNC_PROBE) { 7996 spa_vdev_state_enter(spa, SCL_NONE); 7997 spa_async_probe(spa, spa->spa_root_vdev); 7998 (void) spa_vdev_state_exit(spa, NULL, 0); 7999 } 8000 8001 /* 8002 * If any devices are done replacing, detach them. 8003 */ 8004 if (tasks & SPA_ASYNC_RESILVER_DONE) 8005 spa_vdev_resilver_done(spa); 8006 8007 /* 8008 * If any devices are done replacing, detach them. Then if no 8009 * top-level vdevs are rebuilding attempt to kick off a scrub. 8010 */ 8011 if (tasks & SPA_ASYNC_REBUILD_DONE) { 8012 spa_vdev_resilver_done(spa); 8013 8014 if (!vdev_rebuild_active(spa->spa_root_vdev)) 8015 (void) dsl_scan(spa->spa_dsl_pool, POOL_SCAN_SCRUB); 8016 } 8017 8018 /* 8019 * Kick off a resilver. 8020 */ 8021 if (tasks & SPA_ASYNC_RESILVER && 8022 !vdev_rebuild_active(spa->spa_root_vdev) && 8023 (!dsl_scan_resilvering(dp) || 8024 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))) 8025 dsl_scan_restart_resilver(dp, 0); 8026 8027 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) { 8028 mutex_enter(&spa_namespace_lock); 8029 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8030 vdev_initialize_restart(spa->spa_root_vdev); 8031 spa_config_exit(spa, SCL_CONFIG, FTAG); 8032 mutex_exit(&spa_namespace_lock); 8033 } 8034 8035 if (tasks & SPA_ASYNC_TRIM_RESTART) { 8036 mutex_enter(&spa_namespace_lock); 8037 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8038 vdev_trim_restart(spa->spa_root_vdev); 8039 spa_config_exit(spa, SCL_CONFIG, FTAG); 8040 mutex_exit(&spa_namespace_lock); 8041 } 8042 8043 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) { 8044 mutex_enter(&spa_namespace_lock); 8045 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8046 vdev_autotrim_restart(spa); 8047 spa_config_exit(spa, SCL_CONFIG, FTAG); 8048 mutex_exit(&spa_namespace_lock); 8049 } 8050 8051 /* 8052 * Kick off L2 cache whole device TRIM. 8053 */ 8054 if (tasks & SPA_ASYNC_L2CACHE_TRIM) { 8055 mutex_enter(&spa_namespace_lock); 8056 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 8057 vdev_trim_l2arc(spa); 8058 spa_config_exit(spa, SCL_CONFIG, FTAG); 8059 mutex_exit(&spa_namespace_lock); 8060 } 8061 8062 /* 8063 * Kick off L2 cache rebuilding. 8064 */ 8065 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) { 8066 mutex_enter(&spa_namespace_lock); 8067 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER); 8068 l2arc_spa_rebuild_start(spa); 8069 spa_config_exit(spa, SCL_L2ARC, FTAG); 8070 mutex_exit(&spa_namespace_lock); 8071 } 8072 8073 /* 8074 * Let the world know that we're done. 8075 */ 8076 mutex_enter(&spa->spa_async_lock); 8077 spa->spa_async_thread = NULL; 8078 cv_broadcast(&spa->spa_async_cv); 8079 mutex_exit(&spa->spa_async_lock); 8080 thread_exit(); 8081 } 8082 8083 void 8084 spa_async_suspend(spa_t *spa) 8085 { 8086 mutex_enter(&spa->spa_async_lock); 8087 spa->spa_async_suspended++; 8088 while (spa->spa_async_thread != NULL) 8089 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 8090 mutex_exit(&spa->spa_async_lock); 8091 8092 spa_vdev_remove_suspend(spa); 8093 8094 zthr_t *condense_thread = spa->spa_condense_zthr; 8095 if (condense_thread != NULL) 8096 zthr_cancel(condense_thread); 8097 8098 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8099 if (discard_thread != NULL) 8100 zthr_cancel(discard_thread); 8101 8102 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8103 if (ll_delete_thread != NULL) 8104 zthr_cancel(ll_delete_thread); 8105 8106 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8107 if (ll_condense_thread != NULL) 8108 zthr_cancel(ll_condense_thread); 8109 } 8110 8111 void 8112 spa_async_resume(spa_t *spa) 8113 { 8114 mutex_enter(&spa->spa_async_lock); 8115 ASSERT(spa->spa_async_suspended != 0); 8116 spa->spa_async_suspended--; 8117 mutex_exit(&spa->spa_async_lock); 8118 spa_restart_removal(spa); 8119 8120 zthr_t *condense_thread = spa->spa_condense_zthr; 8121 if (condense_thread != NULL) 8122 zthr_resume(condense_thread); 8123 8124 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr; 8125 if (discard_thread != NULL) 8126 zthr_resume(discard_thread); 8127 8128 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr; 8129 if (ll_delete_thread != NULL) 8130 zthr_resume(ll_delete_thread); 8131 8132 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr; 8133 if (ll_condense_thread != NULL) 8134 zthr_resume(ll_condense_thread); 8135 } 8136 8137 static boolean_t 8138 spa_async_tasks_pending(spa_t *spa) 8139 { 8140 uint_t non_config_tasks; 8141 uint_t config_task; 8142 boolean_t config_task_suspended; 8143 8144 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 8145 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 8146 if (spa->spa_ccw_fail_time == 0) { 8147 config_task_suspended = B_FALSE; 8148 } else { 8149 config_task_suspended = 8150 (gethrtime() - spa->spa_ccw_fail_time) < 8151 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC); 8152 } 8153 8154 return (non_config_tasks || (config_task && !config_task_suspended)); 8155 } 8156 8157 static void 8158 spa_async_dispatch(spa_t *spa) 8159 { 8160 mutex_enter(&spa->spa_async_lock); 8161 if (spa_async_tasks_pending(spa) && 8162 !spa->spa_async_suspended && 8163 spa->spa_async_thread == NULL) 8164 spa->spa_async_thread = thread_create(NULL, 0, 8165 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 8166 mutex_exit(&spa->spa_async_lock); 8167 } 8168 8169 void 8170 spa_async_request(spa_t *spa, int task) 8171 { 8172 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 8173 mutex_enter(&spa->spa_async_lock); 8174 spa->spa_async_tasks |= task; 8175 mutex_exit(&spa->spa_async_lock); 8176 } 8177 8178 int 8179 spa_async_tasks(spa_t *spa) 8180 { 8181 return (spa->spa_async_tasks); 8182 } 8183 8184 /* 8185 * ========================================================================== 8186 * SPA syncing routines 8187 * ========================================================================== 8188 */ 8189 8190 8191 static int 8192 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 8193 dmu_tx_t *tx) 8194 { 8195 bpobj_t *bpo = arg; 8196 bpobj_enqueue(bpo, bp, bp_freed, tx); 8197 return (0); 8198 } 8199 8200 int 8201 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8202 { 8203 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx)); 8204 } 8205 8206 int 8207 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8208 { 8209 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx)); 8210 } 8211 8212 static int 8213 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 8214 { 8215 zio_t *pio = arg; 8216 8217 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp, 8218 pio->io_flags)); 8219 return (0); 8220 } 8221 8222 static int 8223 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 8224 dmu_tx_t *tx) 8225 { 8226 ASSERT(!bp_freed); 8227 return (spa_free_sync_cb(arg, bp, tx)); 8228 } 8229 8230 /* 8231 * Note: this simple function is not inlined to make it easier to dtrace the 8232 * amount of time spent syncing frees. 8233 */ 8234 static void 8235 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 8236 { 8237 zio_t *zio = zio_root(spa, NULL, NULL, 0); 8238 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 8239 VERIFY(zio_wait(zio) == 0); 8240 } 8241 8242 /* 8243 * Note: this simple function is not inlined to make it easier to dtrace the 8244 * amount of time spent syncing deferred frees. 8245 */ 8246 static void 8247 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 8248 { 8249 if (spa_sync_pass(spa) != 1) 8250 return; 8251 8252 /* 8253 * Note: 8254 * If the log space map feature is active, we stop deferring 8255 * frees to the next TXG and therefore running this function 8256 * would be considered a no-op as spa_deferred_bpobj should 8257 * not have any entries. 8258 * 8259 * That said we run this function anyway (instead of returning 8260 * immediately) for the edge-case scenario where we just 8261 * activated the log space map feature in this TXG but we have 8262 * deferred frees from the previous TXG. 8263 */ 8264 zio_t *zio = zio_root(spa, NULL, NULL, 0); 8265 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 8266 bpobj_spa_free_sync_cb, zio, tx), ==, 0); 8267 VERIFY0(zio_wait(zio)); 8268 } 8269 8270 static void 8271 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 8272 { 8273 char *packed = NULL; 8274 size_t bufsize; 8275 size_t nvsize = 0; 8276 dmu_buf_t *db; 8277 8278 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 8279 8280 /* 8281 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 8282 * information. This avoids the dmu_buf_will_dirty() path and 8283 * saves us a pre-read to get data we don't actually care about. 8284 */ 8285 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 8286 packed = vmem_alloc(bufsize, KM_SLEEP); 8287 8288 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 8289 KM_SLEEP) == 0); 8290 bzero(packed + nvsize, bufsize - nvsize); 8291 8292 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 8293 8294 vmem_free(packed, bufsize); 8295 8296 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 8297 dmu_buf_will_dirty(db, tx); 8298 *(uint64_t *)db->db_data = nvsize; 8299 dmu_buf_rele(db, FTAG); 8300 } 8301 8302 static void 8303 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 8304 const char *config, const char *entry) 8305 { 8306 nvlist_t *nvroot; 8307 nvlist_t **list; 8308 int i; 8309 8310 if (!sav->sav_sync) 8311 return; 8312 8313 /* 8314 * Update the MOS nvlist describing the list of available devices. 8315 * spa_validate_aux() will have already made sure this nvlist is 8316 * valid and the vdevs are labeled appropriately. 8317 */ 8318 if (sav->sav_object == 0) { 8319 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 8320 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 8321 sizeof (uint64_t), tx); 8322 VERIFY(zap_update(spa->spa_meta_objset, 8323 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 8324 &sav->sav_object, tx) == 0); 8325 } 8326 8327 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 8328 if (sav->sav_count == 0) { 8329 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 8330 } else { 8331 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP); 8332 for (i = 0; i < sav->sav_count; i++) 8333 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 8334 B_FALSE, VDEV_CONFIG_L2CACHE); 8335 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 8336 sav->sav_count) == 0); 8337 for (i = 0; i < sav->sav_count; i++) 8338 nvlist_free(list[i]); 8339 kmem_free(list, sav->sav_count * sizeof (void *)); 8340 } 8341 8342 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 8343 nvlist_free(nvroot); 8344 8345 sav->sav_sync = B_FALSE; 8346 } 8347 8348 /* 8349 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t. 8350 * The all-vdev ZAP must be empty. 8351 */ 8352 static void 8353 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx) 8354 { 8355 spa_t *spa = vd->vdev_spa; 8356 8357 if (vd->vdev_top_zap != 0) { 8358 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 8359 vd->vdev_top_zap, tx)); 8360 } 8361 if (vd->vdev_leaf_zap != 0) { 8362 VERIFY0(zap_add_int(spa->spa_meta_objset, avz, 8363 vd->vdev_leaf_zap, tx)); 8364 } 8365 for (uint64_t i = 0; i < vd->vdev_children; i++) { 8366 spa_avz_build(vd->vdev_child[i], avz, tx); 8367 } 8368 } 8369 8370 static void 8371 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 8372 { 8373 nvlist_t *config; 8374 8375 /* 8376 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS, 8377 * its config may not be dirty but we still need to build per-vdev ZAPs. 8378 * Similarly, if the pool is being assembled (e.g. after a split), we 8379 * need to rebuild the AVZ although the config may not be dirty. 8380 */ 8381 if (list_is_empty(&spa->spa_config_dirty_list) && 8382 spa->spa_avz_action == AVZ_ACTION_NONE) 8383 return; 8384 8385 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8386 8387 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE || 8388 spa->spa_avz_action == AVZ_ACTION_INITIALIZE || 8389 spa->spa_all_vdev_zaps != 0); 8390 8391 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) { 8392 /* Make and build the new AVZ */ 8393 uint64_t new_avz = zap_create(spa->spa_meta_objset, 8394 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx); 8395 spa_avz_build(spa->spa_root_vdev, new_avz, tx); 8396 8397 /* Diff old AVZ with new one */ 8398 zap_cursor_t zc; 8399 zap_attribute_t za; 8400 8401 for (zap_cursor_init(&zc, spa->spa_meta_objset, 8402 spa->spa_all_vdev_zaps); 8403 zap_cursor_retrieve(&zc, &za) == 0; 8404 zap_cursor_advance(&zc)) { 8405 uint64_t vdzap = za.za_first_integer; 8406 if (zap_lookup_int(spa->spa_meta_objset, new_avz, 8407 vdzap) == ENOENT) { 8408 /* 8409 * ZAP is listed in old AVZ but not in new one; 8410 * destroy it 8411 */ 8412 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap, 8413 tx)); 8414 } 8415 } 8416 8417 zap_cursor_fini(&zc); 8418 8419 /* Destroy the old AVZ */ 8420 VERIFY0(zap_destroy(spa->spa_meta_objset, 8421 spa->spa_all_vdev_zaps, tx)); 8422 8423 /* Replace the old AVZ in the dir obj with the new one */ 8424 VERIFY0(zap_update(spa->spa_meta_objset, 8425 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, 8426 sizeof (new_avz), 1, &new_avz, tx)); 8427 8428 spa->spa_all_vdev_zaps = new_avz; 8429 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) { 8430 zap_cursor_t zc; 8431 zap_attribute_t za; 8432 8433 /* Walk through the AVZ and destroy all listed ZAPs */ 8434 for (zap_cursor_init(&zc, spa->spa_meta_objset, 8435 spa->spa_all_vdev_zaps); 8436 zap_cursor_retrieve(&zc, &za) == 0; 8437 zap_cursor_advance(&zc)) { 8438 uint64_t zap = za.za_first_integer; 8439 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx)); 8440 } 8441 8442 zap_cursor_fini(&zc); 8443 8444 /* Destroy and unlink the AVZ itself */ 8445 VERIFY0(zap_destroy(spa->spa_meta_objset, 8446 spa->spa_all_vdev_zaps, tx)); 8447 VERIFY0(zap_remove(spa->spa_meta_objset, 8448 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx)); 8449 spa->spa_all_vdev_zaps = 0; 8450 } 8451 8452 if (spa->spa_all_vdev_zaps == 0) { 8453 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset, 8454 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT, 8455 DMU_POOL_VDEV_ZAP_MAP, tx); 8456 } 8457 spa->spa_avz_action = AVZ_ACTION_NONE; 8458 8459 /* Create ZAPs for vdevs that don't have them. */ 8460 vdev_construct_zaps(spa->spa_root_vdev, tx); 8461 8462 config = spa_config_generate(spa, spa->spa_root_vdev, 8463 dmu_tx_get_txg(tx), B_FALSE); 8464 8465 /* 8466 * If we're upgrading the spa version then make sure that 8467 * the config object gets updated with the correct version. 8468 */ 8469 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 8470 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 8471 spa->spa_uberblock.ub_version); 8472 8473 spa_config_exit(spa, SCL_STATE, FTAG); 8474 8475 nvlist_free(spa->spa_config_syncing); 8476 spa->spa_config_syncing = config; 8477 8478 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 8479 } 8480 8481 static void 8482 spa_sync_version(void *arg, dmu_tx_t *tx) 8483 { 8484 uint64_t *versionp = arg; 8485 uint64_t version = *versionp; 8486 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8487 8488 /* 8489 * Setting the version is special cased when first creating the pool. 8490 */ 8491 ASSERT(tx->tx_txg != TXG_INITIAL); 8492 8493 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 8494 ASSERT(version >= spa_version(spa)); 8495 8496 spa->spa_uberblock.ub_version = version; 8497 vdev_config_dirty(spa->spa_root_vdev); 8498 spa_history_log_internal(spa, "set", tx, "version=%lld", 8499 (longlong_t)version); 8500 } 8501 8502 /* 8503 * Set zpool properties. 8504 */ 8505 static void 8506 spa_sync_props(void *arg, dmu_tx_t *tx) 8507 { 8508 nvlist_t *nvp = arg; 8509 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 8510 objset_t *mos = spa->spa_meta_objset; 8511 nvpair_t *elem = NULL; 8512 8513 mutex_enter(&spa->spa_props_lock); 8514 8515 while ((elem = nvlist_next_nvpair(nvp, elem))) { 8516 uint64_t intval; 8517 char *strval, *fname; 8518 zpool_prop_t prop; 8519 const char *propname; 8520 zprop_type_t proptype; 8521 spa_feature_t fid; 8522 8523 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 8524 case ZPOOL_PROP_INVAL: 8525 /* 8526 * We checked this earlier in spa_prop_validate(). 8527 */ 8528 ASSERT(zpool_prop_feature(nvpair_name(elem))); 8529 8530 fname = strchr(nvpair_name(elem), '@') + 1; 8531 VERIFY0(zfeature_lookup_name(fname, &fid)); 8532 8533 spa_feature_enable(spa, fid, tx); 8534 spa_history_log_internal(spa, "set", tx, 8535 "%s=enabled", nvpair_name(elem)); 8536 break; 8537 8538 case ZPOOL_PROP_VERSION: 8539 intval = fnvpair_value_uint64(elem); 8540 /* 8541 * The version is synced separately before other 8542 * properties and should be correct by now. 8543 */ 8544 ASSERT3U(spa_version(spa), >=, intval); 8545 break; 8546 8547 case ZPOOL_PROP_ALTROOT: 8548 /* 8549 * 'altroot' is a non-persistent property. It should 8550 * have been set temporarily at creation or import time. 8551 */ 8552 ASSERT(spa->spa_root != NULL); 8553 break; 8554 8555 case ZPOOL_PROP_READONLY: 8556 case ZPOOL_PROP_CACHEFILE: 8557 /* 8558 * 'readonly' and 'cachefile' are also non-persistent 8559 * properties. 8560 */ 8561 break; 8562 case ZPOOL_PROP_COMMENT: 8563 strval = fnvpair_value_string(elem); 8564 if (spa->spa_comment != NULL) 8565 spa_strfree(spa->spa_comment); 8566 spa->spa_comment = spa_strdup(strval); 8567 /* 8568 * We need to dirty the configuration on all the vdevs 8569 * so that their labels get updated. It's unnecessary 8570 * to do this for pool creation since the vdev's 8571 * configuration has already been dirtied. 8572 */ 8573 if (tx->tx_txg != TXG_INITIAL) 8574 vdev_config_dirty(spa->spa_root_vdev); 8575 spa_history_log_internal(spa, "set", tx, 8576 "%s=%s", nvpair_name(elem), strval); 8577 break; 8578 default: 8579 /* 8580 * Set pool property values in the poolprops mos object. 8581 */ 8582 if (spa->spa_pool_props_object == 0) { 8583 spa->spa_pool_props_object = 8584 zap_create_link(mos, DMU_OT_POOL_PROPS, 8585 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 8586 tx); 8587 } 8588 8589 /* normalize the property name */ 8590 propname = zpool_prop_to_name(prop); 8591 proptype = zpool_prop_get_type(prop); 8592 8593 if (nvpair_type(elem) == DATA_TYPE_STRING) { 8594 ASSERT(proptype == PROP_TYPE_STRING); 8595 strval = fnvpair_value_string(elem); 8596 VERIFY0(zap_update(mos, 8597 spa->spa_pool_props_object, propname, 8598 1, strlen(strval) + 1, strval, tx)); 8599 spa_history_log_internal(spa, "set", tx, 8600 "%s=%s", nvpair_name(elem), strval); 8601 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 8602 intval = fnvpair_value_uint64(elem); 8603 8604 if (proptype == PROP_TYPE_INDEX) { 8605 const char *unused; 8606 VERIFY0(zpool_prop_index_to_string( 8607 prop, intval, &unused)); 8608 } 8609 VERIFY0(zap_update(mos, 8610 spa->spa_pool_props_object, propname, 8611 8, 1, &intval, tx)); 8612 spa_history_log_internal(spa, "set", tx, 8613 "%s=%lld", nvpair_name(elem), 8614 (longlong_t)intval); 8615 } else { 8616 ASSERT(0); /* not allowed */ 8617 } 8618 8619 switch (prop) { 8620 case ZPOOL_PROP_DELEGATION: 8621 spa->spa_delegation = intval; 8622 break; 8623 case ZPOOL_PROP_BOOTFS: 8624 spa->spa_bootfs = intval; 8625 break; 8626 case ZPOOL_PROP_FAILUREMODE: 8627 spa->spa_failmode = intval; 8628 break; 8629 case ZPOOL_PROP_AUTOTRIM: 8630 spa->spa_autotrim = intval; 8631 spa_async_request(spa, 8632 SPA_ASYNC_AUTOTRIM_RESTART); 8633 break; 8634 case ZPOOL_PROP_AUTOEXPAND: 8635 spa->spa_autoexpand = intval; 8636 if (tx->tx_txg != TXG_INITIAL) 8637 spa_async_request(spa, 8638 SPA_ASYNC_AUTOEXPAND); 8639 break; 8640 case ZPOOL_PROP_MULTIHOST: 8641 spa->spa_multihost = intval; 8642 break; 8643 default: 8644 break; 8645 } 8646 } 8647 8648 } 8649 8650 mutex_exit(&spa->spa_props_lock); 8651 } 8652 8653 /* 8654 * Perform one-time upgrade on-disk changes. spa_version() does not 8655 * reflect the new version this txg, so there must be no changes this 8656 * txg to anything that the upgrade code depends on after it executes. 8657 * Therefore this must be called after dsl_pool_sync() does the sync 8658 * tasks. 8659 */ 8660 static void 8661 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 8662 { 8663 if (spa_sync_pass(spa) != 1) 8664 return; 8665 8666 dsl_pool_t *dp = spa->spa_dsl_pool; 8667 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 8668 8669 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 8670 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 8671 dsl_pool_create_origin(dp, tx); 8672 8673 /* Keeping the origin open increases spa_minref */ 8674 spa->spa_minref += 3; 8675 } 8676 8677 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 8678 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 8679 dsl_pool_upgrade_clones(dp, tx); 8680 } 8681 8682 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 8683 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 8684 dsl_pool_upgrade_dir_clones(dp, tx); 8685 8686 /* Keeping the freedir open increases spa_minref */ 8687 spa->spa_minref += 3; 8688 } 8689 8690 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 8691 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8692 spa_feature_create_zap_objects(spa, tx); 8693 } 8694 8695 /* 8696 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 8697 * when possibility to use lz4 compression for metadata was added 8698 * Old pools that have this feature enabled must be upgraded to have 8699 * this feature active 8700 */ 8701 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 8702 boolean_t lz4_en = spa_feature_is_enabled(spa, 8703 SPA_FEATURE_LZ4_COMPRESS); 8704 boolean_t lz4_ac = spa_feature_is_active(spa, 8705 SPA_FEATURE_LZ4_COMPRESS); 8706 8707 if (lz4_en && !lz4_ac) 8708 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 8709 } 8710 8711 /* 8712 * If we haven't written the salt, do so now. Note that the 8713 * feature may not be activated yet, but that's fine since 8714 * the presence of this ZAP entry is backwards compatible. 8715 */ 8716 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 8717 DMU_POOL_CHECKSUM_SALT) == ENOENT) { 8718 VERIFY0(zap_add(spa->spa_meta_objset, 8719 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1, 8720 sizeof (spa->spa_cksum_salt.zcs_bytes), 8721 spa->spa_cksum_salt.zcs_bytes, tx)); 8722 } 8723 8724 rrw_exit(&dp->dp_config_rwlock, FTAG); 8725 } 8726 8727 static void 8728 vdev_indirect_state_sync_verify(vdev_t *vd) 8729 { 8730 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping; 8731 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births; 8732 8733 if (vd->vdev_ops == &vdev_indirect_ops) { 8734 ASSERT(vim != NULL); 8735 ASSERT(vib != NULL); 8736 } 8737 8738 uint64_t obsolete_sm_object = 0; 8739 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 8740 if (obsolete_sm_object != 0) { 8741 ASSERT(vd->vdev_obsolete_sm != NULL); 8742 ASSERT(vd->vdev_removing || 8743 vd->vdev_ops == &vdev_indirect_ops); 8744 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0); 8745 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0); 8746 ASSERT3U(obsolete_sm_object, ==, 8747 space_map_object(vd->vdev_obsolete_sm)); 8748 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=, 8749 space_map_allocated(vd->vdev_obsolete_sm)); 8750 } 8751 ASSERT(vd->vdev_obsolete_segments != NULL); 8752 8753 /* 8754 * Since frees / remaps to an indirect vdev can only 8755 * happen in syncing context, the obsolete segments 8756 * tree must be empty when we start syncing. 8757 */ 8758 ASSERT0(range_tree_space(vd->vdev_obsolete_segments)); 8759 } 8760 8761 /* 8762 * Set the top-level vdev's max queue depth. Evaluate each top-level's 8763 * async write queue depth in case it changed. The max queue depth will 8764 * not change in the middle of syncing out this txg. 8765 */ 8766 static void 8767 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa) 8768 { 8769 ASSERT(spa_writeable(spa)); 8770 8771 vdev_t *rvd = spa->spa_root_vdev; 8772 uint32_t max_queue_depth = zfs_vdev_async_write_max_active * 8773 zfs_vdev_queue_depth_pct / 100; 8774 metaslab_class_t *normal = spa_normal_class(spa); 8775 metaslab_class_t *special = spa_special_class(spa); 8776 metaslab_class_t *dedup = spa_dedup_class(spa); 8777 8778 uint64_t slots_per_allocator = 0; 8779 for (int c = 0; c < rvd->vdev_children; c++) { 8780 vdev_t *tvd = rvd->vdev_child[c]; 8781 8782 metaslab_group_t *mg = tvd->vdev_mg; 8783 if (mg == NULL || !metaslab_group_initialized(mg)) 8784 continue; 8785 8786 metaslab_class_t *mc = mg->mg_class; 8787 if (mc != normal && mc != special && mc != dedup) 8788 continue; 8789 8790 /* 8791 * It is safe to do a lock-free check here because only async 8792 * allocations look at mg_max_alloc_queue_depth, and async 8793 * allocations all happen from spa_sync(). 8794 */ 8795 for (int i = 0; i < mg->mg_allocators; i++) { 8796 ASSERT0(zfs_refcount_count( 8797 &(mg->mg_allocator[i].mga_alloc_queue_depth))); 8798 } 8799 mg->mg_max_alloc_queue_depth = max_queue_depth; 8800 8801 for (int i = 0; i < mg->mg_allocators; i++) { 8802 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth = 8803 zfs_vdev_def_queue_depth; 8804 } 8805 slots_per_allocator += zfs_vdev_def_queue_depth; 8806 } 8807 8808 for (int i = 0; i < spa->spa_alloc_count; i++) { 8809 ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i])); 8810 ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i])); 8811 ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i])); 8812 normal->mc_alloc_max_slots[i] = slots_per_allocator; 8813 special->mc_alloc_max_slots[i] = slots_per_allocator; 8814 dedup->mc_alloc_max_slots[i] = slots_per_allocator; 8815 } 8816 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8817 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8818 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled; 8819 } 8820 8821 static void 8822 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx) 8823 { 8824 ASSERT(spa_writeable(spa)); 8825 8826 vdev_t *rvd = spa->spa_root_vdev; 8827 for (int c = 0; c < rvd->vdev_children; c++) { 8828 vdev_t *vd = rvd->vdev_child[c]; 8829 vdev_indirect_state_sync_verify(vd); 8830 8831 if (vdev_indirect_should_condense(vd)) { 8832 spa_condense_indirect_start_sync(vd, tx); 8833 break; 8834 } 8835 } 8836 } 8837 8838 static void 8839 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx) 8840 { 8841 objset_t *mos = spa->spa_meta_objset; 8842 dsl_pool_t *dp = spa->spa_dsl_pool; 8843 uint64_t txg = tx->tx_txg; 8844 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 8845 8846 do { 8847 int pass = ++spa->spa_sync_pass; 8848 8849 spa_sync_config_object(spa, tx); 8850 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 8851 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 8852 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 8853 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 8854 spa_errlog_sync(spa, txg); 8855 dsl_pool_sync(dp, txg); 8856 8857 if (pass < zfs_sync_pass_deferred_free || 8858 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 8859 /* 8860 * If the log space map feature is active we don't 8861 * care about deferred frees and the deferred bpobj 8862 * as the log space map should effectively have the 8863 * same results (i.e. appending only to one object). 8864 */ 8865 spa_sync_frees(spa, free_bpl, tx); 8866 } else { 8867 /* 8868 * We can not defer frees in pass 1, because 8869 * we sync the deferred frees later in pass 1. 8870 */ 8871 ASSERT3U(pass, >, 1); 8872 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb, 8873 &spa->spa_deferred_bpobj, tx); 8874 } 8875 8876 ddt_sync(spa, txg); 8877 dsl_scan_sync(dp, tx); 8878 svr_sync(spa, tx); 8879 spa_sync_upgrades(spa, tx); 8880 8881 spa_flush_metaslabs(spa, tx); 8882 8883 vdev_t *vd = NULL; 8884 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 8885 != NULL) 8886 vdev_sync(vd, txg); 8887 8888 /* 8889 * Note: We need to check if the MOS is dirty because we could 8890 * have marked the MOS dirty without updating the uberblock 8891 * (e.g. if we have sync tasks but no dirty user data). We need 8892 * to check the uberblock's rootbp because it is updated if we 8893 * have synced out dirty data (though in this case the MOS will 8894 * most likely also be dirty due to second order effects, we 8895 * don't want to rely on that here). 8896 */ 8897 if (pass == 1 && 8898 spa->spa_uberblock.ub_rootbp.blk_birth < txg && 8899 !dmu_objset_is_dirty(mos, txg)) { 8900 /* 8901 * Nothing changed on the first pass, therefore this 8902 * TXG is a no-op. Avoid syncing deferred frees, so 8903 * that we can keep this TXG as a no-op. 8904 */ 8905 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 8906 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 8907 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg)); 8908 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg)); 8909 break; 8910 } 8911 8912 spa_sync_deferred_frees(spa, tx); 8913 } while (dmu_objset_is_dirty(mos, txg)); 8914 } 8915 8916 /* 8917 * Rewrite the vdev configuration (which includes the uberblock) to 8918 * commit the transaction group. 8919 * 8920 * If there are no dirty vdevs, we sync the uberblock to a few random 8921 * top-level vdevs that are known to be visible in the config cache 8922 * (see spa_vdev_add() for a complete description). If there *are* dirty 8923 * vdevs, sync the uberblock to all vdevs. 8924 */ 8925 static void 8926 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx) 8927 { 8928 vdev_t *rvd = spa->spa_root_vdev; 8929 uint64_t txg = tx->tx_txg; 8930 8931 for (;;) { 8932 int error = 0; 8933 8934 /* 8935 * We hold SCL_STATE to prevent vdev open/close/etc. 8936 * while we're attempting to write the vdev labels. 8937 */ 8938 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8939 8940 if (list_is_empty(&spa->spa_config_dirty_list)) { 8941 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL }; 8942 int svdcount = 0; 8943 int children = rvd->vdev_children; 8944 int c0 = spa_get_random(children); 8945 8946 for (int c = 0; c < children; c++) { 8947 vdev_t *vd = 8948 rvd->vdev_child[(c0 + c) % children]; 8949 8950 /* Stop when revisiting the first vdev */ 8951 if (c > 0 && svd[0] == vd) 8952 break; 8953 8954 if (vd->vdev_ms_array == 0 || 8955 vd->vdev_islog || 8956 !vdev_is_concrete(vd)) 8957 continue; 8958 8959 svd[svdcount++] = vd; 8960 if (svdcount == SPA_SYNC_MIN_VDEVS) 8961 break; 8962 } 8963 error = vdev_config_sync(svd, svdcount, txg); 8964 } else { 8965 error = vdev_config_sync(rvd->vdev_child, 8966 rvd->vdev_children, txg); 8967 } 8968 8969 if (error == 0) 8970 spa->spa_last_synced_guid = rvd->vdev_guid; 8971 8972 spa_config_exit(spa, SCL_STATE, FTAG); 8973 8974 if (error == 0) 8975 break; 8976 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR); 8977 zio_resume_wait(spa); 8978 } 8979 } 8980 8981 /* 8982 * Sync the specified transaction group. New blocks may be dirtied as 8983 * part of the process, so we iterate until it converges. 8984 */ 8985 void 8986 spa_sync(spa_t *spa, uint64_t txg) 8987 { 8988 vdev_t *vd = NULL; 8989 8990 VERIFY(spa_writeable(spa)); 8991 8992 /* 8993 * Wait for i/os issued in open context that need to complete 8994 * before this txg syncs. 8995 */ 8996 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]); 8997 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 8998 ZIO_FLAG_CANFAIL); 8999 9000 /* 9001 * Lock out configuration changes. 9002 */ 9003 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 9004 9005 spa->spa_syncing_txg = txg; 9006 spa->spa_sync_pass = 0; 9007 9008 for (int i = 0; i < spa->spa_alloc_count; i++) { 9009 mutex_enter(&spa->spa_alloc_locks[i]); 9010 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 9011 mutex_exit(&spa->spa_alloc_locks[i]); 9012 } 9013 9014 /* 9015 * If there are any pending vdev state changes, convert them 9016 * into config changes that go out with this transaction group. 9017 */ 9018 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9019 while (list_head(&spa->spa_state_dirty_list) != NULL) { 9020 /* 9021 * We need the write lock here because, for aux vdevs, 9022 * calling vdev_config_dirty() modifies sav_config. 9023 * This is ugly and will become unnecessary when we 9024 * eliminate the aux vdev wart by integrating all vdevs 9025 * into the root vdev tree. 9026 */ 9027 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9028 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 9029 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 9030 vdev_state_clean(vd); 9031 vdev_config_dirty(vd); 9032 } 9033 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9034 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9035 } 9036 spa_config_exit(spa, SCL_STATE, FTAG); 9037 9038 dsl_pool_t *dp = spa->spa_dsl_pool; 9039 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg); 9040 9041 spa->spa_sync_starttime = gethrtime(); 9042 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 9043 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq, 9044 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() + 9045 NSEC_TO_TICK(spa->spa_deadman_synctime)); 9046 9047 /* 9048 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 9049 * set spa_deflate if we have no raid-z vdevs. 9050 */ 9051 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 9052 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 9053 vdev_t *rvd = spa->spa_root_vdev; 9054 9055 int i; 9056 for (i = 0; i < rvd->vdev_children; i++) { 9057 vd = rvd->vdev_child[i]; 9058 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 9059 break; 9060 } 9061 if (i == rvd->vdev_children) { 9062 spa->spa_deflate = TRUE; 9063 VERIFY0(zap_add(spa->spa_meta_objset, 9064 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 9065 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 9066 } 9067 } 9068 9069 spa_sync_adjust_vdev_max_queue_depth(spa); 9070 9071 spa_sync_condense_indirect(spa, tx); 9072 9073 spa_sync_iterate_to_convergence(spa, tx); 9074 9075 #ifdef ZFS_DEBUG 9076 if (!list_is_empty(&spa->spa_config_dirty_list)) { 9077 /* 9078 * Make sure that the number of ZAPs for all the vdevs matches 9079 * the number of ZAPs in the per-vdev ZAP list. This only gets 9080 * called if the config is dirty; otherwise there may be 9081 * outstanding AVZ operations that weren't completed in 9082 * spa_sync_config_object. 9083 */ 9084 uint64_t all_vdev_zap_entry_count; 9085 ASSERT0(zap_count(spa->spa_meta_objset, 9086 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count)); 9087 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==, 9088 all_vdev_zap_entry_count); 9089 } 9090 #endif 9091 9092 if (spa->spa_vdev_removal != NULL) { 9093 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]); 9094 } 9095 9096 spa_sync_rewrite_vdev_config(spa, tx); 9097 dmu_tx_commit(tx); 9098 9099 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid); 9100 spa->spa_deadman_tqid = 0; 9101 9102 /* 9103 * Clear the dirty config list. 9104 */ 9105 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 9106 vdev_config_clean(vd); 9107 9108 /* 9109 * Now that the new config has synced transactionally, 9110 * let it become visible to the config cache. 9111 */ 9112 if (spa->spa_config_syncing != NULL) { 9113 spa_config_set(spa, spa->spa_config_syncing); 9114 spa->spa_config_txg = txg; 9115 spa->spa_config_syncing = NULL; 9116 } 9117 9118 dsl_pool_sync_done(dp, txg); 9119 9120 for (int i = 0; i < spa->spa_alloc_count; i++) { 9121 mutex_enter(&spa->spa_alloc_locks[i]); 9122 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i])); 9123 mutex_exit(&spa->spa_alloc_locks[i]); 9124 } 9125 9126 /* 9127 * Update usable space statistics. 9128 */ 9129 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 9130 != NULL) 9131 vdev_sync_done(vd, txg); 9132 9133 metaslab_class_evict_old(spa->spa_normal_class, txg); 9134 metaslab_class_evict_old(spa->spa_log_class, txg); 9135 9136 spa_sync_close_syncing_log_sm(spa); 9137 9138 spa_update_dspace(spa); 9139 9140 /* 9141 * It had better be the case that we didn't dirty anything 9142 * since vdev_config_sync(). 9143 */ 9144 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 9145 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 9146 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 9147 9148 while (zfs_pause_spa_sync) 9149 delay(1); 9150 9151 spa->spa_sync_pass = 0; 9152 9153 /* 9154 * Update the last synced uberblock here. We want to do this at 9155 * the end of spa_sync() so that consumers of spa_last_synced_txg() 9156 * will be guaranteed that all the processing associated with 9157 * that txg has been completed. 9158 */ 9159 spa->spa_ubsync = spa->spa_uberblock; 9160 spa_config_exit(spa, SCL_CONFIG, FTAG); 9161 9162 spa_handle_ignored_writes(spa); 9163 9164 /* 9165 * If any async tasks have been requested, kick them off. 9166 */ 9167 spa_async_dispatch(spa); 9168 } 9169 9170 /* 9171 * Sync all pools. We don't want to hold the namespace lock across these 9172 * operations, so we take a reference on the spa_t and drop the lock during the 9173 * sync. 9174 */ 9175 void 9176 spa_sync_allpools(void) 9177 { 9178 spa_t *spa = NULL; 9179 mutex_enter(&spa_namespace_lock); 9180 while ((spa = spa_next(spa)) != NULL) { 9181 if (spa_state(spa) != POOL_STATE_ACTIVE || 9182 !spa_writeable(spa) || spa_suspended(spa)) 9183 continue; 9184 spa_open_ref(spa, FTAG); 9185 mutex_exit(&spa_namespace_lock); 9186 txg_wait_synced(spa_get_dsl(spa), 0); 9187 mutex_enter(&spa_namespace_lock); 9188 spa_close(spa, FTAG); 9189 } 9190 mutex_exit(&spa_namespace_lock); 9191 } 9192 9193 /* 9194 * ========================================================================== 9195 * Miscellaneous routines 9196 * ========================================================================== 9197 */ 9198 9199 /* 9200 * Remove all pools in the system. 9201 */ 9202 void 9203 spa_evict_all(void) 9204 { 9205 spa_t *spa; 9206 9207 /* 9208 * Remove all cached state. All pools should be closed now, 9209 * so every spa in the AVL tree should be unreferenced. 9210 */ 9211 mutex_enter(&spa_namespace_lock); 9212 while ((spa = spa_next(NULL)) != NULL) { 9213 /* 9214 * Stop async tasks. The async thread may need to detach 9215 * a device that's been replaced, which requires grabbing 9216 * spa_namespace_lock, so we must drop it here. 9217 */ 9218 spa_open_ref(spa, FTAG); 9219 mutex_exit(&spa_namespace_lock); 9220 spa_async_suspend(spa); 9221 mutex_enter(&spa_namespace_lock); 9222 spa_close(spa, FTAG); 9223 9224 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 9225 spa_unload(spa); 9226 spa_deactivate(spa); 9227 } 9228 spa_remove(spa); 9229 } 9230 mutex_exit(&spa_namespace_lock); 9231 } 9232 9233 vdev_t * 9234 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 9235 { 9236 vdev_t *vd; 9237 int i; 9238 9239 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 9240 return (vd); 9241 9242 if (aux) { 9243 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 9244 vd = spa->spa_l2cache.sav_vdevs[i]; 9245 if (vd->vdev_guid == guid) 9246 return (vd); 9247 } 9248 9249 for (i = 0; i < spa->spa_spares.sav_count; i++) { 9250 vd = spa->spa_spares.sav_vdevs[i]; 9251 if (vd->vdev_guid == guid) 9252 return (vd); 9253 } 9254 } 9255 9256 return (NULL); 9257 } 9258 9259 void 9260 spa_upgrade(spa_t *spa, uint64_t version) 9261 { 9262 ASSERT(spa_writeable(spa)); 9263 9264 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 9265 9266 /* 9267 * This should only be called for a non-faulted pool, and since a 9268 * future version would result in an unopenable pool, this shouldn't be 9269 * possible. 9270 */ 9271 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 9272 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 9273 9274 spa->spa_uberblock.ub_version = version; 9275 vdev_config_dirty(spa->spa_root_vdev); 9276 9277 spa_config_exit(spa, SCL_ALL, FTAG); 9278 9279 txg_wait_synced(spa_get_dsl(spa), 0); 9280 } 9281 9282 boolean_t 9283 spa_has_spare(spa_t *spa, uint64_t guid) 9284 { 9285 int i; 9286 uint64_t spareguid; 9287 spa_aux_vdev_t *sav = &spa->spa_spares; 9288 9289 for (i = 0; i < sav->sav_count; i++) 9290 if (sav->sav_vdevs[i]->vdev_guid == guid) 9291 return (B_TRUE); 9292 9293 for (i = 0; i < sav->sav_npending; i++) { 9294 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 9295 &spareguid) == 0 && spareguid == guid) 9296 return (B_TRUE); 9297 } 9298 9299 return (B_FALSE); 9300 } 9301 9302 /* 9303 * Check if a pool has an active shared spare device. 9304 * Note: reference count of an active spare is 2, as a spare and as a replace 9305 */ 9306 static boolean_t 9307 spa_has_active_shared_spare(spa_t *spa) 9308 { 9309 int i, refcnt; 9310 uint64_t pool; 9311 spa_aux_vdev_t *sav = &spa->spa_spares; 9312 9313 for (i = 0; i < sav->sav_count; i++) { 9314 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 9315 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 9316 refcnt > 2) 9317 return (B_TRUE); 9318 } 9319 9320 return (B_FALSE); 9321 } 9322 9323 uint64_t 9324 spa_total_metaslabs(spa_t *spa) 9325 { 9326 vdev_t *rvd = spa->spa_root_vdev; 9327 9328 uint64_t m = 0; 9329 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 9330 vdev_t *vd = rvd->vdev_child[c]; 9331 if (!vdev_is_concrete(vd)) 9332 continue; 9333 m += vd->vdev_ms_count; 9334 } 9335 return (m); 9336 } 9337 9338 /* 9339 * Notify any waiting threads that some activity has switched from being in- 9340 * progress to not-in-progress so that the thread can wake up and determine 9341 * whether it is finished waiting. 9342 */ 9343 void 9344 spa_notify_waiters(spa_t *spa) 9345 { 9346 /* 9347 * Acquiring spa_activities_lock here prevents the cv_broadcast from 9348 * happening between the waiting thread's check and cv_wait. 9349 */ 9350 mutex_enter(&spa->spa_activities_lock); 9351 cv_broadcast(&spa->spa_activities_cv); 9352 mutex_exit(&spa->spa_activities_lock); 9353 } 9354 9355 /* 9356 * Notify any waiting threads that the pool is exporting, and then block until 9357 * they are finished using the spa_t. 9358 */ 9359 void 9360 spa_wake_waiters(spa_t *spa) 9361 { 9362 mutex_enter(&spa->spa_activities_lock); 9363 spa->spa_waiters_cancel = B_TRUE; 9364 cv_broadcast(&spa->spa_activities_cv); 9365 while (spa->spa_waiters != 0) 9366 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock); 9367 spa->spa_waiters_cancel = B_FALSE; 9368 mutex_exit(&spa->spa_activities_lock); 9369 } 9370 9371 /* Whether the vdev or any of its descendants are being initialized/trimmed. */ 9372 static boolean_t 9373 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity) 9374 { 9375 spa_t *spa = vd->vdev_spa; 9376 9377 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER)); 9378 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 9379 ASSERT(activity == ZPOOL_WAIT_INITIALIZE || 9380 activity == ZPOOL_WAIT_TRIM); 9381 9382 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ? 9383 &vd->vdev_initialize_lock : &vd->vdev_trim_lock; 9384 9385 mutex_exit(&spa->spa_activities_lock); 9386 mutex_enter(lock); 9387 mutex_enter(&spa->spa_activities_lock); 9388 9389 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ? 9390 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) : 9391 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE); 9392 mutex_exit(lock); 9393 9394 if (in_progress) 9395 return (B_TRUE); 9396 9397 for (int i = 0; i < vd->vdev_children; i++) { 9398 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i], 9399 activity)) 9400 return (B_TRUE); 9401 } 9402 9403 return (B_FALSE); 9404 } 9405 9406 /* 9407 * If use_guid is true, this checks whether the vdev specified by guid is 9408 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool 9409 * is being initialized/trimmed. The caller must hold the config lock and 9410 * spa_activities_lock. 9411 */ 9412 static int 9413 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid, 9414 zpool_wait_activity_t activity, boolean_t *in_progress) 9415 { 9416 mutex_exit(&spa->spa_activities_lock); 9417 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9418 mutex_enter(&spa->spa_activities_lock); 9419 9420 vdev_t *vd; 9421 if (use_guid) { 9422 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 9423 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) { 9424 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9425 return (EINVAL); 9426 } 9427 } else { 9428 vd = spa->spa_root_vdev; 9429 } 9430 9431 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity); 9432 9433 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9434 return (0); 9435 } 9436 9437 /* 9438 * Locking for waiting threads 9439 * --------------------------- 9440 * 9441 * Waiting threads need a way to check whether a given activity is in progress, 9442 * and then, if it is, wait for it to complete. Each activity will have some 9443 * in-memory representation of the relevant on-disk state which can be used to 9444 * determine whether or not the activity is in progress. The in-memory state and 9445 * the locking used to protect it will be different for each activity, and may 9446 * not be suitable for use with a cvar (e.g., some state is protected by the 9447 * config lock). To allow waiting threads to wait without any races, another 9448 * lock, spa_activities_lock, is used. 9449 * 9450 * When the state is checked, both the activity-specific lock (if there is one) 9451 * and spa_activities_lock are held. In some cases, the activity-specific lock 9452 * is acquired explicitly (e.g. the config lock). In others, the locking is 9453 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting 9454 * thread releases the activity-specific lock and, if the activity is in 9455 * progress, then cv_waits using spa_activities_lock. 9456 * 9457 * The waiting thread is woken when another thread, one completing some 9458 * activity, updates the state of the activity and then calls 9459 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only 9460 * needs to hold its activity-specific lock when updating the state, and this 9461 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters. 9462 * 9463 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting, 9464 * and because it is held when the waiting thread checks the state of the 9465 * activity, it can never be the case that the completing thread both updates 9466 * the activity state and cv_broadcasts in between the waiting thread's check 9467 * and cv_wait. Thus, a waiting thread can never miss a wakeup. 9468 * 9469 * In order to prevent deadlock, when the waiting thread does its check, in some 9470 * cases it will temporarily drop spa_activities_lock in order to acquire the 9471 * activity-specific lock. The order in which spa_activities_lock and the 9472 * activity specific lock are acquired in the waiting thread is determined by 9473 * the order in which they are acquired in the completing thread; if the 9474 * completing thread calls spa_notify_waiters with the activity-specific lock 9475 * held, then the waiting thread must also acquire the activity-specific lock 9476 * first. 9477 */ 9478 9479 static int 9480 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity, 9481 boolean_t use_tag, uint64_t tag, boolean_t *in_progress) 9482 { 9483 int error = 0; 9484 9485 ASSERT(MUTEX_HELD(&spa->spa_activities_lock)); 9486 9487 switch (activity) { 9488 case ZPOOL_WAIT_CKPT_DISCARD: 9489 *in_progress = 9490 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) && 9491 zap_contains(spa_meta_objset(spa), 9492 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) == 9493 ENOENT); 9494 break; 9495 case ZPOOL_WAIT_FREE: 9496 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS && 9497 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) || 9498 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) || 9499 spa_livelist_delete_check(spa)); 9500 break; 9501 case ZPOOL_WAIT_INITIALIZE: 9502 case ZPOOL_WAIT_TRIM: 9503 error = spa_vdev_activity_in_progress(spa, use_tag, tag, 9504 activity, in_progress); 9505 break; 9506 case ZPOOL_WAIT_REPLACE: 9507 mutex_exit(&spa->spa_activities_lock); 9508 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 9509 mutex_enter(&spa->spa_activities_lock); 9510 9511 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev); 9512 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 9513 break; 9514 case ZPOOL_WAIT_REMOVE: 9515 *in_progress = (spa->spa_removing_phys.sr_state == 9516 DSS_SCANNING); 9517 break; 9518 case ZPOOL_WAIT_RESILVER: 9519 if ((*in_progress = vdev_rebuild_active(spa->spa_root_vdev))) 9520 break; 9521 /* fall through */ 9522 case ZPOOL_WAIT_SCRUB: 9523 { 9524 boolean_t scanning, paused, is_scrub; 9525 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 9526 9527 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB); 9528 scanning = (scn->scn_phys.scn_state == DSS_SCANNING); 9529 paused = dsl_scan_is_paused_scrub(scn); 9530 *in_progress = (scanning && !paused && 9531 is_scrub == (activity == ZPOOL_WAIT_SCRUB)); 9532 break; 9533 } 9534 default: 9535 panic("unrecognized value for activity %d", activity); 9536 } 9537 9538 return (error); 9539 } 9540 9541 static int 9542 spa_wait_common(const char *pool, zpool_wait_activity_t activity, 9543 boolean_t use_tag, uint64_t tag, boolean_t *waited) 9544 { 9545 /* 9546 * The tag is used to distinguish between instances of an activity. 9547 * 'initialize' and 'trim' are the only activities that we use this for. 9548 * The other activities can only have a single instance in progress in a 9549 * pool at one time, making the tag unnecessary. 9550 * 9551 * There can be multiple devices being replaced at once, but since they 9552 * all finish once resilvering finishes, we don't bother keeping track 9553 * of them individually, we just wait for them all to finish. 9554 */ 9555 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE && 9556 activity != ZPOOL_WAIT_TRIM) 9557 return (EINVAL); 9558 9559 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES) 9560 return (EINVAL); 9561 9562 spa_t *spa; 9563 int error = spa_open(pool, &spa, FTAG); 9564 if (error != 0) 9565 return (error); 9566 9567 /* 9568 * Increment the spa's waiter count so that we can call spa_close and 9569 * still ensure that the spa_t doesn't get freed before this thread is 9570 * finished with it when the pool is exported. We want to call spa_close 9571 * before we start waiting because otherwise the additional ref would 9572 * prevent the pool from being exported or destroyed throughout the 9573 * potentially long wait. 9574 */ 9575 mutex_enter(&spa->spa_activities_lock); 9576 spa->spa_waiters++; 9577 spa_close(spa, FTAG); 9578 9579 *waited = B_FALSE; 9580 for (;;) { 9581 boolean_t in_progress; 9582 error = spa_activity_in_progress(spa, activity, use_tag, tag, 9583 &in_progress); 9584 9585 if (error || !in_progress || spa->spa_waiters_cancel) 9586 break; 9587 9588 *waited = B_TRUE; 9589 9590 if (cv_wait_sig(&spa->spa_activities_cv, 9591 &spa->spa_activities_lock) == 0) { 9592 error = EINTR; 9593 break; 9594 } 9595 } 9596 9597 spa->spa_waiters--; 9598 cv_signal(&spa->spa_waiters_cv); 9599 mutex_exit(&spa->spa_activities_lock); 9600 9601 return (error); 9602 } 9603 9604 /* 9605 * Wait for a particular instance of the specified activity to complete, where 9606 * the instance is identified by 'tag' 9607 */ 9608 int 9609 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag, 9610 boolean_t *waited) 9611 { 9612 return (spa_wait_common(pool, activity, B_TRUE, tag, waited)); 9613 } 9614 9615 /* 9616 * Wait for all instances of the specified activity complete 9617 */ 9618 int 9619 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited) 9620 { 9621 9622 return (spa_wait_common(pool, activity, B_FALSE, 0, waited)); 9623 } 9624 9625 sysevent_t * 9626 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 9627 { 9628 sysevent_t *ev = NULL; 9629 #ifdef _KERNEL 9630 nvlist_t *resource; 9631 9632 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl); 9633 if (resource) { 9634 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP); 9635 ev->resource = resource; 9636 } 9637 #endif 9638 return (ev); 9639 } 9640 9641 void 9642 spa_event_post(sysevent_t *ev) 9643 { 9644 #ifdef _KERNEL 9645 if (ev) { 9646 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb); 9647 kmem_free(ev, sizeof (*ev)); 9648 } 9649 #endif 9650 } 9651 9652 /* 9653 * Post a zevent corresponding to the given sysevent. The 'name' must be one 9654 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be 9655 * filled in from the spa and (optionally) the vdev. This doesn't do anything 9656 * in the userland libzpool, as we don't want consumers to misinterpret ztest 9657 * or zdb as real changes. 9658 */ 9659 void 9660 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name) 9661 { 9662 spa_event_post(spa_event_create(spa, vd, hist_nvl, name)); 9663 } 9664 9665 /* state manipulation functions */ 9666 EXPORT_SYMBOL(spa_open); 9667 EXPORT_SYMBOL(spa_open_rewind); 9668 EXPORT_SYMBOL(spa_get_stats); 9669 EXPORT_SYMBOL(spa_create); 9670 EXPORT_SYMBOL(spa_import); 9671 EXPORT_SYMBOL(spa_tryimport); 9672 EXPORT_SYMBOL(spa_destroy); 9673 EXPORT_SYMBOL(spa_export); 9674 EXPORT_SYMBOL(spa_reset); 9675 EXPORT_SYMBOL(spa_async_request); 9676 EXPORT_SYMBOL(spa_async_suspend); 9677 EXPORT_SYMBOL(spa_async_resume); 9678 EXPORT_SYMBOL(spa_inject_addref); 9679 EXPORT_SYMBOL(spa_inject_delref); 9680 EXPORT_SYMBOL(spa_scan_stat_init); 9681 EXPORT_SYMBOL(spa_scan_get_stats); 9682 9683 /* device manipulation */ 9684 EXPORT_SYMBOL(spa_vdev_add); 9685 EXPORT_SYMBOL(spa_vdev_attach); 9686 EXPORT_SYMBOL(spa_vdev_detach); 9687 EXPORT_SYMBOL(spa_vdev_setpath); 9688 EXPORT_SYMBOL(spa_vdev_setfru); 9689 EXPORT_SYMBOL(spa_vdev_split_mirror); 9690 9691 /* spare statech is global across all pools) */ 9692 EXPORT_SYMBOL(spa_spare_add); 9693 EXPORT_SYMBOL(spa_spare_remove); 9694 EXPORT_SYMBOL(spa_spare_exists); 9695 EXPORT_SYMBOL(spa_spare_activate); 9696 9697 /* L2ARC statech is global across all pools) */ 9698 EXPORT_SYMBOL(spa_l2cache_add); 9699 EXPORT_SYMBOL(spa_l2cache_remove); 9700 EXPORT_SYMBOL(spa_l2cache_exists); 9701 EXPORT_SYMBOL(spa_l2cache_activate); 9702 EXPORT_SYMBOL(spa_l2cache_drop); 9703 9704 /* scanning */ 9705 EXPORT_SYMBOL(spa_scan); 9706 EXPORT_SYMBOL(spa_scan_stop); 9707 9708 /* spa syncing */ 9709 EXPORT_SYMBOL(spa_sync); /* only for DMU use */ 9710 EXPORT_SYMBOL(spa_sync_allpools); 9711 9712 /* properties */ 9713 EXPORT_SYMBOL(spa_prop_set); 9714 EXPORT_SYMBOL(spa_prop_get); 9715 EXPORT_SYMBOL(spa_prop_clear_bootfs); 9716 9717 /* asynchronous event notification */ 9718 EXPORT_SYMBOL(spa_event_notify); 9719 9720 /* BEGIN CSTYLED */ 9721 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, INT, ZMOD_RW, 9722 "log2(fraction of arc that can be used by inflight I/Os when " 9723 "verifying pool during import"); 9724 9725 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW, 9726 "Set to traverse metadata on pool import"); 9727 9728 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW, 9729 "Set to traverse data on pool import"); 9730 9731 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW, 9732 "Print vdev tree to zfs_dbgmsg during pool import"); 9733 9734 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD, 9735 "Percentage of CPUs to run an IO worker thread"); 9736 9737 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, ULONG, ZMOD_RW, 9738 "Allow importing pool with up to this number of missing top-level " 9739 "vdevs (in read-only mode)"); 9740 9741 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT, ZMOD_RW, 9742 "Set the livelist condense zthr to pause"); 9743 9744 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT, ZMOD_RW, 9745 "Set the livelist condense synctask to pause"); 9746 9747 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel, INT, ZMOD_RW, 9748 "Whether livelist condensing was canceled in the synctask"); 9749 9750 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel, INT, ZMOD_RW, 9751 "Whether livelist condensing was canceled in the zthr function"); 9752 9753 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT, ZMOD_RW, 9754 "Whether extra ALLOC blkptrs were added to a livelist entry while it " 9755 "was being condensed"); 9756 /* END CSTYLED */ 9757