1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2017, Intel Corporation. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/space_map.h> 33 #include <sys/metaslab_impl.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/vdev_draid.h> 36 #include <sys/zio.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zfeature.h> 39 #include <sys/vdev_indirect_mapping.h> 40 #include <sys/zap.h> 41 #include <sys/btree.h> 42 43 #define WITH_DF_BLOCK_ALLOCATOR 44 45 #define GANG_ALLOCATION(flags) \ 46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 47 48 /* 49 * Metaslab granularity, in bytes. This is roughly similar to what would be 50 * referred to as the "stripe size" in traditional RAID arrays. In normal 51 * operation, we will try to write this amount of data to a top-level vdev 52 * before moving on to the next one. 53 */ 54 unsigned long metaslab_aliquot = 512 << 10; 55 56 /* 57 * For testing, make some blocks above a certain size be gang blocks. 58 */ 59 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 60 61 /* 62 * In pools where the log space map feature is not enabled we touch 63 * multiple metaslabs (and their respective space maps) with each 64 * transaction group. Thus, we benefit from having a small space map 65 * block size since it allows us to issue more I/O operations scattered 66 * around the disk. So a sane default for the space map block size 67 * is 8~16K. 68 */ 69 int zfs_metaslab_sm_blksz_no_log = (1 << 14); 70 71 /* 72 * When the log space map feature is enabled, we accumulate a lot of 73 * changes per metaslab that are flushed once in a while so we benefit 74 * from a bigger block size like 128K for the metaslab space maps. 75 */ 76 int zfs_metaslab_sm_blksz_with_log = (1 << 17); 77 78 /* 79 * The in-core space map representation is more compact than its on-disk form. 80 * The zfs_condense_pct determines how much more compact the in-core 81 * space map representation must be before we compact it on-disk. 82 * Values should be greater than or equal to 100. 83 */ 84 int zfs_condense_pct = 200; 85 86 /* 87 * Condensing a metaslab is not guaranteed to actually reduce the amount of 88 * space used on disk. In particular, a space map uses data in increments of 89 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 90 * same number of blocks after condensing. Since the goal of condensing is to 91 * reduce the number of IOPs required to read the space map, we only want to 92 * condense when we can be sure we will reduce the number of blocks used by the 93 * space map. Unfortunately, we cannot precisely compute whether or not this is 94 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 95 * we apply the following heuristic: do not condense a spacemap unless the 96 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 97 * blocks. 98 */ 99 int zfs_metaslab_condense_block_threshold = 4; 100 101 /* 102 * The zfs_mg_noalloc_threshold defines which metaslab groups should 103 * be eligible for allocation. The value is defined as a percentage of 104 * free space. Metaslab groups that have more free space than 105 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 106 * a metaslab group's free space is less than or equal to the 107 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 108 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 109 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 110 * groups are allowed to accept allocations. Gang blocks are always 111 * eligible to allocate on any metaslab group. The default value of 0 means 112 * no metaslab group will be excluded based on this criterion. 113 */ 114 int zfs_mg_noalloc_threshold = 0; 115 116 /* 117 * Metaslab groups are considered eligible for allocations if their 118 * fragmentation metric (measured as a percentage) is less than or 119 * equal to zfs_mg_fragmentation_threshold. If a metaslab group 120 * exceeds this threshold then it will be skipped unless all metaslab 121 * groups within the metaslab class have also crossed this threshold. 122 * 123 * This tunable was introduced to avoid edge cases where we continue 124 * allocating from very fragmented disks in our pool while other, less 125 * fragmented disks, exists. On the other hand, if all disks in the 126 * pool are uniformly approaching the threshold, the threshold can 127 * be a speed bump in performance, where we keep switching the disks 128 * that we allocate from (e.g. we allocate some segments from disk A 129 * making it bypassing the threshold while freeing segments from disk 130 * B getting its fragmentation below the threshold). 131 * 132 * Empirically, we've seen that our vdev selection for allocations is 133 * good enough that fragmentation increases uniformly across all vdevs 134 * the majority of the time. Thus we set the threshold percentage high 135 * enough to avoid hitting the speed bump on pools that are being pushed 136 * to the edge. 137 */ 138 int zfs_mg_fragmentation_threshold = 95; 139 140 /* 141 * Allow metaslabs to keep their active state as long as their fragmentation 142 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 143 * active metaslab that exceeds this threshold will no longer keep its active 144 * status allowing better metaslabs to be selected. 145 */ 146 int zfs_metaslab_fragmentation_threshold = 70; 147 148 /* 149 * When set will load all metaslabs when pool is first opened. 150 */ 151 int metaslab_debug_load = 0; 152 153 /* 154 * When set will prevent metaslabs from being unloaded. 155 */ 156 int metaslab_debug_unload = 0; 157 158 /* 159 * Minimum size which forces the dynamic allocator to change 160 * it's allocation strategy. Once the space map cannot satisfy 161 * an allocation of this size then it switches to using more 162 * aggressive strategy (i.e search by size rather than offset). 163 */ 164 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 165 166 /* 167 * The minimum free space, in percent, which must be available 168 * in a space map to continue allocations in a first-fit fashion. 169 * Once the space map's free space drops below this level we dynamically 170 * switch to using best-fit allocations. 171 */ 172 int metaslab_df_free_pct = 4; 173 174 /* 175 * Maximum distance to search forward from the last offset. Without this 176 * limit, fragmented pools can see >100,000 iterations and 177 * metaslab_block_picker() becomes the performance limiting factor on 178 * high-performance storage. 179 * 180 * With the default setting of 16MB, we typically see less than 500 181 * iterations, even with very fragmented, ashift=9 pools. The maximum number 182 * of iterations possible is: 183 * metaslab_df_max_search / (2 * (1<<ashift)) 184 * With the default setting of 16MB this is 16*1024 (with ashift=9) or 185 * 2048 (with ashift=12). 186 */ 187 int metaslab_df_max_search = 16 * 1024 * 1024; 188 189 /* 190 * Forces the metaslab_block_picker function to search for at least this many 191 * segments forwards until giving up on finding a segment that the allocation 192 * will fit into. 193 */ 194 uint32_t metaslab_min_search_count = 100; 195 196 /* 197 * If we are not searching forward (due to metaslab_df_max_search, 198 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 199 * controls what segment is used. If it is set, we will use the largest free 200 * segment. If it is not set, we will use a segment of exactly the requested 201 * size (or larger). 202 */ 203 int metaslab_df_use_largest_segment = B_FALSE; 204 205 /* 206 * Percentage of all cpus that can be used by the metaslab taskq. 207 */ 208 int metaslab_load_pct = 50; 209 210 /* 211 * These tunables control how long a metaslab will remain loaded after the 212 * last allocation from it. A metaslab can't be unloaded until at least 213 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 214 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 215 * unloaded sooner. These settings are intended to be generous -- to keep 216 * metaslabs loaded for a long time, reducing the rate of metaslab loading. 217 */ 218 int metaslab_unload_delay = 32; 219 int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 220 221 /* 222 * Max number of metaslabs per group to preload. 223 */ 224 int metaslab_preload_limit = 10; 225 226 /* 227 * Enable/disable preloading of metaslab. 228 */ 229 int metaslab_preload_enabled = B_TRUE; 230 231 /* 232 * Enable/disable fragmentation weighting on metaslabs. 233 */ 234 int metaslab_fragmentation_factor_enabled = B_TRUE; 235 236 /* 237 * Enable/disable lba weighting (i.e. outer tracks are given preference). 238 */ 239 int metaslab_lba_weighting_enabled = B_TRUE; 240 241 /* 242 * Enable/disable metaslab group biasing. 243 */ 244 int metaslab_bias_enabled = B_TRUE; 245 246 /* 247 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 248 */ 249 boolean_t zfs_remap_blkptr_enable = B_TRUE; 250 251 /* 252 * Enable/disable segment-based metaslab selection. 253 */ 254 int zfs_metaslab_segment_weight_enabled = B_TRUE; 255 256 /* 257 * When using segment-based metaslab selection, we will continue 258 * allocating from the active metaslab until we have exhausted 259 * zfs_metaslab_switch_threshold of its buckets. 260 */ 261 int zfs_metaslab_switch_threshold = 2; 262 263 /* 264 * Internal switch to enable/disable the metaslab allocation tracing 265 * facility. 266 */ 267 boolean_t metaslab_trace_enabled = B_FALSE; 268 269 /* 270 * Maximum entries that the metaslab allocation tracing facility will keep 271 * in a given list when running in non-debug mode. We limit the number 272 * of entries in non-debug mode to prevent us from using up too much memory. 273 * The limit should be sufficiently large that we don't expect any allocation 274 * to every exceed this value. In debug mode, the system will panic if this 275 * limit is ever reached allowing for further investigation. 276 */ 277 uint64_t metaslab_trace_max_entries = 5000; 278 279 /* 280 * Maximum number of metaslabs per group that can be disabled 281 * simultaneously. 282 */ 283 int max_disabled_ms = 3; 284 285 /* 286 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 287 * To avoid 64-bit overflow, don't set above UINT32_MAX. 288 */ 289 unsigned long zfs_metaslab_max_size_cache_sec = 3600; /* 1 hour */ 290 291 /* 292 * Maximum percentage of memory to use on storing loaded metaslabs. If loading 293 * a metaslab would take it over this percentage, the oldest selected metaslab 294 * is automatically unloaded. 295 */ 296 int zfs_metaslab_mem_limit = 75; 297 298 /* 299 * Force the per-metaslab range trees to use 64-bit integers to store 300 * segments. Used for debugging purposes. 301 */ 302 boolean_t zfs_metaslab_force_large_segs = B_FALSE; 303 304 /* 305 * By default we only store segments over a certain size in the size-sorted 306 * metaslab trees (ms_allocatable_by_size and 307 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 308 * improves load and unload times at the cost of causing us to use slightly 309 * larger segments than we would otherwise in some cases. 310 */ 311 uint32_t metaslab_by_size_min_shift = 14; 312 313 /* 314 * If not set, we will first try normal allocation. If that fails then 315 * we will do a gang allocation. If that fails then we will do a "try hard" 316 * gang allocation. If that fails then we will have a multi-layer gang 317 * block. 318 * 319 * If set, we will first try normal allocation. If that fails then 320 * we will do a "try hard" allocation. If that fails we will do a gang 321 * allocation. If that fails we will do a "try hard" gang allocation. If 322 * that fails then we will have a multi-layer gang block. 323 */ 324 int zfs_metaslab_try_hard_before_gang = B_FALSE; 325 326 /* 327 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries 328 * metaslabs. This improves performance, especially when there are many 329 * metaslabs per vdev and the allocation can't actually be satisfied (so we 330 * would otherwise iterate all the metaslabs). If there is a metaslab with a 331 * worse weight but it can actually satisfy the allocation, we won't find it 332 * until trying hard. This may happen if the worse metaslab is not loaded 333 * (and the true weight is better than we have calculated), or due to weight 334 * bucketization. E.g. we are looking for a 60K segment, and the best 335 * metaslabs all have free segments in the 32-63K bucket, but the best 336 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a 337 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this 338 * bucket, and therefore a lower weight). 339 */ 340 int zfs_metaslab_find_max_tries = 100; 341 342 static uint64_t metaslab_weight(metaslab_t *, boolean_t); 343 static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 344 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 345 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 346 347 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 348 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 349 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 350 static unsigned int metaslab_idx_func(multilist_t *, void *); 351 static void metaslab_evict(metaslab_t *, uint64_t); 352 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg); 353 kmem_cache_t *metaslab_alloc_trace_cache; 354 355 typedef struct metaslab_stats { 356 kstat_named_t metaslabstat_trace_over_limit; 357 kstat_named_t metaslabstat_reload_tree; 358 kstat_named_t metaslabstat_too_many_tries; 359 kstat_named_t metaslabstat_try_hard; 360 } metaslab_stats_t; 361 362 static metaslab_stats_t metaslab_stats = { 363 { "trace_over_limit", KSTAT_DATA_UINT64 }, 364 { "reload_tree", KSTAT_DATA_UINT64 }, 365 { "too_many_tries", KSTAT_DATA_UINT64 }, 366 { "try_hard", KSTAT_DATA_UINT64 }, 367 }; 368 369 #define METASLABSTAT_BUMP(stat) \ 370 atomic_inc_64(&metaslab_stats.stat.value.ui64); 371 372 373 kstat_t *metaslab_ksp; 374 375 void 376 metaslab_stat_init(void) 377 { 378 ASSERT(metaslab_alloc_trace_cache == NULL); 379 metaslab_alloc_trace_cache = kmem_cache_create( 380 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 381 0, NULL, NULL, NULL, NULL, NULL, 0); 382 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 383 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 384 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 385 if (metaslab_ksp != NULL) { 386 metaslab_ksp->ks_data = &metaslab_stats; 387 kstat_install(metaslab_ksp); 388 } 389 } 390 391 void 392 metaslab_stat_fini(void) 393 { 394 if (metaslab_ksp != NULL) { 395 kstat_delete(metaslab_ksp); 396 metaslab_ksp = NULL; 397 } 398 399 kmem_cache_destroy(metaslab_alloc_trace_cache); 400 metaslab_alloc_trace_cache = NULL; 401 } 402 403 /* 404 * ========================================================================== 405 * Metaslab classes 406 * ========================================================================== 407 */ 408 metaslab_class_t * 409 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops) 410 { 411 metaslab_class_t *mc; 412 413 mc = kmem_zalloc(offsetof(metaslab_class_t, 414 mc_allocator[spa->spa_alloc_count]), KM_SLEEP); 415 416 mc->mc_spa = spa; 417 mc->mc_ops = ops; 418 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 419 mc->mc_metaslab_txg_list = multilist_create(sizeof (metaslab_t), 420 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 421 for (int i = 0; i < spa->spa_alloc_count; i++) { 422 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 423 mca->mca_rotor = NULL; 424 zfs_refcount_create_tracked(&mca->mca_alloc_slots); 425 } 426 427 return (mc); 428 } 429 430 void 431 metaslab_class_destroy(metaslab_class_t *mc) 432 { 433 spa_t *spa = mc->mc_spa; 434 435 ASSERT(mc->mc_alloc == 0); 436 ASSERT(mc->mc_deferred == 0); 437 ASSERT(mc->mc_space == 0); 438 ASSERT(mc->mc_dspace == 0); 439 440 for (int i = 0; i < spa->spa_alloc_count; i++) { 441 metaslab_class_allocator_t *mca = &mc->mc_allocator[i]; 442 ASSERT(mca->mca_rotor == NULL); 443 zfs_refcount_destroy(&mca->mca_alloc_slots); 444 } 445 mutex_destroy(&mc->mc_lock); 446 multilist_destroy(mc->mc_metaslab_txg_list); 447 kmem_free(mc, offsetof(metaslab_class_t, 448 mc_allocator[spa->spa_alloc_count])); 449 } 450 451 int 452 metaslab_class_validate(metaslab_class_t *mc) 453 { 454 metaslab_group_t *mg; 455 vdev_t *vd; 456 457 /* 458 * Must hold one of the spa_config locks. 459 */ 460 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 461 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 462 463 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL) 464 return (0); 465 466 do { 467 vd = mg->mg_vd; 468 ASSERT(vd->vdev_mg != NULL); 469 ASSERT3P(vd->vdev_top, ==, vd); 470 ASSERT3P(mg->mg_class, ==, mc); 471 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 472 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor); 473 474 return (0); 475 } 476 477 static void 478 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 479 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 480 { 481 atomic_add_64(&mc->mc_alloc, alloc_delta); 482 atomic_add_64(&mc->mc_deferred, defer_delta); 483 atomic_add_64(&mc->mc_space, space_delta); 484 atomic_add_64(&mc->mc_dspace, dspace_delta); 485 } 486 487 uint64_t 488 metaslab_class_get_alloc(metaslab_class_t *mc) 489 { 490 return (mc->mc_alloc); 491 } 492 493 uint64_t 494 metaslab_class_get_deferred(metaslab_class_t *mc) 495 { 496 return (mc->mc_deferred); 497 } 498 499 uint64_t 500 metaslab_class_get_space(metaslab_class_t *mc) 501 { 502 return (mc->mc_space); 503 } 504 505 uint64_t 506 metaslab_class_get_dspace(metaslab_class_t *mc) 507 { 508 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 509 } 510 511 void 512 metaslab_class_histogram_verify(metaslab_class_t *mc) 513 { 514 spa_t *spa = mc->mc_spa; 515 vdev_t *rvd = spa->spa_root_vdev; 516 uint64_t *mc_hist; 517 int i; 518 519 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 520 return; 521 522 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 523 KM_SLEEP); 524 525 mutex_enter(&mc->mc_lock); 526 for (int c = 0; c < rvd->vdev_children; c++) { 527 vdev_t *tvd = rvd->vdev_child[c]; 528 metaslab_group_t *mg = vdev_get_mg(tvd, mc); 529 530 /* 531 * Skip any holes, uninitialized top-levels, or 532 * vdevs that are not in this metalab class. 533 */ 534 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 535 mg->mg_class != mc) { 536 continue; 537 } 538 539 IMPLY(mg == mg->mg_vd->vdev_log_mg, 540 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 541 542 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 543 mc_hist[i] += mg->mg_histogram[i]; 544 } 545 546 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 547 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 548 } 549 550 mutex_exit(&mc->mc_lock); 551 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 552 } 553 554 /* 555 * Calculate the metaslab class's fragmentation metric. The metric 556 * is weighted based on the space contribution of each metaslab group. 557 * The return value will be a number between 0 and 100 (inclusive), or 558 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 559 * zfs_frag_table for more information about the metric. 560 */ 561 uint64_t 562 metaslab_class_fragmentation(metaslab_class_t *mc) 563 { 564 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 565 uint64_t fragmentation = 0; 566 567 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 568 569 for (int c = 0; c < rvd->vdev_children; c++) { 570 vdev_t *tvd = rvd->vdev_child[c]; 571 metaslab_group_t *mg = tvd->vdev_mg; 572 573 /* 574 * Skip any holes, uninitialized top-levels, 575 * or vdevs that are not in this metalab class. 576 */ 577 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 578 mg->mg_class != mc) { 579 continue; 580 } 581 582 /* 583 * If a metaslab group does not contain a fragmentation 584 * metric then just bail out. 585 */ 586 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 587 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 588 return (ZFS_FRAG_INVALID); 589 } 590 591 /* 592 * Determine how much this metaslab_group is contributing 593 * to the overall pool fragmentation metric. 594 */ 595 fragmentation += mg->mg_fragmentation * 596 metaslab_group_get_space(mg); 597 } 598 fragmentation /= metaslab_class_get_space(mc); 599 600 ASSERT3U(fragmentation, <=, 100); 601 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 602 return (fragmentation); 603 } 604 605 /* 606 * Calculate the amount of expandable space that is available in 607 * this metaslab class. If a device is expanded then its expandable 608 * space will be the amount of allocatable space that is currently not 609 * part of this metaslab class. 610 */ 611 uint64_t 612 metaslab_class_expandable_space(metaslab_class_t *mc) 613 { 614 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 615 uint64_t space = 0; 616 617 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 618 for (int c = 0; c < rvd->vdev_children; c++) { 619 vdev_t *tvd = rvd->vdev_child[c]; 620 metaslab_group_t *mg = tvd->vdev_mg; 621 622 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 623 mg->mg_class != mc) { 624 continue; 625 } 626 627 /* 628 * Calculate if we have enough space to add additional 629 * metaslabs. We report the expandable space in terms 630 * of the metaslab size since that's the unit of expansion. 631 */ 632 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize, 633 1ULL << tvd->vdev_ms_shift); 634 } 635 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 636 return (space); 637 } 638 639 void 640 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 641 { 642 multilist_t *ml = mc->mc_metaslab_txg_list; 643 for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 644 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 645 metaslab_t *msp = multilist_sublist_head(mls); 646 multilist_sublist_unlock(mls); 647 while (msp != NULL) { 648 mutex_enter(&msp->ms_lock); 649 650 /* 651 * If the metaslab has been removed from the list 652 * (which could happen if we were at the memory limit 653 * and it was evicted during this loop), then we can't 654 * proceed and we should restart the sublist. 655 */ 656 if (!multilist_link_active(&msp->ms_class_txg_node)) { 657 mutex_exit(&msp->ms_lock); 658 i--; 659 break; 660 } 661 mls = multilist_sublist_lock(ml, i); 662 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 663 multilist_sublist_unlock(mls); 664 if (txg > 665 msp->ms_selected_txg + metaslab_unload_delay && 666 gethrtime() > msp->ms_selected_time + 667 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) { 668 metaslab_evict(msp, txg); 669 } else { 670 /* 671 * Once we've hit a metaslab selected too 672 * recently to evict, we're done evicting for 673 * now. 674 */ 675 mutex_exit(&msp->ms_lock); 676 break; 677 } 678 mutex_exit(&msp->ms_lock); 679 msp = next_msp; 680 } 681 } 682 } 683 684 static int 685 metaslab_compare(const void *x1, const void *x2) 686 { 687 const metaslab_t *m1 = (const metaslab_t *)x1; 688 const metaslab_t *m2 = (const metaslab_t *)x2; 689 690 int sort1 = 0; 691 int sort2 = 0; 692 if (m1->ms_allocator != -1 && m1->ms_primary) 693 sort1 = 1; 694 else if (m1->ms_allocator != -1 && !m1->ms_primary) 695 sort1 = 2; 696 if (m2->ms_allocator != -1 && m2->ms_primary) 697 sort2 = 1; 698 else if (m2->ms_allocator != -1 && !m2->ms_primary) 699 sort2 = 2; 700 701 /* 702 * Sort inactive metaslabs first, then primaries, then secondaries. When 703 * selecting a metaslab to allocate from, an allocator first tries its 704 * primary, then secondary active metaslab. If it doesn't have active 705 * metaslabs, or can't allocate from them, it searches for an inactive 706 * metaslab to activate. If it can't find a suitable one, it will steal 707 * a primary or secondary metaslab from another allocator. 708 */ 709 if (sort1 < sort2) 710 return (-1); 711 if (sort1 > sort2) 712 return (1); 713 714 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 715 if (likely(cmp)) 716 return (cmp); 717 718 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 719 720 return (TREE_CMP(m1->ms_start, m2->ms_start)); 721 } 722 723 /* 724 * ========================================================================== 725 * Metaslab groups 726 * ========================================================================== 727 */ 728 /* 729 * Update the allocatable flag and the metaslab group's capacity. 730 * The allocatable flag is set to true if the capacity is below 731 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 732 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 733 * transitions from allocatable to non-allocatable or vice versa then the 734 * metaslab group's class is updated to reflect the transition. 735 */ 736 static void 737 metaslab_group_alloc_update(metaslab_group_t *mg) 738 { 739 vdev_t *vd = mg->mg_vd; 740 metaslab_class_t *mc = mg->mg_class; 741 vdev_stat_t *vs = &vd->vdev_stat; 742 boolean_t was_allocatable; 743 boolean_t was_initialized; 744 745 ASSERT(vd == vd->vdev_top); 746 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 747 SCL_ALLOC); 748 749 mutex_enter(&mg->mg_lock); 750 was_allocatable = mg->mg_allocatable; 751 was_initialized = mg->mg_initialized; 752 753 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 754 (vs->vs_space + 1); 755 756 mutex_enter(&mc->mc_lock); 757 758 /* 759 * If the metaslab group was just added then it won't 760 * have any space until we finish syncing out this txg. 761 * At that point we will consider it initialized and available 762 * for allocations. We also don't consider non-activated 763 * metaslab groups (e.g. vdevs that are in the middle of being removed) 764 * to be initialized, because they can't be used for allocation. 765 */ 766 mg->mg_initialized = metaslab_group_initialized(mg); 767 if (!was_initialized && mg->mg_initialized) { 768 mc->mc_groups++; 769 } else if (was_initialized && !mg->mg_initialized) { 770 ASSERT3U(mc->mc_groups, >, 0); 771 mc->mc_groups--; 772 } 773 if (mg->mg_initialized) 774 mg->mg_no_free_space = B_FALSE; 775 776 /* 777 * A metaslab group is considered allocatable if it has plenty 778 * of free space or is not heavily fragmented. We only take 779 * fragmentation into account if the metaslab group has a valid 780 * fragmentation metric (i.e. a value between 0 and 100). 781 */ 782 mg->mg_allocatable = (mg->mg_activation_count > 0 && 783 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 784 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 785 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 786 787 /* 788 * The mc_alloc_groups maintains a count of the number of 789 * groups in this metaslab class that are still above the 790 * zfs_mg_noalloc_threshold. This is used by the allocating 791 * threads to determine if they should avoid allocations to 792 * a given group. The allocator will avoid allocations to a group 793 * if that group has reached or is below the zfs_mg_noalloc_threshold 794 * and there are still other groups that are above the threshold. 795 * When a group transitions from allocatable to non-allocatable or 796 * vice versa we update the metaslab class to reflect that change. 797 * When the mc_alloc_groups value drops to 0 that means that all 798 * groups have reached the zfs_mg_noalloc_threshold making all groups 799 * eligible for allocations. This effectively means that all devices 800 * are balanced again. 801 */ 802 if (was_allocatable && !mg->mg_allocatable) 803 mc->mc_alloc_groups--; 804 else if (!was_allocatable && mg->mg_allocatable) 805 mc->mc_alloc_groups++; 806 mutex_exit(&mc->mc_lock); 807 808 mutex_exit(&mg->mg_lock); 809 } 810 811 int 812 metaslab_sort_by_flushed(const void *va, const void *vb) 813 { 814 const metaslab_t *a = va; 815 const metaslab_t *b = vb; 816 817 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 818 if (likely(cmp)) 819 return (cmp); 820 821 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 822 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 823 cmp = TREE_CMP(a_vdev_id, b_vdev_id); 824 if (cmp) 825 return (cmp); 826 827 return (TREE_CMP(a->ms_id, b->ms_id)); 828 } 829 830 metaslab_group_t * 831 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators) 832 { 833 metaslab_group_t *mg; 834 835 mg = kmem_zalloc(offsetof(metaslab_group_t, 836 mg_allocator[allocators]), KM_SLEEP); 837 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 838 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 839 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 840 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 841 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 842 mg->mg_vd = vd; 843 mg->mg_class = mc; 844 mg->mg_activation_count = 0; 845 mg->mg_initialized = B_FALSE; 846 mg->mg_no_free_space = B_TRUE; 847 mg->mg_allocators = allocators; 848 849 for (int i = 0; i < allocators; i++) { 850 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 851 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth); 852 } 853 854 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 855 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC); 856 857 return (mg); 858 } 859 860 void 861 metaslab_group_destroy(metaslab_group_t *mg) 862 { 863 ASSERT(mg->mg_prev == NULL); 864 ASSERT(mg->mg_next == NULL); 865 /* 866 * We may have gone below zero with the activation count 867 * either because we never activated in the first place or 868 * because we're done, and possibly removing the vdev. 869 */ 870 ASSERT(mg->mg_activation_count <= 0); 871 872 taskq_destroy(mg->mg_taskq); 873 avl_destroy(&mg->mg_metaslab_tree); 874 mutex_destroy(&mg->mg_lock); 875 mutex_destroy(&mg->mg_ms_disabled_lock); 876 cv_destroy(&mg->mg_ms_disabled_cv); 877 878 for (int i = 0; i < mg->mg_allocators; i++) { 879 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 880 zfs_refcount_destroy(&mga->mga_alloc_queue_depth); 881 } 882 kmem_free(mg, offsetof(metaslab_group_t, 883 mg_allocator[mg->mg_allocators])); 884 } 885 886 void 887 metaslab_group_activate(metaslab_group_t *mg) 888 { 889 metaslab_class_t *mc = mg->mg_class; 890 spa_t *spa = mc->mc_spa; 891 metaslab_group_t *mgprev, *mgnext; 892 893 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0); 894 895 ASSERT(mg->mg_prev == NULL); 896 ASSERT(mg->mg_next == NULL); 897 ASSERT(mg->mg_activation_count <= 0); 898 899 if (++mg->mg_activation_count <= 0) 900 return; 901 902 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); 903 metaslab_group_alloc_update(mg); 904 905 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) { 906 mg->mg_prev = mg; 907 mg->mg_next = mg; 908 } else { 909 mgnext = mgprev->mg_next; 910 mg->mg_prev = mgprev; 911 mg->mg_next = mgnext; 912 mgprev->mg_next = mg; 913 mgnext->mg_prev = mg; 914 } 915 for (int i = 0; i < spa->spa_alloc_count; i++) { 916 mc->mc_allocator[i].mca_rotor = mg; 917 mg = mg->mg_next; 918 } 919 } 920 921 /* 922 * Passivate a metaslab group and remove it from the allocation rotor. 923 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 924 * a metaslab group. This function will momentarily drop spa_config_locks 925 * that are lower than the SCL_ALLOC lock (see comment below). 926 */ 927 void 928 metaslab_group_passivate(metaslab_group_t *mg) 929 { 930 metaslab_class_t *mc = mg->mg_class; 931 spa_t *spa = mc->mc_spa; 932 metaslab_group_t *mgprev, *mgnext; 933 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 934 935 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 936 (SCL_ALLOC | SCL_ZIO)); 937 938 if (--mg->mg_activation_count != 0) { 939 for (int i = 0; i < spa->spa_alloc_count; i++) 940 ASSERT(mc->mc_allocator[i].mca_rotor != mg); 941 ASSERT(mg->mg_prev == NULL); 942 ASSERT(mg->mg_next == NULL); 943 ASSERT(mg->mg_activation_count < 0); 944 return; 945 } 946 947 /* 948 * The spa_config_lock is an array of rwlocks, ordered as 949 * follows (from highest to lowest): 950 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 951 * SCL_ZIO > SCL_FREE > SCL_VDEV 952 * (For more information about the spa_config_lock see spa_misc.c) 953 * The higher the lock, the broader its coverage. When we passivate 954 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 955 * config locks. However, the metaslab group's taskq might be trying 956 * to preload metaslabs so we must drop the SCL_ZIO lock and any 957 * lower locks to allow the I/O to complete. At a minimum, 958 * we continue to hold the SCL_ALLOC lock, which prevents any future 959 * allocations from taking place and any changes to the vdev tree. 960 */ 961 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 962 taskq_wait_outstanding(mg->mg_taskq, 0); 963 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 964 metaslab_group_alloc_update(mg); 965 for (int i = 0; i < mg->mg_allocators; i++) { 966 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 967 metaslab_t *msp = mga->mga_primary; 968 if (msp != NULL) { 969 mutex_enter(&msp->ms_lock); 970 metaslab_passivate(msp, 971 metaslab_weight_from_range_tree(msp)); 972 mutex_exit(&msp->ms_lock); 973 } 974 msp = mga->mga_secondary; 975 if (msp != NULL) { 976 mutex_enter(&msp->ms_lock); 977 metaslab_passivate(msp, 978 metaslab_weight_from_range_tree(msp)); 979 mutex_exit(&msp->ms_lock); 980 } 981 } 982 983 mgprev = mg->mg_prev; 984 mgnext = mg->mg_next; 985 986 if (mg == mgnext) { 987 mgnext = NULL; 988 } else { 989 mgprev->mg_next = mgnext; 990 mgnext->mg_prev = mgprev; 991 } 992 for (int i = 0; i < spa->spa_alloc_count; i++) { 993 if (mc->mc_allocator[i].mca_rotor == mg) 994 mc->mc_allocator[i].mca_rotor = mgnext; 995 } 996 997 mg->mg_prev = NULL; 998 mg->mg_next = NULL; 999 } 1000 1001 boolean_t 1002 metaslab_group_initialized(metaslab_group_t *mg) 1003 { 1004 vdev_t *vd = mg->mg_vd; 1005 vdev_stat_t *vs = &vd->vdev_stat; 1006 1007 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 1008 } 1009 1010 uint64_t 1011 metaslab_group_get_space(metaslab_group_t *mg) 1012 { 1013 /* 1014 * Note that the number of nodes in mg_metaslab_tree may be one less 1015 * than vdev_ms_count, due to the embedded log metaslab. 1016 */ 1017 mutex_enter(&mg->mg_lock); 1018 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree); 1019 mutex_exit(&mg->mg_lock); 1020 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count); 1021 } 1022 1023 void 1024 metaslab_group_histogram_verify(metaslab_group_t *mg) 1025 { 1026 uint64_t *mg_hist; 1027 avl_tree_t *t = &mg->mg_metaslab_tree; 1028 uint64_t ashift = mg->mg_vd->vdev_ashift; 1029 1030 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 1031 return; 1032 1033 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 1034 KM_SLEEP); 1035 1036 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 1037 SPACE_MAP_HISTOGRAM_SIZE + ashift); 1038 1039 mutex_enter(&mg->mg_lock); 1040 for (metaslab_t *msp = avl_first(t); 1041 msp != NULL; msp = AVL_NEXT(t, msp)) { 1042 VERIFY3P(msp->ms_group, ==, mg); 1043 /* skip if not active */ 1044 if (msp->ms_sm == NULL) 1045 continue; 1046 1047 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1048 mg_hist[i + ashift] += 1049 msp->ms_sm->sm_phys->smp_histogram[i]; 1050 } 1051 } 1052 1053 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 1054 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1055 1056 mutex_exit(&mg->mg_lock); 1057 1058 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 1059 } 1060 1061 static void 1062 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1063 { 1064 metaslab_class_t *mc = mg->mg_class; 1065 uint64_t ashift = mg->mg_vd->vdev_ashift; 1066 1067 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1068 if (msp->ms_sm == NULL) 1069 return; 1070 1071 mutex_enter(&mg->mg_lock); 1072 mutex_enter(&mc->mc_lock); 1073 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1074 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1075 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1076 mg->mg_histogram[i + ashift] += 1077 msp->ms_sm->sm_phys->smp_histogram[i]; 1078 mc->mc_histogram[i + ashift] += 1079 msp->ms_sm->sm_phys->smp_histogram[i]; 1080 } 1081 mutex_exit(&mc->mc_lock); 1082 mutex_exit(&mg->mg_lock); 1083 } 1084 1085 void 1086 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1087 { 1088 metaslab_class_t *mc = mg->mg_class; 1089 uint64_t ashift = mg->mg_vd->vdev_ashift; 1090 1091 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1092 if (msp->ms_sm == NULL) 1093 return; 1094 1095 mutex_enter(&mg->mg_lock); 1096 mutex_enter(&mc->mc_lock); 1097 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1098 ASSERT3U(mg->mg_histogram[i + ashift], >=, 1099 msp->ms_sm->sm_phys->smp_histogram[i]); 1100 ASSERT3U(mc->mc_histogram[i + ashift], >=, 1101 msp->ms_sm->sm_phys->smp_histogram[i]); 1102 IMPLY(mg == mg->mg_vd->vdev_log_mg, 1103 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa)); 1104 1105 mg->mg_histogram[i + ashift] -= 1106 msp->ms_sm->sm_phys->smp_histogram[i]; 1107 mc->mc_histogram[i + ashift] -= 1108 msp->ms_sm->sm_phys->smp_histogram[i]; 1109 } 1110 mutex_exit(&mc->mc_lock); 1111 mutex_exit(&mg->mg_lock); 1112 } 1113 1114 static void 1115 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1116 { 1117 ASSERT(msp->ms_group == NULL); 1118 mutex_enter(&mg->mg_lock); 1119 msp->ms_group = mg; 1120 msp->ms_weight = 0; 1121 avl_add(&mg->mg_metaslab_tree, msp); 1122 mutex_exit(&mg->mg_lock); 1123 1124 mutex_enter(&msp->ms_lock); 1125 metaslab_group_histogram_add(mg, msp); 1126 mutex_exit(&msp->ms_lock); 1127 } 1128 1129 static void 1130 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1131 { 1132 mutex_enter(&msp->ms_lock); 1133 metaslab_group_histogram_remove(mg, msp); 1134 mutex_exit(&msp->ms_lock); 1135 1136 mutex_enter(&mg->mg_lock); 1137 ASSERT(msp->ms_group == mg); 1138 avl_remove(&mg->mg_metaslab_tree, msp); 1139 1140 metaslab_class_t *mc = msp->ms_group->mg_class; 1141 multilist_sublist_t *mls = 1142 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 1143 if (multilist_link_active(&msp->ms_class_txg_node)) 1144 multilist_sublist_remove(mls, msp); 1145 multilist_sublist_unlock(mls); 1146 1147 msp->ms_group = NULL; 1148 mutex_exit(&mg->mg_lock); 1149 } 1150 1151 static void 1152 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1153 { 1154 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1155 ASSERT(MUTEX_HELD(&mg->mg_lock)); 1156 ASSERT(msp->ms_group == mg); 1157 1158 avl_remove(&mg->mg_metaslab_tree, msp); 1159 msp->ms_weight = weight; 1160 avl_add(&mg->mg_metaslab_tree, msp); 1161 1162 } 1163 1164 static void 1165 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1166 { 1167 /* 1168 * Although in principle the weight can be any value, in 1169 * practice we do not use values in the range [1, 511]. 1170 */ 1171 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1172 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1173 1174 mutex_enter(&mg->mg_lock); 1175 metaslab_group_sort_impl(mg, msp, weight); 1176 mutex_exit(&mg->mg_lock); 1177 } 1178 1179 /* 1180 * Calculate the fragmentation for a given metaslab group. We can use 1181 * a simple average here since all metaslabs within the group must have 1182 * the same size. The return value will be a value between 0 and 100 1183 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1184 * group have a fragmentation metric. 1185 */ 1186 uint64_t 1187 metaslab_group_fragmentation(metaslab_group_t *mg) 1188 { 1189 vdev_t *vd = mg->mg_vd; 1190 uint64_t fragmentation = 0; 1191 uint64_t valid_ms = 0; 1192 1193 for (int m = 0; m < vd->vdev_ms_count; m++) { 1194 metaslab_t *msp = vd->vdev_ms[m]; 1195 1196 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1197 continue; 1198 if (msp->ms_group != mg) 1199 continue; 1200 1201 valid_ms++; 1202 fragmentation += msp->ms_fragmentation; 1203 } 1204 1205 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2) 1206 return (ZFS_FRAG_INVALID); 1207 1208 fragmentation /= valid_ms; 1209 ASSERT3U(fragmentation, <=, 100); 1210 return (fragmentation); 1211 } 1212 1213 /* 1214 * Determine if a given metaslab group should skip allocations. A metaslab 1215 * group should avoid allocations if its free capacity is less than the 1216 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 1217 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 1218 * that can still handle allocations. If the allocation throttle is enabled 1219 * then we skip allocations to devices that have reached their maximum 1220 * allocation queue depth unless the selected metaslab group is the only 1221 * eligible group remaining. 1222 */ 1223 static boolean_t 1224 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 1225 uint64_t psize, int allocator, int d) 1226 { 1227 spa_t *spa = mg->mg_vd->vdev_spa; 1228 metaslab_class_t *mc = mg->mg_class; 1229 1230 /* 1231 * We can only consider skipping this metaslab group if it's 1232 * in the normal metaslab class and there are other metaslab 1233 * groups to select from. Otherwise, we always consider it eligible 1234 * for allocations. 1235 */ 1236 if ((mc != spa_normal_class(spa) && 1237 mc != spa_special_class(spa) && 1238 mc != spa_dedup_class(spa)) || 1239 mc->mc_groups <= 1) 1240 return (B_TRUE); 1241 1242 /* 1243 * If the metaslab group's mg_allocatable flag is set (see comments 1244 * in metaslab_group_alloc_update() for more information) and 1245 * the allocation throttle is disabled then allow allocations to this 1246 * device. However, if the allocation throttle is enabled then 1247 * check if we have reached our allocation limit (mga_alloc_queue_depth) 1248 * to determine if we should allow allocations to this metaslab group. 1249 * If all metaslab groups are no longer considered allocatable 1250 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 1251 * gang block size then we allow allocations on this metaslab group 1252 * regardless of the mg_allocatable or throttle settings. 1253 */ 1254 if (mg->mg_allocatable) { 1255 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 1256 int64_t qdepth; 1257 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth; 1258 1259 if (!mc->mc_alloc_throttle_enabled) 1260 return (B_TRUE); 1261 1262 /* 1263 * If this metaslab group does not have any free space, then 1264 * there is no point in looking further. 1265 */ 1266 if (mg->mg_no_free_space) 1267 return (B_FALSE); 1268 1269 /* 1270 * Relax allocation throttling for ditto blocks. Due to 1271 * random imbalances in allocation it tends to push copies 1272 * to one vdev, that looks a bit better at the moment. 1273 */ 1274 qmax = qmax * (4 + d) / 4; 1275 1276 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth); 1277 1278 /* 1279 * If this metaslab group is below its qmax or it's 1280 * the only allocatable metasable group, then attempt 1281 * to allocate from it. 1282 */ 1283 if (qdepth < qmax || mc->mc_alloc_groups == 1) 1284 return (B_TRUE); 1285 ASSERT3U(mc->mc_alloc_groups, >, 1); 1286 1287 /* 1288 * Since this metaslab group is at or over its qmax, we 1289 * need to determine if there are metaslab groups after this 1290 * one that might be able to handle this allocation. This is 1291 * racy since we can't hold the locks for all metaslab 1292 * groups at the same time when we make this check. 1293 */ 1294 for (metaslab_group_t *mgp = mg->mg_next; 1295 mgp != rotor; mgp = mgp->mg_next) { 1296 metaslab_group_allocator_t *mgap = 1297 &mgp->mg_allocator[allocator]; 1298 qmax = mgap->mga_cur_max_alloc_queue_depth; 1299 qmax = qmax * (4 + d) / 4; 1300 qdepth = 1301 zfs_refcount_count(&mgap->mga_alloc_queue_depth); 1302 1303 /* 1304 * If there is another metaslab group that 1305 * might be able to handle the allocation, then 1306 * we return false so that we skip this group. 1307 */ 1308 if (qdepth < qmax && !mgp->mg_no_free_space) 1309 return (B_FALSE); 1310 } 1311 1312 /* 1313 * We didn't find another group to handle the allocation 1314 * so we can't skip this metaslab group even though 1315 * we are at or over our qmax. 1316 */ 1317 return (B_TRUE); 1318 1319 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 1320 return (B_TRUE); 1321 } 1322 return (B_FALSE); 1323 } 1324 1325 /* 1326 * ========================================================================== 1327 * Range tree callbacks 1328 * ========================================================================== 1329 */ 1330 1331 /* 1332 * Comparison function for the private size-ordered tree using 32-bit 1333 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1334 */ 1335 static int 1336 metaslab_rangesize32_compare(const void *x1, const void *x2) 1337 { 1338 const range_seg32_t *r1 = x1; 1339 const range_seg32_t *r2 = x2; 1340 1341 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1342 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1343 1344 int cmp = TREE_CMP(rs_size1, rs_size2); 1345 if (likely(cmp)) 1346 return (cmp); 1347 1348 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1349 } 1350 1351 /* 1352 * Comparison function for the private size-ordered tree using 64-bit 1353 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1354 */ 1355 static int 1356 metaslab_rangesize64_compare(const void *x1, const void *x2) 1357 { 1358 const range_seg64_t *r1 = x1; 1359 const range_seg64_t *r2 = x2; 1360 1361 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1362 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1363 1364 int cmp = TREE_CMP(rs_size1, rs_size2); 1365 if (likely(cmp)) 1366 return (cmp); 1367 1368 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1369 } 1370 typedef struct metaslab_rt_arg { 1371 zfs_btree_t *mra_bt; 1372 uint32_t mra_floor_shift; 1373 } metaslab_rt_arg_t; 1374 1375 struct mssa_arg { 1376 range_tree_t *rt; 1377 metaslab_rt_arg_t *mra; 1378 }; 1379 1380 static void 1381 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1382 { 1383 struct mssa_arg *mssap = arg; 1384 range_tree_t *rt = mssap->rt; 1385 metaslab_rt_arg_t *mrap = mssap->mra; 1386 range_seg_max_t seg = {0}; 1387 rs_set_start(&seg, rt, start); 1388 rs_set_end(&seg, rt, start + size); 1389 metaslab_rt_add(rt, &seg, mrap); 1390 } 1391 1392 static void 1393 metaslab_size_tree_full_load(range_tree_t *rt) 1394 { 1395 metaslab_rt_arg_t *mrap = rt->rt_arg; 1396 METASLABSTAT_BUMP(metaslabstat_reload_tree); 1397 ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1398 mrap->mra_floor_shift = 0; 1399 struct mssa_arg arg = {0}; 1400 arg.rt = rt; 1401 arg.mra = mrap; 1402 range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1403 } 1404 1405 /* 1406 * Create any block allocator specific components. The current allocators 1407 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1408 */ 1409 /* ARGSUSED */ 1410 static void 1411 metaslab_rt_create(range_tree_t *rt, void *arg) 1412 { 1413 metaslab_rt_arg_t *mrap = arg; 1414 zfs_btree_t *size_tree = mrap->mra_bt; 1415 1416 size_t size; 1417 int (*compare) (const void *, const void *); 1418 switch (rt->rt_type) { 1419 case RANGE_SEG32: 1420 size = sizeof (range_seg32_t); 1421 compare = metaslab_rangesize32_compare; 1422 break; 1423 case RANGE_SEG64: 1424 size = sizeof (range_seg64_t); 1425 compare = metaslab_rangesize64_compare; 1426 break; 1427 default: 1428 panic("Invalid range seg type %d", rt->rt_type); 1429 } 1430 zfs_btree_create(size_tree, compare, size); 1431 mrap->mra_floor_shift = metaslab_by_size_min_shift; 1432 } 1433 1434 /* ARGSUSED */ 1435 static void 1436 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1437 { 1438 metaslab_rt_arg_t *mrap = arg; 1439 zfs_btree_t *size_tree = mrap->mra_bt; 1440 1441 zfs_btree_destroy(size_tree); 1442 kmem_free(mrap, sizeof (*mrap)); 1443 } 1444 1445 /* ARGSUSED */ 1446 static void 1447 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1448 { 1449 metaslab_rt_arg_t *mrap = arg; 1450 zfs_btree_t *size_tree = mrap->mra_bt; 1451 1452 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < 1453 (1 << mrap->mra_floor_shift)) 1454 return; 1455 1456 zfs_btree_add(size_tree, rs); 1457 } 1458 1459 /* ARGSUSED */ 1460 static void 1461 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1462 { 1463 metaslab_rt_arg_t *mrap = arg; 1464 zfs_btree_t *size_tree = mrap->mra_bt; 1465 1466 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 << 1467 mrap->mra_floor_shift)) 1468 return; 1469 1470 zfs_btree_remove(size_tree, rs); 1471 } 1472 1473 /* ARGSUSED */ 1474 static void 1475 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1476 { 1477 metaslab_rt_arg_t *mrap = arg; 1478 zfs_btree_t *size_tree = mrap->mra_bt; 1479 zfs_btree_clear(size_tree); 1480 zfs_btree_destroy(size_tree); 1481 1482 metaslab_rt_create(rt, arg); 1483 } 1484 1485 static range_tree_ops_t metaslab_rt_ops = { 1486 .rtop_create = metaslab_rt_create, 1487 .rtop_destroy = metaslab_rt_destroy, 1488 .rtop_add = metaslab_rt_add, 1489 .rtop_remove = metaslab_rt_remove, 1490 .rtop_vacate = metaslab_rt_vacate 1491 }; 1492 1493 /* 1494 * ========================================================================== 1495 * Common allocator routines 1496 * ========================================================================== 1497 */ 1498 1499 /* 1500 * Return the maximum contiguous segment within the metaslab. 1501 */ 1502 uint64_t 1503 metaslab_largest_allocatable(metaslab_t *msp) 1504 { 1505 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1506 range_seg_t *rs; 1507 1508 if (t == NULL) 1509 return (0); 1510 if (zfs_btree_numnodes(t) == 0) 1511 metaslab_size_tree_full_load(msp->ms_allocatable); 1512 1513 rs = zfs_btree_last(t, NULL); 1514 if (rs == NULL) 1515 return (0); 1516 1517 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs, 1518 msp->ms_allocatable)); 1519 } 1520 1521 /* 1522 * Return the maximum contiguous segment within the unflushed frees of this 1523 * metaslab. 1524 */ 1525 static uint64_t 1526 metaslab_largest_unflushed_free(metaslab_t *msp) 1527 { 1528 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1529 1530 if (msp->ms_unflushed_frees == NULL) 1531 return (0); 1532 1533 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1534 metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1535 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1536 NULL); 1537 if (rs == NULL) 1538 return (0); 1539 1540 /* 1541 * When a range is freed from the metaslab, that range is added to 1542 * both the unflushed frees and the deferred frees. While the block 1543 * will eventually be usable, if the metaslab were loaded the range 1544 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1545 * txgs had passed. As a result, when attempting to estimate an upper 1546 * bound for the largest currently-usable free segment in the 1547 * metaslab, we need to not consider any ranges currently in the defer 1548 * trees. This algorithm approximates the largest available chunk in 1549 * the largest range in the unflushed_frees tree by taking the first 1550 * chunk. While this may be a poor estimate, it should only remain so 1551 * briefly and should eventually self-correct as frees are no longer 1552 * deferred. Similar logic applies to the ms_freed tree. See 1553 * metaslab_load() for more details. 1554 * 1555 * There are two primary sources of inaccuracy in this estimate. Both 1556 * are tolerated for performance reasons. The first source is that we 1557 * only check the largest segment for overlaps. Smaller segments may 1558 * have more favorable overlaps with the other trees, resulting in 1559 * larger usable chunks. Second, we only look at the first chunk in 1560 * the largest segment; there may be other usable chunks in the 1561 * largest segment, but we ignore them. 1562 */ 1563 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees); 1564 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1565 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1566 uint64_t start = 0; 1567 uint64_t size = 0; 1568 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart, 1569 rsize, &start, &size); 1570 if (found) { 1571 if (rstart == start) 1572 return (0); 1573 rsize = start - rstart; 1574 } 1575 } 1576 1577 uint64_t start = 0; 1578 uint64_t size = 0; 1579 boolean_t found = range_tree_find_in(msp->ms_freed, rstart, 1580 rsize, &start, &size); 1581 if (found) 1582 rsize = start - rstart; 1583 1584 return (rsize); 1585 } 1586 1587 static range_seg_t * 1588 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start, 1589 uint64_t size, zfs_btree_index_t *where) 1590 { 1591 range_seg_t *rs; 1592 range_seg_max_t rsearch; 1593 1594 rs_set_start(&rsearch, rt, start); 1595 rs_set_end(&rsearch, rt, start + size); 1596 1597 rs = zfs_btree_find(t, &rsearch, where); 1598 if (rs == NULL) { 1599 rs = zfs_btree_next(t, where, where); 1600 } 1601 1602 return (rs); 1603 } 1604 1605 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \ 1606 defined(WITH_CF_BLOCK_ALLOCATOR) 1607 1608 /* 1609 * This is a helper function that can be used by the allocator to find a 1610 * suitable block to allocate. This will search the specified B-tree looking 1611 * for a block that matches the specified criteria. 1612 */ 1613 static uint64_t 1614 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size, 1615 uint64_t max_search) 1616 { 1617 if (*cursor == 0) 1618 *cursor = rt->rt_start; 1619 zfs_btree_t *bt = &rt->rt_root; 1620 zfs_btree_index_t where; 1621 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where); 1622 uint64_t first_found; 1623 int count_searched = 0; 1624 1625 if (rs != NULL) 1626 first_found = rs_get_start(rs, rt); 1627 1628 while (rs != NULL && (rs_get_start(rs, rt) - first_found <= 1629 max_search || count_searched < metaslab_min_search_count)) { 1630 uint64_t offset = rs_get_start(rs, rt); 1631 if (offset + size <= rs_get_end(rs, rt)) { 1632 *cursor = offset + size; 1633 return (offset); 1634 } 1635 rs = zfs_btree_next(bt, &where, &where); 1636 count_searched++; 1637 } 1638 1639 *cursor = 0; 1640 return (-1ULL); 1641 } 1642 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */ 1643 1644 #if defined(WITH_DF_BLOCK_ALLOCATOR) 1645 /* 1646 * ========================================================================== 1647 * Dynamic Fit (df) block allocator 1648 * 1649 * Search for a free chunk of at least this size, starting from the last 1650 * offset (for this alignment of block) looking for up to 1651 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1652 * found within 16MB, then return a free chunk of exactly the requested size (or 1653 * larger). 1654 * 1655 * If it seems like searching from the last offset will be unproductive, skip 1656 * that and just return a free chunk of exactly the requested size (or larger). 1657 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1658 * mechanism is probably not very useful and may be removed in the future. 1659 * 1660 * The behavior when not searching can be changed to return the largest free 1661 * chunk, instead of a free chunk of exactly the requested size, by setting 1662 * metaslab_df_use_largest_segment. 1663 * ========================================================================== 1664 */ 1665 static uint64_t 1666 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1667 { 1668 /* 1669 * Find the largest power of 2 block size that evenly divides the 1670 * requested size. This is used to try to allocate blocks with similar 1671 * alignment from the same area of the metaslab (i.e. same cursor 1672 * bucket) but it does not guarantee that other allocations sizes 1673 * may exist in the same region. 1674 */ 1675 uint64_t align = size & -size; 1676 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1677 range_tree_t *rt = msp->ms_allocatable; 1678 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1679 uint64_t offset; 1680 1681 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1682 1683 /* 1684 * If we're running low on space, find a segment based on size, 1685 * rather than iterating based on offset. 1686 */ 1687 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1688 free_pct < metaslab_df_free_pct) { 1689 offset = -1; 1690 } else { 1691 offset = metaslab_block_picker(rt, 1692 cursor, size, metaslab_df_max_search); 1693 } 1694 1695 if (offset == -1) { 1696 range_seg_t *rs; 1697 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1698 metaslab_size_tree_full_load(msp->ms_allocatable); 1699 1700 if (metaslab_df_use_largest_segment) { 1701 /* use largest free segment */ 1702 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1703 } else { 1704 zfs_btree_index_t where; 1705 /* use segment of this size, or next largest */ 1706 rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1707 rt, msp->ms_start, size, &where); 1708 } 1709 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs, 1710 rt)) { 1711 offset = rs_get_start(rs, rt); 1712 *cursor = offset + size; 1713 } 1714 } 1715 1716 return (offset); 1717 } 1718 1719 static metaslab_ops_t metaslab_df_ops = { 1720 metaslab_df_alloc 1721 }; 1722 1723 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops; 1724 #endif /* WITH_DF_BLOCK_ALLOCATOR */ 1725 1726 #if defined(WITH_CF_BLOCK_ALLOCATOR) 1727 /* 1728 * ========================================================================== 1729 * Cursor fit block allocator - 1730 * Select the largest region in the metaslab, set the cursor to the beginning 1731 * of the range and the cursor_end to the end of the range. As allocations 1732 * are made advance the cursor. Continue allocating from the cursor until 1733 * the range is exhausted and then find a new range. 1734 * ========================================================================== 1735 */ 1736 static uint64_t 1737 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1738 { 1739 range_tree_t *rt = msp->ms_allocatable; 1740 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1741 uint64_t *cursor = &msp->ms_lbas[0]; 1742 uint64_t *cursor_end = &msp->ms_lbas[1]; 1743 uint64_t offset = 0; 1744 1745 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1746 1747 ASSERT3U(*cursor_end, >=, *cursor); 1748 1749 if ((*cursor + size) > *cursor_end) { 1750 range_seg_t *rs; 1751 1752 if (zfs_btree_numnodes(t) == 0) 1753 metaslab_size_tree_full_load(msp->ms_allocatable); 1754 rs = zfs_btree_last(t, NULL); 1755 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < 1756 size) 1757 return (-1ULL); 1758 1759 *cursor = rs_get_start(rs, rt); 1760 *cursor_end = rs_get_end(rs, rt); 1761 } 1762 1763 offset = *cursor; 1764 *cursor += size; 1765 1766 return (offset); 1767 } 1768 1769 static metaslab_ops_t metaslab_cf_ops = { 1770 metaslab_cf_alloc 1771 }; 1772 1773 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops; 1774 #endif /* WITH_CF_BLOCK_ALLOCATOR */ 1775 1776 #if defined(WITH_NDF_BLOCK_ALLOCATOR) 1777 /* 1778 * ========================================================================== 1779 * New dynamic fit allocator - 1780 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1781 * contiguous blocks. If no region is found then just use the largest segment 1782 * that remains. 1783 * ========================================================================== 1784 */ 1785 1786 /* 1787 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1788 * to request from the allocator. 1789 */ 1790 uint64_t metaslab_ndf_clump_shift = 4; 1791 1792 static uint64_t 1793 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1794 { 1795 zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1796 range_tree_t *rt = msp->ms_allocatable; 1797 zfs_btree_index_t where; 1798 range_seg_t *rs; 1799 range_seg_max_t rsearch; 1800 uint64_t hbit = highbit64(size); 1801 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1802 uint64_t max_size = metaslab_largest_allocatable(msp); 1803 1804 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1805 1806 if (max_size < size) 1807 return (-1ULL); 1808 1809 rs_set_start(&rsearch, rt, *cursor); 1810 rs_set_end(&rsearch, rt, *cursor + size); 1811 1812 rs = zfs_btree_find(t, &rsearch, &where); 1813 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) { 1814 t = &msp->ms_allocatable_by_size; 1815 1816 rs_set_start(&rsearch, rt, 0); 1817 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit + 1818 metaslab_ndf_clump_shift))); 1819 1820 rs = zfs_btree_find(t, &rsearch, &where); 1821 if (rs == NULL) 1822 rs = zfs_btree_next(t, &where, &where); 1823 ASSERT(rs != NULL); 1824 } 1825 1826 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) { 1827 *cursor = rs_get_start(rs, rt) + size; 1828 return (rs_get_start(rs, rt)); 1829 } 1830 return (-1ULL); 1831 } 1832 1833 static metaslab_ops_t metaslab_ndf_ops = { 1834 metaslab_ndf_alloc 1835 }; 1836 1837 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops; 1838 #endif /* WITH_NDF_BLOCK_ALLOCATOR */ 1839 1840 1841 /* 1842 * ========================================================================== 1843 * Metaslabs 1844 * ========================================================================== 1845 */ 1846 1847 /* 1848 * Wait for any in-progress metaslab loads to complete. 1849 */ 1850 static void 1851 metaslab_load_wait(metaslab_t *msp) 1852 { 1853 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1854 1855 while (msp->ms_loading) { 1856 ASSERT(!msp->ms_loaded); 1857 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1858 } 1859 } 1860 1861 /* 1862 * Wait for any in-progress flushing to complete. 1863 */ 1864 static void 1865 metaslab_flush_wait(metaslab_t *msp) 1866 { 1867 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1868 1869 while (msp->ms_flushing) 1870 cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 1871 } 1872 1873 static unsigned int 1874 metaslab_idx_func(multilist_t *ml, void *arg) 1875 { 1876 metaslab_t *msp = arg; 1877 return (msp->ms_id % multilist_get_num_sublists(ml)); 1878 } 1879 1880 uint64_t 1881 metaslab_allocated_space(metaslab_t *msp) 1882 { 1883 return (msp->ms_allocated_space); 1884 } 1885 1886 /* 1887 * Verify that the space accounting on disk matches the in-core range_trees. 1888 */ 1889 static void 1890 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 1891 { 1892 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1893 uint64_t allocating = 0; 1894 uint64_t sm_free_space, msp_free_space; 1895 1896 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1897 ASSERT(!msp->ms_condensing); 1898 1899 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 1900 return; 1901 1902 /* 1903 * We can only verify the metaslab space when we're called 1904 * from syncing context with a loaded metaslab that has an 1905 * allocated space map. Calling this in non-syncing context 1906 * does not provide a consistent view of the metaslab since 1907 * we're performing allocations in the future. 1908 */ 1909 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 1910 !msp->ms_loaded) 1911 return; 1912 1913 /* 1914 * Even though the smp_alloc field can get negative, 1915 * when it comes to a metaslab's space map, that should 1916 * never be the case. 1917 */ 1918 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 1919 1920 ASSERT3U(space_map_allocated(msp->ms_sm), >=, 1921 range_tree_space(msp->ms_unflushed_frees)); 1922 1923 ASSERT3U(metaslab_allocated_space(msp), ==, 1924 space_map_allocated(msp->ms_sm) + 1925 range_tree_space(msp->ms_unflushed_allocs) - 1926 range_tree_space(msp->ms_unflushed_frees)); 1927 1928 sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 1929 1930 /* 1931 * Account for future allocations since we would have 1932 * already deducted that space from the ms_allocatable. 1933 */ 1934 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 1935 allocating += 1936 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]); 1937 } 1938 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 1939 msp->ms_allocating_total); 1940 1941 ASSERT3U(msp->ms_deferspace, ==, 1942 range_tree_space(msp->ms_defer[0]) + 1943 range_tree_space(msp->ms_defer[1])); 1944 1945 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating + 1946 msp->ms_deferspace + range_tree_space(msp->ms_freed); 1947 1948 VERIFY3U(sm_free_space, ==, msp_free_space); 1949 } 1950 1951 static void 1952 metaslab_aux_histograms_clear(metaslab_t *msp) 1953 { 1954 /* 1955 * Auxiliary histograms are only cleared when resetting them, 1956 * which can only happen while the metaslab is loaded. 1957 */ 1958 ASSERT(msp->ms_loaded); 1959 1960 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 1961 for (int t = 0; t < TXG_DEFER_SIZE; t++) 1962 bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t])); 1963 } 1964 1965 static void 1966 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 1967 range_tree_t *rt) 1968 { 1969 /* 1970 * This is modeled after space_map_histogram_add(), so refer to that 1971 * function for implementation details. We want this to work like 1972 * the space map histogram, and not the range tree histogram, as we 1973 * are essentially constructing a delta that will be later subtracted 1974 * from the space map histogram. 1975 */ 1976 int idx = 0; 1977 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1978 ASSERT3U(i, >=, idx + shift); 1979 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 1980 1981 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 1982 ASSERT3U(idx + shift, ==, i); 1983 idx++; 1984 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 1985 } 1986 } 1987 } 1988 1989 /* 1990 * Called at every sync pass that the metaslab gets synced. 1991 * 1992 * The reason is that we want our auxiliary histograms to be updated 1993 * wherever the metaslab's space map histogram is updated. This way 1994 * we stay consistent on which parts of the metaslab space map's 1995 * histogram are currently not available for allocations (e.g because 1996 * they are in the defer, freed, and freeing trees). 1997 */ 1998 static void 1999 metaslab_aux_histograms_update(metaslab_t *msp) 2000 { 2001 space_map_t *sm = msp->ms_sm; 2002 ASSERT(sm != NULL); 2003 2004 /* 2005 * This is similar to the metaslab's space map histogram updates 2006 * that take place in metaslab_sync(). The only difference is that 2007 * we only care about segments that haven't made it into the 2008 * ms_allocatable tree yet. 2009 */ 2010 if (msp->ms_loaded) { 2011 metaslab_aux_histograms_clear(msp); 2012 2013 metaslab_aux_histogram_add(msp->ms_synchist, 2014 sm->sm_shift, msp->ms_freed); 2015 2016 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2017 metaslab_aux_histogram_add(msp->ms_deferhist[t], 2018 sm->sm_shift, msp->ms_defer[t]); 2019 } 2020 } 2021 2022 metaslab_aux_histogram_add(msp->ms_synchist, 2023 sm->sm_shift, msp->ms_freeing); 2024 } 2025 2026 /* 2027 * Called every time we are done syncing (writing to) the metaslab, 2028 * i.e. at the end of each sync pass. 2029 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 2030 */ 2031 static void 2032 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 2033 { 2034 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2035 space_map_t *sm = msp->ms_sm; 2036 2037 if (sm == NULL) { 2038 /* 2039 * We came here from metaslab_init() when creating/opening a 2040 * pool, looking at a metaslab that hasn't had any allocations 2041 * yet. 2042 */ 2043 return; 2044 } 2045 2046 /* 2047 * This is similar to the actions that we take for the ms_freed 2048 * and ms_defer trees in metaslab_sync_done(). 2049 */ 2050 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2051 if (defer_allowed) { 2052 bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index], 2053 sizeof (msp->ms_synchist)); 2054 } else { 2055 bzero(msp->ms_deferhist[hist_index], 2056 sizeof (msp->ms_deferhist[hist_index])); 2057 } 2058 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 2059 } 2060 2061 /* 2062 * Ensure that the metaslab's weight and fragmentation are consistent 2063 * with the contents of the histogram (either the range tree's histogram 2064 * or the space map's depending whether the metaslab is loaded). 2065 */ 2066 static void 2067 metaslab_verify_weight_and_frag(metaslab_t *msp) 2068 { 2069 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2070 2071 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2072 return; 2073 2074 /* 2075 * We can end up here from vdev_remove_complete(), in which case we 2076 * cannot do these assertions because we hold spa config locks and 2077 * thus we are not allowed to read from the DMU. 2078 * 2079 * We check if the metaslab group has been removed and if that's 2080 * the case we return immediately as that would mean that we are 2081 * here from the aforementioned code path. 2082 */ 2083 if (msp->ms_group == NULL) 2084 return; 2085 2086 /* 2087 * Devices being removed always return a weight of 0 and leave 2088 * fragmentation and ms_max_size as is - there is nothing for 2089 * us to verify here. 2090 */ 2091 vdev_t *vd = msp->ms_group->mg_vd; 2092 if (vd->vdev_removing) 2093 return; 2094 2095 /* 2096 * If the metaslab is dirty it probably means that we've done 2097 * some allocations or frees that have changed our histograms 2098 * and thus the weight. 2099 */ 2100 for (int t = 0; t < TXG_SIZE; t++) { 2101 if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2102 return; 2103 } 2104 2105 /* 2106 * This verification checks that our in-memory state is consistent 2107 * with what's on disk. If the pool is read-only then there aren't 2108 * any changes and we just have the initially-loaded state. 2109 */ 2110 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2111 return; 2112 2113 /* some extra verification for in-core tree if you can */ 2114 if (msp->ms_loaded) { 2115 range_tree_stat_verify(msp->ms_allocatable); 2116 VERIFY(space_map_histogram_verify(msp->ms_sm, 2117 msp->ms_allocatable)); 2118 } 2119 2120 uint64_t weight = msp->ms_weight; 2121 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2122 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2123 uint64_t frag = msp->ms_fragmentation; 2124 uint64_t max_segsize = msp->ms_max_size; 2125 2126 msp->ms_weight = 0; 2127 msp->ms_fragmentation = 0; 2128 2129 /* 2130 * This function is used for verification purposes and thus should 2131 * not introduce any side-effects/mutations on the system's state. 2132 * 2133 * Regardless of whether metaslab_weight() thinks this metaslab 2134 * should be active or not, we want to ensure that the actual weight 2135 * (and therefore the value of ms_weight) would be the same if it 2136 * was to be recalculated at this point. 2137 * 2138 * In addition we set the nodirty flag so metaslab_weight() does 2139 * not dirty the metaslab for future TXGs (e.g. when trying to 2140 * force condensing to upgrade the metaslab spacemaps). 2141 */ 2142 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2143 2144 VERIFY3U(max_segsize, ==, msp->ms_max_size); 2145 2146 /* 2147 * If the weight type changed then there is no point in doing 2148 * verification. Revert fields to their original values. 2149 */ 2150 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2151 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2152 msp->ms_fragmentation = frag; 2153 msp->ms_weight = weight; 2154 return; 2155 } 2156 2157 VERIFY3U(msp->ms_fragmentation, ==, frag); 2158 VERIFY3U(msp->ms_weight, ==, weight); 2159 } 2160 2161 /* 2162 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2163 * this class that was used longest ago, and attempt to unload it. We don't 2164 * want to spend too much time in this loop to prevent performance 2165 * degradation, and we expect that most of the time this operation will 2166 * succeed. Between that and the normal unloading processing during txg sync, 2167 * we expect this to keep the metaslab memory usage under control. 2168 */ 2169 static void 2170 metaslab_potentially_evict(metaslab_class_t *mc) 2171 { 2172 #ifdef _KERNEL 2173 uint64_t allmem = arc_all_memory(); 2174 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2175 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2176 int tries = 0; 2177 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 2178 tries < multilist_get_num_sublists(mc->mc_metaslab_txg_list) * 2; 2179 tries++) { 2180 unsigned int idx = multilist_get_random_index( 2181 mc->mc_metaslab_txg_list); 2182 multilist_sublist_t *mls = 2183 multilist_sublist_lock(mc->mc_metaslab_txg_list, idx); 2184 metaslab_t *msp = multilist_sublist_head(mls); 2185 multilist_sublist_unlock(mls); 2186 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2187 inuse * size) { 2188 VERIFY3P(mls, ==, multilist_sublist_lock( 2189 mc->mc_metaslab_txg_list, idx)); 2190 ASSERT3U(idx, ==, 2191 metaslab_idx_func(mc->mc_metaslab_txg_list, msp)); 2192 2193 if (!multilist_link_active(&msp->ms_class_txg_node)) { 2194 multilist_sublist_unlock(mls); 2195 break; 2196 } 2197 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2198 multilist_sublist_unlock(mls); 2199 /* 2200 * If the metaslab is currently loading there are two 2201 * cases. If it's the metaslab we're evicting, we 2202 * can't continue on or we'll panic when we attempt to 2203 * recursively lock the mutex. If it's another 2204 * metaslab that's loading, it can be safely skipped, 2205 * since we know it's very new and therefore not a 2206 * good eviction candidate. We check later once the 2207 * lock is held that the metaslab is fully loaded 2208 * before actually unloading it. 2209 */ 2210 if (msp->ms_loading) { 2211 msp = next_msp; 2212 inuse = 2213 spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2214 continue; 2215 } 2216 /* 2217 * We can't unload metaslabs with no spacemap because 2218 * they're not ready to be unloaded yet. We can't 2219 * unload metaslabs with outstanding allocations 2220 * because doing so could cause the metaslab's weight 2221 * to decrease while it's unloaded, which violates an 2222 * invariant that we use to prevent unnecessary 2223 * loading. We also don't unload metaslabs that are 2224 * currently active because they are high-weight 2225 * metaslabs that are likely to be used in the near 2226 * future. 2227 */ 2228 mutex_enter(&msp->ms_lock); 2229 if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2230 msp->ms_allocating_total == 0) { 2231 metaslab_unload(msp); 2232 } 2233 mutex_exit(&msp->ms_lock); 2234 msp = next_msp; 2235 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2236 } 2237 } 2238 #endif 2239 } 2240 2241 static int 2242 metaslab_load_impl(metaslab_t *msp) 2243 { 2244 int error = 0; 2245 2246 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2247 ASSERT(msp->ms_loading); 2248 ASSERT(!msp->ms_condensing); 2249 2250 /* 2251 * We temporarily drop the lock to unblock other operations while we 2252 * are reading the space map. Therefore, metaslab_sync() and 2253 * metaslab_sync_done() can run at the same time as we do. 2254 * 2255 * If we are using the log space maps, metaslab_sync() can't write to 2256 * the metaslab's space map while we are loading as we only write to 2257 * it when we are flushing the metaslab, and that can't happen while 2258 * we are loading it. 2259 * 2260 * If we are not using log space maps though, metaslab_sync() can 2261 * append to the space map while we are loading. Therefore we load 2262 * only entries that existed when we started the load. Additionally, 2263 * metaslab_sync_done() has to wait for the load to complete because 2264 * there are potential races like metaslab_load() loading parts of the 2265 * space map that are currently being appended by metaslab_sync(). If 2266 * we didn't, the ms_allocatable would have entries that 2267 * metaslab_sync_done() would try to re-add later. 2268 * 2269 * That's why before dropping the lock we remember the synced length 2270 * of the metaslab and read up to that point of the space map, 2271 * ignoring entries appended by metaslab_sync() that happen after we 2272 * drop the lock. 2273 */ 2274 uint64_t length = msp->ms_synced_length; 2275 mutex_exit(&msp->ms_lock); 2276 2277 hrtime_t load_start = gethrtime(); 2278 metaslab_rt_arg_t *mrap; 2279 if (msp->ms_allocatable->rt_arg == NULL) { 2280 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2281 } else { 2282 mrap = msp->ms_allocatable->rt_arg; 2283 msp->ms_allocatable->rt_ops = NULL; 2284 msp->ms_allocatable->rt_arg = NULL; 2285 } 2286 mrap->mra_bt = &msp->ms_allocatable_by_size; 2287 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2288 2289 if (msp->ms_sm != NULL) { 2290 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2291 SM_FREE, length); 2292 2293 /* Now, populate the size-sorted tree. */ 2294 metaslab_rt_create(msp->ms_allocatable, mrap); 2295 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2296 msp->ms_allocatable->rt_arg = mrap; 2297 2298 struct mssa_arg arg = {0}; 2299 arg.rt = msp->ms_allocatable; 2300 arg.mra = mrap; 2301 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add, 2302 &arg); 2303 } else { 2304 /* 2305 * Add the size-sorted tree first, since we don't need to load 2306 * the metaslab from the spacemap. 2307 */ 2308 metaslab_rt_create(msp->ms_allocatable, mrap); 2309 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2310 msp->ms_allocatable->rt_arg = mrap; 2311 /* 2312 * The space map has not been allocated yet, so treat 2313 * all the space in the metaslab as free and add it to the 2314 * ms_allocatable tree. 2315 */ 2316 range_tree_add(msp->ms_allocatable, 2317 msp->ms_start, msp->ms_size); 2318 2319 if (msp->ms_freed != NULL) { 2320 /* 2321 * If the ms_sm doesn't exist, this means that this 2322 * metaslab hasn't gone through metaslab_sync() and 2323 * thus has never been dirtied. So we shouldn't 2324 * expect any unflushed allocs or frees from previous 2325 * TXGs. 2326 * 2327 * Note: ms_freed and all the other trees except for 2328 * the ms_allocatable, can be NULL at this point only 2329 * if this is a new metaslab of a vdev that just got 2330 * expanded. 2331 */ 2332 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 2333 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 2334 } 2335 } 2336 2337 /* 2338 * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2339 * changing the ms_sm (or log_sm) and the metaslab's range trees 2340 * while we are about to use them and populate the ms_allocatable. 2341 * The ms_lock is insufficient for this because metaslab_sync() doesn't 2342 * hold the ms_lock while writing the ms_checkpointing tree to disk. 2343 */ 2344 mutex_enter(&msp->ms_sync_lock); 2345 mutex_enter(&msp->ms_lock); 2346 2347 ASSERT(!msp->ms_condensing); 2348 ASSERT(!msp->ms_flushing); 2349 2350 if (error != 0) { 2351 mutex_exit(&msp->ms_sync_lock); 2352 return (error); 2353 } 2354 2355 ASSERT3P(msp->ms_group, !=, NULL); 2356 msp->ms_loaded = B_TRUE; 2357 2358 /* 2359 * Apply all the unflushed changes to ms_allocatable right 2360 * away so any manipulations we do below have a clear view 2361 * of what is allocated and what is free. 2362 */ 2363 range_tree_walk(msp->ms_unflushed_allocs, 2364 range_tree_remove, msp->ms_allocatable); 2365 range_tree_walk(msp->ms_unflushed_frees, 2366 range_tree_add, msp->ms_allocatable); 2367 2368 msp->ms_loaded = B_TRUE; 2369 2370 ASSERT3P(msp->ms_group, !=, NULL); 2371 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2372 if (spa_syncing_log_sm(spa) != NULL) { 2373 ASSERT(spa_feature_is_enabled(spa, 2374 SPA_FEATURE_LOG_SPACEMAP)); 2375 2376 /* 2377 * If we use a log space map we add all the segments 2378 * that are in ms_unflushed_frees so they are available 2379 * for allocation. 2380 * 2381 * ms_allocatable needs to contain all free segments 2382 * that are ready for allocations (thus not segments 2383 * from ms_freeing, ms_freed, and the ms_defer trees). 2384 * But if we grab the lock in this code path at a sync 2385 * pass later that 1, then it also contains the 2386 * segments of ms_freed (they were added to it earlier 2387 * in this path through ms_unflushed_frees). So we 2388 * need to remove all the segments that exist in 2389 * ms_freed from ms_allocatable as they will be added 2390 * later in metaslab_sync_done(). 2391 * 2392 * When there's no log space map, the ms_allocatable 2393 * correctly doesn't contain any segments that exist 2394 * in ms_freed [see ms_synced_length]. 2395 */ 2396 range_tree_walk(msp->ms_freed, 2397 range_tree_remove, msp->ms_allocatable); 2398 } 2399 2400 /* 2401 * If we are not using the log space map, ms_allocatable 2402 * contains the segments that exist in the ms_defer trees 2403 * [see ms_synced_length]. Thus we need to remove them 2404 * from ms_allocatable as they will be added again in 2405 * metaslab_sync_done(). 2406 * 2407 * If we are using the log space map, ms_allocatable still 2408 * contains the segments that exist in the ms_defer trees. 2409 * Not because it read them through the ms_sm though. But 2410 * because these segments are part of ms_unflushed_frees 2411 * whose segments we add to ms_allocatable earlier in this 2412 * code path. 2413 */ 2414 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2415 range_tree_walk(msp->ms_defer[t], 2416 range_tree_remove, msp->ms_allocatable); 2417 } 2418 2419 /* 2420 * Call metaslab_recalculate_weight_and_sort() now that the 2421 * metaslab is loaded so we get the metaslab's real weight. 2422 * 2423 * Unless this metaslab was created with older software and 2424 * has not yet been converted to use segment-based weight, we 2425 * expect the new weight to be better or equal to the weight 2426 * that the metaslab had while it was not loaded. This is 2427 * because the old weight does not take into account the 2428 * consolidation of adjacent segments between TXGs. [see 2429 * comment for ms_synchist and ms_deferhist[] for more info] 2430 */ 2431 uint64_t weight = msp->ms_weight; 2432 uint64_t max_size = msp->ms_max_size; 2433 metaslab_recalculate_weight_and_sort(msp); 2434 if (!WEIGHT_IS_SPACEBASED(weight)) 2435 ASSERT3U(weight, <=, msp->ms_weight); 2436 msp->ms_max_size = metaslab_largest_allocatable(msp); 2437 ASSERT3U(max_size, <=, msp->ms_max_size); 2438 hrtime_t load_end = gethrtime(); 2439 msp->ms_load_time = load_end; 2440 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, " 2441 "ms_id %llu, smp_length %llu, " 2442 "unflushed_allocs %llu, unflushed_frees %llu, " 2443 "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2444 "loading_time %lld ms, ms_max_size %llu, " 2445 "max size error %lld, " 2446 "old_weight %llx, new_weight %llx", 2447 spa_syncing_txg(spa), spa_name(spa), 2448 msp->ms_group->mg_vd->vdev_id, msp->ms_id, 2449 space_map_length(msp->ms_sm), 2450 range_tree_space(msp->ms_unflushed_allocs), 2451 range_tree_space(msp->ms_unflushed_frees), 2452 range_tree_space(msp->ms_freed), 2453 range_tree_space(msp->ms_defer[0]), 2454 range_tree_space(msp->ms_defer[1]), 2455 (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2456 (longlong_t)((load_end - load_start) / 1000000), 2457 msp->ms_max_size, msp->ms_max_size - max_size, 2458 weight, msp->ms_weight); 2459 2460 metaslab_verify_space(msp, spa_syncing_txg(spa)); 2461 mutex_exit(&msp->ms_sync_lock); 2462 return (0); 2463 } 2464 2465 int 2466 metaslab_load(metaslab_t *msp) 2467 { 2468 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2469 2470 /* 2471 * There may be another thread loading the same metaslab, if that's 2472 * the case just wait until the other thread is done and return. 2473 */ 2474 metaslab_load_wait(msp); 2475 if (msp->ms_loaded) 2476 return (0); 2477 VERIFY(!msp->ms_loading); 2478 ASSERT(!msp->ms_condensing); 2479 2480 /* 2481 * We set the loading flag BEFORE potentially dropping the lock to 2482 * wait for an ongoing flush (see ms_flushing below). This way other 2483 * threads know that there is already a thread that is loading this 2484 * metaslab. 2485 */ 2486 msp->ms_loading = B_TRUE; 2487 2488 /* 2489 * Wait for any in-progress flushing to finish as we drop the ms_lock 2490 * both here (during space_map_load()) and in metaslab_flush() (when 2491 * we flush our changes to the ms_sm). 2492 */ 2493 if (msp->ms_flushing) 2494 metaslab_flush_wait(msp); 2495 2496 /* 2497 * In the possibility that we were waiting for the metaslab to be 2498 * flushed (where we temporarily dropped the ms_lock), ensure that 2499 * no one else loaded the metaslab somehow. 2500 */ 2501 ASSERT(!msp->ms_loaded); 2502 2503 /* 2504 * If we're loading a metaslab in the normal class, consider evicting 2505 * another one to keep our memory usage under the limit defined by the 2506 * zfs_metaslab_mem_limit tunable. 2507 */ 2508 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2509 msp->ms_group->mg_class) { 2510 metaslab_potentially_evict(msp->ms_group->mg_class); 2511 } 2512 2513 int error = metaslab_load_impl(msp); 2514 2515 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2516 msp->ms_loading = B_FALSE; 2517 cv_broadcast(&msp->ms_load_cv); 2518 2519 return (error); 2520 } 2521 2522 void 2523 metaslab_unload(metaslab_t *msp) 2524 { 2525 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2526 2527 /* 2528 * This can happen if a metaslab is selected for eviction (in 2529 * metaslab_potentially_evict) and then unloaded during spa_sync (via 2530 * metaslab_class_evict_old). 2531 */ 2532 if (!msp->ms_loaded) 2533 return; 2534 2535 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2536 msp->ms_loaded = B_FALSE; 2537 msp->ms_unload_time = gethrtime(); 2538 2539 msp->ms_activation_weight = 0; 2540 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2541 2542 if (msp->ms_group != NULL) { 2543 metaslab_class_t *mc = msp->ms_group->mg_class; 2544 multilist_sublist_t *mls = 2545 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 2546 if (multilist_link_active(&msp->ms_class_txg_node)) 2547 multilist_sublist_remove(mls, msp); 2548 multilist_sublist_unlock(mls); 2549 2550 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2551 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, " 2552 "ms_id %llu, weight %llx, " 2553 "selected txg %llu (%llu ms ago), alloc_txg %llu, " 2554 "loaded %llu ms ago, max_size %llu", 2555 spa_syncing_txg(spa), spa_name(spa), 2556 msp->ms_group->mg_vd->vdev_id, msp->ms_id, 2557 msp->ms_weight, 2558 msp->ms_selected_txg, 2559 (msp->ms_unload_time - msp->ms_selected_time) / 1000 / 1000, 2560 msp->ms_alloc_txg, 2561 (msp->ms_unload_time - msp->ms_load_time) / 1000 / 1000, 2562 msp->ms_max_size); 2563 } 2564 2565 /* 2566 * We explicitly recalculate the metaslab's weight based on its space 2567 * map (as it is now not loaded). We want unload metaslabs to always 2568 * have their weights calculated from the space map histograms, while 2569 * loaded ones have it calculated from their in-core range tree 2570 * [see metaslab_load()]. This way, the weight reflects the information 2571 * available in-core, whether it is loaded or not. 2572 * 2573 * If ms_group == NULL means that we came here from metaslab_fini(), 2574 * at which point it doesn't make sense for us to do the recalculation 2575 * and the sorting. 2576 */ 2577 if (msp->ms_group != NULL) 2578 metaslab_recalculate_weight_and_sort(msp); 2579 } 2580 2581 /* 2582 * We want to optimize the memory use of the per-metaslab range 2583 * trees. To do this, we store the segments in the range trees in 2584 * units of sectors, zero-indexing from the start of the metaslab. If 2585 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2586 * the ranges using two uint32_ts, rather than two uint64_ts. 2587 */ 2588 range_seg_type_t 2589 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2590 uint64_t *start, uint64_t *shift) 2591 { 2592 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2593 !zfs_metaslab_force_large_segs) { 2594 *shift = vdev->vdev_ashift; 2595 *start = msp->ms_start; 2596 return (RANGE_SEG32); 2597 } else { 2598 *shift = 0; 2599 *start = 0; 2600 return (RANGE_SEG64); 2601 } 2602 } 2603 2604 void 2605 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2606 { 2607 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2608 metaslab_class_t *mc = msp->ms_group->mg_class; 2609 multilist_sublist_t *mls = 2610 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 2611 if (multilist_link_active(&msp->ms_class_txg_node)) 2612 multilist_sublist_remove(mls, msp); 2613 msp->ms_selected_txg = txg; 2614 msp->ms_selected_time = gethrtime(); 2615 multilist_sublist_insert_tail(mls, msp); 2616 multilist_sublist_unlock(mls); 2617 } 2618 2619 void 2620 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2621 int64_t defer_delta, int64_t space_delta) 2622 { 2623 vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2624 2625 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2626 ASSERT(vd->vdev_ms_count != 0); 2627 2628 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2629 vdev_deflated_space(vd, space_delta)); 2630 } 2631 2632 int 2633 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2634 uint64_t txg, metaslab_t **msp) 2635 { 2636 vdev_t *vd = mg->mg_vd; 2637 spa_t *spa = vd->vdev_spa; 2638 objset_t *mos = spa->spa_meta_objset; 2639 metaslab_t *ms; 2640 int error; 2641 2642 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2643 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2644 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2645 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2646 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2647 multilist_link_init(&ms->ms_class_txg_node); 2648 2649 ms->ms_id = id; 2650 ms->ms_start = id << vd->vdev_ms_shift; 2651 ms->ms_size = 1ULL << vd->vdev_ms_shift; 2652 ms->ms_allocator = -1; 2653 ms->ms_new = B_TRUE; 2654 2655 vdev_ops_t *ops = vd->vdev_ops; 2656 if (ops->vdev_op_metaslab_init != NULL) 2657 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size); 2658 2659 /* 2660 * We only open space map objects that already exist. All others 2661 * will be opened when we finally allocate an object for it. 2662 * 2663 * Note: 2664 * When called from vdev_expand(), we can't call into the DMU as 2665 * we are holding the spa_config_lock as a writer and we would 2666 * deadlock [see relevant comment in vdev_metaslab_init()]. in 2667 * that case, the object parameter is zero though, so we won't 2668 * call into the DMU. 2669 */ 2670 if (object != 0) { 2671 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2672 ms->ms_size, vd->vdev_ashift); 2673 2674 if (error != 0) { 2675 kmem_free(ms, sizeof (metaslab_t)); 2676 return (error); 2677 } 2678 2679 ASSERT(ms->ms_sm != NULL); 2680 ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2681 } 2682 2683 range_seg_type_t type; 2684 uint64_t shift, start; 2685 type = metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2686 2687 /* 2688 * We create the ms_allocatable here, but we don't create the 2689 * other range trees until metaslab_sync_done(). This serves 2690 * two purposes: it allows metaslab_sync_done() to detect the 2691 * addition of new space; and for debugging, it ensures that 2692 * we'd data fault on any attempt to use this metaslab before 2693 * it's ready. 2694 */ 2695 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift); 2696 2697 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift); 2698 2699 metaslab_group_add(mg, ms); 2700 metaslab_set_fragmentation(ms, B_FALSE); 2701 2702 /* 2703 * If we're opening an existing pool (txg == 0) or creating 2704 * a new one (txg == TXG_INITIAL), all space is available now. 2705 * If we're adding space to an existing pool, the new space 2706 * does not become available until after this txg has synced. 2707 * The metaslab's weight will also be initialized when we sync 2708 * out this txg. This ensures that we don't attempt to allocate 2709 * from it before we have initialized it completely. 2710 */ 2711 if (txg <= TXG_INITIAL) { 2712 metaslab_sync_done(ms, 0); 2713 metaslab_space_update(vd, mg->mg_class, 2714 metaslab_allocated_space(ms), 0, 0); 2715 } 2716 2717 if (txg != 0) { 2718 vdev_dirty(vd, 0, NULL, txg); 2719 vdev_dirty(vd, VDD_METASLAB, ms, txg); 2720 } 2721 2722 *msp = ms; 2723 2724 return (0); 2725 } 2726 2727 static void 2728 metaslab_fini_flush_data(metaslab_t *msp) 2729 { 2730 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2731 2732 if (metaslab_unflushed_txg(msp) == 0) { 2733 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2734 ==, NULL); 2735 return; 2736 } 2737 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2738 2739 mutex_enter(&spa->spa_flushed_ms_lock); 2740 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2741 mutex_exit(&spa->spa_flushed_ms_lock); 2742 2743 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2744 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2745 } 2746 2747 uint64_t 2748 metaslab_unflushed_changes_memused(metaslab_t *ms) 2749 { 2750 return ((range_tree_numsegs(ms->ms_unflushed_allocs) + 2751 range_tree_numsegs(ms->ms_unflushed_frees)) * 2752 ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2753 } 2754 2755 void 2756 metaslab_fini(metaslab_t *msp) 2757 { 2758 metaslab_group_t *mg = msp->ms_group; 2759 vdev_t *vd = mg->mg_vd; 2760 spa_t *spa = vd->vdev_spa; 2761 2762 metaslab_fini_flush_data(msp); 2763 2764 metaslab_group_remove(mg, msp); 2765 2766 mutex_enter(&msp->ms_lock); 2767 VERIFY(msp->ms_group == NULL); 2768 /* 2769 * If the range trees haven't been allocated, this metaslab hasn't 2770 * been through metaslab_sync_done() for the first time yet, so its 2771 * space hasn't been accounted for in its vdev and doesn't need to be 2772 * subtracted. 2773 */ 2774 if (msp->ms_freed != NULL) { 2775 metaslab_space_update(vd, mg->mg_class, 2776 -metaslab_allocated_space(msp), 0, -msp->ms_size); 2777 2778 } 2779 space_map_close(msp->ms_sm); 2780 msp->ms_sm = NULL; 2781 2782 metaslab_unload(msp); 2783 2784 range_tree_destroy(msp->ms_allocatable); 2785 2786 if (msp->ms_freed != NULL) { 2787 range_tree_destroy(msp->ms_freeing); 2788 range_tree_destroy(msp->ms_freed); 2789 2790 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 2791 metaslab_unflushed_changes_memused(msp)); 2792 spa->spa_unflushed_stats.sus_memused -= 2793 metaslab_unflushed_changes_memused(msp); 2794 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 2795 range_tree_destroy(msp->ms_unflushed_allocs); 2796 range_tree_destroy(msp->ms_checkpointing); 2797 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 2798 range_tree_destroy(msp->ms_unflushed_frees); 2799 2800 for (int t = 0; t < TXG_SIZE; t++) { 2801 range_tree_destroy(msp->ms_allocating[t]); 2802 } 2803 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2804 range_tree_destroy(msp->ms_defer[t]); 2805 } 2806 } 2807 ASSERT0(msp->ms_deferspace); 2808 2809 for (int t = 0; t < TXG_SIZE; t++) 2810 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 2811 2812 range_tree_vacate(msp->ms_trim, NULL, NULL); 2813 range_tree_destroy(msp->ms_trim); 2814 2815 mutex_exit(&msp->ms_lock); 2816 cv_destroy(&msp->ms_load_cv); 2817 cv_destroy(&msp->ms_flush_cv); 2818 mutex_destroy(&msp->ms_lock); 2819 mutex_destroy(&msp->ms_sync_lock); 2820 ASSERT3U(msp->ms_allocator, ==, -1); 2821 2822 kmem_free(msp, sizeof (metaslab_t)); 2823 } 2824 2825 #define FRAGMENTATION_TABLE_SIZE 17 2826 2827 /* 2828 * This table defines a segment size based fragmentation metric that will 2829 * allow each metaslab to derive its own fragmentation value. This is done 2830 * by calculating the space in each bucket of the spacemap histogram and 2831 * multiplying that by the fragmentation metric in this table. Doing 2832 * this for all buckets and dividing it by the total amount of free 2833 * space in this metaslab (i.e. the total free space in all buckets) gives 2834 * us the fragmentation metric. This means that a high fragmentation metric 2835 * equates to most of the free space being comprised of small segments. 2836 * Conversely, if the metric is low, then most of the free space is in 2837 * large segments. A 10% change in fragmentation equates to approximately 2838 * double the number of segments. 2839 * 2840 * This table defines 0% fragmented space using 16MB segments. Testing has 2841 * shown that segments that are greater than or equal to 16MB do not suffer 2842 * from drastic performance problems. Using this value, we derive the rest 2843 * of the table. Since the fragmentation value is never stored on disk, it 2844 * is possible to change these calculations in the future. 2845 */ 2846 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 2847 100, /* 512B */ 2848 100, /* 1K */ 2849 98, /* 2K */ 2850 95, /* 4K */ 2851 90, /* 8K */ 2852 80, /* 16K */ 2853 70, /* 32K */ 2854 60, /* 64K */ 2855 50, /* 128K */ 2856 40, /* 256K */ 2857 30, /* 512K */ 2858 20, /* 1M */ 2859 15, /* 2M */ 2860 10, /* 4M */ 2861 5, /* 8M */ 2862 0 /* 16M */ 2863 }; 2864 2865 /* 2866 * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 2867 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 2868 * been upgraded and does not support this metric. Otherwise, the return 2869 * value should be in the range [0, 100]. 2870 */ 2871 static void 2872 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 2873 { 2874 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2875 uint64_t fragmentation = 0; 2876 uint64_t total = 0; 2877 boolean_t feature_enabled = spa_feature_is_enabled(spa, 2878 SPA_FEATURE_SPACEMAP_HISTOGRAM); 2879 2880 if (!feature_enabled) { 2881 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2882 return; 2883 } 2884 2885 /* 2886 * A null space map means that the entire metaslab is free 2887 * and thus is not fragmented. 2888 */ 2889 if (msp->ms_sm == NULL) { 2890 msp->ms_fragmentation = 0; 2891 return; 2892 } 2893 2894 /* 2895 * If this metaslab's space map has not been upgraded, flag it 2896 * so that we upgrade next time we encounter it. 2897 */ 2898 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 2899 uint64_t txg = spa_syncing_txg(spa); 2900 vdev_t *vd = msp->ms_group->mg_vd; 2901 2902 /* 2903 * If we've reached the final dirty txg, then we must 2904 * be shutting down the pool. We don't want to dirty 2905 * any data past this point so skip setting the condense 2906 * flag. We can retry this action the next time the pool 2907 * is imported. We also skip marking this metaslab for 2908 * condensing if the caller has explicitly set nodirty. 2909 */ 2910 if (!nodirty && 2911 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 2912 msp->ms_condense_wanted = B_TRUE; 2913 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2914 zfs_dbgmsg("txg %llu, requesting force condense: " 2915 "ms_id %llu, vdev_id %llu", txg, msp->ms_id, 2916 vd->vdev_id); 2917 } 2918 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2919 return; 2920 } 2921 2922 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 2923 uint64_t space = 0; 2924 uint8_t shift = msp->ms_sm->sm_shift; 2925 2926 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 2927 FRAGMENTATION_TABLE_SIZE - 1); 2928 2929 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 2930 continue; 2931 2932 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 2933 total += space; 2934 2935 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 2936 fragmentation += space * zfs_frag_table[idx]; 2937 } 2938 2939 if (total > 0) 2940 fragmentation /= total; 2941 ASSERT3U(fragmentation, <=, 100); 2942 2943 msp->ms_fragmentation = fragmentation; 2944 } 2945 2946 /* 2947 * Compute a weight -- a selection preference value -- for the given metaslab. 2948 * This is based on the amount of free space, the level of fragmentation, 2949 * the LBA range, and whether the metaslab is loaded. 2950 */ 2951 static uint64_t 2952 metaslab_space_weight(metaslab_t *msp) 2953 { 2954 metaslab_group_t *mg = msp->ms_group; 2955 vdev_t *vd = mg->mg_vd; 2956 uint64_t weight, space; 2957 2958 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2959 2960 /* 2961 * The baseline weight is the metaslab's free space. 2962 */ 2963 space = msp->ms_size - metaslab_allocated_space(msp); 2964 2965 if (metaslab_fragmentation_factor_enabled && 2966 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 2967 /* 2968 * Use the fragmentation information to inversely scale 2969 * down the baseline weight. We need to ensure that we 2970 * don't exclude this metaslab completely when it's 100% 2971 * fragmented. To avoid this we reduce the fragmented value 2972 * by 1. 2973 */ 2974 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 2975 2976 /* 2977 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 2978 * this metaslab again. The fragmentation metric may have 2979 * decreased the space to something smaller than 2980 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 2981 * so that we can consume any remaining space. 2982 */ 2983 if (space > 0 && space < SPA_MINBLOCKSIZE) 2984 space = SPA_MINBLOCKSIZE; 2985 } 2986 weight = space; 2987 2988 /* 2989 * Modern disks have uniform bit density and constant angular velocity. 2990 * Therefore, the outer recording zones are faster (higher bandwidth) 2991 * than the inner zones by the ratio of outer to inner track diameter, 2992 * which is typically around 2:1. We account for this by assigning 2993 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 2994 * In effect, this means that we'll select the metaslab with the most 2995 * free bandwidth rather than simply the one with the most free space. 2996 */ 2997 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 2998 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 2999 ASSERT(weight >= space && weight <= 2 * space); 3000 } 3001 3002 /* 3003 * If this metaslab is one we're actively using, adjust its 3004 * weight to make it preferable to any inactive metaslab so 3005 * we'll polish it off. If the fragmentation on this metaslab 3006 * has exceed our threshold, then don't mark it active. 3007 */ 3008 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 3009 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 3010 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 3011 } 3012 3013 WEIGHT_SET_SPACEBASED(weight); 3014 return (weight); 3015 } 3016 3017 /* 3018 * Return the weight of the specified metaslab, according to the segment-based 3019 * weighting algorithm. The metaslab must be loaded. This function can 3020 * be called within a sync pass since it relies only on the metaslab's 3021 * range tree which is always accurate when the metaslab is loaded. 3022 */ 3023 static uint64_t 3024 metaslab_weight_from_range_tree(metaslab_t *msp) 3025 { 3026 uint64_t weight = 0; 3027 uint32_t segments = 0; 3028 3029 ASSERT(msp->ms_loaded); 3030 3031 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 3032 i--) { 3033 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 3034 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3035 3036 segments <<= 1; 3037 segments += msp->ms_allocatable->rt_histogram[i]; 3038 3039 /* 3040 * The range tree provides more precision than the space map 3041 * and must be downgraded so that all values fit within the 3042 * space map's histogram. This allows us to compare loaded 3043 * vs. unloaded metaslabs to determine which metaslab is 3044 * considered "best". 3045 */ 3046 if (i > max_idx) 3047 continue; 3048 3049 if (segments != 0) { 3050 WEIGHT_SET_COUNT(weight, segments); 3051 WEIGHT_SET_INDEX(weight, i); 3052 WEIGHT_SET_ACTIVE(weight, 0); 3053 break; 3054 } 3055 } 3056 return (weight); 3057 } 3058 3059 /* 3060 * Calculate the weight based on the on-disk histogram. Should be applied 3061 * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3062 * give results consistent with the on-disk state 3063 */ 3064 static uint64_t 3065 metaslab_weight_from_spacemap(metaslab_t *msp) 3066 { 3067 space_map_t *sm = msp->ms_sm; 3068 ASSERT(!msp->ms_loaded); 3069 ASSERT(sm != NULL); 3070 ASSERT3U(space_map_object(sm), !=, 0); 3071 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3072 3073 /* 3074 * Create a joint histogram from all the segments that have made 3075 * it to the metaslab's space map histogram, that are not yet 3076 * available for allocation because they are still in the freeing 3077 * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3078 * these segments from the space map's histogram to get a more 3079 * accurate weight. 3080 */ 3081 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3082 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3083 deferspace_histogram[i] += msp->ms_synchist[i]; 3084 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3085 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3086 deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3087 } 3088 } 3089 3090 uint64_t weight = 0; 3091 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3092 ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3093 deferspace_histogram[i]); 3094 uint64_t count = 3095 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3096 if (count != 0) { 3097 WEIGHT_SET_COUNT(weight, count); 3098 WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3099 WEIGHT_SET_ACTIVE(weight, 0); 3100 break; 3101 } 3102 } 3103 return (weight); 3104 } 3105 3106 /* 3107 * Compute a segment-based weight for the specified metaslab. The weight 3108 * is determined by highest bucket in the histogram. The information 3109 * for the highest bucket is encoded into the weight value. 3110 */ 3111 static uint64_t 3112 metaslab_segment_weight(metaslab_t *msp) 3113 { 3114 metaslab_group_t *mg = msp->ms_group; 3115 uint64_t weight = 0; 3116 uint8_t shift = mg->mg_vd->vdev_ashift; 3117 3118 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3119 3120 /* 3121 * The metaslab is completely free. 3122 */ 3123 if (metaslab_allocated_space(msp) == 0) { 3124 int idx = highbit64(msp->ms_size) - 1; 3125 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3126 3127 if (idx < max_idx) { 3128 WEIGHT_SET_COUNT(weight, 1ULL); 3129 WEIGHT_SET_INDEX(weight, idx); 3130 } else { 3131 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3132 WEIGHT_SET_INDEX(weight, max_idx); 3133 } 3134 WEIGHT_SET_ACTIVE(weight, 0); 3135 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3136 return (weight); 3137 } 3138 3139 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3140 3141 /* 3142 * If the metaslab is fully allocated then just make the weight 0. 3143 */ 3144 if (metaslab_allocated_space(msp) == msp->ms_size) 3145 return (0); 3146 /* 3147 * If the metaslab is already loaded, then use the range tree to 3148 * determine the weight. Otherwise, we rely on the space map information 3149 * to generate the weight. 3150 */ 3151 if (msp->ms_loaded) { 3152 weight = metaslab_weight_from_range_tree(msp); 3153 } else { 3154 weight = metaslab_weight_from_spacemap(msp); 3155 } 3156 3157 /* 3158 * If the metaslab was active the last time we calculated its weight 3159 * then keep it active. We want to consume the entire region that 3160 * is associated with this weight. 3161 */ 3162 if (msp->ms_activation_weight != 0 && weight != 0) 3163 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3164 return (weight); 3165 } 3166 3167 /* 3168 * Determine if we should attempt to allocate from this metaslab. If the 3169 * metaslab is loaded, then we can determine if the desired allocation 3170 * can be satisfied by looking at the size of the maximum free segment 3171 * on that metaslab. Otherwise, we make our decision based on the metaslab's 3172 * weight. For segment-based weighting we can determine the maximum 3173 * allocation based on the index encoded in its value. For space-based 3174 * weights we rely on the entire weight (excluding the weight-type bit). 3175 */ 3176 static boolean_t 3177 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3178 { 3179 /* 3180 * If the metaslab is loaded, ms_max_size is definitive and we can use 3181 * the fast check. If it's not, the ms_max_size is a lower bound (once 3182 * set), and we should use the fast check as long as we're not in 3183 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3184 * seconds since the metaslab was unloaded. 3185 */ 3186 if (msp->ms_loaded || 3187 (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3188 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3189 return (msp->ms_max_size >= asize); 3190 3191 boolean_t should_allocate; 3192 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3193 /* 3194 * The metaslab segment weight indicates segments in the 3195 * range [2^i, 2^(i+1)), where i is the index in the weight. 3196 * Since the asize might be in the middle of the range, we 3197 * should attempt the allocation if asize < 2^(i+1). 3198 */ 3199 should_allocate = (asize < 3200 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3201 } else { 3202 should_allocate = (asize <= 3203 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3204 } 3205 3206 return (should_allocate); 3207 } 3208 3209 static uint64_t 3210 metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3211 { 3212 vdev_t *vd = msp->ms_group->mg_vd; 3213 spa_t *spa = vd->vdev_spa; 3214 uint64_t weight; 3215 3216 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3217 3218 metaslab_set_fragmentation(msp, nodirty); 3219 3220 /* 3221 * Update the maximum size. If the metaslab is loaded, this will 3222 * ensure that we get an accurate maximum size if newly freed space 3223 * has been added back into the free tree. If the metaslab is 3224 * unloaded, we check if there's a larger free segment in the 3225 * unflushed frees. This is a lower bound on the largest allocatable 3226 * segment size. Coalescing of adjacent entries may reveal larger 3227 * allocatable segments, but we aren't aware of those until loading 3228 * the space map into a range tree. 3229 */ 3230 if (msp->ms_loaded) { 3231 msp->ms_max_size = metaslab_largest_allocatable(msp); 3232 } else { 3233 msp->ms_max_size = MAX(msp->ms_max_size, 3234 metaslab_largest_unflushed_free(msp)); 3235 } 3236 3237 /* 3238 * Segment-based weighting requires space map histogram support. 3239 */ 3240 if (zfs_metaslab_segment_weight_enabled && 3241 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3242 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3243 sizeof (space_map_phys_t))) { 3244 weight = metaslab_segment_weight(msp); 3245 } else { 3246 weight = metaslab_space_weight(msp); 3247 } 3248 return (weight); 3249 } 3250 3251 void 3252 metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3253 { 3254 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3255 3256 /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3257 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3258 metaslab_group_sort(msp->ms_group, msp, 3259 metaslab_weight(msp, B_FALSE) | was_active); 3260 } 3261 3262 static int 3263 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3264 int allocator, uint64_t activation_weight) 3265 { 3266 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3267 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3268 3269 /* 3270 * If we're activating for the claim code, we don't want to actually 3271 * set the metaslab up for a specific allocator. 3272 */ 3273 if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3274 ASSERT0(msp->ms_activation_weight); 3275 msp->ms_activation_weight = msp->ms_weight; 3276 metaslab_group_sort(mg, msp, msp->ms_weight | 3277 activation_weight); 3278 return (0); 3279 } 3280 3281 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3282 &mga->mga_primary : &mga->mga_secondary); 3283 3284 mutex_enter(&mg->mg_lock); 3285 if (*mspp != NULL) { 3286 mutex_exit(&mg->mg_lock); 3287 return (EEXIST); 3288 } 3289 3290 *mspp = msp; 3291 ASSERT3S(msp->ms_allocator, ==, -1); 3292 msp->ms_allocator = allocator; 3293 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3294 3295 ASSERT0(msp->ms_activation_weight); 3296 msp->ms_activation_weight = msp->ms_weight; 3297 metaslab_group_sort_impl(mg, msp, 3298 msp->ms_weight | activation_weight); 3299 mutex_exit(&mg->mg_lock); 3300 3301 return (0); 3302 } 3303 3304 static int 3305 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3306 { 3307 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3308 3309 /* 3310 * The current metaslab is already activated for us so there 3311 * is nothing to do. Already activated though, doesn't mean 3312 * that this metaslab is activated for our allocator nor our 3313 * requested activation weight. The metaslab could have started 3314 * as an active one for our allocator but changed allocators 3315 * while we were waiting to grab its ms_lock or we stole it 3316 * [see find_valid_metaslab()]. This means that there is a 3317 * possibility of passivating a metaslab of another allocator 3318 * or from a different activation mask, from this thread. 3319 */ 3320 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3321 ASSERT(msp->ms_loaded); 3322 return (0); 3323 } 3324 3325 int error = metaslab_load(msp); 3326 if (error != 0) { 3327 metaslab_group_sort(msp->ms_group, msp, 0); 3328 return (error); 3329 } 3330 3331 /* 3332 * When entering metaslab_load() we may have dropped the 3333 * ms_lock because we were loading this metaslab, or we 3334 * were waiting for another thread to load it for us. In 3335 * that scenario, we recheck the weight of the metaslab 3336 * to see if it was activated by another thread. 3337 * 3338 * If the metaslab was activated for another allocator or 3339 * it was activated with a different activation weight (e.g. 3340 * we wanted to make it a primary but it was activated as 3341 * secondary) we return error (EBUSY). 3342 * 3343 * If the metaslab was activated for the same allocator 3344 * and requested activation mask, skip activating it. 3345 */ 3346 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3347 if (msp->ms_allocator != allocator) 3348 return (EBUSY); 3349 3350 if ((msp->ms_weight & activation_weight) == 0) 3351 return (SET_ERROR(EBUSY)); 3352 3353 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3354 msp->ms_primary); 3355 return (0); 3356 } 3357 3358 /* 3359 * If the metaslab has literally 0 space, it will have weight 0. In 3360 * that case, don't bother activating it. This can happen if the 3361 * metaslab had space during find_valid_metaslab, but another thread 3362 * loaded it and used all that space while we were waiting to grab the 3363 * lock. 3364 */ 3365 if (msp->ms_weight == 0) { 3366 ASSERT0(range_tree_space(msp->ms_allocatable)); 3367 return (SET_ERROR(ENOSPC)); 3368 } 3369 3370 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3371 allocator, activation_weight)) != 0) { 3372 return (error); 3373 } 3374 3375 ASSERT(msp->ms_loaded); 3376 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3377 3378 return (0); 3379 } 3380 3381 static void 3382 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3383 uint64_t weight) 3384 { 3385 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3386 ASSERT(msp->ms_loaded); 3387 3388 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3389 metaslab_group_sort(mg, msp, weight); 3390 return; 3391 } 3392 3393 mutex_enter(&mg->mg_lock); 3394 ASSERT3P(msp->ms_group, ==, mg); 3395 ASSERT3S(0, <=, msp->ms_allocator); 3396 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators); 3397 3398 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3399 if (msp->ms_primary) { 3400 ASSERT3P(mga->mga_primary, ==, msp); 3401 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3402 mga->mga_primary = NULL; 3403 } else { 3404 ASSERT3P(mga->mga_secondary, ==, msp); 3405 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3406 mga->mga_secondary = NULL; 3407 } 3408 msp->ms_allocator = -1; 3409 metaslab_group_sort_impl(mg, msp, weight); 3410 mutex_exit(&mg->mg_lock); 3411 } 3412 3413 static void 3414 metaslab_passivate(metaslab_t *msp, uint64_t weight) 3415 { 3416 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3417 3418 /* 3419 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3420 * this metaslab again. In that case, it had better be empty, 3421 * or we would be leaving space on the table. 3422 */ 3423 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3424 size >= SPA_MINBLOCKSIZE || 3425 range_tree_space(msp->ms_allocatable) == 0); 3426 ASSERT0(weight & METASLAB_ACTIVE_MASK); 3427 3428 ASSERT(msp->ms_activation_weight != 0); 3429 msp->ms_activation_weight = 0; 3430 metaslab_passivate_allocator(msp->ms_group, msp, weight); 3431 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3432 } 3433 3434 /* 3435 * Segment-based metaslabs are activated once and remain active until 3436 * we either fail an allocation attempt (similar to space-based metaslabs) 3437 * or have exhausted the free space in zfs_metaslab_switch_threshold 3438 * buckets since the metaslab was activated. This function checks to see 3439 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3440 * metaslab and passivates it proactively. This will allow us to select a 3441 * metaslab with a larger contiguous region, if any, remaining within this 3442 * metaslab group. If we're in sync pass > 1, then we continue using this 3443 * metaslab so that we don't dirty more block and cause more sync passes. 3444 */ 3445 static void 3446 metaslab_segment_may_passivate(metaslab_t *msp) 3447 { 3448 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3449 3450 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3451 return; 3452 3453 /* 3454 * Since we are in the middle of a sync pass, the most accurate 3455 * information that is accessible to us is the in-core range tree 3456 * histogram; calculate the new weight based on that information. 3457 */ 3458 uint64_t weight = metaslab_weight_from_range_tree(msp); 3459 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3460 int current_idx = WEIGHT_GET_INDEX(weight); 3461 3462 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3463 metaslab_passivate(msp, weight); 3464 } 3465 3466 static void 3467 metaslab_preload(void *arg) 3468 { 3469 metaslab_t *msp = arg; 3470 metaslab_class_t *mc = msp->ms_group->mg_class; 3471 spa_t *spa = mc->mc_spa; 3472 fstrans_cookie_t cookie = spl_fstrans_mark(); 3473 3474 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3475 3476 mutex_enter(&msp->ms_lock); 3477 (void) metaslab_load(msp); 3478 metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3479 mutex_exit(&msp->ms_lock); 3480 spl_fstrans_unmark(cookie); 3481 } 3482 3483 static void 3484 metaslab_group_preload(metaslab_group_t *mg) 3485 { 3486 spa_t *spa = mg->mg_vd->vdev_spa; 3487 metaslab_t *msp; 3488 avl_tree_t *t = &mg->mg_metaslab_tree; 3489 int m = 0; 3490 3491 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 3492 taskq_wait_outstanding(mg->mg_taskq, 0); 3493 return; 3494 } 3495 3496 mutex_enter(&mg->mg_lock); 3497 3498 /* 3499 * Load the next potential metaslabs 3500 */ 3501 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3502 ASSERT3P(msp->ms_group, ==, mg); 3503 3504 /* 3505 * We preload only the maximum number of metaslabs specified 3506 * by metaslab_preload_limit. If a metaslab is being forced 3507 * to condense then we preload it too. This will ensure 3508 * that force condensing happens in the next txg. 3509 */ 3510 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3511 continue; 3512 } 3513 3514 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 3515 msp, TQ_SLEEP) != TASKQID_INVALID); 3516 } 3517 mutex_exit(&mg->mg_lock); 3518 } 3519 3520 /* 3521 * Determine if the space map's on-disk footprint is past our tolerance for 3522 * inefficiency. We would like to use the following criteria to make our 3523 * decision: 3524 * 3525 * 1. Do not condense if the size of the space map object would dramatically 3526 * increase as a result of writing out the free space range tree. 3527 * 3528 * 2. Condense if the on on-disk space map representation is at least 3529 * zfs_condense_pct/100 times the size of the optimal representation 3530 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3531 * 3532 * 3. Do not condense if the on-disk size of the space map does not actually 3533 * decrease. 3534 * 3535 * Unfortunately, we cannot compute the on-disk size of the space map in this 3536 * context because we cannot accurately compute the effects of compression, etc. 3537 * Instead, we apply the heuristic described in the block comment for 3538 * zfs_metaslab_condense_block_threshold - we only condense if the space used 3539 * is greater than a threshold number of blocks. 3540 */ 3541 static boolean_t 3542 metaslab_should_condense(metaslab_t *msp) 3543 { 3544 space_map_t *sm = msp->ms_sm; 3545 vdev_t *vd = msp->ms_group->mg_vd; 3546 uint64_t vdev_blocksize = 1 << vd->vdev_ashift; 3547 3548 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3549 ASSERT(msp->ms_loaded); 3550 ASSERT(sm != NULL); 3551 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3552 3553 /* 3554 * We always condense metaslabs that are empty and metaslabs for 3555 * which a condense request has been made. 3556 */ 3557 if (range_tree_numsegs(msp->ms_allocatable) == 0 || 3558 msp->ms_condense_wanted) 3559 return (B_TRUE); 3560 3561 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3562 uint64_t object_size = space_map_length(sm); 3563 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3564 msp->ms_allocatable, SM_NO_VDEVID); 3565 3566 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3567 object_size > zfs_metaslab_condense_block_threshold * record_size); 3568 } 3569 3570 /* 3571 * Condense the on-disk space map representation to its minimized form. 3572 * The minimized form consists of a small number of allocations followed 3573 * by the entries of the free range tree (ms_allocatable). The condensed 3574 * spacemap contains all the entries of previous TXGs (including those in 3575 * the pool-wide log spacemaps; thus this is effectively a superset of 3576 * metaslab_flush()), but this TXG's entries still need to be written. 3577 */ 3578 static void 3579 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3580 { 3581 range_tree_t *condense_tree; 3582 space_map_t *sm = msp->ms_sm; 3583 uint64_t txg = dmu_tx_get_txg(tx); 3584 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3585 3586 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3587 ASSERT(msp->ms_loaded); 3588 ASSERT(msp->ms_sm != NULL); 3589 3590 /* 3591 * In order to condense the space map, we need to change it so it 3592 * only describes which segments are currently allocated and free. 3593 * 3594 * All the current free space resides in the ms_allocatable, all 3595 * the ms_defer trees, and all the ms_allocating trees. We ignore 3596 * ms_freed because it is empty because we're in sync pass 1. We 3597 * ignore ms_freeing because these changes are not yet reflected 3598 * in the spacemap (they will be written later this txg). 3599 * 3600 * So to truncate the space map to represent all the entries of 3601 * previous TXGs we do the following: 3602 * 3603 * 1] We create a range tree (condense tree) that is 100% empty. 3604 * 2] We add to it all segments found in the ms_defer trees 3605 * as those segments are marked as free in the original space 3606 * map. We do the same with the ms_allocating trees for the same 3607 * reason. Adding these segments should be a relatively 3608 * inexpensive operation since we expect these trees to have a 3609 * small number of nodes. 3610 * 3] We vacate any unflushed allocs, since they are not frees we 3611 * need to add to the condense tree. Then we vacate any 3612 * unflushed frees as they should already be part of ms_allocatable. 3613 * 4] At this point, we would ideally like to add all segments 3614 * in the ms_allocatable tree from the condense tree. This way 3615 * we would write all the entries of the condense tree as the 3616 * condensed space map, which would only contain freed 3617 * segments with everything else assumed to be allocated. 3618 * 3619 * Doing so can be prohibitively expensive as ms_allocatable can 3620 * be large, and therefore computationally expensive to add to 3621 * the condense_tree. Instead we first sync out an entry marking 3622 * everything as allocated, then the condense_tree and then the 3623 * ms_allocatable, in the condensed space map. While this is not 3624 * optimal, it is typically close to optimal and more importantly 3625 * much cheaper to compute. 3626 * 3627 * 5] Finally, as both of the unflushed trees were written to our 3628 * new and condensed metaslab space map, we basically flushed 3629 * all the unflushed changes to disk, thus we call 3630 * metaslab_flush_update(). 3631 */ 3632 ASSERT3U(spa_sync_pass(spa), ==, 1); 3633 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3634 3635 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 3636 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg, 3637 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id, 3638 spa->spa_name, space_map_length(msp->ms_sm), 3639 range_tree_numsegs(msp->ms_allocatable), 3640 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3641 3642 msp->ms_condense_wanted = B_FALSE; 3643 3644 range_seg_type_t type; 3645 uint64_t shift, start; 3646 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3647 &start, &shift); 3648 3649 condense_tree = range_tree_create(NULL, type, NULL, start, shift); 3650 3651 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3652 range_tree_walk(msp->ms_defer[t], 3653 range_tree_add, condense_tree); 3654 } 3655 3656 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3657 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3658 range_tree_add, condense_tree); 3659 } 3660 3661 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3662 metaslab_unflushed_changes_memused(msp)); 3663 spa->spa_unflushed_stats.sus_memused -= 3664 metaslab_unflushed_changes_memused(msp); 3665 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3666 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3667 3668 /* 3669 * We're about to drop the metaslab's lock thus allowing other 3670 * consumers to change it's content. Set the metaslab's ms_condensing 3671 * flag to ensure that allocations on this metaslab do not occur 3672 * while we're in the middle of committing it to disk. This is only 3673 * critical for ms_allocatable as all other range trees use per TXG 3674 * views of their content. 3675 */ 3676 msp->ms_condensing = B_TRUE; 3677 3678 mutex_exit(&msp->ms_lock); 3679 uint64_t object = space_map_object(msp->ms_sm); 3680 space_map_truncate(sm, 3681 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3682 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3683 3684 /* 3685 * space_map_truncate() may have reallocated the spacemap object. 3686 * If so, update the vdev_ms_array. 3687 */ 3688 if (space_map_object(msp->ms_sm) != object) { 3689 object = space_map_object(msp->ms_sm); 3690 dmu_write(spa->spa_meta_objset, 3691 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3692 msp->ms_id, sizeof (uint64_t), &object, tx); 3693 } 3694 3695 /* 3696 * Note: 3697 * When the log space map feature is enabled, each space map will 3698 * always have ALLOCS followed by FREES for each sync pass. This is 3699 * typically true even when the log space map feature is disabled, 3700 * except from the case where a metaslab goes through metaslab_sync() 3701 * and gets condensed. In that case the metaslab's space map will have 3702 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3703 * followed by FREES (due to space_map_write() in metaslab_sync()) for 3704 * sync pass 1. 3705 */ 3706 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start, 3707 shift); 3708 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3709 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3710 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3711 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3712 3713 range_tree_vacate(condense_tree, NULL, NULL); 3714 range_tree_destroy(condense_tree); 3715 range_tree_vacate(tmp_tree, NULL, NULL); 3716 range_tree_destroy(tmp_tree); 3717 mutex_enter(&msp->ms_lock); 3718 3719 msp->ms_condensing = B_FALSE; 3720 metaslab_flush_update(msp, tx); 3721 } 3722 3723 /* 3724 * Called when the metaslab has been flushed (its own spacemap now reflects 3725 * all the contents of the pool-wide spacemap log). Updates the metaslab's 3726 * metadata and any pool-wide related log space map data (e.g. summary, 3727 * obsolete logs, etc..) to reflect that. 3728 */ 3729 static void 3730 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 3731 { 3732 metaslab_group_t *mg = msp->ms_group; 3733 spa_t *spa = mg->mg_vd->vdev_spa; 3734 3735 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3736 3737 ASSERT3U(spa_sync_pass(spa), ==, 1); 3738 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3739 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3740 3741 /* 3742 * Just because a metaslab got flushed, that doesn't mean that 3743 * it will pass through metaslab_sync_done(). Thus, make sure to 3744 * update ms_synced_length here in case it doesn't. 3745 */ 3746 msp->ms_synced_length = space_map_length(msp->ms_sm); 3747 3748 /* 3749 * We may end up here from metaslab_condense() without the 3750 * feature being active. In that case this is a no-op. 3751 */ 3752 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 3753 return; 3754 3755 ASSERT(spa_syncing_log_sm(spa) != NULL); 3756 ASSERT(msp->ms_sm != NULL); 3757 ASSERT(metaslab_unflushed_txg(msp) != 0); 3758 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3759 3760 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 3761 3762 /* update metaslab's position in our flushing tree */ 3763 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 3764 mutex_enter(&spa->spa_flushed_ms_lock); 3765 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 3766 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3767 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3768 mutex_exit(&spa->spa_flushed_ms_lock); 3769 3770 /* update metaslab counts of spa_log_sm_t nodes */ 3771 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 3772 spa_log_sm_increment_current_mscount(spa); 3773 3774 /* cleanup obsolete logs if any */ 3775 uint64_t log_blocks_before = spa_log_sm_nblocks(spa); 3776 spa_cleanup_old_sm_logs(spa, tx); 3777 uint64_t log_blocks_after = spa_log_sm_nblocks(spa); 3778 VERIFY3U(log_blocks_after, <=, log_blocks_before); 3779 3780 /* update log space map summary */ 3781 uint64_t blocks_gone = log_blocks_before - log_blocks_after; 3782 spa_log_summary_add_flushed_metaslab(spa); 3783 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg); 3784 spa_log_summary_decrement_blkcount(spa, blocks_gone); 3785 } 3786 3787 boolean_t 3788 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 3789 { 3790 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3791 3792 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3793 ASSERT3U(spa_sync_pass(spa), ==, 1); 3794 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 3795 3796 ASSERT(msp->ms_sm != NULL); 3797 ASSERT(metaslab_unflushed_txg(msp) != 0); 3798 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 3799 3800 /* 3801 * There is nothing wrong with flushing the same metaslab twice, as 3802 * this codepath should work on that case. However, the current 3803 * flushing scheme makes sure to avoid this situation as we would be 3804 * making all these calls without having anything meaningful to write 3805 * to disk. We assert this behavior here. 3806 */ 3807 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 3808 3809 /* 3810 * We can not flush while loading, because then we would 3811 * not load the ms_unflushed_{allocs,frees}. 3812 */ 3813 if (msp->ms_loading) 3814 return (B_FALSE); 3815 3816 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3817 metaslab_verify_weight_and_frag(msp); 3818 3819 /* 3820 * Metaslab condensing is effectively flushing. Therefore if the 3821 * metaslab can be condensed we can just condense it instead of 3822 * flushing it. 3823 * 3824 * Note that metaslab_condense() does call metaslab_flush_update() 3825 * so we can just return immediately after condensing. We also 3826 * don't need to care about setting ms_flushing or broadcasting 3827 * ms_flush_cv, even if we temporarily drop the ms_lock in 3828 * metaslab_condense(), as the metaslab is already loaded. 3829 */ 3830 if (msp->ms_loaded && metaslab_should_condense(msp)) { 3831 metaslab_group_t *mg = msp->ms_group; 3832 3833 /* 3834 * For all histogram operations below refer to the 3835 * comments of metaslab_sync() where we follow a 3836 * similar procedure. 3837 */ 3838 metaslab_group_histogram_verify(mg); 3839 metaslab_class_histogram_verify(mg->mg_class); 3840 metaslab_group_histogram_remove(mg, msp); 3841 3842 metaslab_condense(msp, tx); 3843 3844 space_map_histogram_clear(msp->ms_sm); 3845 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 3846 ASSERT(range_tree_is_empty(msp->ms_freed)); 3847 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3848 space_map_histogram_add(msp->ms_sm, 3849 msp->ms_defer[t], tx); 3850 } 3851 metaslab_aux_histograms_update(msp); 3852 3853 metaslab_group_histogram_add(mg, msp); 3854 metaslab_group_histogram_verify(mg); 3855 metaslab_class_histogram_verify(mg->mg_class); 3856 3857 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3858 3859 /* 3860 * Since we recreated the histogram (and potentially 3861 * the ms_sm too while condensing) ensure that the 3862 * weight is updated too because we are not guaranteed 3863 * that this metaslab is dirty and will go through 3864 * metaslab_sync_done(). 3865 */ 3866 metaslab_recalculate_weight_and_sort(msp); 3867 return (B_TRUE); 3868 } 3869 3870 msp->ms_flushing = B_TRUE; 3871 uint64_t sm_len_before = space_map_length(msp->ms_sm); 3872 3873 mutex_exit(&msp->ms_lock); 3874 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 3875 SM_NO_VDEVID, tx); 3876 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 3877 SM_NO_VDEVID, tx); 3878 mutex_enter(&msp->ms_lock); 3879 3880 uint64_t sm_len_after = space_map_length(msp->ms_sm); 3881 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 3882 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 3883 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 3884 "appended %llu bytes", dmu_tx_get_txg(tx), spa_name(spa), 3885 msp->ms_group->mg_vd->vdev_id, msp->ms_id, 3886 range_tree_space(msp->ms_unflushed_allocs), 3887 range_tree_space(msp->ms_unflushed_frees), 3888 (sm_len_after - sm_len_before)); 3889 } 3890 3891 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3892 metaslab_unflushed_changes_memused(msp)); 3893 spa->spa_unflushed_stats.sus_memused -= 3894 metaslab_unflushed_changes_memused(msp); 3895 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3896 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3897 3898 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3899 metaslab_verify_weight_and_frag(msp); 3900 3901 metaslab_flush_update(msp, tx); 3902 3903 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3904 metaslab_verify_weight_and_frag(msp); 3905 3906 msp->ms_flushing = B_FALSE; 3907 cv_broadcast(&msp->ms_flush_cv); 3908 return (B_TRUE); 3909 } 3910 3911 /* 3912 * Write a metaslab to disk in the context of the specified transaction group. 3913 */ 3914 void 3915 metaslab_sync(metaslab_t *msp, uint64_t txg) 3916 { 3917 metaslab_group_t *mg = msp->ms_group; 3918 vdev_t *vd = mg->mg_vd; 3919 spa_t *spa = vd->vdev_spa; 3920 objset_t *mos = spa_meta_objset(spa); 3921 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 3922 dmu_tx_t *tx; 3923 3924 ASSERT(!vd->vdev_ishole); 3925 3926 /* 3927 * This metaslab has just been added so there's no work to do now. 3928 */ 3929 if (msp->ms_freeing == NULL) { 3930 ASSERT3P(alloctree, ==, NULL); 3931 return; 3932 } 3933 3934 ASSERT3P(alloctree, !=, NULL); 3935 ASSERT3P(msp->ms_freeing, !=, NULL); 3936 ASSERT3P(msp->ms_freed, !=, NULL); 3937 ASSERT3P(msp->ms_checkpointing, !=, NULL); 3938 ASSERT3P(msp->ms_trim, !=, NULL); 3939 3940 /* 3941 * Normally, we don't want to process a metaslab if there are no 3942 * allocations or frees to perform. However, if the metaslab is being 3943 * forced to condense, it's loaded and we're not beyond the final 3944 * dirty txg, we need to let it through. Not condensing beyond the 3945 * final dirty txg prevents an issue where metaslabs that need to be 3946 * condensed but were loaded for other reasons could cause a panic 3947 * here. By only checking the txg in that branch of the conditional, 3948 * we preserve the utility of the VERIFY statements in all other 3949 * cases. 3950 */ 3951 if (range_tree_is_empty(alloctree) && 3952 range_tree_is_empty(msp->ms_freeing) && 3953 range_tree_is_empty(msp->ms_checkpointing) && 3954 !(msp->ms_loaded && msp->ms_condense_wanted && 3955 txg <= spa_final_dirty_txg(spa))) 3956 return; 3957 3958 3959 VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 3960 3961 /* 3962 * The only state that can actually be changing concurrently 3963 * with metaslab_sync() is the metaslab's ms_allocatable. No 3964 * other thread can be modifying this txg's alloc, freeing, 3965 * freed, or space_map_phys_t. We drop ms_lock whenever we 3966 * could call into the DMU, because the DMU can call down to 3967 * us (e.g. via zio_free()) at any time. 3968 * 3969 * The spa_vdev_remove_thread() can be reading metaslab state 3970 * concurrently, and it is locked out by the ms_sync_lock. 3971 * Note that the ms_lock is insufficient for this, because it 3972 * is dropped by space_map_write(). 3973 */ 3974 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3975 3976 /* 3977 * Generate a log space map if one doesn't exist already. 3978 */ 3979 spa_generate_syncing_log_sm(spa, tx); 3980 3981 if (msp->ms_sm == NULL) { 3982 uint64_t new_object = space_map_alloc(mos, 3983 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3984 zfs_metaslab_sm_blksz_with_log : 3985 zfs_metaslab_sm_blksz_no_log, tx); 3986 VERIFY3U(new_object, !=, 0); 3987 3988 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 3989 msp->ms_id, sizeof (uint64_t), &new_object, tx); 3990 3991 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 3992 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 3993 ASSERT(msp->ms_sm != NULL); 3994 3995 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3996 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3997 ASSERT0(metaslab_allocated_space(msp)); 3998 } 3999 4000 if (metaslab_unflushed_txg(msp) == 0 && 4001 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 4002 ASSERT(spa_syncing_log_sm(spa) != NULL); 4003 4004 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 4005 spa_log_sm_increment_current_mscount(spa); 4006 spa_log_summary_add_flushed_metaslab(spa); 4007 4008 ASSERT(msp->ms_sm != NULL); 4009 mutex_enter(&spa->spa_flushed_ms_lock); 4010 avl_add(&spa->spa_metaslabs_by_flushed, msp); 4011 mutex_exit(&spa->spa_flushed_ms_lock); 4012 4013 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 4014 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 4015 } 4016 4017 if (!range_tree_is_empty(msp->ms_checkpointing) && 4018 vd->vdev_checkpoint_sm == NULL) { 4019 ASSERT(spa_has_checkpoint(spa)); 4020 4021 uint64_t new_object = space_map_alloc(mos, 4022 zfs_vdev_standard_sm_blksz, tx); 4023 VERIFY3U(new_object, !=, 0); 4024 4025 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 4026 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 4027 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4028 4029 /* 4030 * We save the space map object as an entry in vdev_top_zap 4031 * so it can be retrieved when the pool is reopened after an 4032 * export or through zdb. 4033 */ 4034 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 4035 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 4036 sizeof (new_object), 1, &new_object, tx)); 4037 } 4038 4039 mutex_enter(&msp->ms_sync_lock); 4040 mutex_enter(&msp->ms_lock); 4041 4042 /* 4043 * Note: metaslab_condense() clears the space map's histogram. 4044 * Therefore we must verify and remove this histogram before 4045 * condensing. 4046 */ 4047 metaslab_group_histogram_verify(mg); 4048 metaslab_class_histogram_verify(mg->mg_class); 4049 metaslab_group_histogram_remove(mg, msp); 4050 4051 if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4052 metaslab_should_condense(msp)) 4053 metaslab_condense(msp, tx); 4054 4055 /* 4056 * We'll be going to disk to sync our space accounting, thus we 4057 * drop the ms_lock during that time so allocations coming from 4058 * open-context (ZIL) for future TXGs do not block. 4059 */ 4060 mutex_exit(&msp->ms_lock); 4061 space_map_t *log_sm = spa_syncing_log_sm(spa); 4062 if (log_sm != NULL) { 4063 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4064 4065 space_map_write(log_sm, alloctree, SM_ALLOC, 4066 vd->vdev_id, tx); 4067 space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4068 vd->vdev_id, tx); 4069 mutex_enter(&msp->ms_lock); 4070 4071 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4072 metaslab_unflushed_changes_memused(msp)); 4073 spa->spa_unflushed_stats.sus_memused -= 4074 metaslab_unflushed_changes_memused(msp); 4075 range_tree_remove_xor_add(alloctree, 4076 msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4077 range_tree_remove_xor_add(msp->ms_freeing, 4078 msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4079 spa->spa_unflushed_stats.sus_memused += 4080 metaslab_unflushed_changes_memused(msp); 4081 } else { 4082 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4083 4084 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4085 SM_NO_VDEVID, tx); 4086 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4087 SM_NO_VDEVID, tx); 4088 mutex_enter(&msp->ms_lock); 4089 } 4090 4091 msp->ms_allocated_space += range_tree_space(alloctree); 4092 ASSERT3U(msp->ms_allocated_space, >=, 4093 range_tree_space(msp->ms_freeing)); 4094 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing); 4095 4096 if (!range_tree_is_empty(msp->ms_checkpointing)) { 4097 ASSERT(spa_has_checkpoint(spa)); 4098 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4099 4100 /* 4101 * Since we are doing writes to disk and the ms_checkpointing 4102 * tree won't be changing during that time, we drop the 4103 * ms_lock while writing to the checkpoint space map, for the 4104 * same reason mentioned above. 4105 */ 4106 mutex_exit(&msp->ms_lock); 4107 space_map_write(vd->vdev_checkpoint_sm, 4108 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4109 mutex_enter(&msp->ms_lock); 4110 4111 spa->spa_checkpoint_info.sci_dspace += 4112 range_tree_space(msp->ms_checkpointing); 4113 vd->vdev_stat.vs_checkpoint_space += 4114 range_tree_space(msp->ms_checkpointing); 4115 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4116 -space_map_allocated(vd->vdev_checkpoint_sm)); 4117 4118 range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4119 } 4120 4121 if (msp->ms_loaded) { 4122 /* 4123 * When the space map is loaded, we have an accurate 4124 * histogram in the range tree. This gives us an opportunity 4125 * to bring the space map's histogram up-to-date so we clear 4126 * it first before updating it. 4127 */ 4128 space_map_histogram_clear(msp->ms_sm); 4129 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4130 4131 /* 4132 * Since we've cleared the histogram we need to add back 4133 * any free space that has already been processed, plus 4134 * any deferred space. This allows the on-disk histogram 4135 * to accurately reflect all free space even if some space 4136 * is not yet available for allocation (i.e. deferred). 4137 */ 4138 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4139 4140 /* 4141 * Add back any deferred free space that has not been 4142 * added back into the in-core free tree yet. This will 4143 * ensure that we don't end up with a space map histogram 4144 * that is completely empty unless the metaslab is fully 4145 * allocated. 4146 */ 4147 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4148 space_map_histogram_add(msp->ms_sm, 4149 msp->ms_defer[t], tx); 4150 } 4151 } 4152 4153 /* 4154 * Always add the free space from this sync pass to the space 4155 * map histogram. We want to make sure that the on-disk histogram 4156 * accounts for all free space. If the space map is not loaded, 4157 * then we will lose some accuracy but will correct it the next 4158 * time we load the space map. 4159 */ 4160 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4161 metaslab_aux_histograms_update(msp); 4162 4163 metaslab_group_histogram_add(mg, msp); 4164 metaslab_group_histogram_verify(mg); 4165 metaslab_class_histogram_verify(mg->mg_class); 4166 4167 /* 4168 * For sync pass 1, we avoid traversing this txg's free range tree 4169 * and instead will just swap the pointers for freeing and freed. 4170 * We can safely do this since the freed_tree is guaranteed to be 4171 * empty on the initial pass. 4172 * 4173 * Keep in mind that even if we are currently using a log spacemap 4174 * we want current frees to end up in the ms_allocatable (but not 4175 * get appended to the ms_sm) so their ranges can be reused as usual. 4176 */ 4177 if (spa_sync_pass(spa) == 1) { 4178 range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4179 ASSERT0(msp->ms_allocated_this_txg); 4180 } else { 4181 range_tree_vacate(msp->ms_freeing, 4182 range_tree_add, msp->ms_freed); 4183 } 4184 msp->ms_allocated_this_txg += range_tree_space(alloctree); 4185 range_tree_vacate(alloctree, NULL, NULL); 4186 4187 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4188 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4189 & TXG_MASK])); 4190 ASSERT0(range_tree_space(msp->ms_freeing)); 4191 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4192 4193 mutex_exit(&msp->ms_lock); 4194 4195 /* 4196 * Verify that the space map object ID has been recorded in the 4197 * vdev_ms_array. 4198 */ 4199 uint64_t object; 4200 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4201 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4202 VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4203 4204 mutex_exit(&msp->ms_sync_lock); 4205 dmu_tx_commit(tx); 4206 } 4207 4208 static void 4209 metaslab_evict(metaslab_t *msp, uint64_t txg) 4210 { 4211 if (!msp->ms_loaded || msp->ms_disabled != 0) 4212 return; 4213 4214 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4215 VERIFY0(range_tree_space( 4216 msp->ms_allocating[(txg + t) & TXG_MASK])); 4217 } 4218 if (msp->ms_allocator != -1) 4219 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4220 4221 if (!metaslab_debug_unload) 4222 metaslab_unload(msp); 4223 } 4224 4225 /* 4226 * Called after a transaction group has completely synced to mark 4227 * all of the metaslab's free space as usable. 4228 */ 4229 void 4230 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4231 { 4232 metaslab_group_t *mg = msp->ms_group; 4233 vdev_t *vd = mg->mg_vd; 4234 spa_t *spa = vd->vdev_spa; 4235 range_tree_t **defer_tree; 4236 int64_t alloc_delta, defer_delta; 4237 boolean_t defer_allowed = B_TRUE; 4238 4239 ASSERT(!vd->vdev_ishole); 4240 4241 mutex_enter(&msp->ms_lock); 4242 4243 /* 4244 * If this metaslab is just becoming available, initialize its 4245 * range trees and add its capacity to the vdev. 4246 */ 4247 if (msp->ms_freed == NULL) { 4248 range_seg_type_t type; 4249 uint64_t shift, start; 4250 type = metaslab_calculate_range_tree_type(vd, msp, &start, 4251 &shift); 4252 4253 for (int t = 0; t < TXG_SIZE; t++) { 4254 ASSERT(msp->ms_allocating[t] == NULL); 4255 4256 msp->ms_allocating[t] = range_tree_create(NULL, type, 4257 NULL, start, shift); 4258 } 4259 4260 ASSERT3P(msp->ms_freeing, ==, NULL); 4261 msp->ms_freeing = range_tree_create(NULL, type, NULL, start, 4262 shift); 4263 4264 ASSERT3P(msp->ms_freed, ==, NULL); 4265 msp->ms_freed = range_tree_create(NULL, type, NULL, start, 4266 shift); 4267 4268 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4269 ASSERT3P(msp->ms_defer[t], ==, NULL); 4270 msp->ms_defer[t] = range_tree_create(NULL, type, NULL, 4271 start, shift); 4272 } 4273 4274 ASSERT3P(msp->ms_checkpointing, ==, NULL); 4275 msp->ms_checkpointing = range_tree_create(NULL, type, NULL, 4276 start, shift); 4277 4278 ASSERT3P(msp->ms_unflushed_allocs, ==, NULL); 4279 msp->ms_unflushed_allocs = range_tree_create(NULL, type, NULL, 4280 start, shift); 4281 4282 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 4283 mrap->mra_bt = &msp->ms_unflushed_frees_by_size; 4284 mrap->mra_floor_shift = metaslab_by_size_min_shift; 4285 ASSERT3P(msp->ms_unflushed_frees, ==, NULL); 4286 msp->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops, 4287 type, mrap, start, shift); 4288 4289 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4290 } 4291 ASSERT0(range_tree_space(msp->ms_freeing)); 4292 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4293 4294 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4295 4296 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4297 metaslab_class_get_alloc(spa_normal_class(spa)); 4298 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 4299 defer_allowed = B_FALSE; 4300 } 4301 4302 defer_delta = 0; 4303 alloc_delta = msp->ms_allocated_this_txg - 4304 range_tree_space(msp->ms_freed); 4305 4306 if (defer_allowed) { 4307 defer_delta = range_tree_space(msp->ms_freed) - 4308 range_tree_space(*defer_tree); 4309 } else { 4310 defer_delta -= range_tree_space(*defer_tree); 4311 } 4312 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4313 defer_delta, 0); 4314 4315 if (spa_syncing_log_sm(spa) == NULL) { 4316 /* 4317 * If there's a metaslab_load() in progress and we don't have 4318 * a log space map, it means that we probably wrote to the 4319 * metaslab's space map. If this is the case, we need to 4320 * make sure that we wait for the load to complete so that we 4321 * have a consistent view at the in-core side of the metaslab. 4322 */ 4323 metaslab_load_wait(msp); 4324 } else { 4325 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4326 } 4327 4328 /* 4329 * When auto-trimming is enabled, free ranges which are added to 4330 * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4331 * periodically consumed by the vdev_autotrim_thread() which issues 4332 * trims for all ranges and then vacates the tree. The ms_trim tree 4333 * can be discarded at any time with the sole consequence of recent 4334 * frees not being trimmed. 4335 */ 4336 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4337 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim); 4338 if (!defer_allowed) { 4339 range_tree_walk(msp->ms_freed, range_tree_add, 4340 msp->ms_trim); 4341 } 4342 } else { 4343 range_tree_vacate(msp->ms_trim, NULL, NULL); 4344 } 4345 4346 /* 4347 * Move the frees from the defer_tree back to the free 4348 * range tree (if it's loaded). Swap the freed_tree and 4349 * the defer_tree -- this is safe to do because we've 4350 * just emptied out the defer_tree. 4351 */ 4352 range_tree_vacate(*defer_tree, 4353 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable); 4354 if (defer_allowed) { 4355 range_tree_swap(&msp->ms_freed, defer_tree); 4356 } else { 4357 range_tree_vacate(msp->ms_freed, 4358 msp->ms_loaded ? range_tree_add : NULL, 4359 msp->ms_allocatable); 4360 } 4361 4362 msp->ms_synced_length = space_map_length(msp->ms_sm); 4363 4364 msp->ms_deferspace += defer_delta; 4365 ASSERT3S(msp->ms_deferspace, >=, 0); 4366 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4367 if (msp->ms_deferspace != 0) { 4368 /* 4369 * Keep syncing this metaslab until all deferred frees 4370 * are back in circulation. 4371 */ 4372 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4373 } 4374 metaslab_aux_histograms_update_done(msp, defer_allowed); 4375 4376 if (msp->ms_new) { 4377 msp->ms_new = B_FALSE; 4378 mutex_enter(&mg->mg_lock); 4379 mg->mg_ms_ready++; 4380 mutex_exit(&mg->mg_lock); 4381 } 4382 4383 /* 4384 * Re-sort metaslab within its group now that we've adjusted 4385 * its allocatable space. 4386 */ 4387 metaslab_recalculate_weight_and_sort(msp); 4388 4389 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4390 ASSERT0(range_tree_space(msp->ms_freeing)); 4391 ASSERT0(range_tree_space(msp->ms_freed)); 4392 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4393 msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4394 msp->ms_allocated_this_txg = 0; 4395 mutex_exit(&msp->ms_lock); 4396 } 4397 4398 void 4399 metaslab_sync_reassess(metaslab_group_t *mg) 4400 { 4401 spa_t *spa = mg->mg_class->mc_spa; 4402 4403 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4404 metaslab_group_alloc_update(mg); 4405 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4406 4407 /* 4408 * Preload the next potential metaslabs but only on active 4409 * metaslab groups. We can get into a state where the metaslab 4410 * is no longer active since we dirty metaslabs as we remove a 4411 * a device, thus potentially making the metaslab group eligible 4412 * for preloading. 4413 */ 4414 if (mg->mg_activation_count > 0) { 4415 metaslab_group_preload(mg); 4416 } 4417 spa_config_exit(spa, SCL_ALLOC, FTAG); 4418 } 4419 4420 /* 4421 * When writing a ditto block (i.e. more than one DVA for a given BP) on 4422 * the same vdev as an existing DVA of this BP, then try to allocate it 4423 * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4424 */ 4425 static boolean_t 4426 metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4427 { 4428 uint64_t dva_ms_id; 4429 4430 if (DVA_GET_ASIZE(dva) == 0) 4431 return (B_TRUE); 4432 4433 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4434 return (B_TRUE); 4435 4436 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4437 4438 return (msp->ms_id != dva_ms_id); 4439 } 4440 4441 /* 4442 * ========================================================================== 4443 * Metaslab allocation tracing facility 4444 * ========================================================================== 4445 */ 4446 4447 /* 4448 * Add an allocation trace element to the allocation tracing list. 4449 */ 4450 static void 4451 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4452 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4453 int allocator) 4454 { 4455 metaslab_alloc_trace_t *mat; 4456 4457 if (!metaslab_trace_enabled) 4458 return; 4459 4460 /* 4461 * When the tracing list reaches its maximum we remove 4462 * the second element in the list before adding a new one. 4463 * By removing the second element we preserve the original 4464 * entry as a clue to what allocations steps have already been 4465 * performed. 4466 */ 4467 if (zal->zal_size == metaslab_trace_max_entries) { 4468 metaslab_alloc_trace_t *mat_next; 4469 #ifdef ZFS_DEBUG 4470 panic("too many entries in allocation list"); 4471 #endif 4472 METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4473 zal->zal_size--; 4474 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4475 list_remove(&zal->zal_list, mat_next); 4476 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4477 } 4478 4479 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4480 list_link_init(&mat->mat_list_node); 4481 mat->mat_mg = mg; 4482 mat->mat_msp = msp; 4483 mat->mat_size = psize; 4484 mat->mat_dva_id = dva_id; 4485 mat->mat_offset = offset; 4486 mat->mat_weight = 0; 4487 mat->mat_allocator = allocator; 4488 4489 if (msp != NULL) 4490 mat->mat_weight = msp->ms_weight; 4491 4492 /* 4493 * The list is part of the zio so locking is not required. Only 4494 * a single thread will perform allocations for a given zio. 4495 */ 4496 list_insert_tail(&zal->zal_list, mat); 4497 zal->zal_size++; 4498 4499 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4500 } 4501 4502 void 4503 metaslab_trace_init(zio_alloc_list_t *zal) 4504 { 4505 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4506 offsetof(metaslab_alloc_trace_t, mat_list_node)); 4507 zal->zal_size = 0; 4508 } 4509 4510 void 4511 metaslab_trace_fini(zio_alloc_list_t *zal) 4512 { 4513 metaslab_alloc_trace_t *mat; 4514 4515 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4516 kmem_cache_free(metaslab_alloc_trace_cache, mat); 4517 list_destroy(&zal->zal_list); 4518 zal->zal_size = 0; 4519 } 4520 4521 /* 4522 * ========================================================================== 4523 * Metaslab block operations 4524 * ========================================================================== 4525 */ 4526 4527 static void 4528 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags, 4529 int allocator) 4530 { 4531 if (!(flags & METASLAB_ASYNC_ALLOC) || 4532 (flags & METASLAB_DONT_THROTTLE)) 4533 return; 4534 4535 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4536 if (!mg->mg_class->mc_alloc_throttle_enabled) 4537 return; 4538 4539 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4540 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag); 4541 } 4542 4543 static void 4544 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator) 4545 { 4546 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4547 metaslab_class_allocator_t *mca = 4548 &mg->mg_class->mc_allocator[allocator]; 4549 uint64_t max = mg->mg_max_alloc_queue_depth; 4550 uint64_t cur = mga->mga_cur_max_alloc_queue_depth; 4551 while (cur < max) { 4552 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth, 4553 cur, cur + 1) == cur) { 4554 atomic_inc_64(&mca->mca_alloc_max_slots); 4555 return; 4556 } 4557 cur = mga->mga_cur_max_alloc_queue_depth; 4558 } 4559 } 4560 4561 void 4562 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags, 4563 int allocator, boolean_t io_complete) 4564 { 4565 if (!(flags & METASLAB_ASYNC_ALLOC) || 4566 (flags & METASLAB_DONT_THROTTLE)) 4567 return; 4568 4569 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4570 if (!mg->mg_class->mc_alloc_throttle_enabled) 4571 return; 4572 4573 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4574 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag); 4575 if (io_complete) 4576 metaslab_group_increment_qdepth(mg, allocator); 4577 } 4578 4579 void 4580 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag, 4581 int allocator) 4582 { 4583 #ifdef ZFS_DEBUG 4584 const dva_t *dva = bp->blk_dva; 4585 int ndvas = BP_GET_NDVAS(bp); 4586 4587 for (int d = 0; d < ndvas; d++) { 4588 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 4589 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4590 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4591 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag)); 4592 } 4593 #endif 4594 } 4595 4596 static uint64_t 4597 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 4598 { 4599 uint64_t start; 4600 range_tree_t *rt = msp->ms_allocatable; 4601 metaslab_class_t *mc = msp->ms_group->mg_class; 4602 4603 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4604 VERIFY(!msp->ms_condensing); 4605 VERIFY0(msp->ms_disabled); 4606 4607 start = mc->mc_ops->msop_alloc(msp, size); 4608 if (start != -1ULL) { 4609 metaslab_group_t *mg = msp->ms_group; 4610 vdev_t *vd = mg->mg_vd; 4611 4612 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4613 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4614 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 4615 range_tree_remove(rt, start, size); 4616 range_tree_clear(msp->ms_trim, start, size); 4617 4618 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4619 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4620 4621 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size); 4622 msp->ms_allocating_total += size; 4623 4624 /* Track the last successful allocation */ 4625 msp->ms_alloc_txg = txg; 4626 metaslab_verify_space(msp, txg); 4627 } 4628 4629 /* 4630 * Now that we've attempted the allocation we need to update the 4631 * metaslab's maximum block size since it may have changed. 4632 */ 4633 msp->ms_max_size = metaslab_largest_allocatable(msp); 4634 return (start); 4635 } 4636 4637 /* 4638 * Find the metaslab with the highest weight that is less than what we've 4639 * already tried. In the common case, this means that we will examine each 4640 * metaslab at most once. Note that concurrent callers could reorder metaslabs 4641 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4642 * activated by another thread, and we fail to allocate from the metaslab we 4643 * have selected, we may not try the newly-activated metaslab, and instead 4644 * activate another metaslab. This is not optimal, but generally does not cause 4645 * any problems (a possible exception being if every metaslab is completely full 4646 * except for the newly-activated metaslab which we fail to examine). 4647 */ 4648 static metaslab_t * 4649 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4650 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator, 4651 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4652 boolean_t *was_active) 4653 { 4654 avl_index_t idx; 4655 avl_tree_t *t = &mg->mg_metaslab_tree; 4656 metaslab_t *msp = avl_find(t, search, &idx); 4657 if (msp == NULL) 4658 msp = avl_nearest(t, idx, AVL_AFTER); 4659 4660 int tries = 0; 4661 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4662 int i; 4663 4664 if (!try_hard && tries > zfs_metaslab_find_max_tries) { 4665 METASLABSTAT_BUMP(metaslabstat_too_many_tries); 4666 return (NULL); 4667 } 4668 tries++; 4669 4670 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4671 metaslab_trace_add(zal, mg, msp, asize, d, 4672 TRACE_TOO_SMALL, allocator); 4673 continue; 4674 } 4675 4676 /* 4677 * If the selected metaslab is condensing or disabled, 4678 * skip it. 4679 */ 4680 if (msp->ms_condensing || msp->ms_disabled > 0) 4681 continue; 4682 4683 *was_active = msp->ms_allocator != -1; 4684 /* 4685 * If we're activating as primary, this is our first allocation 4686 * from this disk, so we don't need to check how close we are. 4687 * If the metaslab under consideration was already active, 4688 * we're getting desperate enough to steal another allocator's 4689 * metaslab, so we still don't care about distances. 4690 */ 4691 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4692 break; 4693 4694 for (i = 0; i < d; i++) { 4695 if (want_unique && 4696 !metaslab_is_unique(msp, &dva[i])) 4697 break; /* try another metaslab */ 4698 } 4699 if (i == d) 4700 break; 4701 } 4702 4703 if (msp != NULL) { 4704 search->ms_weight = msp->ms_weight; 4705 search->ms_start = msp->ms_start + 1; 4706 search->ms_allocator = msp->ms_allocator; 4707 search->ms_primary = msp->ms_primary; 4708 } 4709 return (msp); 4710 } 4711 4712 static void 4713 metaslab_active_mask_verify(metaslab_t *msp) 4714 { 4715 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4716 4717 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4718 return; 4719 4720 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4721 return; 4722 4723 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4724 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4725 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4726 VERIFY3S(msp->ms_allocator, !=, -1); 4727 VERIFY(msp->ms_primary); 4728 return; 4729 } 4730 4731 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4732 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4733 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4734 VERIFY3S(msp->ms_allocator, !=, -1); 4735 VERIFY(!msp->ms_primary); 4736 return; 4737 } 4738 4739 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4740 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4741 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4742 VERIFY3S(msp->ms_allocator, ==, -1); 4743 return; 4744 } 4745 } 4746 4747 /* ARGSUSED */ 4748 static uint64_t 4749 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 4750 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 4751 int allocator, boolean_t try_hard) 4752 { 4753 metaslab_t *msp = NULL; 4754 uint64_t offset = -1ULL; 4755 4756 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4757 for (int i = 0; i < d; i++) { 4758 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4759 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4760 activation_weight = METASLAB_WEIGHT_SECONDARY; 4761 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4762 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4763 activation_weight = METASLAB_WEIGHT_CLAIM; 4764 break; 4765 } 4766 } 4767 4768 /* 4769 * If we don't have enough metaslabs active to fill the entire array, we 4770 * just use the 0th slot. 4771 */ 4772 if (mg->mg_ms_ready < mg->mg_allocators * 3) 4773 allocator = 0; 4774 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4775 4776 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4777 4778 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4779 search->ms_weight = UINT64_MAX; 4780 search->ms_start = 0; 4781 /* 4782 * At the end of the metaslab tree are the already-active metaslabs, 4783 * first the primaries, then the secondaries. When we resume searching 4784 * through the tree, we need to consider ms_allocator and ms_primary so 4785 * we start in the location right after where we left off, and don't 4786 * accidentally loop forever considering the same metaslabs. 4787 */ 4788 search->ms_allocator = -1; 4789 search->ms_primary = B_TRUE; 4790 for (;;) { 4791 boolean_t was_active = B_FALSE; 4792 4793 mutex_enter(&mg->mg_lock); 4794 4795 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4796 mga->mga_primary != NULL) { 4797 msp = mga->mga_primary; 4798 4799 /* 4800 * Even though we don't hold the ms_lock for the 4801 * primary metaslab, those fields should not 4802 * change while we hold the mg_lock. Thus it is 4803 * safe to make assertions on them. 4804 */ 4805 ASSERT(msp->ms_primary); 4806 ASSERT3S(msp->ms_allocator, ==, allocator); 4807 ASSERT(msp->ms_loaded); 4808 4809 was_active = B_TRUE; 4810 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4811 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4812 mga->mga_secondary != NULL) { 4813 msp = mga->mga_secondary; 4814 4815 /* 4816 * See comment above about the similar assertions 4817 * for the primary metaslab. 4818 */ 4819 ASSERT(!msp->ms_primary); 4820 ASSERT3S(msp->ms_allocator, ==, allocator); 4821 ASSERT(msp->ms_loaded); 4822 4823 was_active = B_TRUE; 4824 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4825 } else { 4826 msp = find_valid_metaslab(mg, activation_weight, dva, d, 4827 want_unique, asize, allocator, try_hard, zal, 4828 search, &was_active); 4829 } 4830 4831 mutex_exit(&mg->mg_lock); 4832 if (msp == NULL) { 4833 kmem_free(search, sizeof (*search)); 4834 return (-1ULL); 4835 } 4836 mutex_enter(&msp->ms_lock); 4837 4838 metaslab_active_mask_verify(msp); 4839 4840 /* 4841 * This code is disabled out because of issues with 4842 * tracepoints in non-gpl kernel modules. 4843 */ 4844 #if 0 4845 DTRACE_PROBE3(ms__activation__attempt, 4846 metaslab_t *, msp, uint64_t, activation_weight, 4847 boolean_t, was_active); 4848 #endif 4849 4850 /* 4851 * Ensure that the metaslab we have selected is still 4852 * capable of handling our request. It's possible that 4853 * another thread may have changed the weight while we 4854 * were blocked on the metaslab lock. We check the 4855 * active status first to see if we need to set_selected_txg 4856 * a new metaslab. 4857 */ 4858 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 4859 ASSERT3S(msp->ms_allocator, ==, -1); 4860 mutex_exit(&msp->ms_lock); 4861 continue; 4862 } 4863 4864 /* 4865 * If the metaslab was activated for another allocator 4866 * while we were waiting in the ms_lock above, or it's 4867 * a primary and we're seeking a secondary (or vice versa), 4868 * we go back and select a new metaslab. 4869 */ 4870 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 4871 (msp->ms_allocator != -1) && 4872 (msp->ms_allocator != allocator || ((activation_weight == 4873 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 4874 ASSERT(msp->ms_loaded); 4875 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 4876 msp->ms_allocator != -1); 4877 mutex_exit(&msp->ms_lock); 4878 continue; 4879 } 4880 4881 /* 4882 * This metaslab was used for claiming regions allocated 4883 * by the ZIL during pool import. Once these regions are 4884 * claimed we don't need to keep the CLAIM bit set 4885 * anymore. Passivate this metaslab to zero its activation 4886 * mask. 4887 */ 4888 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 4889 activation_weight != METASLAB_WEIGHT_CLAIM) { 4890 ASSERT(msp->ms_loaded); 4891 ASSERT3S(msp->ms_allocator, ==, -1); 4892 metaslab_passivate(msp, msp->ms_weight & 4893 ~METASLAB_WEIGHT_CLAIM); 4894 mutex_exit(&msp->ms_lock); 4895 continue; 4896 } 4897 4898 metaslab_set_selected_txg(msp, txg); 4899 4900 int activation_error = 4901 metaslab_activate(msp, allocator, activation_weight); 4902 metaslab_active_mask_verify(msp); 4903 4904 /* 4905 * If the metaslab was activated by another thread for 4906 * another allocator or activation_weight (EBUSY), or it 4907 * failed because another metaslab was assigned as primary 4908 * for this allocator (EEXIST) we continue using this 4909 * metaslab for our allocation, rather than going on to a 4910 * worse metaslab (we waited for that metaslab to be loaded 4911 * after all). 4912 * 4913 * If the activation failed due to an I/O error or ENOSPC we 4914 * skip to the next metaslab. 4915 */ 4916 boolean_t activated; 4917 if (activation_error == 0) { 4918 activated = B_TRUE; 4919 } else if (activation_error == EBUSY || 4920 activation_error == EEXIST) { 4921 activated = B_FALSE; 4922 } else { 4923 mutex_exit(&msp->ms_lock); 4924 continue; 4925 } 4926 ASSERT(msp->ms_loaded); 4927 4928 /* 4929 * Now that we have the lock, recheck to see if we should 4930 * continue to use this metaslab for this allocation. The 4931 * the metaslab is now loaded so metaslab_should_allocate() 4932 * can accurately determine if the allocation attempt should 4933 * proceed. 4934 */ 4935 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4936 /* Passivate this metaslab and select a new one. */ 4937 metaslab_trace_add(zal, mg, msp, asize, d, 4938 TRACE_TOO_SMALL, allocator); 4939 goto next; 4940 } 4941 4942 /* 4943 * If this metaslab is currently condensing then pick again 4944 * as we can't manipulate this metaslab until it's committed 4945 * to disk. If this metaslab is being initialized, we shouldn't 4946 * allocate from it since the allocated region might be 4947 * overwritten after allocation. 4948 */ 4949 if (msp->ms_condensing) { 4950 metaslab_trace_add(zal, mg, msp, asize, d, 4951 TRACE_CONDENSING, allocator); 4952 if (activated) { 4953 metaslab_passivate(msp, msp->ms_weight & 4954 ~METASLAB_ACTIVE_MASK); 4955 } 4956 mutex_exit(&msp->ms_lock); 4957 continue; 4958 } else if (msp->ms_disabled > 0) { 4959 metaslab_trace_add(zal, mg, msp, asize, d, 4960 TRACE_DISABLED, allocator); 4961 if (activated) { 4962 metaslab_passivate(msp, msp->ms_weight & 4963 ~METASLAB_ACTIVE_MASK); 4964 } 4965 mutex_exit(&msp->ms_lock); 4966 continue; 4967 } 4968 4969 offset = metaslab_block_alloc(msp, asize, txg); 4970 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 4971 4972 if (offset != -1ULL) { 4973 /* Proactively passivate the metaslab, if needed */ 4974 if (activated) 4975 metaslab_segment_may_passivate(msp); 4976 break; 4977 } 4978 next: 4979 ASSERT(msp->ms_loaded); 4980 4981 /* 4982 * This code is disabled out because of issues with 4983 * tracepoints in non-gpl kernel modules. 4984 */ 4985 #if 0 4986 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 4987 uint64_t, asize); 4988 #endif 4989 4990 /* 4991 * We were unable to allocate from this metaslab so determine 4992 * a new weight for this metaslab. Now that we have loaded 4993 * the metaslab we can provide a better hint to the metaslab 4994 * selector. 4995 * 4996 * For space-based metaslabs, we use the maximum block size. 4997 * This information is only available when the metaslab 4998 * is loaded and is more accurate than the generic free 4999 * space weight that was calculated by metaslab_weight(). 5000 * This information allows us to quickly compare the maximum 5001 * available allocation in the metaslab to the allocation 5002 * size being requested. 5003 * 5004 * For segment-based metaslabs, determine the new weight 5005 * based on the highest bucket in the range tree. We 5006 * explicitly use the loaded segment weight (i.e. the range 5007 * tree histogram) since it contains the space that is 5008 * currently available for allocation and is accurate 5009 * even within a sync pass. 5010 */ 5011 uint64_t weight; 5012 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 5013 weight = metaslab_largest_allocatable(msp); 5014 WEIGHT_SET_SPACEBASED(weight); 5015 } else { 5016 weight = metaslab_weight_from_range_tree(msp); 5017 } 5018 5019 if (activated) { 5020 metaslab_passivate(msp, weight); 5021 } else { 5022 /* 5023 * For the case where we use the metaslab that is 5024 * active for another allocator we want to make 5025 * sure that we retain the activation mask. 5026 * 5027 * Note that we could attempt to use something like 5028 * metaslab_recalculate_weight_and_sort() that 5029 * retains the activation mask here. That function 5030 * uses metaslab_weight() to set the weight though 5031 * which is not as accurate as the calculations 5032 * above. 5033 */ 5034 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 5035 metaslab_group_sort(mg, msp, weight); 5036 } 5037 metaslab_active_mask_verify(msp); 5038 5039 /* 5040 * We have just failed an allocation attempt, check 5041 * that metaslab_should_allocate() agrees. Otherwise, 5042 * we may end up in an infinite loop retrying the same 5043 * metaslab. 5044 */ 5045 ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5046 5047 mutex_exit(&msp->ms_lock); 5048 } 5049 mutex_exit(&msp->ms_lock); 5050 kmem_free(search, sizeof (*search)); 5051 return (offset); 5052 } 5053 5054 static uint64_t 5055 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 5056 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 5057 int allocator, boolean_t try_hard) 5058 { 5059 uint64_t offset; 5060 ASSERT(mg->mg_initialized); 5061 5062 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique, 5063 dva, d, allocator, try_hard); 5064 5065 mutex_enter(&mg->mg_lock); 5066 if (offset == -1ULL) { 5067 mg->mg_failed_allocations++; 5068 metaslab_trace_add(zal, mg, NULL, asize, d, 5069 TRACE_GROUP_FAILURE, allocator); 5070 if (asize == SPA_GANGBLOCKSIZE) { 5071 /* 5072 * This metaslab group was unable to allocate 5073 * the minimum gang block size so it must be out of 5074 * space. We must notify the allocation throttle 5075 * to start skipping allocation attempts to this 5076 * metaslab group until more space becomes available. 5077 * Note: this failure cannot be caused by the 5078 * allocation throttle since the allocation throttle 5079 * is only responsible for skipping devices and 5080 * not failing block allocations. 5081 */ 5082 mg->mg_no_free_space = B_TRUE; 5083 } 5084 } 5085 mg->mg_allocations++; 5086 mutex_exit(&mg->mg_lock); 5087 return (offset); 5088 } 5089 5090 /* 5091 * Allocate a block for the specified i/o. 5092 */ 5093 int 5094 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5095 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 5096 zio_alloc_list_t *zal, int allocator) 5097 { 5098 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5099 metaslab_group_t *mg, *fast_mg, *rotor; 5100 vdev_t *vd; 5101 boolean_t try_hard = B_FALSE; 5102 5103 ASSERT(!DVA_IS_VALID(&dva[d])); 5104 5105 /* 5106 * For testing, make some blocks above a certain size be gang blocks. 5107 * This will result in more split blocks when using device removal, 5108 * and a large number of split blocks coupled with ztest-induced 5109 * damage can result in extremely long reconstruction times. This 5110 * will also test spilling from special to normal. 5111 */ 5112 if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) { 5113 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5114 allocator); 5115 return (SET_ERROR(ENOSPC)); 5116 } 5117 5118 /* 5119 * Start at the rotor and loop through all mgs until we find something. 5120 * Note that there's no locking on mca_rotor or mca_aliquot because 5121 * nothing actually breaks if we miss a few updates -- we just won't 5122 * allocate quite as evenly. It all balances out over time. 5123 * 5124 * If we are doing ditto or log blocks, try to spread them across 5125 * consecutive vdevs. If we're forced to reuse a vdev before we've 5126 * allocated all of our ditto blocks, then try and spread them out on 5127 * that vdev as much as possible. If it turns out to not be possible, 5128 * gradually lower our standards until anything becomes acceptable. 5129 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5130 * gives us hope of containing our fault domains to something we're 5131 * able to reason about. Otherwise, any two top-level vdev failures 5132 * will guarantee the loss of data. With consecutive allocation, 5133 * only two adjacent top-level vdev failures will result in data loss. 5134 * 5135 * If we are doing gang blocks (hintdva is non-NULL), try to keep 5136 * ourselves on the same vdev as our gang block header. That 5137 * way, we can hope for locality in vdev_cache, plus it makes our 5138 * fault domains something tractable. 5139 */ 5140 if (hintdva) { 5141 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5142 5143 /* 5144 * It's possible the vdev we're using as the hint no 5145 * longer exists or its mg has been closed (e.g. by 5146 * device removal). Consult the rotor when 5147 * all else fails. 5148 */ 5149 if (vd != NULL && vd->vdev_mg != NULL) { 5150 mg = vdev_get_mg(vd, mc); 5151 5152 if (flags & METASLAB_HINTBP_AVOID && 5153 mg->mg_next != NULL) 5154 mg = mg->mg_next; 5155 } else { 5156 mg = mca->mca_rotor; 5157 } 5158 } else if (d != 0) { 5159 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5160 mg = vd->vdev_mg->mg_next; 5161 } else if (flags & METASLAB_FASTWRITE) { 5162 mg = fast_mg = mca->mca_rotor; 5163 5164 do { 5165 if (fast_mg->mg_vd->vdev_pending_fastwrite < 5166 mg->mg_vd->vdev_pending_fastwrite) 5167 mg = fast_mg; 5168 } while ((fast_mg = fast_mg->mg_next) != mca->mca_rotor); 5169 5170 } else { 5171 ASSERT(mca->mca_rotor != NULL); 5172 mg = mca->mca_rotor; 5173 } 5174 5175 /* 5176 * If the hint put us into the wrong metaslab class, or into a 5177 * metaslab group that has been passivated, just follow the rotor. 5178 */ 5179 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 5180 mg = mca->mca_rotor; 5181 5182 rotor = mg; 5183 top: 5184 do { 5185 boolean_t allocatable; 5186 5187 ASSERT(mg->mg_activation_count == 1); 5188 vd = mg->mg_vd; 5189 5190 /* 5191 * Don't allocate from faulted devices. 5192 */ 5193 if (try_hard) { 5194 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5195 allocatable = vdev_allocatable(vd); 5196 spa_config_exit(spa, SCL_ZIO, FTAG); 5197 } else { 5198 allocatable = vdev_allocatable(vd); 5199 } 5200 5201 /* 5202 * Determine if the selected metaslab group is eligible 5203 * for allocations. If we're ganging then don't allow 5204 * this metaslab group to skip allocations since that would 5205 * inadvertently return ENOSPC and suspend the pool 5206 * even though space is still available. 5207 */ 5208 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 5209 allocatable = metaslab_group_allocatable(mg, rotor, 5210 psize, allocator, d); 5211 } 5212 5213 if (!allocatable) { 5214 metaslab_trace_add(zal, mg, NULL, psize, d, 5215 TRACE_NOT_ALLOCATABLE, allocator); 5216 goto next; 5217 } 5218 5219 ASSERT(mg->mg_initialized); 5220 5221 /* 5222 * Avoid writing single-copy data to a failing, 5223 * non-redundant vdev, unless we've already tried all 5224 * other vdevs. 5225 */ 5226 if ((vd->vdev_stat.vs_write_errors > 0 || 5227 vd->vdev_state < VDEV_STATE_HEALTHY) && 5228 d == 0 && !try_hard && vd->vdev_children == 0) { 5229 metaslab_trace_add(zal, mg, NULL, psize, d, 5230 TRACE_VDEV_ERROR, allocator); 5231 goto next; 5232 } 5233 5234 ASSERT(mg->mg_class == mc); 5235 5236 uint64_t asize = vdev_psize_to_asize(vd, psize); 5237 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 5238 5239 /* 5240 * If we don't need to try hard, then require that the 5241 * block be on a different metaslab from any other DVAs 5242 * in this BP (unique=true). If we are trying hard, then 5243 * allow any metaslab to be used (unique=false). 5244 */ 5245 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 5246 !try_hard, dva, d, allocator, try_hard); 5247 5248 if (offset != -1ULL) { 5249 /* 5250 * If we've just selected this metaslab group, 5251 * figure out whether the corresponding vdev is 5252 * over- or under-used relative to the pool, 5253 * and set an allocation bias to even it out. 5254 * 5255 * Bias is also used to compensate for unequally 5256 * sized vdevs so that space is allocated fairly. 5257 */ 5258 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) { 5259 vdev_stat_t *vs = &vd->vdev_stat; 5260 int64_t vs_free = vs->vs_space - vs->vs_alloc; 5261 int64_t mc_free = mc->mc_space - mc->mc_alloc; 5262 int64_t ratio; 5263 5264 /* 5265 * Calculate how much more or less we should 5266 * try to allocate from this device during 5267 * this iteration around the rotor. 5268 * 5269 * This basically introduces a zero-centered 5270 * bias towards the devices with the most 5271 * free space, while compensating for vdev 5272 * size differences. 5273 * 5274 * Examples: 5275 * vdev V1 = 16M/128M 5276 * vdev V2 = 16M/128M 5277 * ratio(V1) = 100% ratio(V2) = 100% 5278 * 5279 * vdev V1 = 16M/128M 5280 * vdev V2 = 64M/128M 5281 * ratio(V1) = 127% ratio(V2) = 72% 5282 * 5283 * vdev V1 = 16M/128M 5284 * vdev V2 = 64M/512M 5285 * ratio(V1) = 40% ratio(V2) = 160% 5286 */ 5287 ratio = (vs_free * mc->mc_alloc_groups * 100) / 5288 (mc_free + 1); 5289 mg->mg_bias = ((ratio - 100) * 5290 (int64_t)mg->mg_aliquot) / 100; 5291 } else if (!metaslab_bias_enabled) { 5292 mg->mg_bias = 0; 5293 } 5294 5295 if ((flags & METASLAB_FASTWRITE) || 5296 atomic_add_64_nv(&mca->mca_aliquot, asize) >= 5297 mg->mg_aliquot + mg->mg_bias) { 5298 mca->mca_rotor = mg->mg_next; 5299 mca->mca_aliquot = 0; 5300 } 5301 5302 DVA_SET_VDEV(&dva[d], vd->vdev_id); 5303 DVA_SET_OFFSET(&dva[d], offset); 5304 DVA_SET_GANG(&dva[d], 5305 ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5306 DVA_SET_ASIZE(&dva[d], asize); 5307 5308 if (flags & METASLAB_FASTWRITE) { 5309 atomic_add_64(&vd->vdev_pending_fastwrite, 5310 psize); 5311 } 5312 5313 return (0); 5314 } 5315 next: 5316 mca->mca_rotor = mg->mg_next; 5317 mca->mca_aliquot = 0; 5318 } while ((mg = mg->mg_next) != rotor); 5319 5320 /* 5321 * If we haven't tried hard, perhaps do so now. 5322 */ 5323 if (!try_hard && (zfs_metaslab_try_hard_before_gang || 5324 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 || 5325 psize <= 1 << spa->spa_min_ashift)) { 5326 METASLABSTAT_BUMP(metaslabstat_try_hard); 5327 try_hard = B_TRUE; 5328 goto top; 5329 } 5330 5331 bzero(&dva[d], sizeof (dva_t)); 5332 5333 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5334 return (SET_ERROR(ENOSPC)); 5335 } 5336 5337 void 5338 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5339 boolean_t checkpoint) 5340 { 5341 metaslab_t *msp; 5342 spa_t *spa = vd->vdev_spa; 5343 5344 ASSERT(vdev_is_concrete(vd)); 5345 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5346 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5347 5348 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5349 5350 VERIFY(!msp->ms_condensing); 5351 VERIFY3U(offset, >=, msp->ms_start); 5352 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5353 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5354 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5355 5356 metaslab_check_free_impl(vd, offset, asize); 5357 5358 mutex_enter(&msp->ms_lock); 5359 if (range_tree_is_empty(msp->ms_freeing) && 5360 range_tree_is_empty(msp->ms_checkpointing)) { 5361 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5362 } 5363 5364 if (checkpoint) { 5365 ASSERT(spa_has_checkpoint(spa)); 5366 range_tree_add(msp->ms_checkpointing, offset, asize); 5367 } else { 5368 range_tree_add(msp->ms_freeing, offset, asize); 5369 } 5370 mutex_exit(&msp->ms_lock); 5371 } 5372 5373 /* ARGSUSED */ 5374 void 5375 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5376 uint64_t size, void *arg) 5377 { 5378 boolean_t *checkpoint = arg; 5379 5380 ASSERT3P(checkpoint, !=, NULL); 5381 5382 if (vd->vdev_ops->vdev_op_remap != NULL) 5383 vdev_indirect_mark_obsolete(vd, offset, size); 5384 else 5385 metaslab_free_impl(vd, offset, size, *checkpoint); 5386 } 5387 5388 static void 5389 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5390 boolean_t checkpoint) 5391 { 5392 spa_t *spa = vd->vdev_spa; 5393 5394 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5395 5396 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5397 return; 5398 5399 if (spa->spa_vdev_removal != NULL && 5400 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5401 vdev_is_concrete(vd)) { 5402 /* 5403 * Note: we check if the vdev is concrete because when 5404 * we complete the removal, we first change the vdev to be 5405 * an indirect vdev (in open context), and then (in syncing 5406 * context) clear spa_vdev_removal. 5407 */ 5408 free_from_removing_vdev(vd, offset, size); 5409 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5410 vdev_indirect_mark_obsolete(vd, offset, size); 5411 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5412 metaslab_free_impl_cb, &checkpoint); 5413 } else { 5414 metaslab_free_concrete(vd, offset, size, checkpoint); 5415 } 5416 } 5417 5418 typedef struct remap_blkptr_cb_arg { 5419 blkptr_t *rbca_bp; 5420 spa_remap_cb_t rbca_cb; 5421 vdev_t *rbca_remap_vd; 5422 uint64_t rbca_remap_offset; 5423 void *rbca_cb_arg; 5424 } remap_blkptr_cb_arg_t; 5425 5426 static void 5427 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5428 uint64_t size, void *arg) 5429 { 5430 remap_blkptr_cb_arg_t *rbca = arg; 5431 blkptr_t *bp = rbca->rbca_bp; 5432 5433 /* We can not remap split blocks. */ 5434 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5435 return; 5436 ASSERT0(inner_offset); 5437 5438 if (rbca->rbca_cb != NULL) { 5439 /* 5440 * At this point we know that we are not handling split 5441 * blocks and we invoke the callback on the previous 5442 * vdev which must be indirect. 5443 */ 5444 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5445 5446 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5447 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5448 5449 /* set up remap_blkptr_cb_arg for the next call */ 5450 rbca->rbca_remap_vd = vd; 5451 rbca->rbca_remap_offset = offset; 5452 } 5453 5454 /* 5455 * The phys birth time is that of dva[0]. This ensures that we know 5456 * when each dva was written, so that resilver can determine which 5457 * blocks need to be scrubbed (i.e. those written during the time 5458 * the vdev was offline). It also ensures that the key used in 5459 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5460 * we didn't change the phys_birth, a lookup in the ARC for a 5461 * remapped BP could find the data that was previously stored at 5462 * this vdev + offset. 5463 */ 5464 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5465 DVA_GET_VDEV(&bp->blk_dva[0])); 5466 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5467 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 5468 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5469 5470 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5471 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5472 } 5473 5474 /* 5475 * If the block pointer contains any indirect DVAs, modify them to refer to 5476 * concrete DVAs. Note that this will sometimes not be possible, leaving 5477 * the indirect DVA in place. This happens if the indirect DVA spans multiple 5478 * segments in the mapping (i.e. it is a "split block"). 5479 * 5480 * If the BP was remapped, calls the callback on the original dva (note the 5481 * callback can be called multiple times if the original indirect DVA refers 5482 * to another indirect DVA, etc). 5483 * 5484 * Returns TRUE if the BP was remapped. 5485 */ 5486 boolean_t 5487 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5488 { 5489 remap_blkptr_cb_arg_t rbca; 5490 5491 if (!zfs_remap_blkptr_enable) 5492 return (B_FALSE); 5493 5494 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5495 return (B_FALSE); 5496 5497 /* 5498 * Dedup BP's can not be remapped, because ddt_phys_select() depends 5499 * on DVA[0] being the same in the BP as in the DDT (dedup table). 5500 */ 5501 if (BP_GET_DEDUP(bp)) 5502 return (B_FALSE); 5503 5504 /* 5505 * Gang blocks can not be remapped, because 5506 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5507 * the BP used to read the gang block header (GBH) being the same 5508 * as the DVA[0] that we allocated for the GBH. 5509 */ 5510 if (BP_IS_GANG(bp)) 5511 return (B_FALSE); 5512 5513 /* 5514 * Embedded BP's have no DVA to remap. 5515 */ 5516 if (BP_GET_NDVAS(bp) < 1) 5517 return (B_FALSE); 5518 5519 /* 5520 * Note: we only remap dva[0]. If we remapped other dvas, we 5521 * would no longer know what their phys birth txg is. 5522 */ 5523 dva_t *dva = &bp->blk_dva[0]; 5524 5525 uint64_t offset = DVA_GET_OFFSET(dva); 5526 uint64_t size = DVA_GET_ASIZE(dva); 5527 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5528 5529 if (vd->vdev_ops->vdev_op_remap == NULL) 5530 return (B_FALSE); 5531 5532 rbca.rbca_bp = bp; 5533 rbca.rbca_cb = callback; 5534 rbca.rbca_remap_vd = vd; 5535 rbca.rbca_remap_offset = offset; 5536 rbca.rbca_cb_arg = arg; 5537 5538 /* 5539 * remap_blkptr_cb() will be called in order for each level of 5540 * indirection, until a concrete vdev is reached or a split block is 5541 * encountered. old_vd and old_offset are updated within the callback 5542 * as we go from the one indirect vdev to the next one (either concrete 5543 * or indirect again) in that order. 5544 */ 5545 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5546 5547 /* Check if the DVA wasn't remapped because it is a split block */ 5548 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5549 return (B_FALSE); 5550 5551 return (B_TRUE); 5552 } 5553 5554 /* 5555 * Undo the allocation of a DVA which happened in the given transaction group. 5556 */ 5557 void 5558 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5559 { 5560 metaslab_t *msp; 5561 vdev_t *vd; 5562 uint64_t vdev = DVA_GET_VDEV(dva); 5563 uint64_t offset = DVA_GET_OFFSET(dva); 5564 uint64_t size = DVA_GET_ASIZE(dva); 5565 5566 ASSERT(DVA_IS_VALID(dva)); 5567 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5568 5569 if (txg > spa_freeze_txg(spa)) 5570 return; 5571 5572 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5573 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5574 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5575 (u_longlong_t)vdev, (u_longlong_t)offset, 5576 (u_longlong_t)size); 5577 return; 5578 } 5579 5580 ASSERT(!vd->vdev_removing); 5581 ASSERT(vdev_is_concrete(vd)); 5582 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5583 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5584 5585 if (DVA_GET_GANG(dva)) 5586 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 5587 5588 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5589 5590 mutex_enter(&msp->ms_lock); 5591 range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5592 offset, size); 5593 msp->ms_allocating_total -= size; 5594 5595 VERIFY(!msp->ms_condensing); 5596 VERIFY3U(offset, >=, msp->ms_start); 5597 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5598 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=, 5599 msp->ms_size); 5600 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5601 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5602 range_tree_add(msp->ms_allocatable, offset, size); 5603 mutex_exit(&msp->ms_lock); 5604 } 5605 5606 /* 5607 * Free the block represented by the given DVA. 5608 */ 5609 void 5610 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5611 { 5612 uint64_t vdev = DVA_GET_VDEV(dva); 5613 uint64_t offset = DVA_GET_OFFSET(dva); 5614 uint64_t size = DVA_GET_ASIZE(dva); 5615 vdev_t *vd = vdev_lookup_top(spa, vdev); 5616 5617 ASSERT(DVA_IS_VALID(dva)); 5618 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5619 5620 if (DVA_GET_GANG(dva)) { 5621 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 5622 } 5623 5624 metaslab_free_impl(vd, offset, size, checkpoint); 5625 } 5626 5627 /* 5628 * Reserve some allocation slots. The reservation system must be called 5629 * before we call into the allocator. If there aren't any available slots 5630 * then the I/O will be throttled until an I/O completes and its slots are 5631 * freed up. The function returns true if it was successful in placing 5632 * the reservation. 5633 */ 5634 boolean_t 5635 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator, 5636 zio_t *zio, int flags) 5637 { 5638 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5639 uint64_t available_slots = 0; 5640 boolean_t slot_reserved = B_FALSE; 5641 uint64_t max = mca->mca_alloc_max_slots; 5642 5643 ASSERT(mc->mc_alloc_throttle_enabled); 5644 mutex_enter(&mc->mc_lock); 5645 5646 uint64_t reserved_slots = zfs_refcount_count(&mca->mca_alloc_slots); 5647 if (reserved_slots < max) 5648 available_slots = max - reserved_slots; 5649 5650 if (slots <= available_slots || GANG_ALLOCATION(flags) || 5651 flags & METASLAB_MUST_RESERVE) { 5652 /* 5653 * We reserve the slots individually so that we can unreserve 5654 * them individually when an I/O completes. 5655 */ 5656 for (int d = 0; d < slots; d++) 5657 zfs_refcount_add(&mca->mca_alloc_slots, zio); 5658 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 5659 slot_reserved = B_TRUE; 5660 } 5661 5662 mutex_exit(&mc->mc_lock); 5663 return (slot_reserved); 5664 } 5665 5666 void 5667 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5668 int allocator, zio_t *zio) 5669 { 5670 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator]; 5671 5672 ASSERT(mc->mc_alloc_throttle_enabled); 5673 mutex_enter(&mc->mc_lock); 5674 for (int d = 0; d < slots; d++) 5675 zfs_refcount_remove(&mca->mca_alloc_slots, zio); 5676 mutex_exit(&mc->mc_lock); 5677 } 5678 5679 static int 5680 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5681 uint64_t txg) 5682 { 5683 metaslab_t *msp; 5684 spa_t *spa = vd->vdev_spa; 5685 int error = 0; 5686 5687 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5688 return (SET_ERROR(ENXIO)); 5689 5690 ASSERT3P(vd->vdev_ms, !=, NULL); 5691 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5692 5693 mutex_enter(&msp->ms_lock); 5694 5695 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5696 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5697 if (error == EBUSY) { 5698 ASSERT(msp->ms_loaded); 5699 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5700 error = 0; 5701 } 5702 } 5703 5704 if (error == 0 && 5705 !range_tree_contains(msp->ms_allocatable, offset, size)) 5706 error = SET_ERROR(ENOENT); 5707 5708 if (error || txg == 0) { /* txg == 0 indicates dry run */ 5709 mutex_exit(&msp->ms_lock); 5710 return (error); 5711 } 5712 5713 VERIFY(!msp->ms_condensing); 5714 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5715 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5716 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=, 5717 msp->ms_size); 5718 range_tree_remove(msp->ms_allocatable, offset, size); 5719 range_tree_clear(msp->ms_trim, offset, size); 5720 5721 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */ 5722 metaslab_class_t *mc = msp->ms_group->mg_class; 5723 multilist_sublist_t *mls = 5724 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 5725 if (!multilist_link_active(&msp->ms_class_txg_node)) { 5726 msp->ms_selected_txg = txg; 5727 multilist_sublist_insert_head(mls, msp); 5728 } 5729 multilist_sublist_unlock(mls); 5730 5731 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5732 vdev_dirty(vd, VDD_METASLAB, msp, txg); 5733 range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5734 offset, size); 5735 msp->ms_allocating_total += size; 5736 } 5737 5738 mutex_exit(&msp->ms_lock); 5739 5740 return (0); 5741 } 5742 5743 typedef struct metaslab_claim_cb_arg_t { 5744 uint64_t mcca_txg; 5745 int mcca_error; 5746 } metaslab_claim_cb_arg_t; 5747 5748 /* ARGSUSED */ 5749 static void 5750 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5751 uint64_t size, void *arg) 5752 { 5753 metaslab_claim_cb_arg_t *mcca_arg = arg; 5754 5755 if (mcca_arg->mcca_error == 0) { 5756 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5757 size, mcca_arg->mcca_txg); 5758 } 5759 } 5760 5761 int 5762 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5763 { 5764 if (vd->vdev_ops->vdev_op_remap != NULL) { 5765 metaslab_claim_cb_arg_t arg; 5766 5767 /* 5768 * Only zdb(8) can claim on indirect vdevs. This is used 5769 * to detect leaks of mapped space (that are not accounted 5770 * for in the obsolete counts, spacemap, or bpobj). 5771 */ 5772 ASSERT(!spa_writeable(vd->vdev_spa)); 5773 arg.mcca_error = 0; 5774 arg.mcca_txg = txg; 5775 5776 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5777 metaslab_claim_impl_cb, &arg); 5778 5779 if (arg.mcca_error == 0) { 5780 arg.mcca_error = metaslab_claim_concrete(vd, 5781 offset, size, txg); 5782 } 5783 return (arg.mcca_error); 5784 } else { 5785 return (metaslab_claim_concrete(vd, offset, size, txg)); 5786 } 5787 } 5788 5789 /* 5790 * Intent log support: upon opening the pool after a crash, notify the SPA 5791 * of blocks that the intent log has allocated for immediate write, but 5792 * which are still considered free by the SPA because the last transaction 5793 * group didn't commit yet. 5794 */ 5795 static int 5796 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5797 { 5798 uint64_t vdev = DVA_GET_VDEV(dva); 5799 uint64_t offset = DVA_GET_OFFSET(dva); 5800 uint64_t size = DVA_GET_ASIZE(dva); 5801 vdev_t *vd; 5802 5803 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5804 return (SET_ERROR(ENXIO)); 5805 } 5806 5807 ASSERT(DVA_IS_VALID(dva)); 5808 5809 if (DVA_GET_GANG(dva)) 5810 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 5811 5812 return (metaslab_claim_impl(vd, offset, size, txg)); 5813 } 5814 5815 int 5816 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5817 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 5818 zio_alloc_list_t *zal, zio_t *zio, int allocator) 5819 { 5820 dva_t *dva = bp->blk_dva; 5821 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5822 int error = 0; 5823 5824 ASSERT(bp->blk_birth == 0); 5825 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 5826 5827 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5828 5829 if (mc->mc_allocator[allocator].mca_rotor == NULL) { 5830 /* no vdevs in this class */ 5831 spa_config_exit(spa, SCL_ALLOC, FTAG); 5832 return (SET_ERROR(ENOSPC)); 5833 } 5834 5835 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5836 ASSERT(BP_GET_NDVAS(bp) == 0); 5837 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5838 ASSERT3P(zal, !=, NULL); 5839 5840 for (int d = 0; d < ndvas; d++) { 5841 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 5842 txg, flags, zal, allocator); 5843 if (error != 0) { 5844 for (d--; d >= 0; d--) { 5845 metaslab_unalloc_dva(spa, &dva[d], txg); 5846 metaslab_group_alloc_decrement(spa, 5847 DVA_GET_VDEV(&dva[d]), zio, flags, 5848 allocator, B_FALSE); 5849 bzero(&dva[d], sizeof (dva_t)); 5850 } 5851 spa_config_exit(spa, SCL_ALLOC, FTAG); 5852 return (error); 5853 } else { 5854 /* 5855 * Update the metaslab group's queue depth 5856 * based on the newly allocated dva. 5857 */ 5858 metaslab_group_alloc_increment(spa, 5859 DVA_GET_VDEV(&dva[d]), zio, flags, allocator); 5860 } 5861 } 5862 ASSERT(error == 0); 5863 ASSERT(BP_GET_NDVAS(bp) == ndvas); 5864 5865 spa_config_exit(spa, SCL_ALLOC, FTAG); 5866 5867 BP_SET_BIRTH(bp, txg, 0); 5868 5869 return (0); 5870 } 5871 5872 void 5873 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 5874 { 5875 const dva_t *dva = bp->blk_dva; 5876 int ndvas = BP_GET_NDVAS(bp); 5877 5878 ASSERT(!BP_IS_HOLE(bp)); 5879 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 5880 5881 /* 5882 * If we have a checkpoint for the pool we need to make sure that 5883 * the blocks that we free that are part of the checkpoint won't be 5884 * reused until the checkpoint is discarded or we revert to it. 5885 * 5886 * The checkpoint flag is passed down the metaslab_free code path 5887 * and is set whenever we want to add a block to the checkpoint's 5888 * accounting. That is, we "checkpoint" blocks that existed at the 5889 * time the checkpoint was created and are therefore referenced by 5890 * the checkpointed uberblock. 5891 * 5892 * Note that, we don't checkpoint any blocks if the current 5893 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 5894 * normally as they will be referenced by the checkpointed uberblock. 5895 */ 5896 boolean_t checkpoint = B_FALSE; 5897 if (bp->blk_birth <= spa->spa_checkpoint_txg && 5898 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 5899 /* 5900 * At this point, if the block is part of the checkpoint 5901 * there is no way it was created in the current txg. 5902 */ 5903 ASSERT(!now); 5904 ASSERT3U(spa_syncing_txg(spa), ==, txg); 5905 checkpoint = B_TRUE; 5906 } 5907 5908 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 5909 5910 for (int d = 0; d < ndvas; d++) { 5911 if (now) { 5912 metaslab_unalloc_dva(spa, &dva[d], txg); 5913 } else { 5914 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 5915 metaslab_free_dva(spa, &dva[d], checkpoint); 5916 } 5917 } 5918 5919 spa_config_exit(spa, SCL_FREE, FTAG); 5920 } 5921 5922 int 5923 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 5924 { 5925 const dva_t *dva = bp->blk_dva; 5926 int ndvas = BP_GET_NDVAS(bp); 5927 int error = 0; 5928 5929 ASSERT(!BP_IS_HOLE(bp)); 5930 5931 if (txg != 0) { 5932 /* 5933 * First do a dry run to make sure all DVAs are claimable, 5934 * so we don't have to unwind from partial failures below. 5935 */ 5936 if ((error = metaslab_claim(spa, bp, 0)) != 0) 5937 return (error); 5938 } 5939 5940 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5941 5942 for (int d = 0; d < ndvas; d++) { 5943 error = metaslab_claim_dva(spa, &dva[d], txg); 5944 if (error != 0) 5945 break; 5946 } 5947 5948 spa_config_exit(spa, SCL_ALLOC, FTAG); 5949 5950 ASSERT(error == 0 || txg == 0); 5951 5952 return (error); 5953 } 5954 5955 void 5956 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp) 5957 { 5958 const dva_t *dva = bp->blk_dva; 5959 int ndvas = BP_GET_NDVAS(bp); 5960 uint64_t psize = BP_GET_PSIZE(bp); 5961 int d; 5962 vdev_t *vd; 5963 5964 ASSERT(!BP_IS_HOLE(bp)); 5965 ASSERT(!BP_IS_EMBEDDED(bp)); 5966 ASSERT(psize > 0); 5967 5968 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5969 5970 for (d = 0; d < ndvas; d++) { 5971 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5972 continue; 5973 atomic_add_64(&vd->vdev_pending_fastwrite, psize); 5974 } 5975 5976 spa_config_exit(spa, SCL_VDEV, FTAG); 5977 } 5978 5979 void 5980 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp) 5981 { 5982 const dva_t *dva = bp->blk_dva; 5983 int ndvas = BP_GET_NDVAS(bp); 5984 uint64_t psize = BP_GET_PSIZE(bp); 5985 int d; 5986 vdev_t *vd; 5987 5988 ASSERT(!BP_IS_HOLE(bp)); 5989 ASSERT(!BP_IS_EMBEDDED(bp)); 5990 ASSERT(psize > 0); 5991 5992 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5993 5994 for (d = 0; d < ndvas; d++) { 5995 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5996 continue; 5997 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize); 5998 atomic_sub_64(&vd->vdev_pending_fastwrite, psize); 5999 } 6000 6001 spa_config_exit(spa, SCL_VDEV, FTAG); 6002 } 6003 6004 /* ARGSUSED */ 6005 static void 6006 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 6007 uint64_t size, void *arg) 6008 { 6009 if (vd->vdev_ops == &vdev_indirect_ops) 6010 return; 6011 6012 metaslab_check_free_impl(vd, offset, size); 6013 } 6014 6015 static void 6016 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 6017 { 6018 metaslab_t *msp; 6019 spa_t *spa __maybe_unused = vd->vdev_spa; 6020 6021 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6022 return; 6023 6024 if (vd->vdev_ops->vdev_op_remap != NULL) { 6025 vd->vdev_ops->vdev_op_remap(vd, offset, size, 6026 metaslab_check_free_impl_cb, NULL); 6027 return; 6028 } 6029 6030 ASSERT(vdev_is_concrete(vd)); 6031 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 6032 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 6033 6034 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6035 6036 mutex_enter(&msp->ms_lock); 6037 if (msp->ms_loaded) { 6038 range_tree_verify_not_present(msp->ms_allocatable, 6039 offset, size); 6040 } 6041 6042 /* 6043 * Check all segments that currently exist in the freeing pipeline. 6044 * 6045 * It would intuitively make sense to also check the current allocating 6046 * tree since metaslab_unalloc_dva() exists for extents that are 6047 * allocated and freed in the same sync pass within the same txg. 6048 * Unfortunately there are places (e.g. the ZIL) where we allocate a 6049 * segment but then we free part of it within the same txg 6050 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the 6051 * current allocating tree. 6052 */ 6053 range_tree_verify_not_present(msp->ms_freeing, offset, size); 6054 range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 6055 range_tree_verify_not_present(msp->ms_freed, offset, size); 6056 for (int j = 0; j < TXG_DEFER_SIZE; j++) 6057 range_tree_verify_not_present(msp->ms_defer[j], offset, size); 6058 range_tree_verify_not_present(msp->ms_trim, offset, size); 6059 mutex_exit(&msp->ms_lock); 6060 } 6061 6062 void 6063 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6064 { 6065 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6066 return; 6067 6068 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6069 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6070 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6071 vdev_t *vd = vdev_lookup_top(spa, vdev); 6072 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6073 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6074 6075 if (DVA_GET_GANG(&bp->blk_dva[i])) 6076 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 6077 6078 ASSERT3P(vd, !=, NULL); 6079 6080 metaslab_check_free_impl(vd, offset, size); 6081 } 6082 spa_config_exit(spa, SCL_VDEV, FTAG); 6083 } 6084 6085 static void 6086 metaslab_group_disable_wait(metaslab_group_t *mg) 6087 { 6088 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6089 while (mg->mg_disabled_updating) { 6090 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6091 } 6092 } 6093 6094 static void 6095 metaslab_group_disabled_increment(metaslab_group_t *mg) 6096 { 6097 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6098 ASSERT(mg->mg_disabled_updating); 6099 6100 while (mg->mg_ms_disabled >= max_disabled_ms) { 6101 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6102 } 6103 mg->mg_ms_disabled++; 6104 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6105 } 6106 6107 /* 6108 * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6109 * We must also track how many metaslabs are currently disabled within a 6110 * metaslab group and limit them to prevent allocation failures from 6111 * occurring because all metaslabs are disabled. 6112 */ 6113 void 6114 metaslab_disable(metaslab_t *msp) 6115 { 6116 ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6117 metaslab_group_t *mg = msp->ms_group; 6118 6119 mutex_enter(&mg->mg_ms_disabled_lock); 6120 6121 /* 6122 * To keep an accurate count of how many threads have disabled 6123 * a specific metaslab group, we only allow one thread to mark 6124 * the metaslab group at a time. This ensures that the value of 6125 * ms_disabled will be accurate when we decide to mark a metaslab 6126 * group as disabled. To do this we force all other threads 6127 * to wait till the metaslab's mg_disabled_updating flag is no 6128 * longer set. 6129 */ 6130 metaslab_group_disable_wait(mg); 6131 mg->mg_disabled_updating = B_TRUE; 6132 if (msp->ms_disabled == 0) { 6133 metaslab_group_disabled_increment(mg); 6134 } 6135 mutex_enter(&msp->ms_lock); 6136 msp->ms_disabled++; 6137 mutex_exit(&msp->ms_lock); 6138 6139 mg->mg_disabled_updating = B_FALSE; 6140 cv_broadcast(&mg->mg_ms_disabled_cv); 6141 mutex_exit(&mg->mg_ms_disabled_lock); 6142 } 6143 6144 void 6145 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6146 { 6147 metaslab_group_t *mg = msp->ms_group; 6148 spa_t *spa = mg->mg_vd->vdev_spa; 6149 6150 /* 6151 * Wait for the outstanding IO to be synced to prevent newly 6152 * allocated blocks from being overwritten. This used by 6153 * initialize and TRIM which are modifying unallocated space. 6154 */ 6155 if (sync) 6156 txg_wait_synced(spa_get_dsl(spa), 0); 6157 6158 mutex_enter(&mg->mg_ms_disabled_lock); 6159 mutex_enter(&msp->ms_lock); 6160 if (--msp->ms_disabled == 0) { 6161 mg->mg_ms_disabled--; 6162 cv_broadcast(&mg->mg_ms_disabled_cv); 6163 if (unload) 6164 metaslab_unload(msp); 6165 } 6166 mutex_exit(&msp->ms_lock); 6167 mutex_exit(&mg->mg_ms_disabled_lock); 6168 } 6169 6170 static void 6171 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6172 { 6173 vdev_t *vd = ms->ms_group->mg_vd; 6174 spa_t *spa = vd->vdev_spa; 6175 objset_t *mos = spa_meta_objset(spa); 6176 6177 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6178 6179 metaslab_unflushed_phys_t entry = { 6180 .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6181 }; 6182 uint64_t entry_size = sizeof (entry); 6183 uint64_t entry_offset = ms->ms_id * entry_size; 6184 6185 uint64_t object = 0; 6186 int err = zap_lookup(mos, vd->vdev_top_zap, 6187 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6188 &object); 6189 if (err == ENOENT) { 6190 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6191 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6192 VERIFY0(zap_add(mos, vd->vdev_top_zap, 6193 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6194 &object, tx)); 6195 } else { 6196 VERIFY0(err); 6197 } 6198 6199 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6200 &entry, tx); 6201 } 6202 6203 void 6204 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6205 { 6206 spa_t *spa = ms->ms_group->mg_vd->vdev_spa; 6207 6208 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 6209 return; 6210 6211 ms->ms_unflushed_txg = txg; 6212 metaslab_update_ondisk_flush_data(ms, tx); 6213 } 6214 6215 uint64_t 6216 metaslab_unflushed_txg(metaslab_t *ms) 6217 { 6218 return (ms->ms_unflushed_txg); 6219 } 6220 6221 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW, 6222 "Allocation granularity (a.k.a. stripe size)"); 6223 6224 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6225 "Load all metaslabs when pool is first opened"); 6226 6227 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6228 "Prevent metaslabs from being unloaded"); 6229 6230 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6231 "Preload potential metaslabs during reassessment"); 6232 6233 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW, 6234 "Delay in txgs after metaslab was last used before unloading"); 6235 6236 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW, 6237 "Delay in milliseconds after metaslab was last used before unloading"); 6238 6239 /* BEGIN CSTYLED */ 6240 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW, 6241 "Percentage of metaslab group size that should be free to make it " 6242 "eligible for allocation"); 6243 6244 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW, 6245 "Percentage of metaslab group size that should be considered eligible " 6246 "for allocations unless all metaslab groups within the metaslab class " 6247 "have also crossed this threshold"); 6248 6249 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT, 6250 ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6251 6252 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, ZMOD_RW, 6253 "Use the fragmentation metric to prefer less fragmented metaslabs"); 6254 /* END CSTYLED */ 6255 6256 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6257 "Prefer metaslabs with lower LBAs"); 6258 6259 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6260 "Enable metaslab group biasing"); 6261 6262 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6263 ZMOD_RW, "Enable segment-based metaslab selection"); 6264 6265 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6266 "Segment-based metaslab selection maximum buckets before switching"); 6267 6268 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW, 6269 "Blocks larger than this size are forced to be gang blocks"); 6270 6271 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW, 6272 "Max distance (bytes) to search forward before using size tree"); 6273 6274 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6275 "When looking in size tree, use largest segment instead of exact fit"); 6276 6277 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG, 6278 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6279 6280 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW, 6281 "Percentage of memory that can be used to store metaslab range trees"); 6282 6283 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT, 6284 ZMOD_RW, "Try hard to allocate before ganging"); 6285 6286 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, INT, ZMOD_RW, 6287 "Normally only consider this many of the best metaslabs in each vdev"); 6288