1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved. 25 * Copyright (c) 2017, Intel Corporation. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/dmu.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/space_map.h> 32 #include <sys/metaslab_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zfeature.h> 37 #include <sys/vdev_indirect_mapping.h> 38 #include <sys/zap.h> 39 #include <sys/btree.h> 40 41 #define WITH_DF_BLOCK_ALLOCATOR 42 43 #define GANG_ALLOCATION(flags) \ 44 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER)) 45 46 /* 47 * Metaslab granularity, in bytes. This is roughly similar to what would be 48 * referred to as the "stripe size" in traditional RAID arrays. In normal 49 * operation, we will try to write this amount of data to a top-level vdev 50 * before moving on to the next one. 51 */ 52 unsigned long metaslab_aliquot = 512 << 10; 53 54 /* 55 * For testing, make some blocks above a certain size be gang blocks. 56 */ 57 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1; 58 59 /* 60 * In pools where the log space map feature is not enabled we touch 61 * multiple metaslabs (and their respective space maps) with each 62 * transaction group. Thus, we benefit from having a small space map 63 * block size since it allows us to issue more I/O operations scattered 64 * around the disk. So a sane default for the space map block size 65 * is 8~16K. 66 */ 67 int zfs_metaslab_sm_blksz_no_log = (1 << 14); 68 69 /* 70 * When the log space map feature is enabled, we accumulate a lot of 71 * changes per metaslab that are flushed once in a while so we benefit 72 * from a bigger block size like 128K for the metaslab space maps. 73 */ 74 int zfs_metaslab_sm_blksz_with_log = (1 << 17); 75 76 /* 77 * The in-core space map representation is more compact than its on-disk form. 78 * The zfs_condense_pct determines how much more compact the in-core 79 * space map representation must be before we compact it on-disk. 80 * Values should be greater than or equal to 100. 81 */ 82 int zfs_condense_pct = 200; 83 84 /* 85 * Condensing a metaslab is not guaranteed to actually reduce the amount of 86 * space used on disk. In particular, a space map uses data in increments of 87 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the 88 * same number of blocks after condensing. Since the goal of condensing is to 89 * reduce the number of IOPs required to read the space map, we only want to 90 * condense when we can be sure we will reduce the number of blocks used by the 91 * space map. Unfortunately, we cannot precisely compute whether or not this is 92 * the case in metaslab_should_condense since we are holding ms_lock. Instead, 93 * we apply the following heuristic: do not condense a spacemap unless the 94 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold 95 * blocks. 96 */ 97 int zfs_metaslab_condense_block_threshold = 4; 98 99 /* 100 * The zfs_mg_noalloc_threshold defines which metaslab groups should 101 * be eligible for allocation. The value is defined as a percentage of 102 * free space. Metaslab groups that have more free space than 103 * zfs_mg_noalloc_threshold are always eligible for allocations. Once 104 * a metaslab group's free space is less than or equal to the 105 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that 106 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold. 107 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all 108 * groups are allowed to accept allocations. Gang blocks are always 109 * eligible to allocate on any metaslab group. The default value of 0 means 110 * no metaslab group will be excluded based on this criterion. 111 */ 112 int zfs_mg_noalloc_threshold = 0; 113 114 /* 115 * Metaslab groups are considered eligible for allocations if their 116 * fragmentation metric (measured as a percentage) is less than or 117 * equal to zfs_mg_fragmentation_threshold. If a metaslab group 118 * exceeds this threshold then it will be skipped unless all metaslab 119 * groups within the metaslab class have also crossed this threshold. 120 * 121 * This tunable was introduced to avoid edge cases where we continue 122 * allocating from very fragmented disks in our pool while other, less 123 * fragmented disks, exists. On the other hand, if all disks in the 124 * pool are uniformly approaching the threshold, the threshold can 125 * be a speed bump in performance, where we keep switching the disks 126 * that we allocate from (e.g. we allocate some segments from disk A 127 * making it bypassing the threshold while freeing segments from disk 128 * B getting its fragmentation below the threshold). 129 * 130 * Empirically, we've seen that our vdev selection for allocations is 131 * good enough that fragmentation increases uniformly across all vdevs 132 * the majority of the time. Thus we set the threshold percentage high 133 * enough to avoid hitting the speed bump on pools that are being pushed 134 * to the edge. 135 */ 136 int zfs_mg_fragmentation_threshold = 95; 137 138 /* 139 * Allow metaslabs to keep their active state as long as their fragmentation 140 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An 141 * active metaslab that exceeds this threshold will no longer keep its active 142 * status allowing better metaslabs to be selected. 143 */ 144 int zfs_metaslab_fragmentation_threshold = 70; 145 146 /* 147 * When set will load all metaslabs when pool is first opened. 148 */ 149 int metaslab_debug_load = 0; 150 151 /* 152 * When set will prevent metaslabs from being unloaded. 153 */ 154 int metaslab_debug_unload = 0; 155 156 /* 157 * Minimum size which forces the dynamic allocator to change 158 * it's allocation strategy. Once the space map cannot satisfy 159 * an allocation of this size then it switches to using more 160 * aggressive strategy (i.e search by size rather than offset). 161 */ 162 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE; 163 164 /* 165 * The minimum free space, in percent, which must be available 166 * in a space map to continue allocations in a first-fit fashion. 167 * Once the space map's free space drops below this level we dynamically 168 * switch to using best-fit allocations. 169 */ 170 int metaslab_df_free_pct = 4; 171 172 /* 173 * Maximum distance to search forward from the last offset. Without this 174 * limit, fragmented pools can see >100,000 iterations and 175 * metaslab_block_picker() becomes the performance limiting factor on 176 * high-performance storage. 177 * 178 * With the default setting of 16MB, we typically see less than 500 179 * iterations, even with very fragmented, ashift=9 pools. The maximum number 180 * of iterations possible is: 181 * metaslab_df_max_search / (2 * (1<<ashift)) 182 * With the default setting of 16MB this is 16*1024 (with ashift=9) or 183 * 2048 (with ashift=12). 184 */ 185 int metaslab_df_max_search = 16 * 1024 * 1024; 186 187 /* 188 * Forces the metaslab_block_picker function to search for at least this many 189 * segments forwards until giving up on finding a segment that the allocation 190 * will fit into. 191 */ 192 uint32_t metaslab_min_search_count = 100; 193 194 /* 195 * If we are not searching forward (due to metaslab_df_max_search, 196 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable 197 * controls what segment is used. If it is set, we will use the largest free 198 * segment. If it is not set, we will use a segment of exactly the requested 199 * size (or larger). 200 */ 201 int metaslab_df_use_largest_segment = B_FALSE; 202 203 /* 204 * Percentage of all cpus that can be used by the metaslab taskq. 205 */ 206 int metaslab_load_pct = 50; 207 208 /* 209 * These tunables control how long a metaslab will remain loaded after the 210 * last allocation from it. A metaslab can't be unloaded until at least 211 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds 212 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be 213 * unloaded sooner. These settings are intended to be generous -- to keep 214 * metaslabs loaded for a long time, reducing the rate of metaslab loading. 215 */ 216 int metaslab_unload_delay = 32; 217 int metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */ 218 219 /* 220 * Max number of metaslabs per group to preload. 221 */ 222 int metaslab_preload_limit = 10; 223 224 /* 225 * Enable/disable preloading of metaslab. 226 */ 227 int metaslab_preload_enabled = B_TRUE; 228 229 /* 230 * Enable/disable fragmentation weighting on metaslabs. 231 */ 232 int metaslab_fragmentation_factor_enabled = B_TRUE; 233 234 /* 235 * Enable/disable lba weighting (i.e. outer tracks are given preference). 236 */ 237 int metaslab_lba_weighting_enabled = B_TRUE; 238 239 /* 240 * Enable/disable metaslab group biasing. 241 */ 242 int metaslab_bias_enabled = B_TRUE; 243 244 /* 245 * Enable/disable remapping of indirect DVAs to their concrete vdevs. 246 */ 247 boolean_t zfs_remap_blkptr_enable = B_TRUE; 248 249 /* 250 * Enable/disable segment-based metaslab selection. 251 */ 252 int zfs_metaslab_segment_weight_enabled = B_TRUE; 253 254 /* 255 * When using segment-based metaslab selection, we will continue 256 * allocating from the active metaslab until we have exhausted 257 * zfs_metaslab_switch_threshold of its buckets. 258 */ 259 int zfs_metaslab_switch_threshold = 2; 260 261 /* 262 * Internal switch to enable/disable the metaslab allocation tracing 263 * facility. 264 */ 265 #ifdef _METASLAB_TRACING 266 boolean_t metaslab_trace_enabled = B_TRUE; 267 #endif 268 269 /* 270 * Maximum entries that the metaslab allocation tracing facility will keep 271 * in a given list when running in non-debug mode. We limit the number 272 * of entries in non-debug mode to prevent us from using up too much memory. 273 * The limit should be sufficiently large that we don't expect any allocation 274 * to every exceed this value. In debug mode, the system will panic if this 275 * limit is ever reached allowing for further investigation. 276 */ 277 #ifdef _METASLAB_TRACING 278 uint64_t metaslab_trace_max_entries = 5000; 279 #endif 280 281 /* 282 * Maximum number of metaslabs per group that can be disabled 283 * simultaneously. 284 */ 285 int max_disabled_ms = 3; 286 287 /* 288 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded. 289 * To avoid 64-bit overflow, don't set above UINT32_MAX. 290 */ 291 unsigned long zfs_metaslab_max_size_cache_sec = 3600; /* 1 hour */ 292 293 /* 294 * Maximum percentage of memory to use on storing loaded metaslabs. If loading 295 * a metaslab would take it over this percentage, the oldest selected metaslab 296 * is automatically unloaded. 297 */ 298 int zfs_metaslab_mem_limit = 75; 299 300 /* 301 * Force the per-metaslab range trees to use 64-bit integers to store 302 * segments. Used for debugging purposes. 303 */ 304 boolean_t zfs_metaslab_force_large_segs = B_FALSE; 305 306 /* 307 * By default we only store segments over a certain size in the size-sorted 308 * metaslab trees (ms_allocatable_by_size and 309 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and 310 * improves load and unload times at the cost of causing us to use slightly 311 * larger segments than we would otherwise in some cases. 312 */ 313 uint32_t metaslab_by_size_min_shift = 14; 314 315 static uint64_t metaslab_weight(metaslab_t *, boolean_t); 316 static void metaslab_set_fragmentation(metaslab_t *, boolean_t); 317 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t); 318 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t); 319 320 static void metaslab_passivate(metaslab_t *msp, uint64_t weight); 321 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp); 322 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *); 323 static unsigned int metaslab_idx_func(multilist_t *, void *); 324 static void metaslab_evict(metaslab_t *, uint64_t); 325 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg); 326 #ifdef _METASLAB_TRACING 327 kmem_cache_t *metaslab_alloc_trace_cache; 328 329 typedef struct metaslab_stats { 330 kstat_named_t metaslabstat_trace_over_limit; 331 kstat_named_t metaslabstat_df_find_under_floor; 332 kstat_named_t metaslabstat_reload_tree; 333 } metaslab_stats_t; 334 335 static metaslab_stats_t metaslab_stats = { 336 { "trace_over_limit", KSTAT_DATA_UINT64 }, 337 { "df_find_under_floor", KSTAT_DATA_UINT64 }, 338 { "reload_tree", KSTAT_DATA_UINT64 }, 339 }; 340 341 #define METASLABSTAT_BUMP(stat) \ 342 atomic_inc_64(&metaslab_stats.stat.value.ui64); 343 344 345 kstat_t *metaslab_ksp; 346 347 void 348 metaslab_stat_init(void) 349 { 350 ASSERT(metaslab_alloc_trace_cache == NULL); 351 metaslab_alloc_trace_cache = kmem_cache_create( 352 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t), 353 0, NULL, NULL, NULL, NULL, NULL, 0); 354 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats", 355 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) / 356 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 357 if (metaslab_ksp != NULL) { 358 metaslab_ksp->ks_data = &metaslab_stats; 359 kstat_install(metaslab_ksp); 360 } 361 } 362 363 void 364 metaslab_stat_fini(void) 365 { 366 if (metaslab_ksp != NULL) { 367 kstat_delete(metaslab_ksp); 368 metaslab_ksp = NULL; 369 } 370 371 kmem_cache_destroy(metaslab_alloc_trace_cache); 372 metaslab_alloc_trace_cache = NULL; 373 } 374 #else 375 376 void 377 metaslab_stat_init(void) 378 { 379 } 380 381 void 382 metaslab_stat_fini(void) 383 { 384 } 385 #endif 386 387 /* 388 * ========================================================================== 389 * Metaslab classes 390 * ========================================================================== 391 */ 392 metaslab_class_t * 393 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops) 394 { 395 metaslab_class_t *mc; 396 397 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP); 398 399 mc->mc_spa = spa; 400 mc->mc_rotor = NULL; 401 mc->mc_ops = ops; 402 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL); 403 mc->mc_metaslab_txg_list = multilist_create(sizeof (metaslab_t), 404 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func); 405 mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count * 406 sizeof (zfs_refcount_t), KM_SLEEP); 407 mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count * 408 sizeof (uint64_t), KM_SLEEP); 409 for (int i = 0; i < spa->spa_alloc_count; i++) 410 zfs_refcount_create_tracked(&mc->mc_alloc_slots[i]); 411 412 return (mc); 413 } 414 415 void 416 metaslab_class_destroy(metaslab_class_t *mc) 417 { 418 ASSERT(mc->mc_rotor == NULL); 419 ASSERT(mc->mc_alloc == 0); 420 ASSERT(mc->mc_deferred == 0); 421 ASSERT(mc->mc_space == 0); 422 ASSERT(mc->mc_dspace == 0); 423 424 for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++) 425 zfs_refcount_destroy(&mc->mc_alloc_slots[i]); 426 kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count * 427 sizeof (zfs_refcount_t)); 428 kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count * 429 sizeof (uint64_t)); 430 mutex_destroy(&mc->mc_lock); 431 multilist_destroy(mc->mc_metaslab_txg_list); 432 kmem_free(mc, sizeof (metaslab_class_t)); 433 } 434 435 int 436 metaslab_class_validate(metaslab_class_t *mc) 437 { 438 metaslab_group_t *mg; 439 vdev_t *vd; 440 441 /* 442 * Must hold one of the spa_config locks. 443 */ 444 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) || 445 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER)); 446 447 if ((mg = mc->mc_rotor) == NULL) 448 return (0); 449 450 do { 451 vd = mg->mg_vd; 452 ASSERT(vd->vdev_mg != NULL); 453 ASSERT3P(vd->vdev_top, ==, vd); 454 ASSERT3P(mg->mg_class, ==, mc); 455 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops); 456 } while ((mg = mg->mg_next) != mc->mc_rotor); 457 458 return (0); 459 } 460 461 static void 462 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta, 463 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta) 464 { 465 atomic_add_64(&mc->mc_alloc, alloc_delta); 466 atomic_add_64(&mc->mc_deferred, defer_delta); 467 atomic_add_64(&mc->mc_space, space_delta); 468 atomic_add_64(&mc->mc_dspace, dspace_delta); 469 } 470 471 uint64_t 472 metaslab_class_get_alloc(metaslab_class_t *mc) 473 { 474 return (mc->mc_alloc); 475 } 476 477 uint64_t 478 metaslab_class_get_deferred(metaslab_class_t *mc) 479 { 480 return (mc->mc_deferred); 481 } 482 483 uint64_t 484 metaslab_class_get_space(metaslab_class_t *mc) 485 { 486 return (mc->mc_space); 487 } 488 489 uint64_t 490 metaslab_class_get_dspace(metaslab_class_t *mc) 491 { 492 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space); 493 } 494 495 void 496 metaslab_class_histogram_verify(metaslab_class_t *mc) 497 { 498 spa_t *spa = mc->mc_spa; 499 vdev_t *rvd = spa->spa_root_vdev; 500 uint64_t *mc_hist; 501 int i; 502 503 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 504 return; 505 506 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 507 KM_SLEEP); 508 509 for (int c = 0; c < rvd->vdev_children; c++) { 510 vdev_t *tvd = rvd->vdev_child[c]; 511 metaslab_group_t *mg = tvd->vdev_mg; 512 513 /* 514 * Skip any holes, uninitialized top-levels, or 515 * vdevs that are not in this metalab class. 516 */ 517 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 518 mg->mg_class != mc) { 519 continue; 520 } 521 522 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 523 mc_hist[i] += mg->mg_histogram[i]; 524 } 525 526 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 527 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]); 528 529 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 530 } 531 532 /* 533 * Calculate the metaslab class's fragmentation metric. The metric 534 * is weighted based on the space contribution of each metaslab group. 535 * The return value will be a number between 0 and 100 (inclusive), or 536 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the 537 * zfs_frag_table for more information about the metric. 538 */ 539 uint64_t 540 metaslab_class_fragmentation(metaslab_class_t *mc) 541 { 542 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 543 uint64_t fragmentation = 0; 544 545 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 546 547 for (int c = 0; c < rvd->vdev_children; c++) { 548 vdev_t *tvd = rvd->vdev_child[c]; 549 metaslab_group_t *mg = tvd->vdev_mg; 550 551 /* 552 * Skip any holes, uninitialized top-levels, 553 * or vdevs that are not in this metalab class. 554 */ 555 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 556 mg->mg_class != mc) { 557 continue; 558 } 559 560 /* 561 * If a metaslab group does not contain a fragmentation 562 * metric then just bail out. 563 */ 564 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 565 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 566 return (ZFS_FRAG_INVALID); 567 } 568 569 /* 570 * Determine how much this metaslab_group is contributing 571 * to the overall pool fragmentation metric. 572 */ 573 fragmentation += mg->mg_fragmentation * 574 metaslab_group_get_space(mg); 575 } 576 fragmentation /= metaslab_class_get_space(mc); 577 578 ASSERT3U(fragmentation, <=, 100); 579 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 580 return (fragmentation); 581 } 582 583 /* 584 * Calculate the amount of expandable space that is available in 585 * this metaslab class. If a device is expanded then its expandable 586 * space will be the amount of allocatable space that is currently not 587 * part of this metaslab class. 588 */ 589 uint64_t 590 metaslab_class_expandable_space(metaslab_class_t *mc) 591 { 592 vdev_t *rvd = mc->mc_spa->spa_root_vdev; 593 uint64_t space = 0; 594 595 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER); 596 for (int c = 0; c < rvd->vdev_children; c++) { 597 vdev_t *tvd = rvd->vdev_child[c]; 598 metaslab_group_t *mg = tvd->vdev_mg; 599 600 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 || 601 mg->mg_class != mc) { 602 continue; 603 } 604 605 /* 606 * Calculate if we have enough space to add additional 607 * metaslabs. We report the expandable space in terms 608 * of the metaslab size since that's the unit of expansion. 609 */ 610 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize, 611 1ULL << tvd->vdev_ms_shift); 612 } 613 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG); 614 return (space); 615 } 616 617 void 618 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg) 619 { 620 multilist_t *ml = mc->mc_metaslab_txg_list; 621 for (int i = 0; i < multilist_get_num_sublists(ml); i++) { 622 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 623 metaslab_t *msp = multilist_sublist_head(mls); 624 multilist_sublist_unlock(mls); 625 while (msp != NULL) { 626 mutex_enter(&msp->ms_lock); 627 628 /* 629 * If the metaslab has been removed from the list 630 * (which could happen if we were at the memory limit 631 * and it was evicted during this loop), then we can't 632 * proceed and we should restart the sublist. 633 */ 634 if (!multilist_link_active(&msp->ms_class_txg_node)) { 635 mutex_exit(&msp->ms_lock); 636 i--; 637 break; 638 } 639 mls = multilist_sublist_lock(ml, i); 640 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 641 multilist_sublist_unlock(mls); 642 if (txg > 643 msp->ms_selected_txg + metaslab_unload_delay && 644 gethrtime() > msp->ms_selected_time + 645 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) { 646 metaslab_evict(msp, txg); 647 } else { 648 /* 649 * Once we've hit a metaslab selected too 650 * recently to evict, we're done evicting for 651 * now. 652 */ 653 mutex_exit(&msp->ms_lock); 654 break; 655 } 656 mutex_exit(&msp->ms_lock); 657 msp = next_msp; 658 } 659 } 660 } 661 662 static int 663 metaslab_compare(const void *x1, const void *x2) 664 { 665 const metaslab_t *m1 = (const metaslab_t *)x1; 666 const metaslab_t *m2 = (const metaslab_t *)x2; 667 668 int sort1 = 0; 669 int sort2 = 0; 670 if (m1->ms_allocator != -1 && m1->ms_primary) 671 sort1 = 1; 672 else if (m1->ms_allocator != -1 && !m1->ms_primary) 673 sort1 = 2; 674 if (m2->ms_allocator != -1 && m2->ms_primary) 675 sort2 = 1; 676 else if (m2->ms_allocator != -1 && !m2->ms_primary) 677 sort2 = 2; 678 679 /* 680 * Sort inactive metaslabs first, then primaries, then secondaries. When 681 * selecting a metaslab to allocate from, an allocator first tries its 682 * primary, then secondary active metaslab. If it doesn't have active 683 * metaslabs, or can't allocate from them, it searches for an inactive 684 * metaslab to activate. If it can't find a suitable one, it will steal 685 * a primary or secondary metaslab from another allocator. 686 */ 687 if (sort1 < sort2) 688 return (-1); 689 if (sort1 > sort2) 690 return (1); 691 692 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight); 693 if (likely(cmp)) 694 return (cmp); 695 696 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2); 697 698 return (TREE_CMP(m1->ms_start, m2->ms_start)); 699 } 700 701 /* 702 * ========================================================================== 703 * Metaslab groups 704 * ========================================================================== 705 */ 706 /* 707 * Update the allocatable flag and the metaslab group's capacity. 708 * The allocatable flag is set to true if the capacity is below 709 * the zfs_mg_noalloc_threshold or has a fragmentation value that is 710 * greater than zfs_mg_fragmentation_threshold. If a metaslab group 711 * transitions from allocatable to non-allocatable or vice versa then the 712 * metaslab group's class is updated to reflect the transition. 713 */ 714 static void 715 metaslab_group_alloc_update(metaslab_group_t *mg) 716 { 717 vdev_t *vd = mg->mg_vd; 718 metaslab_class_t *mc = mg->mg_class; 719 vdev_stat_t *vs = &vd->vdev_stat; 720 boolean_t was_allocatable; 721 boolean_t was_initialized; 722 723 ASSERT(vd == vd->vdev_top); 724 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==, 725 SCL_ALLOC); 726 727 mutex_enter(&mg->mg_lock); 728 was_allocatable = mg->mg_allocatable; 729 was_initialized = mg->mg_initialized; 730 731 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) / 732 (vs->vs_space + 1); 733 734 mutex_enter(&mc->mc_lock); 735 736 /* 737 * If the metaslab group was just added then it won't 738 * have any space until we finish syncing out this txg. 739 * At that point we will consider it initialized and available 740 * for allocations. We also don't consider non-activated 741 * metaslab groups (e.g. vdevs that are in the middle of being removed) 742 * to be initialized, because they can't be used for allocation. 743 */ 744 mg->mg_initialized = metaslab_group_initialized(mg); 745 if (!was_initialized && mg->mg_initialized) { 746 mc->mc_groups++; 747 } else if (was_initialized && !mg->mg_initialized) { 748 ASSERT3U(mc->mc_groups, >, 0); 749 mc->mc_groups--; 750 } 751 if (mg->mg_initialized) 752 mg->mg_no_free_space = B_FALSE; 753 754 /* 755 * A metaslab group is considered allocatable if it has plenty 756 * of free space or is not heavily fragmented. We only take 757 * fragmentation into account if the metaslab group has a valid 758 * fragmentation metric (i.e. a value between 0 and 100). 759 */ 760 mg->mg_allocatable = (mg->mg_activation_count > 0 && 761 mg->mg_free_capacity > zfs_mg_noalloc_threshold && 762 (mg->mg_fragmentation == ZFS_FRAG_INVALID || 763 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)); 764 765 /* 766 * The mc_alloc_groups maintains a count of the number of 767 * groups in this metaslab class that are still above the 768 * zfs_mg_noalloc_threshold. This is used by the allocating 769 * threads to determine if they should avoid allocations to 770 * a given group. The allocator will avoid allocations to a group 771 * if that group has reached or is below the zfs_mg_noalloc_threshold 772 * and there are still other groups that are above the threshold. 773 * When a group transitions from allocatable to non-allocatable or 774 * vice versa we update the metaslab class to reflect that change. 775 * When the mc_alloc_groups value drops to 0 that means that all 776 * groups have reached the zfs_mg_noalloc_threshold making all groups 777 * eligible for allocations. This effectively means that all devices 778 * are balanced again. 779 */ 780 if (was_allocatable && !mg->mg_allocatable) 781 mc->mc_alloc_groups--; 782 else if (!was_allocatable && mg->mg_allocatable) 783 mc->mc_alloc_groups++; 784 mutex_exit(&mc->mc_lock); 785 786 mutex_exit(&mg->mg_lock); 787 } 788 789 int 790 metaslab_sort_by_flushed(const void *va, const void *vb) 791 { 792 const metaslab_t *a = va; 793 const metaslab_t *b = vb; 794 795 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg); 796 if (likely(cmp)) 797 return (cmp); 798 799 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id; 800 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id; 801 cmp = TREE_CMP(a_vdev_id, b_vdev_id); 802 if (cmp) 803 return (cmp); 804 805 return (TREE_CMP(a->ms_id, b->ms_id)); 806 } 807 808 metaslab_group_t * 809 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators) 810 { 811 metaslab_group_t *mg; 812 813 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP); 814 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL); 815 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL); 816 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL); 817 avl_create(&mg->mg_metaslab_tree, metaslab_compare, 818 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node)); 819 mg->mg_vd = vd; 820 mg->mg_class = mc; 821 mg->mg_activation_count = 0; 822 mg->mg_initialized = B_FALSE; 823 mg->mg_no_free_space = B_TRUE; 824 mg->mg_allocators = allocators; 825 826 mg->mg_allocator = kmem_zalloc(allocators * 827 sizeof (metaslab_group_allocator_t), KM_SLEEP); 828 for (int i = 0; i < allocators; i++) { 829 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 830 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth); 831 } 832 833 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct, 834 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC); 835 836 return (mg); 837 } 838 839 void 840 metaslab_group_destroy(metaslab_group_t *mg) 841 { 842 ASSERT(mg->mg_prev == NULL); 843 ASSERT(mg->mg_next == NULL); 844 /* 845 * We may have gone below zero with the activation count 846 * either because we never activated in the first place or 847 * because we're done, and possibly removing the vdev. 848 */ 849 ASSERT(mg->mg_activation_count <= 0); 850 851 taskq_destroy(mg->mg_taskq); 852 avl_destroy(&mg->mg_metaslab_tree); 853 mutex_destroy(&mg->mg_lock); 854 mutex_destroy(&mg->mg_ms_disabled_lock); 855 cv_destroy(&mg->mg_ms_disabled_cv); 856 857 for (int i = 0; i < mg->mg_allocators; i++) { 858 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 859 zfs_refcount_destroy(&mga->mga_alloc_queue_depth); 860 } 861 kmem_free(mg->mg_allocator, mg->mg_allocators * 862 sizeof (metaslab_group_allocator_t)); 863 864 kmem_free(mg, sizeof (metaslab_group_t)); 865 } 866 867 void 868 metaslab_group_activate(metaslab_group_t *mg) 869 { 870 metaslab_class_t *mc = mg->mg_class; 871 metaslab_group_t *mgprev, *mgnext; 872 873 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0); 874 875 ASSERT(mc->mc_rotor != mg); 876 ASSERT(mg->mg_prev == NULL); 877 ASSERT(mg->mg_next == NULL); 878 ASSERT(mg->mg_activation_count <= 0); 879 880 if (++mg->mg_activation_count <= 0) 881 return; 882 883 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children); 884 metaslab_group_alloc_update(mg); 885 886 if ((mgprev = mc->mc_rotor) == NULL) { 887 mg->mg_prev = mg; 888 mg->mg_next = mg; 889 } else { 890 mgnext = mgprev->mg_next; 891 mg->mg_prev = mgprev; 892 mg->mg_next = mgnext; 893 mgprev->mg_next = mg; 894 mgnext->mg_prev = mg; 895 } 896 mc->mc_rotor = mg; 897 } 898 899 /* 900 * Passivate a metaslab group and remove it from the allocation rotor. 901 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating 902 * a metaslab group. This function will momentarily drop spa_config_locks 903 * that are lower than the SCL_ALLOC lock (see comment below). 904 */ 905 void 906 metaslab_group_passivate(metaslab_group_t *mg) 907 { 908 metaslab_class_t *mc = mg->mg_class; 909 spa_t *spa = mc->mc_spa; 910 metaslab_group_t *mgprev, *mgnext; 911 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER); 912 913 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==, 914 (SCL_ALLOC | SCL_ZIO)); 915 916 if (--mg->mg_activation_count != 0) { 917 ASSERT(mc->mc_rotor != mg); 918 ASSERT(mg->mg_prev == NULL); 919 ASSERT(mg->mg_next == NULL); 920 ASSERT(mg->mg_activation_count < 0); 921 return; 922 } 923 924 /* 925 * The spa_config_lock is an array of rwlocks, ordered as 926 * follows (from highest to lowest): 927 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC > 928 * SCL_ZIO > SCL_FREE > SCL_VDEV 929 * (For more information about the spa_config_lock see spa_misc.c) 930 * The higher the lock, the broader its coverage. When we passivate 931 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO 932 * config locks. However, the metaslab group's taskq might be trying 933 * to preload metaslabs so we must drop the SCL_ZIO lock and any 934 * lower locks to allow the I/O to complete. At a minimum, 935 * we continue to hold the SCL_ALLOC lock, which prevents any future 936 * allocations from taking place and any changes to the vdev tree. 937 */ 938 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa); 939 taskq_wait_outstanding(mg->mg_taskq, 0); 940 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER); 941 metaslab_group_alloc_update(mg); 942 for (int i = 0; i < mg->mg_allocators; i++) { 943 metaslab_group_allocator_t *mga = &mg->mg_allocator[i]; 944 metaslab_t *msp = mga->mga_primary; 945 if (msp != NULL) { 946 mutex_enter(&msp->ms_lock); 947 metaslab_passivate(msp, 948 metaslab_weight_from_range_tree(msp)); 949 mutex_exit(&msp->ms_lock); 950 } 951 msp = mga->mga_secondary; 952 if (msp != NULL) { 953 mutex_enter(&msp->ms_lock); 954 metaslab_passivate(msp, 955 metaslab_weight_from_range_tree(msp)); 956 mutex_exit(&msp->ms_lock); 957 } 958 } 959 960 mgprev = mg->mg_prev; 961 mgnext = mg->mg_next; 962 963 if (mg == mgnext) { 964 mc->mc_rotor = NULL; 965 } else { 966 mc->mc_rotor = mgnext; 967 mgprev->mg_next = mgnext; 968 mgnext->mg_prev = mgprev; 969 } 970 971 mg->mg_prev = NULL; 972 mg->mg_next = NULL; 973 } 974 975 boolean_t 976 metaslab_group_initialized(metaslab_group_t *mg) 977 { 978 vdev_t *vd = mg->mg_vd; 979 vdev_stat_t *vs = &vd->vdev_stat; 980 981 return (vs->vs_space != 0 && mg->mg_activation_count > 0); 982 } 983 984 uint64_t 985 metaslab_group_get_space(metaslab_group_t *mg) 986 { 987 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count); 988 } 989 990 void 991 metaslab_group_histogram_verify(metaslab_group_t *mg) 992 { 993 uint64_t *mg_hist; 994 vdev_t *vd = mg->mg_vd; 995 uint64_t ashift = vd->vdev_ashift; 996 int i; 997 998 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0) 999 return; 1000 1001 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE, 1002 KM_SLEEP); 1003 1004 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=, 1005 SPACE_MAP_HISTOGRAM_SIZE + ashift); 1006 1007 for (int m = 0; m < vd->vdev_ms_count; m++) { 1008 metaslab_t *msp = vd->vdev_ms[m]; 1009 1010 /* skip if not active or not a member */ 1011 if (msp->ms_sm == NULL || msp->ms_group != mg) 1012 continue; 1013 1014 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 1015 mg_hist[i + ashift] += 1016 msp->ms_sm->sm_phys->smp_histogram[i]; 1017 } 1018 1019 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++) 1020 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]); 1021 1022 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE); 1023 } 1024 1025 static void 1026 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp) 1027 { 1028 metaslab_class_t *mc = mg->mg_class; 1029 uint64_t ashift = mg->mg_vd->vdev_ashift; 1030 1031 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1032 if (msp->ms_sm == NULL) 1033 return; 1034 1035 mutex_enter(&mg->mg_lock); 1036 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1037 mg->mg_histogram[i + ashift] += 1038 msp->ms_sm->sm_phys->smp_histogram[i]; 1039 mc->mc_histogram[i + ashift] += 1040 msp->ms_sm->sm_phys->smp_histogram[i]; 1041 } 1042 mutex_exit(&mg->mg_lock); 1043 } 1044 1045 void 1046 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp) 1047 { 1048 metaslab_class_t *mc = mg->mg_class; 1049 uint64_t ashift = mg->mg_vd->vdev_ashift; 1050 1051 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1052 if (msp->ms_sm == NULL) 1053 return; 1054 1055 mutex_enter(&mg->mg_lock); 1056 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 1057 ASSERT3U(mg->mg_histogram[i + ashift], >=, 1058 msp->ms_sm->sm_phys->smp_histogram[i]); 1059 ASSERT3U(mc->mc_histogram[i + ashift], >=, 1060 msp->ms_sm->sm_phys->smp_histogram[i]); 1061 1062 mg->mg_histogram[i + ashift] -= 1063 msp->ms_sm->sm_phys->smp_histogram[i]; 1064 mc->mc_histogram[i + ashift] -= 1065 msp->ms_sm->sm_phys->smp_histogram[i]; 1066 } 1067 mutex_exit(&mg->mg_lock); 1068 } 1069 1070 static void 1071 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp) 1072 { 1073 ASSERT(msp->ms_group == NULL); 1074 mutex_enter(&mg->mg_lock); 1075 msp->ms_group = mg; 1076 msp->ms_weight = 0; 1077 avl_add(&mg->mg_metaslab_tree, msp); 1078 mutex_exit(&mg->mg_lock); 1079 1080 mutex_enter(&msp->ms_lock); 1081 metaslab_group_histogram_add(mg, msp); 1082 mutex_exit(&msp->ms_lock); 1083 } 1084 1085 static void 1086 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp) 1087 { 1088 mutex_enter(&msp->ms_lock); 1089 metaslab_group_histogram_remove(mg, msp); 1090 mutex_exit(&msp->ms_lock); 1091 1092 mutex_enter(&mg->mg_lock); 1093 ASSERT(msp->ms_group == mg); 1094 avl_remove(&mg->mg_metaslab_tree, msp); 1095 1096 metaslab_class_t *mc = msp->ms_group->mg_class; 1097 multilist_sublist_t *mls = 1098 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 1099 if (multilist_link_active(&msp->ms_class_txg_node)) 1100 multilist_sublist_remove(mls, msp); 1101 multilist_sublist_unlock(mls); 1102 1103 msp->ms_group = NULL; 1104 mutex_exit(&mg->mg_lock); 1105 } 1106 1107 static void 1108 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1109 { 1110 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1111 ASSERT(MUTEX_HELD(&mg->mg_lock)); 1112 ASSERT(msp->ms_group == mg); 1113 1114 avl_remove(&mg->mg_metaslab_tree, msp); 1115 msp->ms_weight = weight; 1116 avl_add(&mg->mg_metaslab_tree, msp); 1117 1118 } 1119 1120 static void 1121 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight) 1122 { 1123 /* 1124 * Although in principle the weight can be any value, in 1125 * practice we do not use values in the range [1, 511]. 1126 */ 1127 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0); 1128 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1129 1130 mutex_enter(&mg->mg_lock); 1131 metaslab_group_sort_impl(mg, msp, weight); 1132 mutex_exit(&mg->mg_lock); 1133 } 1134 1135 /* 1136 * Calculate the fragmentation for a given metaslab group. We can use 1137 * a simple average here since all metaslabs within the group must have 1138 * the same size. The return value will be a value between 0 and 100 1139 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this 1140 * group have a fragmentation metric. 1141 */ 1142 uint64_t 1143 metaslab_group_fragmentation(metaslab_group_t *mg) 1144 { 1145 vdev_t *vd = mg->mg_vd; 1146 uint64_t fragmentation = 0; 1147 uint64_t valid_ms = 0; 1148 1149 for (int m = 0; m < vd->vdev_ms_count; m++) { 1150 metaslab_t *msp = vd->vdev_ms[m]; 1151 1152 if (msp->ms_fragmentation == ZFS_FRAG_INVALID) 1153 continue; 1154 if (msp->ms_group != mg) 1155 continue; 1156 1157 valid_ms++; 1158 fragmentation += msp->ms_fragmentation; 1159 } 1160 1161 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2) 1162 return (ZFS_FRAG_INVALID); 1163 1164 fragmentation /= valid_ms; 1165 ASSERT3U(fragmentation, <=, 100); 1166 return (fragmentation); 1167 } 1168 1169 /* 1170 * Determine if a given metaslab group should skip allocations. A metaslab 1171 * group should avoid allocations if its free capacity is less than the 1172 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than 1173 * zfs_mg_fragmentation_threshold and there is at least one metaslab group 1174 * that can still handle allocations. If the allocation throttle is enabled 1175 * then we skip allocations to devices that have reached their maximum 1176 * allocation queue depth unless the selected metaslab group is the only 1177 * eligible group remaining. 1178 */ 1179 static boolean_t 1180 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor, 1181 uint64_t psize, int allocator, int d) 1182 { 1183 spa_t *spa = mg->mg_vd->vdev_spa; 1184 metaslab_class_t *mc = mg->mg_class; 1185 1186 /* 1187 * We can only consider skipping this metaslab group if it's 1188 * in the normal metaslab class and there are other metaslab 1189 * groups to select from. Otherwise, we always consider it eligible 1190 * for allocations. 1191 */ 1192 if ((mc != spa_normal_class(spa) && 1193 mc != spa_special_class(spa) && 1194 mc != spa_dedup_class(spa)) || 1195 mc->mc_groups <= 1) 1196 return (B_TRUE); 1197 1198 /* 1199 * If the metaslab group's mg_allocatable flag is set (see comments 1200 * in metaslab_group_alloc_update() for more information) and 1201 * the allocation throttle is disabled then allow allocations to this 1202 * device. However, if the allocation throttle is enabled then 1203 * check if we have reached our allocation limit (mg_alloc_queue_depth) 1204 * to determine if we should allow allocations to this metaslab group. 1205 * If all metaslab groups are no longer considered allocatable 1206 * (mc_alloc_groups == 0) or we're trying to allocate the smallest 1207 * gang block size then we allow allocations on this metaslab group 1208 * regardless of the mg_allocatable or throttle settings. 1209 */ 1210 if (mg->mg_allocatable) { 1211 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 1212 int64_t qdepth; 1213 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth; 1214 1215 if (!mc->mc_alloc_throttle_enabled) 1216 return (B_TRUE); 1217 1218 /* 1219 * If this metaslab group does not have any free space, then 1220 * there is no point in looking further. 1221 */ 1222 if (mg->mg_no_free_space) 1223 return (B_FALSE); 1224 1225 /* 1226 * Relax allocation throttling for ditto blocks. Due to 1227 * random imbalances in allocation it tends to push copies 1228 * to one vdev, that looks a bit better at the moment. 1229 */ 1230 qmax = qmax * (4 + d) / 4; 1231 1232 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth); 1233 1234 /* 1235 * If this metaslab group is below its qmax or it's 1236 * the only allocatable metasable group, then attempt 1237 * to allocate from it. 1238 */ 1239 if (qdepth < qmax || mc->mc_alloc_groups == 1) 1240 return (B_TRUE); 1241 ASSERT3U(mc->mc_alloc_groups, >, 1); 1242 1243 /* 1244 * Since this metaslab group is at or over its qmax, we 1245 * need to determine if there are metaslab groups after this 1246 * one that might be able to handle this allocation. This is 1247 * racy since we can't hold the locks for all metaslab 1248 * groups at the same time when we make this check. 1249 */ 1250 for (metaslab_group_t *mgp = mg->mg_next; 1251 mgp != rotor; mgp = mgp->mg_next) { 1252 metaslab_group_allocator_t *mgap = 1253 &mgp->mg_allocator[allocator]; 1254 qmax = mgap->mga_cur_max_alloc_queue_depth; 1255 qmax = qmax * (4 + d) / 4; 1256 qdepth = 1257 zfs_refcount_count(&mgap->mga_alloc_queue_depth); 1258 1259 /* 1260 * If there is another metaslab group that 1261 * might be able to handle the allocation, then 1262 * we return false so that we skip this group. 1263 */ 1264 if (qdepth < qmax && !mgp->mg_no_free_space) 1265 return (B_FALSE); 1266 } 1267 1268 /* 1269 * We didn't find another group to handle the allocation 1270 * so we can't skip this metaslab group even though 1271 * we are at or over our qmax. 1272 */ 1273 return (B_TRUE); 1274 1275 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) { 1276 return (B_TRUE); 1277 } 1278 return (B_FALSE); 1279 } 1280 1281 /* 1282 * ========================================================================== 1283 * Range tree callbacks 1284 * ========================================================================== 1285 */ 1286 1287 /* 1288 * Comparison function for the private size-ordered tree using 32-bit 1289 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1290 */ 1291 static int 1292 metaslab_rangesize32_compare(const void *x1, const void *x2) 1293 { 1294 const range_seg32_t *r1 = x1; 1295 const range_seg32_t *r2 = x2; 1296 1297 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1298 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1299 1300 int cmp = TREE_CMP(rs_size1, rs_size2); 1301 if (likely(cmp)) 1302 return (cmp); 1303 1304 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1305 } 1306 1307 /* 1308 * Comparison function for the private size-ordered tree using 64-bit 1309 * ranges. Tree is sorted by size, larger sizes at the end of the tree. 1310 */ 1311 static int 1312 metaslab_rangesize64_compare(const void *x1, const void *x2) 1313 { 1314 const range_seg64_t *r1 = x1; 1315 const range_seg64_t *r2 = x2; 1316 1317 uint64_t rs_size1 = r1->rs_end - r1->rs_start; 1318 uint64_t rs_size2 = r2->rs_end - r2->rs_start; 1319 1320 int cmp = TREE_CMP(rs_size1, rs_size2); 1321 if (likely(cmp)) 1322 return (cmp); 1323 1324 return (TREE_CMP(r1->rs_start, r2->rs_start)); 1325 } 1326 typedef struct metaslab_rt_arg { 1327 zfs_btree_t *mra_bt; 1328 uint32_t mra_floor_shift; 1329 } metaslab_rt_arg_t; 1330 1331 struct mssa_arg { 1332 range_tree_t *rt; 1333 metaslab_rt_arg_t *mra; 1334 }; 1335 1336 static void 1337 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size) 1338 { 1339 struct mssa_arg *mssap = arg; 1340 range_tree_t *rt = mssap->rt; 1341 metaslab_rt_arg_t *mrap = mssap->mra; 1342 range_seg_max_t seg = {0}; 1343 rs_set_start(&seg, rt, start); 1344 rs_set_end(&seg, rt, start + size); 1345 metaslab_rt_add(rt, &seg, mrap); 1346 } 1347 1348 static void 1349 metaslab_size_tree_full_load(range_tree_t *rt) 1350 { 1351 metaslab_rt_arg_t *mrap = rt->rt_arg; 1352 #ifdef _METASLAB_TRACING 1353 METASLABSTAT_BUMP(metaslabstat_reload_tree); 1354 #endif 1355 ASSERT0(zfs_btree_numnodes(mrap->mra_bt)); 1356 mrap->mra_floor_shift = 0; 1357 struct mssa_arg arg = {0}; 1358 arg.rt = rt; 1359 arg.mra = mrap; 1360 range_tree_walk(rt, metaslab_size_sorted_add, &arg); 1361 } 1362 1363 /* 1364 * Create any block allocator specific components. The current allocators 1365 * rely on using both a size-ordered range_tree_t and an array of uint64_t's. 1366 */ 1367 /* ARGSUSED */ 1368 static void 1369 metaslab_rt_create(range_tree_t *rt, void *arg) 1370 { 1371 metaslab_rt_arg_t *mrap = arg; 1372 zfs_btree_t *size_tree = mrap->mra_bt; 1373 1374 size_t size; 1375 int (*compare) (const void *, const void *); 1376 switch (rt->rt_type) { 1377 case RANGE_SEG32: 1378 size = sizeof (range_seg32_t); 1379 compare = metaslab_rangesize32_compare; 1380 break; 1381 case RANGE_SEG64: 1382 size = sizeof (range_seg64_t); 1383 compare = metaslab_rangesize64_compare; 1384 break; 1385 default: 1386 panic("Invalid range seg type %d", rt->rt_type); 1387 } 1388 zfs_btree_create(size_tree, compare, size); 1389 mrap->mra_floor_shift = metaslab_by_size_min_shift; 1390 } 1391 1392 /* ARGSUSED */ 1393 static void 1394 metaslab_rt_destroy(range_tree_t *rt, void *arg) 1395 { 1396 metaslab_rt_arg_t *mrap = arg; 1397 zfs_btree_t *size_tree = mrap->mra_bt; 1398 1399 zfs_btree_destroy(size_tree); 1400 kmem_free(mrap, sizeof (*mrap)); 1401 } 1402 1403 /* ARGSUSED */ 1404 static void 1405 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg) 1406 { 1407 metaslab_rt_arg_t *mrap = arg; 1408 zfs_btree_t *size_tree = mrap->mra_bt; 1409 1410 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < 1411 (1 << mrap->mra_floor_shift)) 1412 return; 1413 1414 zfs_btree_add(size_tree, rs); 1415 } 1416 1417 /* ARGSUSED */ 1418 static void 1419 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg) 1420 { 1421 metaslab_rt_arg_t *mrap = arg; 1422 zfs_btree_t *size_tree = mrap->mra_bt; 1423 1424 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1 << 1425 mrap->mra_floor_shift)) 1426 return; 1427 1428 zfs_btree_remove(size_tree, rs); 1429 } 1430 1431 /* ARGSUSED */ 1432 static void 1433 metaslab_rt_vacate(range_tree_t *rt, void *arg) 1434 { 1435 metaslab_rt_arg_t *mrap = arg; 1436 zfs_btree_t *size_tree = mrap->mra_bt; 1437 zfs_btree_clear(size_tree); 1438 zfs_btree_destroy(size_tree); 1439 1440 metaslab_rt_create(rt, arg); 1441 } 1442 1443 static range_tree_ops_t metaslab_rt_ops = { 1444 .rtop_create = metaslab_rt_create, 1445 .rtop_destroy = metaslab_rt_destroy, 1446 .rtop_add = metaslab_rt_add, 1447 .rtop_remove = metaslab_rt_remove, 1448 .rtop_vacate = metaslab_rt_vacate 1449 }; 1450 1451 /* 1452 * ========================================================================== 1453 * Common allocator routines 1454 * ========================================================================== 1455 */ 1456 1457 /* 1458 * Return the maximum contiguous segment within the metaslab. 1459 */ 1460 uint64_t 1461 metaslab_largest_allocatable(metaslab_t *msp) 1462 { 1463 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1464 range_seg_t *rs; 1465 1466 if (t == NULL) 1467 return (0); 1468 if (zfs_btree_numnodes(t) == 0) 1469 metaslab_size_tree_full_load(msp->ms_allocatable); 1470 1471 rs = zfs_btree_last(t, NULL); 1472 if (rs == NULL) 1473 return (0); 1474 1475 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs, 1476 msp->ms_allocatable)); 1477 } 1478 1479 /* 1480 * Return the maximum contiguous segment within the unflushed frees of this 1481 * metaslab. 1482 */ 1483 static uint64_t 1484 metaslab_largest_unflushed_free(metaslab_t *msp) 1485 { 1486 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1487 1488 if (msp->ms_unflushed_frees == NULL) 1489 return (0); 1490 1491 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0) 1492 metaslab_size_tree_full_load(msp->ms_unflushed_frees); 1493 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size, 1494 NULL); 1495 if (rs == NULL) 1496 return (0); 1497 1498 /* 1499 * When a range is freed from the metaslab, that range is added to 1500 * both the unflushed frees and the deferred frees. While the block 1501 * will eventually be usable, if the metaslab were loaded the range 1502 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE 1503 * txgs had passed. As a result, when attempting to estimate an upper 1504 * bound for the largest currently-usable free segment in the 1505 * metaslab, we need to not consider any ranges currently in the defer 1506 * trees. This algorithm approximates the largest available chunk in 1507 * the largest range in the unflushed_frees tree by taking the first 1508 * chunk. While this may be a poor estimate, it should only remain so 1509 * briefly and should eventually self-correct as frees are no longer 1510 * deferred. Similar logic applies to the ms_freed tree. See 1511 * metaslab_load() for more details. 1512 * 1513 * There are two primary sources of inaccuracy in this estimate. Both 1514 * are tolerated for performance reasons. The first source is that we 1515 * only check the largest segment for overlaps. Smaller segments may 1516 * have more favorable overlaps with the other trees, resulting in 1517 * larger usable chunks. Second, we only look at the first chunk in 1518 * the largest segment; there may be other usable chunks in the 1519 * largest segment, but we ignore them. 1520 */ 1521 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees); 1522 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart; 1523 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1524 uint64_t start = 0; 1525 uint64_t size = 0; 1526 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart, 1527 rsize, &start, &size); 1528 if (found) { 1529 if (rstart == start) 1530 return (0); 1531 rsize = start - rstart; 1532 } 1533 } 1534 1535 uint64_t start = 0; 1536 uint64_t size = 0; 1537 boolean_t found = range_tree_find_in(msp->ms_freed, rstart, 1538 rsize, &start, &size); 1539 if (found) 1540 rsize = start - rstart; 1541 1542 return (rsize); 1543 } 1544 1545 static range_seg_t * 1546 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start, 1547 uint64_t size, zfs_btree_index_t *where) 1548 { 1549 range_seg_t *rs; 1550 range_seg_max_t rsearch; 1551 1552 rs_set_start(&rsearch, rt, start); 1553 rs_set_end(&rsearch, rt, start + size); 1554 1555 rs = zfs_btree_find(t, &rsearch, where); 1556 if (rs == NULL) { 1557 rs = zfs_btree_next(t, where, where); 1558 } 1559 1560 return (rs); 1561 } 1562 1563 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \ 1564 defined(WITH_CF_BLOCK_ALLOCATOR) 1565 /* 1566 * This is a helper function that can be used by the allocator to find a 1567 * suitable block to allocate. This will search the specified B-tree looking 1568 * for a block that matches the specified criteria. 1569 */ 1570 static uint64_t 1571 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size, 1572 uint64_t max_search) 1573 { 1574 if (*cursor == 0) 1575 *cursor = rt->rt_start; 1576 zfs_btree_t *bt = &rt->rt_root; 1577 zfs_btree_index_t where; 1578 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where); 1579 uint64_t first_found; 1580 int count_searched = 0; 1581 1582 if (rs != NULL) 1583 first_found = rs_get_start(rs, rt); 1584 1585 while (rs != NULL && (rs_get_start(rs, rt) - first_found <= 1586 max_search || count_searched < metaslab_min_search_count)) { 1587 uint64_t offset = rs_get_start(rs, rt); 1588 if (offset + size <= rs_get_end(rs, rt)) { 1589 *cursor = offset + size; 1590 return (offset); 1591 } 1592 rs = zfs_btree_next(bt, &where, &where); 1593 count_searched++; 1594 } 1595 1596 *cursor = 0; 1597 return (-1ULL); 1598 } 1599 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */ 1600 1601 #if defined(WITH_DF_BLOCK_ALLOCATOR) 1602 /* 1603 * ========================================================================== 1604 * Dynamic Fit (df) block allocator 1605 * 1606 * Search for a free chunk of at least this size, starting from the last 1607 * offset (for this alignment of block) looking for up to 1608 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not 1609 * found within 16MB, then return a free chunk of exactly the requested size (or 1610 * larger). 1611 * 1612 * If it seems like searching from the last offset will be unproductive, skip 1613 * that and just return a free chunk of exactly the requested size (or larger). 1614 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This 1615 * mechanism is probably not very useful and may be removed in the future. 1616 * 1617 * The behavior when not searching can be changed to return the largest free 1618 * chunk, instead of a free chunk of exactly the requested size, by setting 1619 * metaslab_df_use_largest_segment. 1620 * ========================================================================== 1621 */ 1622 static uint64_t 1623 metaslab_df_alloc(metaslab_t *msp, uint64_t size) 1624 { 1625 /* 1626 * Find the largest power of 2 block size that evenly divides the 1627 * requested size. This is used to try to allocate blocks with similar 1628 * alignment from the same area of the metaslab (i.e. same cursor 1629 * bucket) but it does not guarantee that other allocations sizes 1630 * may exist in the same region. 1631 */ 1632 uint64_t align = size & -size; 1633 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1]; 1634 range_tree_t *rt = msp->ms_allocatable; 1635 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1636 uint64_t offset; 1637 1638 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1639 1640 /* 1641 * If we're running low on space, find a segment based on size, 1642 * rather than iterating based on offset. 1643 */ 1644 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold || 1645 free_pct < metaslab_df_free_pct) { 1646 offset = -1; 1647 } else { 1648 offset = metaslab_block_picker(rt, 1649 cursor, size, metaslab_df_max_search); 1650 } 1651 1652 if (offset == -1) { 1653 range_seg_t *rs; 1654 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0) 1655 metaslab_size_tree_full_load(msp->ms_allocatable); 1656 if (metaslab_df_use_largest_segment) { 1657 /* use largest free segment */ 1658 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL); 1659 } else { 1660 zfs_btree_index_t where; 1661 /* use segment of this size, or next largest */ 1662 #ifdef _METASLAB_TRACING 1663 metaslab_rt_arg_t *mrap = msp->ms_allocatable->rt_arg; 1664 if (size < (1 << mrap->mra_floor_shift)) { 1665 METASLABSTAT_BUMP( 1666 metaslabstat_df_find_under_floor); 1667 } 1668 #endif 1669 rs = metaslab_block_find(&msp->ms_allocatable_by_size, 1670 rt, msp->ms_start, size, &where); 1671 } 1672 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs, 1673 rt)) { 1674 offset = rs_get_start(rs, rt); 1675 *cursor = offset + size; 1676 } 1677 } 1678 1679 return (offset); 1680 } 1681 1682 static metaslab_ops_t metaslab_df_ops = { 1683 metaslab_df_alloc 1684 }; 1685 1686 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops; 1687 #endif /* WITH_DF_BLOCK_ALLOCATOR */ 1688 1689 #if defined(WITH_CF_BLOCK_ALLOCATOR) 1690 /* 1691 * ========================================================================== 1692 * Cursor fit block allocator - 1693 * Select the largest region in the metaslab, set the cursor to the beginning 1694 * of the range and the cursor_end to the end of the range. As allocations 1695 * are made advance the cursor. Continue allocating from the cursor until 1696 * the range is exhausted and then find a new range. 1697 * ========================================================================== 1698 */ 1699 static uint64_t 1700 metaslab_cf_alloc(metaslab_t *msp, uint64_t size) 1701 { 1702 range_tree_t *rt = msp->ms_allocatable; 1703 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1704 uint64_t *cursor = &msp->ms_lbas[0]; 1705 uint64_t *cursor_end = &msp->ms_lbas[1]; 1706 uint64_t offset = 0; 1707 1708 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1709 1710 ASSERT3U(*cursor_end, >=, *cursor); 1711 1712 if ((*cursor + size) > *cursor_end) { 1713 range_seg_t *rs; 1714 1715 if (zfs_btree_numnodes(t) == 0) 1716 metaslab_size_tree_full_load(msp->ms_allocatable); 1717 rs = zfs_btree_last(t, NULL); 1718 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < 1719 size) 1720 return (-1ULL); 1721 1722 *cursor = rs_get_start(rs, rt); 1723 *cursor_end = rs_get_end(rs, rt); 1724 } 1725 1726 offset = *cursor; 1727 *cursor += size; 1728 1729 return (offset); 1730 } 1731 1732 static metaslab_ops_t metaslab_cf_ops = { 1733 metaslab_cf_alloc 1734 }; 1735 1736 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops; 1737 #endif /* WITH_CF_BLOCK_ALLOCATOR */ 1738 1739 #if defined(WITH_NDF_BLOCK_ALLOCATOR) 1740 /* 1741 * ========================================================================== 1742 * New dynamic fit allocator - 1743 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift 1744 * contiguous blocks. If no region is found then just use the largest segment 1745 * that remains. 1746 * ========================================================================== 1747 */ 1748 1749 /* 1750 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift) 1751 * to request from the allocator. 1752 */ 1753 uint64_t metaslab_ndf_clump_shift = 4; 1754 1755 static uint64_t 1756 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size) 1757 { 1758 zfs_btree_t *t = &msp->ms_allocatable->rt_root; 1759 range_tree_t *rt = msp->ms_allocatable; 1760 zfs_btree_index_t where; 1761 range_seg_t *rs; 1762 range_seg_max_t rsearch; 1763 uint64_t hbit = highbit64(size); 1764 uint64_t *cursor = &msp->ms_lbas[hbit - 1]; 1765 uint64_t max_size = metaslab_largest_allocatable(msp); 1766 1767 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1768 1769 if (max_size < size) 1770 return (-1ULL); 1771 1772 rs_set_start(&rsearch, rt, *cursor); 1773 rs_set_end(&rsearch, rt, *cursor + size); 1774 1775 rs = zfs_btree_find(t, &rsearch, &where); 1776 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) { 1777 t = &msp->ms_allocatable_by_size; 1778 1779 rs_set_start(&rsearch, rt, 0); 1780 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit + 1781 metaslab_ndf_clump_shift))); 1782 1783 rs = zfs_btree_find(t, &rsearch, &where); 1784 if (rs == NULL) 1785 rs = zfs_btree_next(t, &where, &where); 1786 ASSERT(rs != NULL); 1787 } 1788 1789 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) { 1790 *cursor = rs_get_start(rs, rt) + size; 1791 return (rs_get_start(rs, rt)); 1792 } 1793 return (-1ULL); 1794 } 1795 1796 static metaslab_ops_t metaslab_ndf_ops = { 1797 metaslab_ndf_alloc 1798 }; 1799 1800 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops; 1801 #endif /* WITH_NDF_BLOCK_ALLOCATOR */ 1802 1803 1804 /* 1805 * ========================================================================== 1806 * Metaslabs 1807 * ========================================================================== 1808 */ 1809 1810 /* 1811 * Wait for any in-progress metaslab loads to complete. 1812 */ 1813 static void 1814 metaslab_load_wait(metaslab_t *msp) 1815 { 1816 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1817 1818 while (msp->ms_loading) { 1819 ASSERT(!msp->ms_loaded); 1820 cv_wait(&msp->ms_load_cv, &msp->ms_lock); 1821 } 1822 } 1823 1824 /* 1825 * Wait for any in-progress flushing to complete. 1826 */ 1827 static void 1828 metaslab_flush_wait(metaslab_t *msp) 1829 { 1830 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1831 1832 while (msp->ms_flushing) 1833 cv_wait(&msp->ms_flush_cv, &msp->ms_lock); 1834 } 1835 1836 static unsigned int 1837 metaslab_idx_func(multilist_t *ml, void *arg) 1838 { 1839 metaslab_t *msp = arg; 1840 return (msp->ms_id % multilist_get_num_sublists(ml)); 1841 } 1842 1843 uint64_t 1844 metaslab_allocated_space(metaslab_t *msp) 1845 { 1846 return (msp->ms_allocated_space); 1847 } 1848 1849 /* 1850 * Verify that the space accounting on disk matches the in-core range_trees. 1851 */ 1852 static void 1853 metaslab_verify_space(metaslab_t *msp, uint64_t txg) 1854 { 1855 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1856 uint64_t allocating = 0; 1857 uint64_t sm_free_space, msp_free_space; 1858 1859 ASSERT(MUTEX_HELD(&msp->ms_lock)); 1860 ASSERT(!msp->ms_condensing); 1861 1862 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 1863 return; 1864 1865 /* 1866 * We can only verify the metaslab space when we're called 1867 * from syncing context with a loaded metaslab that has an 1868 * allocated space map. Calling this in non-syncing context 1869 * does not provide a consistent view of the metaslab since 1870 * we're performing allocations in the future. 1871 */ 1872 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL || 1873 !msp->ms_loaded) 1874 return; 1875 1876 /* 1877 * Even though the smp_alloc field can get negative, 1878 * when it comes to a metaslab's space map, that should 1879 * never be the case. 1880 */ 1881 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0); 1882 1883 ASSERT3U(space_map_allocated(msp->ms_sm), >=, 1884 range_tree_space(msp->ms_unflushed_frees)); 1885 1886 ASSERT3U(metaslab_allocated_space(msp), ==, 1887 space_map_allocated(msp->ms_sm) + 1888 range_tree_space(msp->ms_unflushed_allocs) - 1889 range_tree_space(msp->ms_unflushed_frees)); 1890 1891 sm_free_space = msp->ms_size - metaslab_allocated_space(msp); 1892 1893 /* 1894 * Account for future allocations since we would have 1895 * already deducted that space from the ms_allocatable. 1896 */ 1897 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 1898 allocating += 1899 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]); 1900 } 1901 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==, 1902 msp->ms_allocating_total); 1903 1904 ASSERT3U(msp->ms_deferspace, ==, 1905 range_tree_space(msp->ms_defer[0]) + 1906 range_tree_space(msp->ms_defer[1])); 1907 1908 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating + 1909 msp->ms_deferspace + range_tree_space(msp->ms_freed); 1910 1911 VERIFY3U(sm_free_space, ==, msp_free_space); 1912 } 1913 1914 static void 1915 metaslab_aux_histograms_clear(metaslab_t *msp) 1916 { 1917 /* 1918 * Auxiliary histograms are only cleared when resetting them, 1919 * which can only happen while the metaslab is loaded. 1920 */ 1921 ASSERT(msp->ms_loaded); 1922 1923 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 1924 for (int t = 0; t < TXG_DEFER_SIZE; t++) 1925 bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t])); 1926 } 1927 1928 static void 1929 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift, 1930 range_tree_t *rt) 1931 { 1932 /* 1933 * This is modeled after space_map_histogram_add(), so refer to that 1934 * function for implementation details. We want this to work like 1935 * the space map histogram, and not the range tree histogram, as we 1936 * are essentially constructing a delta that will be later subtracted 1937 * from the space map histogram. 1938 */ 1939 int idx = 0; 1940 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { 1941 ASSERT3U(i, >=, idx + shift); 1942 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift); 1943 1944 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) { 1945 ASSERT3U(idx + shift, ==, i); 1946 idx++; 1947 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE); 1948 } 1949 } 1950 } 1951 1952 /* 1953 * Called at every sync pass that the metaslab gets synced. 1954 * 1955 * The reason is that we want our auxiliary histograms to be updated 1956 * wherever the metaslab's space map histogram is updated. This way 1957 * we stay consistent on which parts of the metaslab space map's 1958 * histogram are currently not available for allocations (e.g because 1959 * they are in the defer, freed, and freeing trees). 1960 */ 1961 static void 1962 metaslab_aux_histograms_update(metaslab_t *msp) 1963 { 1964 space_map_t *sm = msp->ms_sm; 1965 ASSERT(sm != NULL); 1966 1967 /* 1968 * This is similar to the metaslab's space map histogram updates 1969 * that take place in metaslab_sync(). The only difference is that 1970 * we only care about segments that haven't made it into the 1971 * ms_allocatable tree yet. 1972 */ 1973 if (msp->ms_loaded) { 1974 metaslab_aux_histograms_clear(msp); 1975 1976 metaslab_aux_histogram_add(msp->ms_synchist, 1977 sm->sm_shift, msp->ms_freed); 1978 1979 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 1980 metaslab_aux_histogram_add(msp->ms_deferhist[t], 1981 sm->sm_shift, msp->ms_defer[t]); 1982 } 1983 } 1984 1985 metaslab_aux_histogram_add(msp->ms_synchist, 1986 sm->sm_shift, msp->ms_freeing); 1987 } 1988 1989 /* 1990 * Called every time we are done syncing (writing to) the metaslab, 1991 * i.e. at the end of each sync pass. 1992 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist] 1993 */ 1994 static void 1995 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed) 1996 { 1997 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 1998 space_map_t *sm = msp->ms_sm; 1999 2000 if (sm == NULL) { 2001 /* 2002 * We came here from metaslab_init() when creating/opening a 2003 * pool, looking at a metaslab that hasn't had any allocations 2004 * yet. 2005 */ 2006 return; 2007 } 2008 2009 /* 2010 * This is similar to the actions that we take for the ms_freed 2011 * and ms_defer trees in metaslab_sync_done(). 2012 */ 2013 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE; 2014 if (defer_allowed) { 2015 bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index], 2016 sizeof (msp->ms_synchist)); 2017 } else { 2018 bzero(msp->ms_deferhist[hist_index], 2019 sizeof (msp->ms_deferhist[hist_index])); 2020 } 2021 bzero(msp->ms_synchist, sizeof (msp->ms_synchist)); 2022 } 2023 2024 /* 2025 * Ensure that the metaslab's weight and fragmentation are consistent 2026 * with the contents of the histogram (either the range tree's histogram 2027 * or the space map's depending whether the metaslab is loaded). 2028 */ 2029 static void 2030 metaslab_verify_weight_and_frag(metaslab_t *msp) 2031 { 2032 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2033 2034 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 2035 return; 2036 2037 /* 2038 * We can end up here from vdev_remove_complete(), in which case we 2039 * cannot do these assertions because we hold spa config locks and 2040 * thus we are not allowed to read from the DMU. 2041 * 2042 * We check if the metaslab group has been removed and if that's 2043 * the case we return immediately as that would mean that we are 2044 * here from the aforementioned code path. 2045 */ 2046 if (msp->ms_group == NULL) 2047 return; 2048 2049 /* 2050 * Devices being removed always return a weight of 0 and leave 2051 * fragmentation and ms_max_size as is - there is nothing for 2052 * us to verify here. 2053 */ 2054 vdev_t *vd = msp->ms_group->mg_vd; 2055 if (vd->vdev_removing) 2056 return; 2057 2058 /* 2059 * If the metaslab is dirty it probably means that we've done 2060 * some allocations or frees that have changed our histograms 2061 * and thus the weight. 2062 */ 2063 for (int t = 0; t < TXG_SIZE; t++) { 2064 if (txg_list_member(&vd->vdev_ms_list, msp, t)) 2065 return; 2066 } 2067 2068 /* 2069 * This verification checks that our in-memory state is consistent 2070 * with what's on disk. If the pool is read-only then there aren't 2071 * any changes and we just have the initially-loaded state. 2072 */ 2073 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa)) 2074 return; 2075 2076 /* some extra verification for in-core tree if you can */ 2077 if (msp->ms_loaded) { 2078 range_tree_stat_verify(msp->ms_allocatable); 2079 VERIFY(space_map_histogram_verify(msp->ms_sm, 2080 msp->ms_allocatable)); 2081 } 2082 2083 uint64_t weight = msp->ms_weight; 2084 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 2085 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight); 2086 uint64_t frag = msp->ms_fragmentation; 2087 uint64_t max_segsize = msp->ms_max_size; 2088 2089 msp->ms_weight = 0; 2090 msp->ms_fragmentation = 0; 2091 2092 /* 2093 * This function is used for verification purposes and thus should 2094 * not introduce any side-effects/mutations on the system's state. 2095 * 2096 * Regardless of whether metaslab_weight() thinks this metaslab 2097 * should be active or not, we want to ensure that the actual weight 2098 * (and therefore the value of ms_weight) would be the same if it 2099 * was to be recalculated at this point. 2100 * 2101 * In addition we set the nodirty flag so metaslab_weight() does 2102 * not dirty the metaslab for future TXGs (e.g. when trying to 2103 * force condensing to upgrade the metaslab spacemaps). 2104 */ 2105 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active; 2106 2107 VERIFY3U(max_segsize, ==, msp->ms_max_size); 2108 2109 /* 2110 * If the weight type changed then there is no point in doing 2111 * verification. Revert fields to their original values. 2112 */ 2113 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) || 2114 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) { 2115 msp->ms_fragmentation = frag; 2116 msp->ms_weight = weight; 2117 return; 2118 } 2119 2120 VERIFY3U(msp->ms_fragmentation, ==, frag); 2121 VERIFY3U(msp->ms_weight, ==, weight); 2122 } 2123 2124 /* 2125 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from 2126 * this class that was used longest ago, and attempt to unload it. We don't 2127 * want to spend too much time in this loop to prevent performance 2128 * degradation, and we expect that most of the time this operation will 2129 * succeed. Between that and the normal unloading processing during txg sync, 2130 * we expect this to keep the metaslab memory usage under control. 2131 */ 2132 static void 2133 metaslab_potentially_evict(metaslab_class_t *mc) 2134 { 2135 #ifdef _KERNEL 2136 uint64_t allmem = arc_all_memory(); 2137 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2138 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache); 2139 int tries = 0; 2140 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size && 2141 tries < multilist_get_num_sublists(mc->mc_metaslab_txg_list) * 2; 2142 tries++) { 2143 unsigned int idx = multilist_get_random_index( 2144 mc->mc_metaslab_txg_list); 2145 multilist_sublist_t *mls = 2146 multilist_sublist_lock(mc->mc_metaslab_txg_list, idx); 2147 metaslab_t *msp = multilist_sublist_head(mls); 2148 multilist_sublist_unlock(mls); 2149 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 < 2150 inuse * size) { 2151 VERIFY3P(mls, ==, multilist_sublist_lock( 2152 mc->mc_metaslab_txg_list, idx)); 2153 ASSERT3U(idx, ==, 2154 metaslab_idx_func(mc->mc_metaslab_txg_list, msp)); 2155 2156 if (!multilist_link_active(&msp->ms_class_txg_node)) { 2157 multilist_sublist_unlock(mls); 2158 break; 2159 } 2160 metaslab_t *next_msp = multilist_sublist_next(mls, msp); 2161 multilist_sublist_unlock(mls); 2162 /* 2163 * If the metaslab is currently loading there are two 2164 * cases. If it's the metaslab we're evicting, we 2165 * can't continue on or we'll panic when we attempt to 2166 * recursively lock the mutex. If it's another 2167 * metaslab that's loading, it can be safely skipped, 2168 * since we know it's very new and therefore not a 2169 * good eviction candidate. We check later once the 2170 * lock is held that the metaslab is fully loaded 2171 * before actually unloading it. 2172 */ 2173 if (msp->ms_loading) { 2174 msp = next_msp; 2175 inuse = 2176 spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2177 continue; 2178 } 2179 /* 2180 * We can't unload metaslabs with no spacemap because 2181 * they're not ready to be unloaded yet. We can't 2182 * unload metaslabs with outstanding allocations 2183 * because doing so could cause the metaslab's weight 2184 * to decrease while it's unloaded, which violates an 2185 * invariant that we use to prevent unnecessary 2186 * loading. We also don't unload metaslabs that are 2187 * currently active because they are high-weight 2188 * metaslabs that are likely to be used in the near 2189 * future. 2190 */ 2191 mutex_enter(&msp->ms_lock); 2192 if (msp->ms_allocator == -1 && msp->ms_sm != NULL && 2193 msp->ms_allocating_total == 0) { 2194 metaslab_unload(msp); 2195 } 2196 mutex_exit(&msp->ms_lock); 2197 msp = next_msp; 2198 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache); 2199 } 2200 } 2201 #endif 2202 } 2203 2204 static int 2205 metaslab_load_impl(metaslab_t *msp) 2206 { 2207 int error = 0; 2208 2209 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2210 ASSERT(msp->ms_loading); 2211 ASSERT(!msp->ms_condensing); 2212 2213 /* 2214 * We temporarily drop the lock to unblock other operations while we 2215 * are reading the space map. Therefore, metaslab_sync() and 2216 * metaslab_sync_done() can run at the same time as we do. 2217 * 2218 * If we are using the log space maps, metaslab_sync() can't write to 2219 * the metaslab's space map while we are loading as we only write to 2220 * it when we are flushing the metaslab, and that can't happen while 2221 * we are loading it. 2222 * 2223 * If we are not using log space maps though, metaslab_sync() can 2224 * append to the space map while we are loading. Therefore we load 2225 * only entries that existed when we started the load. Additionally, 2226 * metaslab_sync_done() has to wait for the load to complete because 2227 * there are potential races like metaslab_load() loading parts of the 2228 * space map that are currently being appended by metaslab_sync(). If 2229 * we didn't, the ms_allocatable would have entries that 2230 * metaslab_sync_done() would try to re-add later. 2231 * 2232 * That's why before dropping the lock we remember the synced length 2233 * of the metaslab and read up to that point of the space map, 2234 * ignoring entries appended by metaslab_sync() that happen after we 2235 * drop the lock. 2236 */ 2237 uint64_t length = msp->ms_synced_length; 2238 mutex_exit(&msp->ms_lock); 2239 2240 hrtime_t load_start = gethrtime(); 2241 metaslab_rt_arg_t *mrap; 2242 if (msp->ms_allocatable->rt_arg == NULL) { 2243 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 2244 } else { 2245 mrap = msp->ms_allocatable->rt_arg; 2246 msp->ms_allocatable->rt_ops = NULL; 2247 msp->ms_allocatable->rt_arg = NULL; 2248 } 2249 mrap->mra_bt = &msp->ms_allocatable_by_size; 2250 mrap->mra_floor_shift = metaslab_by_size_min_shift; 2251 2252 if (msp->ms_sm != NULL) { 2253 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable, 2254 SM_FREE, length); 2255 2256 /* Now, populate the size-sorted tree. */ 2257 metaslab_rt_create(msp->ms_allocatable, mrap); 2258 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2259 msp->ms_allocatable->rt_arg = mrap; 2260 2261 struct mssa_arg arg = {0}; 2262 arg.rt = msp->ms_allocatable; 2263 arg.mra = mrap; 2264 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add, 2265 &arg); 2266 } else { 2267 /* 2268 * Add the size-sorted tree first, since we don't need to load 2269 * the metaslab from the spacemap. 2270 */ 2271 metaslab_rt_create(msp->ms_allocatable, mrap); 2272 msp->ms_allocatable->rt_ops = &metaslab_rt_ops; 2273 msp->ms_allocatable->rt_arg = mrap; 2274 /* 2275 * The space map has not been allocated yet, so treat 2276 * all the space in the metaslab as free and add it to the 2277 * ms_allocatable tree. 2278 */ 2279 range_tree_add(msp->ms_allocatable, 2280 msp->ms_start, msp->ms_size); 2281 2282 if (msp->ms_freed != NULL) { 2283 /* 2284 * If the ms_sm doesn't exist, this means that this 2285 * metaslab hasn't gone through metaslab_sync() and 2286 * thus has never been dirtied. So we shouldn't 2287 * expect any unflushed allocs or frees from previous 2288 * TXGs. 2289 * 2290 * Note: ms_freed and all the other trees except for 2291 * the ms_allocatable, can be NULL at this point only 2292 * if this is a new metaslab of a vdev that just got 2293 * expanded. 2294 */ 2295 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 2296 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 2297 } 2298 } 2299 2300 /* 2301 * We need to grab the ms_sync_lock to prevent metaslab_sync() from 2302 * changing the ms_sm (or log_sm) and the metaslab's range trees 2303 * while we are about to use them and populate the ms_allocatable. 2304 * The ms_lock is insufficient for this because metaslab_sync() doesn't 2305 * hold the ms_lock while writing the ms_checkpointing tree to disk. 2306 */ 2307 mutex_enter(&msp->ms_sync_lock); 2308 mutex_enter(&msp->ms_lock); 2309 2310 ASSERT(!msp->ms_condensing); 2311 ASSERT(!msp->ms_flushing); 2312 2313 if (error != 0) { 2314 mutex_exit(&msp->ms_sync_lock); 2315 return (error); 2316 } 2317 2318 ASSERT3P(msp->ms_group, !=, NULL); 2319 msp->ms_loaded = B_TRUE; 2320 2321 /* 2322 * Apply all the unflushed changes to ms_allocatable right 2323 * away so any manipulations we do below have a clear view 2324 * of what is allocated and what is free. 2325 */ 2326 range_tree_walk(msp->ms_unflushed_allocs, 2327 range_tree_remove, msp->ms_allocatable); 2328 range_tree_walk(msp->ms_unflushed_frees, 2329 range_tree_add, msp->ms_allocatable); 2330 2331 msp->ms_loaded = B_TRUE; 2332 2333 ASSERT3P(msp->ms_group, !=, NULL); 2334 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2335 if (spa_syncing_log_sm(spa) != NULL) { 2336 ASSERT(spa_feature_is_enabled(spa, 2337 SPA_FEATURE_LOG_SPACEMAP)); 2338 2339 /* 2340 * If we use a log space map we add all the segments 2341 * that are in ms_unflushed_frees so they are available 2342 * for allocation. 2343 * 2344 * ms_allocatable needs to contain all free segments 2345 * that are ready for allocations (thus not segments 2346 * from ms_freeing, ms_freed, and the ms_defer trees). 2347 * But if we grab the lock in this code path at a sync 2348 * pass later that 1, then it also contains the 2349 * segments of ms_freed (they were added to it earlier 2350 * in this path through ms_unflushed_frees). So we 2351 * need to remove all the segments that exist in 2352 * ms_freed from ms_allocatable as they will be added 2353 * later in metaslab_sync_done(). 2354 * 2355 * When there's no log space map, the ms_allocatable 2356 * correctly doesn't contain any segments that exist 2357 * in ms_freed [see ms_synced_length]. 2358 */ 2359 range_tree_walk(msp->ms_freed, 2360 range_tree_remove, msp->ms_allocatable); 2361 } 2362 2363 /* 2364 * If we are not using the log space map, ms_allocatable 2365 * contains the segments that exist in the ms_defer trees 2366 * [see ms_synced_length]. Thus we need to remove them 2367 * from ms_allocatable as they will be added again in 2368 * metaslab_sync_done(). 2369 * 2370 * If we are using the log space map, ms_allocatable still 2371 * contains the segments that exist in the ms_defer trees. 2372 * Not because it read them through the ms_sm though. But 2373 * because these segments are part of ms_unflushed_frees 2374 * whose segments we add to ms_allocatable earlier in this 2375 * code path. 2376 */ 2377 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2378 range_tree_walk(msp->ms_defer[t], 2379 range_tree_remove, msp->ms_allocatable); 2380 } 2381 2382 /* 2383 * Call metaslab_recalculate_weight_and_sort() now that the 2384 * metaslab is loaded so we get the metaslab's real weight. 2385 * 2386 * Unless this metaslab was created with older software and 2387 * has not yet been converted to use segment-based weight, we 2388 * expect the new weight to be better or equal to the weight 2389 * that the metaslab had while it was not loaded. This is 2390 * because the old weight does not take into account the 2391 * consolidation of adjacent segments between TXGs. [see 2392 * comment for ms_synchist and ms_deferhist[] for more info] 2393 */ 2394 uint64_t weight = msp->ms_weight; 2395 uint64_t max_size = msp->ms_max_size; 2396 metaslab_recalculate_weight_and_sort(msp); 2397 if (!WEIGHT_IS_SPACEBASED(weight)) 2398 ASSERT3U(weight, <=, msp->ms_weight); 2399 msp->ms_max_size = metaslab_largest_allocatable(msp); 2400 ASSERT3U(max_size, <=, msp->ms_max_size); 2401 hrtime_t load_end = gethrtime(); 2402 msp->ms_load_time = load_end; 2403 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, " 2404 "ms_id %llu, smp_length %llu, " 2405 "unflushed_allocs %llu, unflushed_frees %llu, " 2406 "freed %llu, defer %llu + %llu, unloaded time %llu ms, " 2407 "loading_time %lld ms, ms_max_size %llu, " 2408 "max size error %lld, " 2409 "old_weight %llx, new_weight %llx", 2410 spa_syncing_txg(spa), spa_name(spa), 2411 msp->ms_group->mg_vd->vdev_id, msp->ms_id, 2412 space_map_length(msp->ms_sm), 2413 range_tree_space(msp->ms_unflushed_allocs), 2414 range_tree_space(msp->ms_unflushed_frees), 2415 range_tree_space(msp->ms_freed), 2416 range_tree_space(msp->ms_defer[0]), 2417 range_tree_space(msp->ms_defer[1]), 2418 (longlong_t)((load_start - msp->ms_unload_time) / 1000000), 2419 (longlong_t)((load_end - load_start) / 1000000), 2420 msp->ms_max_size, msp->ms_max_size - max_size, 2421 weight, msp->ms_weight); 2422 2423 metaslab_verify_space(msp, spa_syncing_txg(spa)); 2424 mutex_exit(&msp->ms_sync_lock); 2425 return (0); 2426 } 2427 2428 int 2429 metaslab_load(metaslab_t *msp) 2430 { 2431 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2432 2433 /* 2434 * There may be another thread loading the same metaslab, if that's 2435 * the case just wait until the other thread is done and return. 2436 */ 2437 metaslab_load_wait(msp); 2438 if (msp->ms_loaded) 2439 return (0); 2440 VERIFY(!msp->ms_loading); 2441 ASSERT(!msp->ms_condensing); 2442 2443 /* 2444 * We set the loading flag BEFORE potentially dropping the lock to 2445 * wait for an ongoing flush (see ms_flushing below). This way other 2446 * threads know that there is already a thread that is loading this 2447 * metaslab. 2448 */ 2449 msp->ms_loading = B_TRUE; 2450 2451 /* 2452 * Wait for any in-progress flushing to finish as we drop the ms_lock 2453 * both here (during space_map_load()) and in metaslab_flush() (when 2454 * we flush our changes to the ms_sm). 2455 */ 2456 if (msp->ms_flushing) 2457 metaslab_flush_wait(msp); 2458 2459 /* 2460 * In the possibility that we were waiting for the metaslab to be 2461 * flushed (where we temporarily dropped the ms_lock), ensure that 2462 * no one else loaded the metaslab somehow. 2463 */ 2464 ASSERT(!msp->ms_loaded); 2465 2466 /* 2467 * If we're loading a metaslab in the normal class, consider evicting 2468 * another one to keep our memory usage under the limit defined by the 2469 * zfs_metaslab_mem_limit tunable. 2470 */ 2471 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) == 2472 msp->ms_group->mg_class) { 2473 metaslab_potentially_evict(msp->ms_group->mg_class); 2474 } 2475 2476 int error = metaslab_load_impl(msp); 2477 2478 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2479 msp->ms_loading = B_FALSE; 2480 cv_broadcast(&msp->ms_load_cv); 2481 2482 return (error); 2483 } 2484 2485 void 2486 metaslab_unload(metaslab_t *msp) 2487 { 2488 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2489 2490 /* 2491 * This can happen if a metaslab is selected for eviction (in 2492 * metaslab_potentially_evict) and then unloaded during spa_sync (via 2493 * metaslab_class_evict_old). 2494 */ 2495 if (!msp->ms_loaded) 2496 return; 2497 2498 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 2499 msp->ms_loaded = B_FALSE; 2500 msp->ms_unload_time = gethrtime(); 2501 2502 msp->ms_activation_weight = 0; 2503 msp->ms_weight &= ~METASLAB_ACTIVE_MASK; 2504 2505 if (msp->ms_group != NULL) { 2506 metaslab_class_t *mc = msp->ms_group->mg_class; 2507 multilist_sublist_t *mls = 2508 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 2509 if (multilist_link_active(&msp->ms_class_txg_node)) 2510 multilist_sublist_remove(mls, msp); 2511 multilist_sublist_unlock(mls); 2512 2513 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2514 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, " 2515 "ms_id %llu, weight %llx, " 2516 "selected txg %llu (%llu ms ago), alloc_txg %llu, " 2517 "loaded %llu ms ago, max_size %llu", 2518 spa_syncing_txg(spa), spa_name(spa), 2519 msp->ms_group->mg_vd->vdev_id, msp->ms_id, 2520 msp->ms_weight, 2521 msp->ms_selected_txg, 2522 (msp->ms_unload_time - msp->ms_selected_time) / 1000 / 1000, 2523 msp->ms_alloc_txg, 2524 (msp->ms_unload_time - msp->ms_load_time) / 1000 / 1000, 2525 msp->ms_max_size); 2526 } 2527 2528 /* 2529 * We explicitly recalculate the metaslab's weight based on its space 2530 * map (as it is now not loaded). We want unload metaslabs to always 2531 * have their weights calculated from the space map histograms, while 2532 * loaded ones have it calculated from their in-core range tree 2533 * [see metaslab_load()]. This way, the weight reflects the information 2534 * available in-core, whether it is loaded or not. 2535 * 2536 * If ms_group == NULL means that we came here from metaslab_fini(), 2537 * at which point it doesn't make sense for us to do the recalculation 2538 * and the sorting. 2539 */ 2540 if (msp->ms_group != NULL) 2541 metaslab_recalculate_weight_and_sort(msp); 2542 } 2543 2544 /* 2545 * We want to optimize the memory use of the per-metaslab range 2546 * trees. To do this, we store the segments in the range trees in 2547 * units of sectors, zero-indexing from the start of the metaslab. If 2548 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store 2549 * the ranges using two uint32_ts, rather than two uint64_ts. 2550 */ 2551 range_seg_type_t 2552 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp, 2553 uint64_t *start, uint64_t *shift) 2554 { 2555 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 && 2556 !zfs_metaslab_force_large_segs) { 2557 *shift = vdev->vdev_ashift; 2558 *start = msp->ms_start; 2559 return (RANGE_SEG32); 2560 } else { 2561 *shift = 0; 2562 *start = 0; 2563 return (RANGE_SEG64); 2564 } 2565 } 2566 2567 void 2568 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg) 2569 { 2570 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2571 metaslab_class_t *mc = msp->ms_group->mg_class; 2572 multilist_sublist_t *mls = 2573 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 2574 if (multilist_link_active(&msp->ms_class_txg_node)) 2575 multilist_sublist_remove(mls, msp); 2576 msp->ms_selected_txg = txg; 2577 msp->ms_selected_time = gethrtime(); 2578 multilist_sublist_insert_tail(mls, msp); 2579 multilist_sublist_unlock(mls); 2580 } 2581 2582 void 2583 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta, 2584 int64_t defer_delta, int64_t space_delta) 2585 { 2586 vdev_space_update(vd, alloc_delta, defer_delta, space_delta); 2587 2588 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent); 2589 ASSERT(vd->vdev_ms_count != 0); 2590 2591 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta, 2592 vdev_deflated_space(vd, space_delta)); 2593 } 2594 2595 int 2596 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, 2597 uint64_t txg, metaslab_t **msp) 2598 { 2599 vdev_t *vd = mg->mg_vd; 2600 spa_t *spa = vd->vdev_spa; 2601 objset_t *mos = spa->spa_meta_objset; 2602 metaslab_t *ms; 2603 int error; 2604 2605 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP); 2606 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL); 2607 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL); 2608 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL); 2609 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL); 2610 multilist_link_init(&ms->ms_class_txg_node); 2611 2612 ms->ms_id = id; 2613 ms->ms_start = id << vd->vdev_ms_shift; 2614 ms->ms_size = 1ULL << vd->vdev_ms_shift; 2615 ms->ms_allocator = -1; 2616 ms->ms_new = B_TRUE; 2617 2618 /* 2619 * We only open space map objects that already exist. All others 2620 * will be opened when we finally allocate an object for it. 2621 * 2622 * Note: 2623 * When called from vdev_expand(), we can't call into the DMU as 2624 * we are holding the spa_config_lock as a writer and we would 2625 * deadlock [see relevant comment in vdev_metaslab_init()]. in 2626 * that case, the object parameter is zero though, so we won't 2627 * call into the DMU. 2628 */ 2629 if (object != 0) { 2630 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start, 2631 ms->ms_size, vd->vdev_ashift); 2632 2633 if (error != 0) { 2634 kmem_free(ms, sizeof (metaslab_t)); 2635 return (error); 2636 } 2637 2638 ASSERT(ms->ms_sm != NULL); 2639 ms->ms_allocated_space = space_map_allocated(ms->ms_sm); 2640 } 2641 2642 range_seg_type_t type; 2643 uint64_t shift, start; 2644 type = metaslab_calculate_range_tree_type(vd, ms, &start, &shift); 2645 2646 /* 2647 * We create the ms_allocatable here, but we don't create the 2648 * other range trees until metaslab_sync_done(). This serves 2649 * two purposes: it allows metaslab_sync_done() to detect the 2650 * addition of new space; and for debugging, it ensures that 2651 * we'd data fault on any attempt to use this metaslab before 2652 * it's ready. 2653 */ 2654 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift); 2655 2656 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift); 2657 2658 metaslab_group_add(mg, ms); 2659 metaslab_set_fragmentation(ms, B_FALSE); 2660 2661 /* 2662 * If we're opening an existing pool (txg == 0) or creating 2663 * a new one (txg == TXG_INITIAL), all space is available now. 2664 * If we're adding space to an existing pool, the new space 2665 * does not become available until after this txg has synced. 2666 * The metaslab's weight will also be initialized when we sync 2667 * out this txg. This ensures that we don't attempt to allocate 2668 * from it before we have initialized it completely. 2669 */ 2670 if (txg <= TXG_INITIAL) { 2671 metaslab_sync_done(ms, 0); 2672 metaslab_space_update(vd, mg->mg_class, 2673 metaslab_allocated_space(ms), 0, 0); 2674 } 2675 2676 if (txg != 0) { 2677 vdev_dirty(vd, 0, NULL, txg); 2678 vdev_dirty(vd, VDD_METASLAB, ms, txg); 2679 } 2680 2681 *msp = ms; 2682 2683 return (0); 2684 } 2685 2686 static void 2687 metaslab_fini_flush_data(metaslab_t *msp) 2688 { 2689 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2690 2691 if (metaslab_unflushed_txg(msp) == 0) { 2692 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), 2693 ==, NULL); 2694 return; 2695 } 2696 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 2697 2698 mutex_enter(&spa->spa_flushed_ms_lock); 2699 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 2700 mutex_exit(&spa->spa_flushed_ms_lock); 2701 2702 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2703 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp)); 2704 } 2705 2706 uint64_t 2707 metaslab_unflushed_changes_memused(metaslab_t *ms) 2708 { 2709 return ((range_tree_numsegs(ms->ms_unflushed_allocs) + 2710 range_tree_numsegs(ms->ms_unflushed_frees)) * 2711 ms->ms_unflushed_allocs->rt_root.bt_elem_size); 2712 } 2713 2714 void 2715 metaslab_fini(metaslab_t *msp) 2716 { 2717 metaslab_group_t *mg = msp->ms_group; 2718 vdev_t *vd = mg->mg_vd; 2719 spa_t *spa = vd->vdev_spa; 2720 2721 metaslab_fini_flush_data(msp); 2722 2723 metaslab_group_remove(mg, msp); 2724 2725 mutex_enter(&msp->ms_lock); 2726 VERIFY(msp->ms_group == NULL); 2727 metaslab_space_update(vd, mg->mg_class, 2728 -metaslab_allocated_space(msp), 0, -msp->ms_size); 2729 2730 space_map_close(msp->ms_sm); 2731 msp->ms_sm = NULL; 2732 2733 metaslab_unload(msp); 2734 range_tree_destroy(msp->ms_allocatable); 2735 range_tree_destroy(msp->ms_freeing); 2736 range_tree_destroy(msp->ms_freed); 2737 2738 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 2739 metaslab_unflushed_changes_memused(msp)); 2740 spa->spa_unflushed_stats.sus_memused -= 2741 metaslab_unflushed_changes_memused(msp); 2742 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 2743 range_tree_destroy(msp->ms_unflushed_allocs); 2744 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 2745 range_tree_destroy(msp->ms_unflushed_frees); 2746 2747 for (int t = 0; t < TXG_SIZE; t++) { 2748 range_tree_destroy(msp->ms_allocating[t]); 2749 } 2750 2751 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 2752 range_tree_destroy(msp->ms_defer[t]); 2753 } 2754 ASSERT0(msp->ms_deferspace); 2755 2756 range_tree_destroy(msp->ms_checkpointing); 2757 2758 for (int t = 0; t < TXG_SIZE; t++) 2759 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t)); 2760 2761 range_tree_vacate(msp->ms_trim, NULL, NULL); 2762 range_tree_destroy(msp->ms_trim); 2763 2764 mutex_exit(&msp->ms_lock); 2765 cv_destroy(&msp->ms_load_cv); 2766 cv_destroy(&msp->ms_flush_cv); 2767 mutex_destroy(&msp->ms_lock); 2768 mutex_destroy(&msp->ms_sync_lock); 2769 ASSERT3U(msp->ms_allocator, ==, -1); 2770 2771 kmem_free(msp, sizeof (metaslab_t)); 2772 } 2773 2774 #define FRAGMENTATION_TABLE_SIZE 17 2775 2776 /* 2777 * This table defines a segment size based fragmentation metric that will 2778 * allow each metaslab to derive its own fragmentation value. This is done 2779 * by calculating the space in each bucket of the spacemap histogram and 2780 * multiplying that by the fragmentation metric in this table. Doing 2781 * this for all buckets and dividing it by the total amount of free 2782 * space in this metaslab (i.e. the total free space in all buckets) gives 2783 * us the fragmentation metric. This means that a high fragmentation metric 2784 * equates to most of the free space being comprised of small segments. 2785 * Conversely, if the metric is low, then most of the free space is in 2786 * large segments. A 10% change in fragmentation equates to approximately 2787 * double the number of segments. 2788 * 2789 * This table defines 0% fragmented space using 16MB segments. Testing has 2790 * shown that segments that are greater than or equal to 16MB do not suffer 2791 * from drastic performance problems. Using this value, we derive the rest 2792 * of the table. Since the fragmentation value is never stored on disk, it 2793 * is possible to change these calculations in the future. 2794 */ 2795 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = { 2796 100, /* 512B */ 2797 100, /* 1K */ 2798 98, /* 2K */ 2799 95, /* 4K */ 2800 90, /* 8K */ 2801 80, /* 16K */ 2802 70, /* 32K */ 2803 60, /* 64K */ 2804 50, /* 128K */ 2805 40, /* 256K */ 2806 30, /* 512K */ 2807 20, /* 1M */ 2808 15, /* 2M */ 2809 10, /* 4M */ 2810 5, /* 8M */ 2811 0 /* 16M */ 2812 }; 2813 2814 /* 2815 * Calculate the metaslab's fragmentation metric and set ms_fragmentation. 2816 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not 2817 * been upgraded and does not support this metric. Otherwise, the return 2818 * value should be in the range [0, 100]. 2819 */ 2820 static void 2821 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty) 2822 { 2823 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 2824 uint64_t fragmentation = 0; 2825 uint64_t total = 0; 2826 boolean_t feature_enabled = spa_feature_is_enabled(spa, 2827 SPA_FEATURE_SPACEMAP_HISTOGRAM); 2828 2829 if (!feature_enabled) { 2830 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2831 return; 2832 } 2833 2834 /* 2835 * A null space map means that the entire metaslab is free 2836 * and thus is not fragmented. 2837 */ 2838 if (msp->ms_sm == NULL) { 2839 msp->ms_fragmentation = 0; 2840 return; 2841 } 2842 2843 /* 2844 * If this metaslab's space map has not been upgraded, flag it 2845 * so that we upgrade next time we encounter it. 2846 */ 2847 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) { 2848 uint64_t txg = spa_syncing_txg(spa); 2849 vdev_t *vd = msp->ms_group->mg_vd; 2850 2851 /* 2852 * If we've reached the final dirty txg, then we must 2853 * be shutting down the pool. We don't want to dirty 2854 * any data past this point so skip setting the condense 2855 * flag. We can retry this action the next time the pool 2856 * is imported. We also skip marking this metaslab for 2857 * condensing if the caller has explicitly set nodirty. 2858 */ 2859 if (!nodirty && 2860 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) { 2861 msp->ms_condense_wanted = B_TRUE; 2862 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 2863 zfs_dbgmsg("txg %llu, requesting force condense: " 2864 "ms_id %llu, vdev_id %llu", txg, msp->ms_id, 2865 vd->vdev_id); 2866 } 2867 msp->ms_fragmentation = ZFS_FRAG_INVALID; 2868 return; 2869 } 2870 2871 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 2872 uint64_t space = 0; 2873 uint8_t shift = msp->ms_sm->sm_shift; 2874 2875 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i, 2876 FRAGMENTATION_TABLE_SIZE - 1); 2877 2878 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0) 2879 continue; 2880 2881 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift); 2882 total += space; 2883 2884 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE); 2885 fragmentation += space * zfs_frag_table[idx]; 2886 } 2887 2888 if (total > 0) 2889 fragmentation /= total; 2890 ASSERT3U(fragmentation, <=, 100); 2891 2892 msp->ms_fragmentation = fragmentation; 2893 } 2894 2895 /* 2896 * Compute a weight -- a selection preference value -- for the given metaslab. 2897 * This is based on the amount of free space, the level of fragmentation, 2898 * the LBA range, and whether the metaslab is loaded. 2899 */ 2900 static uint64_t 2901 metaslab_space_weight(metaslab_t *msp) 2902 { 2903 metaslab_group_t *mg = msp->ms_group; 2904 vdev_t *vd = mg->mg_vd; 2905 uint64_t weight, space; 2906 2907 ASSERT(MUTEX_HELD(&msp->ms_lock)); 2908 2909 /* 2910 * The baseline weight is the metaslab's free space. 2911 */ 2912 space = msp->ms_size - metaslab_allocated_space(msp); 2913 2914 if (metaslab_fragmentation_factor_enabled && 2915 msp->ms_fragmentation != ZFS_FRAG_INVALID) { 2916 /* 2917 * Use the fragmentation information to inversely scale 2918 * down the baseline weight. We need to ensure that we 2919 * don't exclude this metaslab completely when it's 100% 2920 * fragmented. To avoid this we reduce the fragmented value 2921 * by 1. 2922 */ 2923 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100; 2924 2925 /* 2926 * If space < SPA_MINBLOCKSIZE, then we will not allocate from 2927 * this metaslab again. The fragmentation metric may have 2928 * decreased the space to something smaller than 2929 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE 2930 * so that we can consume any remaining space. 2931 */ 2932 if (space > 0 && space < SPA_MINBLOCKSIZE) 2933 space = SPA_MINBLOCKSIZE; 2934 } 2935 weight = space; 2936 2937 /* 2938 * Modern disks have uniform bit density and constant angular velocity. 2939 * Therefore, the outer recording zones are faster (higher bandwidth) 2940 * than the inner zones by the ratio of outer to inner track diameter, 2941 * which is typically around 2:1. We account for this by assigning 2942 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x). 2943 * In effect, this means that we'll select the metaslab with the most 2944 * free bandwidth rather than simply the one with the most free space. 2945 */ 2946 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) { 2947 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count; 2948 ASSERT(weight >= space && weight <= 2 * space); 2949 } 2950 2951 /* 2952 * If this metaslab is one we're actively using, adjust its 2953 * weight to make it preferable to any inactive metaslab so 2954 * we'll polish it off. If the fragmentation on this metaslab 2955 * has exceed our threshold, then don't mark it active. 2956 */ 2957 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID && 2958 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) { 2959 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK); 2960 } 2961 2962 WEIGHT_SET_SPACEBASED(weight); 2963 return (weight); 2964 } 2965 2966 /* 2967 * Return the weight of the specified metaslab, according to the segment-based 2968 * weighting algorithm. The metaslab must be loaded. This function can 2969 * be called within a sync pass since it relies only on the metaslab's 2970 * range tree which is always accurate when the metaslab is loaded. 2971 */ 2972 static uint64_t 2973 metaslab_weight_from_range_tree(metaslab_t *msp) 2974 { 2975 uint64_t weight = 0; 2976 uint32_t segments = 0; 2977 2978 ASSERT(msp->ms_loaded); 2979 2980 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT; 2981 i--) { 2982 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift; 2983 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 2984 2985 segments <<= 1; 2986 segments += msp->ms_allocatable->rt_histogram[i]; 2987 2988 /* 2989 * The range tree provides more precision than the space map 2990 * and must be downgraded so that all values fit within the 2991 * space map's histogram. This allows us to compare loaded 2992 * vs. unloaded metaslabs to determine which metaslab is 2993 * considered "best". 2994 */ 2995 if (i > max_idx) 2996 continue; 2997 2998 if (segments != 0) { 2999 WEIGHT_SET_COUNT(weight, segments); 3000 WEIGHT_SET_INDEX(weight, i); 3001 WEIGHT_SET_ACTIVE(weight, 0); 3002 break; 3003 } 3004 } 3005 return (weight); 3006 } 3007 3008 /* 3009 * Calculate the weight based on the on-disk histogram. Should be applied 3010 * only to unloaded metaslabs (i.e no incoming allocations) in-order to 3011 * give results consistent with the on-disk state 3012 */ 3013 static uint64_t 3014 metaslab_weight_from_spacemap(metaslab_t *msp) 3015 { 3016 space_map_t *sm = msp->ms_sm; 3017 ASSERT(!msp->ms_loaded); 3018 ASSERT(sm != NULL); 3019 ASSERT3U(space_map_object(sm), !=, 0); 3020 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3021 3022 /* 3023 * Create a joint histogram from all the segments that have made 3024 * it to the metaslab's space map histogram, that are not yet 3025 * available for allocation because they are still in the freeing 3026 * pipeline (e.g. freeing, freed, and defer trees). Then subtract 3027 * these segments from the space map's histogram to get a more 3028 * accurate weight. 3029 */ 3030 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0}; 3031 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) 3032 deferspace_histogram[i] += msp->ms_synchist[i]; 3033 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3034 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) { 3035 deferspace_histogram[i] += msp->ms_deferhist[t][i]; 3036 } 3037 } 3038 3039 uint64_t weight = 0; 3040 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) { 3041 ASSERT3U(sm->sm_phys->smp_histogram[i], >=, 3042 deferspace_histogram[i]); 3043 uint64_t count = 3044 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i]; 3045 if (count != 0) { 3046 WEIGHT_SET_COUNT(weight, count); 3047 WEIGHT_SET_INDEX(weight, i + sm->sm_shift); 3048 WEIGHT_SET_ACTIVE(weight, 0); 3049 break; 3050 } 3051 } 3052 return (weight); 3053 } 3054 3055 /* 3056 * Compute a segment-based weight for the specified metaslab. The weight 3057 * is determined by highest bucket in the histogram. The information 3058 * for the highest bucket is encoded into the weight value. 3059 */ 3060 static uint64_t 3061 metaslab_segment_weight(metaslab_t *msp) 3062 { 3063 metaslab_group_t *mg = msp->ms_group; 3064 uint64_t weight = 0; 3065 uint8_t shift = mg->mg_vd->vdev_ashift; 3066 3067 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3068 3069 /* 3070 * The metaslab is completely free. 3071 */ 3072 if (metaslab_allocated_space(msp) == 0) { 3073 int idx = highbit64(msp->ms_size) - 1; 3074 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1; 3075 3076 if (idx < max_idx) { 3077 WEIGHT_SET_COUNT(weight, 1ULL); 3078 WEIGHT_SET_INDEX(weight, idx); 3079 } else { 3080 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx)); 3081 WEIGHT_SET_INDEX(weight, max_idx); 3082 } 3083 WEIGHT_SET_ACTIVE(weight, 0); 3084 ASSERT(!WEIGHT_IS_SPACEBASED(weight)); 3085 return (weight); 3086 } 3087 3088 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t)); 3089 3090 /* 3091 * If the metaslab is fully allocated then just make the weight 0. 3092 */ 3093 if (metaslab_allocated_space(msp) == msp->ms_size) 3094 return (0); 3095 /* 3096 * If the metaslab is already loaded, then use the range tree to 3097 * determine the weight. Otherwise, we rely on the space map information 3098 * to generate the weight. 3099 */ 3100 if (msp->ms_loaded) { 3101 weight = metaslab_weight_from_range_tree(msp); 3102 } else { 3103 weight = metaslab_weight_from_spacemap(msp); 3104 } 3105 3106 /* 3107 * If the metaslab was active the last time we calculated its weight 3108 * then keep it active. We want to consume the entire region that 3109 * is associated with this weight. 3110 */ 3111 if (msp->ms_activation_weight != 0 && weight != 0) 3112 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight)); 3113 return (weight); 3114 } 3115 3116 /* 3117 * Determine if we should attempt to allocate from this metaslab. If the 3118 * metaslab is loaded, then we can determine if the desired allocation 3119 * can be satisfied by looking at the size of the maximum free segment 3120 * on that metaslab. Otherwise, we make our decision based on the metaslab's 3121 * weight. For segment-based weighting we can determine the maximum 3122 * allocation based on the index encoded in its value. For space-based 3123 * weights we rely on the entire weight (excluding the weight-type bit). 3124 */ 3125 static boolean_t 3126 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard) 3127 { 3128 /* 3129 * If the metaslab is loaded, ms_max_size is definitive and we can use 3130 * the fast check. If it's not, the ms_max_size is a lower bound (once 3131 * set), and we should use the fast check as long as we're not in 3132 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec 3133 * seconds since the metaslab was unloaded. 3134 */ 3135 if (msp->ms_loaded || 3136 (msp->ms_max_size != 0 && !try_hard && gethrtime() < 3137 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec))) 3138 return (msp->ms_max_size >= asize); 3139 3140 boolean_t should_allocate; 3141 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 3142 /* 3143 * The metaslab segment weight indicates segments in the 3144 * range [2^i, 2^(i+1)), where i is the index in the weight. 3145 * Since the asize might be in the middle of the range, we 3146 * should attempt the allocation if asize < 2^(i+1). 3147 */ 3148 should_allocate = (asize < 3149 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1)); 3150 } else { 3151 should_allocate = (asize <= 3152 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE)); 3153 } 3154 3155 return (should_allocate); 3156 } 3157 3158 static uint64_t 3159 metaslab_weight(metaslab_t *msp, boolean_t nodirty) 3160 { 3161 vdev_t *vd = msp->ms_group->mg_vd; 3162 spa_t *spa = vd->vdev_spa; 3163 uint64_t weight; 3164 3165 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3166 3167 metaslab_set_fragmentation(msp, nodirty); 3168 3169 /* 3170 * Update the maximum size. If the metaslab is loaded, this will 3171 * ensure that we get an accurate maximum size if newly freed space 3172 * has been added back into the free tree. If the metaslab is 3173 * unloaded, we check if there's a larger free segment in the 3174 * unflushed frees. This is a lower bound on the largest allocatable 3175 * segment size. Coalescing of adjacent entries may reveal larger 3176 * allocatable segments, but we aren't aware of those until loading 3177 * the space map into a range tree. 3178 */ 3179 if (msp->ms_loaded) { 3180 msp->ms_max_size = metaslab_largest_allocatable(msp); 3181 } else { 3182 msp->ms_max_size = MAX(msp->ms_max_size, 3183 metaslab_largest_unflushed_free(msp)); 3184 } 3185 3186 /* 3187 * Segment-based weighting requires space map histogram support. 3188 */ 3189 if (zfs_metaslab_segment_weight_enabled && 3190 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) && 3191 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size == 3192 sizeof (space_map_phys_t))) { 3193 weight = metaslab_segment_weight(msp); 3194 } else { 3195 weight = metaslab_space_weight(msp); 3196 } 3197 return (weight); 3198 } 3199 3200 void 3201 metaslab_recalculate_weight_and_sort(metaslab_t *msp) 3202 { 3203 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3204 3205 /* note: we preserve the mask (e.g. indication of primary, etc..) */ 3206 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK; 3207 metaslab_group_sort(msp->ms_group, msp, 3208 metaslab_weight(msp, B_FALSE) | was_active); 3209 } 3210 3211 static int 3212 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3213 int allocator, uint64_t activation_weight) 3214 { 3215 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 3216 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3217 3218 /* 3219 * If we're activating for the claim code, we don't want to actually 3220 * set the metaslab up for a specific allocator. 3221 */ 3222 if (activation_weight == METASLAB_WEIGHT_CLAIM) { 3223 ASSERT0(msp->ms_activation_weight); 3224 msp->ms_activation_weight = msp->ms_weight; 3225 metaslab_group_sort(mg, msp, msp->ms_weight | 3226 activation_weight); 3227 return (0); 3228 } 3229 3230 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ? 3231 &mga->mga_primary : &mga->mga_secondary); 3232 3233 mutex_enter(&mg->mg_lock); 3234 if (*mspp != NULL) { 3235 mutex_exit(&mg->mg_lock); 3236 return (EEXIST); 3237 } 3238 3239 *mspp = msp; 3240 ASSERT3S(msp->ms_allocator, ==, -1); 3241 msp->ms_allocator = allocator; 3242 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY); 3243 3244 ASSERT0(msp->ms_activation_weight); 3245 msp->ms_activation_weight = msp->ms_weight; 3246 metaslab_group_sort_impl(mg, msp, 3247 msp->ms_weight | activation_weight); 3248 mutex_exit(&mg->mg_lock); 3249 3250 return (0); 3251 } 3252 3253 static int 3254 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight) 3255 { 3256 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3257 3258 /* 3259 * The current metaslab is already activated for us so there 3260 * is nothing to do. Already activated though, doesn't mean 3261 * that this metaslab is activated for our allocator nor our 3262 * requested activation weight. The metaslab could have started 3263 * as an active one for our allocator but changed allocators 3264 * while we were waiting to grab its ms_lock or we stole it 3265 * [see find_valid_metaslab()]. This means that there is a 3266 * possibility of passivating a metaslab of another allocator 3267 * or from a different activation mask, from this thread. 3268 */ 3269 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3270 ASSERT(msp->ms_loaded); 3271 return (0); 3272 } 3273 3274 int error = metaslab_load(msp); 3275 if (error != 0) { 3276 metaslab_group_sort(msp->ms_group, msp, 0); 3277 return (error); 3278 } 3279 3280 /* 3281 * When entering metaslab_load() we may have dropped the 3282 * ms_lock because we were loading this metaslab, or we 3283 * were waiting for another thread to load it for us. In 3284 * that scenario, we recheck the weight of the metaslab 3285 * to see if it was activated by another thread. 3286 * 3287 * If the metaslab was activated for another allocator or 3288 * it was activated with a different activation weight (e.g. 3289 * we wanted to make it a primary but it was activated as 3290 * secondary) we return error (EBUSY). 3291 * 3292 * If the metaslab was activated for the same allocator 3293 * and requested activation mask, skip activating it. 3294 */ 3295 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) { 3296 if (msp->ms_allocator != allocator) 3297 return (EBUSY); 3298 3299 if ((msp->ms_weight & activation_weight) == 0) 3300 return (SET_ERROR(EBUSY)); 3301 3302 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY), 3303 msp->ms_primary); 3304 return (0); 3305 } 3306 3307 /* 3308 * If the metaslab has literally 0 space, it will have weight 0. In 3309 * that case, don't bother activating it. This can happen if the 3310 * metaslab had space during find_valid_metaslab, but another thread 3311 * loaded it and used all that space while we were waiting to grab the 3312 * lock. 3313 */ 3314 if (msp->ms_weight == 0) { 3315 ASSERT0(range_tree_space(msp->ms_allocatable)); 3316 return (SET_ERROR(ENOSPC)); 3317 } 3318 3319 if ((error = metaslab_activate_allocator(msp->ms_group, msp, 3320 allocator, activation_weight)) != 0) { 3321 return (error); 3322 } 3323 3324 ASSERT(msp->ms_loaded); 3325 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 3326 3327 return (0); 3328 } 3329 3330 static void 3331 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp, 3332 uint64_t weight) 3333 { 3334 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3335 ASSERT(msp->ms_loaded); 3336 3337 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 3338 metaslab_group_sort(mg, msp, weight); 3339 return; 3340 } 3341 3342 mutex_enter(&mg->mg_lock); 3343 ASSERT3P(msp->ms_group, ==, mg); 3344 ASSERT3S(0, <=, msp->ms_allocator); 3345 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators); 3346 3347 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator]; 3348 if (msp->ms_primary) { 3349 ASSERT3P(mga->mga_primary, ==, msp); 3350 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 3351 mga->mga_primary = NULL; 3352 } else { 3353 ASSERT3P(mga->mga_secondary, ==, msp); 3354 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 3355 mga->mga_secondary = NULL; 3356 } 3357 msp->ms_allocator = -1; 3358 metaslab_group_sort_impl(mg, msp, weight); 3359 mutex_exit(&mg->mg_lock); 3360 } 3361 3362 static void 3363 metaslab_passivate(metaslab_t *msp, uint64_t weight) 3364 { 3365 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE; 3366 3367 /* 3368 * If size < SPA_MINBLOCKSIZE, then we will not allocate from 3369 * this metaslab again. In that case, it had better be empty, 3370 * or we would be leaving space on the table. 3371 */ 3372 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) || 3373 size >= SPA_MINBLOCKSIZE || 3374 range_tree_space(msp->ms_allocatable) == 0); 3375 ASSERT0(weight & METASLAB_ACTIVE_MASK); 3376 3377 ASSERT(msp->ms_activation_weight != 0); 3378 msp->ms_activation_weight = 0; 3379 metaslab_passivate_allocator(msp->ms_group, msp, weight); 3380 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK); 3381 } 3382 3383 /* 3384 * Segment-based metaslabs are activated once and remain active until 3385 * we either fail an allocation attempt (similar to space-based metaslabs) 3386 * or have exhausted the free space in zfs_metaslab_switch_threshold 3387 * buckets since the metaslab was activated. This function checks to see 3388 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the 3389 * metaslab and passivates it proactively. This will allow us to select a 3390 * metaslab with a larger contiguous region, if any, remaining within this 3391 * metaslab group. If we're in sync pass > 1, then we continue using this 3392 * metaslab so that we don't dirty more block and cause more sync passes. 3393 */ 3394 static void 3395 metaslab_segment_may_passivate(metaslab_t *msp) 3396 { 3397 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3398 3399 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1) 3400 return; 3401 3402 /* 3403 * Since we are in the middle of a sync pass, the most accurate 3404 * information that is accessible to us is the in-core range tree 3405 * histogram; calculate the new weight based on that information. 3406 */ 3407 uint64_t weight = metaslab_weight_from_range_tree(msp); 3408 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight); 3409 int current_idx = WEIGHT_GET_INDEX(weight); 3410 3411 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold) 3412 metaslab_passivate(msp, weight); 3413 } 3414 3415 static void 3416 metaslab_preload(void *arg) 3417 { 3418 metaslab_t *msp = arg; 3419 metaslab_class_t *mc = msp->ms_group->mg_class; 3420 spa_t *spa = mc->mc_spa; 3421 fstrans_cookie_t cookie = spl_fstrans_mark(); 3422 3423 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock)); 3424 3425 mutex_enter(&msp->ms_lock); 3426 (void) metaslab_load(msp); 3427 metaslab_set_selected_txg(msp, spa_syncing_txg(spa)); 3428 mutex_exit(&msp->ms_lock); 3429 spl_fstrans_unmark(cookie); 3430 } 3431 3432 static void 3433 metaslab_group_preload(metaslab_group_t *mg) 3434 { 3435 spa_t *spa = mg->mg_vd->vdev_spa; 3436 metaslab_t *msp; 3437 avl_tree_t *t = &mg->mg_metaslab_tree; 3438 int m = 0; 3439 3440 if (spa_shutting_down(spa) || !metaslab_preload_enabled) { 3441 taskq_wait_outstanding(mg->mg_taskq, 0); 3442 return; 3443 } 3444 3445 mutex_enter(&mg->mg_lock); 3446 3447 /* 3448 * Load the next potential metaslabs 3449 */ 3450 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) { 3451 ASSERT3P(msp->ms_group, ==, mg); 3452 3453 /* 3454 * We preload only the maximum number of metaslabs specified 3455 * by metaslab_preload_limit. If a metaslab is being forced 3456 * to condense then we preload it too. This will ensure 3457 * that force condensing happens in the next txg. 3458 */ 3459 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) { 3460 continue; 3461 } 3462 3463 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload, 3464 msp, TQ_SLEEP) != TASKQID_INVALID); 3465 } 3466 mutex_exit(&mg->mg_lock); 3467 } 3468 3469 /* 3470 * Determine if the space map's on-disk footprint is past our tolerance for 3471 * inefficiency. We would like to use the following criteria to make our 3472 * decision: 3473 * 3474 * 1. Do not condense if the size of the space map object would dramatically 3475 * increase as a result of writing out the free space range tree. 3476 * 3477 * 2. Condense if the on on-disk space map representation is at least 3478 * zfs_condense_pct/100 times the size of the optimal representation 3479 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB). 3480 * 3481 * 3. Do not condense if the on-disk size of the space map does not actually 3482 * decrease. 3483 * 3484 * Unfortunately, we cannot compute the on-disk size of the space map in this 3485 * context because we cannot accurately compute the effects of compression, etc. 3486 * Instead, we apply the heuristic described in the block comment for 3487 * zfs_metaslab_condense_block_threshold - we only condense if the space used 3488 * is greater than a threshold number of blocks. 3489 */ 3490 static boolean_t 3491 metaslab_should_condense(metaslab_t *msp) 3492 { 3493 space_map_t *sm = msp->ms_sm; 3494 vdev_t *vd = msp->ms_group->mg_vd; 3495 uint64_t vdev_blocksize = 1 << vd->vdev_ashift; 3496 3497 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3498 ASSERT(msp->ms_loaded); 3499 ASSERT(sm != NULL); 3500 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1); 3501 3502 /* 3503 * We always condense metaslabs that are empty and metaslabs for 3504 * which a condense request has been made. 3505 */ 3506 if (range_tree_numsegs(msp->ms_allocatable) == 0 || 3507 msp->ms_condense_wanted) 3508 return (B_TRUE); 3509 3510 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize); 3511 uint64_t object_size = space_map_length(sm); 3512 uint64_t optimal_size = space_map_estimate_optimal_size(sm, 3513 msp->ms_allocatable, SM_NO_VDEVID); 3514 3515 return (object_size >= (optimal_size * zfs_condense_pct / 100) && 3516 object_size > zfs_metaslab_condense_block_threshold * record_size); 3517 } 3518 3519 /* 3520 * Condense the on-disk space map representation to its minimized form. 3521 * The minimized form consists of a small number of allocations followed 3522 * by the entries of the free range tree (ms_allocatable). The condensed 3523 * spacemap contains all the entries of previous TXGs (including those in 3524 * the pool-wide log spacemaps; thus this is effectively a superset of 3525 * metaslab_flush()), but this TXG's entries still need to be written. 3526 */ 3527 static void 3528 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx) 3529 { 3530 range_tree_t *condense_tree; 3531 space_map_t *sm = msp->ms_sm; 3532 uint64_t txg = dmu_tx_get_txg(tx); 3533 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3534 3535 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3536 ASSERT(msp->ms_loaded); 3537 ASSERT(msp->ms_sm != NULL); 3538 3539 /* 3540 * In order to condense the space map, we need to change it so it 3541 * only describes which segments are currently allocated and free. 3542 * 3543 * All the current free space resides in the ms_allocatable, all 3544 * the ms_defer trees, and all the ms_allocating trees. We ignore 3545 * ms_freed because it is empty because we're in sync pass 1. We 3546 * ignore ms_freeing because these changes are not yet reflected 3547 * in the spacemap (they will be written later this txg). 3548 * 3549 * So to truncate the space map to represent all the entries of 3550 * previous TXGs we do the following: 3551 * 3552 * 1] We create a range tree (condense tree) that is 100% empty. 3553 * 2] We add to it all segments found in the ms_defer trees 3554 * as those segments are marked as free in the original space 3555 * map. We do the same with the ms_allocating trees for the same 3556 * reason. Adding these segments should be a relatively 3557 * inexpensive operation since we expect these trees to have a 3558 * small number of nodes. 3559 * 3] We vacate any unflushed allocs, since they are not frees we 3560 * need to add to the condense tree. Then we vacate any 3561 * unflushed frees as they should already be part of ms_allocatable. 3562 * 4] At this point, we would ideally like to add all segments 3563 * in the ms_allocatable tree from the condense tree. This way 3564 * we would write all the entries of the condense tree as the 3565 * condensed space map, which would only contain freed 3566 * segments with everything else assumed to be allocated. 3567 * 3568 * Doing so can be prohibitively expensive as ms_allocatable can 3569 * be large, and therefore computationally expensive to add to 3570 * the condense_tree. Instead we first sync out an entry marking 3571 * everything as allocated, then the condense_tree and then the 3572 * ms_allocatable, in the condensed space map. While this is not 3573 * optimal, it is typically close to optimal and more importantly 3574 * much cheaper to compute. 3575 * 3576 * 5] Finally, as both of the unflushed trees were written to our 3577 * new and condensed metaslab space map, we basically flushed 3578 * all the unflushed changes to disk, thus we call 3579 * metaslab_flush_update(). 3580 */ 3581 ASSERT3U(spa_sync_pass(spa), ==, 1); 3582 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */ 3583 3584 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, " 3585 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg, 3586 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id, 3587 spa->spa_name, space_map_length(msp->ms_sm), 3588 range_tree_numsegs(msp->ms_allocatable), 3589 msp->ms_condense_wanted ? "TRUE" : "FALSE"); 3590 3591 msp->ms_condense_wanted = B_FALSE; 3592 3593 range_seg_type_t type; 3594 uint64_t shift, start; 3595 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp, 3596 &start, &shift); 3597 3598 condense_tree = range_tree_create(NULL, type, NULL, start, shift); 3599 3600 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3601 range_tree_walk(msp->ms_defer[t], 3602 range_tree_add, condense_tree); 3603 } 3604 3605 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) { 3606 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK], 3607 range_tree_add, condense_tree); 3608 } 3609 3610 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3611 metaslab_unflushed_changes_memused(msp)); 3612 spa->spa_unflushed_stats.sus_memused -= 3613 metaslab_unflushed_changes_memused(msp); 3614 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3615 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3616 3617 /* 3618 * We're about to drop the metaslab's lock thus allowing other 3619 * consumers to change it's content. Set the metaslab's ms_condensing 3620 * flag to ensure that allocations on this metaslab do not occur 3621 * while we're in the middle of committing it to disk. This is only 3622 * critical for ms_allocatable as all other range trees use per TXG 3623 * views of their content. 3624 */ 3625 msp->ms_condensing = B_TRUE; 3626 3627 mutex_exit(&msp->ms_lock); 3628 uint64_t object = space_map_object(msp->ms_sm); 3629 space_map_truncate(sm, 3630 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3631 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx); 3632 3633 /* 3634 * space_map_truncate() may have reallocated the spacemap object. 3635 * If so, update the vdev_ms_array. 3636 */ 3637 if (space_map_object(msp->ms_sm) != object) { 3638 object = space_map_object(msp->ms_sm); 3639 dmu_write(spa->spa_meta_objset, 3640 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) * 3641 msp->ms_id, sizeof (uint64_t), &object, tx); 3642 } 3643 3644 /* 3645 * Note: 3646 * When the log space map feature is enabled, each space map will 3647 * always have ALLOCS followed by FREES for each sync pass. This is 3648 * typically true even when the log space map feature is disabled, 3649 * except from the case where a metaslab goes through metaslab_sync() 3650 * and gets condensed. In that case the metaslab's space map will have 3651 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS 3652 * followed by FREES (due to space_map_write() in metaslab_sync()) for 3653 * sync pass 1. 3654 */ 3655 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start, 3656 shift); 3657 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size); 3658 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx); 3659 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx); 3660 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx); 3661 3662 range_tree_vacate(condense_tree, NULL, NULL); 3663 range_tree_destroy(condense_tree); 3664 range_tree_vacate(tmp_tree, NULL, NULL); 3665 range_tree_destroy(tmp_tree); 3666 mutex_enter(&msp->ms_lock); 3667 3668 msp->ms_condensing = B_FALSE; 3669 metaslab_flush_update(msp, tx); 3670 } 3671 3672 /* 3673 * Called when the metaslab has been flushed (its own spacemap now reflects 3674 * all the contents of the pool-wide spacemap log). Updates the metaslab's 3675 * metadata and any pool-wide related log space map data (e.g. summary, 3676 * obsolete logs, etc..) to reflect that. 3677 */ 3678 static void 3679 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx) 3680 { 3681 metaslab_group_t *mg = msp->ms_group; 3682 spa_t *spa = mg->mg_vd->vdev_spa; 3683 3684 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3685 3686 ASSERT3U(spa_sync_pass(spa), ==, 1); 3687 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3688 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3689 3690 /* 3691 * Just because a metaslab got flushed, that doesn't mean that 3692 * it will pass through metaslab_sync_done(). Thus, make sure to 3693 * update ms_synced_length here in case it doesn't. 3694 */ 3695 msp->ms_synced_length = space_map_length(msp->ms_sm); 3696 3697 /* 3698 * We may end up here from metaslab_condense() without the 3699 * feature being active. In that case this is a no-op. 3700 */ 3701 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 3702 return; 3703 3704 ASSERT(spa_syncing_log_sm(spa) != NULL); 3705 ASSERT(msp->ms_sm != NULL); 3706 ASSERT(metaslab_unflushed_txg(msp) != 0); 3707 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp); 3708 3709 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa)); 3710 3711 /* update metaslab's position in our flushing tree */ 3712 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp); 3713 mutex_enter(&spa->spa_flushed_ms_lock); 3714 avl_remove(&spa->spa_metaslabs_by_flushed, msp); 3715 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3716 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3717 mutex_exit(&spa->spa_flushed_ms_lock); 3718 3719 /* update metaslab counts of spa_log_sm_t nodes */ 3720 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg); 3721 spa_log_sm_increment_current_mscount(spa); 3722 3723 /* cleanup obsolete logs if any */ 3724 uint64_t log_blocks_before = spa_log_sm_nblocks(spa); 3725 spa_cleanup_old_sm_logs(spa, tx); 3726 uint64_t log_blocks_after = spa_log_sm_nblocks(spa); 3727 VERIFY3U(log_blocks_after, <=, log_blocks_before); 3728 3729 /* update log space map summary */ 3730 uint64_t blocks_gone = log_blocks_before - log_blocks_after; 3731 spa_log_summary_add_flushed_metaslab(spa); 3732 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg); 3733 spa_log_summary_decrement_blkcount(spa, blocks_gone); 3734 } 3735 3736 boolean_t 3737 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx) 3738 { 3739 spa_t *spa = msp->ms_group->mg_vd->vdev_spa; 3740 3741 ASSERT(MUTEX_HELD(&msp->ms_lock)); 3742 ASSERT3U(spa_sync_pass(spa), ==, 1); 3743 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 3744 3745 ASSERT(msp->ms_sm != NULL); 3746 ASSERT(metaslab_unflushed_txg(msp) != 0); 3747 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL); 3748 3749 /* 3750 * There is nothing wrong with flushing the same metaslab twice, as 3751 * this codepath should work on that case. However, the current 3752 * flushing scheme makes sure to avoid this situation as we would be 3753 * making all these calls without having anything meaningful to write 3754 * to disk. We assert this behavior here. 3755 */ 3756 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx)); 3757 3758 /* 3759 * We can not flush while loading, because then we would 3760 * not load the ms_unflushed_{allocs,frees}. 3761 */ 3762 if (msp->ms_loading) 3763 return (B_FALSE); 3764 3765 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3766 metaslab_verify_weight_and_frag(msp); 3767 3768 /* 3769 * Metaslab condensing is effectively flushing. Therefore if the 3770 * metaslab can be condensed we can just condense it instead of 3771 * flushing it. 3772 * 3773 * Note that metaslab_condense() does call metaslab_flush_update() 3774 * so we can just return immediately after condensing. We also 3775 * don't need to care about setting ms_flushing or broadcasting 3776 * ms_flush_cv, even if we temporarily drop the ms_lock in 3777 * metaslab_condense(), as the metaslab is already loaded. 3778 */ 3779 if (msp->ms_loaded && metaslab_should_condense(msp)) { 3780 metaslab_group_t *mg = msp->ms_group; 3781 3782 /* 3783 * For all histogram operations below refer to the 3784 * comments of metaslab_sync() where we follow a 3785 * similar procedure. 3786 */ 3787 metaslab_group_histogram_verify(mg); 3788 metaslab_class_histogram_verify(mg->mg_class); 3789 metaslab_group_histogram_remove(mg, msp); 3790 3791 metaslab_condense(msp, tx); 3792 3793 space_map_histogram_clear(msp->ms_sm); 3794 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 3795 ASSERT(range_tree_is_empty(msp->ms_freed)); 3796 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 3797 space_map_histogram_add(msp->ms_sm, 3798 msp->ms_defer[t], tx); 3799 } 3800 metaslab_aux_histograms_update(msp); 3801 3802 metaslab_group_histogram_add(mg, msp); 3803 metaslab_group_histogram_verify(mg); 3804 metaslab_class_histogram_verify(mg->mg_class); 3805 3806 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3807 3808 /* 3809 * Since we recreated the histogram (and potentially 3810 * the ms_sm too while condensing) ensure that the 3811 * weight is updated too because we are not guaranteed 3812 * that this metaslab is dirty and will go through 3813 * metaslab_sync_done(). 3814 */ 3815 metaslab_recalculate_weight_and_sort(msp); 3816 return (B_TRUE); 3817 } 3818 3819 msp->ms_flushing = B_TRUE; 3820 uint64_t sm_len_before = space_map_length(msp->ms_sm); 3821 3822 mutex_exit(&msp->ms_lock); 3823 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC, 3824 SM_NO_VDEVID, tx); 3825 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE, 3826 SM_NO_VDEVID, tx); 3827 mutex_enter(&msp->ms_lock); 3828 3829 uint64_t sm_len_after = space_map_length(msp->ms_sm); 3830 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) { 3831 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, " 3832 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, " 3833 "appended %llu bytes", dmu_tx_get_txg(tx), spa_name(spa), 3834 msp->ms_group->mg_vd->vdev_id, msp->ms_id, 3835 range_tree_space(msp->ms_unflushed_allocs), 3836 range_tree_space(msp->ms_unflushed_frees), 3837 (sm_len_after - sm_len_before)); 3838 } 3839 3840 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 3841 metaslab_unflushed_changes_memused(msp)); 3842 spa->spa_unflushed_stats.sus_memused -= 3843 metaslab_unflushed_changes_memused(msp); 3844 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL); 3845 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL); 3846 3847 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3848 metaslab_verify_weight_and_frag(msp); 3849 3850 metaslab_flush_update(msp, tx); 3851 3852 metaslab_verify_space(msp, dmu_tx_get_txg(tx)); 3853 metaslab_verify_weight_and_frag(msp); 3854 3855 msp->ms_flushing = B_FALSE; 3856 cv_broadcast(&msp->ms_flush_cv); 3857 return (B_TRUE); 3858 } 3859 3860 /* 3861 * Write a metaslab to disk in the context of the specified transaction group. 3862 */ 3863 void 3864 metaslab_sync(metaslab_t *msp, uint64_t txg) 3865 { 3866 metaslab_group_t *mg = msp->ms_group; 3867 vdev_t *vd = mg->mg_vd; 3868 spa_t *spa = vd->vdev_spa; 3869 objset_t *mos = spa_meta_objset(spa); 3870 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK]; 3871 dmu_tx_t *tx; 3872 3873 ASSERT(!vd->vdev_ishole); 3874 3875 /* 3876 * This metaslab has just been added so there's no work to do now. 3877 */ 3878 if (msp->ms_freeing == NULL) { 3879 ASSERT3P(alloctree, ==, NULL); 3880 return; 3881 } 3882 3883 ASSERT3P(alloctree, !=, NULL); 3884 ASSERT3P(msp->ms_freeing, !=, NULL); 3885 ASSERT3P(msp->ms_freed, !=, NULL); 3886 ASSERT3P(msp->ms_checkpointing, !=, NULL); 3887 ASSERT3P(msp->ms_trim, !=, NULL); 3888 3889 /* 3890 * Normally, we don't want to process a metaslab if there are no 3891 * allocations or frees to perform. However, if the metaslab is being 3892 * forced to condense, it's loaded and we're not beyond the final 3893 * dirty txg, we need to let it through. Not condensing beyond the 3894 * final dirty txg prevents an issue where metaslabs that need to be 3895 * condensed but were loaded for other reasons could cause a panic 3896 * here. By only checking the txg in that branch of the conditional, 3897 * we preserve the utility of the VERIFY statements in all other 3898 * cases. 3899 */ 3900 if (range_tree_is_empty(alloctree) && 3901 range_tree_is_empty(msp->ms_freeing) && 3902 range_tree_is_empty(msp->ms_checkpointing) && 3903 !(msp->ms_loaded && msp->ms_condense_wanted && 3904 txg <= spa_final_dirty_txg(spa))) 3905 return; 3906 3907 3908 VERIFY3U(txg, <=, spa_final_dirty_txg(spa)); 3909 3910 /* 3911 * The only state that can actually be changing concurrently 3912 * with metaslab_sync() is the metaslab's ms_allocatable. No 3913 * other thread can be modifying this txg's alloc, freeing, 3914 * freed, or space_map_phys_t. We drop ms_lock whenever we 3915 * could call into the DMU, because the DMU can call down to 3916 * us (e.g. via zio_free()) at any time. 3917 * 3918 * The spa_vdev_remove_thread() can be reading metaslab state 3919 * concurrently, and it is locked out by the ms_sync_lock. 3920 * Note that the ms_lock is insufficient for this, because it 3921 * is dropped by space_map_write(). 3922 */ 3923 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 3924 3925 /* 3926 * Generate a log space map if one doesn't exist already. 3927 */ 3928 spa_generate_syncing_log_sm(spa, tx); 3929 3930 if (msp->ms_sm == NULL) { 3931 uint64_t new_object = space_map_alloc(mos, 3932 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ? 3933 zfs_metaslab_sm_blksz_with_log : 3934 zfs_metaslab_sm_blksz_no_log, tx); 3935 VERIFY3U(new_object, !=, 0); 3936 3937 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) * 3938 msp->ms_id, sizeof (uint64_t), &new_object, tx); 3939 3940 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object, 3941 msp->ms_start, msp->ms_size, vd->vdev_ashift)); 3942 ASSERT(msp->ms_sm != NULL); 3943 3944 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3945 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3946 ASSERT0(metaslab_allocated_space(msp)); 3947 } 3948 3949 if (metaslab_unflushed_txg(msp) == 0 && 3950 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 3951 ASSERT(spa_syncing_log_sm(spa) != NULL); 3952 3953 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx); 3954 spa_log_sm_increment_current_mscount(spa); 3955 spa_log_summary_add_flushed_metaslab(spa); 3956 3957 ASSERT(msp->ms_sm != NULL); 3958 mutex_enter(&spa->spa_flushed_ms_lock); 3959 avl_add(&spa->spa_metaslabs_by_flushed, msp); 3960 mutex_exit(&spa->spa_flushed_ms_lock); 3961 3962 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs)); 3963 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees)); 3964 } 3965 3966 if (!range_tree_is_empty(msp->ms_checkpointing) && 3967 vd->vdev_checkpoint_sm == NULL) { 3968 ASSERT(spa_has_checkpoint(spa)); 3969 3970 uint64_t new_object = space_map_alloc(mos, 3971 zfs_vdev_standard_sm_blksz, tx); 3972 VERIFY3U(new_object, !=, 0); 3973 3974 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm, 3975 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift)); 3976 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 3977 3978 /* 3979 * We save the space map object as an entry in vdev_top_zap 3980 * so it can be retrieved when the pool is reopened after an 3981 * export or through zdb. 3982 */ 3983 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, 3984 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 3985 sizeof (new_object), 1, &new_object, tx)); 3986 } 3987 3988 mutex_enter(&msp->ms_sync_lock); 3989 mutex_enter(&msp->ms_lock); 3990 3991 /* 3992 * Note: metaslab_condense() clears the space map's histogram. 3993 * Therefore we must verify and remove this histogram before 3994 * condensing. 3995 */ 3996 metaslab_group_histogram_verify(mg); 3997 metaslab_class_histogram_verify(mg->mg_class); 3998 metaslab_group_histogram_remove(mg, msp); 3999 4000 if (spa->spa_sync_pass == 1 && msp->ms_loaded && 4001 metaslab_should_condense(msp)) 4002 metaslab_condense(msp, tx); 4003 4004 /* 4005 * We'll be going to disk to sync our space accounting, thus we 4006 * drop the ms_lock during that time so allocations coming from 4007 * open-context (ZIL) for future TXGs do not block. 4008 */ 4009 mutex_exit(&msp->ms_lock); 4010 space_map_t *log_sm = spa_syncing_log_sm(spa); 4011 if (log_sm != NULL) { 4012 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4013 4014 space_map_write(log_sm, alloctree, SM_ALLOC, 4015 vd->vdev_id, tx); 4016 space_map_write(log_sm, msp->ms_freeing, SM_FREE, 4017 vd->vdev_id, tx); 4018 mutex_enter(&msp->ms_lock); 4019 4020 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=, 4021 metaslab_unflushed_changes_memused(msp)); 4022 spa->spa_unflushed_stats.sus_memused -= 4023 metaslab_unflushed_changes_memused(msp); 4024 range_tree_remove_xor_add(alloctree, 4025 msp->ms_unflushed_frees, msp->ms_unflushed_allocs); 4026 range_tree_remove_xor_add(msp->ms_freeing, 4027 msp->ms_unflushed_allocs, msp->ms_unflushed_frees); 4028 spa->spa_unflushed_stats.sus_memused += 4029 metaslab_unflushed_changes_memused(msp); 4030 } else { 4031 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP)); 4032 4033 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, 4034 SM_NO_VDEVID, tx); 4035 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE, 4036 SM_NO_VDEVID, tx); 4037 mutex_enter(&msp->ms_lock); 4038 } 4039 4040 msp->ms_allocated_space += range_tree_space(alloctree); 4041 ASSERT3U(msp->ms_allocated_space, >=, 4042 range_tree_space(msp->ms_freeing)); 4043 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing); 4044 4045 if (!range_tree_is_empty(msp->ms_checkpointing)) { 4046 ASSERT(spa_has_checkpoint(spa)); 4047 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); 4048 4049 /* 4050 * Since we are doing writes to disk and the ms_checkpointing 4051 * tree won't be changing during that time, we drop the 4052 * ms_lock while writing to the checkpoint space map, for the 4053 * same reason mentioned above. 4054 */ 4055 mutex_exit(&msp->ms_lock); 4056 space_map_write(vd->vdev_checkpoint_sm, 4057 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx); 4058 mutex_enter(&msp->ms_lock); 4059 4060 spa->spa_checkpoint_info.sci_dspace += 4061 range_tree_space(msp->ms_checkpointing); 4062 vd->vdev_stat.vs_checkpoint_space += 4063 range_tree_space(msp->ms_checkpointing); 4064 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==, 4065 -space_map_allocated(vd->vdev_checkpoint_sm)); 4066 4067 range_tree_vacate(msp->ms_checkpointing, NULL, NULL); 4068 } 4069 4070 if (msp->ms_loaded) { 4071 /* 4072 * When the space map is loaded, we have an accurate 4073 * histogram in the range tree. This gives us an opportunity 4074 * to bring the space map's histogram up-to-date so we clear 4075 * it first before updating it. 4076 */ 4077 space_map_histogram_clear(msp->ms_sm); 4078 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx); 4079 4080 /* 4081 * Since we've cleared the histogram we need to add back 4082 * any free space that has already been processed, plus 4083 * any deferred space. This allows the on-disk histogram 4084 * to accurately reflect all free space even if some space 4085 * is not yet available for allocation (i.e. deferred). 4086 */ 4087 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx); 4088 4089 /* 4090 * Add back any deferred free space that has not been 4091 * added back into the in-core free tree yet. This will 4092 * ensure that we don't end up with a space map histogram 4093 * that is completely empty unless the metaslab is fully 4094 * allocated. 4095 */ 4096 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4097 space_map_histogram_add(msp->ms_sm, 4098 msp->ms_defer[t], tx); 4099 } 4100 } 4101 4102 /* 4103 * Always add the free space from this sync pass to the space 4104 * map histogram. We want to make sure that the on-disk histogram 4105 * accounts for all free space. If the space map is not loaded, 4106 * then we will lose some accuracy but will correct it the next 4107 * time we load the space map. 4108 */ 4109 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx); 4110 metaslab_aux_histograms_update(msp); 4111 4112 metaslab_group_histogram_add(mg, msp); 4113 metaslab_group_histogram_verify(mg); 4114 metaslab_class_histogram_verify(mg->mg_class); 4115 4116 /* 4117 * For sync pass 1, we avoid traversing this txg's free range tree 4118 * and instead will just swap the pointers for freeing and freed. 4119 * We can safely do this since the freed_tree is guaranteed to be 4120 * empty on the initial pass. 4121 * 4122 * Keep in mind that even if we are currently using a log spacemap 4123 * we want current frees to end up in the ms_allocatable (but not 4124 * get appended to the ms_sm) so their ranges can be reused as usual. 4125 */ 4126 if (spa_sync_pass(spa) == 1) { 4127 range_tree_swap(&msp->ms_freeing, &msp->ms_freed); 4128 ASSERT0(msp->ms_allocated_this_txg); 4129 } else { 4130 range_tree_vacate(msp->ms_freeing, 4131 range_tree_add, msp->ms_freed); 4132 } 4133 msp->ms_allocated_this_txg += range_tree_space(alloctree); 4134 range_tree_vacate(alloctree, NULL, NULL); 4135 4136 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4137 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg) 4138 & TXG_MASK])); 4139 ASSERT0(range_tree_space(msp->ms_freeing)); 4140 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4141 4142 mutex_exit(&msp->ms_lock); 4143 4144 /* 4145 * Verify that the space map object ID has been recorded in the 4146 * vdev_ms_array. 4147 */ 4148 uint64_t object; 4149 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 4150 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0)); 4151 VERIFY3U(object, ==, space_map_object(msp->ms_sm)); 4152 4153 mutex_exit(&msp->ms_sync_lock); 4154 dmu_tx_commit(tx); 4155 } 4156 4157 static void 4158 metaslab_evict(metaslab_t *msp, uint64_t txg) 4159 { 4160 if (!msp->ms_loaded || msp->ms_disabled != 0) 4161 return; 4162 4163 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) { 4164 VERIFY0(range_tree_space( 4165 msp->ms_allocating[(txg + t) & TXG_MASK])); 4166 } 4167 if (msp->ms_allocator != -1) 4168 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK); 4169 4170 if (!metaslab_debug_unload) 4171 metaslab_unload(msp); 4172 } 4173 4174 /* 4175 * Called after a transaction group has completely synced to mark 4176 * all of the metaslab's free space as usable. 4177 */ 4178 void 4179 metaslab_sync_done(metaslab_t *msp, uint64_t txg) 4180 { 4181 metaslab_group_t *mg = msp->ms_group; 4182 vdev_t *vd = mg->mg_vd; 4183 spa_t *spa = vd->vdev_spa; 4184 range_tree_t **defer_tree; 4185 int64_t alloc_delta, defer_delta; 4186 boolean_t defer_allowed = B_TRUE; 4187 4188 ASSERT(!vd->vdev_ishole); 4189 4190 mutex_enter(&msp->ms_lock); 4191 4192 /* 4193 * If this metaslab is just becoming available, initialize its 4194 * range trees and add its capacity to the vdev. 4195 */ 4196 if (msp->ms_freed == NULL) { 4197 range_seg_type_t type; 4198 uint64_t shift, start; 4199 type = metaslab_calculate_range_tree_type(vd, msp, &start, 4200 &shift); 4201 4202 for (int t = 0; t < TXG_SIZE; t++) { 4203 ASSERT(msp->ms_allocating[t] == NULL); 4204 4205 msp->ms_allocating[t] = range_tree_create(NULL, type, 4206 NULL, start, shift); 4207 } 4208 4209 ASSERT3P(msp->ms_freeing, ==, NULL); 4210 msp->ms_freeing = range_tree_create(NULL, type, NULL, start, 4211 shift); 4212 4213 ASSERT3P(msp->ms_freed, ==, NULL); 4214 msp->ms_freed = range_tree_create(NULL, type, NULL, start, 4215 shift); 4216 4217 for (int t = 0; t < TXG_DEFER_SIZE; t++) { 4218 ASSERT3P(msp->ms_defer[t], ==, NULL); 4219 msp->ms_defer[t] = range_tree_create(NULL, type, NULL, 4220 start, shift); 4221 } 4222 4223 ASSERT3P(msp->ms_checkpointing, ==, NULL); 4224 msp->ms_checkpointing = range_tree_create(NULL, type, NULL, 4225 start, shift); 4226 4227 ASSERT3P(msp->ms_unflushed_allocs, ==, NULL); 4228 msp->ms_unflushed_allocs = range_tree_create(NULL, type, NULL, 4229 start, shift); 4230 4231 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP); 4232 mrap->mra_bt = &msp->ms_unflushed_frees_by_size; 4233 mrap->mra_floor_shift = metaslab_by_size_min_shift; 4234 ASSERT3P(msp->ms_unflushed_frees, ==, NULL); 4235 msp->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops, 4236 type, mrap, start, shift); 4237 4238 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size); 4239 } 4240 ASSERT0(range_tree_space(msp->ms_freeing)); 4241 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4242 4243 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE]; 4244 4245 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) - 4246 metaslab_class_get_alloc(spa_normal_class(spa)); 4247 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) { 4248 defer_allowed = B_FALSE; 4249 } 4250 4251 defer_delta = 0; 4252 alloc_delta = msp->ms_allocated_this_txg - 4253 range_tree_space(msp->ms_freed); 4254 4255 if (defer_allowed) { 4256 defer_delta = range_tree_space(msp->ms_freed) - 4257 range_tree_space(*defer_tree); 4258 } else { 4259 defer_delta -= range_tree_space(*defer_tree); 4260 } 4261 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta, 4262 defer_delta, 0); 4263 4264 if (spa_syncing_log_sm(spa) == NULL) { 4265 /* 4266 * If there's a metaslab_load() in progress and we don't have 4267 * a log space map, it means that we probably wrote to the 4268 * metaslab's space map. If this is the case, we need to 4269 * make sure that we wait for the load to complete so that we 4270 * have a consistent view at the in-core side of the metaslab. 4271 */ 4272 metaslab_load_wait(msp); 4273 } else { 4274 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 4275 } 4276 4277 /* 4278 * When auto-trimming is enabled, free ranges which are added to 4279 * ms_allocatable are also be added to ms_trim. The ms_trim tree is 4280 * periodically consumed by the vdev_autotrim_thread() which issues 4281 * trims for all ranges and then vacates the tree. The ms_trim tree 4282 * can be discarded at any time with the sole consequence of recent 4283 * frees not being trimmed. 4284 */ 4285 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) { 4286 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim); 4287 if (!defer_allowed) { 4288 range_tree_walk(msp->ms_freed, range_tree_add, 4289 msp->ms_trim); 4290 } 4291 } else { 4292 range_tree_vacate(msp->ms_trim, NULL, NULL); 4293 } 4294 4295 /* 4296 * Move the frees from the defer_tree back to the free 4297 * range tree (if it's loaded). Swap the freed_tree and 4298 * the defer_tree -- this is safe to do because we've 4299 * just emptied out the defer_tree. 4300 */ 4301 range_tree_vacate(*defer_tree, 4302 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable); 4303 if (defer_allowed) { 4304 range_tree_swap(&msp->ms_freed, defer_tree); 4305 } else { 4306 range_tree_vacate(msp->ms_freed, 4307 msp->ms_loaded ? range_tree_add : NULL, 4308 msp->ms_allocatable); 4309 } 4310 4311 msp->ms_synced_length = space_map_length(msp->ms_sm); 4312 4313 msp->ms_deferspace += defer_delta; 4314 ASSERT3S(msp->ms_deferspace, >=, 0); 4315 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size); 4316 if (msp->ms_deferspace != 0) { 4317 /* 4318 * Keep syncing this metaslab until all deferred frees 4319 * are back in circulation. 4320 */ 4321 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1); 4322 } 4323 metaslab_aux_histograms_update_done(msp, defer_allowed); 4324 4325 if (msp->ms_new) { 4326 msp->ms_new = B_FALSE; 4327 mutex_enter(&mg->mg_lock); 4328 mg->mg_ms_ready++; 4329 mutex_exit(&mg->mg_lock); 4330 } 4331 4332 /* 4333 * Re-sort metaslab within its group now that we've adjusted 4334 * its allocatable space. 4335 */ 4336 metaslab_recalculate_weight_and_sort(msp); 4337 4338 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK])); 4339 ASSERT0(range_tree_space(msp->ms_freeing)); 4340 ASSERT0(range_tree_space(msp->ms_freed)); 4341 ASSERT0(range_tree_space(msp->ms_checkpointing)); 4342 msp->ms_allocating_total -= msp->ms_allocated_this_txg; 4343 msp->ms_allocated_this_txg = 0; 4344 mutex_exit(&msp->ms_lock); 4345 } 4346 4347 void 4348 metaslab_sync_reassess(metaslab_group_t *mg) 4349 { 4350 spa_t *spa = mg->mg_class->mc_spa; 4351 4352 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 4353 metaslab_group_alloc_update(mg); 4354 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 4355 4356 /* 4357 * Preload the next potential metaslabs but only on active 4358 * metaslab groups. We can get into a state where the metaslab 4359 * is no longer active since we dirty metaslabs as we remove a 4360 * a device, thus potentially making the metaslab group eligible 4361 * for preloading. 4362 */ 4363 if (mg->mg_activation_count > 0) { 4364 metaslab_group_preload(mg); 4365 } 4366 spa_config_exit(spa, SCL_ALLOC, FTAG); 4367 } 4368 4369 /* 4370 * When writing a ditto block (i.e. more than one DVA for a given BP) on 4371 * the same vdev as an existing DVA of this BP, then try to allocate it 4372 * on a different metaslab than existing DVAs (i.e. a unique metaslab). 4373 */ 4374 static boolean_t 4375 metaslab_is_unique(metaslab_t *msp, dva_t *dva) 4376 { 4377 uint64_t dva_ms_id; 4378 4379 if (DVA_GET_ASIZE(dva) == 0) 4380 return (B_TRUE); 4381 4382 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva)) 4383 return (B_TRUE); 4384 4385 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift; 4386 4387 return (msp->ms_id != dva_ms_id); 4388 } 4389 4390 /* 4391 * ========================================================================== 4392 * Metaslab allocation tracing facility 4393 * ========================================================================== 4394 */ 4395 #ifdef _METASLAB_TRACING 4396 4397 /* 4398 * Add an allocation trace element to the allocation tracing list. 4399 */ 4400 static void 4401 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg, 4402 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset, 4403 int allocator) 4404 { 4405 metaslab_alloc_trace_t *mat; 4406 4407 if (!metaslab_trace_enabled) 4408 return; 4409 4410 /* 4411 * When the tracing list reaches its maximum we remove 4412 * the second element in the list before adding a new one. 4413 * By removing the second element we preserve the original 4414 * entry as a clue to what allocations steps have already been 4415 * performed. 4416 */ 4417 if (zal->zal_size == metaslab_trace_max_entries) { 4418 metaslab_alloc_trace_t *mat_next; 4419 #ifdef ZFS_DEBUG 4420 panic("too many entries in allocation list"); 4421 #endif 4422 METASLABSTAT_BUMP(metaslabstat_trace_over_limit); 4423 zal->zal_size--; 4424 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list)); 4425 list_remove(&zal->zal_list, mat_next); 4426 kmem_cache_free(metaslab_alloc_trace_cache, mat_next); 4427 } 4428 4429 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP); 4430 list_link_init(&mat->mat_list_node); 4431 mat->mat_mg = mg; 4432 mat->mat_msp = msp; 4433 mat->mat_size = psize; 4434 mat->mat_dva_id = dva_id; 4435 mat->mat_offset = offset; 4436 mat->mat_weight = 0; 4437 mat->mat_allocator = allocator; 4438 4439 if (msp != NULL) 4440 mat->mat_weight = msp->ms_weight; 4441 4442 /* 4443 * The list is part of the zio so locking is not required. Only 4444 * a single thread will perform allocations for a given zio. 4445 */ 4446 list_insert_tail(&zal->zal_list, mat); 4447 zal->zal_size++; 4448 4449 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries); 4450 } 4451 4452 void 4453 metaslab_trace_init(zio_alloc_list_t *zal) 4454 { 4455 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t), 4456 offsetof(metaslab_alloc_trace_t, mat_list_node)); 4457 zal->zal_size = 0; 4458 } 4459 4460 void 4461 metaslab_trace_fini(zio_alloc_list_t *zal) 4462 { 4463 metaslab_alloc_trace_t *mat; 4464 4465 while ((mat = list_remove_head(&zal->zal_list)) != NULL) 4466 kmem_cache_free(metaslab_alloc_trace_cache, mat); 4467 list_destroy(&zal->zal_list); 4468 zal->zal_size = 0; 4469 } 4470 #else 4471 4472 #define metaslab_trace_add(zal, mg, msp, psize, id, off, alloc) 4473 4474 void 4475 metaslab_trace_init(zio_alloc_list_t *zal) 4476 { 4477 } 4478 4479 void 4480 metaslab_trace_fini(zio_alloc_list_t *zal) 4481 { 4482 } 4483 4484 #endif /* _METASLAB_TRACING */ 4485 4486 /* 4487 * ========================================================================== 4488 * Metaslab block operations 4489 * ========================================================================== 4490 */ 4491 4492 static void 4493 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags, 4494 int allocator) 4495 { 4496 if (!(flags & METASLAB_ASYNC_ALLOC) || 4497 (flags & METASLAB_DONT_THROTTLE)) 4498 return; 4499 4500 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4501 if (!mg->mg_class->mc_alloc_throttle_enabled) 4502 return; 4503 4504 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4505 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag); 4506 } 4507 4508 static void 4509 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator) 4510 { 4511 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4512 uint64_t max = mg->mg_max_alloc_queue_depth; 4513 uint64_t cur = mga->mga_cur_max_alloc_queue_depth; 4514 while (cur < max) { 4515 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth, 4516 cur, cur + 1) == cur) { 4517 atomic_inc_64( 4518 &mg->mg_class->mc_alloc_max_slots[allocator]); 4519 return; 4520 } 4521 cur = mga->mga_cur_max_alloc_queue_depth; 4522 } 4523 } 4524 4525 void 4526 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags, 4527 int allocator, boolean_t io_complete) 4528 { 4529 if (!(flags & METASLAB_ASYNC_ALLOC) || 4530 (flags & METASLAB_DONT_THROTTLE)) 4531 return; 4532 4533 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4534 if (!mg->mg_class->mc_alloc_throttle_enabled) 4535 return; 4536 4537 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4538 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag); 4539 if (io_complete) 4540 metaslab_group_increment_qdepth(mg, allocator); 4541 } 4542 4543 void 4544 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag, 4545 int allocator) 4546 { 4547 #ifdef ZFS_DEBUG 4548 const dva_t *dva = bp->blk_dva; 4549 int ndvas = BP_GET_NDVAS(bp); 4550 4551 for (int d = 0; d < ndvas; d++) { 4552 uint64_t vdev = DVA_GET_VDEV(&dva[d]); 4553 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg; 4554 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4555 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag)); 4556 } 4557 #endif 4558 } 4559 4560 static uint64_t 4561 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg) 4562 { 4563 uint64_t start; 4564 range_tree_t *rt = msp->ms_allocatable; 4565 metaslab_class_t *mc = msp->ms_group->mg_class; 4566 4567 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4568 VERIFY(!msp->ms_condensing); 4569 VERIFY0(msp->ms_disabled); 4570 4571 start = mc->mc_ops->msop_alloc(msp, size); 4572 if (start != -1ULL) { 4573 metaslab_group_t *mg = msp->ms_group; 4574 vdev_t *vd = mg->mg_vd; 4575 4576 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift)); 4577 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 4578 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size); 4579 range_tree_remove(rt, start, size); 4580 range_tree_clear(msp->ms_trim, start, size); 4581 4582 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 4583 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg); 4584 4585 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size); 4586 msp->ms_allocating_total += size; 4587 4588 /* Track the last successful allocation */ 4589 msp->ms_alloc_txg = txg; 4590 metaslab_verify_space(msp, txg); 4591 } 4592 4593 /* 4594 * Now that we've attempted the allocation we need to update the 4595 * metaslab's maximum block size since it may have changed. 4596 */ 4597 msp->ms_max_size = metaslab_largest_allocatable(msp); 4598 return (start); 4599 } 4600 4601 /* 4602 * Find the metaslab with the highest weight that is less than what we've 4603 * already tried. In the common case, this means that we will examine each 4604 * metaslab at most once. Note that concurrent callers could reorder metaslabs 4605 * by activation/passivation once we have dropped the mg_lock. If a metaslab is 4606 * activated by another thread, and we fail to allocate from the metaslab we 4607 * have selected, we may not try the newly-activated metaslab, and instead 4608 * activate another metaslab. This is not optimal, but generally does not cause 4609 * any problems (a possible exception being if every metaslab is completely full 4610 * except for the newly-activated metaslab which we fail to examine). 4611 */ 4612 static metaslab_t * 4613 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight, 4614 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator, 4615 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search, 4616 boolean_t *was_active) 4617 { 4618 avl_index_t idx; 4619 avl_tree_t *t = &mg->mg_metaslab_tree; 4620 metaslab_t *msp = avl_find(t, search, &idx); 4621 if (msp == NULL) 4622 msp = avl_nearest(t, idx, AVL_AFTER); 4623 4624 for (; msp != NULL; msp = AVL_NEXT(t, msp)) { 4625 int i; 4626 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4627 metaslab_trace_add(zal, mg, msp, asize, d, 4628 TRACE_TOO_SMALL, allocator); 4629 continue; 4630 } 4631 4632 /* 4633 * If the selected metaslab is condensing or disabled, 4634 * skip it. 4635 */ 4636 if (msp->ms_condensing || msp->ms_disabled > 0) 4637 continue; 4638 4639 *was_active = msp->ms_allocator != -1; 4640 /* 4641 * If we're activating as primary, this is our first allocation 4642 * from this disk, so we don't need to check how close we are. 4643 * If the metaslab under consideration was already active, 4644 * we're getting desperate enough to steal another allocator's 4645 * metaslab, so we still don't care about distances. 4646 */ 4647 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active) 4648 break; 4649 4650 for (i = 0; i < d; i++) { 4651 if (want_unique && 4652 !metaslab_is_unique(msp, &dva[i])) 4653 break; /* try another metaslab */ 4654 } 4655 if (i == d) 4656 break; 4657 } 4658 4659 if (msp != NULL) { 4660 search->ms_weight = msp->ms_weight; 4661 search->ms_start = msp->ms_start + 1; 4662 search->ms_allocator = msp->ms_allocator; 4663 search->ms_primary = msp->ms_primary; 4664 } 4665 return (msp); 4666 } 4667 4668 static void 4669 metaslab_active_mask_verify(metaslab_t *msp) 4670 { 4671 ASSERT(MUTEX_HELD(&msp->ms_lock)); 4672 4673 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0) 4674 return; 4675 4676 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) 4677 return; 4678 4679 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) { 4680 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4681 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4682 VERIFY3S(msp->ms_allocator, !=, -1); 4683 VERIFY(msp->ms_primary); 4684 return; 4685 } 4686 4687 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) { 4688 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4689 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM); 4690 VERIFY3S(msp->ms_allocator, !=, -1); 4691 VERIFY(!msp->ms_primary); 4692 return; 4693 } 4694 4695 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) { 4696 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY); 4697 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY); 4698 VERIFY3S(msp->ms_allocator, ==, -1); 4699 return; 4700 } 4701 } 4702 4703 /* ARGSUSED */ 4704 static uint64_t 4705 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal, 4706 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 4707 int allocator, boolean_t try_hard) 4708 { 4709 metaslab_t *msp = NULL; 4710 uint64_t offset = -1ULL; 4711 4712 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY; 4713 for (int i = 0; i < d; i++) { 4714 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4715 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4716 activation_weight = METASLAB_WEIGHT_SECONDARY; 4717 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4718 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) { 4719 activation_weight = METASLAB_WEIGHT_CLAIM; 4720 break; 4721 } 4722 } 4723 4724 /* 4725 * If we don't have enough metaslabs active to fill the entire array, we 4726 * just use the 0th slot. 4727 */ 4728 if (mg->mg_ms_ready < mg->mg_allocators * 3) 4729 allocator = 0; 4730 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator]; 4731 4732 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2); 4733 4734 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP); 4735 search->ms_weight = UINT64_MAX; 4736 search->ms_start = 0; 4737 /* 4738 * At the end of the metaslab tree are the already-active metaslabs, 4739 * first the primaries, then the secondaries. When we resume searching 4740 * through the tree, we need to consider ms_allocator and ms_primary so 4741 * we start in the location right after where we left off, and don't 4742 * accidentally loop forever considering the same metaslabs. 4743 */ 4744 search->ms_allocator = -1; 4745 search->ms_primary = B_TRUE; 4746 for (;;) { 4747 boolean_t was_active = B_FALSE; 4748 4749 mutex_enter(&mg->mg_lock); 4750 4751 if (activation_weight == METASLAB_WEIGHT_PRIMARY && 4752 mga->mga_primary != NULL) { 4753 msp = mga->mga_primary; 4754 4755 /* 4756 * Even though we don't hold the ms_lock for the 4757 * primary metaslab, those fields should not 4758 * change while we hold the mg_lock. Thus it is 4759 * safe to make assertions on them. 4760 */ 4761 ASSERT(msp->ms_primary); 4762 ASSERT3S(msp->ms_allocator, ==, allocator); 4763 ASSERT(msp->ms_loaded); 4764 4765 was_active = B_TRUE; 4766 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4767 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY && 4768 mga->mga_secondary != NULL) { 4769 msp = mga->mga_secondary; 4770 4771 /* 4772 * See comment above about the similar assertions 4773 * for the primary metaslab. 4774 */ 4775 ASSERT(!msp->ms_primary); 4776 ASSERT3S(msp->ms_allocator, ==, allocator); 4777 ASSERT(msp->ms_loaded); 4778 4779 was_active = B_TRUE; 4780 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 4781 } else { 4782 msp = find_valid_metaslab(mg, activation_weight, dva, d, 4783 want_unique, asize, allocator, try_hard, zal, 4784 search, &was_active); 4785 } 4786 4787 mutex_exit(&mg->mg_lock); 4788 if (msp == NULL) { 4789 kmem_free(search, sizeof (*search)); 4790 return (-1ULL); 4791 } 4792 mutex_enter(&msp->ms_lock); 4793 4794 metaslab_active_mask_verify(msp); 4795 4796 /* 4797 * This code is disabled out because of issues with 4798 * tracepoints in non-gpl kernel modules. 4799 */ 4800 #if 0 4801 DTRACE_PROBE3(ms__activation__attempt, 4802 metaslab_t *, msp, uint64_t, activation_weight, 4803 boolean_t, was_active); 4804 #endif 4805 4806 /* 4807 * Ensure that the metaslab we have selected is still 4808 * capable of handling our request. It's possible that 4809 * another thread may have changed the weight while we 4810 * were blocked on the metaslab lock. We check the 4811 * active status first to see if we need to set_selected_txg 4812 * a new metaslab. 4813 */ 4814 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) { 4815 ASSERT3S(msp->ms_allocator, ==, -1); 4816 mutex_exit(&msp->ms_lock); 4817 continue; 4818 } 4819 4820 /* 4821 * If the metaslab was activated for another allocator 4822 * while we were waiting in the ms_lock above, or it's 4823 * a primary and we're seeking a secondary (or vice versa), 4824 * we go back and select a new metaslab. 4825 */ 4826 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) && 4827 (msp->ms_allocator != -1) && 4828 (msp->ms_allocator != allocator || ((activation_weight == 4829 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) { 4830 ASSERT(msp->ms_loaded); 4831 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) || 4832 msp->ms_allocator != -1); 4833 mutex_exit(&msp->ms_lock); 4834 continue; 4835 } 4836 4837 /* 4838 * This metaslab was used for claiming regions allocated 4839 * by the ZIL during pool import. Once these regions are 4840 * claimed we don't need to keep the CLAIM bit set 4841 * anymore. Passivate this metaslab to zero its activation 4842 * mask. 4843 */ 4844 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM && 4845 activation_weight != METASLAB_WEIGHT_CLAIM) { 4846 ASSERT(msp->ms_loaded); 4847 ASSERT3S(msp->ms_allocator, ==, -1); 4848 metaslab_passivate(msp, msp->ms_weight & 4849 ~METASLAB_WEIGHT_CLAIM); 4850 mutex_exit(&msp->ms_lock); 4851 continue; 4852 } 4853 4854 metaslab_set_selected_txg(msp, txg); 4855 4856 int activation_error = 4857 metaslab_activate(msp, allocator, activation_weight); 4858 metaslab_active_mask_verify(msp); 4859 4860 /* 4861 * If the metaslab was activated by another thread for 4862 * another allocator or activation_weight (EBUSY), or it 4863 * failed because another metaslab was assigned as primary 4864 * for this allocator (EEXIST) we continue using this 4865 * metaslab for our allocation, rather than going on to a 4866 * worse metaslab (we waited for that metaslab to be loaded 4867 * after all). 4868 * 4869 * If the activation failed due to an I/O error or ENOSPC we 4870 * skip to the next metaslab. 4871 */ 4872 boolean_t activated; 4873 if (activation_error == 0) { 4874 activated = B_TRUE; 4875 } else if (activation_error == EBUSY || 4876 activation_error == EEXIST) { 4877 activated = B_FALSE; 4878 } else { 4879 mutex_exit(&msp->ms_lock); 4880 continue; 4881 } 4882 ASSERT(msp->ms_loaded); 4883 4884 /* 4885 * Now that we have the lock, recheck to see if we should 4886 * continue to use this metaslab for this allocation. The 4887 * the metaslab is now loaded so metaslab_should_allocate() 4888 * can accurately determine if the allocation attempt should 4889 * proceed. 4890 */ 4891 if (!metaslab_should_allocate(msp, asize, try_hard)) { 4892 /* Passivate this metaslab and select a new one. */ 4893 metaslab_trace_add(zal, mg, msp, asize, d, 4894 TRACE_TOO_SMALL, allocator); 4895 goto next; 4896 } 4897 4898 /* 4899 * If this metaslab is currently condensing then pick again 4900 * as we can't manipulate this metaslab until it's committed 4901 * to disk. If this metaslab is being initialized, we shouldn't 4902 * allocate from it since the allocated region might be 4903 * overwritten after allocation. 4904 */ 4905 if (msp->ms_condensing) { 4906 metaslab_trace_add(zal, mg, msp, asize, d, 4907 TRACE_CONDENSING, allocator); 4908 if (activated) { 4909 metaslab_passivate(msp, msp->ms_weight & 4910 ~METASLAB_ACTIVE_MASK); 4911 } 4912 mutex_exit(&msp->ms_lock); 4913 continue; 4914 } else if (msp->ms_disabled > 0) { 4915 metaslab_trace_add(zal, mg, msp, asize, d, 4916 TRACE_DISABLED, allocator); 4917 if (activated) { 4918 metaslab_passivate(msp, msp->ms_weight & 4919 ~METASLAB_ACTIVE_MASK); 4920 } 4921 mutex_exit(&msp->ms_lock); 4922 continue; 4923 } 4924 4925 offset = metaslab_block_alloc(msp, asize, txg); 4926 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator); 4927 4928 if (offset != -1ULL) { 4929 /* Proactively passivate the metaslab, if needed */ 4930 if (activated) 4931 metaslab_segment_may_passivate(msp); 4932 break; 4933 } 4934 next: 4935 ASSERT(msp->ms_loaded); 4936 4937 /* 4938 * This code is disabled out because of issues with 4939 * tracepoints in non-gpl kernel modules. 4940 */ 4941 #if 0 4942 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp, 4943 uint64_t, asize); 4944 #endif 4945 4946 /* 4947 * We were unable to allocate from this metaslab so determine 4948 * a new weight for this metaslab. Now that we have loaded 4949 * the metaslab we can provide a better hint to the metaslab 4950 * selector. 4951 * 4952 * For space-based metaslabs, we use the maximum block size. 4953 * This information is only available when the metaslab 4954 * is loaded and is more accurate than the generic free 4955 * space weight that was calculated by metaslab_weight(). 4956 * This information allows us to quickly compare the maximum 4957 * available allocation in the metaslab to the allocation 4958 * size being requested. 4959 * 4960 * For segment-based metaslabs, determine the new weight 4961 * based on the highest bucket in the range tree. We 4962 * explicitly use the loaded segment weight (i.e. the range 4963 * tree histogram) since it contains the space that is 4964 * currently available for allocation and is accurate 4965 * even within a sync pass. 4966 */ 4967 uint64_t weight; 4968 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) { 4969 weight = metaslab_largest_allocatable(msp); 4970 WEIGHT_SET_SPACEBASED(weight); 4971 } else { 4972 weight = metaslab_weight_from_range_tree(msp); 4973 } 4974 4975 if (activated) { 4976 metaslab_passivate(msp, weight); 4977 } else { 4978 /* 4979 * For the case where we use the metaslab that is 4980 * active for another allocator we want to make 4981 * sure that we retain the activation mask. 4982 * 4983 * Note that we could attempt to use something like 4984 * metaslab_recalculate_weight_and_sort() that 4985 * retains the activation mask here. That function 4986 * uses metaslab_weight() to set the weight though 4987 * which is not as accurate as the calculations 4988 * above. 4989 */ 4990 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK; 4991 metaslab_group_sort(mg, msp, weight); 4992 } 4993 metaslab_active_mask_verify(msp); 4994 4995 /* 4996 * We have just failed an allocation attempt, check 4997 * that metaslab_should_allocate() agrees. Otherwise, 4998 * we may end up in an infinite loop retrying the same 4999 * metaslab. 5000 */ 5001 ASSERT(!metaslab_should_allocate(msp, asize, try_hard)); 5002 5003 mutex_exit(&msp->ms_lock); 5004 } 5005 mutex_exit(&msp->ms_lock); 5006 kmem_free(search, sizeof (*search)); 5007 return (offset); 5008 } 5009 5010 static uint64_t 5011 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal, 5012 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d, 5013 int allocator, boolean_t try_hard) 5014 { 5015 uint64_t offset; 5016 ASSERT(mg->mg_initialized); 5017 5018 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique, 5019 dva, d, allocator, try_hard); 5020 5021 mutex_enter(&mg->mg_lock); 5022 if (offset == -1ULL) { 5023 mg->mg_failed_allocations++; 5024 metaslab_trace_add(zal, mg, NULL, asize, d, 5025 TRACE_GROUP_FAILURE, allocator); 5026 if (asize == SPA_GANGBLOCKSIZE) { 5027 /* 5028 * This metaslab group was unable to allocate 5029 * the minimum gang block size so it must be out of 5030 * space. We must notify the allocation throttle 5031 * to start skipping allocation attempts to this 5032 * metaslab group until more space becomes available. 5033 * Note: this failure cannot be caused by the 5034 * allocation throttle since the allocation throttle 5035 * is only responsible for skipping devices and 5036 * not failing block allocations. 5037 */ 5038 mg->mg_no_free_space = B_TRUE; 5039 } 5040 } 5041 mg->mg_allocations++; 5042 mutex_exit(&mg->mg_lock); 5043 return (offset); 5044 } 5045 5046 /* 5047 * Allocate a block for the specified i/o. 5048 */ 5049 int 5050 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize, 5051 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags, 5052 zio_alloc_list_t *zal, int allocator) 5053 { 5054 metaslab_group_t *mg, *fast_mg, *rotor; 5055 vdev_t *vd; 5056 boolean_t try_hard = B_FALSE; 5057 5058 ASSERT(!DVA_IS_VALID(&dva[d])); 5059 5060 /* 5061 * For testing, make some blocks above a certain size be gang blocks. 5062 * This will result in more split blocks when using device removal, 5063 * and a large number of split blocks coupled with ztest-induced 5064 * damage can result in extremely long reconstruction times. This 5065 * will also test spilling from special to normal. 5066 */ 5067 if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) { 5068 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG, 5069 allocator); 5070 return (SET_ERROR(ENOSPC)); 5071 } 5072 5073 /* 5074 * Start at the rotor and loop through all mgs until we find something. 5075 * Note that there's no locking on mc_rotor or mc_aliquot because 5076 * nothing actually breaks if we miss a few updates -- we just won't 5077 * allocate quite as evenly. It all balances out over time. 5078 * 5079 * If we are doing ditto or log blocks, try to spread them across 5080 * consecutive vdevs. If we're forced to reuse a vdev before we've 5081 * allocated all of our ditto blocks, then try and spread them out on 5082 * that vdev as much as possible. If it turns out to not be possible, 5083 * gradually lower our standards until anything becomes acceptable. 5084 * Also, allocating on consecutive vdevs (as opposed to random vdevs) 5085 * gives us hope of containing our fault domains to something we're 5086 * able to reason about. Otherwise, any two top-level vdev failures 5087 * will guarantee the loss of data. With consecutive allocation, 5088 * only two adjacent top-level vdev failures will result in data loss. 5089 * 5090 * If we are doing gang blocks (hintdva is non-NULL), try to keep 5091 * ourselves on the same vdev as our gang block header. That 5092 * way, we can hope for locality in vdev_cache, plus it makes our 5093 * fault domains something tractable. 5094 */ 5095 if (hintdva) { 5096 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d])); 5097 5098 /* 5099 * It's possible the vdev we're using as the hint no 5100 * longer exists or its mg has been closed (e.g. by 5101 * device removal). Consult the rotor when 5102 * all else fails. 5103 */ 5104 if (vd != NULL && vd->vdev_mg != NULL) { 5105 mg = vd->vdev_mg; 5106 5107 if (flags & METASLAB_HINTBP_AVOID && 5108 mg->mg_next != NULL) 5109 mg = mg->mg_next; 5110 } else { 5111 mg = mc->mc_rotor; 5112 } 5113 } else if (d != 0) { 5114 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1])); 5115 mg = vd->vdev_mg->mg_next; 5116 } else if (flags & METASLAB_FASTWRITE) { 5117 mg = fast_mg = mc->mc_rotor; 5118 5119 do { 5120 if (fast_mg->mg_vd->vdev_pending_fastwrite < 5121 mg->mg_vd->vdev_pending_fastwrite) 5122 mg = fast_mg; 5123 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor); 5124 5125 } else { 5126 ASSERT(mc->mc_rotor != NULL); 5127 mg = mc->mc_rotor; 5128 } 5129 5130 /* 5131 * If the hint put us into the wrong metaslab class, or into a 5132 * metaslab group that has been passivated, just follow the rotor. 5133 */ 5134 if (mg->mg_class != mc || mg->mg_activation_count <= 0) 5135 mg = mc->mc_rotor; 5136 5137 rotor = mg; 5138 top: 5139 do { 5140 boolean_t allocatable; 5141 5142 ASSERT(mg->mg_activation_count == 1); 5143 vd = mg->mg_vd; 5144 5145 /* 5146 * Don't allocate from faulted devices. 5147 */ 5148 if (try_hard) { 5149 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER); 5150 allocatable = vdev_allocatable(vd); 5151 spa_config_exit(spa, SCL_ZIO, FTAG); 5152 } else { 5153 allocatable = vdev_allocatable(vd); 5154 } 5155 5156 /* 5157 * Determine if the selected metaslab group is eligible 5158 * for allocations. If we're ganging then don't allow 5159 * this metaslab group to skip allocations since that would 5160 * inadvertently return ENOSPC and suspend the pool 5161 * even though space is still available. 5162 */ 5163 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) { 5164 allocatable = metaslab_group_allocatable(mg, rotor, 5165 psize, allocator, d); 5166 } 5167 5168 if (!allocatable) { 5169 metaslab_trace_add(zal, mg, NULL, psize, d, 5170 TRACE_NOT_ALLOCATABLE, allocator); 5171 goto next; 5172 } 5173 5174 ASSERT(mg->mg_initialized); 5175 5176 /* 5177 * Avoid writing single-copy data to a failing, 5178 * non-redundant vdev, unless we've already tried all 5179 * other vdevs. 5180 */ 5181 if ((vd->vdev_stat.vs_write_errors > 0 || 5182 vd->vdev_state < VDEV_STATE_HEALTHY) && 5183 d == 0 && !try_hard && vd->vdev_children == 0) { 5184 metaslab_trace_add(zal, mg, NULL, psize, d, 5185 TRACE_VDEV_ERROR, allocator); 5186 goto next; 5187 } 5188 5189 ASSERT(mg->mg_class == mc); 5190 5191 uint64_t asize = vdev_psize_to_asize(vd, psize); 5192 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0); 5193 5194 /* 5195 * If we don't need to try hard, then require that the 5196 * block be on a different metaslab from any other DVAs 5197 * in this BP (unique=true). If we are trying hard, then 5198 * allow any metaslab to be used (unique=false). 5199 */ 5200 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg, 5201 !try_hard, dva, d, allocator, try_hard); 5202 5203 if (offset != -1ULL) { 5204 /* 5205 * If we've just selected this metaslab group, 5206 * figure out whether the corresponding vdev is 5207 * over- or under-used relative to the pool, 5208 * and set an allocation bias to even it out. 5209 * 5210 * Bias is also used to compensate for unequally 5211 * sized vdevs so that space is allocated fairly. 5212 */ 5213 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) { 5214 vdev_stat_t *vs = &vd->vdev_stat; 5215 int64_t vs_free = vs->vs_space - vs->vs_alloc; 5216 int64_t mc_free = mc->mc_space - mc->mc_alloc; 5217 int64_t ratio; 5218 5219 /* 5220 * Calculate how much more or less we should 5221 * try to allocate from this device during 5222 * this iteration around the rotor. 5223 * 5224 * This basically introduces a zero-centered 5225 * bias towards the devices with the most 5226 * free space, while compensating for vdev 5227 * size differences. 5228 * 5229 * Examples: 5230 * vdev V1 = 16M/128M 5231 * vdev V2 = 16M/128M 5232 * ratio(V1) = 100% ratio(V2) = 100% 5233 * 5234 * vdev V1 = 16M/128M 5235 * vdev V2 = 64M/128M 5236 * ratio(V1) = 127% ratio(V2) = 72% 5237 * 5238 * vdev V1 = 16M/128M 5239 * vdev V2 = 64M/512M 5240 * ratio(V1) = 40% ratio(V2) = 160% 5241 */ 5242 ratio = (vs_free * mc->mc_alloc_groups * 100) / 5243 (mc_free + 1); 5244 mg->mg_bias = ((ratio - 100) * 5245 (int64_t)mg->mg_aliquot) / 100; 5246 } else if (!metaslab_bias_enabled) { 5247 mg->mg_bias = 0; 5248 } 5249 5250 if ((flags & METASLAB_FASTWRITE) || 5251 atomic_add_64_nv(&mc->mc_aliquot, asize) >= 5252 mg->mg_aliquot + mg->mg_bias) { 5253 mc->mc_rotor = mg->mg_next; 5254 mc->mc_aliquot = 0; 5255 } 5256 5257 DVA_SET_VDEV(&dva[d], vd->vdev_id); 5258 DVA_SET_OFFSET(&dva[d], offset); 5259 DVA_SET_GANG(&dva[d], 5260 ((flags & METASLAB_GANG_HEADER) ? 1 : 0)); 5261 DVA_SET_ASIZE(&dva[d], asize); 5262 5263 if (flags & METASLAB_FASTWRITE) { 5264 atomic_add_64(&vd->vdev_pending_fastwrite, 5265 psize); 5266 } 5267 5268 return (0); 5269 } 5270 next: 5271 mc->mc_rotor = mg->mg_next; 5272 mc->mc_aliquot = 0; 5273 } while ((mg = mg->mg_next) != rotor); 5274 5275 /* 5276 * If we haven't tried hard, do so now. 5277 */ 5278 if (!try_hard) { 5279 try_hard = B_TRUE; 5280 goto top; 5281 } 5282 5283 bzero(&dva[d], sizeof (dva_t)); 5284 5285 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator); 5286 return (SET_ERROR(ENOSPC)); 5287 } 5288 5289 void 5290 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize, 5291 boolean_t checkpoint) 5292 { 5293 metaslab_t *msp; 5294 spa_t *spa = vd->vdev_spa; 5295 5296 ASSERT(vdev_is_concrete(vd)); 5297 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5298 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5299 5300 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5301 5302 VERIFY(!msp->ms_condensing); 5303 VERIFY3U(offset, >=, msp->ms_start); 5304 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size); 5305 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5306 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift)); 5307 5308 metaslab_check_free_impl(vd, offset, asize); 5309 5310 mutex_enter(&msp->ms_lock); 5311 if (range_tree_is_empty(msp->ms_freeing) && 5312 range_tree_is_empty(msp->ms_checkpointing)) { 5313 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa)); 5314 } 5315 5316 if (checkpoint) { 5317 ASSERT(spa_has_checkpoint(spa)); 5318 range_tree_add(msp->ms_checkpointing, offset, asize); 5319 } else { 5320 range_tree_add(msp->ms_freeing, offset, asize); 5321 } 5322 mutex_exit(&msp->ms_lock); 5323 } 5324 5325 /* ARGSUSED */ 5326 void 5327 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5328 uint64_t size, void *arg) 5329 { 5330 boolean_t *checkpoint = arg; 5331 5332 ASSERT3P(checkpoint, !=, NULL); 5333 5334 if (vd->vdev_ops->vdev_op_remap != NULL) 5335 vdev_indirect_mark_obsolete(vd, offset, size); 5336 else 5337 metaslab_free_impl(vd, offset, size, *checkpoint); 5338 } 5339 5340 static void 5341 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size, 5342 boolean_t checkpoint) 5343 { 5344 spa_t *spa = vd->vdev_spa; 5345 5346 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5347 5348 if (spa_syncing_txg(spa) > spa_freeze_txg(spa)) 5349 return; 5350 5351 if (spa->spa_vdev_removal != NULL && 5352 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id && 5353 vdev_is_concrete(vd)) { 5354 /* 5355 * Note: we check if the vdev is concrete because when 5356 * we complete the removal, we first change the vdev to be 5357 * an indirect vdev (in open context), and then (in syncing 5358 * context) clear spa_vdev_removal. 5359 */ 5360 free_from_removing_vdev(vd, offset, size); 5361 } else if (vd->vdev_ops->vdev_op_remap != NULL) { 5362 vdev_indirect_mark_obsolete(vd, offset, size); 5363 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5364 metaslab_free_impl_cb, &checkpoint); 5365 } else { 5366 metaslab_free_concrete(vd, offset, size, checkpoint); 5367 } 5368 } 5369 5370 typedef struct remap_blkptr_cb_arg { 5371 blkptr_t *rbca_bp; 5372 spa_remap_cb_t rbca_cb; 5373 vdev_t *rbca_remap_vd; 5374 uint64_t rbca_remap_offset; 5375 void *rbca_cb_arg; 5376 } remap_blkptr_cb_arg_t; 5377 5378 static void 5379 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5380 uint64_t size, void *arg) 5381 { 5382 remap_blkptr_cb_arg_t *rbca = arg; 5383 blkptr_t *bp = rbca->rbca_bp; 5384 5385 /* We can not remap split blocks. */ 5386 if (size != DVA_GET_ASIZE(&bp->blk_dva[0])) 5387 return; 5388 ASSERT0(inner_offset); 5389 5390 if (rbca->rbca_cb != NULL) { 5391 /* 5392 * At this point we know that we are not handling split 5393 * blocks and we invoke the callback on the previous 5394 * vdev which must be indirect. 5395 */ 5396 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops); 5397 5398 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id, 5399 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg); 5400 5401 /* set up remap_blkptr_cb_arg for the next call */ 5402 rbca->rbca_remap_vd = vd; 5403 rbca->rbca_remap_offset = offset; 5404 } 5405 5406 /* 5407 * The phys birth time is that of dva[0]. This ensures that we know 5408 * when each dva was written, so that resilver can determine which 5409 * blocks need to be scrubbed (i.e. those written during the time 5410 * the vdev was offline). It also ensures that the key used in 5411 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If 5412 * we didn't change the phys_birth, a lookup in the ARC for a 5413 * remapped BP could find the data that was previously stored at 5414 * this vdev + offset. 5415 */ 5416 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa, 5417 DVA_GET_VDEV(&bp->blk_dva[0])); 5418 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births; 5419 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib, 5420 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0])); 5421 5422 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id); 5423 DVA_SET_OFFSET(&bp->blk_dva[0], offset); 5424 } 5425 5426 /* 5427 * If the block pointer contains any indirect DVAs, modify them to refer to 5428 * concrete DVAs. Note that this will sometimes not be possible, leaving 5429 * the indirect DVA in place. This happens if the indirect DVA spans multiple 5430 * segments in the mapping (i.e. it is a "split block"). 5431 * 5432 * If the BP was remapped, calls the callback on the original dva (note the 5433 * callback can be called multiple times if the original indirect DVA refers 5434 * to another indirect DVA, etc). 5435 * 5436 * Returns TRUE if the BP was remapped. 5437 */ 5438 boolean_t 5439 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg) 5440 { 5441 remap_blkptr_cb_arg_t rbca; 5442 5443 if (!zfs_remap_blkptr_enable) 5444 return (B_FALSE); 5445 5446 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) 5447 return (B_FALSE); 5448 5449 /* 5450 * Dedup BP's can not be remapped, because ddt_phys_select() depends 5451 * on DVA[0] being the same in the BP as in the DDT (dedup table). 5452 */ 5453 if (BP_GET_DEDUP(bp)) 5454 return (B_FALSE); 5455 5456 /* 5457 * Gang blocks can not be remapped, because 5458 * zio_checksum_gang_verifier() depends on the DVA[0] that's in 5459 * the BP used to read the gang block header (GBH) being the same 5460 * as the DVA[0] that we allocated for the GBH. 5461 */ 5462 if (BP_IS_GANG(bp)) 5463 return (B_FALSE); 5464 5465 /* 5466 * Embedded BP's have no DVA to remap. 5467 */ 5468 if (BP_GET_NDVAS(bp) < 1) 5469 return (B_FALSE); 5470 5471 /* 5472 * Note: we only remap dva[0]. If we remapped other dvas, we 5473 * would no longer know what their phys birth txg is. 5474 */ 5475 dva_t *dva = &bp->blk_dva[0]; 5476 5477 uint64_t offset = DVA_GET_OFFSET(dva); 5478 uint64_t size = DVA_GET_ASIZE(dva); 5479 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 5480 5481 if (vd->vdev_ops->vdev_op_remap == NULL) 5482 return (B_FALSE); 5483 5484 rbca.rbca_bp = bp; 5485 rbca.rbca_cb = callback; 5486 rbca.rbca_remap_vd = vd; 5487 rbca.rbca_remap_offset = offset; 5488 rbca.rbca_cb_arg = arg; 5489 5490 /* 5491 * remap_blkptr_cb() will be called in order for each level of 5492 * indirection, until a concrete vdev is reached or a split block is 5493 * encountered. old_vd and old_offset are updated within the callback 5494 * as we go from the one indirect vdev to the next one (either concrete 5495 * or indirect again) in that order. 5496 */ 5497 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca); 5498 5499 /* Check if the DVA wasn't remapped because it is a split block */ 5500 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id) 5501 return (B_FALSE); 5502 5503 return (B_TRUE); 5504 } 5505 5506 /* 5507 * Undo the allocation of a DVA which happened in the given transaction group. 5508 */ 5509 void 5510 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5511 { 5512 metaslab_t *msp; 5513 vdev_t *vd; 5514 uint64_t vdev = DVA_GET_VDEV(dva); 5515 uint64_t offset = DVA_GET_OFFSET(dva); 5516 uint64_t size = DVA_GET_ASIZE(dva); 5517 5518 ASSERT(DVA_IS_VALID(dva)); 5519 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5520 5521 if (txg > spa_freeze_txg(spa)) 5522 return; 5523 5524 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) || 5525 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) { 5526 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu", 5527 (u_longlong_t)vdev, (u_longlong_t)offset, 5528 (u_longlong_t)size); 5529 return; 5530 } 5531 5532 ASSERT(!vd->vdev_removing); 5533 ASSERT(vdev_is_concrete(vd)); 5534 ASSERT0(vd->vdev_indirect_config.vic_mapping_object); 5535 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL); 5536 5537 if (DVA_GET_GANG(dva)) 5538 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 5539 5540 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5541 5542 mutex_enter(&msp->ms_lock); 5543 range_tree_remove(msp->ms_allocating[txg & TXG_MASK], 5544 offset, size); 5545 msp->ms_allocating_total -= size; 5546 5547 VERIFY(!msp->ms_condensing); 5548 VERIFY3U(offset, >=, msp->ms_start); 5549 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size); 5550 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=, 5551 msp->ms_size); 5552 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5553 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5554 range_tree_add(msp->ms_allocatable, offset, size); 5555 mutex_exit(&msp->ms_lock); 5556 } 5557 5558 /* 5559 * Free the block represented by the given DVA. 5560 */ 5561 void 5562 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint) 5563 { 5564 uint64_t vdev = DVA_GET_VDEV(dva); 5565 uint64_t offset = DVA_GET_OFFSET(dva); 5566 uint64_t size = DVA_GET_ASIZE(dva); 5567 vdev_t *vd = vdev_lookup_top(spa, vdev); 5568 5569 ASSERT(DVA_IS_VALID(dva)); 5570 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5571 5572 if (DVA_GET_GANG(dva)) { 5573 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 5574 } 5575 5576 metaslab_free_impl(vd, offset, size, checkpoint); 5577 } 5578 5579 /* 5580 * Reserve some allocation slots. The reservation system must be called 5581 * before we call into the allocator. If there aren't any available slots 5582 * then the I/O will be throttled until an I/O completes and its slots are 5583 * freed up. The function returns true if it was successful in placing 5584 * the reservation. 5585 */ 5586 boolean_t 5587 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator, 5588 zio_t *zio, int flags) 5589 { 5590 uint64_t available_slots = 0; 5591 boolean_t slot_reserved = B_FALSE; 5592 uint64_t max = mc->mc_alloc_max_slots[allocator]; 5593 5594 ASSERT(mc->mc_alloc_throttle_enabled); 5595 mutex_enter(&mc->mc_lock); 5596 5597 uint64_t reserved_slots = 5598 zfs_refcount_count(&mc->mc_alloc_slots[allocator]); 5599 if (reserved_slots < max) 5600 available_slots = max - reserved_slots; 5601 5602 if (slots <= available_slots || GANG_ALLOCATION(flags) || 5603 flags & METASLAB_MUST_RESERVE) { 5604 /* 5605 * We reserve the slots individually so that we can unreserve 5606 * them individually when an I/O completes. 5607 */ 5608 for (int d = 0; d < slots; d++) { 5609 reserved_slots = 5610 zfs_refcount_add(&mc->mc_alloc_slots[allocator], 5611 zio); 5612 } 5613 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING; 5614 slot_reserved = B_TRUE; 5615 } 5616 5617 mutex_exit(&mc->mc_lock); 5618 return (slot_reserved); 5619 } 5620 5621 void 5622 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, 5623 int allocator, zio_t *zio) 5624 { 5625 ASSERT(mc->mc_alloc_throttle_enabled); 5626 mutex_enter(&mc->mc_lock); 5627 for (int d = 0; d < slots; d++) { 5628 (void) zfs_refcount_remove(&mc->mc_alloc_slots[allocator], 5629 zio); 5630 } 5631 mutex_exit(&mc->mc_lock); 5632 } 5633 5634 static int 5635 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size, 5636 uint64_t txg) 5637 { 5638 metaslab_t *msp; 5639 spa_t *spa = vd->vdev_spa; 5640 int error = 0; 5641 5642 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count) 5643 return (SET_ERROR(ENXIO)); 5644 5645 ASSERT3P(vd->vdev_ms, !=, NULL); 5646 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5647 5648 mutex_enter(&msp->ms_lock); 5649 5650 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) { 5651 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM); 5652 if (error == EBUSY) { 5653 ASSERT(msp->ms_loaded); 5654 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK); 5655 error = 0; 5656 } 5657 } 5658 5659 if (error == 0 && 5660 !range_tree_contains(msp->ms_allocatable, offset, size)) 5661 error = SET_ERROR(ENOENT); 5662 5663 if (error || txg == 0) { /* txg == 0 indicates dry run */ 5664 mutex_exit(&msp->ms_lock); 5665 return (error); 5666 } 5667 5668 VERIFY(!msp->ms_condensing); 5669 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift)); 5670 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift)); 5671 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=, 5672 msp->ms_size); 5673 range_tree_remove(msp->ms_allocatable, offset, size); 5674 range_tree_clear(msp->ms_trim, offset, size); 5675 5676 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */ 5677 metaslab_class_t *mc = msp->ms_group->mg_class; 5678 multilist_sublist_t *mls = 5679 multilist_sublist_lock_obj(mc->mc_metaslab_txg_list, msp); 5680 if (!multilist_link_active(&msp->ms_class_txg_node)) { 5681 msp->ms_selected_txg = txg; 5682 multilist_sublist_insert_head(mls, msp); 5683 } 5684 multilist_sublist_unlock(mls); 5685 5686 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK])) 5687 vdev_dirty(vd, VDD_METASLAB, msp, txg); 5688 range_tree_add(msp->ms_allocating[txg & TXG_MASK], 5689 offset, size); 5690 msp->ms_allocating_total += size; 5691 } 5692 5693 mutex_exit(&msp->ms_lock); 5694 5695 return (0); 5696 } 5697 5698 typedef struct metaslab_claim_cb_arg_t { 5699 uint64_t mcca_txg; 5700 int mcca_error; 5701 } metaslab_claim_cb_arg_t; 5702 5703 /* ARGSUSED */ 5704 static void 5705 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5706 uint64_t size, void *arg) 5707 { 5708 metaslab_claim_cb_arg_t *mcca_arg = arg; 5709 5710 if (mcca_arg->mcca_error == 0) { 5711 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset, 5712 size, mcca_arg->mcca_txg); 5713 } 5714 } 5715 5716 int 5717 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg) 5718 { 5719 if (vd->vdev_ops->vdev_op_remap != NULL) { 5720 metaslab_claim_cb_arg_t arg; 5721 5722 /* 5723 * Only zdb(1M) can claim on indirect vdevs. This is used 5724 * to detect leaks of mapped space (that are not accounted 5725 * for in the obsolete counts, spacemap, or bpobj). 5726 */ 5727 ASSERT(!spa_writeable(vd->vdev_spa)); 5728 arg.mcca_error = 0; 5729 arg.mcca_txg = txg; 5730 5731 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5732 metaslab_claim_impl_cb, &arg); 5733 5734 if (arg.mcca_error == 0) { 5735 arg.mcca_error = metaslab_claim_concrete(vd, 5736 offset, size, txg); 5737 } 5738 return (arg.mcca_error); 5739 } else { 5740 return (metaslab_claim_concrete(vd, offset, size, txg)); 5741 } 5742 } 5743 5744 /* 5745 * Intent log support: upon opening the pool after a crash, notify the SPA 5746 * of blocks that the intent log has allocated for immediate write, but 5747 * which are still considered free by the SPA because the last transaction 5748 * group didn't commit yet. 5749 */ 5750 static int 5751 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg) 5752 { 5753 uint64_t vdev = DVA_GET_VDEV(dva); 5754 uint64_t offset = DVA_GET_OFFSET(dva); 5755 uint64_t size = DVA_GET_ASIZE(dva); 5756 vdev_t *vd; 5757 5758 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) { 5759 return (SET_ERROR(ENXIO)); 5760 } 5761 5762 ASSERT(DVA_IS_VALID(dva)); 5763 5764 if (DVA_GET_GANG(dva)) 5765 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 5766 5767 return (metaslab_claim_impl(vd, offset, size, txg)); 5768 } 5769 5770 int 5771 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp, 5772 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, 5773 zio_alloc_list_t *zal, zio_t *zio, int allocator) 5774 { 5775 dva_t *dva = bp->blk_dva; 5776 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL; 5777 int error = 0; 5778 5779 ASSERT(bp->blk_birth == 0); 5780 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0); 5781 5782 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5783 5784 if (mc->mc_rotor == NULL) { /* no vdevs in this class */ 5785 spa_config_exit(spa, SCL_ALLOC, FTAG); 5786 return (SET_ERROR(ENOSPC)); 5787 } 5788 5789 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa)); 5790 ASSERT(BP_GET_NDVAS(bp) == 0); 5791 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp)); 5792 ASSERT3P(zal, !=, NULL); 5793 5794 for (int d = 0; d < ndvas; d++) { 5795 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva, 5796 txg, flags, zal, allocator); 5797 if (error != 0) { 5798 for (d--; d >= 0; d--) { 5799 metaslab_unalloc_dva(spa, &dva[d], txg); 5800 metaslab_group_alloc_decrement(spa, 5801 DVA_GET_VDEV(&dva[d]), zio, flags, 5802 allocator, B_FALSE); 5803 bzero(&dva[d], sizeof (dva_t)); 5804 } 5805 spa_config_exit(spa, SCL_ALLOC, FTAG); 5806 return (error); 5807 } else { 5808 /* 5809 * Update the metaslab group's queue depth 5810 * based on the newly allocated dva. 5811 */ 5812 metaslab_group_alloc_increment(spa, 5813 DVA_GET_VDEV(&dva[d]), zio, flags, allocator); 5814 } 5815 5816 } 5817 ASSERT(error == 0); 5818 ASSERT(BP_GET_NDVAS(bp) == ndvas); 5819 5820 spa_config_exit(spa, SCL_ALLOC, FTAG); 5821 5822 BP_SET_BIRTH(bp, txg, 0); 5823 5824 return (0); 5825 } 5826 5827 void 5828 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now) 5829 { 5830 const dva_t *dva = bp->blk_dva; 5831 int ndvas = BP_GET_NDVAS(bp); 5832 5833 ASSERT(!BP_IS_HOLE(bp)); 5834 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa)); 5835 5836 /* 5837 * If we have a checkpoint for the pool we need to make sure that 5838 * the blocks that we free that are part of the checkpoint won't be 5839 * reused until the checkpoint is discarded or we revert to it. 5840 * 5841 * The checkpoint flag is passed down the metaslab_free code path 5842 * and is set whenever we want to add a block to the checkpoint's 5843 * accounting. That is, we "checkpoint" blocks that existed at the 5844 * time the checkpoint was created and are therefore referenced by 5845 * the checkpointed uberblock. 5846 * 5847 * Note that, we don't checkpoint any blocks if the current 5848 * syncing txg <= spa_checkpoint_txg. We want these frees to sync 5849 * normally as they will be referenced by the checkpointed uberblock. 5850 */ 5851 boolean_t checkpoint = B_FALSE; 5852 if (bp->blk_birth <= spa->spa_checkpoint_txg && 5853 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) { 5854 /* 5855 * At this point, if the block is part of the checkpoint 5856 * there is no way it was created in the current txg. 5857 */ 5858 ASSERT(!now); 5859 ASSERT3U(spa_syncing_txg(spa), ==, txg); 5860 checkpoint = B_TRUE; 5861 } 5862 5863 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER); 5864 5865 for (int d = 0; d < ndvas; d++) { 5866 if (now) { 5867 metaslab_unalloc_dva(spa, &dva[d], txg); 5868 } else { 5869 ASSERT3U(txg, ==, spa_syncing_txg(spa)); 5870 metaslab_free_dva(spa, &dva[d], checkpoint); 5871 } 5872 } 5873 5874 spa_config_exit(spa, SCL_FREE, FTAG); 5875 } 5876 5877 int 5878 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg) 5879 { 5880 const dva_t *dva = bp->blk_dva; 5881 int ndvas = BP_GET_NDVAS(bp); 5882 int error = 0; 5883 5884 ASSERT(!BP_IS_HOLE(bp)); 5885 5886 if (txg != 0) { 5887 /* 5888 * First do a dry run to make sure all DVAs are claimable, 5889 * so we don't have to unwind from partial failures below. 5890 */ 5891 if ((error = metaslab_claim(spa, bp, 0)) != 0) 5892 return (error); 5893 } 5894 5895 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER); 5896 5897 for (int d = 0; d < ndvas; d++) { 5898 error = metaslab_claim_dva(spa, &dva[d], txg); 5899 if (error != 0) 5900 break; 5901 } 5902 5903 spa_config_exit(spa, SCL_ALLOC, FTAG); 5904 5905 ASSERT(error == 0 || txg == 0); 5906 5907 return (error); 5908 } 5909 5910 void 5911 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp) 5912 { 5913 const dva_t *dva = bp->blk_dva; 5914 int ndvas = BP_GET_NDVAS(bp); 5915 uint64_t psize = BP_GET_PSIZE(bp); 5916 int d; 5917 vdev_t *vd; 5918 5919 ASSERT(!BP_IS_HOLE(bp)); 5920 ASSERT(!BP_IS_EMBEDDED(bp)); 5921 ASSERT(psize > 0); 5922 5923 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5924 5925 for (d = 0; d < ndvas; d++) { 5926 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5927 continue; 5928 atomic_add_64(&vd->vdev_pending_fastwrite, psize); 5929 } 5930 5931 spa_config_exit(spa, SCL_VDEV, FTAG); 5932 } 5933 5934 void 5935 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp) 5936 { 5937 const dva_t *dva = bp->blk_dva; 5938 int ndvas = BP_GET_NDVAS(bp); 5939 uint64_t psize = BP_GET_PSIZE(bp); 5940 int d; 5941 vdev_t *vd; 5942 5943 ASSERT(!BP_IS_HOLE(bp)); 5944 ASSERT(!BP_IS_EMBEDDED(bp)); 5945 ASSERT(psize > 0); 5946 5947 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5948 5949 for (d = 0; d < ndvas; d++) { 5950 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL) 5951 continue; 5952 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize); 5953 atomic_sub_64(&vd->vdev_pending_fastwrite, psize); 5954 } 5955 5956 spa_config_exit(spa, SCL_VDEV, FTAG); 5957 } 5958 5959 /* ARGSUSED */ 5960 static void 5961 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset, 5962 uint64_t size, void *arg) 5963 { 5964 if (vd->vdev_ops == &vdev_indirect_ops) 5965 return; 5966 5967 metaslab_check_free_impl(vd, offset, size); 5968 } 5969 5970 static void 5971 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size) 5972 { 5973 metaslab_t *msp; 5974 spa_t *spa __maybe_unused = vd->vdev_spa; 5975 5976 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 5977 return; 5978 5979 if (vd->vdev_ops->vdev_op_remap != NULL) { 5980 vd->vdev_ops->vdev_op_remap(vd, offset, size, 5981 metaslab_check_free_impl_cb, NULL); 5982 return; 5983 } 5984 5985 ASSERT(vdev_is_concrete(vd)); 5986 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count); 5987 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0); 5988 5989 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5990 5991 mutex_enter(&msp->ms_lock); 5992 if (msp->ms_loaded) { 5993 range_tree_verify_not_present(msp->ms_allocatable, 5994 offset, size); 5995 } 5996 5997 /* 5998 * Check all segments that currently exist in the freeing pipeline. 5999 * 6000 * It would intuitively make sense to also check the current allocating 6001 * tree since metaslab_unalloc_dva() exists for extents that are 6002 * allocated and freed in the same sync pass within the same txg. 6003 * Unfortunately there are places (e.g. the ZIL) where we allocate a 6004 * segment but then we free part of it within the same txg 6005 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the 6006 * current allocating tree. 6007 */ 6008 range_tree_verify_not_present(msp->ms_freeing, offset, size); 6009 range_tree_verify_not_present(msp->ms_checkpointing, offset, size); 6010 range_tree_verify_not_present(msp->ms_freed, offset, size); 6011 for (int j = 0; j < TXG_DEFER_SIZE; j++) 6012 range_tree_verify_not_present(msp->ms_defer[j], offset, size); 6013 range_tree_verify_not_present(msp->ms_trim, offset, size); 6014 mutex_exit(&msp->ms_lock); 6015 } 6016 6017 void 6018 metaslab_check_free(spa_t *spa, const blkptr_t *bp) 6019 { 6020 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0) 6021 return; 6022 6023 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6024 for (int i = 0; i < BP_GET_NDVAS(bp); i++) { 6025 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]); 6026 vdev_t *vd = vdev_lookup_top(spa, vdev); 6027 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]); 6028 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]); 6029 6030 if (DVA_GET_GANG(&bp->blk_dva[i])) 6031 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE); 6032 6033 ASSERT3P(vd, !=, NULL); 6034 6035 metaslab_check_free_impl(vd, offset, size); 6036 } 6037 spa_config_exit(spa, SCL_VDEV, FTAG); 6038 } 6039 6040 static void 6041 metaslab_group_disable_wait(metaslab_group_t *mg) 6042 { 6043 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6044 while (mg->mg_disabled_updating) { 6045 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6046 } 6047 } 6048 6049 static void 6050 metaslab_group_disabled_increment(metaslab_group_t *mg) 6051 { 6052 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock)); 6053 ASSERT(mg->mg_disabled_updating); 6054 6055 while (mg->mg_ms_disabled >= max_disabled_ms) { 6056 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock); 6057 } 6058 mg->mg_ms_disabled++; 6059 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms); 6060 } 6061 6062 /* 6063 * Mark the metaslab as disabled to prevent any allocations on this metaslab. 6064 * We must also track how many metaslabs are currently disabled within a 6065 * metaslab group and limit them to prevent allocation failures from 6066 * occurring because all metaslabs are disabled. 6067 */ 6068 void 6069 metaslab_disable(metaslab_t *msp) 6070 { 6071 ASSERT(!MUTEX_HELD(&msp->ms_lock)); 6072 metaslab_group_t *mg = msp->ms_group; 6073 6074 mutex_enter(&mg->mg_ms_disabled_lock); 6075 6076 /* 6077 * To keep an accurate count of how many threads have disabled 6078 * a specific metaslab group, we only allow one thread to mark 6079 * the metaslab group at a time. This ensures that the value of 6080 * ms_disabled will be accurate when we decide to mark a metaslab 6081 * group as disabled. To do this we force all other threads 6082 * to wait till the metaslab's mg_disabled_updating flag is no 6083 * longer set. 6084 */ 6085 metaslab_group_disable_wait(mg); 6086 mg->mg_disabled_updating = B_TRUE; 6087 if (msp->ms_disabled == 0) { 6088 metaslab_group_disabled_increment(mg); 6089 } 6090 mutex_enter(&msp->ms_lock); 6091 msp->ms_disabled++; 6092 mutex_exit(&msp->ms_lock); 6093 6094 mg->mg_disabled_updating = B_FALSE; 6095 cv_broadcast(&mg->mg_ms_disabled_cv); 6096 mutex_exit(&mg->mg_ms_disabled_lock); 6097 } 6098 6099 void 6100 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload) 6101 { 6102 metaslab_group_t *mg = msp->ms_group; 6103 spa_t *spa = mg->mg_vd->vdev_spa; 6104 6105 /* 6106 * Wait for the outstanding IO to be synced to prevent newly 6107 * allocated blocks from being overwritten. This used by 6108 * initialize and TRIM which are modifying unallocated space. 6109 */ 6110 if (sync) 6111 txg_wait_synced(spa_get_dsl(spa), 0); 6112 6113 mutex_enter(&mg->mg_ms_disabled_lock); 6114 mutex_enter(&msp->ms_lock); 6115 if (--msp->ms_disabled == 0) { 6116 mg->mg_ms_disabled--; 6117 cv_broadcast(&mg->mg_ms_disabled_cv); 6118 if (unload) 6119 metaslab_unload(msp); 6120 } 6121 mutex_exit(&msp->ms_lock); 6122 mutex_exit(&mg->mg_ms_disabled_lock); 6123 } 6124 6125 static void 6126 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx) 6127 { 6128 vdev_t *vd = ms->ms_group->mg_vd; 6129 spa_t *spa = vd->vdev_spa; 6130 objset_t *mos = spa_meta_objset(spa); 6131 6132 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)); 6133 6134 metaslab_unflushed_phys_t entry = { 6135 .msp_unflushed_txg = metaslab_unflushed_txg(ms), 6136 }; 6137 uint64_t entry_size = sizeof (entry); 6138 uint64_t entry_offset = ms->ms_id * entry_size; 6139 6140 uint64_t object = 0; 6141 int err = zap_lookup(mos, vd->vdev_top_zap, 6142 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6143 &object); 6144 if (err == ENOENT) { 6145 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA, 6146 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx); 6147 VERIFY0(zap_add(mos, vd->vdev_top_zap, 6148 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, 6149 &object, tx)); 6150 } else { 6151 VERIFY0(err); 6152 } 6153 6154 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size, 6155 &entry, tx); 6156 } 6157 6158 void 6159 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx) 6160 { 6161 spa_t *spa = ms->ms_group->mg_vd->vdev_spa; 6162 6163 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 6164 return; 6165 6166 ms->ms_unflushed_txg = txg; 6167 metaslab_update_ondisk_flush_data(ms, tx); 6168 } 6169 6170 uint64_t 6171 metaslab_unflushed_txg(metaslab_t *ms) 6172 { 6173 return (ms->ms_unflushed_txg); 6174 } 6175 6176 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, ULONG, ZMOD_RW, 6177 "Allocation granularity (a.k.a. stripe size)"); 6178 6179 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW, 6180 "Load all metaslabs when pool is first opened"); 6181 6182 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW, 6183 "Prevent metaslabs from being unloaded"); 6184 6185 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW, 6186 "Preload potential metaslabs during reassessment"); 6187 6188 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, INT, ZMOD_RW, 6189 "Delay in txgs after metaslab was last used before unloading"); 6190 6191 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, INT, ZMOD_RW, 6192 "Delay in milliseconds after metaslab was last used before unloading"); 6193 6194 /* BEGIN CSTYLED */ 6195 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, INT, ZMOD_RW, 6196 "Percentage of metaslab group size that should be free to make it " 6197 "eligible for allocation"); 6198 6199 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, INT, ZMOD_RW, 6200 "Percentage of metaslab group size that should be considered eligible " 6201 "for allocations unless all metaslab groups within the metaslab class " 6202 "have also crossed this threshold"); 6203 6204 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, INT, 6205 ZMOD_RW, "Fragmentation for metaslab to allow allocation"); 6206 6207 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT, ZMOD_RW, 6208 "Use the fragmentation metric to prefer less fragmented metaslabs"); 6209 /* END CSTYLED */ 6210 6211 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW, 6212 "Prefer metaslabs with lower LBAs"); 6213 6214 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW, 6215 "Enable metaslab group biasing"); 6216 6217 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT, 6218 ZMOD_RW, "Enable segment-based metaslab selection"); 6219 6220 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW, 6221 "Segment-based metaslab selection maximum buckets before switching"); 6222 6223 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, ULONG, ZMOD_RW, 6224 "Blocks larger than this size are forced to be gang blocks"); 6225 6226 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, INT, ZMOD_RW, 6227 "Max distance (bytes) to search forward before using size tree"); 6228 6229 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW, 6230 "When looking in size tree, use largest segment instead of exact fit"); 6231 6232 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, ULONG, 6233 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab"); 6234 6235 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, INT, ZMOD_RW, 6236 "Percentage of memory that can be used to store metaslab range trees"); 6237