1eda14cbcSMatt Macy /* 2eda14cbcSMatt Macy * CDDL HEADER START 3eda14cbcSMatt Macy * 4eda14cbcSMatt Macy * This file and its contents are supplied under the terms of the 5eda14cbcSMatt Macy * Common Development and Distribution License ("CDDL"), version 1.0. 6eda14cbcSMatt Macy * You may only use this file in accordance with the terms of version 7eda14cbcSMatt Macy * 1.0 of the CDDL. 8eda14cbcSMatt Macy * 9eda14cbcSMatt Macy * A full copy of the text of the CDDL should have accompanied this 10eda14cbcSMatt Macy * source. A copy of the CDDL is also available via the Internet at 11eda14cbcSMatt Macy * http://www.illumos.org/license/CDDL. 12eda14cbcSMatt Macy * 13eda14cbcSMatt Macy * CDDL HEADER END 14eda14cbcSMatt Macy */ 15eda14cbcSMatt Macy /* 16eda14cbcSMatt Macy * Copyright (c) 2019 by Delphix. All rights reserved. 17eda14cbcSMatt Macy */ 18eda14cbcSMatt Macy 19eda14cbcSMatt Macy #include <sys/btree.h> 20eda14cbcSMatt Macy #include <sys/bitops.h> 21eda14cbcSMatt Macy #include <sys/zfs_context.h> 22eda14cbcSMatt Macy 23eda14cbcSMatt Macy kmem_cache_t *zfs_btree_leaf_cache; 24eda14cbcSMatt Macy 25eda14cbcSMatt Macy /* 26eda14cbcSMatt Macy * Control the extent of the verification that occurs when zfs_btree_verify is 27eda14cbcSMatt Macy * called. Primarily used for debugging when extending the btree logic and 28eda14cbcSMatt Macy * functionality. As the intensity is increased, new verification steps are 29eda14cbcSMatt Macy * added. These steps are cumulative; intensity = 3 includes the intensity = 1 30eda14cbcSMatt Macy * and intensity = 2 steps as well. 31eda14cbcSMatt Macy * 32eda14cbcSMatt Macy * Intensity 1: Verify that the tree's height is consistent throughout. 33eda14cbcSMatt Macy * Intensity 2: Verify that a core node's children's parent pointers point 34eda14cbcSMatt Macy * to the core node. 35eda14cbcSMatt Macy * Intensity 3: Verify that the total number of elements in the tree matches the 36eda14cbcSMatt Macy * sum of the number of elements in each node. Also verifies that each node's 37eda14cbcSMatt Macy * count obeys the invariants (less than or equal to maximum value, greater than 38eda14cbcSMatt Macy * or equal to half the maximum minus one). 39eda14cbcSMatt Macy * Intensity 4: Verify that each element compares less than the element 40eda14cbcSMatt Macy * immediately after it and greater than the one immediately before it using the 41eda14cbcSMatt Macy * comparator function. For core nodes, also checks that each element is greater 42eda14cbcSMatt Macy * than the last element in the first of the two nodes it separates, and less 43eda14cbcSMatt Macy * than the first element in the second of the two nodes. 44eda14cbcSMatt Macy * Intensity 5: Verifies, if ZFS_DEBUG is defined, that all unused memory inside 45eda14cbcSMatt Macy * of each node is poisoned appropriately. Note that poisoning always occurs if 46eda14cbcSMatt Macy * ZFS_DEBUG is set, so it is safe to set the intensity to 5 during normal 47eda14cbcSMatt Macy * operation. 48eda14cbcSMatt Macy * 49eda14cbcSMatt Macy * Intensity 4 and 5 are particularly expensive to perform; the previous levels 50eda14cbcSMatt Macy * are a few memory operations per node, while these levels require multiple 51eda14cbcSMatt Macy * operations per element. In addition, when creating large btrees, these 52eda14cbcSMatt Macy * operations are called at every step, resulting in extremely slow operation 53eda14cbcSMatt Macy * (while the asymptotic complexity of the other steps is the same, the 54eda14cbcSMatt Macy * importance of the constant factors cannot be denied). 55eda14cbcSMatt Macy */ 56c7046f76SMartin Matuska uint_t zfs_btree_verify_intensity = 0; 57eda14cbcSMatt Macy 58eda14cbcSMatt Macy /* 59a0b956f5SMartin Matuska * Convenience functions to silence warnings from memcpy/memmove's 60a0b956f5SMartin Matuska * return values and change argument order to src, dest. 61eda14cbcSMatt Macy */ 62eda14cbcSMatt Macy static void 63a0b956f5SMartin Matuska bcpy(const void *src, void *dest, size_t size) 64a0b956f5SMartin Matuska { 65a0b956f5SMartin Matuska (void) memcpy(dest, src, size); 66a0b956f5SMartin Matuska } 67a0b956f5SMartin Matuska 68a0b956f5SMartin Matuska static void 69eda14cbcSMatt Macy bmov(const void *src, void *dest, size_t size) 70eda14cbcSMatt Macy { 71eda14cbcSMatt Macy (void) memmove(dest, src, size); 72eda14cbcSMatt Macy } 73eda14cbcSMatt Macy 74a0b956f5SMartin Matuska static boolean_t 75a0b956f5SMartin Matuska zfs_btree_is_core(struct zfs_btree_hdr *hdr) 76a0b956f5SMartin Matuska { 77a0b956f5SMartin Matuska return (hdr->bth_first == -1); 78a0b956f5SMartin Matuska } 79a0b956f5SMartin Matuska 80eda14cbcSMatt Macy #ifdef _ILP32 81eda14cbcSMatt Macy #define BTREE_POISON 0xabadb10c 82eda14cbcSMatt Macy #else 83eda14cbcSMatt Macy #define BTREE_POISON 0xabadb10cdeadbeef 84eda14cbcSMatt Macy #endif 85eda14cbcSMatt Macy 86eda14cbcSMatt Macy static void 87eda14cbcSMatt Macy zfs_btree_poison_node(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 88eda14cbcSMatt Macy { 89eda14cbcSMatt Macy #ifdef ZFS_DEBUG 90eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 91a0b956f5SMartin Matuska if (zfs_btree_is_core(hdr)) { 92eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 93a0b956f5SMartin Matuska for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; 94a0b956f5SMartin Matuska i++) { 95eda14cbcSMatt Macy node->btc_children[i] = 96eda14cbcSMatt Macy (zfs_btree_hdr_t *)BTREE_POISON; 97eda14cbcSMatt Macy } 98eda14cbcSMatt Macy (void) memset(node->btc_elems + hdr->bth_count * size, 0x0f, 99eda14cbcSMatt Macy (BTREE_CORE_ELEMS - hdr->bth_count) * size); 100a0b956f5SMartin Matuska } else { 101a0b956f5SMartin Matuska zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; 102a0b956f5SMartin Matuska (void) memset(leaf->btl_elems, 0x0f, hdr->bth_first * size); 103a0b956f5SMartin Matuska (void) memset(leaf->btl_elems + 104a0b956f5SMartin Matuska (hdr->bth_first + hdr->bth_count) * size, 0x0f, 105dbd5678dSMartin Matuska tree->bt_leaf_size - offsetof(zfs_btree_leaf_t, btl_elems) - 106a0b956f5SMartin Matuska (hdr->bth_first + hdr->bth_count) * size); 107eda14cbcSMatt Macy } 108eda14cbcSMatt Macy #endif 109eda14cbcSMatt Macy } 110eda14cbcSMatt Macy 111eda14cbcSMatt Macy static inline void 112eda14cbcSMatt Macy zfs_btree_poison_node_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, 113a0b956f5SMartin Matuska uint32_t idx, uint32_t count) 114eda14cbcSMatt Macy { 115eda14cbcSMatt Macy #ifdef ZFS_DEBUG 116eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 117a0b956f5SMartin Matuska if (zfs_btree_is_core(hdr)) { 118a0b956f5SMartin Matuska ASSERT3U(idx, >=, hdr->bth_count); 119a0b956f5SMartin Matuska ASSERT3U(idx, <=, BTREE_CORE_ELEMS); 120a0b956f5SMartin Matuska ASSERT3U(idx + count, <=, BTREE_CORE_ELEMS); 121eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 122a0b956f5SMartin Matuska for (uint32_t i = 1; i <= count; i++) { 123a0b956f5SMartin Matuska node->btc_children[idx + i] = 124eda14cbcSMatt Macy (zfs_btree_hdr_t *)BTREE_POISON; 125a0b956f5SMartin Matuska } 126a0b956f5SMartin Matuska (void) memset(node->btc_elems + idx * size, 0x0f, count * size); 127a0b956f5SMartin Matuska } else { 128a0b956f5SMartin Matuska ASSERT3U(idx, <=, tree->bt_leaf_cap); 129a0b956f5SMartin Matuska ASSERT3U(idx + count, <=, tree->bt_leaf_cap); 130a0b956f5SMartin Matuska zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; 131a0b956f5SMartin Matuska (void) memset(leaf->btl_elems + 132a0b956f5SMartin Matuska (hdr->bth_first + idx) * size, 0x0f, count * size); 133eda14cbcSMatt Macy } 134eda14cbcSMatt Macy #endif 135eda14cbcSMatt Macy } 136eda14cbcSMatt Macy 137eda14cbcSMatt Macy static inline void 138eda14cbcSMatt Macy zfs_btree_verify_poison_at(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, 139a0b956f5SMartin Matuska uint32_t idx) 140eda14cbcSMatt Macy { 141eda14cbcSMatt Macy #ifdef ZFS_DEBUG 142eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 143a0b956f5SMartin Matuska if (zfs_btree_is_core(hdr)) { 144a0b956f5SMartin Matuska ASSERT3U(idx, <, BTREE_CORE_ELEMS); 145eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 146eda14cbcSMatt Macy zfs_btree_hdr_t *cval = (zfs_btree_hdr_t *)BTREE_POISON; 147a0b956f5SMartin Matuska VERIFY3P(node->btc_children[idx + 1], ==, cval); 148a0b956f5SMartin Matuska for (size_t i = 0; i < size; i++) 149a0b956f5SMartin Matuska VERIFY3U(node->btc_elems[idx * size + i], ==, 0x0f); 150eda14cbcSMatt Macy } else { 151a0b956f5SMartin Matuska ASSERT3U(idx, <, tree->bt_leaf_cap); 152eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; 153a0b956f5SMartin Matuska if (idx >= tree->bt_leaf_cap - hdr->bth_first) 154a0b956f5SMartin Matuska return; 155a0b956f5SMartin Matuska for (size_t i = 0; i < size; i++) { 156a0b956f5SMartin Matuska VERIFY3U(leaf->btl_elems[(hdr->bth_first + idx) 157a0b956f5SMartin Matuska * size + i], ==, 0x0f); 158a0b956f5SMartin Matuska } 159eda14cbcSMatt Macy } 160eda14cbcSMatt Macy #endif 161eda14cbcSMatt Macy } 162eda14cbcSMatt Macy 163eda14cbcSMatt Macy void 164eda14cbcSMatt Macy zfs_btree_init(void) 165eda14cbcSMatt Macy { 166eda14cbcSMatt Macy zfs_btree_leaf_cache = kmem_cache_create("zfs_btree_leaf_cache", 167a0b956f5SMartin Matuska BTREE_LEAF_SIZE, 0, NULL, NULL, NULL, NULL, NULL, 0); 168eda14cbcSMatt Macy } 169eda14cbcSMatt Macy 170eda14cbcSMatt Macy void 171eda14cbcSMatt Macy zfs_btree_fini(void) 172eda14cbcSMatt Macy { 173eda14cbcSMatt Macy kmem_cache_destroy(zfs_btree_leaf_cache); 174eda14cbcSMatt Macy } 175eda14cbcSMatt Macy 176dbd5678dSMartin Matuska static void * 177dbd5678dSMartin Matuska zfs_btree_leaf_alloc(zfs_btree_t *tree) 178dbd5678dSMartin Matuska { 179dbd5678dSMartin Matuska if (tree->bt_leaf_size == BTREE_LEAF_SIZE) 180dbd5678dSMartin Matuska return (kmem_cache_alloc(zfs_btree_leaf_cache, KM_SLEEP)); 181dbd5678dSMartin Matuska else 182dbd5678dSMartin Matuska return (kmem_alloc(tree->bt_leaf_size, KM_SLEEP)); 183dbd5678dSMartin Matuska } 184dbd5678dSMartin Matuska 185dbd5678dSMartin Matuska static void 186dbd5678dSMartin Matuska zfs_btree_leaf_free(zfs_btree_t *tree, void *ptr) 187dbd5678dSMartin Matuska { 188dbd5678dSMartin Matuska if (tree->bt_leaf_size == BTREE_LEAF_SIZE) 189dbd5678dSMartin Matuska return (kmem_cache_free(zfs_btree_leaf_cache, ptr)); 190dbd5678dSMartin Matuska else 191dbd5678dSMartin Matuska return (kmem_free(ptr, tree->bt_leaf_size)); 192dbd5678dSMartin Matuska } 193dbd5678dSMartin Matuska 194eda14cbcSMatt Macy void 195eda14cbcSMatt Macy zfs_btree_create(zfs_btree_t *tree, int (*compar) (const void *, const void *), 1964e8d558cSMartin Matuska bt_find_in_buf_f bt_find_in_buf, size_t size) 197eda14cbcSMatt Macy { 1984e8d558cSMartin Matuska zfs_btree_create_custom(tree, compar, bt_find_in_buf, size, 1994e8d558cSMartin Matuska BTREE_LEAF_SIZE); 200dbd5678dSMartin Matuska } 201eda14cbcSMatt Macy 2024e8d558cSMartin Matuska static void * 2034e8d558cSMartin Matuska zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint32_t nelems, 2044e8d558cSMartin Matuska const void *value, zfs_btree_index_t *where); 2054e8d558cSMartin Matuska 206dbd5678dSMartin Matuska void 207dbd5678dSMartin Matuska zfs_btree_create_custom(zfs_btree_t *tree, 208dbd5678dSMartin Matuska int (*compar) (const void *, const void *), 2094e8d558cSMartin Matuska bt_find_in_buf_f bt_find_in_buf, 210dbd5678dSMartin Matuska size_t size, size_t lsize) 211dbd5678dSMartin Matuska { 212dbd5678dSMartin Matuska size_t esize = lsize - offsetof(zfs_btree_leaf_t, btl_elems); 213dbd5678dSMartin Matuska 214dbd5678dSMartin Matuska ASSERT3U(size, <=, esize / 2); 215da5137abSMartin Matuska memset(tree, 0, sizeof (*tree)); 216eda14cbcSMatt Macy tree->bt_compar = compar; 2174e8d558cSMartin Matuska tree->bt_find_in_buf = (bt_find_in_buf == NULL) ? 2184e8d558cSMartin Matuska zfs_btree_find_in_buf : bt_find_in_buf; 219eda14cbcSMatt Macy tree->bt_elem_size = size; 220dbd5678dSMartin Matuska tree->bt_leaf_size = lsize; 221*aca928a5SMartin Matuska tree->bt_leaf_cap = P2ALIGN_TYPED(esize / size, 2, size_t); 222eda14cbcSMatt Macy tree->bt_height = -1; 223eda14cbcSMatt Macy tree->bt_bulk = NULL; 224eda14cbcSMatt Macy } 225eda14cbcSMatt Macy 226eda14cbcSMatt Macy /* 227eda14cbcSMatt Macy * Find value in the array of elements provided. Uses a simple binary search. 228eda14cbcSMatt Macy */ 229eda14cbcSMatt Macy static void * 230a0b956f5SMartin Matuska zfs_btree_find_in_buf(zfs_btree_t *tree, uint8_t *buf, uint32_t nelems, 231eda14cbcSMatt Macy const void *value, zfs_btree_index_t *where) 232eda14cbcSMatt Macy { 233a0b956f5SMartin Matuska uint32_t max = nelems; 234a0b956f5SMartin Matuska uint32_t min = 0; 235eda14cbcSMatt Macy while (max > min) { 236a0b956f5SMartin Matuska uint32_t idx = (min + max) / 2; 237eda14cbcSMatt Macy uint8_t *cur = buf + idx * tree->bt_elem_size; 238eda14cbcSMatt Macy int comp = tree->bt_compar(cur, value); 239a0b956f5SMartin Matuska if (comp < 0) { 240eda14cbcSMatt Macy min = idx + 1; 241a0b956f5SMartin Matuska } else if (comp > 0) { 242eda14cbcSMatt Macy max = idx; 243eda14cbcSMatt Macy } else { 244eda14cbcSMatt Macy where->bti_offset = idx; 245eda14cbcSMatt Macy where->bti_before = B_FALSE; 246eda14cbcSMatt Macy return (cur); 247eda14cbcSMatt Macy } 248eda14cbcSMatt Macy } 249eda14cbcSMatt Macy 250eda14cbcSMatt Macy where->bti_offset = max; 251eda14cbcSMatt Macy where->bti_before = B_TRUE; 252eda14cbcSMatt Macy return (NULL); 253eda14cbcSMatt Macy } 254eda14cbcSMatt Macy 255eda14cbcSMatt Macy /* 256eda14cbcSMatt Macy * Find the given value in the tree. where may be passed as null to use as a 257eda14cbcSMatt Macy * membership test or if the btree is being used as a map. 258eda14cbcSMatt Macy */ 259eda14cbcSMatt Macy void * 260eda14cbcSMatt Macy zfs_btree_find(zfs_btree_t *tree, const void *value, zfs_btree_index_t *where) 261eda14cbcSMatt Macy { 262eda14cbcSMatt Macy if (tree->bt_height == -1) { 263eda14cbcSMatt Macy if (where != NULL) { 264eda14cbcSMatt Macy where->bti_node = NULL; 265eda14cbcSMatt Macy where->bti_offset = 0; 266eda14cbcSMatt Macy } 267eda14cbcSMatt Macy ASSERT0(tree->bt_num_elems); 268eda14cbcSMatt Macy return (NULL); 269eda14cbcSMatt Macy } 270eda14cbcSMatt Macy 271eda14cbcSMatt Macy /* 272eda14cbcSMatt Macy * If we're in bulk-insert mode, we check the last spot in the tree 273eda14cbcSMatt Macy * and the last leaf in the tree before doing the normal search, 274eda14cbcSMatt Macy * because for most workloads the vast majority of finds in 275eda14cbcSMatt Macy * bulk-insert mode are to insert new elements. 276eda14cbcSMatt Macy */ 277eda14cbcSMatt Macy zfs_btree_index_t idx; 278a0b956f5SMartin Matuska size_t size = tree->bt_elem_size; 279eda14cbcSMatt Macy if (tree->bt_bulk != NULL) { 280eda14cbcSMatt Macy zfs_btree_leaf_t *last_leaf = tree->bt_bulk; 281a0b956f5SMartin Matuska int comp = tree->bt_compar(last_leaf->btl_elems + 282a0b956f5SMartin Matuska (last_leaf->btl_hdr.bth_first + 283a0b956f5SMartin Matuska last_leaf->btl_hdr.bth_count - 1) * size, value); 284a0b956f5SMartin Matuska if (comp < 0) { 285eda14cbcSMatt Macy /* 286eda14cbcSMatt Macy * If what they're looking for is after the last 287eda14cbcSMatt Macy * element, it's not in the tree. 288eda14cbcSMatt Macy */ 289eda14cbcSMatt Macy if (where != NULL) { 290eda14cbcSMatt Macy where->bti_node = (zfs_btree_hdr_t *)last_leaf; 291eda14cbcSMatt Macy where->bti_offset = 292eda14cbcSMatt Macy last_leaf->btl_hdr.bth_count; 293eda14cbcSMatt Macy where->bti_before = B_TRUE; 294eda14cbcSMatt Macy } 295eda14cbcSMatt Macy return (NULL); 296a0b956f5SMartin Matuska } else if (comp == 0) { 297eda14cbcSMatt Macy if (where != NULL) { 298eda14cbcSMatt Macy where->bti_node = (zfs_btree_hdr_t *)last_leaf; 299eda14cbcSMatt Macy where->bti_offset = 300eda14cbcSMatt Macy last_leaf->btl_hdr.bth_count - 1; 301eda14cbcSMatt Macy where->bti_before = B_FALSE; 302eda14cbcSMatt Macy } 303eda14cbcSMatt Macy return (last_leaf->btl_elems + 304a0b956f5SMartin Matuska (last_leaf->btl_hdr.bth_first + 305a0b956f5SMartin Matuska last_leaf->btl_hdr.bth_count - 1) * size); 306eda14cbcSMatt Macy } 307a0b956f5SMartin Matuska if (tree->bt_compar(last_leaf->btl_elems + 308a0b956f5SMartin Matuska last_leaf->btl_hdr.bth_first * size, value) <= 0) { 309eda14cbcSMatt Macy /* 310eda14cbcSMatt Macy * If what they're looking for is after the first 311eda14cbcSMatt Macy * element in the last leaf, it's in the last leaf or 312eda14cbcSMatt Macy * it's not in the tree. 313eda14cbcSMatt Macy */ 3144e8d558cSMartin Matuska void *d = tree->bt_find_in_buf(tree, 315a0b956f5SMartin Matuska last_leaf->btl_elems + 316a0b956f5SMartin Matuska last_leaf->btl_hdr.bth_first * size, 317a0b956f5SMartin Matuska last_leaf->btl_hdr.bth_count, value, &idx); 318eda14cbcSMatt Macy 319eda14cbcSMatt Macy if (where != NULL) { 320eda14cbcSMatt Macy idx.bti_node = (zfs_btree_hdr_t *)last_leaf; 321eda14cbcSMatt Macy *where = idx; 322eda14cbcSMatt Macy } 323eda14cbcSMatt Macy return (d); 324eda14cbcSMatt Macy } 325eda14cbcSMatt Macy } 326eda14cbcSMatt Macy 327eda14cbcSMatt Macy zfs_btree_core_t *node = NULL; 328a0b956f5SMartin Matuska uint32_t child = 0; 329dbd5678dSMartin Matuska uint32_t depth = 0; 330eda14cbcSMatt Macy 331eda14cbcSMatt Macy /* 332eda14cbcSMatt Macy * Iterate down the tree, finding which child the value should be in 333eda14cbcSMatt Macy * by comparing with the separators. 334eda14cbcSMatt Macy */ 335eda14cbcSMatt Macy for (node = (zfs_btree_core_t *)tree->bt_root; depth < tree->bt_height; 336eda14cbcSMatt Macy node = (zfs_btree_core_t *)node->btc_children[child], depth++) { 337eda14cbcSMatt Macy ASSERT3P(node, !=, NULL); 3384e8d558cSMartin Matuska void *d = tree->bt_find_in_buf(tree, node->btc_elems, 339eda14cbcSMatt Macy node->btc_hdr.bth_count, value, &idx); 340eda14cbcSMatt Macy EQUIV(d != NULL, !idx.bti_before); 341eda14cbcSMatt Macy if (d != NULL) { 342eda14cbcSMatt Macy if (where != NULL) { 343eda14cbcSMatt Macy idx.bti_node = (zfs_btree_hdr_t *)node; 344eda14cbcSMatt Macy *where = idx; 345eda14cbcSMatt Macy } 346eda14cbcSMatt Macy return (d); 347eda14cbcSMatt Macy } 348eda14cbcSMatt Macy ASSERT(idx.bti_before); 349eda14cbcSMatt Macy child = idx.bti_offset; 350eda14cbcSMatt Macy } 351eda14cbcSMatt Macy 352eda14cbcSMatt Macy /* 353eda14cbcSMatt Macy * The value is in this leaf, or it would be if it were in the 354eda14cbcSMatt Macy * tree. Find its proper location and return it. 355eda14cbcSMatt Macy */ 356eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (depth == 0 ? 357eda14cbcSMatt Macy (zfs_btree_leaf_t *)tree->bt_root : (zfs_btree_leaf_t *)node); 3584e8d558cSMartin Matuska void *d = tree->bt_find_in_buf(tree, leaf->btl_elems + 359a0b956f5SMartin Matuska leaf->btl_hdr.bth_first * size, 360eda14cbcSMatt Macy leaf->btl_hdr.bth_count, value, &idx); 361eda14cbcSMatt Macy 362eda14cbcSMatt Macy if (where != NULL) { 363eda14cbcSMatt Macy idx.bti_node = (zfs_btree_hdr_t *)leaf; 364eda14cbcSMatt Macy *where = idx; 365eda14cbcSMatt Macy } 366eda14cbcSMatt Macy 367eda14cbcSMatt Macy return (d); 368eda14cbcSMatt Macy } 369eda14cbcSMatt Macy 370eda14cbcSMatt Macy /* 371eda14cbcSMatt Macy * To explain the following functions, it is useful to understand the four 372eda14cbcSMatt Macy * kinds of shifts used in btree operation. First, a shift is a movement of 373eda14cbcSMatt Macy * elements within a node. It is used to create gaps for inserting new 374eda14cbcSMatt Macy * elements and children, or cover gaps created when things are removed. A 375eda14cbcSMatt Macy * shift has two fundamental properties, each of which can be one of two 376eda14cbcSMatt Macy * values, making four types of shifts. There is the direction of the shift 377eda14cbcSMatt Macy * (left or right) and the shape of the shift (parallelogram or isoceles 378eda14cbcSMatt Macy * trapezoid (shortened to trapezoid hereafter)). The shape distinction only 379eda14cbcSMatt Macy * applies to shifts of core nodes. 380eda14cbcSMatt Macy * 381eda14cbcSMatt Macy * The names derive from the following imagining of the layout of a node: 382eda14cbcSMatt Macy * 383eda14cbcSMatt Macy * Elements: * * * * * * * ... * * * 384eda14cbcSMatt Macy * Children: * * * * * * * * ... * * * 385eda14cbcSMatt Macy * 386eda14cbcSMatt Macy * This layout follows from the fact that the elements act as separators 387eda14cbcSMatt Macy * between pairs of children, and that children root subtrees "below" the 388eda14cbcSMatt Macy * current node. A left and right shift are fairly self-explanatory; a left 389eda14cbcSMatt Macy * shift moves things to the left, while a right shift moves things to the 390eda14cbcSMatt Macy * right. A parallelogram shift is a shift with the same number of elements 391eda14cbcSMatt Macy * and children being moved, while a trapezoid shift is a shift that moves one 392eda14cbcSMatt Macy * more children than elements. An example follows: 393eda14cbcSMatt Macy * 394eda14cbcSMatt Macy * A parallelogram shift could contain the following: 395eda14cbcSMatt Macy * _______________ 396eda14cbcSMatt Macy * \* * * * \ * * * ... * * * 397eda14cbcSMatt Macy * * \ * * * *\ * * * ... * * * 398eda14cbcSMatt Macy * --------------- 399eda14cbcSMatt Macy * A trapezoid shift could contain the following: 400eda14cbcSMatt Macy * ___________ 401eda14cbcSMatt Macy * * / * * * \ * * * ... * * * 402eda14cbcSMatt Macy * * / * * * *\ * * * ... * * * 403eda14cbcSMatt Macy * --------------- 404eda14cbcSMatt Macy * 405eda14cbcSMatt Macy * Note that a parallelogram shift is always shaped like a "left-leaning" 406eda14cbcSMatt Macy * parallelogram, where the starting index of the children being moved is 407eda14cbcSMatt Macy * always one higher than the starting index of the elements being moved. No 408eda14cbcSMatt Macy * "right-leaning" parallelogram shifts are needed (shifts where the starting 409eda14cbcSMatt Macy * element index and starting child index being moved are the same) to achieve 410eda14cbcSMatt Macy * any btree operations, so we ignore them. 411eda14cbcSMatt Macy */ 412eda14cbcSMatt Macy 413eda14cbcSMatt Macy enum bt_shift_shape { 414eda14cbcSMatt Macy BSS_TRAPEZOID, 415eda14cbcSMatt Macy BSS_PARALLELOGRAM 416eda14cbcSMatt Macy }; 417eda14cbcSMatt Macy 418eda14cbcSMatt Macy enum bt_shift_direction { 419eda14cbcSMatt Macy BSD_LEFT, 420eda14cbcSMatt Macy BSD_RIGHT 421eda14cbcSMatt Macy }; 422eda14cbcSMatt Macy 423eda14cbcSMatt Macy /* 424eda14cbcSMatt Macy * Shift elements and children in the provided core node by off spots. The 425eda14cbcSMatt Macy * first element moved is idx, and count elements are moved. The shape of the 426eda14cbcSMatt Macy * shift is determined by shape. The direction is determined by dir. 427eda14cbcSMatt Macy */ 428eda14cbcSMatt Macy static inline void 429a0b956f5SMartin Matuska bt_shift_core(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx, 430a0b956f5SMartin Matuska uint32_t count, uint32_t off, enum bt_shift_shape shape, 431eda14cbcSMatt Macy enum bt_shift_direction dir) 432eda14cbcSMatt Macy { 433eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 434a0b956f5SMartin Matuska ASSERT(zfs_btree_is_core(&node->btc_hdr)); 435eda14cbcSMatt Macy 436eda14cbcSMatt Macy uint8_t *e_start = node->btc_elems + idx * size; 437a0b956f5SMartin Matuska uint8_t *e_out = (dir == BSD_LEFT ? e_start - off * size : 438a0b956f5SMartin Matuska e_start + off * size); 439a0b956f5SMartin Matuska bmov(e_start, e_out, count * size); 440eda14cbcSMatt Macy 441eda14cbcSMatt Macy zfs_btree_hdr_t **c_start = node->btc_children + idx + 442eda14cbcSMatt Macy (shape == BSS_TRAPEZOID ? 0 : 1); 443eda14cbcSMatt Macy zfs_btree_hdr_t **c_out = (dir == BSD_LEFT ? c_start - off : 444eda14cbcSMatt Macy c_start + off); 445a0b956f5SMartin Matuska uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0); 446eda14cbcSMatt Macy bmov(c_start, c_out, c_count * sizeof (*c_start)); 447eda14cbcSMatt Macy } 448eda14cbcSMatt Macy 449eda14cbcSMatt Macy /* 450eda14cbcSMatt Macy * Shift elements and children in the provided core node left by one spot. 451eda14cbcSMatt Macy * The first element moved is idx, and count elements are moved. The 452eda14cbcSMatt Macy * shape of the shift is determined by trap; true if the shift is a trapezoid, 453eda14cbcSMatt Macy * false if it is a parallelogram. 454eda14cbcSMatt Macy */ 455eda14cbcSMatt Macy static inline void 456a0b956f5SMartin Matuska bt_shift_core_left(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx, 457a0b956f5SMartin Matuska uint32_t count, enum bt_shift_shape shape) 458eda14cbcSMatt Macy { 459eda14cbcSMatt Macy bt_shift_core(tree, node, idx, count, 1, shape, BSD_LEFT); 460eda14cbcSMatt Macy } 461eda14cbcSMatt Macy 462eda14cbcSMatt Macy /* 463eda14cbcSMatt Macy * Shift elements and children in the provided core node right by one spot. 464eda14cbcSMatt Macy * Starts with elements[idx] and children[idx] and one more child than element. 465eda14cbcSMatt Macy */ 466eda14cbcSMatt Macy static inline void 467a0b956f5SMartin Matuska bt_shift_core_right(zfs_btree_t *tree, zfs_btree_core_t *node, uint32_t idx, 468a0b956f5SMartin Matuska uint32_t count, enum bt_shift_shape shape) 469eda14cbcSMatt Macy { 470eda14cbcSMatt Macy bt_shift_core(tree, node, idx, count, 1, shape, BSD_RIGHT); 471eda14cbcSMatt Macy } 472eda14cbcSMatt Macy 473eda14cbcSMatt Macy /* 474eda14cbcSMatt Macy * Shift elements and children in the provided leaf node by off spots. 475eda14cbcSMatt Macy * The first element moved is idx, and count elements are moved. The direction 476eda14cbcSMatt Macy * is determined by left. 477eda14cbcSMatt Macy */ 478eda14cbcSMatt Macy static inline void 479a0b956f5SMartin Matuska bt_shift_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *node, uint32_t idx, 480a0b956f5SMartin Matuska uint32_t count, uint32_t off, enum bt_shift_direction dir) 481eda14cbcSMatt Macy { 482eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 483a0b956f5SMartin Matuska zfs_btree_hdr_t *hdr = &node->btl_hdr; 484a0b956f5SMartin Matuska ASSERT(!zfs_btree_is_core(hdr)); 485eda14cbcSMatt Macy 486a0b956f5SMartin Matuska if (count == 0) 487a0b956f5SMartin Matuska return; 488a0b956f5SMartin Matuska uint8_t *start = node->btl_elems + (hdr->bth_first + idx) * size; 489a0b956f5SMartin Matuska uint8_t *out = (dir == BSD_LEFT ? start - off * size : 490a0b956f5SMartin Matuska start + off * size); 491eda14cbcSMatt Macy bmov(start, out, count * size); 492eda14cbcSMatt Macy } 493eda14cbcSMatt Macy 494a0b956f5SMartin Matuska /* 495a0b956f5SMartin Matuska * Grow leaf for n new elements before idx. 496a0b956f5SMartin Matuska */ 497a0b956f5SMartin Matuska static void 498a0b956f5SMartin Matuska bt_grow_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx, 499a0b956f5SMartin Matuska uint32_t n) 500eda14cbcSMatt Macy { 501a0b956f5SMartin Matuska zfs_btree_hdr_t *hdr = &leaf->btl_hdr; 502a0b956f5SMartin Matuska ASSERT(!zfs_btree_is_core(hdr)); 503a0b956f5SMartin Matuska ASSERT3U(idx, <=, hdr->bth_count); 504a0b956f5SMartin Matuska uint32_t capacity = tree->bt_leaf_cap; 505a0b956f5SMartin Matuska ASSERT3U(hdr->bth_count + n, <=, capacity); 506a0b956f5SMartin Matuska boolean_t cl = (hdr->bth_first >= n); 507a0b956f5SMartin Matuska boolean_t cr = (hdr->bth_first + hdr->bth_count + n <= capacity); 508a0b956f5SMartin Matuska 509a0b956f5SMartin Matuska if (cl && (!cr || idx <= hdr->bth_count / 2)) { 510a0b956f5SMartin Matuska /* Grow left. */ 511a0b956f5SMartin Matuska hdr->bth_first -= n; 512a0b956f5SMartin Matuska bt_shift_leaf(tree, leaf, n, idx, n, BSD_LEFT); 513a0b956f5SMartin Matuska } else if (cr) { 514a0b956f5SMartin Matuska /* Grow right. */ 515a0b956f5SMartin Matuska bt_shift_leaf(tree, leaf, idx, hdr->bth_count - idx, n, 516a0b956f5SMartin Matuska BSD_RIGHT); 517a0b956f5SMartin Matuska } else { 518a0b956f5SMartin Matuska /* Grow both ways. */ 519a0b956f5SMartin Matuska uint32_t fn = hdr->bth_first - 520a0b956f5SMartin Matuska (capacity - (hdr->bth_count + n)) / 2; 521a0b956f5SMartin Matuska hdr->bth_first -= fn; 522a0b956f5SMartin Matuska bt_shift_leaf(tree, leaf, fn, idx, fn, BSD_LEFT); 523a0b956f5SMartin Matuska bt_shift_leaf(tree, leaf, fn + idx, hdr->bth_count - idx, 524a0b956f5SMartin Matuska n - fn, BSD_RIGHT); 525a0b956f5SMartin Matuska } 526a0b956f5SMartin Matuska hdr->bth_count += n; 527eda14cbcSMatt Macy } 528eda14cbcSMatt Macy 529a0b956f5SMartin Matuska /* 530a0b956f5SMartin Matuska * Shrink leaf for count elements starting from idx. 531a0b956f5SMartin Matuska */ 532a0b956f5SMartin Matuska static void 533a0b956f5SMartin Matuska bt_shrink_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, uint32_t idx, 534a0b956f5SMartin Matuska uint32_t n) 535eda14cbcSMatt Macy { 536a0b956f5SMartin Matuska zfs_btree_hdr_t *hdr = &leaf->btl_hdr; 537a0b956f5SMartin Matuska ASSERT(!zfs_btree_is_core(hdr)); 538a0b956f5SMartin Matuska ASSERT3U(idx, <=, hdr->bth_count); 539a0b956f5SMartin Matuska ASSERT3U(idx + n, <=, hdr->bth_count); 540a0b956f5SMartin Matuska 541a0b956f5SMartin Matuska if (idx <= (hdr->bth_count - n) / 2) { 542a0b956f5SMartin Matuska bt_shift_leaf(tree, leaf, 0, idx, n, BSD_RIGHT); 543a0b956f5SMartin Matuska zfs_btree_poison_node_at(tree, hdr, 0, n); 544a0b956f5SMartin Matuska hdr->bth_first += n; 545a0b956f5SMartin Matuska } else { 546a0b956f5SMartin Matuska bt_shift_leaf(tree, leaf, idx + n, hdr->bth_count - idx - n, n, 547a0b956f5SMartin Matuska BSD_LEFT); 548a0b956f5SMartin Matuska zfs_btree_poison_node_at(tree, hdr, hdr->bth_count - n, n); 549a0b956f5SMartin Matuska } 550a0b956f5SMartin Matuska hdr->bth_count -= n; 551eda14cbcSMatt Macy } 552eda14cbcSMatt Macy 553eda14cbcSMatt Macy /* 554eda14cbcSMatt Macy * Move children and elements from one core node to another. The shape 555eda14cbcSMatt Macy * parameter behaves the same as it does in the shift logic. 556eda14cbcSMatt Macy */ 557eda14cbcSMatt Macy static inline void 558a0b956f5SMartin Matuska bt_transfer_core(zfs_btree_t *tree, zfs_btree_core_t *source, uint32_t sidx, 559a0b956f5SMartin Matuska uint32_t count, zfs_btree_core_t *dest, uint32_t didx, 560eda14cbcSMatt Macy enum bt_shift_shape shape) 561eda14cbcSMatt Macy { 562eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 563a0b956f5SMartin Matuska ASSERT(zfs_btree_is_core(&source->btc_hdr)); 564a0b956f5SMartin Matuska ASSERT(zfs_btree_is_core(&dest->btc_hdr)); 565eda14cbcSMatt Macy 566a0b956f5SMartin Matuska bcpy(source->btc_elems + sidx * size, dest->btc_elems + didx * size, 567eda14cbcSMatt Macy count * size); 568eda14cbcSMatt Macy 569a0b956f5SMartin Matuska uint32_t c_count = count + (shape == BSS_TRAPEZOID ? 1 : 0); 570a0b956f5SMartin Matuska bcpy(source->btc_children + sidx + (shape == BSS_TRAPEZOID ? 0 : 1), 571eda14cbcSMatt Macy dest->btc_children + didx + (shape == BSS_TRAPEZOID ? 0 : 1), 572eda14cbcSMatt Macy c_count * sizeof (*source->btc_children)); 573eda14cbcSMatt Macy } 574eda14cbcSMatt Macy 575eda14cbcSMatt Macy static inline void 576a0b956f5SMartin Matuska bt_transfer_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *source, uint32_t sidx, 577a0b956f5SMartin Matuska uint32_t count, zfs_btree_leaf_t *dest, uint32_t didx) 578eda14cbcSMatt Macy { 579eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 580a0b956f5SMartin Matuska ASSERT(!zfs_btree_is_core(&source->btl_hdr)); 581a0b956f5SMartin Matuska ASSERT(!zfs_btree_is_core(&dest->btl_hdr)); 582eda14cbcSMatt Macy 583a0b956f5SMartin Matuska bcpy(source->btl_elems + (source->btl_hdr.bth_first + sidx) * size, 584a0b956f5SMartin Matuska dest->btl_elems + (dest->btl_hdr.bth_first + didx) * size, 585eda14cbcSMatt Macy count * size); 586eda14cbcSMatt Macy } 587eda14cbcSMatt Macy 588eda14cbcSMatt Macy /* 589eda14cbcSMatt Macy * Find the first element in the subtree rooted at hdr, return its value and 590eda14cbcSMatt Macy * put its location in where if non-null. 591eda14cbcSMatt Macy */ 592eda14cbcSMatt Macy static void * 593a0b956f5SMartin Matuska zfs_btree_first_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, 594a0b956f5SMartin Matuska zfs_btree_index_t *where) 595eda14cbcSMatt Macy { 596eda14cbcSMatt Macy zfs_btree_hdr_t *node; 597eda14cbcSMatt Macy 598a0b956f5SMartin Matuska for (node = hdr; zfs_btree_is_core(node); 599a0b956f5SMartin Matuska node = ((zfs_btree_core_t *)node)->btc_children[0]) 600eda14cbcSMatt Macy ; 601eda14cbcSMatt Macy 602a0b956f5SMartin Matuska ASSERT(!zfs_btree_is_core(node)); 603eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node; 604eda14cbcSMatt Macy if (where != NULL) { 605eda14cbcSMatt Macy where->bti_node = node; 606eda14cbcSMatt Macy where->bti_offset = 0; 607eda14cbcSMatt Macy where->bti_before = B_FALSE; 608eda14cbcSMatt Macy } 609a0b956f5SMartin Matuska return (&leaf->btl_elems[node->bth_first * tree->bt_elem_size]); 610eda14cbcSMatt Macy } 611eda14cbcSMatt Macy 612eda14cbcSMatt Macy /* Insert an element and a child into a core node at the given offset. */ 613eda14cbcSMatt Macy static void 614eda14cbcSMatt Macy zfs_btree_insert_core_impl(zfs_btree_t *tree, zfs_btree_core_t *parent, 615a0b956f5SMartin Matuska uint32_t offset, zfs_btree_hdr_t *new_node, void *buf) 616eda14cbcSMatt Macy { 617a0b956f5SMartin Matuska size_t size = tree->bt_elem_size; 618eda14cbcSMatt Macy zfs_btree_hdr_t *par_hdr = &parent->btc_hdr; 619eda14cbcSMatt Macy ASSERT3P(par_hdr, ==, new_node->bth_parent); 620eda14cbcSMatt Macy ASSERT3U(par_hdr->bth_count, <, BTREE_CORE_ELEMS); 621eda14cbcSMatt Macy 622eda14cbcSMatt Macy if (zfs_btree_verify_intensity >= 5) { 623eda14cbcSMatt Macy zfs_btree_verify_poison_at(tree, par_hdr, 624eda14cbcSMatt Macy par_hdr->bth_count); 625eda14cbcSMatt Macy } 626eda14cbcSMatt Macy /* Shift existing elements and children */ 627a0b956f5SMartin Matuska uint32_t count = par_hdr->bth_count - offset; 628eda14cbcSMatt Macy bt_shift_core_right(tree, parent, offset, count, 629eda14cbcSMatt Macy BSS_PARALLELOGRAM); 630eda14cbcSMatt Macy 631eda14cbcSMatt Macy /* Insert new values */ 632eda14cbcSMatt Macy parent->btc_children[offset + 1] = new_node; 633a0b956f5SMartin Matuska bcpy(buf, parent->btc_elems + offset * size, size); 634eda14cbcSMatt Macy par_hdr->bth_count++; 635eda14cbcSMatt Macy } 636eda14cbcSMatt Macy 637eda14cbcSMatt Macy /* 638eda14cbcSMatt Macy * Insert new_node into the parent of old_node directly after old_node, with 639eda14cbcSMatt Macy * buf as the dividing element between the two. 640eda14cbcSMatt Macy */ 641eda14cbcSMatt Macy static void 642eda14cbcSMatt Macy zfs_btree_insert_into_parent(zfs_btree_t *tree, zfs_btree_hdr_t *old_node, 643eda14cbcSMatt Macy zfs_btree_hdr_t *new_node, void *buf) 644eda14cbcSMatt Macy { 645eda14cbcSMatt Macy ASSERT3P(old_node->bth_parent, ==, new_node->bth_parent); 646a0b956f5SMartin Matuska size_t size = tree->bt_elem_size; 647eda14cbcSMatt Macy zfs_btree_core_t *parent = old_node->bth_parent; 648eda14cbcSMatt Macy 649eda14cbcSMatt Macy /* 650eda14cbcSMatt Macy * If this is the root node we were splitting, we create a new root 651eda14cbcSMatt Macy * and increase the height of the tree. 652eda14cbcSMatt Macy */ 653eda14cbcSMatt Macy if (parent == NULL) { 654eda14cbcSMatt Macy ASSERT3P(old_node, ==, tree->bt_root); 655eda14cbcSMatt Macy tree->bt_num_nodes++; 656eda14cbcSMatt Macy zfs_btree_core_t *new_root = 657eda14cbcSMatt Macy kmem_alloc(sizeof (zfs_btree_core_t) + BTREE_CORE_ELEMS * 658eda14cbcSMatt Macy size, KM_SLEEP); 659eda14cbcSMatt Macy zfs_btree_hdr_t *new_root_hdr = &new_root->btc_hdr; 660eda14cbcSMatt Macy new_root_hdr->bth_parent = NULL; 661a0b956f5SMartin Matuska new_root_hdr->bth_first = -1; 662eda14cbcSMatt Macy new_root_hdr->bth_count = 1; 663eda14cbcSMatt Macy 664eda14cbcSMatt Macy old_node->bth_parent = new_node->bth_parent = new_root; 665eda14cbcSMatt Macy new_root->btc_children[0] = old_node; 666eda14cbcSMatt Macy new_root->btc_children[1] = new_node; 667a0b956f5SMartin Matuska bcpy(buf, new_root->btc_elems, size); 668eda14cbcSMatt Macy 669eda14cbcSMatt Macy tree->bt_height++; 670eda14cbcSMatt Macy tree->bt_root = new_root_hdr; 671eda14cbcSMatt Macy zfs_btree_poison_node(tree, new_root_hdr); 672eda14cbcSMatt Macy return; 673eda14cbcSMatt Macy } 674eda14cbcSMatt Macy 675eda14cbcSMatt Macy /* 676eda14cbcSMatt Macy * Since we have the new separator, binary search for where to put 677eda14cbcSMatt Macy * new_node. 678eda14cbcSMatt Macy */ 679c03c5b1cSMartin Matuska zfs_btree_hdr_t *par_hdr = &parent->btc_hdr; 680eda14cbcSMatt Macy zfs_btree_index_t idx; 681a0b956f5SMartin Matuska ASSERT(zfs_btree_is_core(par_hdr)); 6824e8d558cSMartin Matuska VERIFY3P(tree->bt_find_in_buf(tree, parent->btc_elems, 683eda14cbcSMatt Macy par_hdr->bth_count, buf, &idx), ==, NULL); 684eda14cbcSMatt Macy ASSERT(idx.bti_before); 685a0b956f5SMartin Matuska uint32_t offset = idx.bti_offset; 686eda14cbcSMatt Macy ASSERT3U(offset, <=, par_hdr->bth_count); 687eda14cbcSMatt Macy ASSERT3P(parent->btc_children[offset], ==, old_node); 688eda14cbcSMatt Macy 689eda14cbcSMatt Macy /* 690eda14cbcSMatt Macy * If the parent isn't full, shift things to accommodate our insertions 691eda14cbcSMatt Macy * and return. 692eda14cbcSMatt Macy */ 693eda14cbcSMatt Macy if (par_hdr->bth_count != BTREE_CORE_ELEMS) { 694eda14cbcSMatt Macy zfs_btree_insert_core_impl(tree, parent, offset, new_node, buf); 695eda14cbcSMatt Macy return; 696eda14cbcSMatt Macy } 697eda14cbcSMatt Macy 698eda14cbcSMatt Macy /* 699eda14cbcSMatt Macy * We need to split this core node into two. Currently there are 700eda14cbcSMatt Macy * BTREE_CORE_ELEMS + 1 child nodes, and we are adding one for 701eda14cbcSMatt Macy * BTREE_CORE_ELEMS + 2. Some of the children will be part of the 702eda14cbcSMatt Macy * current node, and the others will be moved to the new core node. 703eda14cbcSMatt Macy * There are BTREE_CORE_ELEMS + 1 elements including the new one. One 704eda14cbcSMatt Macy * will be used as the new separator in our parent, and the others 705eda14cbcSMatt Macy * will be split among the two core nodes. 706eda14cbcSMatt Macy * 707eda14cbcSMatt Macy * Usually we will split the node in half evenly, with 708eda14cbcSMatt Macy * BTREE_CORE_ELEMS/2 elements in each node. If we're bulk loading, we 709eda14cbcSMatt Macy * instead move only about a quarter of the elements (and children) to 710eda14cbcSMatt Macy * the new node. Since the average state after a long time is a 3/4 711eda14cbcSMatt Macy * full node, shortcutting directly to that state improves efficiency. 712eda14cbcSMatt Macy * 713eda14cbcSMatt Macy * We do this in two stages: first we split into two nodes, and then we 714eda14cbcSMatt Macy * reuse our existing logic to insert the new element and child. 715eda14cbcSMatt Macy */ 716a0b956f5SMartin Matuska uint32_t move_count = MAX((BTREE_CORE_ELEMS / (tree->bt_bulk == NULL ? 717eda14cbcSMatt Macy 2 : 4)) - 1, 2); 718a0b956f5SMartin Matuska uint32_t keep_count = BTREE_CORE_ELEMS - move_count - 1; 719eda14cbcSMatt Macy ASSERT3U(BTREE_CORE_ELEMS - move_count, >=, 2); 720eda14cbcSMatt Macy tree->bt_num_nodes++; 721eda14cbcSMatt Macy zfs_btree_core_t *new_parent = kmem_alloc(sizeof (zfs_btree_core_t) + 722eda14cbcSMatt Macy BTREE_CORE_ELEMS * size, KM_SLEEP); 723eda14cbcSMatt Macy zfs_btree_hdr_t *new_par_hdr = &new_parent->btc_hdr; 724eda14cbcSMatt Macy new_par_hdr->bth_parent = par_hdr->bth_parent; 725a0b956f5SMartin Matuska new_par_hdr->bth_first = -1; 726eda14cbcSMatt Macy new_par_hdr->bth_count = move_count; 727eda14cbcSMatt Macy zfs_btree_poison_node(tree, new_par_hdr); 728eda14cbcSMatt Macy 729eda14cbcSMatt Macy par_hdr->bth_count = keep_count; 730eda14cbcSMatt Macy 731eda14cbcSMatt Macy bt_transfer_core(tree, parent, keep_count + 1, move_count, new_parent, 732eda14cbcSMatt Macy 0, BSS_TRAPEZOID); 733eda14cbcSMatt Macy 734eda14cbcSMatt Macy /* Store the new separator in a buffer. */ 735eda14cbcSMatt Macy uint8_t *tmp_buf = kmem_alloc(size, KM_SLEEP); 736a0b956f5SMartin Matuska bcpy(parent->btc_elems + keep_count * size, tmp_buf, 737eda14cbcSMatt Macy size); 738eda14cbcSMatt Macy zfs_btree_poison_node(tree, par_hdr); 739eda14cbcSMatt Macy 740eda14cbcSMatt Macy if (offset < keep_count) { 741eda14cbcSMatt Macy /* Insert the new node into the left half */ 742eda14cbcSMatt Macy zfs_btree_insert_core_impl(tree, parent, offset, new_node, 743eda14cbcSMatt Macy buf); 744eda14cbcSMatt Macy 745eda14cbcSMatt Macy /* 746eda14cbcSMatt Macy * Move the new separator to the existing buffer. 747eda14cbcSMatt Macy */ 748a0b956f5SMartin Matuska bcpy(tmp_buf, buf, size); 749eda14cbcSMatt Macy } else if (offset > keep_count) { 750eda14cbcSMatt Macy /* Insert the new node into the right half */ 751eda14cbcSMatt Macy new_node->bth_parent = new_parent; 752eda14cbcSMatt Macy zfs_btree_insert_core_impl(tree, new_parent, 753eda14cbcSMatt Macy offset - keep_count - 1, new_node, buf); 754eda14cbcSMatt Macy 755eda14cbcSMatt Macy /* 756eda14cbcSMatt Macy * Move the new separator to the existing buffer. 757eda14cbcSMatt Macy */ 758a0b956f5SMartin Matuska bcpy(tmp_buf, buf, size); 759eda14cbcSMatt Macy } else { 760eda14cbcSMatt Macy /* 761eda14cbcSMatt Macy * Move the new separator into the right half, and replace it 762eda14cbcSMatt Macy * with buf. We also need to shift back the elements in the 763eda14cbcSMatt Macy * right half to accommodate new_node. 764eda14cbcSMatt Macy */ 765eda14cbcSMatt Macy bt_shift_core_right(tree, new_parent, 0, move_count, 766eda14cbcSMatt Macy BSS_TRAPEZOID); 767eda14cbcSMatt Macy new_parent->btc_children[0] = new_node; 768a0b956f5SMartin Matuska bcpy(tmp_buf, new_parent->btc_elems, size); 769eda14cbcSMatt Macy new_par_hdr->bth_count++; 770eda14cbcSMatt Macy } 771eda14cbcSMatt Macy kmem_free(tmp_buf, size); 772eda14cbcSMatt Macy zfs_btree_poison_node(tree, par_hdr); 773eda14cbcSMatt Macy 774a0b956f5SMartin Matuska for (uint32_t i = 0; i <= new_parent->btc_hdr.bth_count; i++) 775eda14cbcSMatt Macy new_parent->btc_children[i]->bth_parent = new_parent; 776eda14cbcSMatt Macy 777a0b956f5SMartin Matuska for (uint32_t i = 0; i <= parent->btc_hdr.bth_count; i++) 778eda14cbcSMatt Macy ASSERT3P(parent->btc_children[i]->bth_parent, ==, parent); 779eda14cbcSMatt Macy 780eda14cbcSMatt Macy /* 781eda14cbcSMatt Macy * Now that the node is split, we need to insert the new node into its 782eda14cbcSMatt Macy * parent. This may cause further splitting. 783eda14cbcSMatt Macy */ 784eda14cbcSMatt Macy zfs_btree_insert_into_parent(tree, &parent->btc_hdr, 785eda14cbcSMatt Macy &new_parent->btc_hdr, buf); 786eda14cbcSMatt Macy } 787eda14cbcSMatt Macy 788eda14cbcSMatt Macy /* Insert an element into a leaf node at the given offset. */ 789eda14cbcSMatt Macy static void 790eda14cbcSMatt Macy zfs_btree_insert_leaf_impl(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, 791a0b956f5SMartin Matuska uint32_t idx, const void *value) 792eda14cbcSMatt Macy { 793a0b956f5SMartin Matuska size_t size = tree->bt_elem_size; 794eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &leaf->btl_hdr; 795a0b956f5SMartin Matuska ASSERT3U(leaf->btl_hdr.bth_count, <, tree->bt_leaf_cap); 796eda14cbcSMatt Macy 797eda14cbcSMatt Macy if (zfs_btree_verify_intensity >= 5) { 798eda14cbcSMatt Macy zfs_btree_verify_poison_at(tree, &leaf->btl_hdr, 799eda14cbcSMatt Macy leaf->btl_hdr.bth_count); 800eda14cbcSMatt Macy } 801eda14cbcSMatt Macy 802a0b956f5SMartin Matuska bt_grow_leaf(tree, leaf, idx, 1); 803a0b956f5SMartin Matuska uint8_t *start = leaf->btl_elems + (hdr->bth_first + idx) * size; 804a0b956f5SMartin Matuska bcpy(value, start, size); 805eda14cbcSMatt Macy } 806eda14cbcSMatt Macy 807a0b956f5SMartin Matuska static void 808a0b956f5SMartin Matuska zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr); 809a0b956f5SMartin Matuska 810eda14cbcSMatt Macy /* Helper function for inserting a new value into leaf at the given index. */ 811eda14cbcSMatt Macy static void 812eda14cbcSMatt Macy zfs_btree_insert_into_leaf(zfs_btree_t *tree, zfs_btree_leaf_t *leaf, 813a0b956f5SMartin Matuska const void *value, uint32_t idx) 814eda14cbcSMatt Macy { 815a0b956f5SMartin Matuska size_t size = tree->bt_elem_size; 816a0b956f5SMartin Matuska uint32_t capacity = tree->bt_leaf_cap; 817eda14cbcSMatt Macy 818eda14cbcSMatt Macy /* 819eda14cbcSMatt Macy * If the leaf isn't full, shift the elements after idx and insert 820eda14cbcSMatt Macy * value. 821eda14cbcSMatt Macy */ 822eda14cbcSMatt Macy if (leaf->btl_hdr.bth_count != capacity) { 823eda14cbcSMatt Macy zfs_btree_insert_leaf_impl(tree, leaf, idx, value); 824eda14cbcSMatt Macy return; 825eda14cbcSMatt Macy } 826eda14cbcSMatt Macy 827eda14cbcSMatt Macy /* 828eda14cbcSMatt Macy * Otherwise, we split the leaf node into two nodes. If we're not bulk 829eda14cbcSMatt Macy * inserting, each is of size (capacity / 2). If we are bulk 830eda14cbcSMatt Macy * inserting, we move a quarter of the elements to the new node so 831eda14cbcSMatt Macy * inserts into the old node don't cause immediate splitting but the 832eda14cbcSMatt Macy * tree stays relatively dense. Since the average state after a long 833eda14cbcSMatt Macy * time is a 3/4 full node, shortcutting directly to that state 834eda14cbcSMatt Macy * improves efficiency. At the end of the bulk insertion process 835eda14cbcSMatt Macy * we'll need to go through and fix up any nodes (the last leaf and 836eda14cbcSMatt Macy * its ancestors, potentially) that are below the minimum. 837eda14cbcSMatt Macy * 838eda14cbcSMatt Macy * In either case, we're left with one extra element. The leftover 839eda14cbcSMatt Macy * element will become the new dividing element between the two nodes. 840eda14cbcSMatt Macy */ 841a0b956f5SMartin Matuska uint32_t move_count = MAX(capacity / (tree->bt_bulk ? 4 : 2), 1) - 1; 842a0b956f5SMartin Matuska uint32_t keep_count = capacity - move_count - 1; 843a0b956f5SMartin Matuska ASSERT3U(keep_count, >=, 1); 844a0b956f5SMartin Matuska /* If we insert on left. move one more to keep leaves balanced. */ 845a0b956f5SMartin Matuska if (idx < keep_count) { 846a0b956f5SMartin Matuska keep_count--; 847a0b956f5SMartin Matuska move_count++; 848a0b956f5SMartin Matuska } 849eda14cbcSMatt Macy tree->bt_num_nodes++; 850dbd5678dSMartin Matuska zfs_btree_leaf_t *new_leaf = zfs_btree_leaf_alloc(tree); 851eda14cbcSMatt Macy zfs_btree_hdr_t *new_hdr = &new_leaf->btl_hdr; 852eda14cbcSMatt Macy new_hdr->bth_parent = leaf->btl_hdr.bth_parent; 853a0b956f5SMartin Matuska new_hdr->bth_first = (tree->bt_bulk ? 0 : capacity / 4) + 854a0b956f5SMartin Matuska (idx >= keep_count && idx <= keep_count + move_count / 2); 855eda14cbcSMatt Macy new_hdr->bth_count = move_count; 856eda14cbcSMatt Macy zfs_btree_poison_node(tree, new_hdr); 857eda14cbcSMatt Macy 858eda14cbcSMatt Macy if (tree->bt_bulk != NULL && leaf == tree->bt_bulk) 859eda14cbcSMatt Macy tree->bt_bulk = new_leaf; 860eda14cbcSMatt Macy 861eda14cbcSMatt Macy /* Copy the back part to the new leaf. */ 862a0b956f5SMartin Matuska bt_transfer_leaf(tree, leaf, keep_count + 1, move_count, new_leaf, 0); 863eda14cbcSMatt Macy 864eda14cbcSMatt Macy /* We store the new separator in a buffer we control for simplicity. */ 865eda14cbcSMatt Macy uint8_t *buf = kmem_alloc(size, KM_SLEEP); 866a0b956f5SMartin Matuska bcpy(leaf->btl_elems + (leaf->btl_hdr.bth_first + keep_count) * size, 867a0b956f5SMartin Matuska buf, size); 868a0b956f5SMartin Matuska 869a0b956f5SMartin Matuska bt_shrink_leaf(tree, leaf, keep_count, 1 + move_count); 870eda14cbcSMatt Macy 871eda14cbcSMatt Macy if (idx < keep_count) { 872eda14cbcSMatt Macy /* Insert into the existing leaf. */ 873eda14cbcSMatt Macy zfs_btree_insert_leaf_impl(tree, leaf, idx, value); 874eda14cbcSMatt Macy } else if (idx > keep_count) { 875eda14cbcSMatt Macy /* Insert into the new leaf. */ 876eda14cbcSMatt Macy zfs_btree_insert_leaf_impl(tree, new_leaf, idx - keep_count - 877eda14cbcSMatt Macy 1, value); 878eda14cbcSMatt Macy } else { 879eda14cbcSMatt Macy /* 880a0b956f5SMartin Matuska * Insert planned separator into the new leaf, and use 881a0b956f5SMartin Matuska * the new value as the new separator. 882eda14cbcSMatt Macy */ 883a0b956f5SMartin Matuska zfs_btree_insert_leaf_impl(tree, new_leaf, 0, buf); 884a0b956f5SMartin Matuska bcpy(value, buf, size); 885eda14cbcSMatt Macy } 886eda14cbcSMatt Macy 887eda14cbcSMatt Macy /* 888eda14cbcSMatt Macy * Now that the node is split, we need to insert the new node into its 889eda14cbcSMatt Macy * parent. This may cause further splitting, bur only of core nodes. 890eda14cbcSMatt Macy */ 891eda14cbcSMatt Macy zfs_btree_insert_into_parent(tree, &leaf->btl_hdr, &new_leaf->btl_hdr, 892eda14cbcSMatt Macy buf); 893eda14cbcSMatt Macy kmem_free(buf, size); 894eda14cbcSMatt Macy } 895eda14cbcSMatt Macy 896a0b956f5SMartin Matuska static uint32_t 897eda14cbcSMatt Macy zfs_btree_find_parent_idx(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 898eda14cbcSMatt Macy { 899eda14cbcSMatt Macy void *buf; 900a0b956f5SMartin Matuska if (zfs_btree_is_core(hdr)) { 901eda14cbcSMatt Macy buf = ((zfs_btree_core_t *)hdr)->btc_elems; 902eda14cbcSMatt Macy } else { 903a0b956f5SMartin Matuska buf = ((zfs_btree_leaf_t *)hdr)->btl_elems + 904a0b956f5SMartin Matuska hdr->bth_first * tree->bt_elem_size; 905eda14cbcSMatt Macy } 906eda14cbcSMatt Macy zfs_btree_index_t idx; 907eda14cbcSMatt Macy zfs_btree_core_t *parent = hdr->bth_parent; 9084e8d558cSMartin Matuska VERIFY3P(tree->bt_find_in_buf(tree, parent->btc_elems, 909eda14cbcSMatt Macy parent->btc_hdr.bth_count, buf, &idx), ==, NULL); 910eda14cbcSMatt Macy ASSERT(idx.bti_before); 911eda14cbcSMatt Macy ASSERT3U(idx.bti_offset, <=, parent->btc_hdr.bth_count); 912eda14cbcSMatt Macy ASSERT3P(parent->btc_children[idx.bti_offset], ==, hdr); 913eda14cbcSMatt Macy return (idx.bti_offset); 914eda14cbcSMatt Macy } 915eda14cbcSMatt Macy 916eda14cbcSMatt Macy /* 917eda14cbcSMatt Macy * Take the b-tree out of bulk insert mode. During bulk-insert mode, some 918eda14cbcSMatt Macy * nodes may violate the invariant that non-root nodes must be at least half 919eda14cbcSMatt Macy * full. All nodes violating this invariant should be the last node in their 920eda14cbcSMatt Macy * particular level. To correct the invariant, we take values from their left 921eda14cbcSMatt Macy * neighbor until they are half full. They must have a left neighbor at their 922eda14cbcSMatt Macy * level because the last node at a level is not the first node unless it's 923eda14cbcSMatt Macy * the root. 924eda14cbcSMatt Macy */ 925eda14cbcSMatt Macy static void 926eda14cbcSMatt Macy zfs_btree_bulk_finish(zfs_btree_t *tree) 927eda14cbcSMatt Macy { 928eda14cbcSMatt Macy ASSERT3P(tree->bt_bulk, !=, NULL); 929eda14cbcSMatt Macy ASSERT3P(tree->bt_root, !=, NULL); 930eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = tree->bt_bulk; 931eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &leaf->btl_hdr; 932eda14cbcSMatt Macy zfs_btree_core_t *parent = hdr->bth_parent; 933a0b956f5SMartin Matuska size_t size = tree->bt_elem_size; 934a0b956f5SMartin Matuska uint32_t capacity = tree->bt_leaf_cap; 935eda14cbcSMatt Macy 936eda14cbcSMatt Macy /* 937eda14cbcSMatt Macy * The invariant doesn't apply to the root node, if that's the only 938eda14cbcSMatt Macy * node in the tree we're done. 939eda14cbcSMatt Macy */ 940eda14cbcSMatt Macy if (parent == NULL) { 941eda14cbcSMatt Macy tree->bt_bulk = NULL; 942eda14cbcSMatt Macy return; 943eda14cbcSMatt Macy } 944eda14cbcSMatt Macy 945eda14cbcSMatt Macy /* First, take elements to rebalance the leaf node. */ 946eda14cbcSMatt Macy if (hdr->bth_count < capacity / 2) { 947eda14cbcSMatt Macy /* 948eda14cbcSMatt Macy * First, find the left neighbor. The simplest way to do this 949eda14cbcSMatt Macy * is to call zfs_btree_prev twice; the first time finds some 950eda14cbcSMatt Macy * ancestor of this node, and the second time finds the left 951eda14cbcSMatt Macy * neighbor. The ancestor found is the lowest common ancestor 952eda14cbcSMatt Macy * of leaf and the neighbor. 953eda14cbcSMatt Macy */ 954eda14cbcSMatt Macy zfs_btree_index_t idx = { 955eda14cbcSMatt Macy .bti_node = hdr, 956eda14cbcSMatt Macy .bti_offset = 0 957eda14cbcSMatt Macy }; 958eda14cbcSMatt Macy VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL); 959a0b956f5SMartin Matuska ASSERT(zfs_btree_is_core(idx.bti_node)); 960eda14cbcSMatt Macy zfs_btree_core_t *common = (zfs_btree_core_t *)idx.bti_node; 961a0b956f5SMartin Matuska uint32_t common_idx = idx.bti_offset; 962eda14cbcSMatt Macy 963eda14cbcSMatt Macy VERIFY3P(zfs_btree_prev(tree, &idx, &idx), !=, NULL); 964a0b956f5SMartin Matuska ASSERT(!zfs_btree_is_core(idx.bti_node)); 965eda14cbcSMatt Macy zfs_btree_leaf_t *l_neighbor = (zfs_btree_leaf_t *)idx.bti_node; 966eda14cbcSMatt Macy zfs_btree_hdr_t *l_hdr = idx.bti_node; 967a0b956f5SMartin Matuska uint32_t move_count = (capacity / 2) - hdr->bth_count; 968eda14cbcSMatt Macy ASSERT3U(l_neighbor->btl_hdr.bth_count - move_count, >=, 969eda14cbcSMatt Macy capacity / 2); 970eda14cbcSMatt Macy 971eda14cbcSMatt Macy if (zfs_btree_verify_intensity >= 5) { 972a0b956f5SMartin Matuska for (uint32_t i = 0; i < move_count; i++) { 973eda14cbcSMatt Macy zfs_btree_verify_poison_at(tree, hdr, 974eda14cbcSMatt Macy leaf->btl_hdr.bth_count + i); 975eda14cbcSMatt Macy } 976eda14cbcSMatt Macy } 977eda14cbcSMatt Macy 978eda14cbcSMatt Macy /* First, shift elements in leaf back. */ 979a0b956f5SMartin Matuska bt_grow_leaf(tree, leaf, 0, move_count); 980eda14cbcSMatt Macy 981eda14cbcSMatt Macy /* Next, move the separator from the common ancestor to leaf. */ 982a0b956f5SMartin Matuska uint8_t *separator = common->btc_elems + common_idx * size; 983a0b956f5SMartin Matuska uint8_t *out = leaf->btl_elems + 984a0b956f5SMartin Matuska (hdr->bth_first + move_count - 1) * size; 985a0b956f5SMartin Matuska bcpy(separator, out, size); 986eda14cbcSMatt Macy 987eda14cbcSMatt Macy /* 988eda14cbcSMatt Macy * Now we move elements from the tail of the left neighbor to 989eda14cbcSMatt Macy * fill the remaining spots in leaf. 990eda14cbcSMatt Macy */ 991eda14cbcSMatt Macy bt_transfer_leaf(tree, l_neighbor, l_hdr->bth_count - 992a0b956f5SMartin Matuska (move_count - 1), move_count - 1, leaf, 0); 993eda14cbcSMatt Macy 994eda14cbcSMatt Macy /* 995eda14cbcSMatt Macy * Finally, move the new last element in the left neighbor to 996eda14cbcSMatt Macy * the separator. 997eda14cbcSMatt Macy */ 998a0b956f5SMartin Matuska bcpy(l_neighbor->btl_elems + (l_hdr->bth_first + 999a0b956f5SMartin Matuska l_hdr->bth_count - move_count) * size, separator, size); 1000eda14cbcSMatt Macy 1001eda14cbcSMatt Macy /* Adjust the node's counts, and we're done. */ 1002a0b956f5SMartin Matuska bt_shrink_leaf(tree, l_neighbor, l_hdr->bth_count - move_count, 1003a0b956f5SMartin Matuska move_count); 1004eda14cbcSMatt Macy 1005eda14cbcSMatt Macy ASSERT3U(l_hdr->bth_count, >=, capacity / 2); 1006eda14cbcSMatt Macy ASSERT3U(hdr->bth_count, >=, capacity / 2); 1007eda14cbcSMatt Macy } 1008eda14cbcSMatt Macy 1009eda14cbcSMatt Macy /* 1010eda14cbcSMatt Macy * Now we have to rebalance any ancestors of leaf that may also 1011eda14cbcSMatt Macy * violate the invariant. 1012eda14cbcSMatt Macy */ 1013eda14cbcSMatt Macy capacity = BTREE_CORE_ELEMS; 1014eda14cbcSMatt Macy while (parent->btc_hdr.bth_parent != NULL) { 1015eda14cbcSMatt Macy zfs_btree_core_t *cur = parent; 1016eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &cur->btc_hdr; 1017eda14cbcSMatt Macy parent = hdr->bth_parent; 1018eda14cbcSMatt Macy /* 1019eda14cbcSMatt Macy * If the invariant isn't violated, move on to the next 1020eda14cbcSMatt Macy * ancestor. 1021eda14cbcSMatt Macy */ 1022eda14cbcSMatt Macy if (hdr->bth_count >= capacity / 2) 1023eda14cbcSMatt Macy continue; 1024eda14cbcSMatt Macy 1025eda14cbcSMatt Macy /* 1026eda14cbcSMatt Macy * Because the smallest number of nodes we can move when 1027eda14cbcSMatt Macy * splitting is 2, we never need to worry about not having a 1028eda14cbcSMatt Macy * left sibling (a sibling is a neighbor with the same parent). 1029eda14cbcSMatt Macy */ 1030a0b956f5SMartin Matuska uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); 1031eda14cbcSMatt Macy ASSERT3U(parent_idx, >, 0); 1032eda14cbcSMatt Macy zfs_btree_core_t *l_neighbor = 1033eda14cbcSMatt Macy (zfs_btree_core_t *)parent->btc_children[parent_idx - 1]; 1034a0b956f5SMartin Matuska uint32_t move_count = (capacity / 2) - hdr->bth_count; 1035eda14cbcSMatt Macy ASSERT3U(l_neighbor->btc_hdr.bth_count - move_count, >=, 1036eda14cbcSMatt Macy capacity / 2); 1037eda14cbcSMatt Macy 1038eda14cbcSMatt Macy if (zfs_btree_verify_intensity >= 5) { 1039a0b956f5SMartin Matuska for (uint32_t i = 0; i < move_count; i++) { 1040eda14cbcSMatt Macy zfs_btree_verify_poison_at(tree, hdr, 1041eda14cbcSMatt Macy hdr->bth_count + i); 1042eda14cbcSMatt Macy } 1043eda14cbcSMatt Macy } 1044eda14cbcSMatt Macy /* First, shift things in the right node back. */ 1045eda14cbcSMatt Macy bt_shift_core(tree, cur, 0, hdr->bth_count, move_count, 1046eda14cbcSMatt Macy BSS_TRAPEZOID, BSD_RIGHT); 1047eda14cbcSMatt Macy 1048eda14cbcSMatt Macy /* Next, move the separator to the right node. */ 1049eda14cbcSMatt Macy uint8_t *separator = parent->btc_elems + ((parent_idx - 1) * 1050eda14cbcSMatt Macy size); 1051eda14cbcSMatt Macy uint8_t *e_out = cur->btc_elems + ((move_count - 1) * size); 1052a0b956f5SMartin Matuska bcpy(separator, e_out, size); 1053eda14cbcSMatt Macy 1054eda14cbcSMatt Macy /* 1055eda14cbcSMatt Macy * Now, move elements and children from the left node to the 1056eda14cbcSMatt Macy * right. We move one more child than elements. 1057eda14cbcSMatt Macy */ 1058eda14cbcSMatt Macy move_count--; 1059a0b956f5SMartin Matuska uint32_t move_idx = l_neighbor->btc_hdr.bth_count - move_count; 1060eda14cbcSMatt Macy bt_transfer_core(tree, l_neighbor, move_idx, move_count, cur, 0, 1061eda14cbcSMatt Macy BSS_TRAPEZOID); 1062eda14cbcSMatt Macy 1063eda14cbcSMatt Macy /* 1064eda14cbcSMatt Macy * Finally, move the last element in the left node to the 1065eda14cbcSMatt Macy * separator's position. 1066eda14cbcSMatt Macy */ 1067eda14cbcSMatt Macy move_idx--; 1068a0b956f5SMartin Matuska bcpy(l_neighbor->btc_elems + move_idx * size, separator, size); 1069eda14cbcSMatt Macy 1070eda14cbcSMatt Macy l_neighbor->btc_hdr.bth_count -= move_count + 1; 1071eda14cbcSMatt Macy hdr->bth_count += move_count + 1; 1072eda14cbcSMatt Macy 1073eda14cbcSMatt Macy ASSERT3U(l_neighbor->btc_hdr.bth_count, >=, capacity / 2); 1074eda14cbcSMatt Macy ASSERT3U(hdr->bth_count, >=, capacity / 2); 1075eda14cbcSMatt Macy 1076eda14cbcSMatt Macy zfs_btree_poison_node(tree, &l_neighbor->btc_hdr); 1077eda14cbcSMatt Macy 1078a0b956f5SMartin Matuska for (uint32_t i = 0; i <= hdr->bth_count; i++) 1079eda14cbcSMatt Macy cur->btc_children[i]->bth_parent = cur; 1080eda14cbcSMatt Macy } 1081eda14cbcSMatt Macy 1082eda14cbcSMatt Macy tree->bt_bulk = NULL; 1083a0b956f5SMartin Matuska zfs_btree_verify(tree); 1084eda14cbcSMatt Macy } 1085eda14cbcSMatt Macy 1086eda14cbcSMatt Macy /* 1087eda14cbcSMatt Macy * Insert value into tree at the location specified by where. 1088eda14cbcSMatt Macy */ 1089eda14cbcSMatt Macy void 1090eda14cbcSMatt Macy zfs_btree_add_idx(zfs_btree_t *tree, const void *value, 1091eda14cbcSMatt Macy const zfs_btree_index_t *where) 1092eda14cbcSMatt Macy { 1093eda14cbcSMatt Macy zfs_btree_index_t idx = {0}; 1094eda14cbcSMatt Macy 1095eda14cbcSMatt Macy /* If we're not inserting in the last leaf, end bulk insert mode. */ 1096eda14cbcSMatt Macy if (tree->bt_bulk != NULL) { 1097eda14cbcSMatt Macy if (where->bti_node != &tree->bt_bulk->btl_hdr) { 1098eda14cbcSMatt Macy zfs_btree_bulk_finish(tree); 1099eda14cbcSMatt Macy VERIFY3P(zfs_btree_find(tree, value, &idx), ==, NULL); 1100eda14cbcSMatt Macy where = &idx; 1101eda14cbcSMatt Macy } 1102eda14cbcSMatt Macy } 1103eda14cbcSMatt Macy 1104eda14cbcSMatt Macy tree->bt_num_elems++; 1105eda14cbcSMatt Macy /* 1106eda14cbcSMatt Macy * If this is the first element in the tree, create a leaf root node 1107eda14cbcSMatt Macy * and add the value to it. 1108eda14cbcSMatt Macy */ 1109eda14cbcSMatt Macy if (where->bti_node == NULL) { 1110eda14cbcSMatt Macy ASSERT3U(tree->bt_num_elems, ==, 1); 1111eda14cbcSMatt Macy ASSERT3S(tree->bt_height, ==, -1); 1112eda14cbcSMatt Macy ASSERT3P(tree->bt_root, ==, NULL); 1113eda14cbcSMatt Macy ASSERT0(where->bti_offset); 1114eda14cbcSMatt Macy 1115eda14cbcSMatt Macy tree->bt_num_nodes++; 1116dbd5678dSMartin Matuska zfs_btree_leaf_t *leaf = zfs_btree_leaf_alloc(tree); 1117eda14cbcSMatt Macy tree->bt_root = &leaf->btl_hdr; 1118eda14cbcSMatt Macy tree->bt_height++; 1119eda14cbcSMatt Macy 1120eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &leaf->btl_hdr; 1121eda14cbcSMatt Macy hdr->bth_parent = NULL; 1122a0b956f5SMartin Matuska hdr->bth_first = 0; 1123eda14cbcSMatt Macy hdr->bth_count = 0; 1124eda14cbcSMatt Macy zfs_btree_poison_node(tree, hdr); 1125eda14cbcSMatt Macy 1126eda14cbcSMatt Macy zfs_btree_insert_into_leaf(tree, leaf, value, 0); 1127eda14cbcSMatt Macy tree->bt_bulk = leaf; 1128a0b956f5SMartin Matuska } else if (!zfs_btree_is_core(where->bti_node)) { 1129eda14cbcSMatt Macy /* 1130eda14cbcSMatt Macy * If we're inserting into a leaf, go directly to the helper 1131eda14cbcSMatt Macy * function. 1132eda14cbcSMatt Macy */ 1133eda14cbcSMatt Macy zfs_btree_insert_into_leaf(tree, 1134eda14cbcSMatt Macy (zfs_btree_leaf_t *)where->bti_node, value, 1135eda14cbcSMatt Macy where->bti_offset); 1136eda14cbcSMatt Macy } else { 1137eda14cbcSMatt Macy /* 1138eda14cbcSMatt Macy * If we're inserting into a core node, we can't just shift 1139eda14cbcSMatt Macy * the existing element in that slot in the same node without 1140eda14cbcSMatt Macy * breaking our ordering invariants. Instead we place the new 1141eda14cbcSMatt Macy * value in the node at that spot and then insert the old 1142eda14cbcSMatt Macy * separator into the first slot in the subtree to the right. 1143eda14cbcSMatt Macy */ 1144eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)where->bti_node; 1145eda14cbcSMatt Macy 1146eda14cbcSMatt Macy /* 1147eda14cbcSMatt Macy * We can ignore bti_before, because either way the value 1148eda14cbcSMatt Macy * should end up in bti_offset. 1149eda14cbcSMatt Macy */ 1150a0b956f5SMartin Matuska uint32_t off = where->bti_offset; 1151eda14cbcSMatt Macy zfs_btree_hdr_t *subtree = node->btc_children[off + 1]; 1152eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 1153eda14cbcSMatt Macy uint8_t *buf = kmem_alloc(size, KM_SLEEP); 1154a0b956f5SMartin Matuska bcpy(node->btc_elems + off * size, buf, size); 1155a0b956f5SMartin Matuska bcpy(value, node->btc_elems + off * size, size); 1156eda14cbcSMatt Macy 1157eda14cbcSMatt Macy /* 1158eda14cbcSMatt Macy * Find the first slot in the subtree to the right, insert 1159eda14cbcSMatt Macy * there. 1160eda14cbcSMatt Macy */ 1161eda14cbcSMatt Macy zfs_btree_index_t new_idx; 1162a0b956f5SMartin Matuska VERIFY3P(zfs_btree_first_helper(tree, subtree, &new_idx), !=, 1163a0b956f5SMartin Matuska NULL); 1164eda14cbcSMatt Macy ASSERT0(new_idx.bti_offset); 1165a0b956f5SMartin Matuska ASSERT(!zfs_btree_is_core(new_idx.bti_node)); 1166eda14cbcSMatt Macy zfs_btree_insert_into_leaf(tree, 1167eda14cbcSMatt Macy (zfs_btree_leaf_t *)new_idx.bti_node, buf, 0); 1168eda14cbcSMatt Macy kmem_free(buf, size); 1169eda14cbcSMatt Macy } 1170eda14cbcSMatt Macy zfs_btree_verify(tree); 1171eda14cbcSMatt Macy } 1172eda14cbcSMatt Macy 1173eda14cbcSMatt Macy /* 1174eda14cbcSMatt Macy * Return the first element in the tree, and put its location in where if 1175eda14cbcSMatt Macy * non-null. 1176eda14cbcSMatt Macy */ 1177eda14cbcSMatt Macy void * 1178eda14cbcSMatt Macy zfs_btree_first(zfs_btree_t *tree, zfs_btree_index_t *where) 1179eda14cbcSMatt Macy { 1180eda14cbcSMatt Macy if (tree->bt_height == -1) { 1181eda14cbcSMatt Macy ASSERT0(tree->bt_num_elems); 1182eda14cbcSMatt Macy return (NULL); 1183eda14cbcSMatt Macy } 1184a0b956f5SMartin Matuska return (zfs_btree_first_helper(tree, tree->bt_root, where)); 1185eda14cbcSMatt Macy } 1186eda14cbcSMatt Macy 1187eda14cbcSMatt Macy /* 1188eda14cbcSMatt Macy * Find the last element in the subtree rooted at hdr, return its value and 1189eda14cbcSMatt Macy * put its location in where if non-null. 1190eda14cbcSMatt Macy */ 1191eda14cbcSMatt Macy static void * 1192eda14cbcSMatt Macy zfs_btree_last_helper(zfs_btree_t *btree, zfs_btree_hdr_t *hdr, 1193eda14cbcSMatt Macy zfs_btree_index_t *where) 1194eda14cbcSMatt Macy { 1195eda14cbcSMatt Macy zfs_btree_hdr_t *node; 1196eda14cbcSMatt Macy 1197a0b956f5SMartin Matuska for (node = hdr; zfs_btree_is_core(node); node = 1198eda14cbcSMatt Macy ((zfs_btree_core_t *)node)->btc_children[node->bth_count]) 1199eda14cbcSMatt Macy ; 1200eda14cbcSMatt Macy 1201eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)node; 1202eda14cbcSMatt Macy if (where != NULL) { 1203eda14cbcSMatt Macy where->bti_node = node; 1204eda14cbcSMatt Macy where->bti_offset = node->bth_count - 1; 1205eda14cbcSMatt Macy where->bti_before = B_FALSE; 1206eda14cbcSMatt Macy } 1207a0b956f5SMartin Matuska return (leaf->btl_elems + (node->bth_first + node->bth_count - 1) * 1208a0b956f5SMartin Matuska btree->bt_elem_size); 1209eda14cbcSMatt Macy } 1210eda14cbcSMatt Macy 1211eda14cbcSMatt Macy /* 1212eda14cbcSMatt Macy * Return the last element in the tree, and put its location in where if 1213eda14cbcSMatt Macy * non-null. 1214eda14cbcSMatt Macy */ 1215eda14cbcSMatt Macy void * 1216eda14cbcSMatt Macy zfs_btree_last(zfs_btree_t *tree, zfs_btree_index_t *where) 1217eda14cbcSMatt Macy { 1218eda14cbcSMatt Macy if (tree->bt_height == -1) { 1219eda14cbcSMatt Macy ASSERT0(tree->bt_num_elems); 1220eda14cbcSMatt Macy return (NULL); 1221eda14cbcSMatt Macy } 1222eda14cbcSMatt Macy return (zfs_btree_last_helper(tree, tree->bt_root, where)); 1223eda14cbcSMatt Macy } 1224eda14cbcSMatt Macy 1225eda14cbcSMatt Macy /* 1226eda14cbcSMatt Macy * This function contains the logic to find the next node in the tree. A 1227eda14cbcSMatt Macy * helper function is used because there are multiple internal consumemrs of 1228eda14cbcSMatt Macy * this logic. The done_func is used by zfs_btree_destroy_nodes to clean up each 1229eda14cbcSMatt Macy * node after we've finished with it. 1230eda14cbcSMatt Macy */ 1231eda14cbcSMatt Macy static void * 1232eda14cbcSMatt Macy zfs_btree_next_helper(zfs_btree_t *tree, const zfs_btree_index_t *idx, 1233eda14cbcSMatt Macy zfs_btree_index_t *out_idx, 1234eda14cbcSMatt Macy void (*done_func)(zfs_btree_t *, zfs_btree_hdr_t *)) 1235eda14cbcSMatt Macy { 1236eda14cbcSMatt Macy if (idx->bti_node == NULL) { 1237eda14cbcSMatt Macy ASSERT3S(tree->bt_height, ==, -1); 1238eda14cbcSMatt Macy return (NULL); 1239eda14cbcSMatt Macy } 1240eda14cbcSMatt Macy 1241a0b956f5SMartin Matuska uint32_t offset = idx->bti_offset; 1242a0b956f5SMartin Matuska if (!zfs_btree_is_core(idx->bti_node)) { 1243eda14cbcSMatt Macy /* 1244eda14cbcSMatt Macy * When finding the next element of an element in a leaf, 1245eda14cbcSMatt Macy * there are two cases. If the element isn't the last one in 1246eda14cbcSMatt Macy * the leaf, in which case we just return the next element in 1247eda14cbcSMatt Macy * the leaf. Otherwise, we need to traverse up our parents 1248eda14cbcSMatt Macy * until we find one where our ancestor isn't the last child 1249eda14cbcSMatt Macy * of its parent. Once we do, the next element is the 1250eda14cbcSMatt Macy * separator after our ancestor in its parent. 1251eda14cbcSMatt Macy */ 1252eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; 1253a0b956f5SMartin Matuska uint32_t new_off = offset + (idx->bti_before ? 0 : 1); 1254eda14cbcSMatt Macy if (leaf->btl_hdr.bth_count > new_off) { 1255eda14cbcSMatt Macy out_idx->bti_node = &leaf->btl_hdr; 1256eda14cbcSMatt Macy out_idx->bti_offset = new_off; 1257eda14cbcSMatt Macy out_idx->bti_before = B_FALSE; 1258a0b956f5SMartin Matuska return (leaf->btl_elems + (leaf->btl_hdr.bth_first + 1259a0b956f5SMartin Matuska new_off) * tree->bt_elem_size); 1260eda14cbcSMatt Macy } 1261eda14cbcSMatt Macy 1262eda14cbcSMatt Macy zfs_btree_hdr_t *prev = &leaf->btl_hdr; 1263eda14cbcSMatt Macy for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent; 1264eda14cbcSMatt Macy node != NULL; node = node->btc_hdr.bth_parent) { 1265eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &node->btc_hdr; 1266a0b956f5SMartin Matuska ASSERT(zfs_btree_is_core(hdr)); 1267a0b956f5SMartin Matuska uint32_t i = zfs_btree_find_parent_idx(tree, prev); 1268eda14cbcSMatt Macy if (done_func != NULL) 1269eda14cbcSMatt Macy done_func(tree, prev); 1270eda14cbcSMatt Macy if (i == hdr->bth_count) { 1271eda14cbcSMatt Macy prev = hdr; 1272eda14cbcSMatt Macy continue; 1273eda14cbcSMatt Macy } 1274eda14cbcSMatt Macy out_idx->bti_node = hdr; 1275eda14cbcSMatt Macy out_idx->bti_offset = i; 1276eda14cbcSMatt Macy out_idx->bti_before = B_FALSE; 1277eda14cbcSMatt Macy return (node->btc_elems + i * tree->bt_elem_size); 1278eda14cbcSMatt Macy } 1279eda14cbcSMatt Macy if (done_func != NULL) 1280eda14cbcSMatt Macy done_func(tree, prev); 1281eda14cbcSMatt Macy /* 1282eda14cbcSMatt Macy * We've traversed all the way up and been at the end of the 1283eda14cbcSMatt Macy * node every time, so this was the last element in the tree. 1284eda14cbcSMatt Macy */ 1285eda14cbcSMatt Macy return (NULL); 1286eda14cbcSMatt Macy } 1287eda14cbcSMatt Macy 1288eda14cbcSMatt Macy /* If we were before an element in a core node, return that element. */ 1289a0b956f5SMartin Matuska ASSERT(zfs_btree_is_core(idx->bti_node)); 1290eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; 1291eda14cbcSMatt Macy if (idx->bti_before) { 1292eda14cbcSMatt Macy out_idx->bti_before = B_FALSE; 1293eda14cbcSMatt Macy return (node->btc_elems + offset * tree->bt_elem_size); 1294eda14cbcSMatt Macy } 1295eda14cbcSMatt Macy 1296eda14cbcSMatt Macy /* 1297eda14cbcSMatt Macy * The next element from one in a core node is the first element in 1298eda14cbcSMatt Macy * the subtree just to the right of the separator. 1299eda14cbcSMatt Macy */ 1300eda14cbcSMatt Macy zfs_btree_hdr_t *child = node->btc_children[offset + 1]; 1301a0b956f5SMartin Matuska return (zfs_btree_first_helper(tree, child, out_idx)); 1302eda14cbcSMatt Macy } 1303eda14cbcSMatt Macy 1304eda14cbcSMatt Macy /* 1305eda14cbcSMatt Macy * Return the next valued node in the tree. The same address can be safely 1306eda14cbcSMatt Macy * passed for idx and out_idx. 1307eda14cbcSMatt Macy */ 1308eda14cbcSMatt Macy void * 1309eda14cbcSMatt Macy zfs_btree_next(zfs_btree_t *tree, const zfs_btree_index_t *idx, 1310eda14cbcSMatt Macy zfs_btree_index_t *out_idx) 1311eda14cbcSMatt Macy { 1312eda14cbcSMatt Macy return (zfs_btree_next_helper(tree, idx, out_idx, NULL)); 1313eda14cbcSMatt Macy } 1314eda14cbcSMatt Macy 1315eda14cbcSMatt Macy /* 1316eda14cbcSMatt Macy * Return the previous valued node in the tree. The same value can be safely 1317eda14cbcSMatt Macy * passed for idx and out_idx. 1318eda14cbcSMatt Macy */ 1319eda14cbcSMatt Macy void * 1320eda14cbcSMatt Macy zfs_btree_prev(zfs_btree_t *tree, const zfs_btree_index_t *idx, 1321eda14cbcSMatt Macy zfs_btree_index_t *out_idx) 1322eda14cbcSMatt Macy { 1323eda14cbcSMatt Macy if (idx->bti_node == NULL) { 1324eda14cbcSMatt Macy ASSERT3S(tree->bt_height, ==, -1); 1325eda14cbcSMatt Macy return (NULL); 1326eda14cbcSMatt Macy } 1327eda14cbcSMatt Macy 1328a0b956f5SMartin Matuska uint32_t offset = idx->bti_offset; 1329a0b956f5SMartin Matuska if (!zfs_btree_is_core(idx->bti_node)) { 1330eda14cbcSMatt Macy /* 1331eda14cbcSMatt Macy * When finding the previous element of an element in a leaf, 1332eda14cbcSMatt Macy * there are two cases. If the element isn't the first one in 1333eda14cbcSMatt Macy * the leaf, in which case we just return the previous element 1334eda14cbcSMatt Macy * in the leaf. Otherwise, we need to traverse up our parents 1335eda14cbcSMatt Macy * until we find one where our previous ancestor isn't the 1336eda14cbcSMatt Macy * first child. Once we do, the previous element is the 1337eda14cbcSMatt Macy * separator after our previous ancestor. 1338eda14cbcSMatt Macy */ 1339eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; 1340eda14cbcSMatt Macy if (offset != 0) { 1341eda14cbcSMatt Macy out_idx->bti_node = &leaf->btl_hdr; 1342eda14cbcSMatt Macy out_idx->bti_offset = offset - 1; 1343eda14cbcSMatt Macy out_idx->bti_before = B_FALSE; 1344a0b956f5SMartin Matuska return (leaf->btl_elems + (leaf->btl_hdr.bth_first + 1345a0b956f5SMartin Matuska offset - 1) * tree->bt_elem_size); 1346eda14cbcSMatt Macy } 1347eda14cbcSMatt Macy zfs_btree_hdr_t *prev = &leaf->btl_hdr; 1348eda14cbcSMatt Macy for (zfs_btree_core_t *node = leaf->btl_hdr.bth_parent; 1349eda14cbcSMatt Macy node != NULL; node = node->btc_hdr.bth_parent) { 1350eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &node->btc_hdr; 1351a0b956f5SMartin Matuska ASSERT(zfs_btree_is_core(hdr)); 1352a0b956f5SMartin Matuska uint32_t i = zfs_btree_find_parent_idx(tree, prev); 1353eda14cbcSMatt Macy if (i == 0) { 1354eda14cbcSMatt Macy prev = hdr; 1355eda14cbcSMatt Macy continue; 1356eda14cbcSMatt Macy } 1357eda14cbcSMatt Macy out_idx->bti_node = hdr; 1358eda14cbcSMatt Macy out_idx->bti_offset = i - 1; 1359eda14cbcSMatt Macy out_idx->bti_before = B_FALSE; 1360eda14cbcSMatt Macy return (node->btc_elems + (i - 1) * tree->bt_elem_size); 1361eda14cbcSMatt Macy } 1362eda14cbcSMatt Macy /* 1363eda14cbcSMatt Macy * We've traversed all the way up and been at the start of the 1364eda14cbcSMatt Macy * node every time, so this was the first node in the tree. 1365eda14cbcSMatt Macy */ 1366eda14cbcSMatt Macy return (NULL); 1367eda14cbcSMatt Macy } 1368eda14cbcSMatt Macy 1369eda14cbcSMatt Macy /* 1370eda14cbcSMatt Macy * The previous element from one in a core node is the last element in 1371eda14cbcSMatt Macy * the subtree just to the left of the separator. 1372eda14cbcSMatt Macy */ 1373a0b956f5SMartin Matuska ASSERT(zfs_btree_is_core(idx->bti_node)); 1374eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; 1375eda14cbcSMatt Macy zfs_btree_hdr_t *child = node->btc_children[offset]; 1376eda14cbcSMatt Macy return (zfs_btree_last_helper(tree, child, out_idx)); 1377eda14cbcSMatt Macy } 1378eda14cbcSMatt Macy 1379eda14cbcSMatt Macy /* 1380eda14cbcSMatt Macy * Get the value at the provided index in the tree. 1381eda14cbcSMatt Macy * 1382eda14cbcSMatt Macy * Note that the value returned from this function can be mutated, but only 1383eda14cbcSMatt Macy * if it will not change the ordering of the element with respect to any other 1384eda14cbcSMatt Macy * elements that could be in the tree. 1385eda14cbcSMatt Macy */ 1386eda14cbcSMatt Macy void * 1387eda14cbcSMatt Macy zfs_btree_get(zfs_btree_t *tree, zfs_btree_index_t *idx) 1388eda14cbcSMatt Macy { 1389eda14cbcSMatt Macy ASSERT(!idx->bti_before); 1390a0b956f5SMartin Matuska size_t size = tree->bt_elem_size; 1391a0b956f5SMartin Matuska if (!zfs_btree_is_core(idx->bti_node)) { 1392eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)idx->bti_node; 1393a0b956f5SMartin Matuska return (leaf->btl_elems + (leaf->btl_hdr.bth_first + 1394a0b956f5SMartin Matuska idx->bti_offset) * size); 1395eda14cbcSMatt Macy } 1396eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)idx->bti_node; 1397a0b956f5SMartin Matuska return (node->btc_elems + idx->bti_offset * size); 1398eda14cbcSMatt Macy } 1399eda14cbcSMatt Macy 1400eda14cbcSMatt Macy /* Add the given value to the tree. Must not already be in the tree. */ 1401eda14cbcSMatt Macy void 1402eda14cbcSMatt Macy zfs_btree_add(zfs_btree_t *tree, const void *node) 1403eda14cbcSMatt Macy { 1404eda14cbcSMatt Macy zfs_btree_index_t where = {0}; 1405eda14cbcSMatt Macy VERIFY3P(zfs_btree_find(tree, node, &where), ==, NULL); 1406eda14cbcSMatt Macy zfs_btree_add_idx(tree, node, &where); 1407eda14cbcSMatt Macy } 1408eda14cbcSMatt Macy 1409eda14cbcSMatt Macy /* Helper function to free a tree node. */ 1410eda14cbcSMatt Macy static void 1411eda14cbcSMatt Macy zfs_btree_node_destroy(zfs_btree_t *tree, zfs_btree_hdr_t *node) 1412eda14cbcSMatt Macy { 1413eda14cbcSMatt Macy tree->bt_num_nodes--; 1414a0b956f5SMartin Matuska if (!zfs_btree_is_core(node)) { 1415dbd5678dSMartin Matuska zfs_btree_leaf_free(tree, node); 1416eda14cbcSMatt Macy } else { 1417eda14cbcSMatt Macy kmem_free(node, sizeof (zfs_btree_core_t) + 1418eda14cbcSMatt Macy BTREE_CORE_ELEMS * tree->bt_elem_size); 1419eda14cbcSMatt Macy } 1420eda14cbcSMatt Macy } 1421eda14cbcSMatt Macy 1422eda14cbcSMatt Macy /* 1423eda14cbcSMatt Macy * Remove the rm_hdr and the separator to its left from the parent node. The 1424eda14cbcSMatt Macy * buffer that rm_hdr was stored in may already be freed, so its contents 1425eda14cbcSMatt Macy * cannot be accessed. 1426eda14cbcSMatt Macy */ 1427eda14cbcSMatt Macy static void 1428eda14cbcSMatt Macy zfs_btree_remove_from_node(zfs_btree_t *tree, zfs_btree_core_t *node, 1429eda14cbcSMatt Macy zfs_btree_hdr_t *rm_hdr) 1430eda14cbcSMatt Macy { 1431eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 1432a0b956f5SMartin Matuska uint32_t min_count = (BTREE_CORE_ELEMS / 2) - 1; 1433eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = &node->btc_hdr; 1434eda14cbcSMatt Macy /* 1435eda14cbcSMatt Macy * If the node is the root node and rm_hdr is one of two children, 1436eda14cbcSMatt Macy * promote the other child to the root. 1437eda14cbcSMatt Macy */ 1438eda14cbcSMatt Macy if (hdr->bth_parent == NULL && hdr->bth_count <= 1) { 1439eda14cbcSMatt Macy ASSERT3U(hdr->bth_count, ==, 1); 1440eda14cbcSMatt Macy ASSERT3P(tree->bt_root, ==, node); 1441eda14cbcSMatt Macy ASSERT3P(node->btc_children[1], ==, rm_hdr); 1442eda14cbcSMatt Macy tree->bt_root = node->btc_children[0]; 1443eda14cbcSMatt Macy node->btc_children[0]->bth_parent = NULL; 1444eda14cbcSMatt Macy zfs_btree_node_destroy(tree, hdr); 1445eda14cbcSMatt Macy tree->bt_height--; 1446eda14cbcSMatt Macy return; 1447eda14cbcSMatt Macy } 1448eda14cbcSMatt Macy 1449a0b956f5SMartin Matuska uint32_t idx; 1450eda14cbcSMatt Macy for (idx = 0; idx <= hdr->bth_count; idx++) { 1451eda14cbcSMatt Macy if (node->btc_children[idx] == rm_hdr) 1452eda14cbcSMatt Macy break; 1453eda14cbcSMatt Macy } 1454eda14cbcSMatt Macy ASSERT3U(idx, <=, hdr->bth_count); 1455eda14cbcSMatt Macy 1456eda14cbcSMatt Macy /* 1457eda14cbcSMatt Macy * If the node is the root or it has more than the minimum number of 1458eda14cbcSMatt Macy * children, just remove the child and separator, and return. 1459eda14cbcSMatt Macy */ 1460eda14cbcSMatt Macy if (hdr->bth_parent == NULL || 1461eda14cbcSMatt Macy hdr->bth_count > min_count) { 1462eda14cbcSMatt Macy /* 1463eda14cbcSMatt Macy * Shift the element and children to the right of rm_hdr to 1464eda14cbcSMatt Macy * the left by one spot. 1465eda14cbcSMatt Macy */ 1466eda14cbcSMatt Macy bt_shift_core_left(tree, node, idx, hdr->bth_count - idx, 1467eda14cbcSMatt Macy BSS_PARALLELOGRAM); 1468eda14cbcSMatt Macy hdr->bth_count--; 1469a0b956f5SMartin Matuska zfs_btree_poison_node_at(tree, hdr, hdr->bth_count, 1); 1470eda14cbcSMatt Macy return; 1471eda14cbcSMatt Macy } 1472eda14cbcSMatt Macy 1473eda14cbcSMatt Macy ASSERT3U(hdr->bth_count, ==, min_count); 1474eda14cbcSMatt Macy 1475eda14cbcSMatt Macy /* 1476eda14cbcSMatt Macy * Now we try to take a node from a neighbor. We check left, then 1477eda14cbcSMatt Macy * right. If the neighbor exists and has more than the minimum number 1478eda14cbcSMatt Macy * of elements, we move the separator between us and them to our 1479eda14cbcSMatt Macy * node, move their closest element (last for left, first for right) 1480eda14cbcSMatt Macy * to the separator, and move their closest child to our node. Along 1481eda14cbcSMatt Macy * the way we need to collapse the gap made by idx, and (for our right 1482eda14cbcSMatt Macy * neighbor) the gap made by removing their first element and child. 1483eda14cbcSMatt Macy * 1484eda14cbcSMatt Macy * Note: this logic currently doesn't support taking from a neighbor 1485eda14cbcSMatt Macy * that isn't a sibling (i.e. a neighbor with a different 1486eda14cbcSMatt Macy * parent). This isn't critical functionality, but may be worth 1487eda14cbcSMatt Macy * implementing in the future for completeness' sake. 1488eda14cbcSMatt Macy */ 1489eda14cbcSMatt Macy zfs_btree_core_t *parent = hdr->bth_parent; 1490a0b956f5SMartin Matuska uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); 1491eda14cbcSMatt Macy 1492eda14cbcSMatt Macy zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL : 1493eda14cbcSMatt Macy parent->btc_children[parent_idx - 1]); 1494eda14cbcSMatt Macy if (l_hdr != NULL && l_hdr->bth_count > min_count) { 1495eda14cbcSMatt Macy /* We can take a node from the left neighbor. */ 1496a0b956f5SMartin Matuska ASSERT(zfs_btree_is_core(l_hdr)); 1497eda14cbcSMatt Macy zfs_btree_core_t *neighbor = (zfs_btree_core_t *)l_hdr; 1498eda14cbcSMatt Macy 1499eda14cbcSMatt Macy /* 1500eda14cbcSMatt Macy * Start by shifting the elements and children in the current 1501eda14cbcSMatt Macy * node to the right by one spot. 1502eda14cbcSMatt Macy */ 1503eda14cbcSMatt Macy bt_shift_core_right(tree, node, 0, idx - 1, BSS_TRAPEZOID); 1504eda14cbcSMatt Macy 1505eda14cbcSMatt Macy /* 1506eda14cbcSMatt Macy * Move the separator between node and neighbor to the first 1507eda14cbcSMatt Macy * element slot in the current node. 1508eda14cbcSMatt Macy */ 1509eda14cbcSMatt Macy uint8_t *separator = parent->btc_elems + (parent_idx - 1) * 1510eda14cbcSMatt Macy size; 1511a0b956f5SMartin Matuska bcpy(separator, node->btc_elems, size); 1512eda14cbcSMatt Macy 1513eda14cbcSMatt Macy /* Move the last child of neighbor to our first child slot. */ 1514a0b956f5SMartin Matuska node->btc_children[0] = 1515a0b956f5SMartin Matuska neighbor->btc_children[l_hdr->bth_count]; 1516eda14cbcSMatt Macy node->btc_children[0]->bth_parent = node; 1517eda14cbcSMatt Macy 1518eda14cbcSMatt Macy /* Move the last element of neighbor to the separator spot. */ 1519eda14cbcSMatt Macy uint8_t *take_elem = neighbor->btc_elems + 1520eda14cbcSMatt Macy (l_hdr->bth_count - 1) * size; 1521a0b956f5SMartin Matuska bcpy(take_elem, separator, size); 1522eda14cbcSMatt Macy l_hdr->bth_count--; 1523a0b956f5SMartin Matuska zfs_btree_poison_node_at(tree, l_hdr, l_hdr->bth_count, 1); 1524eda14cbcSMatt Macy return; 1525eda14cbcSMatt Macy } 1526eda14cbcSMatt Macy 1527eda14cbcSMatt Macy zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ? 1528eda14cbcSMatt Macy NULL : parent->btc_children[parent_idx + 1]); 1529eda14cbcSMatt Macy if (r_hdr != NULL && r_hdr->bth_count > min_count) { 1530eda14cbcSMatt Macy /* We can take a node from the right neighbor. */ 1531a0b956f5SMartin Matuska ASSERT(zfs_btree_is_core(r_hdr)); 1532eda14cbcSMatt Macy zfs_btree_core_t *neighbor = (zfs_btree_core_t *)r_hdr; 1533eda14cbcSMatt Macy 1534eda14cbcSMatt Macy /* 1535eda14cbcSMatt Macy * Shift elements in node left by one spot to overwrite rm_hdr 1536eda14cbcSMatt Macy * and the separator before it. 1537eda14cbcSMatt Macy */ 1538eda14cbcSMatt Macy bt_shift_core_left(tree, node, idx, hdr->bth_count - idx, 1539eda14cbcSMatt Macy BSS_PARALLELOGRAM); 1540eda14cbcSMatt Macy 1541eda14cbcSMatt Macy /* 1542eda14cbcSMatt Macy * Move the separator between node and neighbor to the last 1543eda14cbcSMatt Macy * element spot in node. 1544eda14cbcSMatt Macy */ 1545eda14cbcSMatt Macy uint8_t *separator = parent->btc_elems + parent_idx * size; 1546a0b956f5SMartin Matuska bcpy(separator, node->btc_elems + (hdr->bth_count - 1) * size, 1547eda14cbcSMatt Macy size); 1548eda14cbcSMatt Macy 1549eda14cbcSMatt Macy /* 1550eda14cbcSMatt Macy * Move the first child of neighbor to the last child spot in 1551eda14cbcSMatt Macy * node. 1552eda14cbcSMatt Macy */ 1553a0b956f5SMartin Matuska node->btc_children[hdr->bth_count] = neighbor->btc_children[0]; 1554eda14cbcSMatt Macy node->btc_children[hdr->bth_count]->bth_parent = node; 1555eda14cbcSMatt Macy 1556eda14cbcSMatt Macy /* Move the first element of neighbor to the separator spot. */ 1557eda14cbcSMatt Macy uint8_t *take_elem = neighbor->btc_elems; 1558a0b956f5SMartin Matuska bcpy(take_elem, separator, size); 1559eda14cbcSMatt Macy r_hdr->bth_count--; 1560eda14cbcSMatt Macy 1561eda14cbcSMatt Macy /* 1562eda14cbcSMatt Macy * Shift the elements and children of neighbor to cover the 1563eda14cbcSMatt Macy * stolen elements. 1564eda14cbcSMatt Macy */ 1565eda14cbcSMatt Macy bt_shift_core_left(tree, neighbor, 1, r_hdr->bth_count, 1566eda14cbcSMatt Macy BSS_TRAPEZOID); 1567a0b956f5SMartin Matuska zfs_btree_poison_node_at(tree, r_hdr, r_hdr->bth_count, 1); 1568eda14cbcSMatt Macy return; 1569eda14cbcSMatt Macy } 1570eda14cbcSMatt Macy 1571eda14cbcSMatt Macy /* 1572eda14cbcSMatt Macy * In this case, neither of our neighbors can spare an element, so we 1573eda14cbcSMatt Macy * need to merge with one of them. We prefer the left one, 1574eda14cbcSMatt Macy * arbitrarily. Move the separator into the leftmost merging node 1575eda14cbcSMatt Macy * (which may be us or the left neighbor), and then move the right 1576eda14cbcSMatt Macy * merging node's elements. Once that's done, we go back and delete 1577eda14cbcSMatt Macy * the element we're removing. Finally, go into the parent and delete 1578eda14cbcSMatt Macy * the right merging node and the separator. This may cause further 1579eda14cbcSMatt Macy * merging. 1580eda14cbcSMatt Macy */ 1581eda14cbcSMatt Macy zfs_btree_hdr_t *new_rm_hdr, *keep_hdr; 1582a0b956f5SMartin Matuska uint32_t new_idx = idx; 1583eda14cbcSMatt Macy if (l_hdr != NULL) { 1584eda14cbcSMatt Macy keep_hdr = l_hdr; 1585eda14cbcSMatt Macy new_rm_hdr = hdr; 1586eda14cbcSMatt Macy new_idx += keep_hdr->bth_count + 1; 1587eda14cbcSMatt Macy } else { 1588eda14cbcSMatt Macy ASSERT3P(r_hdr, !=, NULL); 1589eda14cbcSMatt Macy keep_hdr = hdr; 1590eda14cbcSMatt Macy new_rm_hdr = r_hdr; 1591eda14cbcSMatt Macy parent_idx++; 1592eda14cbcSMatt Macy } 1593eda14cbcSMatt Macy 1594a0b956f5SMartin Matuska ASSERT(zfs_btree_is_core(keep_hdr)); 1595a0b956f5SMartin Matuska ASSERT(zfs_btree_is_core(new_rm_hdr)); 1596eda14cbcSMatt Macy 1597eda14cbcSMatt Macy zfs_btree_core_t *keep = (zfs_btree_core_t *)keep_hdr; 1598eda14cbcSMatt Macy zfs_btree_core_t *rm = (zfs_btree_core_t *)new_rm_hdr; 1599eda14cbcSMatt Macy 1600eda14cbcSMatt Macy if (zfs_btree_verify_intensity >= 5) { 1601a0b956f5SMartin Matuska for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++) { 1602eda14cbcSMatt Macy zfs_btree_verify_poison_at(tree, keep_hdr, 1603eda14cbcSMatt Macy keep_hdr->bth_count + i); 1604eda14cbcSMatt Macy } 1605eda14cbcSMatt Macy } 1606eda14cbcSMatt Macy 1607eda14cbcSMatt Macy /* Move the separator into the left node. */ 1608eda14cbcSMatt Macy uint8_t *e_out = keep->btc_elems + keep_hdr->bth_count * size; 1609eda14cbcSMatt Macy uint8_t *separator = parent->btc_elems + (parent_idx - 1) * 1610eda14cbcSMatt Macy size; 1611a0b956f5SMartin Matuska bcpy(separator, e_out, size); 1612eda14cbcSMatt Macy keep_hdr->bth_count++; 1613eda14cbcSMatt Macy 1614eda14cbcSMatt Macy /* Move all our elements and children into the left node. */ 1615eda14cbcSMatt Macy bt_transfer_core(tree, rm, 0, new_rm_hdr->bth_count, keep, 1616eda14cbcSMatt Macy keep_hdr->bth_count, BSS_TRAPEZOID); 1617eda14cbcSMatt Macy 1618a0b956f5SMartin Matuska uint32_t old_count = keep_hdr->bth_count; 1619eda14cbcSMatt Macy 1620eda14cbcSMatt Macy /* Update bookkeeping */ 1621eda14cbcSMatt Macy keep_hdr->bth_count += new_rm_hdr->bth_count; 1622eda14cbcSMatt Macy ASSERT3U(keep_hdr->bth_count, ==, (min_count * 2) + 1); 1623eda14cbcSMatt Macy 1624eda14cbcSMatt Macy /* 1625eda14cbcSMatt Macy * Shift the element and children to the right of rm_hdr to 1626eda14cbcSMatt Macy * the left by one spot. 1627eda14cbcSMatt Macy */ 1628eda14cbcSMatt Macy ASSERT3P(keep->btc_children[new_idx], ==, rm_hdr); 1629eda14cbcSMatt Macy bt_shift_core_left(tree, keep, new_idx, keep_hdr->bth_count - new_idx, 1630eda14cbcSMatt Macy BSS_PARALLELOGRAM); 1631eda14cbcSMatt Macy keep_hdr->bth_count--; 1632eda14cbcSMatt Macy 1633eda14cbcSMatt Macy /* Reparent all our children to point to the left node. */ 1634eda14cbcSMatt Macy zfs_btree_hdr_t **new_start = keep->btc_children + 1635eda14cbcSMatt Macy old_count - 1; 1636a0b956f5SMartin Matuska for (uint32_t i = 0; i < new_rm_hdr->bth_count + 1; i++) 1637eda14cbcSMatt Macy new_start[i]->bth_parent = keep; 1638a0b956f5SMartin Matuska for (uint32_t i = 0; i <= keep_hdr->bth_count; i++) { 1639eda14cbcSMatt Macy ASSERT3P(keep->btc_children[i]->bth_parent, ==, keep); 1640eda14cbcSMatt Macy ASSERT3P(keep->btc_children[i], !=, rm_hdr); 1641eda14cbcSMatt Macy } 1642a0b956f5SMartin Matuska zfs_btree_poison_node_at(tree, keep_hdr, keep_hdr->bth_count, 1); 1643eda14cbcSMatt Macy 1644eda14cbcSMatt Macy new_rm_hdr->bth_count = 0; 1645eda14cbcSMatt Macy zfs_btree_remove_from_node(tree, parent, new_rm_hdr); 1646c7046f76SMartin Matuska zfs_btree_node_destroy(tree, new_rm_hdr); 1647eda14cbcSMatt Macy } 1648eda14cbcSMatt Macy 1649eda14cbcSMatt Macy /* Remove the element at the specific location. */ 1650eda14cbcSMatt Macy void 1651eda14cbcSMatt Macy zfs_btree_remove_idx(zfs_btree_t *tree, zfs_btree_index_t *where) 1652eda14cbcSMatt Macy { 1653eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 1654eda14cbcSMatt Macy zfs_btree_hdr_t *hdr = where->bti_node; 1655a0b956f5SMartin Matuska uint32_t idx = where->bti_offset; 1656eda14cbcSMatt Macy 1657eda14cbcSMatt Macy ASSERT(!where->bti_before); 1658eda14cbcSMatt Macy if (tree->bt_bulk != NULL) { 1659eda14cbcSMatt Macy /* 1660eda14cbcSMatt Macy * Leave bulk insert mode. Note that our index would be 1661eda14cbcSMatt Macy * invalid after we correct the tree, so we copy the value 1662eda14cbcSMatt Macy * we're planning to remove and find it again after 1663eda14cbcSMatt Macy * bulk_finish. 1664eda14cbcSMatt Macy */ 1665eda14cbcSMatt Macy uint8_t *value = zfs_btree_get(tree, where); 1666eda14cbcSMatt Macy uint8_t *tmp = kmem_alloc(size, KM_SLEEP); 1667a0b956f5SMartin Matuska bcpy(value, tmp, size); 1668eda14cbcSMatt Macy zfs_btree_bulk_finish(tree); 1669eda14cbcSMatt Macy VERIFY3P(zfs_btree_find(tree, tmp, where), !=, NULL); 1670eda14cbcSMatt Macy kmem_free(tmp, size); 1671eda14cbcSMatt Macy hdr = where->bti_node; 1672eda14cbcSMatt Macy idx = where->bti_offset; 1673eda14cbcSMatt Macy } 1674eda14cbcSMatt Macy 1675eda14cbcSMatt Macy tree->bt_num_elems--; 1676eda14cbcSMatt Macy /* 1677eda14cbcSMatt Macy * If the element happens to be in a core node, we move a leaf node's 1678eda14cbcSMatt Macy * element into its place and then remove the leaf node element. This 1679eda14cbcSMatt Macy * makes the rebalance logic not need to be recursive both upwards and 1680eda14cbcSMatt Macy * downwards. 1681eda14cbcSMatt Macy */ 1682a0b956f5SMartin Matuska if (zfs_btree_is_core(hdr)) { 1683eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 1684eda14cbcSMatt Macy zfs_btree_hdr_t *left_subtree = node->btc_children[idx]; 1685eda14cbcSMatt Macy void *new_value = zfs_btree_last_helper(tree, left_subtree, 1686eda14cbcSMatt Macy where); 1687eda14cbcSMatt Macy ASSERT3P(new_value, !=, NULL); 1688eda14cbcSMatt Macy 1689a0b956f5SMartin Matuska bcpy(new_value, node->btc_elems + idx * size, size); 1690eda14cbcSMatt Macy 1691eda14cbcSMatt Macy hdr = where->bti_node; 1692eda14cbcSMatt Macy idx = where->bti_offset; 1693eda14cbcSMatt Macy ASSERT(!where->bti_before); 1694eda14cbcSMatt Macy } 1695eda14cbcSMatt Macy 1696eda14cbcSMatt Macy /* 1697eda14cbcSMatt Macy * First, we'll update the leaf's metadata. Then, we shift any 1698eda14cbcSMatt Macy * elements after the idx to the left. After that, we rebalance if 1699eda14cbcSMatt Macy * needed. 1700eda14cbcSMatt Macy */ 1701a0b956f5SMartin Matuska ASSERT(!zfs_btree_is_core(hdr)); 1702eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; 1703eda14cbcSMatt Macy ASSERT3U(hdr->bth_count, >, 0); 1704eda14cbcSMatt Macy 1705a0b956f5SMartin Matuska uint32_t min_count = (tree->bt_leaf_cap / 2) - 1; 1706eda14cbcSMatt Macy 1707eda14cbcSMatt Macy /* 1708eda14cbcSMatt Macy * If we're over the minimum size or this is the root, just overwrite 1709eda14cbcSMatt Macy * the value and return. 1710eda14cbcSMatt Macy */ 1711eda14cbcSMatt Macy if (hdr->bth_count > min_count || hdr->bth_parent == NULL) { 1712a0b956f5SMartin Matuska bt_shrink_leaf(tree, leaf, idx, 1); 1713eda14cbcSMatt Macy if (hdr->bth_parent == NULL) { 1714eda14cbcSMatt Macy ASSERT0(tree->bt_height); 1715eda14cbcSMatt Macy if (hdr->bth_count == 0) { 1716eda14cbcSMatt Macy tree->bt_root = NULL; 1717eda14cbcSMatt Macy tree->bt_height--; 1718eda14cbcSMatt Macy zfs_btree_node_destroy(tree, &leaf->btl_hdr); 1719eda14cbcSMatt Macy } 1720eda14cbcSMatt Macy } 1721eda14cbcSMatt Macy zfs_btree_verify(tree); 1722eda14cbcSMatt Macy return; 1723eda14cbcSMatt Macy } 1724eda14cbcSMatt Macy ASSERT3U(hdr->bth_count, ==, min_count); 1725eda14cbcSMatt Macy 1726eda14cbcSMatt Macy /* 1727eda14cbcSMatt Macy * Now we try to take a node from a sibling. We check left, then 1728eda14cbcSMatt Macy * right. If they exist and have more than the minimum number of 1729eda14cbcSMatt Macy * elements, we move the separator between us and them to our node 1730eda14cbcSMatt Macy * and move their closest element (last for left, first for right) to 1731eda14cbcSMatt Macy * the separator. Along the way we need to collapse the gap made by 1732eda14cbcSMatt Macy * idx, and (for our right neighbor) the gap made by removing their 1733eda14cbcSMatt Macy * first element. 1734eda14cbcSMatt Macy * 1735eda14cbcSMatt Macy * Note: this logic currently doesn't support taking from a neighbor 1736eda14cbcSMatt Macy * that isn't a sibling. This isn't critical functionality, but may be 1737eda14cbcSMatt Macy * worth implementing in the future for completeness' sake. 1738eda14cbcSMatt Macy */ 1739eda14cbcSMatt Macy zfs_btree_core_t *parent = hdr->bth_parent; 1740a0b956f5SMartin Matuska uint32_t parent_idx = zfs_btree_find_parent_idx(tree, hdr); 1741eda14cbcSMatt Macy 1742eda14cbcSMatt Macy zfs_btree_hdr_t *l_hdr = (parent_idx == 0 ? NULL : 1743eda14cbcSMatt Macy parent->btc_children[parent_idx - 1]); 1744eda14cbcSMatt Macy if (l_hdr != NULL && l_hdr->bth_count > min_count) { 1745eda14cbcSMatt Macy /* We can take a node from the left neighbor. */ 1746a0b956f5SMartin Matuska ASSERT(!zfs_btree_is_core(l_hdr)); 1747a0b956f5SMartin Matuska zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)l_hdr; 1748eda14cbcSMatt Macy 1749eda14cbcSMatt Macy /* 1750eda14cbcSMatt Macy * Move our elements back by one spot to make room for the 1751eda14cbcSMatt Macy * stolen element and overwrite the element being removed. 1752eda14cbcSMatt Macy */ 1753a0b956f5SMartin Matuska bt_shift_leaf(tree, leaf, 0, idx, 1, BSD_RIGHT); 1754a0b956f5SMartin Matuska 1755a0b956f5SMartin Matuska /* Move the separator to our first spot. */ 1756eda14cbcSMatt Macy uint8_t *separator = parent->btc_elems + (parent_idx - 1) * 1757eda14cbcSMatt Macy size; 1758a0b956f5SMartin Matuska bcpy(separator, leaf->btl_elems + hdr->bth_first * size, size); 1759eda14cbcSMatt Macy 1760eda14cbcSMatt Macy /* Move our neighbor's last element to the separator. */ 1761a0b956f5SMartin Matuska uint8_t *take_elem = neighbor->btl_elems + 1762a0b956f5SMartin Matuska (l_hdr->bth_first + l_hdr->bth_count - 1) * size; 1763a0b956f5SMartin Matuska bcpy(take_elem, separator, size); 1764eda14cbcSMatt Macy 1765a0b956f5SMartin Matuska /* Delete our neighbor's last element. */ 1766a0b956f5SMartin Matuska bt_shrink_leaf(tree, neighbor, l_hdr->bth_count - 1, 1); 1767eda14cbcSMatt Macy zfs_btree_verify(tree); 1768eda14cbcSMatt Macy return; 1769eda14cbcSMatt Macy } 1770eda14cbcSMatt Macy 1771eda14cbcSMatt Macy zfs_btree_hdr_t *r_hdr = (parent_idx == parent->btc_hdr.bth_count ? 1772eda14cbcSMatt Macy NULL : parent->btc_children[parent_idx + 1]); 1773eda14cbcSMatt Macy if (r_hdr != NULL && r_hdr->bth_count > min_count) { 1774eda14cbcSMatt Macy /* We can take a node from the right neighbor. */ 1775a0b956f5SMartin Matuska ASSERT(!zfs_btree_is_core(r_hdr)); 1776eda14cbcSMatt Macy zfs_btree_leaf_t *neighbor = (zfs_btree_leaf_t *)r_hdr; 1777eda14cbcSMatt Macy 1778eda14cbcSMatt Macy /* 1779eda14cbcSMatt Macy * Move our elements after the element being removed forwards 1780eda14cbcSMatt Macy * by one spot to make room for the stolen element and 1781eda14cbcSMatt Macy * overwrite the element being removed. 1782eda14cbcSMatt Macy */ 1783a0b956f5SMartin Matuska bt_shift_leaf(tree, leaf, idx + 1, hdr->bth_count - idx - 1, 1784a0b956f5SMartin Matuska 1, BSD_LEFT); 1785eda14cbcSMatt Macy 1786eda14cbcSMatt Macy /* Move the separator between us to our last spot. */ 1787a0b956f5SMartin Matuska uint8_t *separator = parent->btc_elems + parent_idx * size; 1788a0b956f5SMartin Matuska bcpy(separator, leaf->btl_elems + (hdr->bth_first + 1789a0b956f5SMartin Matuska hdr->bth_count - 1) * size, size); 1790eda14cbcSMatt Macy 1791eda14cbcSMatt Macy /* Move our neighbor's first element to the separator. */ 1792a0b956f5SMartin Matuska uint8_t *take_elem = neighbor->btl_elems + 1793a0b956f5SMartin Matuska r_hdr->bth_first * size; 1794a0b956f5SMartin Matuska bcpy(take_elem, separator, size); 1795eda14cbcSMatt Macy 1796a0b956f5SMartin Matuska /* Delete our neighbor's first element. */ 1797a0b956f5SMartin Matuska bt_shrink_leaf(tree, neighbor, 0, 1); 1798eda14cbcSMatt Macy zfs_btree_verify(tree); 1799eda14cbcSMatt Macy return; 1800eda14cbcSMatt Macy } 1801eda14cbcSMatt Macy 1802eda14cbcSMatt Macy /* 1803eda14cbcSMatt Macy * In this case, neither of our neighbors can spare an element, so we 1804a0b956f5SMartin Matuska * need to merge with one of them. We prefer the left one, arbitrarily. 1805a0b956f5SMartin Matuska * After remove we move the separator into the leftmost merging node 1806eda14cbcSMatt Macy * (which may be us or the left neighbor), and then move the right 1807eda14cbcSMatt Macy * merging node's elements. Once that's done, we go back and delete 1808eda14cbcSMatt Macy * the element we're removing. Finally, go into the parent and delete 1809eda14cbcSMatt Macy * the right merging node and the separator. This may cause further 1810eda14cbcSMatt Macy * merging. 1811eda14cbcSMatt Macy */ 1812a0b956f5SMartin Matuska zfs_btree_hdr_t *rm_hdr, *k_hdr; 1813eda14cbcSMatt Macy if (l_hdr != NULL) { 1814a0b956f5SMartin Matuska k_hdr = l_hdr; 1815eda14cbcSMatt Macy rm_hdr = hdr; 1816eda14cbcSMatt Macy } else { 1817eda14cbcSMatt Macy ASSERT3P(r_hdr, !=, NULL); 1818a0b956f5SMartin Matuska k_hdr = hdr; 1819eda14cbcSMatt Macy rm_hdr = r_hdr; 1820eda14cbcSMatt Macy parent_idx++; 1821eda14cbcSMatt Macy } 1822a0b956f5SMartin Matuska ASSERT(!zfs_btree_is_core(k_hdr)); 1823a0b956f5SMartin Matuska ASSERT(!zfs_btree_is_core(rm_hdr)); 1824a0b956f5SMartin Matuska ASSERT3U(k_hdr->bth_count, ==, min_count); 1825eda14cbcSMatt Macy ASSERT3U(rm_hdr->bth_count, ==, min_count); 1826a0b956f5SMartin Matuska zfs_btree_leaf_t *keep = (zfs_btree_leaf_t *)k_hdr; 1827eda14cbcSMatt Macy zfs_btree_leaf_t *rm = (zfs_btree_leaf_t *)rm_hdr; 1828eda14cbcSMatt Macy 1829eda14cbcSMatt Macy if (zfs_btree_verify_intensity >= 5) { 1830a0b956f5SMartin Matuska for (uint32_t i = 0; i < rm_hdr->bth_count + 1; i++) { 1831a0b956f5SMartin Matuska zfs_btree_verify_poison_at(tree, k_hdr, 1832a0b956f5SMartin Matuska k_hdr->bth_count + i); 1833eda14cbcSMatt Macy } 1834eda14cbcSMatt Macy } 1835a0b956f5SMartin Matuska 1836eda14cbcSMatt Macy /* 1837a0b956f5SMartin Matuska * Remove the value from the node. It will go below the minimum, 1838a0b956f5SMartin Matuska * but we'll fix it in no time. 1839eda14cbcSMatt Macy */ 1840a0b956f5SMartin Matuska bt_shrink_leaf(tree, leaf, idx, 1); 1841a0b956f5SMartin Matuska 1842a0b956f5SMartin Matuska /* Prepare space for elements to be moved from the right. */ 1843a0b956f5SMartin Matuska uint32_t k_count = k_hdr->bth_count; 1844a0b956f5SMartin Matuska bt_grow_leaf(tree, keep, k_count, 1 + rm_hdr->bth_count); 1845a0b956f5SMartin Matuska ASSERT3U(k_hdr->bth_count, ==, min_count * 2); 1846a0b956f5SMartin Matuska 1847a0b956f5SMartin Matuska /* Move the separator into the first open spot. */ 1848a0b956f5SMartin Matuska uint8_t *out = keep->btl_elems + (k_hdr->bth_first + k_count) * size; 1849a0b956f5SMartin Matuska uint8_t *separator = parent->btc_elems + (parent_idx - 1) * size; 1850a0b956f5SMartin Matuska bcpy(separator, out, size); 1851eda14cbcSMatt Macy 1852eda14cbcSMatt Macy /* Move our elements to the left neighbor. */ 1853a0b956f5SMartin Matuska bt_transfer_leaf(tree, rm, 0, rm_hdr->bth_count, keep, k_count + 1); 1854a0b956f5SMartin Matuska 1855eda14cbcSMatt Macy /* Remove the emptied node from the parent. */ 1856eda14cbcSMatt Macy zfs_btree_remove_from_node(tree, parent, rm_hdr); 1857c7046f76SMartin Matuska zfs_btree_node_destroy(tree, rm_hdr); 1858eda14cbcSMatt Macy zfs_btree_verify(tree); 1859eda14cbcSMatt Macy } 1860eda14cbcSMatt Macy 1861eda14cbcSMatt Macy /* Remove the given value from the tree. */ 1862eda14cbcSMatt Macy void 1863eda14cbcSMatt Macy zfs_btree_remove(zfs_btree_t *tree, const void *value) 1864eda14cbcSMatt Macy { 1865eda14cbcSMatt Macy zfs_btree_index_t where = {0}; 1866eda14cbcSMatt Macy VERIFY3P(zfs_btree_find(tree, value, &where), !=, NULL); 1867eda14cbcSMatt Macy zfs_btree_remove_idx(tree, &where); 1868eda14cbcSMatt Macy } 1869eda14cbcSMatt Macy 1870eda14cbcSMatt Macy /* Return the number of elements in the tree. */ 1871eda14cbcSMatt Macy ulong_t 1872eda14cbcSMatt Macy zfs_btree_numnodes(zfs_btree_t *tree) 1873eda14cbcSMatt Macy { 1874eda14cbcSMatt Macy return (tree->bt_num_elems); 1875eda14cbcSMatt Macy } 1876eda14cbcSMatt Macy 1877eda14cbcSMatt Macy /* 1878eda14cbcSMatt Macy * This function is used to visit all the elements in the tree before 1879eda14cbcSMatt Macy * destroying the tree. This allows the calling code to perform any cleanup it 1880eda14cbcSMatt Macy * needs to do. This is more efficient than just removing the first element 1881eda14cbcSMatt Macy * over and over, because it removes all rebalancing. Once the destroy_nodes() 1882eda14cbcSMatt Macy * function has been called, no other btree operations are valid until it 1883eda14cbcSMatt Macy * returns NULL, which point the only valid operation is zfs_btree_destroy(). 1884eda14cbcSMatt Macy * 1885eda14cbcSMatt Macy * example: 1886eda14cbcSMatt Macy * 1887eda14cbcSMatt Macy * zfs_btree_index_t *cookie = NULL; 1888eda14cbcSMatt Macy * my_data_t *node; 1889eda14cbcSMatt Macy * 1890eda14cbcSMatt Macy * while ((node = zfs_btree_destroy_nodes(tree, &cookie)) != NULL) 1891eda14cbcSMatt Macy * free(node->ptr); 1892eda14cbcSMatt Macy * zfs_btree_destroy(tree); 1893eda14cbcSMatt Macy * 1894eda14cbcSMatt Macy */ 1895eda14cbcSMatt Macy void * 1896eda14cbcSMatt Macy zfs_btree_destroy_nodes(zfs_btree_t *tree, zfs_btree_index_t **cookie) 1897eda14cbcSMatt Macy { 1898eda14cbcSMatt Macy if (*cookie == NULL) { 1899eda14cbcSMatt Macy if (tree->bt_height == -1) 1900eda14cbcSMatt Macy return (NULL); 1901eda14cbcSMatt Macy *cookie = kmem_alloc(sizeof (**cookie), KM_SLEEP); 1902eda14cbcSMatt Macy return (zfs_btree_first(tree, *cookie)); 1903eda14cbcSMatt Macy } 1904eda14cbcSMatt Macy 1905eda14cbcSMatt Macy void *rval = zfs_btree_next_helper(tree, *cookie, *cookie, 1906eda14cbcSMatt Macy zfs_btree_node_destroy); 1907eda14cbcSMatt Macy if (rval == NULL) { 1908eda14cbcSMatt Macy tree->bt_root = NULL; 1909eda14cbcSMatt Macy tree->bt_height = -1; 1910eda14cbcSMatt Macy tree->bt_num_elems = 0; 1911eda14cbcSMatt Macy kmem_free(*cookie, sizeof (**cookie)); 1912eda14cbcSMatt Macy tree->bt_bulk = NULL; 1913eda14cbcSMatt Macy } 1914eda14cbcSMatt Macy return (rval); 1915eda14cbcSMatt Macy } 1916eda14cbcSMatt Macy 1917eda14cbcSMatt Macy static void 1918eda14cbcSMatt Macy zfs_btree_clear_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 1919eda14cbcSMatt Macy { 1920a0b956f5SMartin Matuska if (zfs_btree_is_core(hdr)) { 1921eda14cbcSMatt Macy zfs_btree_core_t *btc = (zfs_btree_core_t *)hdr; 1922a0b956f5SMartin Matuska for (uint32_t i = 0; i <= hdr->bth_count; i++) 1923eda14cbcSMatt Macy zfs_btree_clear_helper(tree, btc->btc_children[i]); 1924eda14cbcSMatt Macy } 1925eda14cbcSMatt Macy 1926eda14cbcSMatt Macy zfs_btree_node_destroy(tree, hdr); 1927eda14cbcSMatt Macy } 1928eda14cbcSMatt Macy 1929eda14cbcSMatt Macy void 1930eda14cbcSMatt Macy zfs_btree_clear(zfs_btree_t *tree) 1931eda14cbcSMatt Macy { 1932eda14cbcSMatt Macy if (tree->bt_root == NULL) { 1933eda14cbcSMatt Macy ASSERT0(tree->bt_num_elems); 1934eda14cbcSMatt Macy return; 1935eda14cbcSMatt Macy } 1936eda14cbcSMatt Macy 1937eda14cbcSMatt Macy zfs_btree_clear_helper(tree, tree->bt_root); 1938eda14cbcSMatt Macy tree->bt_num_elems = 0; 1939eda14cbcSMatt Macy tree->bt_root = NULL; 1940eda14cbcSMatt Macy tree->bt_num_nodes = 0; 1941eda14cbcSMatt Macy tree->bt_height = -1; 1942eda14cbcSMatt Macy tree->bt_bulk = NULL; 1943eda14cbcSMatt Macy } 1944eda14cbcSMatt Macy 1945eda14cbcSMatt Macy void 1946eda14cbcSMatt Macy zfs_btree_destroy(zfs_btree_t *tree) 1947eda14cbcSMatt Macy { 1948eda14cbcSMatt Macy ASSERT0(tree->bt_num_elems); 1949eda14cbcSMatt Macy ASSERT3P(tree->bt_root, ==, NULL); 1950eda14cbcSMatt Macy } 1951eda14cbcSMatt Macy 1952eda14cbcSMatt Macy /* Verify that every child of this node has the correct parent pointer. */ 1953eda14cbcSMatt Macy static void 1954eda14cbcSMatt Macy zfs_btree_verify_pointers_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 1955eda14cbcSMatt Macy { 1956a0b956f5SMartin Matuska if (!zfs_btree_is_core(hdr)) 1957eda14cbcSMatt Macy return; 1958eda14cbcSMatt Macy 1959eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 1960a0b956f5SMartin Matuska for (uint32_t i = 0; i <= hdr->bth_count; i++) { 1961eda14cbcSMatt Macy VERIFY3P(node->btc_children[i]->bth_parent, ==, hdr); 1962eda14cbcSMatt Macy zfs_btree_verify_pointers_helper(tree, node->btc_children[i]); 1963eda14cbcSMatt Macy } 1964eda14cbcSMatt Macy } 1965eda14cbcSMatt Macy 1966eda14cbcSMatt Macy /* Verify that every node has the correct parent pointer. */ 1967eda14cbcSMatt Macy static void 1968eda14cbcSMatt Macy zfs_btree_verify_pointers(zfs_btree_t *tree) 1969eda14cbcSMatt Macy { 1970eda14cbcSMatt Macy if (tree->bt_height == -1) { 1971eda14cbcSMatt Macy VERIFY3P(tree->bt_root, ==, NULL); 1972eda14cbcSMatt Macy return; 1973eda14cbcSMatt Macy } 1974eda14cbcSMatt Macy VERIFY3P(tree->bt_root->bth_parent, ==, NULL); 1975eda14cbcSMatt Macy zfs_btree_verify_pointers_helper(tree, tree->bt_root); 1976eda14cbcSMatt Macy } 1977eda14cbcSMatt Macy 1978eda14cbcSMatt Macy /* 1979eda14cbcSMatt Macy * Verify that all the current node and its children satisfy the count 1980eda14cbcSMatt Macy * invariants, and return the total count in the subtree rooted in this node. 1981eda14cbcSMatt Macy */ 1982eda14cbcSMatt Macy static uint64_t 1983eda14cbcSMatt Macy zfs_btree_verify_counts_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 1984eda14cbcSMatt Macy { 1985a0b956f5SMartin Matuska if (!zfs_btree_is_core(hdr)) { 1986c03c5b1cSMartin Matuska if (tree->bt_root != hdr && tree->bt_bulk && 1987c03c5b1cSMartin Matuska hdr != &tree->bt_bulk->btl_hdr) { 1988a0b956f5SMartin Matuska VERIFY3U(hdr->bth_count, >=, tree->bt_leaf_cap / 2 - 1); 1989eda14cbcSMatt Macy } 1990eda14cbcSMatt Macy 1991eda14cbcSMatt Macy return (hdr->bth_count); 1992eda14cbcSMatt Macy } else { 1993eda14cbcSMatt Macy 1994eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 1995eda14cbcSMatt Macy uint64_t ret = hdr->bth_count; 1996eda14cbcSMatt Macy if (tree->bt_root != hdr && tree->bt_bulk == NULL) 1997eda14cbcSMatt Macy VERIFY3P(hdr->bth_count, >=, BTREE_CORE_ELEMS / 2 - 1); 1998a0b956f5SMartin Matuska for (uint32_t i = 0; i <= hdr->bth_count; i++) { 1999eda14cbcSMatt Macy ret += zfs_btree_verify_counts_helper(tree, 2000eda14cbcSMatt Macy node->btc_children[i]); 2001eda14cbcSMatt Macy } 2002eda14cbcSMatt Macy 2003eda14cbcSMatt Macy return (ret); 2004eda14cbcSMatt Macy } 2005eda14cbcSMatt Macy } 2006eda14cbcSMatt Macy 2007eda14cbcSMatt Macy /* 2008eda14cbcSMatt Macy * Verify that all nodes satisfy the invariants and that the total number of 2009eda14cbcSMatt Macy * elements is correct. 2010eda14cbcSMatt Macy */ 2011eda14cbcSMatt Macy static void 2012eda14cbcSMatt Macy zfs_btree_verify_counts(zfs_btree_t *tree) 2013eda14cbcSMatt Macy { 2014eda14cbcSMatt Macy EQUIV(tree->bt_num_elems == 0, tree->bt_height == -1); 2015eda14cbcSMatt Macy if (tree->bt_height == -1) { 2016eda14cbcSMatt Macy return; 2017eda14cbcSMatt Macy } 2018eda14cbcSMatt Macy VERIFY3P(zfs_btree_verify_counts_helper(tree, tree->bt_root), ==, 2019eda14cbcSMatt Macy tree->bt_num_elems); 2020eda14cbcSMatt Macy } 2021eda14cbcSMatt Macy 2022eda14cbcSMatt Macy /* 2023eda14cbcSMatt Macy * Check that the subtree rooted at this node has a uniform height. Returns 2024eda14cbcSMatt Macy * the number of nodes under this node, to help verify bt_num_nodes. 2025eda14cbcSMatt Macy */ 2026eda14cbcSMatt Macy static uint64_t 2027eda14cbcSMatt Macy zfs_btree_verify_height_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr, 2028dbd5678dSMartin Matuska int32_t height) 2029eda14cbcSMatt Macy { 2030a0b956f5SMartin Matuska if (!zfs_btree_is_core(hdr)) { 2031eda14cbcSMatt Macy VERIFY0(height); 2032eda14cbcSMatt Macy return (1); 2033eda14cbcSMatt Macy } 2034eda14cbcSMatt Macy 2035eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 2036eda14cbcSMatt Macy uint64_t ret = 1; 2037a0b956f5SMartin Matuska for (uint32_t i = 0; i <= hdr->bth_count; i++) { 2038eda14cbcSMatt Macy ret += zfs_btree_verify_height_helper(tree, 2039eda14cbcSMatt Macy node->btc_children[i], height - 1); 2040eda14cbcSMatt Macy } 2041eda14cbcSMatt Macy return (ret); 2042eda14cbcSMatt Macy } 2043eda14cbcSMatt Macy 2044eda14cbcSMatt Macy /* 2045eda14cbcSMatt Macy * Check that the tree rooted at this node has a uniform height, and that the 2046eda14cbcSMatt Macy * bt_height in the tree is correct. 2047eda14cbcSMatt Macy */ 2048eda14cbcSMatt Macy static void 2049eda14cbcSMatt Macy zfs_btree_verify_height(zfs_btree_t *tree) 2050eda14cbcSMatt Macy { 2051eda14cbcSMatt Macy EQUIV(tree->bt_height == -1, tree->bt_root == NULL); 2052eda14cbcSMatt Macy if (tree->bt_height == -1) { 2053eda14cbcSMatt Macy return; 2054eda14cbcSMatt Macy } 2055eda14cbcSMatt Macy 2056eda14cbcSMatt Macy VERIFY3U(zfs_btree_verify_height_helper(tree, tree->bt_root, 2057eda14cbcSMatt Macy tree->bt_height), ==, tree->bt_num_nodes); 2058eda14cbcSMatt Macy } 2059eda14cbcSMatt Macy 2060eda14cbcSMatt Macy /* 2061eda14cbcSMatt Macy * Check that the elements in this node are sorted, and that if this is a core 2062eda14cbcSMatt Macy * node, the separators are properly between the subtrees they separaate and 2063eda14cbcSMatt Macy * that the children also satisfy this requirement. 2064eda14cbcSMatt Macy */ 2065eda14cbcSMatt Macy static void 2066eda14cbcSMatt Macy zfs_btree_verify_order_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 2067eda14cbcSMatt Macy { 2068eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 2069a0b956f5SMartin Matuska if (!zfs_btree_is_core(hdr)) { 2070eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; 2071a0b956f5SMartin Matuska for (uint32_t i = 1; i < hdr->bth_count; i++) { 2072a0b956f5SMartin Matuska VERIFY3S(tree->bt_compar(leaf->btl_elems + 2073a0b956f5SMartin Matuska (hdr->bth_first + i - 1) * size, 2074a0b956f5SMartin Matuska leaf->btl_elems + 2075a0b956f5SMartin Matuska (hdr->bth_first + i) * size), ==, -1); 2076eda14cbcSMatt Macy } 2077eda14cbcSMatt Macy return; 2078eda14cbcSMatt Macy } 2079eda14cbcSMatt Macy 2080eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 2081a0b956f5SMartin Matuska for (uint32_t i = 1; i < hdr->bth_count; i++) { 2082eda14cbcSMatt Macy VERIFY3S(tree->bt_compar(node->btc_elems + (i - 1) * size, 2083eda14cbcSMatt Macy node->btc_elems + i * size), ==, -1); 2084eda14cbcSMatt Macy } 2085a0b956f5SMartin Matuska for (uint32_t i = 0; i < hdr->bth_count; i++) { 2086eda14cbcSMatt Macy uint8_t *left_child_last = NULL; 2087eda14cbcSMatt Macy zfs_btree_hdr_t *left_child_hdr = node->btc_children[i]; 2088a0b956f5SMartin Matuska if (zfs_btree_is_core(left_child_hdr)) { 2089eda14cbcSMatt Macy zfs_btree_core_t *left_child = 2090eda14cbcSMatt Macy (zfs_btree_core_t *)left_child_hdr; 2091eda14cbcSMatt Macy left_child_last = left_child->btc_elems + 2092eda14cbcSMatt Macy (left_child_hdr->bth_count - 1) * size; 2093eda14cbcSMatt Macy } else { 2094eda14cbcSMatt Macy zfs_btree_leaf_t *left_child = 2095eda14cbcSMatt Macy (zfs_btree_leaf_t *)left_child_hdr; 2096eda14cbcSMatt Macy left_child_last = left_child->btl_elems + 2097a0b956f5SMartin Matuska (left_child_hdr->bth_first + 2098a0b956f5SMartin Matuska left_child_hdr->bth_count - 1) * size; 2099eda14cbcSMatt Macy } 2100a0b956f5SMartin Matuska int comp = tree->bt_compar(node->btc_elems + i * size, 2101a0b956f5SMartin Matuska left_child_last); 2102a0b956f5SMartin Matuska if (comp <= 0) { 2103eda14cbcSMatt Macy panic("btree: compar returned %d (expected 1) at " 2104a0b956f5SMartin Matuska "%px %d: compar(%px, %px)", comp, node, i, 2105a0b956f5SMartin Matuska node->btc_elems + i * size, left_child_last); 2106eda14cbcSMatt Macy } 2107eda14cbcSMatt Macy 2108eda14cbcSMatt Macy uint8_t *right_child_first = NULL; 2109eda14cbcSMatt Macy zfs_btree_hdr_t *right_child_hdr = node->btc_children[i + 1]; 2110a0b956f5SMartin Matuska if (zfs_btree_is_core(right_child_hdr)) { 2111eda14cbcSMatt Macy zfs_btree_core_t *right_child = 2112eda14cbcSMatt Macy (zfs_btree_core_t *)right_child_hdr; 2113eda14cbcSMatt Macy right_child_first = right_child->btc_elems; 2114eda14cbcSMatt Macy } else { 2115eda14cbcSMatt Macy zfs_btree_leaf_t *right_child = 2116eda14cbcSMatt Macy (zfs_btree_leaf_t *)right_child_hdr; 2117a0b956f5SMartin Matuska right_child_first = right_child->btl_elems + 2118a0b956f5SMartin Matuska right_child_hdr->bth_first * size; 2119eda14cbcSMatt Macy } 2120a0b956f5SMartin Matuska comp = tree->bt_compar(node->btc_elems + i * size, 2121a0b956f5SMartin Matuska right_child_first); 2122a0b956f5SMartin Matuska if (comp >= 0) { 2123eda14cbcSMatt Macy panic("btree: compar returned %d (expected -1) at " 2124a0b956f5SMartin Matuska "%px %d: compar(%px, %px)", comp, node, i, 2125a0b956f5SMartin Matuska node->btc_elems + i * size, right_child_first); 2126eda14cbcSMatt Macy } 2127eda14cbcSMatt Macy } 2128a0b956f5SMartin Matuska for (uint32_t i = 0; i <= hdr->bth_count; i++) 2129eda14cbcSMatt Macy zfs_btree_verify_order_helper(tree, node->btc_children[i]); 2130eda14cbcSMatt Macy } 2131eda14cbcSMatt Macy 2132eda14cbcSMatt Macy /* Check that all elements in the tree are in sorted order. */ 2133eda14cbcSMatt Macy static void 2134eda14cbcSMatt Macy zfs_btree_verify_order(zfs_btree_t *tree) 2135eda14cbcSMatt Macy { 2136eda14cbcSMatt Macy EQUIV(tree->bt_height == -1, tree->bt_root == NULL); 2137eda14cbcSMatt Macy if (tree->bt_height == -1) { 2138eda14cbcSMatt Macy return; 2139eda14cbcSMatt Macy } 2140eda14cbcSMatt Macy 2141eda14cbcSMatt Macy zfs_btree_verify_order_helper(tree, tree->bt_root); 2142eda14cbcSMatt Macy } 2143eda14cbcSMatt Macy 2144eda14cbcSMatt Macy #ifdef ZFS_DEBUG 2145eda14cbcSMatt Macy /* Check that all unused memory is poisoned correctly. */ 2146eda14cbcSMatt Macy static void 2147eda14cbcSMatt Macy zfs_btree_verify_poison_helper(zfs_btree_t *tree, zfs_btree_hdr_t *hdr) 2148eda14cbcSMatt Macy { 2149eda14cbcSMatt Macy size_t size = tree->bt_elem_size; 2150a0b956f5SMartin Matuska if (!zfs_btree_is_core(hdr)) { 2151eda14cbcSMatt Macy zfs_btree_leaf_t *leaf = (zfs_btree_leaf_t *)hdr; 2152a0b956f5SMartin Matuska for (size_t i = 0; i < hdr->bth_first * size; i++) 2153a0b956f5SMartin Matuska VERIFY3U(leaf->btl_elems[i], ==, 0x0f); 2154dbd5678dSMartin Matuska size_t esize = tree->bt_leaf_size - 2155dbd5678dSMartin Matuska offsetof(zfs_btree_leaf_t, btl_elems); 2156a0b956f5SMartin Matuska for (size_t i = (hdr->bth_first + hdr->bth_count) * size; 2157dbd5678dSMartin Matuska i < esize; i++) 2158a0b956f5SMartin Matuska VERIFY3U(leaf->btl_elems[i], ==, 0x0f); 2159eda14cbcSMatt Macy } else { 2160eda14cbcSMatt Macy zfs_btree_core_t *node = (zfs_btree_core_t *)hdr; 2161a0b956f5SMartin Matuska for (size_t i = hdr->bth_count * size; 2162a0b956f5SMartin Matuska i < BTREE_CORE_ELEMS * size; i++) 2163a0b956f5SMartin Matuska VERIFY3U(node->btc_elems[i], ==, 0x0f); 2164eda14cbcSMatt Macy 2165a0b956f5SMartin Matuska for (uint32_t i = hdr->bth_count + 1; i <= BTREE_CORE_ELEMS; 2166a0b956f5SMartin Matuska i++) { 2167eda14cbcSMatt Macy VERIFY3P(node->btc_children[i], ==, 2168eda14cbcSMatt Macy (zfs_btree_hdr_t *)BTREE_POISON); 2169eda14cbcSMatt Macy } 2170eda14cbcSMatt Macy 2171a0b956f5SMartin Matuska for (uint32_t i = 0; i <= hdr->bth_count; i++) { 2172eda14cbcSMatt Macy zfs_btree_verify_poison_helper(tree, 2173eda14cbcSMatt Macy node->btc_children[i]); 2174eda14cbcSMatt Macy } 2175eda14cbcSMatt Macy } 2176eda14cbcSMatt Macy } 2177eda14cbcSMatt Macy #endif 2178eda14cbcSMatt Macy 2179eda14cbcSMatt Macy /* Check that unused memory in the tree is still poisoned. */ 2180eda14cbcSMatt Macy static void 2181eda14cbcSMatt Macy zfs_btree_verify_poison(zfs_btree_t *tree) 2182eda14cbcSMatt Macy { 2183eda14cbcSMatt Macy #ifdef ZFS_DEBUG 2184eda14cbcSMatt Macy if (tree->bt_height == -1) 2185eda14cbcSMatt Macy return; 2186eda14cbcSMatt Macy zfs_btree_verify_poison_helper(tree, tree->bt_root); 2187eda14cbcSMatt Macy #endif 2188eda14cbcSMatt Macy } 2189eda14cbcSMatt Macy 2190eda14cbcSMatt Macy void 2191eda14cbcSMatt Macy zfs_btree_verify(zfs_btree_t *tree) 2192eda14cbcSMatt Macy { 2193eda14cbcSMatt Macy if (zfs_btree_verify_intensity == 0) 2194eda14cbcSMatt Macy return; 2195eda14cbcSMatt Macy zfs_btree_verify_height(tree); 2196eda14cbcSMatt Macy if (zfs_btree_verify_intensity == 1) 2197eda14cbcSMatt Macy return; 2198eda14cbcSMatt Macy zfs_btree_verify_pointers(tree); 2199eda14cbcSMatt Macy if (zfs_btree_verify_intensity == 2) 2200eda14cbcSMatt Macy return; 2201eda14cbcSMatt Macy zfs_btree_verify_counts(tree); 2202eda14cbcSMatt Macy if (zfs_btree_verify_intensity == 3) 2203eda14cbcSMatt Macy return; 2204eda14cbcSMatt Macy zfs_btree_verify_order(tree); 2205eda14cbcSMatt Macy 2206eda14cbcSMatt Macy if (zfs_btree_verify_intensity == 4) 2207eda14cbcSMatt Macy return; 2208eda14cbcSMatt Macy zfs_btree_verify_poison(tree); 2209eda14cbcSMatt Macy } 2210c7046f76SMartin Matuska 2211c7046f76SMartin Matuska ZFS_MODULE_PARAM(zfs, zfs_, btree_verify_intensity, UINT, ZMOD_RW, 2212c7046f76SMartin Matuska "Enable btree verification. Levels above 4 require ZFS be built " 2213c7046f76SMartin Matuska "with debugging"); 2214