1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2018, Joyent, Inc. 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved. 25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved. 26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved. 28 * Copyright (c) 2020, George Amanakis. All rights reserved. 29 * Copyright (c) 2019, Klara Inc. 30 * Copyright (c) 2019, Allan Jude 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 */ 36 37 /* 38 * DVA-based Adjustable Replacement Cache 39 * 40 * While much of the theory of operation used here is 41 * based on the self-tuning, low overhead replacement cache 42 * presented by Megiddo and Modha at FAST 2003, there are some 43 * significant differences: 44 * 45 * 1. The Megiddo and Modha model assumes any page is evictable. 46 * Pages in its cache cannot be "locked" into memory. This makes 47 * the eviction algorithm simple: evict the last page in the list. 48 * This also make the performance characteristics easy to reason 49 * about. Our cache is not so simple. At any given moment, some 50 * subset of the blocks in the cache are un-evictable because we 51 * have handed out a reference to them. Blocks are only evictable 52 * when there are no external references active. This makes 53 * eviction far more problematic: we choose to evict the evictable 54 * blocks that are the "lowest" in the list. 55 * 56 * There are times when it is not possible to evict the requested 57 * space. In these circumstances we are unable to adjust the cache 58 * size. To prevent the cache growing unbounded at these times we 59 * implement a "cache throttle" that slows the flow of new data 60 * into the cache until we can make space available. 61 * 62 * 2. The Megiddo and Modha model assumes a fixed cache size. 63 * Pages are evicted when the cache is full and there is a cache 64 * miss. Our model has a variable sized cache. It grows with 65 * high use, but also tries to react to memory pressure from the 66 * operating system: decreasing its size when system memory is 67 * tight. 68 * 69 * 3. The Megiddo and Modha model assumes a fixed page size. All 70 * elements of the cache are therefore exactly the same size. So 71 * when adjusting the cache size following a cache miss, its simply 72 * a matter of choosing a single page to evict. In our model, we 73 * have variable sized cache blocks (ranging from 512 bytes to 74 * 128K bytes). We therefore choose a set of blocks to evict to make 75 * space for a cache miss that approximates as closely as possible 76 * the space used by the new block. 77 * 78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache" 79 * by N. Megiddo & D. Modha, FAST 2003 80 */ 81 82 /* 83 * The locking model: 84 * 85 * A new reference to a cache buffer can be obtained in two 86 * ways: 1) via a hash table lookup using the DVA as a key, 87 * or 2) via one of the ARC lists. The arc_read() interface 88 * uses method 1, while the internal ARC algorithms for 89 * adjusting the cache use method 2. We therefore provide two 90 * types of locks: 1) the hash table lock array, and 2) the 91 * ARC list locks. 92 * 93 * Buffers do not have their own mutexes, rather they rely on the 94 * hash table mutexes for the bulk of their protection (i.e. most 95 * fields in the arc_buf_hdr_t are protected by these mutexes). 96 * 97 * buf_hash_find() returns the appropriate mutex (held) when it 98 * locates the requested buffer in the hash table. It returns 99 * NULL for the mutex if the buffer was not in the table. 100 * 101 * buf_hash_remove() expects the appropriate hash mutex to be 102 * already held before it is invoked. 103 * 104 * Each ARC state also has a mutex which is used to protect the 105 * buffer list associated with the state. When attempting to 106 * obtain a hash table lock while holding an ARC list lock you 107 * must use: mutex_tryenter() to avoid deadlock. Also note that 108 * the active state mutex must be held before the ghost state mutex. 109 * 110 * It as also possible to register a callback which is run when the 111 * arc_meta_limit is reached and no buffers can be safely evicted. In 112 * this case the arc user should drop a reference on some arc buffers so 113 * they can be reclaimed and the arc_meta_limit honored. For example, 114 * when using the ZPL each dentry holds a references on a znode. These 115 * dentries must be pruned before the arc buffer holding the znode can 116 * be safely evicted. 117 * 118 * Note that the majority of the performance stats are manipulated 119 * with atomic operations. 120 * 121 * The L2ARC uses the l2ad_mtx on each vdev for the following: 122 * 123 * - L2ARC buflist creation 124 * - L2ARC buflist eviction 125 * - L2ARC write completion, which walks L2ARC buflists 126 * - ARC header destruction, as it removes from L2ARC buflists 127 * - ARC header release, as it removes from L2ARC buflists 128 */ 129 130 /* 131 * ARC operation: 132 * 133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure. 134 * This structure can point either to a block that is still in the cache or to 135 * one that is only accessible in an L2 ARC device, or it can provide 136 * information about a block that was recently evicted. If a block is 137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough 138 * information to retrieve it from the L2ARC device. This information is 139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block 140 * that is in this state cannot access the data directly. 141 * 142 * Blocks that are actively being referenced or have not been evicted 143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within 144 * the arc_buf_hdr_t that will point to the data block in memory. A block can 145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd). 148 * 149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the 150 * ability to store the physical data (b_pabd) associated with the DVA of the 151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block, 152 * it will match its on-disk compression characteristics. This behavior can be 153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the 154 * compressed ARC functionality is disabled, the b_pabd will point to an 155 * uncompressed version of the on-disk data. 156 * 157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each 158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it. 159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC 160 * consumer. The ARC will provide references to this data and will keep it 161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical 162 * data block and will evict any arc_buf_t that is no longer referenced. The 163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the 164 * "overhead_size" kstat. 165 * 166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or 167 * compressed form. The typical case is that consumers will want uncompressed 168 * data, and when that happens a new data buffer is allocated where the data is 169 * decompressed for them to use. Currently the only consumer who wants 170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it 171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared 172 * with the arc_buf_hdr_t. 173 * 174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The 175 * first one is owned by a compressed send consumer (and therefore references 176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be 177 * used by any other consumer (and has its own uncompressed copy of the data 178 * buffer). 179 * 180 * arc_buf_hdr_t 181 * +-----------+ 182 * | fields | 183 * | common to | 184 * | L1- and | 185 * | L2ARC | 186 * +-----------+ 187 * | l2arc_buf_hdr_t 188 * | | 189 * +-----------+ 190 * | l1arc_buf_hdr_t 191 * | | arc_buf_t 192 * | b_buf +------------>+-----------+ arc_buf_t 193 * | b_pabd +-+ |b_next +---->+-----------+ 194 * +-----------+ | |-----------| |b_next +-->NULL 195 * | |b_comp = T | +-----------+ 196 * | |b_data +-+ |b_comp = F | 197 * | +-----------+ | |b_data +-+ 198 * +->+------+ | +-----------+ | 199 * compressed | | | | 200 * data | |<--------------+ | uncompressed 201 * +------+ compressed, | data 202 * shared +-->+------+ 203 * data | | 204 * | | 205 * +------+ 206 * 207 * When a consumer reads a block, the ARC must first look to see if the 208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new 209 * arc_buf_t and either copies uncompressed data into a new data buffer from an 210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a 211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the 212 * hdr is compressed and the desired compression characteristics of the 213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the 214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be 215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can 216 * be anywhere in the hdr's list. 217 * 218 * The diagram below shows an example of an uncompressed ARC hdr that is 219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is 220 * the last element in the buf list): 221 * 222 * arc_buf_hdr_t 223 * +-----------+ 224 * | | 225 * | | 226 * | | 227 * +-----------+ 228 * l2arc_buf_hdr_t| | 229 * | | 230 * +-----------+ 231 * l1arc_buf_hdr_t| | 232 * | | arc_buf_t (shared) 233 * | b_buf +------------>+---------+ arc_buf_t 234 * | | |b_next +---->+---------+ 235 * | b_pabd +-+ |---------| |b_next +-->NULL 236 * +-----------+ | | | +---------+ 237 * | |b_data +-+ | | 238 * | +---------+ | |b_data +-+ 239 * +->+------+ | +---------+ | 240 * | | | | 241 * uncompressed | | | | 242 * data +------+ | | 243 * ^ +->+------+ | 244 * | uncompressed | | | 245 * | data | | | 246 * | +------+ | 247 * +---------------------------------+ 248 * 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd 250 * since the physical block is about to be rewritten. The new data contents 251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write, 252 * it may compress the data before writing it to disk. The ARC will be called 253 * with the transformed data and will bcopy the transformed on-disk block into 254 * a newly allocated b_pabd. Writes are always done into buffers which have 255 * either been loaned (and hence are new and don't have other readers) or 256 * buffers which have been released (and hence have their own hdr, if there 257 * were originally other readers of the buf's original hdr). This ensures that 258 * the ARC only needs to update a single buf and its hdr after a write occurs. 259 * 260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The 261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means 262 * that when compressed ARC is enabled that the L2ARC blocks are identical 263 * to the on-disk block in the main data pool. This provides a significant 264 * advantage since the ARC can leverage the bp's checksum when reading from the 265 * L2ARC to determine if the contents are valid. However, if the compressed 266 * ARC is disabled, then the L2ARC's block must be transformed to look 267 * like the physical block in the main data pool before comparing the 268 * checksum and determining its validity. 269 * 270 * The L1ARC has a slightly different system for storing encrypted data. 271 * Raw (encrypted + possibly compressed) data has a few subtle differences from 272 * data that is just compressed. The biggest difference is that it is not 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded. 274 * The other difference is that encryption cannot be treated as a suggestion. 275 * If a caller would prefer compressed data, but they actually wind up with 276 * uncompressed data the worst thing that could happen is there might be a 277 * performance hit. If the caller requests encrypted data, however, we must be 278 * sure they actually get it or else secret information could be leaked. Raw 279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore, 280 * may have both an encrypted version and a decrypted version of its data at 281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is 282 * copied out of this header. To avoid complications with b_pabd, raw buffers 283 * cannot be shared. 284 */ 285 286 #include <sys/spa.h> 287 #include <sys/zio.h> 288 #include <sys/spa_impl.h> 289 #include <sys/zio_compress.h> 290 #include <sys/zio_checksum.h> 291 #include <sys/zfs_context.h> 292 #include <sys/arc.h> 293 #include <sys/zfs_refcount.h> 294 #include <sys/vdev.h> 295 #include <sys/vdev_impl.h> 296 #include <sys/dsl_pool.h> 297 #include <sys/zio_checksum.h> 298 #include <sys/multilist.h> 299 #include <sys/abd.h> 300 #include <sys/zil.h> 301 #include <sys/fm/fs/zfs.h> 302 #include <sys/callb.h> 303 #include <sys/kstat.h> 304 #include <sys/zthr.h> 305 #include <zfs_fletcher.h> 306 #include <sys/arc_impl.h> 307 #include <sys/trace_zfs.h> 308 #include <sys/aggsum.h> 309 #include <cityhash.h> 310 #include <sys/vdev_trim.h> 311 312 #ifndef _KERNEL 313 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */ 314 boolean_t arc_watch = B_FALSE; 315 #endif 316 317 /* 318 * This thread's job is to keep enough free memory in the system, by 319 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves 320 * arc_available_memory(). 321 */ 322 static zthr_t *arc_reap_zthr; 323 324 /* 325 * This thread's job is to keep arc_size under arc_c, by calling 326 * arc_evict(), which improves arc_is_overflowing(). 327 */ 328 static zthr_t *arc_evict_zthr; 329 330 static kmutex_t arc_evict_lock; 331 static boolean_t arc_evict_needed = B_FALSE; 332 333 /* 334 * Count of bytes evicted since boot. 335 */ 336 static uint64_t arc_evict_count; 337 338 /* 339 * List of arc_evict_waiter_t's, representing threads waiting for the 340 * arc_evict_count to reach specific values. 341 */ 342 static list_t arc_evict_waiters; 343 344 /* 345 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of 346 * the requested amount of data to be evicted. For example, by default for 347 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation. 348 * Since this is above 100%, it ensures that progress is made towards getting 349 * arc_size under arc_c. Since this is finite, it ensures that allocations 350 * can still happen, even during the potentially long time that arc_size is 351 * more than arc_c. 352 */ 353 int zfs_arc_eviction_pct = 200; 354 355 /* 356 * The number of headers to evict in arc_evict_state_impl() before 357 * dropping the sublist lock and evicting from another sublist. A lower 358 * value means we're more likely to evict the "correct" header (i.e. the 359 * oldest header in the arc state), but comes with higher overhead 360 * (i.e. more invocations of arc_evict_state_impl()). 361 */ 362 int zfs_arc_evict_batch_limit = 10; 363 364 /* number of seconds before growing cache again */ 365 int arc_grow_retry = 5; 366 367 /* 368 * Minimum time between calls to arc_kmem_reap_soon(). 369 */ 370 int arc_kmem_cache_reap_retry_ms = 1000; 371 372 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */ 373 int zfs_arc_overflow_shift = 8; 374 375 /* shift of arc_c for calculating both min and max arc_p */ 376 int arc_p_min_shift = 4; 377 378 /* log2(fraction of arc to reclaim) */ 379 int arc_shrink_shift = 7; 380 381 /* percent of pagecache to reclaim arc to */ 382 #ifdef _KERNEL 383 uint_t zfs_arc_pc_percent = 0; 384 #endif 385 386 /* 387 * log2(fraction of ARC which must be free to allow growing). 388 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory, 389 * when reading a new block into the ARC, we will evict an equal-sized block 390 * from the ARC. 391 * 392 * This must be less than arc_shrink_shift, so that when we shrink the ARC, 393 * we will still not allow it to grow. 394 */ 395 int arc_no_grow_shift = 5; 396 397 398 /* 399 * minimum lifespan of a prefetch block in clock ticks 400 * (initialized in arc_init()) 401 */ 402 static int arc_min_prefetch_ms; 403 static int arc_min_prescient_prefetch_ms; 404 405 /* 406 * If this percent of memory is free, don't throttle. 407 */ 408 int arc_lotsfree_percent = 10; 409 410 /* 411 * The arc has filled available memory and has now warmed up. 412 */ 413 boolean_t arc_warm; 414 415 /* 416 * These tunables are for performance analysis. 417 */ 418 unsigned long zfs_arc_max = 0; 419 unsigned long zfs_arc_min = 0; 420 unsigned long zfs_arc_meta_limit = 0; 421 unsigned long zfs_arc_meta_min = 0; 422 unsigned long zfs_arc_dnode_limit = 0; 423 unsigned long zfs_arc_dnode_reduce_percent = 10; 424 int zfs_arc_grow_retry = 0; 425 int zfs_arc_shrink_shift = 0; 426 int zfs_arc_p_min_shift = 0; 427 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */ 428 429 /* 430 * ARC dirty data constraints for arc_tempreserve_space() throttle. 431 */ 432 unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */ 433 unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */ 434 unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */ 435 436 /* 437 * Enable or disable compressed arc buffers. 438 */ 439 int zfs_compressed_arc_enabled = B_TRUE; 440 441 /* 442 * ARC will evict meta buffers that exceed arc_meta_limit. This 443 * tunable make arc_meta_limit adjustable for different workloads. 444 */ 445 unsigned long zfs_arc_meta_limit_percent = 75; 446 447 /* 448 * Percentage that can be consumed by dnodes of ARC meta buffers. 449 */ 450 unsigned long zfs_arc_dnode_limit_percent = 10; 451 452 /* 453 * These tunables are Linux specific 454 */ 455 unsigned long zfs_arc_sys_free = 0; 456 int zfs_arc_min_prefetch_ms = 0; 457 int zfs_arc_min_prescient_prefetch_ms = 0; 458 int zfs_arc_p_dampener_disable = 1; 459 int zfs_arc_meta_prune = 10000; 460 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED; 461 int zfs_arc_meta_adjust_restarts = 4096; 462 int zfs_arc_lotsfree_percent = 10; 463 464 /* The 6 states: */ 465 arc_state_t ARC_anon; 466 arc_state_t ARC_mru; 467 arc_state_t ARC_mru_ghost; 468 arc_state_t ARC_mfu; 469 arc_state_t ARC_mfu_ghost; 470 arc_state_t ARC_l2c_only; 471 472 arc_stats_t arc_stats = { 473 { "hits", KSTAT_DATA_UINT64 }, 474 { "misses", KSTAT_DATA_UINT64 }, 475 { "demand_data_hits", KSTAT_DATA_UINT64 }, 476 { "demand_data_misses", KSTAT_DATA_UINT64 }, 477 { "demand_metadata_hits", KSTAT_DATA_UINT64 }, 478 { "demand_metadata_misses", KSTAT_DATA_UINT64 }, 479 { "prefetch_data_hits", KSTAT_DATA_UINT64 }, 480 { "prefetch_data_misses", KSTAT_DATA_UINT64 }, 481 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 }, 482 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 }, 483 { "mru_hits", KSTAT_DATA_UINT64 }, 484 { "mru_ghost_hits", KSTAT_DATA_UINT64 }, 485 { "mfu_hits", KSTAT_DATA_UINT64 }, 486 { "mfu_ghost_hits", KSTAT_DATA_UINT64 }, 487 { "deleted", KSTAT_DATA_UINT64 }, 488 { "mutex_miss", KSTAT_DATA_UINT64 }, 489 { "access_skip", KSTAT_DATA_UINT64 }, 490 { "evict_skip", KSTAT_DATA_UINT64 }, 491 { "evict_not_enough", KSTAT_DATA_UINT64 }, 492 { "evict_l2_cached", KSTAT_DATA_UINT64 }, 493 { "evict_l2_eligible", KSTAT_DATA_UINT64 }, 494 { "evict_l2_ineligible", KSTAT_DATA_UINT64 }, 495 { "evict_l2_skip", KSTAT_DATA_UINT64 }, 496 { "hash_elements", KSTAT_DATA_UINT64 }, 497 { "hash_elements_max", KSTAT_DATA_UINT64 }, 498 { "hash_collisions", KSTAT_DATA_UINT64 }, 499 { "hash_chains", KSTAT_DATA_UINT64 }, 500 { "hash_chain_max", KSTAT_DATA_UINT64 }, 501 { "p", KSTAT_DATA_UINT64 }, 502 { "c", KSTAT_DATA_UINT64 }, 503 { "c_min", KSTAT_DATA_UINT64 }, 504 { "c_max", KSTAT_DATA_UINT64 }, 505 { "size", KSTAT_DATA_UINT64 }, 506 { "compressed_size", KSTAT_DATA_UINT64 }, 507 { "uncompressed_size", KSTAT_DATA_UINT64 }, 508 { "overhead_size", KSTAT_DATA_UINT64 }, 509 { "hdr_size", KSTAT_DATA_UINT64 }, 510 { "data_size", KSTAT_DATA_UINT64 }, 511 { "metadata_size", KSTAT_DATA_UINT64 }, 512 { "dbuf_size", KSTAT_DATA_UINT64 }, 513 { "dnode_size", KSTAT_DATA_UINT64 }, 514 { "bonus_size", KSTAT_DATA_UINT64 }, 515 #if defined(COMPAT_FREEBSD11) 516 { "other_size", KSTAT_DATA_UINT64 }, 517 #endif 518 { "anon_size", KSTAT_DATA_UINT64 }, 519 { "anon_evictable_data", KSTAT_DATA_UINT64 }, 520 { "anon_evictable_metadata", KSTAT_DATA_UINT64 }, 521 { "mru_size", KSTAT_DATA_UINT64 }, 522 { "mru_evictable_data", KSTAT_DATA_UINT64 }, 523 { "mru_evictable_metadata", KSTAT_DATA_UINT64 }, 524 { "mru_ghost_size", KSTAT_DATA_UINT64 }, 525 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 }, 526 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 527 { "mfu_size", KSTAT_DATA_UINT64 }, 528 { "mfu_evictable_data", KSTAT_DATA_UINT64 }, 529 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 }, 530 { "mfu_ghost_size", KSTAT_DATA_UINT64 }, 531 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 }, 532 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 }, 533 { "l2_hits", KSTAT_DATA_UINT64 }, 534 { "l2_misses", KSTAT_DATA_UINT64 }, 535 { "l2_feeds", KSTAT_DATA_UINT64 }, 536 { "l2_rw_clash", KSTAT_DATA_UINT64 }, 537 { "l2_read_bytes", KSTAT_DATA_UINT64 }, 538 { "l2_write_bytes", KSTAT_DATA_UINT64 }, 539 { "l2_writes_sent", KSTAT_DATA_UINT64 }, 540 { "l2_writes_done", KSTAT_DATA_UINT64 }, 541 { "l2_writes_error", KSTAT_DATA_UINT64 }, 542 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 }, 543 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 }, 544 { "l2_evict_reading", KSTAT_DATA_UINT64 }, 545 { "l2_evict_l1cached", KSTAT_DATA_UINT64 }, 546 { "l2_free_on_write", KSTAT_DATA_UINT64 }, 547 { "l2_abort_lowmem", KSTAT_DATA_UINT64 }, 548 { "l2_cksum_bad", KSTAT_DATA_UINT64 }, 549 { "l2_io_error", KSTAT_DATA_UINT64 }, 550 { "l2_size", KSTAT_DATA_UINT64 }, 551 { "l2_asize", KSTAT_DATA_UINT64 }, 552 { "l2_hdr_size", KSTAT_DATA_UINT64 }, 553 { "l2_log_blk_writes", KSTAT_DATA_UINT64 }, 554 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 }, 555 { "l2_log_blk_asize", KSTAT_DATA_UINT64 }, 556 { "l2_log_blk_count", KSTAT_DATA_UINT64 }, 557 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 }, 558 { "l2_rebuild_success", KSTAT_DATA_UINT64 }, 559 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 }, 560 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 }, 561 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 }, 562 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 }, 563 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 }, 564 { "l2_rebuild_size", KSTAT_DATA_UINT64 }, 565 { "l2_rebuild_asize", KSTAT_DATA_UINT64 }, 566 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 }, 567 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 }, 568 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 }, 569 { "memory_throttle_count", KSTAT_DATA_UINT64 }, 570 { "memory_direct_count", KSTAT_DATA_UINT64 }, 571 { "memory_indirect_count", KSTAT_DATA_UINT64 }, 572 { "memory_all_bytes", KSTAT_DATA_UINT64 }, 573 { "memory_free_bytes", KSTAT_DATA_UINT64 }, 574 { "memory_available_bytes", KSTAT_DATA_INT64 }, 575 { "arc_no_grow", KSTAT_DATA_UINT64 }, 576 { "arc_tempreserve", KSTAT_DATA_UINT64 }, 577 { "arc_loaned_bytes", KSTAT_DATA_UINT64 }, 578 { "arc_prune", KSTAT_DATA_UINT64 }, 579 { "arc_meta_used", KSTAT_DATA_UINT64 }, 580 { "arc_meta_limit", KSTAT_DATA_UINT64 }, 581 { "arc_dnode_limit", KSTAT_DATA_UINT64 }, 582 { "arc_meta_max", KSTAT_DATA_UINT64 }, 583 { "arc_meta_min", KSTAT_DATA_UINT64 }, 584 { "async_upgrade_sync", KSTAT_DATA_UINT64 }, 585 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 }, 586 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 }, 587 { "arc_need_free", KSTAT_DATA_UINT64 }, 588 { "arc_sys_free", KSTAT_DATA_UINT64 }, 589 { "arc_raw_size", KSTAT_DATA_UINT64 }, 590 { "cached_only_in_progress", KSTAT_DATA_UINT64 }, 591 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 }, 592 }; 593 594 #define ARCSTAT_MAX(stat, val) { \ 595 uint64_t m; \ 596 while ((val) > (m = arc_stats.stat.value.ui64) && \ 597 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \ 598 continue; \ 599 } 600 601 #define ARCSTAT_MAXSTAT(stat) \ 602 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64) 603 604 /* 605 * We define a macro to allow ARC hits/misses to be easily broken down by 606 * two separate conditions, giving a total of four different subtypes for 607 * each of hits and misses (so eight statistics total). 608 */ 609 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \ 610 if (cond1) { \ 611 if (cond2) { \ 612 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \ 613 } else { \ 614 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \ 615 } \ 616 } else { \ 617 if (cond2) { \ 618 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \ 619 } else { \ 620 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\ 621 } \ 622 } 623 624 /* 625 * This macro allows us to use kstats as floating averages. Each time we 626 * update this kstat, we first factor it and the update value by 627 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall 628 * average. This macro assumes that integer loads and stores are atomic, but 629 * is not safe for multiple writers updating the kstat in parallel (only the 630 * last writer's update will remain). 631 */ 632 #define ARCSTAT_F_AVG_FACTOR 3 633 #define ARCSTAT_F_AVG(stat, value) \ 634 do { \ 635 uint64_t x = ARCSTAT(stat); \ 636 x = x - x / ARCSTAT_F_AVG_FACTOR + \ 637 (value) / ARCSTAT_F_AVG_FACTOR; \ 638 ARCSTAT(stat) = x; \ 639 _NOTE(CONSTCOND) \ 640 } while (0) 641 642 kstat_t *arc_ksp; 643 static arc_state_t *arc_anon; 644 static arc_state_t *arc_mru_ghost; 645 static arc_state_t *arc_mfu_ghost; 646 static arc_state_t *arc_l2c_only; 647 648 arc_state_t *arc_mru; 649 arc_state_t *arc_mfu; 650 651 /* 652 * There are several ARC variables that are critical to export as kstats -- 653 * but we don't want to have to grovel around in the kstat whenever we wish to 654 * manipulate them. For these variables, we therefore define them to be in 655 * terms of the statistic variable. This assures that we are not introducing 656 * the possibility of inconsistency by having shadow copies of the variables, 657 * while still allowing the code to be readable. 658 */ 659 #define arc_tempreserve ARCSTAT(arcstat_tempreserve) 660 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes) 661 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */ 662 /* max size for dnodes */ 663 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit) 664 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */ 665 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */ 666 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */ 667 668 /* size of all b_rabd's in entire arc */ 669 #define arc_raw_size ARCSTAT(arcstat_raw_size) 670 /* compressed size of entire arc */ 671 #define arc_compressed_size ARCSTAT(arcstat_compressed_size) 672 /* uncompressed size of entire arc */ 673 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size) 674 /* number of bytes in the arc from arc_buf_t's */ 675 #define arc_overhead_size ARCSTAT(arcstat_overhead_size) 676 677 /* 678 * There are also some ARC variables that we want to export, but that are 679 * updated so often that having the canonical representation be the statistic 680 * variable causes a performance bottleneck. We want to use aggsum_t's for these 681 * instead, but still be able to export the kstat in the same way as before. 682 * The solution is to always use the aggsum version, except in the kstat update 683 * callback. 684 */ 685 aggsum_t arc_size; 686 aggsum_t arc_meta_used; 687 aggsum_t astat_data_size; 688 aggsum_t astat_metadata_size; 689 aggsum_t astat_dbuf_size; 690 aggsum_t astat_dnode_size; 691 aggsum_t astat_bonus_size; 692 aggsum_t astat_hdr_size; 693 aggsum_t astat_l2_hdr_size; 694 aggsum_t astat_abd_chunk_waste_size; 695 696 hrtime_t arc_growtime; 697 list_t arc_prune_list; 698 kmutex_t arc_prune_mtx; 699 taskq_t *arc_prune_taskq; 700 701 #define GHOST_STATE(state) \ 702 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \ 703 (state) == arc_l2c_only) 704 705 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE) 706 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) 707 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR) 708 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH) 709 #define HDR_PRESCIENT_PREFETCH(hdr) \ 710 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) 711 #define HDR_COMPRESSION_ENABLED(hdr) \ 712 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC) 713 714 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE) 715 #define HDR_L2_READING(hdr) \ 716 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \ 717 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)) 718 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING) 719 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED) 720 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD) 721 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED) 722 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH) 723 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA) 724 725 #define HDR_ISTYPE_METADATA(hdr) \ 726 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA) 727 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr)) 728 729 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR) 730 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR) 731 #define HDR_HAS_RABD(hdr) \ 732 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \ 733 (hdr)->b_crypt_hdr.b_rabd != NULL) 734 #define HDR_ENCRYPTED(hdr) \ 735 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 736 #define HDR_AUTHENTICATED(hdr) \ 737 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot)) 738 739 /* For storing compression mode in b_flags */ 740 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1) 741 742 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \ 743 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS)) 744 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \ 745 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp)); 746 747 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL) 748 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED) 749 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED) 750 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED) 751 752 /* 753 * Other sizes 754 */ 755 756 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t)) 757 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr)) 758 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr)) 759 760 /* 761 * Hash table routines 762 */ 763 764 #define HT_LOCK_ALIGN 64 765 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN))) 766 767 struct ht_lock { 768 kmutex_t ht_lock; 769 #ifdef _KERNEL 770 unsigned char pad[HT_LOCK_PAD]; 771 #endif 772 }; 773 774 #define BUF_LOCKS 8192 775 typedef struct buf_hash_table { 776 uint64_t ht_mask; 777 arc_buf_hdr_t **ht_table; 778 struct ht_lock ht_locks[BUF_LOCKS]; 779 } buf_hash_table_t; 780 781 static buf_hash_table_t buf_hash_table; 782 783 #define BUF_HASH_INDEX(spa, dva, birth) \ 784 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask) 785 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)]) 786 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock)) 787 #define HDR_LOCK(hdr) \ 788 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth))) 789 790 uint64_t zfs_crc64_table[256]; 791 792 /* 793 * Level 2 ARC 794 */ 795 796 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */ 797 #define L2ARC_HEADROOM 2 /* num of writes */ 798 799 /* 800 * If we discover during ARC scan any buffers to be compressed, we boost 801 * our headroom for the next scanning cycle by this percentage multiple. 802 */ 803 #define L2ARC_HEADROOM_BOOST 200 804 #define L2ARC_FEED_SECS 1 /* caching interval secs */ 805 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */ 806 807 /* 808 * We can feed L2ARC from two states of ARC buffers, mru and mfu, 809 * and each of the state has two types: data and metadata. 810 */ 811 #define L2ARC_FEED_TYPES 4 812 813 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent) 814 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done) 815 816 /* L2ARC Performance Tunables */ 817 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */ 818 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */ 819 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */ 820 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST; 821 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */ 822 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */ 823 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */ 824 int l2arc_feed_again = B_TRUE; /* turbo warmup */ 825 int l2arc_norw = B_FALSE; /* no reads during writes */ 826 int l2arc_meta_percent = 33; /* limit on headers size */ 827 828 /* 829 * L2ARC Internals 830 */ 831 static list_t L2ARC_dev_list; /* device list */ 832 static list_t *l2arc_dev_list; /* device list pointer */ 833 static kmutex_t l2arc_dev_mtx; /* device list mutex */ 834 static l2arc_dev_t *l2arc_dev_last; /* last device used */ 835 static list_t L2ARC_free_on_write; /* free after write buf list */ 836 static list_t *l2arc_free_on_write; /* free after write list ptr */ 837 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */ 838 static uint64_t l2arc_ndev; /* number of devices */ 839 840 typedef struct l2arc_read_callback { 841 arc_buf_hdr_t *l2rcb_hdr; /* read header */ 842 blkptr_t l2rcb_bp; /* original blkptr */ 843 zbookmark_phys_t l2rcb_zb; /* original bookmark */ 844 int l2rcb_flags; /* original flags */ 845 abd_t *l2rcb_abd; /* temporary buffer */ 846 } l2arc_read_callback_t; 847 848 typedef struct l2arc_data_free { 849 /* protected by l2arc_free_on_write_mtx */ 850 abd_t *l2df_abd; 851 size_t l2df_size; 852 arc_buf_contents_t l2df_type; 853 list_node_t l2df_list_node; 854 } l2arc_data_free_t; 855 856 typedef enum arc_fill_flags { 857 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */ 858 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */ 859 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */ 860 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */ 861 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */ 862 } arc_fill_flags_t; 863 864 static kmutex_t l2arc_feed_thr_lock; 865 static kcondvar_t l2arc_feed_thr_cv; 866 static uint8_t l2arc_thread_exit; 867 868 static kmutex_t l2arc_rebuild_thr_lock; 869 static kcondvar_t l2arc_rebuild_thr_cv; 870 871 enum arc_hdr_alloc_flags { 872 ARC_HDR_ALLOC_RDATA = 0x1, 873 ARC_HDR_DO_ADAPT = 0x2, 874 }; 875 876 877 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 878 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *); 879 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t); 880 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *); 881 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *); 882 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag); 883 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t); 884 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int); 885 static void arc_access(arc_buf_hdr_t *, kmutex_t *); 886 static void arc_buf_watch(arc_buf_t *); 887 888 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *); 889 static uint32_t arc_bufc_to_flags(arc_buf_contents_t); 890 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 891 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags); 892 893 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *); 894 static void l2arc_read_done(zio_t *); 895 static void l2arc_do_free_on_write(void); 896 897 /* 898 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU 899 * metadata and data are cached from ARC into L2ARC. 900 */ 901 int l2arc_mfuonly = 0; 902 903 /* 904 * L2ARC TRIM 905 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of 906 * the current write size (l2arc_write_max) we should TRIM if we 907 * have filled the device. It is defined as a percentage of the 908 * write size. If set to 100 we trim twice the space required to 909 * accommodate upcoming writes. A minimum of 64MB will be trimmed. 910 * It also enables TRIM of the whole L2ARC device upon creation or 911 * addition to an existing pool or if the header of the device is 912 * invalid upon importing a pool or onlining a cache device. The 913 * default is 0, which disables TRIM on L2ARC altogether as it can 914 * put significant stress on the underlying storage devices. This 915 * will vary depending of how well the specific device handles 916 * these commands. 917 */ 918 unsigned long l2arc_trim_ahead = 0; 919 920 /* 921 * Performance tuning of L2ARC persistence: 922 * 923 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding 924 * an L2ARC device (either at pool import or later) will attempt 925 * to rebuild L2ARC buffer contents. 926 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls 927 * whether log blocks are written to the L2ARC device. If the L2ARC 928 * device is less than 1GB, the amount of data l2arc_evict() 929 * evicts is significant compared to the amount of restored L2ARC 930 * data. In this case do not write log blocks in L2ARC in order 931 * not to waste space. 932 */ 933 int l2arc_rebuild_enabled = B_TRUE; 934 unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024; 935 936 /* L2ARC persistence rebuild control routines. */ 937 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen); 938 static void l2arc_dev_rebuild_thread(void *arg); 939 static int l2arc_rebuild(l2arc_dev_t *dev); 940 941 /* L2ARC persistence read I/O routines. */ 942 static int l2arc_dev_hdr_read(l2arc_dev_t *dev); 943 static int l2arc_log_blk_read(l2arc_dev_t *dev, 944 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp, 945 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 946 zio_t *this_io, zio_t **next_io); 947 static zio_t *l2arc_log_blk_fetch(vdev_t *vd, 948 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb); 949 static void l2arc_log_blk_fetch_abort(zio_t *zio); 950 951 /* L2ARC persistence block restoration routines. */ 952 static void l2arc_log_blk_restore(l2arc_dev_t *dev, 953 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize, uint64_t lb_daddr); 954 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, 955 l2arc_dev_t *dev); 956 957 /* L2ARC persistence write I/O routines. */ 958 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, 959 l2arc_write_callback_t *cb); 960 961 /* L2ARC persistence auxiliary routines. */ 962 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev, 963 const l2arc_log_blkptr_t *lbp); 964 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev, 965 const arc_buf_hdr_t *ab); 966 boolean_t l2arc_range_check_overlap(uint64_t bottom, 967 uint64_t top, uint64_t check); 968 static void l2arc_blk_fetch_done(zio_t *zio); 969 static inline uint64_t 970 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev); 971 972 /* 973 * We use Cityhash for this. It's fast, and has good hash properties without 974 * requiring any large static buffers. 975 */ 976 static uint64_t 977 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth) 978 { 979 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth)); 980 } 981 982 #define HDR_EMPTY(hdr) \ 983 ((hdr)->b_dva.dva_word[0] == 0 && \ 984 (hdr)->b_dva.dva_word[1] == 0) 985 986 #define HDR_EMPTY_OR_LOCKED(hdr) \ 987 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr))) 988 989 #define HDR_EQUAL(spa, dva, birth, hdr) \ 990 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \ 991 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \ 992 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa) 993 994 static void 995 buf_discard_identity(arc_buf_hdr_t *hdr) 996 { 997 hdr->b_dva.dva_word[0] = 0; 998 hdr->b_dva.dva_word[1] = 0; 999 hdr->b_birth = 0; 1000 } 1001 1002 static arc_buf_hdr_t * 1003 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp) 1004 { 1005 const dva_t *dva = BP_IDENTITY(bp); 1006 uint64_t birth = BP_PHYSICAL_BIRTH(bp); 1007 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth); 1008 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1009 arc_buf_hdr_t *hdr; 1010 1011 mutex_enter(hash_lock); 1012 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL; 1013 hdr = hdr->b_hash_next) { 1014 if (HDR_EQUAL(spa, dva, birth, hdr)) { 1015 *lockp = hash_lock; 1016 return (hdr); 1017 } 1018 } 1019 mutex_exit(hash_lock); 1020 *lockp = NULL; 1021 return (NULL); 1022 } 1023 1024 /* 1025 * Insert an entry into the hash table. If there is already an element 1026 * equal to elem in the hash table, then the already existing element 1027 * will be returned and the new element will not be inserted. 1028 * Otherwise returns NULL. 1029 * If lockp == NULL, the caller is assumed to already hold the hash lock. 1030 */ 1031 static arc_buf_hdr_t * 1032 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp) 1033 { 1034 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1035 kmutex_t *hash_lock = BUF_HASH_LOCK(idx); 1036 arc_buf_hdr_t *fhdr; 1037 uint32_t i; 1038 1039 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva)); 1040 ASSERT(hdr->b_birth != 0); 1041 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 1042 1043 if (lockp != NULL) { 1044 *lockp = hash_lock; 1045 mutex_enter(hash_lock); 1046 } else { 1047 ASSERT(MUTEX_HELD(hash_lock)); 1048 } 1049 1050 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL; 1051 fhdr = fhdr->b_hash_next, i++) { 1052 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr)) 1053 return (fhdr); 1054 } 1055 1056 hdr->b_hash_next = buf_hash_table.ht_table[idx]; 1057 buf_hash_table.ht_table[idx] = hdr; 1058 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1059 1060 /* collect some hash table performance data */ 1061 if (i > 0) { 1062 ARCSTAT_BUMP(arcstat_hash_collisions); 1063 if (i == 1) 1064 ARCSTAT_BUMP(arcstat_hash_chains); 1065 1066 ARCSTAT_MAX(arcstat_hash_chain_max, i); 1067 } 1068 1069 ARCSTAT_BUMP(arcstat_hash_elements); 1070 ARCSTAT_MAXSTAT(arcstat_hash_elements); 1071 1072 return (NULL); 1073 } 1074 1075 static void 1076 buf_hash_remove(arc_buf_hdr_t *hdr) 1077 { 1078 arc_buf_hdr_t *fhdr, **hdrp; 1079 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth); 1080 1081 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx))); 1082 ASSERT(HDR_IN_HASH_TABLE(hdr)); 1083 1084 hdrp = &buf_hash_table.ht_table[idx]; 1085 while ((fhdr = *hdrp) != hdr) { 1086 ASSERT3P(fhdr, !=, NULL); 1087 hdrp = &fhdr->b_hash_next; 1088 } 1089 *hdrp = hdr->b_hash_next; 1090 hdr->b_hash_next = NULL; 1091 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 1092 1093 /* collect some hash table performance data */ 1094 ARCSTAT_BUMPDOWN(arcstat_hash_elements); 1095 1096 if (buf_hash_table.ht_table[idx] && 1097 buf_hash_table.ht_table[idx]->b_hash_next == NULL) 1098 ARCSTAT_BUMPDOWN(arcstat_hash_chains); 1099 } 1100 1101 /* 1102 * Global data structures and functions for the buf kmem cache. 1103 */ 1104 1105 static kmem_cache_t *hdr_full_cache; 1106 static kmem_cache_t *hdr_full_crypt_cache; 1107 static kmem_cache_t *hdr_l2only_cache; 1108 static kmem_cache_t *buf_cache; 1109 1110 static void 1111 buf_fini(void) 1112 { 1113 int i; 1114 1115 #if defined(_KERNEL) 1116 /* 1117 * Large allocations which do not require contiguous pages 1118 * should be using vmem_free() in the linux kernel\ 1119 */ 1120 vmem_free(buf_hash_table.ht_table, 1121 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1122 #else 1123 kmem_free(buf_hash_table.ht_table, 1124 (buf_hash_table.ht_mask + 1) * sizeof (void *)); 1125 #endif 1126 for (i = 0; i < BUF_LOCKS; i++) 1127 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock); 1128 kmem_cache_destroy(hdr_full_cache); 1129 kmem_cache_destroy(hdr_full_crypt_cache); 1130 kmem_cache_destroy(hdr_l2only_cache); 1131 kmem_cache_destroy(buf_cache); 1132 } 1133 1134 /* 1135 * Constructor callback - called when the cache is empty 1136 * and a new buf is requested. 1137 */ 1138 /* ARGSUSED */ 1139 static int 1140 hdr_full_cons(void *vbuf, void *unused, int kmflag) 1141 { 1142 arc_buf_hdr_t *hdr = vbuf; 1143 1144 bzero(hdr, HDR_FULL_SIZE); 1145 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 1146 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL); 1147 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt); 1148 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL); 1149 list_link_init(&hdr->b_l1hdr.b_arc_node); 1150 list_link_init(&hdr->b_l2hdr.b_l2node); 1151 multilist_link_init(&hdr->b_l1hdr.b_arc_node); 1152 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1153 1154 return (0); 1155 } 1156 1157 /* ARGSUSED */ 1158 static int 1159 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag) 1160 { 1161 arc_buf_hdr_t *hdr = vbuf; 1162 1163 hdr_full_cons(vbuf, unused, kmflag); 1164 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr)); 1165 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1166 1167 return (0); 1168 } 1169 1170 /* ARGSUSED */ 1171 static int 1172 hdr_l2only_cons(void *vbuf, void *unused, int kmflag) 1173 { 1174 arc_buf_hdr_t *hdr = vbuf; 1175 1176 bzero(hdr, HDR_L2ONLY_SIZE); 1177 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1178 1179 return (0); 1180 } 1181 1182 /* ARGSUSED */ 1183 static int 1184 buf_cons(void *vbuf, void *unused, int kmflag) 1185 { 1186 arc_buf_t *buf = vbuf; 1187 1188 bzero(buf, sizeof (arc_buf_t)); 1189 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL); 1190 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1191 1192 return (0); 1193 } 1194 1195 /* 1196 * Destructor callback - called when a cached buf is 1197 * no longer required. 1198 */ 1199 /* ARGSUSED */ 1200 static void 1201 hdr_full_dest(void *vbuf, void *unused) 1202 { 1203 arc_buf_hdr_t *hdr = vbuf; 1204 1205 ASSERT(HDR_EMPTY(hdr)); 1206 cv_destroy(&hdr->b_l1hdr.b_cv); 1207 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt); 1208 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock); 1209 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 1210 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS); 1211 } 1212 1213 /* ARGSUSED */ 1214 static void 1215 hdr_full_crypt_dest(void *vbuf, void *unused) 1216 { 1217 arc_buf_hdr_t *hdr = vbuf; 1218 1219 hdr_full_dest(vbuf, unused); 1220 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS); 1221 } 1222 1223 /* ARGSUSED */ 1224 static void 1225 hdr_l2only_dest(void *vbuf, void *unused) 1226 { 1227 arc_buf_hdr_t *hdr __maybe_unused = vbuf; 1228 1229 ASSERT(HDR_EMPTY(hdr)); 1230 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS); 1231 } 1232 1233 /* ARGSUSED */ 1234 static void 1235 buf_dest(void *vbuf, void *unused) 1236 { 1237 arc_buf_t *buf = vbuf; 1238 1239 mutex_destroy(&buf->b_evict_lock); 1240 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS); 1241 } 1242 1243 static void 1244 buf_init(void) 1245 { 1246 uint64_t *ct = NULL; 1247 uint64_t hsize = 1ULL << 12; 1248 int i, j; 1249 1250 /* 1251 * The hash table is big enough to fill all of physical memory 1252 * with an average block size of zfs_arc_average_blocksize (default 8K). 1253 * By default, the table will take up 1254 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers). 1255 */ 1256 while (hsize * zfs_arc_average_blocksize < arc_all_memory()) 1257 hsize <<= 1; 1258 retry: 1259 buf_hash_table.ht_mask = hsize - 1; 1260 #if defined(_KERNEL) 1261 /* 1262 * Large allocations which do not require contiguous pages 1263 * should be using vmem_alloc() in the linux kernel 1264 */ 1265 buf_hash_table.ht_table = 1266 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP); 1267 #else 1268 buf_hash_table.ht_table = 1269 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP); 1270 #endif 1271 if (buf_hash_table.ht_table == NULL) { 1272 ASSERT(hsize > (1ULL << 8)); 1273 hsize >>= 1; 1274 goto retry; 1275 } 1276 1277 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE, 1278 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0); 1279 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt", 1280 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest, 1281 NULL, NULL, NULL, 0); 1282 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only", 1283 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL, 1284 NULL, NULL, 0); 1285 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t), 1286 0, buf_cons, buf_dest, NULL, NULL, NULL, 0); 1287 1288 for (i = 0; i < 256; i++) 1289 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--) 1290 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY); 1291 1292 for (i = 0; i < BUF_LOCKS; i++) { 1293 mutex_init(&buf_hash_table.ht_locks[i].ht_lock, 1294 NULL, MUTEX_DEFAULT, NULL); 1295 } 1296 } 1297 1298 #define ARC_MINTIME (hz>>4) /* 62 ms */ 1299 1300 /* 1301 * This is the size that the buf occupies in memory. If the buf is compressed, 1302 * it will correspond to the compressed size. You should use this method of 1303 * getting the buf size unless you explicitly need the logical size. 1304 */ 1305 uint64_t 1306 arc_buf_size(arc_buf_t *buf) 1307 { 1308 return (ARC_BUF_COMPRESSED(buf) ? 1309 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr)); 1310 } 1311 1312 uint64_t 1313 arc_buf_lsize(arc_buf_t *buf) 1314 { 1315 return (HDR_GET_LSIZE(buf->b_hdr)); 1316 } 1317 1318 /* 1319 * This function will return B_TRUE if the buffer is encrypted in memory. 1320 * This buffer can be decrypted by calling arc_untransform(). 1321 */ 1322 boolean_t 1323 arc_is_encrypted(arc_buf_t *buf) 1324 { 1325 return (ARC_BUF_ENCRYPTED(buf) != 0); 1326 } 1327 1328 /* 1329 * Returns B_TRUE if the buffer represents data that has not had its MAC 1330 * verified yet. 1331 */ 1332 boolean_t 1333 arc_is_unauthenticated(arc_buf_t *buf) 1334 { 1335 return (HDR_NOAUTH(buf->b_hdr) != 0); 1336 } 1337 1338 void 1339 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt, 1340 uint8_t *iv, uint8_t *mac) 1341 { 1342 arc_buf_hdr_t *hdr = buf->b_hdr; 1343 1344 ASSERT(HDR_PROTECTED(hdr)); 1345 1346 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN); 1347 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN); 1348 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN); 1349 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 1350 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 1351 } 1352 1353 /* 1354 * Indicates how this buffer is compressed in memory. If it is not compressed 1355 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with 1356 * arc_untransform() as long as it is also unencrypted. 1357 */ 1358 enum zio_compress 1359 arc_get_compression(arc_buf_t *buf) 1360 { 1361 return (ARC_BUF_COMPRESSED(buf) ? 1362 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF); 1363 } 1364 1365 /* 1366 * Return the compression algorithm used to store this data in the ARC. If ARC 1367 * compression is enabled or this is an encrypted block, this will be the same 1368 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF. 1369 */ 1370 static inline enum zio_compress 1371 arc_hdr_get_compress(arc_buf_hdr_t *hdr) 1372 { 1373 return (HDR_COMPRESSION_ENABLED(hdr) ? 1374 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF); 1375 } 1376 1377 uint8_t 1378 arc_get_complevel(arc_buf_t *buf) 1379 { 1380 return (buf->b_hdr->b_complevel); 1381 } 1382 1383 static inline boolean_t 1384 arc_buf_is_shared(arc_buf_t *buf) 1385 { 1386 boolean_t shared = (buf->b_data != NULL && 1387 buf->b_hdr->b_l1hdr.b_pabd != NULL && 1388 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) && 1389 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd)); 1390 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr)); 1391 IMPLY(shared, ARC_BUF_SHARED(buf)); 1392 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf)); 1393 1394 /* 1395 * It would be nice to assert arc_can_share() too, but the "hdr isn't 1396 * already being shared" requirement prevents us from doing that. 1397 */ 1398 1399 return (shared); 1400 } 1401 1402 /* 1403 * Free the checksum associated with this header. If there is no checksum, this 1404 * is a no-op. 1405 */ 1406 static inline void 1407 arc_cksum_free(arc_buf_hdr_t *hdr) 1408 { 1409 ASSERT(HDR_HAS_L1HDR(hdr)); 1410 1411 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1412 if (hdr->b_l1hdr.b_freeze_cksum != NULL) { 1413 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t)); 1414 hdr->b_l1hdr.b_freeze_cksum = NULL; 1415 } 1416 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1417 } 1418 1419 /* 1420 * Return true iff at least one of the bufs on hdr is not compressed. 1421 * Encrypted buffers count as compressed. 1422 */ 1423 static boolean_t 1424 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr) 1425 { 1426 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr)); 1427 1428 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) { 1429 if (!ARC_BUF_COMPRESSED(b)) { 1430 return (B_TRUE); 1431 } 1432 } 1433 return (B_FALSE); 1434 } 1435 1436 1437 /* 1438 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data 1439 * matches the checksum that is stored in the hdr. If there is no checksum, 1440 * or if the buf is compressed, this is a no-op. 1441 */ 1442 static void 1443 arc_cksum_verify(arc_buf_t *buf) 1444 { 1445 arc_buf_hdr_t *hdr = buf->b_hdr; 1446 zio_cksum_t zc; 1447 1448 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1449 return; 1450 1451 if (ARC_BUF_COMPRESSED(buf)) 1452 return; 1453 1454 ASSERT(HDR_HAS_L1HDR(hdr)); 1455 1456 mutex_enter(&hdr->b_l1hdr.b_freeze_lock); 1457 1458 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) { 1459 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1460 return; 1461 } 1462 1463 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc); 1464 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc)) 1465 panic("buffer modified while frozen!"); 1466 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1467 } 1468 1469 /* 1470 * This function makes the assumption that data stored in the L2ARC 1471 * will be transformed exactly as it is in the main pool. Because of 1472 * this we can verify the checksum against the reading process's bp. 1473 */ 1474 static boolean_t 1475 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio) 1476 { 1477 ASSERT(!BP_IS_EMBEDDED(zio->io_bp)); 1478 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr)); 1479 1480 /* 1481 * Block pointers always store the checksum for the logical data. 1482 * If the block pointer has the gang bit set, then the checksum 1483 * it represents is for the reconstituted data and not for an 1484 * individual gang member. The zio pipeline, however, must be able to 1485 * determine the checksum of each of the gang constituents so it 1486 * treats the checksum comparison differently than what we need 1487 * for l2arc blocks. This prevents us from using the 1488 * zio_checksum_error() interface directly. Instead we must call the 1489 * zio_checksum_error_impl() so that we can ensure the checksum is 1490 * generated using the correct checksum algorithm and accounts for the 1491 * logical I/O size and not just a gang fragment. 1492 */ 1493 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp, 1494 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size, 1495 zio->io_offset, NULL) == 0); 1496 } 1497 1498 /* 1499 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a 1500 * checksum and attaches it to the buf's hdr so that we can ensure that the buf 1501 * isn't modified later on. If buf is compressed or there is already a checksum 1502 * on the hdr, this is a no-op (we only checksum uncompressed bufs). 1503 */ 1504 static void 1505 arc_cksum_compute(arc_buf_t *buf) 1506 { 1507 arc_buf_hdr_t *hdr = buf->b_hdr; 1508 1509 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1510 return; 1511 1512 ASSERT(HDR_HAS_L1HDR(hdr)); 1513 1514 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock); 1515 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) { 1516 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1517 return; 1518 } 1519 1520 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 1521 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1522 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), 1523 KM_SLEEP); 1524 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, 1525 hdr->b_l1hdr.b_freeze_cksum); 1526 mutex_exit(&hdr->b_l1hdr.b_freeze_lock); 1527 arc_buf_watch(buf); 1528 } 1529 1530 #ifndef _KERNEL 1531 void 1532 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused) 1533 { 1534 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr); 1535 } 1536 #endif 1537 1538 /* ARGSUSED */ 1539 static void 1540 arc_buf_unwatch(arc_buf_t *buf) 1541 { 1542 #ifndef _KERNEL 1543 if (arc_watch) { 1544 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1545 PROT_READ | PROT_WRITE)); 1546 } 1547 #endif 1548 } 1549 1550 /* ARGSUSED */ 1551 static void 1552 arc_buf_watch(arc_buf_t *buf) 1553 { 1554 #ifndef _KERNEL 1555 if (arc_watch) 1556 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf), 1557 PROT_READ)); 1558 #endif 1559 } 1560 1561 static arc_buf_contents_t 1562 arc_buf_type(arc_buf_hdr_t *hdr) 1563 { 1564 arc_buf_contents_t type; 1565 if (HDR_ISTYPE_METADATA(hdr)) { 1566 type = ARC_BUFC_METADATA; 1567 } else { 1568 type = ARC_BUFC_DATA; 1569 } 1570 VERIFY3U(hdr->b_type, ==, type); 1571 return (type); 1572 } 1573 1574 boolean_t 1575 arc_is_metadata(arc_buf_t *buf) 1576 { 1577 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0); 1578 } 1579 1580 static uint32_t 1581 arc_bufc_to_flags(arc_buf_contents_t type) 1582 { 1583 switch (type) { 1584 case ARC_BUFC_DATA: 1585 /* metadata field is 0 if buffer contains normal data */ 1586 return (0); 1587 case ARC_BUFC_METADATA: 1588 return (ARC_FLAG_BUFC_METADATA); 1589 default: 1590 break; 1591 } 1592 panic("undefined ARC buffer type!"); 1593 return ((uint32_t)-1); 1594 } 1595 1596 void 1597 arc_buf_thaw(arc_buf_t *buf) 1598 { 1599 arc_buf_hdr_t *hdr = buf->b_hdr; 1600 1601 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 1602 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 1603 1604 arc_cksum_verify(buf); 1605 1606 /* 1607 * Compressed buffers do not manipulate the b_freeze_cksum. 1608 */ 1609 if (ARC_BUF_COMPRESSED(buf)) 1610 return; 1611 1612 ASSERT(HDR_HAS_L1HDR(hdr)); 1613 arc_cksum_free(hdr); 1614 arc_buf_unwatch(buf); 1615 } 1616 1617 void 1618 arc_buf_freeze(arc_buf_t *buf) 1619 { 1620 if (!(zfs_flags & ZFS_DEBUG_MODIFY)) 1621 return; 1622 1623 if (ARC_BUF_COMPRESSED(buf)) 1624 return; 1625 1626 ASSERT(HDR_HAS_L1HDR(buf->b_hdr)); 1627 arc_cksum_compute(buf); 1628 } 1629 1630 /* 1631 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead, 1632 * the following functions should be used to ensure that the flags are 1633 * updated in a thread-safe way. When manipulating the flags either 1634 * the hash_lock must be held or the hdr must be undiscoverable. This 1635 * ensures that we're not racing with any other threads when updating 1636 * the flags. 1637 */ 1638 static inline void 1639 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1640 { 1641 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1642 hdr->b_flags |= flags; 1643 } 1644 1645 static inline void 1646 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags) 1647 { 1648 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1649 hdr->b_flags &= ~flags; 1650 } 1651 1652 /* 1653 * Setting the compression bits in the arc_buf_hdr_t's b_flags is 1654 * done in a special way since we have to clear and set bits 1655 * at the same time. Consumers that wish to set the compression bits 1656 * must use this function to ensure that the flags are updated in 1657 * thread-safe manner. 1658 */ 1659 static void 1660 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp) 1661 { 1662 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1663 1664 /* 1665 * Holes and embedded blocks will always have a psize = 0 so 1666 * we ignore the compression of the blkptr and set the 1667 * want to uncompress them. Mark them as uncompressed. 1668 */ 1669 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) { 1670 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1671 ASSERT(!HDR_COMPRESSION_ENABLED(hdr)); 1672 } else { 1673 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC); 1674 ASSERT(HDR_COMPRESSION_ENABLED(hdr)); 1675 } 1676 1677 HDR_SET_COMPRESS(hdr, cmp); 1678 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp); 1679 } 1680 1681 /* 1682 * Looks for another buf on the same hdr which has the data decompressed, copies 1683 * from it, and returns true. If no such buf exists, returns false. 1684 */ 1685 static boolean_t 1686 arc_buf_try_copy_decompressed_data(arc_buf_t *buf) 1687 { 1688 arc_buf_hdr_t *hdr = buf->b_hdr; 1689 boolean_t copied = B_FALSE; 1690 1691 ASSERT(HDR_HAS_L1HDR(hdr)); 1692 ASSERT3P(buf->b_data, !=, NULL); 1693 ASSERT(!ARC_BUF_COMPRESSED(buf)); 1694 1695 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL; 1696 from = from->b_next) { 1697 /* can't use our own data buffer */ 1698 if (from == buf) { 1699 continue; 1700 } 1701 1702 if (!ARC_BUF_COMPRESSED(from)) { 1703 bcopy(from->b_data, buf->b_data, arc_buf_size(buf)); 1704 copied = B_TRUE; 1705 break; 1706 } 1707 } 1708 1709 /* 1710 * There were no decompressed bufs, so there should not be a 1711 * checksum on the hdr either. 1712 */ 1713 if (zfs_flags & ZFS_DEBUG_MODIFY) 1714 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL); 1715 1716 return (copied); 1717 } 1718 1719 /* 1720 * Allocates an ARC buf header that's in an evicted & L2-cached state. 1721 * This is used during l2arc reconstruction to make empty ARC buffers 1722 * which circumvent the regular disk->arc->l2arc path and instead come 1723 * into being in the reverse order, i.e. l2arc->arc. 1724 */ 1725 static arc_buf_hdr_t * 1726 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev, 1727 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth, 1728 enum zio_compress compress, uint8_t complevel, boolean_t protected, 1729 boolean_t prefetch) 1730 { 1731 arc_buf_hdr_t *hdr; 1732 1733 ASSERT(size != 0); 1734 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP); 1735 hdr->b_birth = birth; 1736 hdr->b_type = type; 1737 hdr->b_flags = 0; 1738 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR); 1739 HDR_SET_LSIZE(hdr, size); 1740 HDR_SET_PSIZE(hdr, psize); 1741 arc_hdr_set_compress(hdr, compress); 1742 hdr->b_complevel = complevel; 1743 if (protected) 1744 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 1745 if (prefetch) 1746 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 1747 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa); 1748 1749 hdr->b_dva = dva; 1750 1751 hdr->b_l2hdr.b_dev = dev; 1752 hdr->b_l2hdr.b_daddr = daddr; 1753 1754 return (hdr); 1755 } 1756 1757 /* 1758 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t. 1759 */ 1760 static uint64_t 1761 arc_hdr_size(arc_buf_hdr_t *hdr) 1762 { 1763 uint64_t size; 1764 1765 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 1766 HDR_GET_PSIZE(hdr) > 0) { 1767 size = HDR_GET_PSIZE(hdr); 1768 } else { 1769 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0); 1770 size = HDR_GET_LSIZE(hdr); 1771 } 1772 return (size); 1773 } 1774 1775 static int 1776 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj) 1777 { 1778 int ret; 1779 uint64_t csize; 1780 uint64_t lsize = HDR_GET_LSIZE(hdr); 1781 uint64_t psize = HDR_GET_PSIZE(hdr); 1782 void *tmpbuf = NULL; 1783 abd_t *abd = hdr->b_l1hdr.b_pabd; 1784 1785 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1786 ASSERT(HDR_AUTHENTICATED(hdr)); 1787 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1788 1789 /* 1790 * The MAC is calculated on the compressed data that is stored on disk. 1791 * However, if compressed arc is disabled we will only have the 1792 * decompressed data available to us now. Compress it into a temporary 1793 * abd so we can verify the MAC. The performance overhead of this will 1794 * be relatively low, since most objects in an encrypted objset will 1795 * be encrypted (instead of authenticated) anyway. 1796 */ 1797 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1798 !HDR_COMPRESSION_ENABLED(hdr)) { 1799 tmpbuf = zio_buf_alloc(lsize); 1800 abd = abd_get_from_buf(tmpbuf, lsize); 1801 abd_take_ownership_of_buf(abd, B_TRUE); 1802 csize = zio_compress_data(HDR_GET_COMPRESS(hdr), 1803 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel); 1804 ASSERT3U(csize, <=, psize); 1805 abd_zero_off(abd, csize, psize - csize); 1806 } 1807 1808 /* 1809 * Authentication is best effort. We authenticate whenever the key is 1810 * available. If we succeed we clear ARC_FLAG_NOAUTH. 1811 */ 1812 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) { 1813 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF); 1814 ASSERT3U(lsize, ==, psize); 1815 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd, 1816 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1817 } else { 1818 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize, 1819 hdr->b_crypt_hdr.b_mac); 1820 } 1821 1822 if (ret == 0) 1823 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH); 1824 else if (ret != ENOENT) 1825 goto error; 1826 1827 if (tmpbuf != NULL) 1828 abd_free(abd); 1829 1830 return (0); 1831 1832 error: 1833 if (tmpbuf != NULL) 1834 abd_free(abd); 1835 1836 return (ret); 1837 } 1838 1839 /* 1840 * This function will take a header that only has raw encrypted data in 1841 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in 1842 * b_l1hdr.b_pabd. If designated in the header flags, this function will 1843 * also decompress the data. 1844 */ 1845 static int 1846 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb) 1847 { 1848 int ret; 1849 abd_t *cabd = NULL; 1850 void *tmp = NULL; 1851 boolean_t no_crypt = B_FALSE; 1852 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 1853 1854 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1855 ASSERT(HDR_ENCRYPTED(hdr)); 1856 1857 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 1858 1859 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot, 1860 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv, 1861 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd, 1862 hdr->b_crypt_hdr.b_rabd, &no_crypt); 1863 if (ret != 0) 1864 goto error; 1865 1866 if (no_crypt) { 1867 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd, 1868 HDR_GET_PSIZE(hdr)); 1869 } 1870 1871 /* 1872 * If this header has disabled arc compression but the b_pabd is 1873 * compressed after decrypting it, we need to decompress the newly 1874 * decrypted data. 1875 */ 1876 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 1877 !HDR_COMPRESSION_ENABLED(hdr)) { 1878 /* 1879 * We want to make sure that we are correctly honoring the 1880 * zfs_abd_scatter_enabled setting, so we allocate an abd here 1881 * and then loan a buffer from it, rather than allocating a 1882 * linear buffer and wrapping it in an abd later. 1883 */ 1884 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE); 1885 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 1886 1887 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 1888 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 1889 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 1890 if (ret != 0) { 1891 abd_return_buf(cabd, tmp, arc_hdr_size(hdr)); 1892 goto error; 1893 } 1894 1895 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 1896 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 1897 arc_hdr_size(hdr), hdr); 1898 hdr->b_l1hdr.b_pabd = cabd; 1899 } 1900 1901 return (0); 1902 1903 error: 1904 arc_hdr_free_abd(hdr, B_FALSE); 1905 if (cabd != NULL) 1906 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr); 1907 1908 return (ret); 1909 } 1910 1911 /* 1912 * This function is called during arc_buf_fill() to prepare the header's 1913 * abd plaintext pointer for use. This involves authenticated protected 1914 * data and decrypting encrypted data into the plaintext abd. 1915 */ 1916 static int 1917 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa, 1918 const zbookmark_phys_t *zb, boolean_t noauth) 1919 { 1920 int ret; 1921 1922 ASSERT(HDR_PROTECTED(hdr)); 1923 1924 if (hash_lock != NULL) 1925 mutex_enter(hash_lock); 1926 1927 if (HDR_NOAUTH(hdr) && !noauth) { 1928 /* 1929 * The caller requested authenticated data but our data has 1930 * not been authenticated yet. Verify the MAC now if we can. 1931 */ 1932 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset); 1933 if (ret != 0) 1934 goto error; 1935 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) { 1936 /* 1937 * If we only have the encrypted version of the data, but the 1938 * unencrypted version was requested we take this opportunity 1939 * to store the decrypted version in the header for future use. 1940 */ 1941 ret = arc_hdr_decrypt(hdr, spa, zb); 1942 if (ret != 0) 1943 goto error; 1944 } 1945 1946 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1947 1948 if (hash_lock != NULL) 1949 mutex_exit(hash_lock); 1950 1951 return (0); 1952 1953 error: 1954 if (hash_lock != NULL) 1955 mutex_exit(hash_lock); 1956 1957 return (ret); 1958 } 1959 1960 /* 1961 * This function is used by the dbuf code to decrypt bonus buffers in place. 1962 * The dbuf code itself doesn't have any locking for decrypting a shared dnode 1963 * block, so we use the hash lock here to protect against concurrent calls to 1964 * arc_buf_fill(). 1965 */ 1966 static void 1967 arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock) 1968 { 1969 arc_buf_hdr_t *hdr = buf->b_hdr; 1970 1971 ASSERT(HDR_ENCRYPTED(hdr)); 1972 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 1973 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 1974 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 1975 1976 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data, 1977 arc_buf_size(buf)); 1978 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 1979 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 1980 hdr->b_crypt_hdr.b_ebufcnt -= 1; 1981 } 1982 1983 /* 1984 * Given a buf that has a data buffer attached to it, this function will 1985 * efficiently fill the buf with data of the specified compression setting from 1986 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr 1987 * are already sharing a data buf, no copy is performed. 1988 * 1989 * If the buf is marked as compressed but uncompressed data was requested, this 1990 * will allocate a new data buffer for the buf, remove that flag, and fill the 1991 * buf with uncompressed data. You can't request a compressed buf on a hdr with 1992 * uncompressed data, and (since we haven't added support for it yet) if you 1993 * want compressed data your buf must already be marked as compressed and have 1994 * the correct-sized data buffer. 1995 */ 1996 static int 1997 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 1998 arc_fill_flags_t flags) 1999 { 2000 int error = 0; 2001 arc_buf_hdr_t *hdr = buf->b_hdr; 2002 boolean_t hdr_compressed = 2003 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 2004 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0; 2005 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0; 2006 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap; 2007 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr); 2008 2009 ASSERT3P(buf->b_data, !=, NULL); 2010 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf)); 2011 IMPLY(compressed, ARC_BUF_COMPRESSED(buf)); 2012 IMPLY(encrypted, HDR_ENCRYPTED(hdr)); 2013 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf)); 2014 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf)); 2015 IMPLY(encrypted, !ARC_BUF_SHARED(buf)); 2016 2017 /* 2018 * If the caller wanted encrypted data we just need to copy it from 2019 * b_rabd and potentially byteswap it. We won't be able to do any 2020 * further transforms on it. 2021 */ 2022 if (encrypted) { 2023 ASSERT(HDR_HAS_RABD(hdr)); 2024 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd, 2025 HDR_GET_PSIZE(hdr)); 2026 goto byteswap; 2027 } 2028 2029 /* 2030 * Adjust encrypted and authenticated headers to accommodate 2031 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are 2032 * allowed to fail decryption due to keys not being loaded 2033 * without being marked as an IO error. 2034 */ 2035 if (HDR_PROTECTED(hdr)) { 2036 error = arc_fill_hdr_crypt(hdr, hash_lock, spa, 2037 zb, !!(flags & ARC_FILL_NOAUTH)); 2038 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) { 2039 return (error); 2040 } else if (error != 0) { 2041 if (hash_lock != NULL) 2042 mutex_enter(hash_lock); 2043 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2044 if (hash_lock != NULL) 2045 mutex_exit(hash_lock); 2046 return (error); 2047 } 2048 } 2049 2050 /* 2051 * There is a special case here for dnode blocks which are 2052 * decrypting their bonus buffers. These blocks may request to 2053 * be decrypted in-place. This is necessary because there may 2054 * be many dnodes pointing into this buffer and there is 2055 * currently no method to synchronize replacing the backing 2056 * b_data buffer and updating all of the pointers. Here we use 2057 * the hash lock to ensure there are no races. If the need 2058 * arises for other types to be decrypted in-place, they must 2059 * add handling here as well. 2060 */ 2061 if ((flags & ARC_FILL_IN_PLACE) != 0) { 2062 ASSERT(!hdr_compressed); 2063 ASSERT(!compressed); 2064 ASSERT(!encrypted); 2065 2066 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) { 2067 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE); 2068 2069 if (hash_lock != NULL) 2070 mutex_enter(hash_lock); 2071 arc_buf_untransform_in_place(buf, hash_lock); 2072 if (hash_lock != NULL) 2073 mutex_exit(hash_lock); 2074 2075 /* Compute the hdr's checksum if necessary */ 2076 arc_cksum_compute(buf); 2077 } 2078 2079 return (0); 2080 } 2081 2082 if (hdr_compressed == compressed) { 2083 if (!arc_buf_is_shared(buf)) { 2084 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd, 2085 arc_buf_size(buf)); 2086 } 2087 } else { 2088 ASSERT(hdr_compressed); 2089 ASSERT(!compressed); 2090 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr)); 2091 2092 /* 2093 * If the buf is sharing its data with the hdr, unlink it and 2094 * allocate a new data buffer for the buf. 2095 */ 2096 if (arc_buf_is_shared(buf)) { 2097 ASSERT(ARC_BUF_COMPRESSED(buf)); 2098 2099 /* We need to give the buf its own b_data */ 2100 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 2101 buf->b_data = 2102 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2103 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 2104 2105 /* Previously overhead was 0; just add new overhead */ 2106 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr)); 2107 } else if (ARC_BUF_COMPRESSED(buf)) { 2108 /* We need to reallocate the buf's b_data */ 2109 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr), 2110 buf); 2111 buf->b_data = 2112 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf); 2113 2114 /* We increased the size of b_data; update overhead */ 2115 ARCSTAT_INCR(arcstat_overhead_size, 2116 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr)); 2117 } 2118 2119 /* 2120 * Regardless of the buf's previous compression settings, it 2121 * should not be compressed at the end of this function. 2122 */ 2123 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 2124 2125 /* 2126 * Try copying the data from another buf which already has a 2127 * decompressed version. If that's not possible, it's time to 2128 * bite the bullet and decompress the data from the hdr. 2129 */ 2130 if (arc_buf_try_copy_decompressed_data(buf)) { 2131 /* Skip byteswapping and checksumming (already done) */ 2132 return (0); 2133 } else { 2134 error = zio_decompress_data(HDR_GET_COMPRESS(hdr), 2135 hdr->b_l1hdr.b_pabd, buf->b_data, 2136 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr), 2137 &hdr->b_complevel); 2138 2139 /* 2140 * Absent hardware errors or software bugs, this should 2141 * be impossible, but log it anyway so we can debug it. 2142 */ 2143 if (error != 0) { 2144 zfs_dbgmsg( 2145 "hdr %px, compress %d, psize %d, lsize %d", 2146 hdr, arc_hdr_get_compress(hdr), 2147 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr)); 2148 if (hash_lock != NULL) 2149 mutex_enter(hash_lock); 2150 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 2151 if (hash_lock != NULL) 2152 mutex_exit(hash_lock); 2153 return (SET_ERROR(EIO)); 2154 } 2155 } 2156 } 2157 2158 byteswap: 2159 /* Byteswap the buf's data if necessary */ 2160 if (bswap != DMU_BSWAP_NUMFUNCS) { 2161 ASSERT(!HDR_SHARED_DATA(hdr)); 2162 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS); 2163 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr)); 2164 } 2165 2166 /* Compute the hdr's checksum if necessary */ 2167 arc_cksum_compute(buf); 2168 2169 return (0); 2170 } 2171 2172 /* 2173 * If this function is being called to decrypt an encrypted buffer or verify an 2174 * authenticated one, the key must be loaded and a mapping must be made 2175 * available in the keystore via spa_keystore_create_mapping() or one of its 2176 * callers. 2177 */ 2178 int 2179 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb, 2180 boolean_t in_place) 2181 { 2182 int ret; 2183 arc_fill_flags_t flags = 0; 2184 2185 if (in_place) 2186 flags |= ARC_FILL_IN_PLACE; 2187 2188 ret = arc_buf_fill(buf, spa, zb, flags); 2189 if (ret == ECKSUM) { 2190 /* 2191 * Convert authentication and decryption errors to EIO 2192 * (and generate an ereport) before leaving the ARC. 2193 */ 2194 ret = SET_ERROR(EIO); 2195 spa_log_error(spa, zb); 2196 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION, 2197 spa, NULL, zb, NULL, 0); 2198 } 2199 2200 return (ret); 2201 } 2202 2203 /* 2204 * Increment the amount of evictable space in the arc_state_t's refcount. 2205 * We account for the space used by the hdr and the arc buf individually 2206 * so that we can add and remove them from the refcount individually. 2207 */ 2208 static void 2209 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state) 2210 { 2211 arc_buf_contents_t type = arc_buf_type(hdr); 2212 2213 ASSERT(HDR_HAS_L1HDR(hdr)); 2214 2215 if (GHOST_STATE(state)) { 2216 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2217 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2218 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2219 ASSERT(!HDR_HAS_RABD(hdr)); 2220 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2221 HDR_GET_LSIZE(hdr), hdr); 2222 return; 2223 } 2224 2225 ASSERT(!GHOST_STATE(state)); 2226 if (hdr->b_l1hdr.b_pabd != NULL) { 2227 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2228 arc_hdr_size(hdr), hdr); 2229 } 2230 if (HDR_HAS_RABD(hdr)) { 2231 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2232 HDR_GET_PSIZE(hdr), hdr); 2233 } 2234 2235 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2236 buf = buf->b_next) { 2237 if (arc_buf_is_shared(buf)) 2238 continue; 2239 (void) zfs_refcount_add_many(&state->arcs_esize[type], 2240 arc_buf_size(buf), buf); 2241 } 2242 } 2243 2244 /* 2245 * Decrement the amount of evictable space in the arc_state_t's refcount. 2246 * We account for the space used by the hdr and the arc buf individually 2247 * so that we can add and remove them from the refcount individually. 2248 */ 2249 static void 2250 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state) 2251 { 2252 arc_buf_contents_t type = arc_buf_type(hdr); 2253 2254 ASSERT(HDR_HAS_L1HDR(hdr)); 2255 2256 if (GHOST_STATE(state)) { 2257 ASSERT0(hdr->b_l1hdr.b_bufcnt); 2258 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2259 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2260 ASSERT(!HDR_HAS_RABD(hdr)); 2261 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2262 HDR_GET_LSIZE(hdr), hdr); 2263 return; 2264 } 2265 2266 ASSERT(!GHOST_STATE(state)); 2267 if (hdr->b_l1hdr.b_pabd != NULL) { 2268 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2269 arc_hdr_size(hdr), hdr); 2270 } 2271 if (HDR_HAS_RABD(hdr)) { 2272 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2273 HDR_GET_PSIZE(hdr), hdr); 2274 } 2275 2276 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2277 buf = buf->b_next) { 2278 if (arc_buf_is_shared(buf)) 2279 continue; 2280 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2281 arc_buf_size(buf), buf); 2282 } 2283 } 2284 2285 /* 2286 * Add a reference to this hdr indicating that someone is actively 2287 * referencing that memory. When the refcount transitions from 0 to 1, 2288 * we remove it from the respective arc_state_t list to indicate that 2289 * it is not evictable. 2290 */ 2291 static void 2292 add_reference(arc_buf_hdr_t *hdr, void *tag) 2293 { 2294 arc_state_t *state; 2295 2296 ASSERT(HDR_HAS_L1HDR(hdr)); 2297 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) { 2298 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 2299 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2300 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2301 } 2302 2303 state = hdr->b_l1hdr.b_state; 2304 2305 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) && 2306 (state != arc_anon)) { 2307 /* We don't use the L2-only state list. */ 2308 if (state != arc_l2c_only) { 2309 multilist_remove(state->arcs_list[arc_buf_type(hdr)], 2310 hdr); 2311 arc_evictable_space_decrement(hdr, state); 2312 } 2313 /* remove the prefetch flag if we get a reference */ 2314 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH); 2315 } 2316 } 2317 2318 /* 2319 * Remove a reference from this hdr. When the reference transitions from 2320 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's 2321 * list making it eligible for eviction. 2322 */ 2323 static int 2324 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag) 2325 { 2326 int cnt; 2327 arc_state_t *state = hdr->b_l1hdr.b_state; 2328 2329 ASSERT(HDR_HAS_L1HDR(hdr)); 2330 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock)); 2331 ASSERT(!GHOST_STATE(state)); 2332 2333 /* 2334 * arc_l2c_only counts as a ghost state so we don't need to explicitly 2335 * check to prevent usage of the arc_l2c_only list. 2336 */ 2337 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) && 2338 (state != arc_anon)) { 2339 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr); 2340 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 2341 arc_evictable_space_increment(hdr, state); 2342 } 2343 return (cnt); 2344 } 2345 2346 /* 2347 * Returns detailed information about a specific arc buffer. When the 2348 * state_index argument is set the function will calculate the arc header 2349 * list position for its arc state. Since this requires a linear traversal 2350 * callers are strongly encourage not to do this. However, it can be helpful 2351 * for targeted analysis so the functionality is provided. 2352 */ 2353 void 2354 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index) 2355 { 2356 arc_buf_hdr_t *hdr = ab->b_hdr; 2357 l1arc_buf_hdr_t *l1hdr = NULL; 2358 l2arc_buf_hdr_t *l2hdr = NULL; 2359 arc_state_t *state = NULL; 2360 2361 memset(abi, 0, sizeof (arc_buf_info_t)); 2362 2363 if (hdr == NULL) 2364 return; 2365 2366 abi->abi_flags = hdr->b_flags; 2367 2368 if (HDR_HAS_L1HDR(hdr)) { 2369 l1hdr = &hdr->b_l1hdr; 2370 state = l1hdr->b_state; 2371 } 2372 if (HDR_HAS_L2HDR(hdr)) 2373 l2hdr = &hdr->b_l2hdr; 2374 2375 if (l1hdr) { 2376 abi->abi_bufcnt = l1hdr->b_bufcnt; 2377 abi->abi_access = l1hdr->b_arc_access; 2378 abi->abi_mru_hits = l1hdr->b_mru_hits; 2379 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits; 2380 abi->abi_mfu_hits = l1hdr->b_mfu_hits; 2381 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits; 2382 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt); 2383 } 2384 2385 if (l2hdr) { 2386 abi->abi_l2arc_dattr = l2hdr->b_daddr; 2387 abi->abi_l2arc_hits = l2hdr->b_hits; 2388 } 2389 2390 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON; 2391 abi->abi_state_contents = arc_buf_type(hdr); 2392 abi->abi_size = arc_hdr_size(hdr); 2393 } 2394 2395 /* 2396 * Move the supplied buffer to the indicated state. The hash lock 2397 * for the buffer must be held by the caller. 2398 */ 2399 static void 2400 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr, 2401 kmutex_t *hash_lock) 2402 { 2403 arc_state_t *old_state; 2404 int64_t refcnt; 2405 uint32_t bufcnt; 2406 boolean_t update_old, update_new; 2407 arc_buf_contents_t buftype = arc_buf_type(hdr); 2408 2409 /* 2410 * We almost always have an L1 hdr here, since we call arc_hdr_realloc() 2411 * in arc_read() when bringing a buffer out of the L2ARC. However, the 2412 * L1 hdr doesn't always exist when we change state to arc_anon before 2413 * destroying a header, in which case reallocating to add the L1 hdr is 2414 * pointless. 2415 */ 2416 if (HDR_HAS_L1HDR(hdr)) { 2417 old_state = hdr->b_l1hdr.b_state; 2418 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt); 2419 bufcnt = hdr->b_l1hdr.b_bufcnt; 2420 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL || 2421 HDR_HAS_RABD(hdr)); 2422 } else { 2423 old_state = arc_l2c_only; 2424 refcnt = 0; 2425 bufcnt = 0; 2426 update_old = B_FALSE; 2427 } 2428 update_new = update_old; 2429 2430 ASSERT(MUTEX_HELD(hash_lock)); 2431 ASSERT3P(new_state, !=, old_state); 2432 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0); 2433 ASSERT(old_state != arc_anon || bufcnt <= 1); 2434 2435 /* 2436 * If this buffer is evictable, transfer it from the 2437 * old state list to the new state list. 2438 */ 2439 if (refcnt == 0) { 2440 if (old_state != arc_anon && old_state != arc_l2c_only) { 2441 ASSERT(HDR_HAS_L1HDR(hdr)); 2442 multilist_remove(old_state->arcs_list[buftype], hdr); 2443 2444 if (GHOST_STATE(old_state)) { 2445 ASSERT0(bufcnt); 2446 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2447 update_old = B_TRUE; 2448 } 2449 arc_evictable_space_decrement(hdr, old_state); 2450 } 2451 if (new_state != arc_anon && new_state != arc_l2c_only) { 2452 /* 2453 * An L1 header always exists here, since if we're 2454 * moving to some L1-cached state (i.e. not l2c_only or 2455 * anonymous), we realloc the header to add an L1hdr 2456 * beforehand. 2457 */ 2458 ASSERT(HDR_HAS_L1HDR(hdr)); 2459 multilist_insert(new_state->arcs_list[buftype], hdr); 2460 2461 if (GHOST_STATE(new_state)) { 2462 ASSERT0(bufcnt); 2463 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 2464 update_new = B_TRUE; 2465 } 2466 arc_evictable_space_increment(hdr, new_state); 2467 } 2468 } 2469 2470 ASSERT(!HDR_EMPTY(hdr)); 2471 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr)) 2472 buf_hash_remove(hdr); 2473 2474 /* adjust state sizes (ignore arc_l2c_only) */ 2475 2476 if (update_new && new_state != arc_l2c_only) { 2477 ASSERT(HDR_HAS_L1HDR(hdr)); 2478 if (GHOST_STATE(new_state)) { 2479 ASSERT0(bufcnt); 2480 2481 /* 2482 * When moving a header to a ghost state, we first 2483 * remove all arc buffers. Thus, we'll have a 2484 * bufcnt of zero, and no arc buffer to use for 2485 * the reference. As a result, we use the arc 2486 * header pointer for the reference. 2487 */ 2488 (void) zfs_refcount_add_many(&new_state->arcs_size, 2489 HDR_GET_LSIZE(hdr), hdr); 2490 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2491 ASSERT(!HDR_HAS_RABD(hdr)); 2492 } else { 2493 uint32_t buffers = 0; 2494 2495 /* 2496 * Each individual buffer holds a unique reference, 2497 * thus we must remove each of these references one 2498 * at a time. 2499 */ 2500 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2501 buf = buf->b_next) { 2502 ASSERT3U(bufcnt, !=, 0); 2503 buffers++; 2504 2505 /* 2506 * When the arc_buf_t is sharing the data 2507 * block with the hdr, the owner of the 2508 * reference belongs to the hdr. Only 2509 * add to the refcount if the arc_buf_t is 2510 * not shared. 2511 */ 2512 if (arc_buf_is_shared(buf)) 2513 continue; 2514 2515 (void) zfs_refcount_add_many( 2516 &new_state->arcs_size, 2517 arc_buf_size(buf), buf); 2518 } 2519 ASSERT3U(bufcnt, ==, buffers); 2520 2521 if (hdr->b_l1hdr.b_pabd != NULL) { 2522 (void) zfs_refcount_add_many( 2523 &new_state->arcs_size, 2524 arc_hdr_size(hdr), hdr); 2525 } 2526 2527 if (HDR_HAS_RABD(hdr)) { 2528 (void) zfs_refcount_add_many( 2529 &new_state->arcs_size, 2530 HDR_GET_PSIZE(hdr), hdr); 2531 } 2532 } 2533 } 2534 2535 if (update_old && old_state != arc_l2c_only) { 2536 ASSERT(HDR_HAS_L1HDR(hdr)); 2537 if (GHOST_STATE(old_state)) { 2538 ASSERT0(bufcnt); 2539 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2540 ASSERT(!HDR_HAS_RABD(hdr)); 2541 2542 /* 2543 * When moving a header off of a ghost state, 2544 * the header will not contain any arc buffers. 2545 * We use the arc header pointer for the reference 2546 * which is exactly what we did when we put the 2547 * header on the ghost state. 2548 */ 2549 2550 (void) zfs_refcount_remove_many(&old_state->arcs_size, 2551 HDR_GET_LSIZE(hdr), hdr); 2552 } else { 2553 uint32_t buffers = 0; 2554 2555 /* 2556 * Each individual buffer holds a unique reference, 2557 * thus we must remove each of these references one 2558 * at a time. 2559 */ 2560 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL; 2561 buf = buf->b_next) { 2562 ASSERT3U(bufcnt, !=, 0); 2563 buffers++; 2564 2565 /* 2566 * When the arc_buf_t is sharing the data 2567 * block with the hdr, the owner of the 2568 * reference belongs to the hdr. Only 2569 * add to the refcount if the arc_buf_t is 2570 * not shared. 2571 */ 2572 if (arc_buf_is_shared(buf)) 2573 continue; 2574 2575 (void) zfs_refcount_remove_many( 2576 &old_state->arcs_size, arc_buf_size(buf), 2577 buf); 2578 } 2579 ASSERT3U(bufcnt, ==, buffers); 2580 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 2581 HDR_HAS_RABD(hdr)); 2582 2583 if (hdr->b_l1hdr.b_pabd != NULL) { 2584 (void) zfs_refcount_remove_many( 2585 &old_state->arcs_size, arc_hdr_size(hdr), 2586 hdr); 2587 } 2588 2589 if (HDR_HAS_RABD(hdr)) { 2590 (void) zfs_refcount_remove_many( 2591 &old_state->arcs_size, HDR_GET_PSIZE(hdr), 2592 hdr); 2593 } 2594 } 2595 } 2596 2597 if (HDR_HAS_L1HDR(hdr)) 2598 hdr->b_l1hdr.b_state = new_state; 2599 2600 /* 2601 * L2 headers should never be on the L2 state list since they don't 2602 * have L1 headers allocated. 2603 */ 2604 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) && 2605 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA])); 2606 } 2607 2608 void 2609 arc_space_consume(uint64_t space, arc_space_type_t type) 2610 { 2611 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2612 2613 switch (type) { 2614 default: 2615 break; 2616 case ARC_SPACE_DATA: 2617 aggsum_add(&astat_data_size, space); 2618 break; 2619 case ARC_SPACE_META: 2620 aggsum_add(&astat_metadata_size, space); 2621 break; 2622 case ARC_SPACE_BONUS: 2623 aggsum_add(&astat_bonus_size, space); 2624 break; 2625 case ARC_SPACE_DNODE: 2626 aggsum_add(&astat_dnode_size, space); 2627 break; 2628 case ARC_SPACE_DBUF: 2629 aggsum_add(&astat_dbuf_size, space); 2630 break; 2631 case ARC_SPACE_HDRS: 2632 aggsum_add(&astat_hdr_size, space); 2633 break; 2634 case ARC_SPACE_L2HDRS: 2635 aggsum_add(&astat_l2_hdr_size, space); 2636 break; 2637 case ARC_SPACE_ABD_CHUNK_WASTE: 2638 /* 2639 * Note: this includes space wasted by all scatter ABD's, not 2640 * just those allocated by the ARC. But the vast majority of 2641 * scatter ABD's come from the ARC, because other users are 2642 * very short-lived. 2643 */ 2644 aggsum_add(&astat_abd_chunk_waste_size, space); 2645 break; 2646 } 2647 2648 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) 2649 aggsum_add(&arc_meta_used, space); 2650 2651 aggsum_add(&arc_size, space); 2652 } 2653 2654 void 2655 arc_space_return(uint64_t space, arc_space_type_t type) 2656 { 2657 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES); 2658 2659 switch (type) { 2660 default: 2661 break; 2662 case ARC_SPACE_DATA: 2663 aggsum_add(&astat_data_size, -space); 2664 break; 2665 case ARC_SPACE_META: 2666 aggsum_add(&astat_metadata_size, -space); 2667 break; 2668 case ARC_SPACE_BONUS: 2669 aggsum_add(&astat_bonus_size, -space); 2670 break; 2671 case ARC_SPACE_DNODE: 2672 aggsum_add(&astat_dnode_size, -space); 2673 break; 2674 case ARC_SPACE_DBUF: 2675 aggsum_add(&astat_dbuf_size, -space); 2676 break; 2677 case ARC_SPACE_HDRS: 2678 aggsum_add(&astat_hdr_size, -space); 2679 break; 2680 case ARC_SPACE_L2HDRS: 2681 aggsum_add(&astat_l2_hdr_size, -space); 2682 break; 2683 case ARC_SPACE_ABD_CHUNK_WASTE: 2684 aggsum_add(&astat_abd_chunk_waste_size, -space); 2685 break; 2686 } 2687 2688 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) { 2689 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0); 2690 /* 2691 * We use the upper bound here rather than the precise value 2692 * because the arc_meta_max value doesn't need to be 2693 * precise. It's only consumed by humans via arcstats. 2694 */ 2695 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used)) 2696 arc_meta_max = aggsum_upper_bound(&arc_meta_used); 2697 aggsum_add(&arc_meta_used, -space); 2698 } 2699 2700 ASSERT(aggsum_compare(&arc_size, space) >= 0); 2701 aggsum_add(&arc_size, -space); 2702 } 2703 2704 /* 2705 * Given a hdr and a buf, returns whether that buf can share its b_data buffer 2706 * with the hdr's b_pabd. 2707 */ 2708 static boolean_t 2709 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2710 { 2711 /* 2712 * The criteria for sharing a hdr's data are: 2713 * 1. the buffer is not encrypted 2714 * 2. the hdr's compression matches the buf's compression 2715 * 3. the hdr doesn't need to be byteswapped 2716 * 4. the hdr isn't already being shared 2717 * 5. the buf is either compressed or it is the last buf in the hdr list 2718 * 2719 * Criterion #5 maintains the invariant that shared uncompressed 2720 * bufs must be the final buf in the hdr's b_buf list. Reading this, you 2721 * might ask, "if a compressed buf is allocated first, won't that be the 2722 * last thing in the list?", but in that case it's impossible to create 2723 * a shared uncompressed buf anyway (because the hdr must be compressed 2724 * to have the compressed buf). You might also think that #3 is 2725 * sufficient to make this guarantee, however it's possible 2726 * (specifically in the rare L2ARC write race mentioned in 2727 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that 2728 * is shareable, but wasn't at the time of its allocation. Rather than 2729 * allow a new shared uncompressed buf to be created and then shuffle 2730 * the list around to make it the last element, this simply disallows 2731 * sharing if the new buf isn't the first to be added. 2732 */ 2733 ASSERT3P(buf->b_hdr, ==, hdr); 2734 boolean_t hdr_compressed = 2735 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF; 2736 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0; 2737 return (!ARC_BUF_ENCRYPTED(buf) && 2738 buf_compressed == hdr_compressed && 2739 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS && 2740 !HDR_SHARED_DATA(hdr) && 2741 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf))); 2742 } 2743 2744 /* 2745 * Allocate a buf for this hdr. If you care about the data that's in the hdr, 2746 * or if you want a compressed buffer, pass those flags in. Returns 0 if the 2747 * copy was made successfully, or an error code otherwise. 2748 */ 2749 static int 2750 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb, 2751 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth, 2752 boolean_t fill, arc_buf_t **ret) 2753 { 2754 arc_buf_t *buf; 2755 arc_fill_flags_t flags = ARC_FILL_LOCKED; 2756 2757 ASSERT(HDR_HAS_L1HDR(hdr)); 2758 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 2759 VERIFY(hdr->b_type == ARC_BUFC_DATA || 2760 hdr->b_type == ARC_BUFC_METADATA); 2761 ASSERT3P(ret, !=, NULL); 2762 ASSERT3P(*ret, ==, NULL); 2763 IMPLY(encrypted, compressed); 2764 2765 hdr->b_l1hdr.b_mru_hits = 0; 2766 hdr->b_l1hdr.b_mru_ghost_hits = 0; 2767 hdr->b_l1hdr.b_mfu_hits = 0; 2768 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 2769 hdr->b_l1hdr.b_l2_hits = 0; 2770 2771 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE); 2772 buf->b_hdr = hdr; 2773 buf->b_data = NULL; 2774 buf->b_next = hdr->b_l1hdr.b_buf; 2775 buf->b_flags = 0; 2776 2777 add_reference(hdr, tag); 2778 2779 /* 2780 * We're about to change the hdr's b_flags. We must either 2781 * hold the hash_lock or be undiscoverable. 2782 */ 2783 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2784 2785 /* 2786 * Only honor requests for compressed bufs if the hdr is actually 2787 * compressed. This must be overridden if the buffer is encrypted since 2788 * encrypted buffers cannot be decompressed. 2789 */ 2790 if (encrypted) { 2791 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2792 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED; 2793 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED; 2794 } else if (compressed && 2795 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 2796 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED; 2797 flags |= ARC_FILL_COMPRESSED; 2798 } 2799 2800 if (noauth) { 2801 ASSERT0(encrypted); 2802 flags |= ARC_FILL_NOAUTH; 2803 } 2804 2805 /* 2806 * If the hdr's data can be shared then we share the data buffer and 2807 * set the appropriate bit in the hdr's b_flags to indicate the hdr is 2808 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new 2809 * buffer to store the buf's data. 2810 * 2811 * There are two additional restrictions here because we're sharing 2812 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be 2813 * actively involved in an L2ARC write, because if this buf is used by 2814 * an arc_write() then the hdr's data buffer will be released when the 2815 * write completes, even though the L2ARC write might still be using it. 2816 * Second, the hdr's ABD must be linear so that the buf's user doesn't 2817 * need to be ABD-aware. It must be allocated via 2818 * zio_[data_]buf_alloc(), not as a page, because we need to be able 2819 * to abd_release_ownership_of_buf(), which isn't allowed on "linear 2820 * page" buffers because the ABD code needs to handle freeing them 2821 * specially. 2822 */ 2823 boolean_t can_share = arc_can_share(hdr, buf) && 2824 !HDR_L2_WRITING(hdr) && 2825 hdr->b_l1hdr.b_pabd != NULL && 2826 abd_is_linear(hdr->b_l1hdr.b_pabd) && 2827 !abd_is_linear_page(hdr->b_l1hdr.b_pabd); 2828 2829 /* Set up b_data and sharing */ 2830 if (can_share) { 2831 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd); 2832 buf->b_flags |= ARC_BUF_FLAG_SHARED; 2833 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 2834 } else { 2835 buf->b_data = 2836 arc_get_data_buf(hdr, arc_buf_size(buf), buf); 2837 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 2838 } 2839 VERIFY3P(buf->b_data, !=, NULL); 2840 2841 hdr->b_l1hdr.b_buf = buf; 2842 hdr->b_l1hdr.b_bufcnt += 1; 2843 if (encrypted) 2844 hdr->b_crypt_hdr.b_ebufcnt += 1; 2845 2846 /* 2847 * If the user wants the data from the hdr, we need to either copy or 2848 * decompress the data. 2849 */ 2850 if (fill) { 2851 ASSERT3P(zb, !=, NULL); 2852 return (arc_buf_fill(buf, spa, zb, flags)); 2853 } 2854 2855 return (0); 2856 } 2857 2858 static char *arc_onloan_tag = "onloan"; 2859 2860 static inline void 2861 arc_loaned_bytes_update(int64_t delta) 2862 { 2863 atomic_add_64(&arc_loaned_bytes, delta); 2864 2865 /* assert that it did not wrap around */ 2866 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 2867 } 2868 2869 /* 2870 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in 2871 * flight data by arc_tempreserve_space() until they are "returned". Loaned 2872 * buffers must be returned to the arc before they can be used by the DMU or 2873 * freed. 2874 */ 2875 arc_buf_t * 2876 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size) 2877 { 2878 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag, 2879 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size); 2880 2881 arc_loaned_bytes_update(arc_buf_size(buf)); 2882 2883 return (buf); 2884 } 2885 2886 arc_buf_t * 2887 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize, 2888 enum zio_compress compression_type, uint8_t complevel) 2889 { 2890 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag, 2891 psize, lsize, compression_type, complevel); 2892 2893 arc_loaned_bytes_update(arc_buf_size(buf)); 2894 2895 return (buf); 2896 } 2897 2898 arc_buf_t * 2899 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder, 2900 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 2901 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 2902 enum zio_compress compression_type, uint8_t complevel) 2903 { 2904 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj, 2905 byteorder, salt, iv, mac, ot, psize, lsize, compression_type, 2906 complevel); 2907 2908 atomic_add_64(&arc_loaned_bytes, psize); 2909 return (buf); 2910 } 2911 2912 2913 /* 2914 * Return a loaned arc buffer to the arc. 2915 */ 2916 void 2917 arc_return_buf(arc_buf_t *buf, void *tag) 2918 { 2919 arc_buf_hdr_t *hdr = buf->b_hdr; 2920 2921 ASSERT3P(buf->b_data, !=, NULL); 2922 ASSERT(HDR_HAS_L1HDR(hdr)); 2923 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag); 2924 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2925 2926 arc_loaned_bytes_update(-arc_buf_size(buf)); 2927 } 2928 2929 /* Detach an arc_buf from a dbuf (tag) */ 2930 void 2931 arc_loan_inuse_buf(arc_buf_t *buf, void *tag) 2932 { 2933 arc_buf_hdr_t *hdr = buf->b_hdr; 2934 2935 ASSERT3P(buf->b_data, !=, NULL); 2936 ASSERT(HDR_HAS_L1HDR(hdr)); 2937 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag); 2938 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag); 2939 2940 arc_loaned_bytes_update(arc_buf_size(buf)); 2941 } 2942 2943 static void 2944 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type) 2945 { 2946 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP); 2947 2948 df->l2df_abd = abd; 2949 df->l2df_size = size; 2950 df->l2df_type = type; 2951 mutex_enter(&l2arc_free_on_write_mtx); 2952 list_insert_head(l2arc_free_on_write, df); 2953 mutex_exit(&l2arc_free_on_write_mtx); 2954 } 2955 2956 static void 2957 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata) 2958 { 2959 arc_state_t *state = hdr->b_l1hdr.b_state; 2960 arc_buf_contents_t type = arc_buf_type(hdr); 2961 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 2962 2963 /* protected by hash lock, if in the hash table */ 2964 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 2965 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 2966 ASSERT(state != arc_anon && state != arc_l2c_only); 2967 2968 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 2969 size, hdr); 2970 } 2971 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr); 2972 if (type == ARC_BUFC_METADATA) { 2973 arc_space_return(size, ARC_SPACE_META); 2974 } else { 2975 ASSERT(type == ARC_BUFC_DATA); 2976 arc_space_return(size, ARC_SPACE_DATA); 2977 } 2978 2979 if (free_rdata) { 2980 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type); 2981 } else { 2982 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type); 2983 } 2984 } 2985 2986 /* 2987 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the 2988 * data buffer, we transfer the refcount ownership to the hdr and update 2989 * the appropriate kstats. 2990 */ 2991 static void 2992 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 2993 { 2994 ASSERT(arc_can_share(hdr, buf)); 2995 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 2996 ASSERT(!ARC_BUF_ENCRYPTED(buf)); 2997 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 2998 2999 /* 3000 * Start sharing the data buffer. We transfer the 3001 * refcount ownership to the hdr since it always owns 3002 * the refcount whenever an arc_buf_t is shared. 3003 */ 3004 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3005 arc_hdr_size(hdr), buf, hdr); 3006 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf)); 3007 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd, 3008 HDR_ISTYPE_METADATA(hdr)); 3009 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA); 3010 buf->b_flags |= ARC_BUF_FLAG_SHARED; 3011 3012 /* 3013 * Since we've transferred ownership to the hdr we need 3014 * to increment its compressed and uncompressed kstats and 3015 * decrement the overhead size. 3016 */ 3017 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr)); 3018 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3019 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf)); 3020 } 3021 3022 static void 3023 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3024 { 3025 ASSERT(arc_buf_is_shared(buf)); 3026 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3027 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3028 3029 /* 3030 * We are no longer sharing this buffer so we need 3031 * to transfer its ownership to the rightful owner. 3032 */ 3033 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size, 3034 arc_hdr_size(hdr), hdr, buf); 3035 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3036 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd); 3037 abd_put(hdr->b_l1hdr.b_pabd); 3038 hdr->b_l1hdr.b_pabd = NULL; 3039 buf->b_flags &= ~ARC_BUF_FLAG_SHARED; 3040 3041 /* 3042 * Since the buffer is no longer shared between 3043 * the arc buf and the hdr, count it as overhead. 3044 */ 3045 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr)); 3046 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3047 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf)); 3048 } 3049 3050 /* 3051 * Remove an arc_buf_t from the hdr's buf list and return the last 3052 * arc_buf_t on the list. If no buffers remain on the list then return 3053 * NULL. 3054 */ 3055 static arc_buf_t * 3056 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf) 3057 { 3058 ASSERT(HDR_HAS_L1HDR(hdr)); 3059 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3060 3061 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf; 3062 arc_buf_t *lastbuf = NULL; 3063 3064 /* 3065 * Remove the buf from the hdr list and locate the last 3066 * remaining buffer on the list. 3067 */ 3068 while (*bufp != NULL) { 3069 if (*bufp == buf) 3070 *bufp = buf->b_next; 3071 3072 /* 3073 * If we've removed a buffer in the middle of 3074 * the list then update the lastbuf and update 3075 * bufp. 3076 */ 3077 if (*bufp != NULL) { 3078 lastbuf = *bufp; 3079 bufp = &(*bufp)->b_next; 3080 } 3081 } 3082 buf->b_next = NULL; 3083 ASSERT3P(lastbuf, !=, buf); 3084 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL); 3085 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL); 3086 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf)); 3087 3088 return (lastbuf); 3089 } 3090 3091 /* 3092 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's 3093 * list and free it. 3094 */ 3095 static void 3096 arc_buf_destroy_impl(arc_buf_t *buf) 3097 { 3098 arc_buf_hdr_t *hdr = buf->b_hdr; 3099 3100 /* 3101 * Free up the data associated with the buf but only if we're not 3102 * sharing this with the hdr. If we are sharing it with the hdr, the 3103 * hdr is responsible for doing the free. 3104 */ 3105 if (buf->b_data != NULL) { 3106 /* 3107 * We're about to change the hdr's b_flags. We must either 3108 * hold the hash_lock or be undiscoverable. 3109 */ 3110 ASSERT(HDR_EMPTY_OR_LOCKED(hdr)); 3111 3112 arc_cksum_verify(buf); 3113 arc_buf_unwatch(buf); 3114 3115 if (arc_buf_is_shared(buf)) { 3116 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA); 3117 } else { 3118 uint64_t size = arc_buf_size(buf); 3119 arc_free_data_buf(hdr, buf->b_data, size, buf); 3120 ARCSTAT_INCR(arcstat_overhead_size, -size); 3121 } 3122 buf->b_data = NULL; 3123 3124 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3125 hdr->b_l1hdr.b_bufcnt -= 1; 3126 3127 if (ARC_BUF_ENCRYPTED(buf)) { 3128 hdr->b_crypt_hdr.b_ebufcnt -= 1; 3129 3130 /* 3131 * If we have no more encrypted buffers and we've 3132 * already gotten a copy of the decrypted data we can 3133 * free b_rabd to save some space. 3134 */ 3135 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && 3136 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL && 3137 !HDR_IO_IN_PROGRESS(hdr)) { 3138 arc_hdr_free_abd(hdr, B_TRUE); 3139 } 3140 } 3141 } 3142 3143 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 3144 3145 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) { 3146 /* 3147 * If the current arc_buf_t is sharing its data buffer with the 3148 * hdr, then reassign the hdr's b_pabd to share it with the new 3149 * buffer at the end of the list. The shared buffer is always 3150 * the last one on the hdr's buffer list. 3151 * 3152 * There is an equivalent case for compressed bufs, but since 3153 * they aren't guaranteed to be the last buf in the list and 3154 * that is an exceedingly rare case, we just allow that space be 3155 * wasted temporarily. We must also be careful not to share 3156 * encrypted buffers, since they cannot be shared. 3157 */ 3158 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) { 3159 /* Only one buf can be shared at once */ 3160 VERIFY(!arc_buf_is_shared(lastbuf)); 3161 /* hdr is uncompressed so can't have compressed buf */ 3162 VERIFY(!ARC_BUF_COMPRESSED(lastbuf)); 3163 3164 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3165 arc_hdr_free_abd(hdr, B_FALSE); 3166 3167 /* 3168 * We must setup a new shared block between the 3169 * last buffer and the hdr. The data would have 3170 * been allocated by the arc buf so we need to transfer 3171 * ownership to the hdr since it's now being shared. 3172 */ 3173 arc_share_buf(hdr, lastbuf); 3174 } 3175 } else if (HDR_SHARED_DATA(hdr)) { 3176 /* 3177 * Uncompressed shared buffers are always at the end 3178 * of the list. Compressed buffers don't have the 3179 * same requirements. This makes it hard to 3180 * simply assert that the lastbuf is shared so 3181 * we rely on the hdr's compression flags to determine 3182 * if we have a compressed, shared buffer. 3183 */ 3184 ASSERT3P(lastbuf, !=, NULL); 3185 ASSERT(arc_buf_is_shared(lastbuf) || 3186 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 3187 } 3188 3189 /* 3190 * Free the checksum if we're removing the last uncompressed buf from 3191 * this hdr. 3192 */ 3193 if (!arc_hdr_has_uncompressed_buf(hdr)) { 3194 arc_cksum_free(hdr); 3195 } 3196 3197 /* clean up the buf */ 3198 buf->b_hdr = NULL; 3199 kmem_cache_free(buf_cache, buf); 3200 } 3201 3202 static void 3203 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags) 3204 { 3205 uint64_t size; 3206 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0); 3207 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0); 3208 3209 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0); 3210 ASSERT(HDR_HAS_L1HDR(hdr)); 3211 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata); 3212 IMPLY(alloc_rdata, HDR_PROTECTED(hdr)); 3213 3214 if (alloc_rdata) { 3215 size = HDR_GET_PSIZE(hdr); 3216 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL); 3217 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr, 3218 do_adapt); 3219 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL); 3220 ARCSTAT_INCR(arcstat_raw_size, size); 3221 } else { 3222 size = arc_hdr_size(hdr); 3223 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3224 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr, 3225 do_adapt); 3226 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 3227 } 3228 3229 ARCSTAT_INCR(arcstat_compressed_size, size); 3230 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr)); 3231 } 3232 3233 static void 3234 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata) 3235 { 3236 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr); 3237 3238 ASSERT(HDR_HAS_L1HDR(hdr)); 3239 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 3240 IMPLY(free_rdata, HDR_HAS_RABD(hdr)); 3241 3242 /* 3243 * If the hdr is currently being written to the l2arc then 3244 * we defer freeing the data by adding it to the l2arc_free_on_write 3245 * list. The l2arc will free the data once it's finished 3246 * writing it to the l2arc device. 3247 */ 3248 if (HDR_L2_WRITING(hdr)) { 3249 arc_hdr_free_on_write(hdr, free_rdata); 3250 ARCSTAT_BUMP(arcstat_l2_free_on_write); 3251 } else if (free_rdata) { 3252 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr); 3253 } else { 3254 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr); 3255 } 3256 3257 if (free_rdata) { 3258 hdr->b_crypt_hdr.b_rabd = NULL; 3259 ARCSTAT_INCR(arcstat_raw_size, -size); 3260 } else { 3261 hdr->b_l1hdr.b_pabd = NULL; 3262 } 3263 3264 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr)) 3265 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 3266 3267 ARCSTAT_INCR(arcstat_compressed_size, -size); 3268 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr)); 3269 } 3270 3271 static arc_buf_hdr_t * 3272 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize, 3273 boolean_t protected, enum zio_compress compression_type, uint8_t complevel, 3274 arc_buf_contents_t type, boolean_t alloc_rdata) 3275 { 3276 arc_buf_hdr_t *hdr; 3277 int flags = ARC_HDR_DO_ADAPT; 3278 3279 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA); 3280 if (protected) { 3281 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE); 3282 } else { 3283 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE); 3284 } 3285 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0; 3286 3287 ASSERT(HDR_EMPTY(hdr)); 3288 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3289 HDR_SET_PSIZE(hdr, psize); 3290 HDR_SET_LSIZE(hdr, lsize); 3291 hdr->b_spa = spa; 3292 hdr->b_type = type; 3293 hdr->b_flags = 0; 3294 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR); 3295 arc_hdr_set_compress(hdr, compression_type); 3296 hdr->b_complevel = complevel; 3297 if (protected) 3298 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED); 3299 3300 hdr->b_l1hdr.b_state = arc_anon; 3301 hdr->b_l1hdr.b_arc_access = 0; 3302 hdr->b_l1hdr.b_bufcnt = 0; 3303 hdr->b_l1hdr.b_buf = NULL; 3304 3305 /* 3306 * Allocate the hdr's buffer. This will contain either 3307 * the compressed or uncompressed data depending on the block 3308 * it references and compressed arc enablement. 3309 */ 3310 arc_hdr_alloc_abd(hdr, flags); 3311 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3312 3313 return (hdr); 3314 } 3315 3316 /* 3317 * Transition between the two allocation states for the arc_buf_hdr struct. 3318 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without 3319 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller 3320 * version is used when a cache buffer is only in the L2ARC in order to reduce 3321 * memory usage. 3322 */ 3323 static arc_buf_hdr_t * 3324 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new) 3325 { 3326 ASSERT(HDR_HAS_L2HDR(hdr)); 3327 3328 arc_buf_hdr_t *nhdr; 3329 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3330 3331 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) || 3332 (old == hdr_l2only_cache && new == hdr_full_cache)); 3333 3334 /* 3335 * if the caller wanted a new full header and the header is to be 3336 * encrypted we will actually allocate the header from the full crypt 3337 * cache instead. The same applies to freeing from the old cache. 3338 */ 3339 if (HDR_PROTECTED(hdr) && new == hdr_full_cache) 3340 new = hdr_full_crypt_cache; 3341 if (HDR_PROTECTED(hdr) && old == hdr_full_cache) 3342 old = hdr_full_crypt_cache; 3343 3344 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE); 3345 3346 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 3347 buf_hash_remove(hdr); 3348 3349 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE); 3350 3351 if (new == hdr_full_cache || new == hdr_full_crypt_cache) { 3352 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3353 /* 3354 * arc_access and arc_change_state need to be aware that a 3355 * header has just come out of L2ARC, so we set its state to 3356 * l2c_only even though it's about to change. 3357 */ 3358 nhdr->b_l1hdr.b_state = arc_l2c_only; 3359 3360 /* Verify previous threads set to NULL before freeing */ 3361 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL); 3362 ASSERT(!HDR_HAS_RABD(hdr)); 3363 } else { 3364 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3365 ASSERT0(hdr->b_l1hdr.b_bufcnt); 3366 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3367 3368 /* 3369 * If we've reached here, We must have been called from 3370 * arc_evict_hdr(), as such we should have already been 3371 * removed from any ghost list we were previously on 3372 * (which protects us from racing with arc_evict_state), 3373 * thus no locking is needed during this check. 3374 */ 3375 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3376 3377 /* 3378 * A buffer must not be moved into the arc_l2c_only 3379 * state if it's not finished being written out to the 3380 * l2arc device. Otherwise, the b_l1hdr.b_pabd field 3381 * might try to be accessed, even though it was removed. 3382 */ 3383 VERIFY(!HDR_L2_WRITING(hdr)); 3384 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL); 3385 ASSERT(!HDR_HAS_RABD(hdr)); 3386 3387 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR); 3388 } 3389 /* 3390 * The header has been reallocated so we need to re-insert it into any 3391 * lists it was on. 3392 */ 3393 (void) buf_hash_insert(nhdr, NULL); 3394 3395 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node)); 3396 3397 mutex_enter(&dev->l2ad_mtx); 3398 3399 /* 3400 * We must place the realloc'ed header back into the list at 3401 * the same spot. Otherwise, if it's placed earlier in the list, 3402 * l2arc_write_buffers() could find it during the function's 3403 * write phase, and try to write it out to the l2arc. 3404 */ 3405 list_insert_after(&dev->l2ad_buflist, hdr, nhdr); 3406 list_remove(&dev->l2ad_buflist, hdr); 3407 3408 mutex_exit(&dev->l2ad_mtx); 3409 3410 /* 3411 * Since we're using the pointer address as the tag when 3412 * incrementing and decrementing the l2ad_alloc refcount, we 3413 * must remove the old pointer (that we're about to destroy) and 3414 * add the new pointer to the refcount. Otherwise we'd remove 3415 * the wrong pointer address when calling arc_hdr_destroy() later. 3416 */ 3417 3418 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 3419 arc_hdr_size(hdr), hdr); 3420 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 3421 arc_hdr_size(nhdr), nhdr); 3422 3423 buf_discard_identity(hdr); 3424 kmem_cache_free(old, hdr); 3425 3426 return (nhdr); 3427 } 3428 3429 /* 3430 * This function allows an L1 header to be reallocated as a crypt 3431 * header and vice versa. If we are going to a crypt header, the 3432 * new fields will be zeroed out. 3433 */ 3434 static arc_buf_hdr_t * 3435 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt) 3436 { 3437 arc_buf_hdr_t *nhdr; 3438 arc_buf_t *buf; 3439 kmem_cache_t *ncache, *ocache; 3440 unsigned nsize, osize; 3441 3442 /* 3443 * This function requires that hdr is in the arc_anon state. 3444 * Therefore it won't have any L2ARC data for us to worry 3445 * about copying. 3446 */ 3447 ASSERT(HDR_HAS_L1HDR(hdr)); 3448 ASSERT(!HDR_HAS_L2HDR(hdr)); 3449 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt); 3450 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3451 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3452 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node)); 3453 ASSERT3P(hdr->b_hash_next, ==, NULL); 3454 3455 if (need_crypt) { 3456 ncache = hdr_full_crypt_cache; 3457 nsize = sizeof (hdr->b_crypt_hdr); 3458 ocache = hdr_full_cache; 3459 osize = HDR_FULL_SIZE; 3460 } else { 3461 ncache = hdr_full_cache; 3462 nsize = HDR_FULL_SIZE; 3463 ocache = hdr_full_crypt_cache; 3464 osize = sizeof (hdr->b_crypt_hdr); 3465 } 3466 3467 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE); 3468 3469 /* 3470 * Copy all members that aren't locks or condvars to the new header. 3471 * No lists are pointing to us (as we asserted above), so we don't 3472 * need to worry about the list nodes. 3473 */ 3474 nhdr->b_dva = hdr->b_dva; 3475 nhdr->b_birth = hdr->b_birth; 3476 nhdr->b_type = hdr->b_type; 3477 nhdr->b_flags = hdr->b_flags; 3478 nhdr->b_psize = hdr->b_psize; 3479 nhdr->b_lsize = hdr->b_lsize; 3480 nhdr->b_spa = hdr->b_spa; 3481 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum; 3482 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt; 3483 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap; 3484 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state; 3485 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access; 3486 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits; 3487 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits; 3488 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits; 3489 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits; 3490 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits; 3491 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb; 3492 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd; 3493 3494 /* 3495 * This zfs_refcount_add() exists only to ensure that the individual 3496 * arc buffers always point to a header that is referenced, avoiding 3497 * a small race condition that could trigger ASSERTs. 3498 */ 3499 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG); 3500 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf; 3501 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) { 3502 mutex_enter(&buf->b_evict_lock); 3503 buf->b_hdr = nhdr; 3504 mutex_exit(&buf->b_evict_lock); 3505 } 3506 3507 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt); 3508 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG); 3509 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3510 3511 if (need_crypt) { 3512 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED); 3513 } else { 3514 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED); 3515 } 3516 3517 /* unset all members of the original hdr */ 3518 bzero(&hdr->b_dva, sizeof (dva_t)); 3519 hdr->b_birth = 0; 3520 hdr->b_type = ARC_BUFC_INVALID; 3521 hdr->b_flags = 0; 3522 hdr->b_psize = 0; 3523 hdr->b_lsize = 0; 3524 hdr->b_spa = 0; 3525 hdr->b_l1hdr.b_freeze_cksum = NULL; 3526 hdr->b_l1hdr.b_buf = NULL; 3527 hdr->b_l1hdr.b_bufcnt = 0; 3528 hdr->b_l1hdr.b_byteswap = 0; 3529 hdr->b_l1hdr.b_state = NULL; 3530 hdr->b_l1hdr.b_arc_access = 0; 3531 hdr->b_l1hdr.b_mru_hits = 0; 3532 hdr->b_l1hdr.b_mru_ghost_hits = 0; 3533 hdr->b_l1hdr.b_mfu_hits = 0; 3534 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 3535 hdr->b_l1hdr.b_l2_hits = 0; 3536 hdr->b_l1hdr.b_acb = NULL; 3537 hdr->b_l1hdr.b_pabd = NULL; 3538 3539 if (ocache == hdr_full_crypt_cache) { 3540 ASSERT(!HDR_HAS_RABD(hdr)); 3541 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE; 3542 hdr->b_crypt_hdr.b_ebufcnt = 0; 3543 hdr->b_crypt_hdr.b_dsobj = 0; 3544 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3545 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3546 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3547 } 3548 3549 buf_discard_identity(hdr); 3550 kmem_cache_free(ocache, hdr); 3551 3552 return (nhdr); 3553 } 3554 3555 /* 3556 * This function is used by the send / receive code to convert a newly 3557 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It 3558 * is also used to allow the root objset block to be updated without altering 3559 * its embedded MACs. Both block types will always be uncompressed so we do not 3560 * have to worry about compression type or psize. 3561 */ 3562 void 3563 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder, 3564 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv, 3565 const uint8_t *mac) 3566 { 3567 arc_buf_hdr_t *hdr = buf->b_hdr; 3568 3569 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET); 3570 ASSERT(HDR_HAS_L1HDR(hdr)); 3571 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3572 3573 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED); 3574 if (!HDR_PROTECTED(hdr)) 3575 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE); 3576 hdr->b_crypt_hdr.b_dsobj = dsobj; 3577 hdr->b_crypt_hdr.b_ot = ot; 3578 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3579 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3580 if (!arc_hdr_has_uncompressed_buf(hdr)) 3581 arc_cksum_free(hdr); 3582 3583 if (salt != NULL) 3584 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3585 if (iv != NULL) 3586 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3587 if (mac != NULL) 3588 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3589 } 3590 3591 /* 3592 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller. 3593 * The buf is returned thawed since we expect the consumer to modify it. 3594 */ 3595 arc_buf_t * 3596 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size) 3597 { 3598 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size, 3599 B_FALSE, ZIO_COMPRESS_OFF, 0, type, B_FALSE); 3600 3601 arc_buf_t *buf = NULL; 3602 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE, 3603 B_FALSE, B_FALSE, &buf)); 3604 arc_buf_thaw(buf); 3605 3606 return (buf); 3607 } 3608 3609 /* 3610 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this 3611 * for bufs containing metadata. 3612 */ 3613 arc_buf_t * 3614 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize, 3615 enum zio_compress compression_type, uint8_t complevel) 3616 { 3617 ASSERT3U(lsize, >, 0); 3618 ASSERT3U(lsize, >=, psize); 3619 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF); 3620 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3621 3622 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 3623 B_FALSE, compression_type, complevel, ARC_BUFC_DATA, B_FALSE); 3624 3625 arc_buf_t *buf = NULL; 3626 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, 3627 B_TRUE, B_FALSE, B_FALSE, &buf)); 3628 arc_buf_thaw(buf); 3629 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3630 3631 if (!arc_buf_is_shared(buf)) { 3632 /* 3633 * To ensure that the hdr has the correct data in it if we call 3634 * arc_untransform() on this buf before it's been written to 3635 * disk, it's easiest if we just set up sharing between the 3636 * buf and the hdr. 3637 */ 3638 arc_hdr_free_abd(hdr, B_FALSE); 3639 arc_share_buf(hdr, buf); 3640 } 3641 3642 return (buf); 3643 } 3644 3645 arc_buf_t * 3646 arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder, 3647 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, 3648 dmu_object_type_t ot, uint64_t psize, uint64_t lsize, 3649 enum zio_compress compression_type, uint8_t complevel) 3650 { 3651 arc_buf_hdr_t *hdr; 3652 arc_buf_t *buf; 3653 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ? 3654 ARC_BUFC_METADATA : ARC_BUFC_DATA; 3655 3656 ASSERT3U(lsize, >, 0); 3657 ASSERT3U(lsize, >=, psize); 3658 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF); 3659 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS); 3660 3661 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE, 3662 compression_type, complevel, type, B_TRUE); 3663 3664 hdr->b_crypt_hdr.b_dsobj = dsobj; 3665 hdr->b_crypt_hdr.b_ot = ot; 3666 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ? 3667 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot); 3668 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN); 3669 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN); 3670 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN); 3671 3672 /* 3673 * This buffer will be considered encrypted even if the ot is not an 3674 * encrypted type. It will become authenticated instead in 3675 * arc_write_ready(). 3676 */ 3677 buf = NULL; 3678 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE, 3679 B_FALSE, B_FALSE, &buf)); 3680 arc_buf_thaw(buf); 3681 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 3682 3683 return (buf); 3684 } 3685 3686 static void 3687 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr) 3688 { 3689 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr; 3690 l2arc_dev_t *dev = l2hdr->b_dev; 3691 uint64_t psize = HDR_GET_PSIZE(hdr); 3692 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 3693 3694 ASSERT(MUTEX_HELD(&dev->l2ad_mtx)); 3695 ASSERT(HDR_HAS_L2HDR(hdr)); 3696 3697 list_remove(&dev->l2ad_buflist, hdr); 3698 3699 ARCSTAT_INCR(arcstat_l2_psize, -psize); 3700 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 3701 3702 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0); 3703 3704 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), 3705 hdr); 3706 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 3707 } 3708 3709 static void 3710 arc_hdr_destroy(arc_buf_hdr_t *hdr) 3711 { 3712 if (HDR_HAS_L1HDR(hdr)) { 3713 ASSERT(hdr->b_l1hdr.b_buf == NULL || 3714 hdr->b_l1hdr.b_bufcnt > 0); 3715 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 3716 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 3717 } 3718 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3719 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 3720 3721 if (HDR_HAS_L2HDR(hdr)) { 3722 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev; 3723 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx); 3724 3725 if (!buflist_held) 3726 mutex_enter(&dev->l2ad_mtx); 3727 3728 /* 3729 * Even though we checked this conditional above, we 3730 * need to check this again now that we have the 3731 * l2ad_mtx. This is because we could be racing with 3732 * another thread calling l2arc_evict() which might have 3733 * destroyed this header's L2 portion as we were waiting 3734 * to acquire the l2ad_mtx. If that happens, we don't 3735 * want to re-destroy the header's L2 portion. 3736 */ 3737 if (HDR_HAS_L2HDR(hdr)) 3738 arc_hdr_l2hdr_destroy(hdr); 3739 3740 if (!buflist_held) 3741 mutex_exit(&dev->l2ad_mtx); 3742 } 3743 3744 /* 3745 * The header's identify can only be safely discarded once it is no 3746 * longer discoverable. This requires removing it from the hash table 3747 * and the l2arc header list. After this point the hash lock can not 3748 * be used to protect the header. 3749 */ 3750 if (!HDR_EMPTY(hdr)) 3751 buf_discard_identity(hdr); 3752 3753 if (HDR_HAS_L1HDR(hdr)) { 3754 arc_cksum_free(hdr); 3755 3756 while (hdr->b_l1hdr.b_buf != NULL) 3757 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf); 3758 3759 if (hdr->b_l1hdr.b_pabd != NULL) 3760 arc_hdr_free_abd(hdr, B_FALSE); 3761 3762 if (HDR_HAS_RABD(hdr)) 3763 arc_hdr_free_abd(hdr, B_TRUE); 3764 } 3765 3766 ASSERT3P(hdr->b_hash_next, ==, NULL); 3767 if (HDR_HAS_L1HDR(hdr)) { 3768 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 3769 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 3770 3771 if (!HDR_PROTECTED(hdr)) { 3772 kmem_cache_free(hdr_full_cache, hdr); 3773 } else { 3774 kmem_cache_free(hdr_full_crypt_cache, hdr); 3775 } 3776 } else { 3777 kmem_cache_free(hdr_l2only_cache, hdr); 3778 } 3779 } 3780 3781 void 3782 arc_buf_destroy(arc_buf_t *buf, void* tag) 3783 { 3784 arc_buf_hdr_t *hdr = buf->b_hdr; 3785 3786 if (hdr->b_l1hdr.b_state == arc_anon) { 3787 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 3788 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3789 VERIFY0(remove_reference(hdr, NULL, tag)); 3790 arc_hdr_destroy(hdr); 3791 return; 3792 } 3793 3794 kmutex_t *hash_lock = HDR_LOCK(hdr); 3795 mutex_enter(hash_lock); 3796 3797 ASSERT3P(hdr, ==, buf->b_hdr); 3798 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 3799 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 3800 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon); 3801 ASSERT3P(buf->b_data, !=, NULL); 3802 3803 (void) remove_reference(hdr, hash_lock, tag); 3804 arc_buf_destroy_impl(buf); 3805 mutex_exit(hash_lock); 3806 } 3807 3808 /* 3809 * Evict the arc_buf_hdr that is provided as a parameter. The resultant 3810 * state of the header is dependent on its state prior to entering this 3811 * function. The following transitions are possible: 3812 * 3813 * - arc_mru -> arc_mru_ghost 3814 * - arc_mfu -> arc_mfu_ghost 3815 * - arc_mru_ghost -> arc_l2c_only 3816 * - arc_mru_ghost -> deleted 3817 * - arc_mfu_ghost -> arc_l2c_only 3818 * - arc_mfu_ghost -> deleted 3819 */ 3820 static int64_t 3821 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 3822 { 3823 arc_state_t *evicted_state, *state; 3824 int64_t bytes_evicted = 0; 3825 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ? 3826 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms; 3827 3828 ASSERT(MUTEX_HELD(hash_lock)); 3829 ASSERT(HDR_HAS_L1HDR(hdr)); 3830 3831 state = hdr->b_l1hdr.b_state; 3832 if (GHOST_STATE(state)) { 3833 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 3834 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 3835 3836 /* 3837 * l2arc_write_buffers() relies on a header's L1 portion 3838 * (i.e. its b_pabd field) during it's write phase. 3839 * Thus, we cannot push a header onto the arc_l2c_only 3840 * state (removing its L1 piece) until the header is 3841 * done being written to the l2arc. 3842 */ 3843 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) { 3844 ARCSTAT_BUMP(arcstat_evict_l2_skip); 3845 return (bytes_evicted); 3846 } 3847 3848 ARCSTAT_BUMP(arcstat_deleted); 3849 bytes_evicted += HDR_GET_LSIZE(hdr); 3850 3851 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr); 3852 3853 if (HDR_HAS_L2HDR(hdr)) { 3854 ASSERT(hdr->b_l1hdr.b_pabd == NULL); 3855 ASSERT(!HDR_HAS_RABD(hdr)); 3856 /* 3857 * This buffer is cached on the 2nd Level ARC; 3858 * don't destroy the header. 3859 */ 3860 arc_change_state(arc_l2c_only, hdr, hash_lock); 3861 /* 3862 * dropping from L1+L2 cached to L2-only, 3863 * realloc to remove the L1 header. 3864 */ 3865 hdr = arc_hdr_realloc(hdr, hdr_full_cache, 3866 hdr_l2only_cache); 3867 } else { 3868 arc_change_state(arc_anon, hdr, hash_lock); 3869 arc_hdr_destroy(hdr); 3870 } 3871 return (bytes_evicted); 3872 } 3873 3874 ASSERT(state == arc_mru || state == arc_mfu); 3875 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost; 3876 3877 /* prefetch buffers have a minimum lifespan */ 3878 if (HDR_IO_IN_PROGRESS(hdr) || 3879 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) && 3880 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access < 3881 MSEC_TO_TICK(min_lifetime))) { 3882 ARCSTAT_BUMP(arcstat_evict_skip); 3883 return (bytes_evicted); 3884 } 3885 3886 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt)); 3887 while (hdr->b_l1hdr.b_buf) { 3888 arc_buf_t *buf = hdr->b_l1hdr.b_buf; 3889 if (!mutex_tryenter(&buf->b_evict_lock)) { 3890 ARCSTAT_BUMP(arcstat_mutex_miss); 3891 break; 3892 } 3893 if (buf->b_data != NULL) 3894 bytes_evicted += HDR_GET_LSIZE(hdr); 3895 mutex_exit(&buf->b_evict_lock); 3896 arc_buf_destroy_impl(buf); 3897 } 3898 3899 if (HDR_HAS_L2HDR(hdr)) { 3900 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr)); 3901 } else { 3902 if (l2arc_write_eligible(hdr->b_spa, hdr)) { 3903 ARCSTAT_INCR(arcstat_evict_l2_eligible, 3904 HDR_GET_LSIZE(hdr)); 3905 } else { 3906 ARCSTAT_INCR(arcstat_evict_l2_ineligible, 3907 HDR_GET_LSIZE(hdr)); 3908 } 3909 } 3910 3911 if (hdr->b_l1hdr.b_bufcnt == 0) { 3912 arc_cksum_free(hdr); 3913 3914 bytes_evicted += arc_hdr_size(hdr); 3915 3916 /* 3917 * If this hdr is being evicted and has a compressed 3918 * buffer then we discard it here before we change states. 3919 * This ensures that the accounting is updated correctly 3920 * in arc_free_data_impl(). 3921 */ 3922 if (hdr->b_l1hdr.b_pabd != NULL) 3923 arc_hdr_free_abd(hdr, B_FALSE); 3924 3925 if (HDR_HAS_RABD(hdr)) 3926 arc_hdr_free_abd(hdr, B_TRUE); 3927 3928 arc_change_state(evicted_state, hdr, hash_lock); 3929 ASSERT(HDR_IN_HASH_TABLE(hdr)); 3930 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE); 3931 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr); 3932 } 3933 3934 return (bytes_evicted); 3935 } 3936 3937 static void 3938 arc_set_need_free(void) 3939 { 3940 ASSERT(MUTEX_HELD(&arc_evict_lock)); 3941 int64_t remaining = arc_free_memory() - arc_sys_free / 2; 3942 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters); 3943 if (aw == NULL) { 3944 arc_need_free = MAX(-remaining, 0); 3945 } else { 3946 arc_need_free = 3947 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count)); 3948 } 3949 } 3950 3951 static uint64_t 3952 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker, 3953 uint64_t spa, int64_t bytes) 3954 { 3955 multilist_sublist_t *mls; 3956 uint64_t bytes_evicted = 0; 3957 arc_buf_hdr_t *hdr; 3958 kmutex_t *hash_lock; 3959 int evict_count = 0; 3960 3961 ASSERT3P(marker, !=, NULL); 3962 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 3963 3964 mls = multilist_sublist_lock(ml, idx); 3965 3966 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL; 3967 hdr = multilist_sublist_prev(mls, marker)) { 3968 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) || 3969 (evict_count >= zfs_arc_evict_batch_limit)) 3970 break; 3971 3972 /* 3973 * To keep our iteration location, move the marker 3974 * forward. Since we're not holding hdr's hash lock, we 3975 * must be very careful and not remove 'hdr' from the 3976 * sublist. Otherwise, other consumers might mistake the 3977 * 'hdr' as not being on a sublist when they call the 3978 * multilist_link_active() function (they all rely on 3979 * the hash lock protecting concurrent insertions and 3980 * removals). multilist_sublist_move_forward() was 3981 * specifically implemented to ensure this is the case 3982 * (only 'marker' will be removed and re-inserted). 3983 */ 3984 multilist_sublist_move_forward(mls, marker); 3985 3986 /* 3987 * The only case where the b_spa field should ever be 3988 * zero, is the marker headers inserted by 3989 * arc_evict_state(). It's possible for multiple threads 3990 * to be calling arc_evict_state() concurrently (e.g. 3991 * dsl_pool_close() and zio_inject_fault()), so we must 3992 * skip any markers we see from these other threads. 3993 */ 3994 if (hdr->b_spa == 0) 3995 continue; 3996 3997 /* we're only interested in evicting buffers of a certain spa */ 3998 if (spa != 0 && hdr->b_spa != spa) { 3999 ARCSTAT_BUMP(arcstat_evict_skip); 4000 continue; 4001 } 4002 4003 hash_lock = HDR_LOCK(hdr); 4004 4005 /* 4006 * We aren't calling this function from any code path 4007 * that would already be holding a hash lock, so we're 4008 * asserting on this assumption to be defensive in case 4009 * this ever changes. Without this check, it would be 4010 * possible to incorrectly increment arcstat_mutex_miss 4011 * below (e.g. if the code changed such that we called 4012 * this function with a hash lock held). 4013 */ 4014 ASSERT(!MUTEX_HELD(hash_lock)); 4015 4016 if (mutex_tryenter(hash_lock)) { 4017 uint64_t evicted = arc_evict_hdr(hdr, hash_lock); 4018 mutex_exit(hash_lock); 4019 4020 bytes_evicted += evicted; 4021 4022 /* 4023 * If evicted is zero, arc_evict_hdr() must have 4024 * decided to skip this header, don't increment 4025 * evict_count in this case. 4026 */ 4027 if (evicted != 0) 4028 evict_count++; 4029 4030 } else { 4031 ARCSTAT_BUMP(arcstat_mutex_miss); 4032 } 4033 } 4034 4035 multilist_sublist_unlock(mls); 4036 4037 /* 4038 * Increment the count of evicted bytes, and wake up any threads that 4039 * are waiting for the count to reach this value. Since the list is 4040 * ordered by ascending aew_count, we pop off the beginning of the 4041 * list until we reach the end, or a waiter that's past the current 4042 * "count". Doing this outside the loop reduces the number of times 4043 * we need to acquire the global arc_evict_lock. 4044 * 4045 * Only wake when there's sufficient free memory in the system 4046 * (specifically, arc_sys_free/2, which by default is a bit more than 4047 * 1/64th of RAM). See the comments in arc_wait_for_eviction(). 4048 */ 4049 mutex_enter(&arc_evict_lock); 4050 arc_evict_count += bytes_evicted; 4051 4052 if ((int64_t)(arc_free_memory() - arc_sys_free / 2) > 0) { 4053 arc_evict_waiter_t *aw; 4054 while ((aw = list_head(&arc_evict_waiters)) != NULL && 4055 aw->aew_count <= arc_evict_count) { 4056 list_remove(&arc_evict_waiters, aw); 4057 cv_broadcast(&aw->aew_cv); 4058 } 4059 } 4060 arc_set_need_free(); 4061 mutex_exit(&arc_evict_lock); 4062 4063 /* 4064 * If the ARC size is reduced from arc_c_max to arc_c_min (especially 4065 * if the average cached block is small), eviction can be on-CPU for 4066 * many seconds. To ensure that other threads that may be bound to 4067 * this CPU are able to make progress, make a voluntary preemption 4068 * call here. 4069 */ 4070 cond_resched(); 4071 4072 return (bytes_evicted); 4073 } 4074 4075 /* 4076 * Evict buffers from the given arc state, until we've removed the 4077 * specified number of bytes. Move the removed buffers to the 4078 * appropriate evict state. 4079 * 4080 * This function makes a "best effort". It skips over any buffers 4081 * it can't get a hash_lock on, and so, may not catch all candidates. 4082 * It may also return without evicting as much space as requested. 4083 * 4084 * If bytes is specified using the special value ARC_EVICT_ALL, this 4085 * will evict all available (i.e. unlocked and evictable) buffers from 4086 * the given arc state; which is used by arc_flush(). 4087 */ 4088 static uint64_t 4089 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes, 4090 arc_buf_contents_t type) 4091 { 4092 uint64_t total_evicted = 0; 4093 multilist_t *ml = state->arcs_list[type]; 4094 int num_sublists; 4095 arc_buf_hdr_t **markers; 4096 4097 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL); 4098 4099 num_sublists = multilist_get_num_sublists(ml); 4100 4101 /* 4102 * If we've tried to evict from each sublist, made some 4103 * progress, but still have not hit the target number of bytes 4104 * to evict, we want to keep trying. The markers allow us to 4105 * pick up where we left off for each individual sublist, rather 4106 * than starting from the tail each time. 4107 */ 4108 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP); 4109 for (int i = 0; i < num_sublists; i++) { 4110 multilist_sublist_t *mls; 4111 4112 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP); 4113 4114 /* 4115 * A b_spa of 0 is used to indicate that this header is 4116 * a marker. This fact is used in arc_evict_type() and 4117 * arc_evict_state_impl(). 4118 */ 4119 markers[i]->b_spa = 0; 4120 4121 mls = multilist_sublist_lock(ml, i); 4122 multilist_sublist_insert_tail(mls, markers[i]); 4123 multilist_sublist_unlock(mls); 4124 } 4125 4126 /* 4127 * While we haven't hit our target number of bytes to evict, or 4128 * we're evicting all available buffers. 4129 */ 4130 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) { 4131 int sublist_idx = multilist_get_random_index(ml); 4132 uint64_t scan_evicted = 0; 4133 4134 /* 4135 * Try to reduce pinned dnodes with a floor of arc_dnode_limit. 4136 * Request that 10% of the LRUs be scanned by the superblock 4137 * shrinker. 4138 */ 4139 if (type == ARC_BUFC_DATA && aggsum_compare(&astat_dnode_size, 4140 arc_dnode_size_limit) > 0) { 4141 arc_prune_async((aggsum_upper_bound(&astat_dnode_size) - 4142 arc_dnode_size_limit) / sizeof (dnode_t) / 4143 zfs_arc_dnode_reduce_percent); 4144 } 4145 4146 /* 4147 * Start eviction using a randomly selected sublist, 4148 * this is to try and evenly balance eviction across all 4149 * sublists. Always starting at the same sublist 4150 * (e.g. index 0) would cause evictions to favor certain 4151 * sublists over others. 4152 */ 4153 for (int i = 0; i < num_sublists; i++) { 4154 uint64_t bytes_remaining; 4155 uint64_t bytes_evicted; 4156 4157 if (bytes == ARC_EVICT_ALL) 4158 bytes_remaining = ARC_EVICT_ALL; 4159 else if (total_evicted < bytes) 4160 bytes_remaining = bytes - total_evicted; 4161 else 4162 break; 4163 4164 bytes_evicted = arc_evict_state_impl(ml, sublist_idx, 4165 markers[sublist_idx], spa, bytes_remaining); 4166 4167 scan_evicted += bytes_evicted; 4168 total_evicted += bytes_evicted; 4169 4170 /* we've reached the end, wrap to the beginning */ 4171 if (++sublist_idx >= num_sublists) 4172 sublist_idx = 0; 4173 } 4174 4175 /* 4176 * If we didn't evict anything during this scan, we have 4177 * no reason to believe we'll evict more during another 4178 * scan, so break the loop. 4179 */ 4180 if (scan_evicted == 0) { 4181 /* This isn't possible, let's make that obvious */ 4182 ASSERT3S(bytes, !=, 0); 4183 4184 /* 4185 * When bytes is ARC_EVICT_ALL, the only way to 4186 * break the loop is when scan_evicted is zero. 4187 * In that case, we actually have evicted enough, 4188 * so we don't want to increment the kstat. 4189 */ 4190 if (bytes != ARC_EVICT_ALL) { 4191 ASSERT3S(total_evicted, <, bytes); 4192 ARCSTAT_BUMP(arcstat_evict_not_enough); 4193 } 4194 4195 break; 4196 } 4197 } 4198 4199 for (int i = 0; i < num_sublists; i++) { 4200 multilist_sublist_t *mls = multilist_sublist_lock(ml, i); 4201 multilist_sublist_remove(mls, markers[i]); 4202 multilist_sublist_unlock(mls); 4203 4204 kmem_cache_free(hdr_full_cache, markers[i]); 4205 } 4206 kmem_free(markers, sizeof (*markers) * num_sublists); 4207 4208 return (total_evicted); 4209 } 4210 4211 /* 4212 * Flush all "evictable" data of the given type from the arc state 4213 * specified. This will not evict any "active" buffers (i.e. referenced). 4214 * 4215 * When 'retry' is set to B_FALSE, the function will make a single pass 4216 * over the state and evict any buffers that it can. Since it doesn't 4217 * continually retry the eviction, it might end up leaving some buffers 4218 * in the ARC due to lock misses. 4219 * 4220 * When 'retry' is set to B_TRUE, the function will continually retry the 4221 * eviction until *all* evictable buffers have been removed from the 4222 * state. As a result, if concurrent insertions into the state are 4223 * allowed (e.g. if the ARC isn't shutting down), this function might 4224 * wind up in an infinite loop, continually trying to evict buffers. 4225 */ 4226 static uint64_t 4227 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type, 4228 boolean_t retry) 4229 { 4230 uint64_t evicted = 0; 4231 4232 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) { 4233 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type); 4234 4235 if (!retry) 4236 break; 4237 } 4238 4239 return (evicted); 4240 } 4241 4242 /* 4243 * Evict the specified number of bytes from the state specified, 4244 * restricting eviction to the spa and type given. This function 4245 * prevents us from trying to evict more from a state's list than 4246 * is "evictable", and to skip evicting altogether when passed a 4247 * negative value for "bytes". In contrast, arc_evict_state() will 4248 * evict everything it can, when passed a negative value for "bytes". 4249 */ 4250 static uint64_t 4251 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes, 4252 arc_buf_contents_t type) 4253 { 4254 int64_t delta; 4255 4256 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) { 4257 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]), 4258 bytes); 4259 return (arc_evict_state(state, spa, delta, type)); 4260 } 4261 4262 return (0); 4263 } 4264 4265 /* 4266 * The goal of this function is to evict enough meta data buffers from the 4267 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly 4268 * more complicated than it appears because it is common for data buffers 4269 * to have holds on meta data buffers. In addition, dnode meta data buffers 4270 * will be held by the dnodes in the block preventing them from being freed. 4271 * This means we can't simply traverse the ARC and expect to always find 4272 * enough unheld meta data buffer to release. 4273 * 4274 * Therefore, this function has been updated to make alternating passes 4275 * over the ARC releasing data buffers and then newly unheld meta data 4276 * buffers. This ensures forward progress is maintained and meta_used 4277 * will decrease. Normally this is sufficient, but if required the ARC 4278 * will call the registered prune callbacks causing dentry and inodes to 4279 * be dropped from the VFS cache. This will make dnode meta data buffers 4280 * available for reclaim. 4281 */ 4282 static uint64_t 4283 arc_evict_meta_balanced(uint64_t meta_used) 4284 { 4285 int64_t delta, prune = 0, adjustmnt; 4286 uint64_t total_evicted = 0; 4287 arc_buf_contents_t type = ARC_BUFC_DATA; 4288 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0); 4289 4290 restart: 4291 /* 4292 * This slightly differs than the way we evict from the mru in 4293 * arc_evict because we don't have a "target" value (i.e. no 4294 * "meta" arc_p). As a result, I think we can completely 4295 * cannibalize the metadata in the MRU before we evict the 4296 * metadata from the MFU. I think we probably need to implement a 4297 * "metadata arc_p" value to do this properly. 4298 */ 4299 adjustmnt = meta_used - arc_meta_limit; 4300 4301 if (adjustmnt > 0 && 4302 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) { 4303 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]), 4304 adjustmnt); 4305 total_evicted += arc_evict_impl(arc_mru, 0, delta, type); 4306 adjustmnt -= delta; 4307 } 4308 4309 /* 4310 * We can't afford to recalculate adjustmnt here. If we do, 4311 * new metadata buffers can sneak into the MRU or ANON lists, 4312 * thus penalize the MFU metadata. Although the fudge factor is 4313 * small, it has been empirically shown to be significant for 4314 * certain workloads (e.g. creating many empty directories). As 4315 * such, we use the original calculation for adjustmnt, and 4316 * simply decrement the amount of data evicted from the MRU. 4317 */ 4318 4319 if (adjustmnt > 0 && 4320 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) { 4321 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]), 4322 adjustmnt); 4323 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type); 4324 } 4325 4326 adjustmnt = meta_used - arc_meta_limit; 4327 4328 if (adjustmnt > 0 && 4329 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) { 4330 delta = MIN(adjustmnt, 4331 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type])); 4332 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type); 4333 adjustmnt -= delta; 4334 } 4335 4336 if (adjustmnt > 0 && 4337 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) { 4338 delta = MIN(adjustmnt, 4339 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type])); 4340 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type); 4341 } 4342 4343 /* 4344 * If after attempting to make the requested adjustment to the ARC 4345 * the meta limit is still being exceeded then request that the 4346 * higher layers drop some cached objects which have holds on ARC 4347 * meta buffers. Requests to the upper layers will be made with 4348 * increasingly large scan sizes until the ARC is below the limit. 4349 */ 4350 if (meta_used > arc_meta_limit) { 4351 if (type == ARC_BUFC_DATA) { 4352 type = ARC_BUFC_METADATA; 4353 } else { 4354 type = ARC_BUFC_DATA; 4355 4356 if (zfs_arc_meta_prune) { 4357 prune += zfs_arc_meta_prune; 4358 arc_prune_async(prune); 4359 } 4360 } 4361 4362 if (restarts > 0) { 4363 restarts--; 4364 goto restart; 4365 } 4366 } 4367 return (total_evicted); 4368 } 4369 4370 /* 4371 * Evict metadata buffers from the cache, such that arc_meta_used is 4372 * capped by the arc_meta_limit tunable. 4373 */ 4374 static uint64_t 4375 arc_evict_meta_only(uint64_t meta_used) 4376 { 4377 uint64_t total_evicted = 0; 4378 int64_t target; 4379 4380 /* 4381 * If we're over the meta limit, we want to evict enough 4382 * metadata to get back under the meta limit. We don't want to 4383 * evict so much that we drop the MRU below arc_p, though. If 4384 * we're over the meta limit more than we're over arc_p, we 4385 * evict some from the MRU here, and some from the MFU below. 4386 */ 4387 target = MIN((int64_t)(meta_used - arc_meta_limit), 4388 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4389 zfs_refcount_count(&arc_mru->arcs_size) - arc_p)); 4390 4391 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4392 4393 /* 4394 * Similar to the above, we want to evict enough bytes to get us 4395 * below the meta limit, but not so much as to drop us below the 4396 * space allotted to the MFU (which is defined as arc_c - arc_p). 4397 */ 4398 target = MIN((int64_t)(meta_used - arc_meta_limit), 4399 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) - 4400 (arc_c - arc_p))); 4401 4402 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4403 4404 return (total_evicted); 4405 } 4406 4407 static uint64_t 4408 arc_evict_meta(uint64_t meta_used) 4409 { 4410 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY) 4411 return (arc_evict_meta_only(meta_used)); 4412 else 4413 return (arc_evict_meta_balanced(meta_used)); 4414 } 4415 4416 /* 4417 * Return the type of the oldest buffer in the given arc state 4418 * 4419 * This function will select a random sublist of type ARC_BUFC_DATA and 4420 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist 4421 * is compared, and the type which contains the "older" buffer will be 4422 * returned. 4423 */ 4424 static arc_buf_contents_t 4425 arc_evict_type(arc_state_t *state) 4426 { 4427 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA]; 4428 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA]; 4429 int data_idx = multilist_get_random_index(data_ml); 4430 int meta_idx = multilist_get_random_index(meta_ml); 4431 multilist_sublist_t *data_mls; 4432 multilist_sublist_t *meta_mls; 4433 arc_buf_contents_t type; 4434 arc_buf_hdr_t *data_hdr; 4435 arc_buf_hdr_t *meta_hdr; 4436 4437 /* 4438 * We keep the sublist lock until we're finished, to prevent 4439 * the headers from being destroyed via arc_evict_state(). 4440 */ 4441 data_mls = multilist_sublist_lock(data_ml, data_idx); 4442 meta_mls = multilist_sublist_lock(meta_ml, meta_idx); 4443 4444 /* 4445 * These two loops are to ensure we skip any markers that 4446 * might be at the tail of the lists due to arc_evict_state(). 4447 */ 4448 4449 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL; 4450 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) { 4451 if (data_hdr->b_spa != 0) 4452 break; 4453 } 4454 4455 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL; 4456 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) { 4457 if (meta_hdr->b_spa != 0) 4458 break; 4459 } 4460 4461 if (data_hdr == NULL && meta_hdr == NULL) { 4462 type = ARC_BUFC_DATA; 4463 } else if (data_hdr == NULL) { 4464 ASSERT3P(meta_hdr, !=, NULL); 4465 type = ARC_BUFC_METADATA; 4466 } else if (meta_hdr == NULL) { 4467 ASSERT3P(data_hdr, !=, NULL); 4468 type = ARC_BUFC_DATA; 4469 } else { 4470 ASSERT3P(data_hdr, !=, NULL); 4471 ASSERT3P(meta_hdr, !=, NULL); 4472 4473 /* The headers can't be on the sublist without an L1 header */ 4474 ASSERT(HDR_HAS_L1HDR(data_hdr)); 4475 ASSERT(HDR_HAS_L1HDR(meta_hdr)); 4476 4477 if (data_hdr->b_l1hdr.b_arc_access < 4478 meta_hdr->b_l1hdr.b_arc_access) { 4479 type = ARC_BUFC_DATA; 4480 } else { 4481 type = ARC_BUFC_METADATA; 4482 } 4483 } 4484 4485 multilist_sublist_unlock(meta_mls); 4486 multilist_sublist_unlock(data_mls); 4487 4488 return (type); 4489 } 4490 4491 /* 4492 * Evict buffers from the cache, such that arc_size is capped by arc_c. 4493 */ 4494 static uint64_t 4495 arc_evict(void) 4496 { 4497 uint64_t total_evicted = 0; 4498 uint64_t bytes; 4499 int64_t target; 4500 uint64_t asize = aggsum_value(&arc_size); 4501 uint64_t ameta = aggsum_value(&arc_meta_used); 4502 4503 /* 4504 * If we're over arc_meta_limit, we want to correct that before 4505 * potentially evicting data buffers below. 4506 */ 4507 total_evicted += arc_evict_meta(ameta); 4508 4509 /* 4510 * Adjust MRU size 4511 * 4512 * If we're over the target cache size, we want to evict enough 4513 * from the list to get back to our target size. We don't want 4514 * to evict too much from the MRU, such that it drops below 4515 * arc_p. So, if we're over our target cache size more than 4516 * the MRU is over arc_p, we'll evict enough to get back to 4517 * arc_p here, and then evict more from the MFU below. 4518 */ 4519 target = MIN((int64_t)(asize - arc_c), 4520 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) + 4521 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p)); 4522 4523 /* 4524 * If we're below arc_meta_min, always prefer to evict data. 4525 * Otherwise, try to satisfy the requested number of bytes to 4526 * evict from the type which contains older buffers; in an 4527 * effort to keep newer buffers in the cache regardless of their 4528 * type. If we cannot satisfy the number of bytes from this 4529 * type, spill over into the next type. 4530 */ 4531 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA && 4532 ameta > arc_meta_min) { 4533 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4534 total_evicted += bytes; 4535 4536 /* 4537 * If we couldn't evict our target number of bytes from 4538 * metadata, we try to get the rest from data. 4539 */ 4540 target -= bytes; 4541 4542 total_evicted += 4543 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4544 } else { 4545 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA); 4546 total_evicted += bytes; 4547 4548 /* 4549 * If we couldn't evict our target number of bytes from 4550 * data, we try to get the rest from metadata. 4551 */ 4552 target -= bytes; 4553 4554 total_evicted += 4555 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA); 4556 } 4557 4558 /* 4559 * Re-sum ARC stats after the first round of evictions. 4560 */ 4561 asize = aggsum_value(&arc_size); 4562 ameta = aggsum_value(&arc_meta_used); 4563 4564 4565 /* 4566 * Adjust MFU size 4567 * 4568 * Now that we've tried to evict enough from the MRU to get its 4569 * size back to arc_p, if we're still above the target cache 4570 * size, we evict the rest from the MFU. 4571 */ 4572 target = asize - arc_c; 4573 4574 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA && 4575 ameta > arc_meta_min) { 4576 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4577 total_evicted += bytes; 4578 4579 /* 4580 * If we couldn't evict our target number of bytes from 4581 * metadata, we try to get the rest from data. 4582 */ 4583 target -= bytes; 4584 4585 total_evicted += 4586 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4587 } else { 4588 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA); 4589 total_evicted += bytes; 4590 4591 /* 4592 * If we couldn't evict our target number of bytes from 4593 * data, we try to get the rest from data. 4594 */ 4595 target -= bytes; 4596 4597 total_evicted += 4598 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA); 4599 } 4600 4601 /* 4602 * Adjust ghost lists 4603 * 4604 * In addition to the above, the ARC also defines target values 4605 * for the ghost lists. The sum of the mru list and mru ghost 4606 * list should never exceed the target size of the cache, and 4607 * the sum of the mru list, mfu list, mru ghost list, and mfu 4608 * ghost list should never exceed twice the target size of the 4609 * cache. The following logic enforces these limits on the ghost 4610 * caches, and evicts from them as needed. 4611 */ 4612 target = zfs_refcount_count(&arc_mru->arcs_size) + 4613 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c; 4614 4615 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA); 4616 total_evicted += bytes; 4617 4618 target -= bytes; 4619 4620 total_evicted += 4621 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA); 4622 4623 /* 4624 * We assume the sum of the mru list and mfu list is less than 4625 * or equal to arc_c (we enforced this above), which means we 4626 * can use the simpler of the two equations below: 4627 * 4628 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c 4629 * mru ghost + mfu ghost <= arc_c 4630 */ 4631 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) + 4632 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c; 4633 4634 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA); 4635 total_evicted += bytes; 4636 4637 target -= bytes; 4638 4639 total_evicted += 4640 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA); 4641 4642 return (total_evicted); 4643 } 4644 4645 void 4646 arc_flush(spa_t *spa, boolean_t retry) 4647 { 4648 uint64_t guid = 0; 4649 4650 /* 4651 * If retry is B_TRUE, a spa must not be specified since we have 4652 * no good way to determine if all of a spa's buffers have been 4653 * evicted from an arc state. 4654 */ 4655 ASSERT(!retry || spa == 0); 4656 4657 if (spa != NULL) 4658 guid = spa_load_guid(spa); 4659 4660 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry); 4661 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry); 4662 4663 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry); 4664 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry); 4665 4666 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry); 4667 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry); 4668 4669 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry); 4670 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry); 4671 } 4672 4673 void 4674 arc_reduce_target_size(int64_t to_free) 4675 { 4676 uint64_t asize = aggsum_value(&arc_size); 4677 4678 /* 4679 * All callers want the ARC to actually evict (at least) this much 4680 * memory. Therefore we reduce from the lower of the current size and 4681 * the target size. This way, even if arc_c is much higher than 4682 * arc_size (as can be the case after many calls to arc_freed(), we will 4683 * immediately have arc_c < arc_size and therefore the arc_evict_zthr 4684 * will evict. 4685 */ 4686 uint64_t c = MIN(arc_c, asize); 4687 4688 if (c > to_free && c - to_free > arc_c_min) { 4689 arc_c = c - to_free; 4690 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift)); 4691 if (arc_p > arc_c) 4692 arc_p = (arc_c >> 1); 4693 ASSERT(arc_c >= arc_c_min); 4694 ASSERT((int64_t)arc_p >= 0); 4695 } else { 4696 arc_c = arc_c_min; 4697 } 4698 4699 if (asize > arc_c) { 4700 /* See comment in arc_evict_cb_check() on why lock+flag */ 4701 mutex_enter(&arc_evict_lock); 4702 arc_evict_needed = B_TRUE; 4703 mutex_exit(&arc_evict_lock); 4704 zthr_wakeup(arc_evict_zthr); 4705 } 4706 } 4707 4708 /* 4709 * Determine if the system is under memory pressure and is asking 4710 * to reclaim memory. A return value of B_TRUE indicates that the system 4711 * is under memory pressure and that the arc should adjust accordingly. 4712 */ 4713 boolean_t 4714 arc_reclaim_needed(void) 4715 { 4716 return (arc_available_memory() < 0); 4717 } 4718 4719 void 4720 arc_kmem_reap_soon(void) 4721 { 4722 size_t i; 4723 kmem_cache_t *prev_cache = NULL; 4724 kmem_cache_t *prev_data_cache = NULL; 4725 extern kmem_cache_t *zio_buf_cache[]; 4726 extern kmem_cache_t *zio_data_buf_cache[]; 4727 4728 #ifdef _KERNEL 4729 if ((aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) && 4730 zfs_arc_meta_prune) { 4731 /* 4732 * We are exceeding our meta-data cache limit. 4733 * Prune some entries to release holds on meta-data. 4734 */ 4735 arc_prune_async(zfs_arc_meta_prune); 4736 } 4737 #if defined(_ILP32) 4738 /* 4739 * Reclaim unused memory from all kmem caches. 4740 */ 4741 kmem_reap(); 4742 #endif 4743 #endif 4744 4745 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) { 4746 #if defined(_ILP32) 4747 /* reach upper limit of cache size on 32-bit */ 4748 if (zio_buf_cache[i] == NULL) 4749 break; 4750 #endif 4751 if (zio_buf_cache[i] != prev_cache) { 4752 prev_cache = zio_buf_cache[i]; 4753 kmem_cache_reap_now(zio_buf_cache[i]); 4754 } 4755 if (zio_data_buf_cache[i] != prev_data_cache) { 4756 prev_data_cache = zio_data_buf_cache[i]; 4757 kmem_cache_reap_now(zio_data_buf_cache[i]); 4758 } 4759 } 4760 kmem_cache_reap_now(buf_cache); 4761 kmem_cache_reap_now(hdr_full_cache); 4762 kmem_cache_reap_now(hdr_l2only_cache); 4763 kmem_cache_reap_now(zfs_btree_leaf_cache); 4764 abd_cache_reap_now(); 4765 } 4766 4767 /* ARGSUSED */ 4768 static boolean_t 4769 arc_evict_cb_check(void *arg, zthr_t *zthr) 4770 { 4771 /* 4772 * This is necessary so that any changes which may have been made to 4773 * many of the zfs_arc_* module parameters will be propagated to 4774 * their actual internal variable counterparts. Without this, 4775 * changing those module params at runtime would have no effect. 4776 */ 4777 arc_tuning_update(B_FALSE); 4778 4779 /* 4780 * This is necessary in order to keep the kstat information 4781 * up to date for tools that display kstat data such as the 4782 * mdb ::arc dcmd and the Linux crash utility. These tools 4783 * typically do not call kstat's update function, but simply 4784 * dump out stats from the most recent update. Without 4785 * this call, these commands may show stale stats for the 4786 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even 4787 * with this change, the data might be up to 1 second 4788 * out of date(the arc_evict_zthr has a maximum sleep 4789 * time of 1 second); but that should suffice. The 4790 * arc_state_t structures can be queried directly if more 4791 * accurate information is needed. 4792 */ 4793 if (arc_ksp != NULL) 4794 arc_ksp->ks_update(arc_ksp, KSTAT_READ); 4795 4796 /* 4797 * We have to rely on arc_wait_for_eviction() to tell us when to 4798 * evict, rather than checking if we are overflowing here, so that we 4799 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv. 4800 * If we have become "not overflowing" since arc_wait_for_eviction() 4801 * checked, we need to wake it up. We could broadcast the CV here, 4802 * but arc_wait_for_eviction() may have not yet gone to sleep. We 4803 * would need to use a mutex to ensure that this function doesn't 4804 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g. 4805 * the arc_evict_lock). However, the lock ordering of such a lock 4806 * would necessarily be incorrect with respect to the zthr_lock, 4807 * which is held before this function is called, and is held by 4808 * arc_wait_for_eviction() when it calls zthr_wakeup(). 4809 */ 4810 return (arc_evict_needed); 4811 } 4812 4813 /* 4814 * Keep arc_size under arc_c by running arc_evict which evicts data 4815 * from the ARC. 4816 */ 4817 /* ARGSUSED */ 4818 static void 4819 arc_evict_cb(void *arg, zthr_t *zthr) 4820 { 4821 uint64_t evicted = 0; 4822 fstrans_cookie_t cookie = spl_fstrans_mark(); 4823 4824 /* Evict from cache */ 4825 evicted = arc_evict(); 4826 4827 /* 4828 * If evicted is zero, we couldn't evict anything 4829 * via arc_evict(). This could be due to hash lock 4830 * collisions, but more likely due to the majority of 4831 * arc buffers being unevictable. Therefore, even if 4832 * arc_size is above arc_c, another pass is unlikely to 4833 * be helpful and could potentially cause us to enter an 4834 * infinite loop. Additionally, zthr_iscancelled() is 4835 * checked here so that if the arc is shutting down, the 4836 * broadcast will wake any remaining arc evict waiters. 4837 */ 4838 mutex_enter(&arc_evict_lock); 4839 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) && 4840 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0; 4841 if (!arc_evict_needed) { 4842 /* 4843 * We're either no longer overflowing, or we 4844 * can't evict anything more, so we should wake 4845 * arc_get_data_impl() sooner. 4846 */ 4847 arc_evict_waiter_t *aw; 4848 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) { 4849 cv_broadcast(&aw->aew_cv); 4850 } 4851 arc_set_need_free(); 4852 } 4853 mutex_exit(&arc_evict_lock); 4854 spl_fstrans_unmark(cookie); 4855 } 4856 4857 /* ARGSUSED */ 4858 static boolean_t 4859 arc_reap_cb_check(void *arg, zthr_t *zthr) 4860 { 4861 int64_t free_memory = arc_available_memory(); 4862 4863 /* 4864 * If a kmem reap is already active, don't schedule more. We must 4865 * check for this because kmem_cache_reap_soon() won't actually 4866 * block on the cache being reaped (this is to prevent callers from 4867 * becoming implicitly blocked by a system-wide kmem reap -- which, 4868 * on a system with many, many full magazines, can take minutes). 4869 */ 4870 if (!kmem_cache_reap_active() && free_memory < 0) { 4871 4872 arc_no_grow = B_TRUE; 4873 arc_warm = B_TRUE; 4874 /* 4875 * Wait at least zfs_grow_retry (default 5) seconds 4876 * before considering growing. 4877 */ 4878 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry); 4879 return (B_TRUE); 4880 } else if (free_memory < arc_c >> arc_no_grow_shift) { 4881 arc_no_grow = B_TRUE; 4882 } else if (gethrtime() >= arc_growtime) { 4883 arc_no_grow = B_FALSE; 4884 } 4885 4886 return (B_FALSE); 4887 } 4888 4889 /* 4890 * Keep enough free memory in the system by reaping the ARC's kmem 4891 * caches. To cause more slabs to be reapable, we may reduce the 4892 * target size of the cache (arc_c), causing the arc_evict_cb() 4893 * to free more buffers. 4894 */ 4895 /* ARGSUSED */ 4896 static void 4897 arc_reap_cb(void *arg, zthr_t *zthr) 4898 { 4899 int64_t free_memory; 4900 fstrans_cookie_t cookie = spl_fstrans_mark(); 4901 4902 /* 4903 * Kick off asynchronous kmem_reap()'s of all our caches. 4904 */ 4905 arc_kmem_reap_soon(); 4906 4907 /* 4908 * Wait at least arc_kmem_cache_reap_retry_ms between 4909 * arc_kmem_reap_soon() calls. Without this check it is possible to 4910 * end up in a situation where we spend lots of time reaping 4911 * caches, while we're near arc_c_min. Waiting here also gives the 4912 * subsequent free memory check a chance of finding that the 4913 * asynchronous reap has already freed enough memory, and we don't 4914 * need to call arc_reduce_target_size(). 4915 */ 4916 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000); 4917 4918 /* 4919 * Reduce the target size as needed to maintain the amount of free 4920 * memory in the system at a fraction of the arc_size (1/128th by 4921 * default). If oversubscribed (free_memory < 0) then reduce the 4922 * target arc_size by the deficit amount plus the fractional 4923 * amount. If free memory is positive but less then the fractional 4924 * amount, reduce by what is needed to hit the fractional amount. 4925 */ 4926 free_memory = arc_available_memory(); 4927 4928 int64_t to_free = 4929 (arc_c >> arc_shrink_shift) - free_memory; 4930 if (to_free > 0) { 4931 arc_reduce_target_size(to_free); 4932 } 4933 spl_fstrans_unmark(cookie); 4934 } 4935 4936 #ifdef _KERNEL 4937 /* 4938 * Determine the amount of memory eligible for eviction contained in the 4939 * ARC. All clean data reported by the ghost lists can always be safely 4940 * evicted. Due to arc_c_min, the same does not hold for all clean data 4941 * contained by the regular mru and mfu lists. 4942 * 4943 * In the case of the regular mru and mfu lists, we need to report as 4944 * much clean data as possible, such that evicting that same reported 4945 * data will not bring arc_size below arc_c_min. Thus, in certain 4946 * circumstances, the total amount of clean data in the mru and mfu 4947 * lists might not actually be evictable. 4948 * 4949 * The following two distinct cases are accounted for: 4950 * 4951 * 1. The sum of the amount of dirty data contained by both the mru and 4952 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4953 * is greater than or equal to arc_c_min. 4954 * (i.e. amount of dirty data >= arc_c_min) 4955 * 4956 * This is the easy case; all clean data contained by the mru and mfu 4957 * lists is evictable. Evicting all clean data can only drop arc_size 4958 * to the amount of dirty data, which is greater than arc_c_min. 4959 * 4960 * 2. The sum of the amount of dirty data contained by both the mru and 4961 * mfu lists, plus the ARC's other accounting (e.g. the anon list), 4962 * is less than arc_c_min. 4963 * (i.e. arc_c_min > amount of dirty data) 4964 * 4965 * 2.1. arc_size is greater than or equal arc_c_min. 4966 * (i.e. arc_size >= arc_c_min > amount of dirty data) 4967 * 4968 * In this case, not all clean data from the regular mru and mfu 4969 * lists is actually evictable; we must leave enough clean data 4970 * to keep arc_size above arc_c_min. Thus, the maximum amount of 4971 * evictable data from the two lists combined, is exactly the 4972 * difference between arc_size and arc_c_min. 4973 * 4974 * 2.2. arc_size is less than arc_c_min 4975 * (i.e. arc_c_min > arc_size > amount of dirty data) 4976 * 4977 * In this case, none of the data contained in the mru and mfu 4978 * lists is evictable, even if it's clean. Since arc_size is 4979 * already below arc_c_min, evicting any more would only 4980 * increase this negative difference. 4981 */ 4982 4983 #endif /* _KERNEL */ 4984 4985 /* 4986 * Adapt arc info given the number of bytes we are trying to add and 4987 * the state that we are coming from. This function is only called 4988 * when we are adding new content to the cache. 4989 */ 4990 static void 4991 arc_adapt(int bytes, arc_state_t *state) 4992 { 4993 int mult; 4994 uint64_t arc_p_min = (arc_c >> arc_p_min_shift); 4995 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size); 4996 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size); 4997 4998 ASSERT(bytes > 0); 4999 /* 5000 * Adapt the target size of the MRU list: 5001 * - if we just hit in the MRU ghost list, then increase 5002 * the target size of the MRU list. 5003 * - if we just hit in the MFU ghost list, then increase 5004 * the target size of the MFU list by decreasing the 5005 * target size of the MRU list. 5006 */ 5007 if (state == arc_mru_ghost) { 5008 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size); 5009 if (!zfs_arc_p_dampener_disable) 5010 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */ 5011 5012 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult); 5013 } else if (state == arc_mfu_ghost) { 5014 uint64_t delta; 5015 5016 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size); 5017 if (!zfs_arc_p_dampener_disable) 5018 mult = MIN(mult, 10); 5019 5020 delta = MIN(bytes * mult, arc_p); 5021 arc_p = MAX(arc_p_min, arc_p - delta); 5022 } 5023 ASSERT((int64_t)arc_p >= 0); 5024 5025 /* 5026 * Wake reap thread if we do not have any available memory 5027 */ 5028 if (arc_reclaim_needed()) { 5029 zthr_wakeup(arc_reap_zthr); 5030 return; 5031 } 5032 5033 if (arc_no_grow) 5034 return; 5035 5036 if (arc_c >= arc_c_max) 5037 return; 5038 5039 /* 5040 * If we're within (2 * maxblocksize) bytes of the target 5041 * cache size, increment the target cache size 5042 */ 5043 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT); 5044 if (aggsum_upper_bound(&arc_size) >= 5045 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) { 5046 atomic_add_64(&arc_c, (int64_t)bytes); 5047 if (arc_c > arc_c_max) 5048 arc_c = arc_c_max; 5049 else if (state == arc_anon) 5050 atomic_add_64(&arc_p, (int64_t)bytes); 5051 if (arc_p > arc_c) 5052 arc_p = arc_c; 5053 } 5054 ASSERT((int64_t)arc_p >= 0); 5055 } 5056 5057 /* 5058 * Check if arc_size has grown past our upper threshold, determined by 5059 * zfs_arc_overflow_shift. 5060 */ 5061 boolean_t 5062 arc_is_overflowing(void) 5063 { 5064 /* Always allow at least one block of overflow */ 5065 int64_t overflow = MAX(SPA_MAXBLOCKSIZE, 5066 arc_c >> zfs_arc_overflow_shift); 5067 5068 /* 5069 * We just compare the lower bound here for performance reasons. Our 5070 * primary goals are to make sure that the arc never grows without 5071 * bound, and that it can reach its maximum size. This check 5072 * accomplishes both goals. The maximum amount we could run over by is 5073 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block 5074 * in the ARC. In practice, that's in the tens of MB, which is low 5075 * enough to be safe. 5076 */ 5077 return (aggsum_lower_bound(&arc_size) >= (int64_t)arc_c + overflow); 5078 } 5079 5080 static abd_t * 5081 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5082 boolean_t do_adapt) 5083 { 5084 arc_buf_contents_t type = arc_buf_type(hdr); 5085 5086 arc_get_data_impl(hdr, size, tag, do_adapt); 5087 if (type == ARC_BUFC_METADATA) { 5088 return (abd_alloc(size, B_TRUE)); 5089 } else { 5090 ASSERT(type == ARC_BUFC_DATA); 5091 return (abd_alloc(size, B_FALSE)); 5092 } 5093 } 5094 5095 static void * 5096 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5097 { 5098 arc_buf_contents_t type = arc_buf_type(hdr); 5099 5100 arc_get_data_impl(hdr, size, tag, B_TRUE); 5101 if (type == ARC_BUFC_METADATA) { 5102 return (zio_buf_alloc(size)); 5103 } else { 5104 ASSERT(type == ARC_BUFC_DATA); 5105 return (zio_data_buf_alloc(size)); 5106 } 5107 } 5108 5109 /* 5110 * Wait for the specified amount of data (in bytes) to be evicted from the 5111 * ARC, and for there to be sufficient free memory in the system. Waiting for 5112 * eviction ensures that the memory used by the ARC decreases. Waiting for 5113 * free memory ensures that the system won't run out of free pages, regardless 5114 * of ARC behavior and settings. See arc_lowmem_init(). 5115 */ 5116 void 5117 arc_wait_for_eviction(uint64_t amount) 5118 { 5119 mutex_enter(&arc_evict_lock); 5120 if (arc_is_overflowing()) { 5121 arc_evict_needed = B_TRUE; 5122 zthr_wakeup(arc_evict_zthr); 5123 5124 if (amount != 0) { 5125 arc_evict_waiter_t aw; 5126 list_link_init(&aw.aew_node); 5127 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL); 5128 5129 arc_evict_waiter_t *last = 5130 list_tail(&arc_evict_waiters); 5131 if (last != NULL) { 5132 ASSERT3U(last->aew_count, >, arc_evict_count); 5133 aw.aew_count = last->aew_count + amount; 5134 } else { 5135 aw.aew_count = arc_evict_count + amount; 5136 } 5137 5138 list_insert_tail(&arc_evict_waiters, &aw); 5139 5140 arc_set_need_free(); 5141 5142 DTRACE_PROBE3(arc__wait__for__eviction, 5143 uint64_t, amount, 5144 uint64_t, arc_evict_count, 5145 uint64_t, aw.aew_count); 5146 5147 /* 5148 * We will be woken up either when arc_evict_count 5149 * reaches aew_count, or when the ARC is no longer 5150 * overflowing and eviction completes. 5151 */ 5152 cv_wait(&aw.aew_cv, &arc_evict_lock); 5153 5154 /* 5155 * In case of "false" wakeup, we will still be on the 5156 * list. 5157 */ 5158 if (list_link_active(&aw.aew_node)) 5159 list_remove(&arc_evict_waiters, &aw); 5160 5161 cv_destroy(&aw.aew_cv); 5162 } 5163 } 5164 mutex_exit(&arc_evict_lock); 5165 } 5166 5167 /* 5168 * Allocate a block and return it to the caller. If we are hitting the 5169 * hard limit for the cache size, we must sleep, waiting for the eviction 5170 * thread to catch up. If we're past the target size but below the hard 5171 * limit, we'll only signal the reclaim thread and continue on. 5172 */ 5173 static void 5174 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag, 5175 boolean_t do_adapt) 5176 { 5177 arc_state_t *state = hdr->b_l1hdr.b_state; 5178 arc_buf_contents_t type = arc_buf_type(hdr); 5179 5180 if (do_adapt) 5181 arc_adapt(size, state); 5182 5183 /* 5184 * If arc_size is currently overflowing, we must be adding data 5185 * faster than we are evicting. To ensure we don't compound the 5186 * problem by adding more data and forcing arc_size to grow even 5187 * further past it's target size, we wait for the eviction thread to 5188 * make some progress. We also wait for there to be sufficient free 5189 * memory in the system, as measured by arc_free_memory(). 5190 * 5191 * Specifically, we wait for zfs_arc_eviction_pct percent of the 5192 * requested size to be evicted. This should be more than 100%, to 5193 * ensure that that progress is also made towards getting arc_size 5194 * under arc_c. See the comment above zfs_arc_eviction_pct. 5195 * 5196 * We do the overflowing check without holding the arc_evict_lock to 5197 * reduce lock contention in this hot path. Note that 5198 * arc_wait_for_eviction() will acquire the lock and check again to 5199 * ensure we are truly overflowing before blocking. 5200 */ 5201 if (arc_is_overflowing()) { 5202 arc_wait_for_eviction(size * 5203 zfs_arc_eviction_pct / 100); 5204 } 5205 5206 VERIFY3U(hdr->b_type, ==, type); 5207 if (type == ARC_BUFC_METADATA) { 5208 arc_space_consume(size, ARC_SPACE_META); 5209 } else { 5210 arc_space_consume(size, ARC_SPACE_DATA); 5211 } 5212 5213 /* 5214 * Update the state size. Note that ghost states have a 5215 * "ghost size" and so don't need to be updated. 5216 */ 5217 if (!GHOST_STATE(state)) { 5218 5219 (void) zfs_refcount_add_many(&state->arcs_size, size, tag); 5220 5221 /* 5222 * If this is reached via arc_read, the link is 5223 * protected by the hash lock. If reached via 5224 * arc_buf_alloc, the header should not be accessed by 5225 * any other thread. And, if reached via arc_read_done, 5226 * the hash lock will protect it if it's found in the 5227 * hash table; otherwise no other thread should be 5228 * trying to [add|remove]_reference it. 5229 */ 5230 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5231 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5232 (void) zfs_refcount_add_many(&state->arcs_esize[type], 5233 size, tag); 5234 } 5235 5236 /* 5237 * If we are growing the cache, and we are adding anonymous 5238 * data, and we have outgrown arc_p, update arc_p 5239 */ 5240 if (aggsum_upper_bound(&arc_size) < arc_c && 5241 hdr->b_l1hdr.b_state == arc_anon && 5242 (zfs_refcount_count(&arc_anon->arcs_size) + 5243 zfs_refcount_count(&arc_mru->arcs_size) > arc_p)) 5244 arc_p = MIN(arc_c, arc_p + size); 5245 } 5246 } 5247 5248 static void 5249 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag) 5250 { 5251 arc_free_data_impl(hdr, size, tag); 5252 abd_free(abd); 5253 } 5254 5255 static void 5256 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag) 5257 { 5258 arc_buf_contents_t type = arc_buf_type(hdr); 5259 5260 arc_free_data_impl(hdr, size, tag); 5261 if (type == ARC_BUFC_METADATA) { 5262 zio_buf_free(buf, size); 5263 } else { 5264 ASSERT(type == ARC_BUFC_DATA); 5265 zio_data_buf_free(buf, size); 5266 } 5267 } 5268 5269 /* 5270 * Free the arc data buffer. 5271 */ 5272 static void 5273 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag) 5274 { 5275 arc_state_t *state = hdr->b_l1hdr.b_state; 5276 arc_buf_contents_t type = arc_buf_type(hdr); 5277 5278 /* protected by hash lock, if in the hash table */ 5279 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) { 5280 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 5281 ASSERT(state != arc_anon && state != arc_l2c_only); 5282 5283 (void) zfs_refcount_remove_many(&state->arcs_esize[type], 5284 size, tag); 5285 } 5286 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag); 5287 5288 VERIFY3U(hdr->b_type, ==, type); 5289 if (type == ARC_BUFC_METADATA) { 5290 arc_space_return(size, ARC_SPACE_META); 5291 } else { 5292 ASSERT(type == ARC_BUFC_DATA); 5293 arc_space_return(size, ARC_SPACE_DATA); 5294 } 5295 } 5296 5297 /* 5298 * This routine is called whenever a buffer is accessed. 5299 * NOTE: the hash lock is dropped in this function. 5300 */ 5301 static void 5302 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock) 5303 { 5304 clock_t now; 5305 5306 ASSERT(MUTEX_HELD(hash_lock)); 5307 ASSERT(HDR_HAS_L1HDR(hdr)); 5308 5309 if (hdr->b_l1hdr.b_state == arc_anon) { 5310 /* 5311 * This buffer is not in the cache, and does not 5312 * appear in our "ghost" list. Add the new buffer 5313 * to the MRU state. 5314 */ 5315 5316 ASSERT0(hdr->b_l1hdr.b_arc_access); 5317 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5318 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5319 arc_change_state(arc_mru, hdr, hash_lock); 5320 5321 } else if (hdr->b_l1hdr.b_state == arc_mru) { 5322 now = ddi_get_lbolt(); 5323 5324 /* 5325 * If this buffer is here because of a prefetch, then either: 5326 * - clear the flag if this is a "referencing" read 5327 * (any subsequent access will bump this into the MFU state). 5328 * or 5329 * - move the buffer to the head of the list if this is 5330 * another prefetch (to make it less likely to be evicted). 5331 */ 5332 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5333 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5334 /* link protected by hash lock */ 5335 ASSERT(multilist_link_active( 5336 &hdr->b_l1hdr.b_arc_node)); 5337 } else { 5338 arc_hdr_clear_flags(hdr, 5339 ARC_FLAG_PREFETCH | 5340 ARC_FLAG_PRESCIENT_PREFETCH); 5341 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5342 ARCSTAT_BUMP(arcstat_mru_hits); 5343 } 5344 hdr->b_l1hdr.b_arc_access = now; 5345 return; 5346 } 5347 5348 /* 5349 * This buffer has been "accessed" only once so far, 5350 * but it is still in the cache. Move it to the MFU 5351 * state. 5352 */ 5353 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access + 5354 ARC_MINTIME)) { 5355 /* 5356 * More than 125ms have passed since we 5357 * instantiated this buffer. Move it to the 5358 * most frequently used state. 5359 */ 5360 hdr->b_l1hdr.b_arc_access = now; 5361 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5362 arc_change_state(arc_mfu, hdr, hash_lock); 5363 } 5364 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits); 5365 ARCSTAT_BUMP(arcstat_mru_hits); 5366 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) { 5367 arc_state_t *new_state; 5368 /* 5369 * This buffer has been "accessed" recently, but 5370 * was evicted from the cache. Move it to the 5371 * MFU state. 5372 */ 5373 5374 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5375 new_state = arc_mru; 5376 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) { 5377 arc_hdr_clear_flags(hdr, 5378 ARC_FLAG_PREFETCH | 5379 ARC_FLAG_PRESCIENT_PREFETCH); 5380 } 5381 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr); 5382 } else { 5383 new_state = arc_mfu; 5384 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5385 } 5386 5387 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5388 arc_change_state(new_state, hdr, hash_lock); 5389 5390 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits); 5391 ARCSTAT_BUMP(arcstat_mru_ghost_hits); 5392 } else if (hdr->b_l1hdr.b_state == arc_mfu) { 5393 /* 5394 * This buffer has been accessed more than once and is 5395 * still in the cache. Keep it in the MFU state. 5396 * 5397 * NOTE: an add_reference() that occurred when we did 5398 * the arc_read() will have kicked this off the list. 5399 * If it was a prefetch, we will explicitly move it to 5400 * the head of the list now. 5401 */ 5402 5403 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits); 5404 ARCSTAT_BUMP(arcstat_mfu_hits); 5405 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5406 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) { 5407 arc_state_t *new_state = arc_mfu; 5408 /* 5409 * This buffer has been accessed more than once but has 5410 * been evicted from the cache. Move it back to the 5411 * MFU state. 5412 */ 5413 5414 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) { 5415 /* 5416 * This is a prefetch access... 5417 * move this block back to the MRU state. 5418 */ 5419 new_state = arc_mru; 5420 } 5421 5422 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5423 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5424 arc_change_state(new_state, hdr, hash_lock); 5425 5426 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits); 5427 ARCSTAT_BUMP(arcstat_mfu_ghost_hits); 5428 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) { 5429 /* 5430 * This buffer is on the 2nd Level ARC. 5431 */ 5432 5433 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt(); 5434 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr); 5435 arc_change_state(arc_mfu, hdr, hash_lock); 5436 } else { 5437 cmn_err(CE_PANIC, "invalid arc state 0x%p", 5438 hdr->b_l1hdr.b_state); 5439 } 5440 } 5441 5442 /* 5443 * This routine is called by dbuf_hold() to update the arc_access() state 5444 * which otherwise would be skipped for entries in the dbuf cache. 5445 */ 5446 void 5447 arc_buf_access(arc_buf_t *buf) 5448 { 5449 mutex_enter(&buf->b_evict_lock); 5450 arc_buf_hdr_t *hdr = buf->b_hdr; 5451 5452 /* 5453 * Avoid taking the hash_lock when possible as an optimization. 5454 * The header must be checked again under the hash_lock in order 5455 * to handle the case where it is concurrently being released. 5456 */ 5457 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5458 mutex_exit(&buf->b_evict_lock); 5459 return; 5460 } 5461 5462 kmutex_t *hash_lock = HDR_LOCK(hdr); 5463 mutex_enter(hash_lock); 5464 5465 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) { 5466 mutex_exit(hash_lock); 5467 mutex_exit(&buf->b_evict_lock); 5468 ARCSTAT_BUMP(arcstat_access_skip); 5469 return; 5470 } 5471 5472 mutex_exit(&buf->b_evict_lock); 5473 5474 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5475 hdr->b_l1hdr.b_state == arc_mfu); 5476 5477 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5478 arc_access(hdr, hash_lock); 5479 mutex_exit(hash_lock); 5480 5481 ARCSTAT_BUMP(arcstat_hits); 5482 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr), 5483 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits); 5484 } 5485 5486 /* a generic arc_read_done_func_t which you can use */ 5487 /* ARGSUSED */ 5488 void 5489 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5490 arc_buf_t *buf, void *arg) 5491 { 5492 if (buf == NULL) 5493 return; 5494 5495 bcopy(buf->b_data, arg, arc_buf_size(buf)); 5496 arc_buf_destroy(buf, arg); 5497 } 5498 5499 /* a generic arc_read_done_func_t */ 5500 /* ARGSUSED */ 5501 void 5502 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp, 5503 arc_buf_t *buf, void *arg) 5504 { 5505 arc_buf_t **bufp = arg; 5506 5507 if (buf == NULL) { 5508 ASSERT(zio == NULL || zio->io_error != 0); 5509 *bufp = NULL; 5510 } else { 5511 ASSERT(zio == NULL || zio->io_error == 0); 5512 *bufp = buf; 5513 ASSERT(buf->b_data != NULL); 5514 } 5515 } 5516 5517 static void 5518 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp) 5519 { 5520 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 5521 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0); 5522 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF); 5523 } else { 5524 if (HDR_COMPRESSION_ENABLED(hdr)) { 5525 ASSERT3U(arc_hdr_get_compress(hdr), ==, 5526 BP_GET_COMPRESS(bp)); 5527 } 5528 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 5529 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp)); 5530 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp)); 5531 } 5532 } 5533 5534 static void 5535 arc_read_done(zio_t *zio) 5536 { 5537 blkptr_t *bp = zio->io_bp; 5538 arc_buf_hdr_t *hdr = zio->io_private; 5539 kmutex_t *hash_lock = NULL; 5540 arc_callback_t *callback_list; 5541 arc_callback_t *acb; 5542 boolean_t freeable = B_FALSE; 5543 5544 /* 5545 * The hdr was inserted into hash-table and removed from lists 5546 * prior to starting I/O. We should find this header, since 5547 * it's in the hash table, and it should be legit since it's 5548 * not possible to evict it during the I/O. The only possible 5549 * reason for it not to be found is if we were freed during the 5550 * read. 5551 */ 5552 if (HDR_IN_HASH_TABLE(hdr)) { 5553 arc_buf_hdr_t *found; 5554 5555 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp)); 5556 ASSERT3U(hdr->b_dva.dva_word[0], ==, 5557 BP_IDENTITY(zio->io_bp)->dva_word[0]); 5558 ASSERT3U(hdr->b_dva.dva_word[1], ==, 5559 BP_IDENTITY(zio->io_bp)->dva_word[1]); 5560 5561 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock); 5562 5563 ASSERT((found == hdr && 5564 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) || 5565 (found == hdr && HDR_L2_READING(hdr))); 5566 ASSERT3P(hash_lock, !=, NULL); 5567 } 5568 5569 if (BP_IS_PROTECTED(bp)) { 5570 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 5571 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 5572 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 5573 hdr->b_crypt_hdr.b_iv); 5574 5575 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) { 5576 void *tmpbuf; 5577 5578 tmpbuf = abd_borrow_buf_copy(zio->io_abd, 5579 sizeof (zil_chain_t)); 5580 zio_crypt_decode_mac_zil(tmpbuf, 5581 hdr->b_crypt_hdr.b_mac); 5582 abd_return_buf(zio->io_abd, tmpbuf, 5583 sizeof (zil_chain_t)); 5584 } else { 5585 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 5586 } 5587 } 5588 5589 if (zio->io_error == 0) { 5590 /* byteswap if necessary */ 5591 if (BP_SHOULD_BYTESWAP(zio->io_bp)) { 5592 if (BP_GET_LEVEL(zio->io_bp) > 0) { 5593 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 5594 } else { 5595 hdr->b_l1hdr.b_byteswap = 5596 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp)); 5597 } 5598 } else { 5599 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 5600 } 5601 if (!HDR_L2_READING(hdr)) { 5602 hdr->b_complevel = zio->io_prop.zp_complevel; 5603 } 5604 } 5605 5606 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED); 5607 if (l2arc_noprefetch && HDR_PREFETCH(hdr)) 5608 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE); 5609 5610 callback_list = hdr->b_l1hdr.b_acb; 5611 ASSERT3P(callback_list, !=, NULL); 5612 5613 if (hash_lock && zio->io_error == 0 && 5614 hdr->b_l1hdr.b_state == arc_anon) { 5615 /* 5616 * Only call arc_access on anonymous buffers. This is because 5617 * if we've issued an I/O for an evicted buffer, we've already 5618 * called arc_access (to prevent any simultaneous readers from 5619 * getting confused). 5620 */ 5621 arc_access(hdr, hash_lock); 5622 } 5623 5624 /* 5625 * If a read request has a callback (i.e. acb_done is not NULL), then we 5626 * make a buf containing the data according to the parameters which were 5627 * passed in. The implementation of arc_buf_alloc_impl() ensures that we 5628 * aren't needlessly decompressing the data multiple times. 5629 */ 5630 int callback_cnt = 0; 5631 for (acb = callback_list; acb != NULL; acb = acb->acb_next) { 5632 if (!acb->acb_done) 5633 continue; 5634 5635 callback_cnt++; 5636 5637 if (zio->io_error != 0) 5638 continue; 5639 5640 int error = arc_buf_alloc_impl(hdr, zio->io_spa, 5641 &acb->acb_zb, acb->acb_private, acb->acb_encrypted, 5642 acb->acb_compressed, acb->acb_noauth, B_TRUE, 5643 &acb->acb_buf); 5644 5645 /* 5646 * Assert non-speculative zios didn't fail because an 5647 * encryption key wasn't loaded 5648 */ 5649 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || 5650 error != EACCES); 5651 5652 /* 5653 * If we failed to decrypt, report an error now (as the zio 5654 * layer would have done if it had done the transforms). 5655 */ 5656 if (error == ECKSUM) { 5657 ASSERT(BP_IS_PROTECTED(bp)); 5658 error = SET_ERROR(EIO); 5659 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5660 spa_log_error(zio->io_spa, &acb->acb_zb); 5661 (void) zfs_ereport_post( 5662 FM_EREPORT_ZFS_AUTHENTICATION, 5663 zio->io_spa, NULL, &acb->acb_zb, zio, 0); 5664 } 5665 } 5666 5667 if (error != 0) { 5668 /* 5669 * Decompression or decryption failed. Set 5670 * io_error so that when we call acb_done 5671 * (below), we will indicate that the read 5672 * failed. Note that in the unusual case 5673 * where one callback is compressed and another 5674 * uncompressed, we will mark all of them 5675 * as failed, even though the uncompressed 5676 * one can't actually fail. In this case, 5677 * the hdr will not be anonymous, because 5678 * if there are multiple callbacks, it's 5679 * because multiple threads found the same 5680 * arc buf in the hash table. 5681 */ 5682 zio->io_error = error; 5683 } 5684 } 5685 5686 /* 5687 * If there are multiple callbacks, we must have the hash lock, 5688 * because the only way for multiple threads to find this hdr is 5689 * in the hash table. This ensures that if there are multiple 5690 * callbacks, the hdr is not anonymous. If it were anonymous, 5691 * we couldn't use arc_buf_destroy() in the error case below. 5692 */ 5693 ASSERT(callback_cnt < 2 || hash_lock != NULL); 5694 5695 hdr->b_l1hdr.b_acb = NULL; 5696 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 5697 if (callback_cnt == 0) 5698 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 5699 5700 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) || 5701 callback_list != NULL); 5702 5703 if (zio->io_error == 0) { 5704 arc_hdr_verify(hdr, zio->io_bp); 5705 } else { 5706 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR); 5707 if (hdr->b_l1hdr.b_state != arc_anon) 5708 arc_change_state(arc_anon, hdr, hash_lock); 5709 if (HDR_IN_HASH_TABLE(hdr)) 5710 buf_hash_remove(hdr); 5711 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5712 } 5713 5714 /* 5715 * Broadcast before we drop the hash_lock to avoid the possibility 5716 * that the hdr (and hence the cv) might be freed before we get to 5717 * the cv_broadcast(). 5718 */ 5719 cv_broadcast(&hdr->b_l1hdr.b_cv); 5720 5721 if (hash_lock != NULL) { 5722 mutex_exit(hash_lock); 5723 } else { 5724 /* 5725 * This block was freed while we waited for the read to 5726 * complete. It has been removed from the hash table and 5727 * moved to the anonymous state (so that it won't show up 5728 * in the cache). 5729 */ 5730 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon); 5731 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt); 5732 } 5733 5734 /* execute each callback and free its structure */ 5735 while ((acb = callback_list) != NULL) { 5736 if (acb->acb_done != NULL) { 5737 if (zio->io_error != 0 && acb->acb_buf != NULL) { 5738 /* 5739 * If arc_buf_alloc_impl() fails during 5740 * decompression, the buf will still be 5741 * allocated, and needs to be freed here. 5742 */ 5743 arc_buf_destroy(acb->acb_buf, 5744 acb->acb_private); 5745 acb->acb_buf = NULL; 5746 } 5747 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp, 5748 acb->acb_buf, acb->acb_private); 5749 } 5750 5751 if (acb->acb_zio_dummy != NULL) { 5752 acb->acb_zio_dummy->io_error = zio->io_error; 5753 zio_nowait(acb->acb_zio_dummy); 5754 } 5755 5756 callback_list = acb->acb_next; 5757 kmem_free(acb, sizeof (arc_callback_t)); 5758 } 5759 5760 if (freeable) 5761 arc_hdr_destroy(hdr); 5762 } 5763 5764 /* 5765 * "Read" the block at the specified DVA (in bp) via the 5766 * cache. If the block is found in the cache, invoke the provided 5767 * callback immediately and return. Note that the `zio' parameter 5768 * in the callback will be NULL in this case, since no IO was 5769 * required. If the block is not in the cache pass the read request 5770 * on to the spa with a substitute callback function, so that the 5771 * requested block will be added to the cache. 5772 * 5773 * If a read request arrives for a block that has a read in-progress, 5774 * either wait for the in-progress read to complete (and return the 5775 * results); or, if this is a read with a "done" func, add a record 5776 * to the read to invoke the "done" func when the read completes, 5777 * and return; or just return. 5778 * 5779 * arc_read_done() will invoke all the requested "done" functions 5780 * for readers of this block. 5781 */ 5782 int 5783 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, 5784 arc_read_done_func_t *done, void *private, zio_priority_t priority, 5785 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb) 5786 { 5787 arc_buf_hdr_t *hdr = NULL; 5788 kmutex_t *hash_lock = NULL; 5789 zio_t *rzio; 5790 uint64_t guid = spa_load_guid(spa); 5791 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0; 5792 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) && 5793 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5794 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) && 5795 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0; 5796 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp); 5797 int rc = 0; 5798 5799 ASSERT(!embedded_bp || 5800 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA); 5801 ASSERT(!BP_IS_HOLE(bp)); 5802 ASSERT(!BP_IS_REDACTED(bp)); 5803 5804 /* 5805 * Normally SPL_FSTRANS will already be set since kernel threads which 5806 * expect to call the DMU interfaces will set it when created. System 5807 * calls are similarly handled by setting/cleaning the bit in the 5808 * registered callback (module/os/.../zfs/zpl_*). 5809 * 5810 * External consumers such as Lustre which call the exported DMU 5811 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock 5812 * on the hash_lock always set and clear the bit. 5813 */ 5814 fstrans_cookie_t cookie = spl_fstrans_mark(); 5815 top: 5816 if (!embedded_bp) { 5817 /* 5818 * Embedded BP's have no DVA and require no I/O to "read". 5819 * Create an anonymous arc buf to back it. 5820 */ 5821 hdr = buf_hash_find(guid, bp, &hash_lock); 5822 } 5823 5824 /* 5825 * Determine if we have an L1 cache hit or a cache miss. For simplicity 5826 * we maintain encrypted data separately from compressed / uncompressed 5827 * data. If the user is requesting raw encrypted data and we don't have 5828 * that in the header we will read from disk to guarantee that we can 5829 * get it even if the encryption keys aren't loaded. 5830 */ 5831 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) || 5832 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) { 5833 arc_buf_t *buf = NULL; 5834 *arc_flags |= ARC_FLAG_CACHED; 5835 5836 if (HDR_IO_IN_PROGRESS(hdr)) { 5837 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head; 5838 5839 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5840 mutex_exit(hash_lock); 5841 ARCSTAT_BUMP(arcstat_cached_only_in_progress); 5842 rc = SET_ERROR(ENOENT); 5843 goto out; 5844 } 5845 5846 ASSERT3P(head_zio, !=, NULL); 5847 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) && 5848 priority == ZIO_PRIORITY_SYNC_READ) { 5849 /* 5850 * This is a sync read that needs to wait for 5851 * an in-flight async read. Request that the 5852 * zio have its priority upgraded. 5853 */ 5854 zio_change_priority(head_zio, priority); 5855 DTRACE_PROBE1(arc__async__upgrade__sync, 5856 arc_buf_hdr_t *, hdr); 5857 ARCSTAT_BUMP(arcstat_async_upgrade_sync); 5858 } 5859 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5860 arc_hdr_clear_flags(hdr, 5861 ARC_FLAG_PREDICTIVE_PREFETCH); 5862 } 5863 5864 if (*arc_flags & ARC_FLAG_WAIT) { 5865 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 5866 mutex_exit(hash_lock); 5867 goto top; 5868 } 5869 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 5870 5871 if (done) { 5872 arc_callback_t *acb = NULL; 5873 5874 acb = kmem_zalloc(sizeof (arc_callback_t), 5875 KM_SLEEP); 5876 acb->acb_done = done; 5877 acb->acb_private = private; 5878 acb->acb_compressed = compressed_read; 5879 acb->acb_encrypted = encrypted_read; 5880 acb->acb_noauth = noauth_read; 5881 acb->acb_zb = *zb; 5882 if (pio != NULL) 5883 acb->acb_zio_dummy = zio_null(pio, 5884 spa, NULL, NULL, NULL, zio_flags); 5885 5886 ASSERT3P(acb->acb_done, !=, NULL); 5887 acb->acb_zio_head = head_zio; 5888 acb->acb_next = hdr->b_l1hdr.b_acb; 5889 hdr->b_l1hdr.b_acb = acb; 5890 mutex_exit(hash_lock); 5891 goto out; 5892 } 5893 mutex_exit(hash_lock); 5894 goto out; 5895 } 5896 5897 ASSERT(hdr->b_l1hdr.b_state == arc_mru || 5898 hdr->b_l1hdr.b_state == arc_mfu); 5899 5900 if (done) { 5901 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) { 5902 /* 5903 * This is a demand read which does not have to 5904 * wait for i/o because we did a predictive 5905 * prefetch i/o for it, which has completed. 5906 */ 5907 DTRACE_PROBE1( 5908 arc__demand__hit__predictive__prefetch, 5909 arc_buf_hdr_t *, hdr); 5910 ARCSTAT_BUMP( 5911 arcstat_demand_hit_predictive_prefetch); 5912 arc_hdr_clear_flags(hdr, 5913 ARC_FLAG_PREDICTIVE_PREFETCH); 5914 } 5915 5916 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) { 5917 ARCSTAT_BUMP( 5918 arcstat_demand_hit_prescient_prefetch); 5919 arc_hdr_clear_flags(hdr, 5920 ARC_FLAG_PRESCIENT_PREFETCH); 5921 } 5922 5923 ASSERT(!embedded_bp || !BP_IS_HOLE(bp)); 5924 5925 /* Get a buf with the desired data in it. */ 5926 rc = arc_buf_alloc_impl(hdr, spa, zb, private, 5927 encrypted_read, compressed_read, noauth_read, 5928 B_TRUE, &buf); 5929 if (rc == ECKSUM) { 5930 /* 5931 * Convert authentication and decryption errors 5932 * to EIO (and generate an ereport if needed) 5933 * before leaving the ARC. 5934 */ 5935 rc = SET_ERROR(EIO); 5936 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) { 5937 spa_log_error(spa, zb); 5938 (void) zfs_ereport_post( 5939 FM_EREPORT_ZFS_AUTHENTICATION, 5940 spa, NULL, zb, NULL, 0); 5941 } 5942 } 5943 if (rc != 0) { 5944 (void) remove_reference(hdr, hash_lock, 5945 private); 5946 arc_buf_destroy_impl(buf); 5947 buf = NULL; 5948 } 5949 5950 /* assert any errors weren't due to unloaded keys */ 5951 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || 5952 rc != EACCES); 5953 } else if (*arc_flags & ARC_FLAG_PREFETCH && 5954 zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) { 5955 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 5956 } 5957 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr); 5958 arc_access(hdr, hash_lock); 5959 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 5960 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 5961 if (*arc_flags & ARC_FLAG_L2CACHE) 5962 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 5963 mutex_exit(hash_lock); 5964 ARCSTAT_BUMP(arcstat_hits); 5965 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 5966 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), 5967 data, metadata, hits); 5968 5969 if (done) 5970 done(NULL, zb, bp, buf, private); 5971 } else { 5972 uint64_t lsize = BP_GET_LSIZE(bp); 5973 uint64_t psize = BP_GET_PSIZE(bp); 5974 arc_callback_t *acb; 5975 vdev_t *vd = NULL; 5976 uint64_t addr = 0; 5977 boolean_t devw = B_FALSE; 5978 uint64_t size; 5979 abd_t *hdr_abd; 5980 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0; 5981 5982 if (*arc_flags & ARC_FLAG_CACHED_ONLY) { 5983 rc = SET_ERROR(ENOENT); 5984 if (hash_lock != NULL) 5985 mutex_exit(hash_lock); 5986 goto out; 5987 } 5988 5989 /* 5990 * Gracefully handle a damaged logical block size as a 5991 * checksum error. 5992 */ 5993 if (lsize > spa_maxblocksize(spa)) { 5994 rc = SET_ERROR(ECKSUM); 5995 if (hash_lock != NULL) 5996 mutex_exit(hash_lock); 5997 goto out; 5998 } 5999 6000 if (hdr == NULL) { 6001 /* 6002 * This block is not in the cache or it has 6003 * embedded data. 6004 */ 6005 arc_buf_hdr_t *exists = NULL; 6006 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp); 6007 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, 6008 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type, 6009 encrypted_read); 6010 6011 if (!embedded_bp) { 6012 hdr->b_dva = *BP_IDENTITY(bp); 6013 hdr->b_birth = BP_PHYSICAL_BIRTH(bp); 6014 exists = buf_hash_insert(hdr, &hash_lock); 6015 } 6016 if (exists != NULL) { 6017 /* somebody beat us to the hash insert */ 6018 mutex_exit(hash_lock); 6019 buf_discard_identity(hdr); 6020 arc_hdr_destroy(hdr); 6021 goto top; /* restart the IO request */ 6022 } 6023 } else { 6024 /* 6025 * This block is in the ghost cache or encrypted data 6026 * was requested and we didn't have it. If it was 6027 * L2-only (and thus didn't have an L1 hdr), 6028 * we realloc the header to add an L1 hdr. 6029 */ 6030 if (!HDR_HAS_L1HDR(hdr)) { 6031 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache, 6032 hdr_full_cache); 6033 } 6034 6035 if (GHOST_STATE(hdr->b_l1hdr.b_state)) { 6036 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6037 ASSERT(!HDR_HAS_RABD(hdr)); 6038 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6039 ASSERT0(zfs_refcount_count( 6040 &hdr->b_l1hdr.b_refcnt)); 6041 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL); 6042 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL); 6043 } else if (HDR_IO_IN_PROGRESS(hdr)) { 6044 /* 6045 * If this header already had an IO in progress 6046 * and we are performing another IO to fetch 6047 * encrypted data we must wait until the first 6048 * IO completes so as not to confuse 6049 * arc_read_done(). This should be very rare 6050 * and so the performance impact shouldn't 6051 * matter. 6052 */ 6053 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock); 6054 mutex_exit(hash_lock); 6055 goto top; 6056 } 6057 6058 /* 6059 * This is a delicate dance that we play here. 6060 * This hdr might be in the ghost list so we access 6061 * it to move it out of the ghost list before we 6062 * initiate the read. If it's a prefetch then 6063 * it won't have a callback so we'll remove the 6064 * reference that arc_buf_alloc_impl() created. We 6065 * do this after we've called arc_access() to 6066 * avoid hitting an assert in remove_reference(). 6067 */ 6068 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state); 6069 arc_access(hdr, hash_lock); 6070 arc_hdr_alloc_abd(hdr, alloc_flags); 6071 } 6072 6073 if (encrypted_read) { 6074 ASSERT(HDR_HAS_RABD(hdr)); 6075 size = HDR_GET_PSIZE(hdr); 6076 hdr_abd = hdr->b_crypt_hdr.b_rabd; 6077 zio_flags |= ZIO_FLAG_RAW; 6078 } else { 6079 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 6080 size = arc_hdr_size(hdr); 6081 hdr_abd = hdr->b_l1hdr.b_pabd; 6082 6083 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) { 6084 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6085 } 6086 6087 /* 6088 * For authenticated bp's, we do not ask the ZIO layer 6089 * to authenticate them since this will cause the entire 6090 * IO to fail if the key isn't loaded. Instead, we 6091 * defer authentication until arc_buf_fill(), which will 6092 * verify the data when the key is available. 6093 */ 6094 if (BP_IS_AUTHENTICATED(bp)) 6095 zio_flags |= ZIO_FLAG_RAW_ENCRYPT; 6096 } 6097 6098 if (*arc_flags & ARC_FLAG_PREFETCH && 6099 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) 6100 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH); 6101 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) 6102 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH); 6103 if (*arc_flags & ARC_FLAG_L2CACHE) 6104 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6105 if (BP_IS_AUTHENTICATED(bp)) 6106 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6107 if (BP_GET_LEVEL(bp) > 0) 6108 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT); 6109 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH) 6110 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH); 6111 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state)); 6112 6113 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP); 6114 acb->acb_done = done; 6115 acb->acb_private = private; 6116 acb->acb_compressed = compressed_read; 6117 acb->acb_encrypted = encrypted_read; 6118 acb->acb_noauth = noauth_read; 6119 acb->acb_zb = *zb; 6120 6121 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6122 hdr->b_l1hdr.b_acb = acb; 6123 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6124 6125 if (HDR_HAS_L2HDR(hdr) && 6126 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) { 6127 devw = hdr->b_l2hdr.b_dev->l2ad_writing; 6128 addr = hdr->b_l2hdr.b_daddr; 6129 /* 6130 * Lock out L2ARC device removal. 6131 */ 6132 if (vdev_is_dead(vd) || 6133 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER)) 6134 vd = NULL; 6135 } 6136 6137 /* 6138 * We count both async reads and scrub IOs as asynchronous so 6139 * that both can be upgraded in the event of a cache hit while 6140 * the read IO is still in-flight. 6141 */ 6142 if (priority == ZIO_PRIORITY_ASYNC_READ || 6143 priority == ZIO_PRIORITY_SCRUB) 6144 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6145 else 6146 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ); 6147 6148 /* 6149 * At this point, we have a level 1 cache miss or a blkptr 6150 * with embedded data. Try again in L2ARC if possible. 6151 */ 6152 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize); 6153 6154 /* 6155 * Skip ARC stat bump for block pointers with embedded 6156 * data. The data are read from the blkptr itself via 6157 * decode_embedded_bp_compressed(). 6158 */ 6159 if (!embedded_bp) { 6160 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, 6161 blkptr_t *, bp, uint64_t, lsize, 6162 zbookmark_phys_t *, zb); 6163 ARCSTAT_BUMP(arcstat_misses); 6164 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), 6165 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, 6166 metadata, misses); 6167 } 6168 6169 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) { 6170 /* 6171 * Read from the L2ARC if the following are true: 6172 * 1. The L2ARC vdev was previously cached. 6173 * 2. This buffer still has L2ARC metadata. 6174 * 3. This buffer isn't currently writing to the L2ARC. 6175 * 4. The L2ARC entry wasn't evicted, which may 6176 * also have invalidated the vdev. 6177 * 5. This isn't prefetch and l2arc_noprefetch is set. 6178 */ 6179 if (HDR_HAS_L2HDR(hdr) && 6180 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) && 6181 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) { 6182 l2arc_read_callback_t *cb; 6183 abd_t *abd; 6184 uint64_t asize; 6185 6186 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr); 6187 ARCSTAT_BUMP(arcstat_l2_hits); 6188 atomic_inc_32(&hdr->b_l2hdr.b_hits); 6189 6190 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), 6191 KM_SLEEP); 6192 cb->l2rcb_hdr = hdr; 6193 cb->l2rcb_bp = *bp; 6194 cb->l2rcb_zb = *zb; 6195 cb->l2rcb_flags = zio_flags; 6196 6197 /* 6198 * When Compressed ARC is disabled, but the 6199 * L2ARC block is compressed, arc_hdr_size() 6200 * will have returned LSIZE rather than PSIZE. 6201 */ 6202 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 6203 !HDR_COMPRESSION_ENABLED(hdr) && 6204 HDR_GET_PSIZE(hdr) != 0) { 6205 size = HDR_GET_PSIZE(hdr); 6206 } 6207 6208 asize = vdev_psize_to_asize(vd, size); 6209 if (asize != size) { 6210 abd = abd_alloc_for_io(asize, 6211 HDR_ISTYPE_METADATA(hdr)); 6212 cb->l2rcb_abd = abd; 6213 } else { 6214 abd = hdr_abd; 6215 } 6216 6217 ASSERT(addr >= VDEV_LABEL_START_SIZE && 6218 addr + asize <= vd->vdev_psize - 6219 VDEV_LABEL_END_SIZE); 6220 6221 /* 6222 * l2arc read. The SCL_L2ARC lock will be 6223 * released by l2arc_read_done(). 6224 * Issue a null zio if the underlying buffer 6225 * was squashed to zero size by compression. 6226 */ 6227 ASSERT3U(arc_hdr_get_compress(hdr), !=, 6228 ZIO_COMPRESS_EMPTY); 6229 rzio = zio_read_phys(pio, vd, addr, 6230 asize, abd, 6231 ZIO_CHECKSUM_OFF, 6232 l2arc_read_done, cb, priority, 6233 zio_flags | ZIO_FLAG_DONT_CACHE | 6234 ZIO_FLAG_CANFAIL | 6235 ZIO_FLAG_DONT_PROPAGATE | 6236 ZIO_FLAG_DONT_RETRY, B_FALSE); 6237 acb->acb_zio_head = rzio; 6238 6239 if (hash_lock != NULL) 6240 mutex_exit(hash_lock); 6241 6242 DTRACE_PROBE2(l2arc__read, vdev_t *, vd, 6243 zio_t *, rzio); 6244 ARCSTAT_INCR(arcstat_l2_read_bytes, 6245 HDR_GET_PSIZE(hdr)); 6246 6247 if (*arc_flags & ARC_FLAG_NOWAIT) { 6248 zio_nowait(rzio); 6249 goto out; 6250 } 6251 6252 ASSERT(*arc_flags & ARC_FLAG_WAIT); 6253 if (zio_wait(rzio) == 0) 6254 goto out; 6255 6256 /* l2arc read error; goto zio_read() */ 6257 if (hash_lock != NULL) 6258 mutex_enter(hash_lock); 6259 } else { 6260 DTRACE_PROBE1(l2arc__miss, 6261 arc_buf_hdr_t *, hdr); 6262 ARCSTAT_BUMP(arcstat_l2_misses); 6263 if (HDR_L2_WRITING(hdr)) 6264 ARCSTAT_BUMP(arcstat_l2_rw_clash); 6265 spa_config_exit(spa, SCL_L2ARC, vd); 6266 } 6267 } else { 6268 if (vd != NULL) 6269 spa_config_exit(spa, SCL_L2ARC, vd); 6270 /* 6271 * Skip ARC stat bump for block pointers with 6272 * embedded data. The data are read from the blkptr 6273 * itself via decode_embedded_bp_compressed(). 6274 */ 6275 if (l2arc_ndev != 0 && !embedded_bp) { 6276 DTRACE_PROBE1(l2arc__miss, 6277 arc_buf_hdr_t *, hdr); 6278 ARCSTAT_BUMP(arcstat_l2_misses); 6279 } 6280 } 6281 6282 rzio = zio_read(pio, spa, bp, hdr_abd, size, 6283 arc_read_done, hdr, priority, zio_flags, zb); 6284 acb->acb_zio_head = rzio; 6285 6286 if (hash_lock != NULL) 6287 mutex_exit(hash_lock); 6288 6289 if (*arc_flags & ARC_FLAG_WAIT) { 6290 rc = zio_wait(rzio); 6291 goto out; 6292 } 6293 6294 ASSERT(*arc_flags & ARC_FLAG_NOWAIT); 6295 zio_nowait(rzio); 6296 } 6297 6298 out: 6299 /* embedded bps don't actually go to disk */ 6300 if (!embedded_bp) 6301 spa_read_history_add(spa, zb, *arc_flags); 6302 spl_fstrans_unmark(cookie); 6303 return (rc); 6304 } 6305 6306 arc_prune_t * 6307 arc_add_prune_callback(arc_prune_func_t *func, void *private) 6308 { 6309 arc_prune_t *p; 6310 6311 p = kmem_alloc(sizeof (*p), KM_SLEEP); 6312 p->p_pfunc = func; 6313 p->p_private = private; 6314 list_link_init(&p->p_node); 6315 zfs_refcount_create(&p->p_refcnt); 6316 6317 mutex_enter(&arc_prune_mtx); 6318 zfs_refcount_add(&p->p_refcnt, &arc_prune_list); 6319 list_insert_head(&arc_prune_list, p); 6320 mutex_exit(&arc_prune_mtx); 6321 6322 return (p); 6323 } 6324 6325 void 6326 arc_remove_prune_callback(arc_prune_t *p) 6327 { 6328 boolean_t wait = B_FALSE; 6329 mutex_enter(&arc_prune_mtx); 6330 list_remove(&arc_prune_list, p); 6331 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0) 6332 wait = B_TRUE; 6333 mutex_exit(&arc_prune_mtx); 6334 6335 /* wait for arc_prune_task to finish */ 6336 if (wait) 6337 taskq_wait_outstanding(arc_prune_taskq, 0); 6338 ASSERT0(zfs_refcount_count(&p->p_refcnt)); 6339 zfs_refcount_destroy(&p->p_refcnt); 6340 kmem_free(p, sizeof (*p)); 6341 } 6342 6343 /* 6344 * Notify the arc that a block was freed, and thus will never be used again. 6345 */ 6346 void 6347 arc_freed(spa_t *spa, const blkptr_t *bp) 6348 { 6349 arc_buf_hdr_t *hdr; 6350 kmutex_t *hash_lock; 6351 uint64_t guid = spa_load_guid(spa); 6352 6353 ASSERT(!BP_IS_EMBEDDED(bp)); 6354 6355 hdr = buf_hash_find(guid, bp, &hash_lock); 6356 if (hdr == NULL) 6357 return; 6358 6359 /* 6360 * We might be trying to free a block that is still doing I/O 6361 * (i.e. prefetch) or has a reference (i.e. a dedup-ed, 6362 * dmu_sync-ed block). If this block is being prefetched, then it 6363 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr 6364 * until the I/O completes. A block may also have a reference if it is 6365 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would 6366 * have written the new block to its final resting place on disk but 6367 * without the dedup flag set. This would have left the hdr in the MRU 6368 * state and discoverable. When the txg finally syncs it detects that 6369 * the block was overridden in open context and issues an override I/O. 6370 * Since this is a dedup block, the override I/O will determine if the 6371 * block is already in the DDT. If so, then it will replace the io_bp 6372 * with the bp from the DDT and allow the I/O to finish. When the I/O 6373 * reaches the done callback, dbuf_write_override_done, it will 6374 * check to see if the io_bp and io_bp_override are identical. 6375 * If they are not, then it indicates that the bp was replaced with 6376 * the bp in the DDT and the override bp is freed. This allows 6377 * us to arrive here with a reference on a block that is being 6378 * freed. So if we have an I/O in progress, or a reference to 6379 * this hdr, then we don't destroy the hdr. 6380 */ 6381 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) && 6382 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) { 6383 arc_change_state(arc_anon, hdr, hash_lock); 6384 arc_hdr_destroy(hdr); 6385 mutex_exit(hash_lock); 6386 } else { 6387 mutex_exit(hash_lock); 6388 } 6389 6390 } 6391 6392 /* 6393 * Release this buffer from the cache, making it an anonymous buffer. This 6394 * must be done after a read and prior to modifying the buffer contents. 6395 * If the buffer has more than one reference, we must make 6396 * a new hdr for the buffer. 6397 */ 6398 void 6399 arc_release(arc_buf_t *buf, void *tag) 6400 { 6401 arc_buf_hdr_t *hdr = buf->b_hdr; 6402 6403 /* 6404 * It would be nice to assert that if its DMU metadata (level > 6405 * 0 || it's the dnode file), then it must be syncing context. 6406 * But we don't know that information at this level. 6407 */ 6408 6409 mutex_enter(&buf->b_evict_lock); 6410 6411 ASSERT(HDR_HAS_L1HDR(hdr)); 6412 6413 /* 6414 * We don't grab the hash lock prior to this check, because if 6415 * the buffer's header is in the arc_anon state, it won't be 6416 * linked into the hash table. 6417 */ 6418 if (hdr->b_l1hdr.b_state == arc_anon) { 6419 mutex_exit(&buf->b_evict_lock); 6420 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6421 ASSERT(!HDR_IN_HASH_TABLE(hdr)); 6422 ASSERT(!HDR_HAS_L2HDR(hdr)); 6423 ASSERT(HDR_EMPTY(hdr)); 6424 6425 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6426 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1); 6427 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node)); 6428 6429 hdr->b_l1hdr.b_arc_access = 0; 6430 6431 /* 6432 * If the buf is being overridden then it may already 6433 * have a hdr that is not empty. 6434 */ 6435 buf_discard_identity(hdr); 6436 arc_buf_thaw(buf); 6437 6438 return; 6439 } 6440 6441 kmutex_t *hash_lock = HDR_LOCK(hdr); 6442 mutex_enter(hash_lock); 6443 6444 /* 6445 * This assignment is only valid as long as the hash_lock is 6446 * held, we must be careful not to reference state or the 6447 * b_state field after dropping the lock. 6448 */ 6449 arc_state_t *state = hdr->b_l1hdr.b_state; 6450 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 6451 ASSERT3P(state, !=, arc_anon); 6452 6453 /* this buffer is not on any list */ 6454 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0); 6455 6456 if (HDR_HAS_L2HDR(hdr)) { 6457 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6458 6459 /* 6460 * We have to recheck this conditional again now that 6461 * we're holding the l2ad_mtx to prevent a race with 6462 * another thread which might be concurrently calling 6463 * l2arc_evict(). In that case, l2arc_evict() might have 6464 * destroyed the header's L2 portion as we were waiting 6465 * to acquire the l2ad_mtx. 6466 */ 6467 if (HDR_HAS_L2HDR(hdr)) 6468 arc_hdr_l2hdr_destroy(hdr); 6469 6470 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx); 6471 } 6472 6473 /* 6474 * Do we have more than one buf? 6475 */ 6476 if (hdr->b_l1hdr.b_bufcnt > 1) { 6477 arc_buf_hdr_t *nhdr; 6478 uint64_t spa = hdr->b_spa; 6479 uint64_t psize = HDR_GET_PSIZE(hdr); 6480 uint64_t lsize = HDR_GET_LSIZE(hdr); 6481 boolean_t protected = HDR_PROTECTED(hdr); 6482 enum zio_compress compress = arc_hdr_get_compress(hdr); 6483 arc_buf_contents_t type = arc_buf_type(hdr); 6484 VERIFY3U(hdr->b_type, ==, type); 6485 6486 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL); 6487 (void) remove_reference(hdr, hash_lock, tag); 6488 6489 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) { 6490 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6491 ASSERT(ARC_BUF_LAST(buf)); 6492 } 6493 6494 /* 6495 * Pull the data off of this hdr and attach it to 6496 * a new anonymous hdr. Also find the last buffer 6497 * in the hdr's buffer list. 6498 */ 6499 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf); 6500 ASSERT3P(lastbuf, !=, NULL); 6501 6502 /* 6503 * If the current arc_buf_t and the hdr are sharing their data 6504 * buffer, then we must stop sharing that block. 6505 */ 6506 if (arc_buf_is_shared(buf)) { 6507 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf); 6508 VERIFY(!arc_buf_is_shared(lastbuf)); 6509 6510 /* 6511 * First, sever the block sharing relationship between 6512 * buf and the arc_buf_hdr_t. 6513 */ 6514 arc_unshare_buf(hdr, buf); 6515 6516 /* 6517 * Now we need to recreate the hdr's b_pabd. Since we 6518 * have lastbuf handy, we try to share with it, but if 6519 * we can't then we allocate a new b_pabd and copy the 6520 * data from buf into it. 6521 */ 6522 if (arc_can_share(hdr, lastbuf)) { 6523 arc_share_buf(hdr, lastbuf); 6524 } else { 6525 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6526 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, 6527 buf->b_data, psize); 6528 } 6529 VERIFY3P(lastbuf->b_data, !=, NULL); 6530 } else if (HDR_SHARED_DATA(hdr)) { 6531 /* 6532 * Uncompressed shared buffers are always at the end 6533 * of the list. Compressed buffers don't have the 6534 * same requirements. This makes it hard to 6535 * simply assert that the lastbuf is shared so 6536 * we rely on the hdr's compression flags to determine 6537 * if we have a compressed, shared buffer. 6538 */ 6539 ASSERT(arc_buf_is_shared(lastbuf) || 6540 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF); 6541 ASSERT(!ARC_BUF_SHARED(buf)); 6542 } 6543 6544 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr)); 6545 ASSERT3P(state, !=, arc_l2c_only); 6546 6547 (void) zfs_refcount_remove_many(&state->arcs_size, 6548 arc_buf_size(buf), buf); 6549 6550 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) { 6551 ASSERT3P(state, !=, arc_l2c_only); 6552 (void) zfs_refcount_remove_many( 6553 &state->arcs_esize[type], 6554 arc_buf_size(buf), buf); 6555 } 6556 6557 hdr->b_l1hdr.b_bufcnt -= 1; 6558 if (ARC_BUF_ENCRYPTED(buf)) 6559 hdr->b_crypt_hdr.b_ebufcnt -= 1; 6560 6561 arc_cksum_verify(buf); 6562 arc_buf_unwatch(buf); 6563 6564 /* if this is the last uncompressed buf free the checksum */ 6565 if (!arc_hdr_has_uncompressed_buf(hdr)) 6566 arc_cksum_free(hdr); 6567 6568 mutex_exit(hash_lock); 6569 6570 /* 6571 * Allocate a new hdr. The new hdr will contain a b_pabd 6572 * buffer which will be freed in arc_write(). 6573 */ 6574 nhdr = arc_hdr_alloc(spa, psize, lsize, protected, 6575 compress, hdr->b_complevel, type, HDR_HAS_RABD(hdr)); 6576 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL); 6577 ASSERT0(nhdr->b_l1hdr.b_bufcnt); 6578 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt)); 6579 VERIFY3U(nhdr->b_type, ==, type); 6580 ASSERT(!HDR_SHARED_DATA(nhdr)); 6581 6582 nhdr->b_l1hdr.b_buf = buf; 6583 nhdr->b_l1hdr.b_bufcnt = 1; 6584 if (ARC_BUF_ENCRYPTED(buf)) 6585 nhdr->b_crypt_hdr.b_ebufcnt = 1; 6586 nhdr->b_l1hdr.b_mru_hits = 0; 6587 nhdr->b_l1hdr.b_mru_ghost_hits = 0; 6588 nhdr->b_l1hdr.b_mfu_hits = 0; 6589 nhdr->b_l1hdr.b_mfu_ghost_hits = 0; 6590 nhdr->b_l1hdr.b_l2_hits = 0; 6591 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag); 6592 buf->b_hdr = nhdr; 6593 6594 mutex_exit(&buf->b_evict_lock); 6595 (void) zfs_refcount_add_many(&arc_anon->arcs_size, 6596 arc_buf_size(buf), buf); 6597 } else { 6598 mutex_exit(&buf->b_evict_lock); 6599 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1); 6600 /* protected by hash lock, or hdr is on arc_anon */ 6601 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node)); 6602 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6603 hdr->b_l1hdr.b_mru_hits = 0; 6604 hdr->b_l1hdr.b_mru_ghost_hits = 0; 6605 hdr->b_l1hdr.b_mfu_hits = 0; 6606 hdr->b_l1hdr.b_mfu_ghost_hits = 0; 6607 hdr->b_l1hdr.b_l2_hits = 0; 6608 arc_change_state(arc_anon, hdr, hash_lock); 6609 hdr->b_l1hdr.b_arc_access = 0; 6610 6611 mutex_exit(hash_lock); 6612 buf_discard_identity(hdr); 6613 arc_buf_thaw(buf); 6614 } 6615 } 6616 6617 int 6618 arc_released(arc_buf_t *buf) 6619 { 6620 int released; 6621 6622 mutex_enter(&buf->b_evict_lock); 6623 released = (buf->b_data != NULL && 6624 buf->b_hdr->b_l1hdr.b_state == arc_anon); 6625 mutex_exit(&buf->b_evict_lock); 6626 return (released); 6627 } 6628 6629 #ifdef ZFS_DEBUG 6630 int 6631 arc_referenced(arc_buf_t *buf) 6632 { 6633 int referenced; 6634 6635 mutex_enter(&buf->b_evict_lock); 6636 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt)); 6637 mutex_exit(&buf->b_evict_lock); 6638 return (referenced); 6639 } 6640 #endif 6641 6642 static void 6643 arc_write_ready(zio_t *zio) 6644 { 6645 arc_write_callback_t *callback = zio->io_private; 6646 arc_buf_t *buf = callback->awcb_buf; 6647 arc_buf_hdr_t *hdr = buf->b_hdr; 6648 blkptr_t *bp = zio->io_bp; 6649 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp); 6650 fstrans_cookie_t cookie = spl_fstrans_mark(); 6651 6652 ASSERT(HDR_HAS_L1HDR(hdr)); 6653 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt)); 6654 ASSERT(hdr->b_l1hdr.b_bufcnt > 0); 6655 6656 /* 6657 * If we're reexecuting this zio because the pool suspended, then 6658 * cleanup any state that was previously set the first time the 6659 * callback was invoked. 6660 */ 6661 if (zio->io_flags & ZIO_FLAG_REEXECUTED) { 6662 arc_cksum_free(hdr); 6663 arc_buf_unwatch(buf); 6664 if (hdr->b_l1hdr.b_pabd != NULL) { 6665 if (arc_buf_is_shared(buf)) { 6666 arc_unshare_buf(hdr, buf); 6667 } else { 6668 arc_hdr_free_abd(hdr, B_FALSE); 6669 } 6670 } 6671 6672 if (HDR_HAS_RABD(hdr)) 6673 arc_hdr_free_abd(hdr, B_TRUE); 6674 } 6675 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6676 ASSERT(!HDR_HAS_RABD(hdr)); 6677 ASSERT(!HDR_SHARED_DATA(hdr)); 6678 ASSERT(!arc_buf_is_shared(buf)); 6679 6680 callback->awcb_ready(zio, buf, callback->awcb_private); 6681 6682 if (HDR_IO_IN_PROGRESS(hdr)) 6683 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED); 6684 6685 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6686 6687 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr)) 6688 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp)); 6689 6690 if (BP_IS_PROTECTED(bp)) { 6691 /* ZIL blocks are written through zio_rewrite */ 6692 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 6693 ASSERT(HDR_PROTECTED(hdr)); 6694 6695 if (BP_SHOULD_BYTESWAP(bp)) { 6696 if (BP_GET_LEVEL(bp) > 0) { 6697 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64; 6698 } else { 6699 hdr->b_l1hdr.b_byteswap = 6700 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 6701 } 6702 } else { 6703 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS; 6704 } 6705 6706 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp); 6707 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset; 6708 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt, 6709 hdr->b_crypt_hdr.b_iv); 6710 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac); 6711 } 6712 6713 /* 6714 * If this block was written for raw encryption but the zio layer 6715 * ended up only authenticating it, adjust the buffer flags now. 6716 */ 6717 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) { 6718 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH); 6719 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6720 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF) 6721 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6722 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) { 6723 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED; 6724 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED; 6725 } 6726 6727 /* this must be done after the buffer flags are adjusted */ 6728 arc_cksum_compute(buf); 6729 6730 enum zio_compress compress; 6731 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) { 6732 compress = ZIO_COMPRESS_OFF; 6733 } else { 6734 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp)); 6735 compress = BP_GET_COMPRESS(bp); 6736 } 6737 HDR_SET_PSIZE(hdr, psize); 6738 arc_hdr_set_compress(hdr, compress); 6739 hdr->b_complevel = zio->io_prop.zp_complevel; 6740 6741 if (zio->io_error != 0 || psize == 0) 6742 goto out; 6743 6744 /* 6745 * Fill the hdr with data. If the buffer is encrypted we have no choice 6746 * but to copy the data into b_radb. If the hdr is compressed, the data 6747 * we want is available from the zio, otherwise we can take it from 6748 * the buf. 6749 * 6750 * We might be able to share the buf's data with the hdr here. However, 6751 * doing so would cause the ARC to be full of linear ABDs if we write a 6752 * lot of shareable data. As a compromise, we check whether scattered 6753 * ABDs are allowed, and assume that if they are then the user wants 6754 * the ARC to be primarily filled with them regardless of the data being 6755 * written. Therefore, if they're allowed then we allocate one and copy 6756 * the data into it; otherwise, we share the data directly if we can. 6757 */ 6758 if (ARC_BUF_ENCRYPTED(buf)) { 6759 ASSERT3U(psize, >, 0); 6760 ASSERT(ARC_BUF_COMPRESSED(buf)); 6761 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6762 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6763 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) { 6764 /* 6765 * Ideally, we would always copy the io_abd into b_pabd, but the 6766 * user may have disabled compressed ARC, thus we must check the 6767 * hdr's compression setting rather than the io_bp's. 6768 */ 6769 if (BP_IS_ENCRYPTED(bp)) { 6770 ASSERT3U(psize, >, 0); 6771 arc_hdr_alloc_abd(hdr, 6772 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA); 6773 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize); 6774 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF && 6775 !ARC_BUF_COMPRESSED(buf)) { 6776 ASSERT3U(psize, >, 0); 6777 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6778 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize); 6779 } else { 6780 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr)); 6781 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT); 6782 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data, 6783 arc_buf_size(buf)); 6784 } 6785 } else { 6786 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd)); 6787 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf)); 6788 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1); 6789 6790 arc_share_buf(hdr, buf); 6791 } 6792 6793 out: 6794 arc_hdr_verify(hdr, bp); 6795 spl_fstrans_unmark(cookie); 6796 } 6797 6798 static void 6799 arc_write_children_ready(zio_t *zio) 6800 { 6801 arc_write_callback_t *callback = zio->io_private; 6802 arc_buf_t *buf = callback->awcb_buf; 6803 6804 callback->awcb_children_ready(zio, buf, callback->awcb_private); 6805 } 6806 6807 /* 6808 * The SPA calls this callback for each physical write that happens on behalf 6809 * of a logical write. See the comment in dbuf_write_physdone() for details. 6810 */ 6811 static void 6812 arc_write_physdone(zio_t *zio) 6813 { 6814 arc_write_callback_t *cb = zio->io_private; 6815 if (cb->awcb_physdone != NULL) 6816 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private); 6817 } 6818 6819 static void 6820 arc_write_done(zio_t *zio) 6821 { 6822 arc_write_callback_t *callback = zio->io_private; 6823 arc_buf_t *buf = callback->awcb_buf; 6824 arc_buf_hdr_t *hdr = buf->b_hdr; 6825 6826 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6827 6828 if (zio->io_error == 0) { 6829 arc_hdr_verify(hdr, zio->io_bp); 6830 6831 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) { 6832 buf_discard_identity(hdr); 6833 } else { 6834 hdr->b_dva = *BP_IDENTITY(zio->io_bp); 6835 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp); 6836 } 6837 } else { 6838 ASSERT(HDR_EMPTY(hdr)); 6839 } 6840 6841 /* 6842 * If the block to be written was all-zero or compressed enough to be 6843 * embedded in the BP, no write was performed so there will be no 6844 * dva/birth/checksum. The buffer must therefore remain anonymous 6845 * (and uncached). 6846 */ 6847 if (!HDR_EMPTY(hdr)) { 6848 arc_buf_hdr_t *exists; 6849 kmutex_t *hash_lock; 6850 6851 ASSERT3U(zio->io_error, ==, 0); 6852 6853 arc_cksum_verify(buf); 6854 6855 exists = buf_hash_insert(hdr, &hash_lock); 6856 if (exists != NULL) { 6857 /* 6858 * This can only happen if we overwrite for 6859 * sync-to-convergence, because we remove 6860 * buffers from the hash table when we arc_free(). 6861 */ 6862 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) { 6863 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6864 panic("bad overwrite, hdr=%p exists=%p", 6865 (void *)hdr, (void *)exists); 6866 ASSERT(zfs_refcount_is_zero( 6867 &exists->b_l1hdr.b_refcnt)); 6868 arc_change_state(arc_anon, exists, hash_lock); 6869 arc_hdr_destroy(exists); 6870 mutex_exit(hash_lock); 6871 exists = buf_hash_insert(hdr, &hash_lock); 6872 ASSERT3P(exists, ==, NULL); 6873 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 6874 /* nopwrite */ 6875 ASSERT(zio->io_prop.zp_nopwrite); 6876 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp)) 6877 panic("bad nopwrite, hdr=%p exists=%p", 6878 (void *)hdr, (void *)exists); 6879 } else { 6880 /* Dedup */ 6881 ASSERT(hdr->b_l1hdr.b_bufcnt == 1); 6882 ASSERT(hdr->b_l1hdr.b_state == arc_anon); 6883 ASSERT(BP_GET_DEDUP(zio->io_bp)); 6884 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0); 6885 } 6886 } 6887 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6888 /* if it's not anon, we are doing a scrub */ 6889 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon) 6890 arc_access(hdr, hash_lock); 6891 mutex_exit(hash_lock); 6892 } else { 6893 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS); 6894 } 6895 6896 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)); 6897 callback->awcb_done(zio, buf, callback->awcb_private); 6898 6899 abd_put(zio->io_abd); 6900 kmem_free(callback, sizeof (arc_write_callback_t)); 6901 } 6902 6903 zio_t * 6904 arc_write(zio_t *pio, spa_t *spa, uint64_t txg, 6905 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, 6906 const zio_prop_t *zp, arc_write_done_func_t *ready, 6907 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone, 6908 arc_write_done_func_t *done, void *private, zio_priority_t priority, 6909 int zio_flags, const zbookmark_phys_t *zb) 6910 { 6911 arc_buf_hdr_t *hdr = buf->b_hdr; 6912 arc_write_callback_t *callback; 6913 zio_t *zio; 6914 zio_prop_t localprop = *zp; 6915 6916 ASSERT3P(ready, !=, NULL); 6917 ASSERT3P(done, !=, NULL); 6918 ASSERT(!HDR_IO_ERROR(hdr)); 6919 ASSERT(!HDR_IO_IN_PROGRESS(hdr)); 6920 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL); 6921 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0); 6922 if (l2arc) 6923 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE); 6924 6925 if (ARC_BUF_ENCRYPTED(buf)) { 6926 ASSERT(ARC_BUF_COMPRESSED(buf)); 6927 localprop.zp_encrypt = B_TRUE; 6928 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6929 localprop.zp_complevel = hdr->b_complevel; 6930 localprop.zp_byteorder = 6931 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ? 6932 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER; 6933 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt, 6934 ZIO_DATA_SALT_LEN); 6935 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv, 6936 ZIO_DATA_IV_LEN); 6937 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac, 6938 ZIO_DATA_MAC_LEN); 6939 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) { 6940 localprop.zp_nopwrite = B_FALSE; 6941 localprop.zp_copies = 6942 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1); 6943 } 6944 zio_flags |= ZIO_FLAG_RAW; 6945 } else if (ARC_BUF_COMPRESSED(buf)) { 6946 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf)); 6947 localprop.zp_compress = HDR_GET_COMPRESS(hdr); 6948 localprop.zp_complevel = hdr->b_complevel; 6949 zio_flags |= ZIO_FLAG_RAW_COMPRESS; 6950 } 6951 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP); 6952 callback->awcb_ready = ready; 6953 callback->awcb_children_ready = children_ready; 6954 callback->awcb_physdone = physdone; 6955 callback->awcb_done = done; 6956 callback->awcb_private = private; 6957 callback->awcb_buf = buf; 6958 6959 /* 6960 * The hdr's b_pabd is now stale, free it now. A new data block 6961 * will be allocated when the zio pipeline calls arc_write_ready(). 6962 */ 6963 if (hdr->b_l1hdr.b_pabd != NULL) { 6964 /* 6965 * If the buf is currently sharing the data block with 6966 * the hdr then we need to break that relationship here. 6967 * The hdr will remain with a NULL data pointer and the 6968 * buf will take sole ownership of the block. 6969 */ 6970 if (arc_buf_is_shared(buf)) { 6971 arc_unshare_buf(hdr, buf); 6972 } else { 6973 arc_hdr_free_abd(hdr, B_FALSE); 6974 } 6975 VERIFY3P(buf->b_data, !=, NULL); 6976 } 6977 6978 if (HDR_HAS_RABD(hdr)) 6979 arc_hdr_free_abd(hdr, B_TRUE); 6980 6981 if (!(zio_flags & ZIO_FLAG_RAW)) 6982 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF); 6983 6984 ASSERT(!arc_buf_is_shared(buf)); 6985 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL); 6986 6987 zio = zio_write(pio, spa, txg, bp, 6988 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)), 6989 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready, 6990 (children_ready != NULL) ? arc_write_children_ready : NULL, 6991 arc_write_physdone, arc_write_done, callback, 6992 priority, zio_flags, zb); 6993 6994 return (zio); 6995 } 6996 6997 void 6998 arc_tempreserve_clear(uint64_t reserve) 6999 { 7000 atomic_add_64(&arc_tempreserve, -reserve); 7001 ASSERT((int64_t)arc_tempreserve >= 0); 7002 } 7003 7004 int 7005 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg) 7006 { 7007 int error; 7008 uint64_t anon_size; 7009 7010 if (!arc_no_grow && 7011 reserve > arc_c/4 && 7012 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT)) 7013 arc_c = MIN(arc_c_max, reserve * 4); 7014 7015 /* 7016 * Throttle when the calculated memory footprint for the TXG 7017 * exceeds the target ARC size. 7018 */ 7019 if (reserve > arc_c) { 7020 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve); 7021 return (SET_ERROR(ERESTART)); 7022 } 7023 7024 /* 7025 * Don't count loaned bufs as in flight dirty data to prevent long 7026 * network delays from blocking transactions that are ready to be 7027 * assigned to a txg. 7028 */ 7029 7030 /* assert that it has not wrapped around */ 7031 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0); 7032 7033 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) - 7034 arc_loaned_bytes), 0); 7035 7036 /* 7037 * Writes will, almost always, require additional memory allocations 7038 * in order to compress/encrypt/etc the data. We therefore need to 7039 * make sure that there is sufficient available memory for this. 7040 */ 7041 error = arc_memory_throttle(spa, reserve, txg); 7042 if (error != 0) 7043 return (error); 7044 7045 /* 7046 * Throttle writes when the amount of dirty data in the cache 7047 * gets too large. We try to keep the cache less than half full 7048 * of dirty blocks so that our sync times don't grow too large. 7049 * 7050 * In the case of one pool being built on another pool, we want 7051 * to make sure we don't end up throttling the lower (backing) 7052 * pool when the upper pool is the majority contributor to dirty 7053 * data. To insure we make forward progress during throttling, we 7054 * also check the current pool's net dirty data and only throttle 7055 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty 7056 * data in the cache. 7057 * 7058 * Note: if two requests come in concurrently, we might let them 7059 * both succeed, when one of them should fail. Not a huge deal. 7060 */ 7061 uint64_t total_dirty = reserve + arc_tempreserve + anon_size; 7062 uint64_t spa_dirty_anon = spa_dirty_data(spa); 7063 7064 if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 && 7065 anon_size > arc_c * zfs_arc_anon_limit_percent / 100 && 7066 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) { 7067 #ifdef ZFS_DEBUG 7068 uint64_t meta_esize = zfs_refcount_count( 7069 &arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7070 uint64_t data_esize = 7071 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7072 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK " 7073 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n", 7074 arc_tempreserve >> 10, meta_esize >> 10, 7075 data_esize >> 10, reserve >> 10, arc_c >> 10); 7076 #endif 7077 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle); 7078 return (SET_ERROR(ERESTART)); 7079 } 7080 atomic_add_64(&arc_tempreserve, reserve); 7081 return (0); 7082 } 7083 7084 static void 7085 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size, 7086 kstat_named_t *evict_data, kstat_named_t *evict_metadata) 7087 { 7088 size->value.ui64 = zfs_refcount_count(&state->arcs_size); 7089 evict_data->value.ui64 = 7090 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]); 7091 evict_metadata->value.ui64 = 7092 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]); 7093 } 7094 7095 static int 7096 arc_kstat_update(kstat_t *ksp, int rw) 7097 { 7098 arc_stats_t *as = ksp->ks_data; 7099 7100 if (rw == KSTAT_WRITE) { 7101 return (SET_ERROR(EACCES)); 7102 } else { 7103 arc_kstat_update_state(arc_anon, 7104 &as->arcstat_anon_size, 7105 &as->arcstat_anon_evictable_data, 7106 &as->arcstat_anon_evictable_metadata); 7107 arc_kstat_update_state(arc_mru, 7108 &as->arcstat_mru_size, 7109 &as->arcstat_mru_evictable_data, 7110 &as->arcstat_mru_evictable_metadata); 7111 arc_kstat_update_state(arc_mru_ghost, 7112 &as->arcstat_mru_ghost_size, 7113 &as->arcstat_mru_ghost_evictable_data, 7114 &as->arcstat_mru_ghost_evictable_metadata); 7115 arc_kstat_update_state(arc_mfu, 7116 &as->arcstat_mfu_size, 7117 &as->arcstat_mfu_evictable_data, 7118 &as->arcstat_mfu_evictable_metadata); 7119 arc_kstat_update_state(arc_mfu_ghost, 7120 &as->arcstat_mfu_ghost_size, 7121 &as->arcstat_mfu_ghost_evictable_data, 7122 &as->arcstat_mfu_ghost_evictable_metadata); 7123 7124 ARCSTAT(arcstat_size) = aggsum_value(&arc_size); 7125 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used); 7126 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size); 7127 ARCSTAT(arcstat_metadata_size) = 7128 aggsum_value(&astat_metadata_size); 7129 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size); 7130 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size); 7131 ARCSTAT(arcstat_dbuf_size) = aggsum_value(&astat_dbuf_size); 7132 #if defined(COMPAT_FREEBSD11) 7133 ARCSTAT(arcstat_other_size) = aggsum_value(&astat_bonus_size) + 7134 aggsum_value(&astat_dnode_size) + 7135 aggsum_value(&astat_dbuf_size); 7136 #endif 7137 ARCSTAT(arcstat_dnode_size) = aggsum_value(&astat_dnode_size); 7138 ARCSTAT(arcstat_bonus_size) = aggsum_value(&astat_bonus_size); 7139 ARCSTAT(arcstat_abd_chunk_waste_size) = 7140 aggsum_value(&astat_abd_chunk_waste_size); 7141 7142 as->arcstat_memory_all_bytes.value.ui64 = 7143 arc_all_memory(); 7144 as->arcstat_memory_free_bytes.value.ui64 = 7145 arc_free_memory(); 7146 as->arcstat_memory_available_bytes.value.i64 = 7147 arc_available_memory(); 7148 } 7149 7150 return (0); 7151 } 7152 7153 /* 7154 * This function *must* return indices evenly distributed between all 7155 * sublists of the multilist. This is needed due to how the ARC eviction 7156 * code is laid out; arc_evict_state() assumes ARC buffers are evenly 7157 * distributed between all sublists and uses this assumption when 7158 * deciding which sublist to evict from and how much to evict from it. 7159 */ 7160 static unsigned int 7161 arc_state_multilist_index_func(multilist_t *ml, void *obj) 7162 { 7163 arc_buf_hdr_t *hdr = obj; 7164 7165 /* 7166 * We rely on b_dva to generate evenly distributed index 7167 * numbers using buf_hash below. So, as an added precaution, 7168 * let's make sure we never add empty buffers to the arc lists. 7169 */ 7170 ASSERT(!HDR_EMPTY(hdr)); 7171 7172 /* 7173 * The assumption here, is the hash value for a given 7174 * arc_buf_hdr_t will remain constant throughout its lifetime 7175 * (i.e. its b_spa, b_dva, and b_birth fields don't change). 7176 * Thus, we don't need to store the header's sublist index 7177 * on insertion, as this index can be recalculated on removal. 7178 * 7179 * Also, the low order bits of the hash value are thought to be 7180 * distributed evenly. Otherwise, in the case that the multilist 7181 * has a power of two number of sublists, each sublists' usage 7182 * would not be evenly distributed. 7183 */ 7184 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) % 7185 multilist_get_num_sublists(ml)); 7186 } 7187 7188 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \ 7189 if ((do_warn) && (tuning) && ((tuning) != (value))) { \ 7190 cmn_err(CE_WARN, \ 7191 "ignoring tunable %s (using %llu instead)", \ 7192 (#tuning), (value)); \ 7193 } \ 7194 } while (0) 7195 7196 /* 7197 * Called during module initialization and periodically thereafter to 7198 * apply reasonable changes to the exposed performance tunings. Can also be 7199 * called explicitly by param_set_arc_*() functions when ARC tunables are 7200 * updated manually. Non-zero zfs_* values which differ from the currently set 7201 * values will be applied. 7202 */ 7203 void 7204 arc_tuning_update(boolean_t verbose) 7205 { 7206 uint64_t allmem = arc_all_memory(); 7207 unsigned long limit; 7208 7209 /* Valid range: 32M - <arc_c_max> */ 7210 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) && 7211 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) && 7212 (zfs_arc_min <= arc_c_max)) { 7213 arc_c_min = zfs_arc_min; 7214 arc_c = MAX(arc_c, arc_c_min); 7215 } 7216 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose); 7217 7218 /* Valid range: 64M - <all physical memory> */ 7219 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) && 7220 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) && 7221 (zfs_arc_max > arc_c_min)) { 7222 arc_c_max = zfs_arc_max; 7223 arc_c = MIN(arc_c, arc_c_max); 7224 arc_p = (arc_c >> 1); 7225 if (arc_meta_limit > arc_c_max) 7226 arc_meta_limit = arc_c_max; 7227 if (arc_dnode_size_limit > arc_meta_limit) 7228 arc_dnode_size_limit = arc_meta_limit; 7229 } 7230 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose); 7231 7232 /* Valid range: 16M - <arc_c_max> */ 7233 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) && 7234 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) && 7235 (zfs_arc_meta_min <= arc_c_max)) { 7236 arc_meta_min = zfs_arc_meta_min; 7237 if (arc_meta_limit < arc_meta_min) 7238 arc_meta_limit = arc_meta_min; 7239 if (arc_dnode_size_limit < arc_meta_min) 7240 arc_dnode_size_limit = arc_meta_min; 7241 } 7242 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose); 7243 7244 /* Valid range: <arc_meta_min> - <arc_c_max> */ 7245 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit : 7246 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100; 7247 if ((limit != arc_meta_limit) && 7248 (limit >= arc_meta_min) && 7249 (limit <= arc_c_max)) 7250 arc_meta_limit = limit; 7251 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose); 7252 7253 /* Valid range: <arc_meta_min> - <arc_meta_limit> */ 7254 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit : 7255 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100; 7256 if ((limit != arc_dnode_size_limit) && 7257 (limit >= arc_meta_min) && 7258 (limit <= arc_meta_limit)) 7259 arc_dnode_size_limit = limit; 7260 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit, 7261 verbose); 7262 7263 /* Valid range: 1 - N */ 7264 if (zfs_arc_grow_retry) 7265 arc_grow_retry = zfs_arc_grow_retry; 7266 7267 /* Valid range: 1 - N */ 7268 if (zfs_arc_shrink_shift) { 7269 arc_shrink_shift = zfs_arc_shrink_shift; 7270 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1); 7271 } 7272 7273 /* Valid range: 1 - N */ 7274 if (zfs_arc_p_min_shift) 7275 arc_p_min_shift = zfs_arc_p_min_shift; 7276 7277 /* Valid range: 1 - N ms */ 7278 if (zfs_arc_min_prefetch_ms) 7279 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms; 7280 7281 /* Valid range: 1 - N ms */ 7282 if (zfs_arc_min_prescient_prefetch_ms) { 7283 arc_min_prescient_prefetch_ms = 7284 zfs_arc_min_prescient_prefetch_ms; 7285 } 7286 7287 /* Valid range: 0 - 100 */ 7288 if ((zfs_arc_lotsfree_percent >= 0) && 7289 (zfs_arc_lotsfree_percent <= 100)) 7290 arc_lotsfree_percent = zfs_arc_lotsfree_percent; 7291 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent, 7292 verbose); 7293 7294 /* Valid range: 0 - <all physical memory> */ 7295 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free)) 7296 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem); 7297 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose); 7298 } 7299 7300 static void 7301 arc_state_init(void) 7302 { 7303 arc_anon = &ARC_anon; 7304 arc_mru = &ARC_mru; 7305 arc_mru_ghost = &ARC_mru_ghost; 7306 arc_mfu = &ARC_mfu; 7307 arc_mfu_ghost = &ARC_mfu_ghost; 7308 arc_l2c_only = &ARC_l2c_only; 7309 7310 arc_mru->arcs_list[ARC_BUFC_METADATA] = 7311 multilist_create(sizeof (arc_buf_hdr_t), 7312 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7313 arc_state_multilist_index_func); 7314 arc_mru->arcs_list[ARC_BUFC_DATA] = 7315 multilist_create(sizeof (arc_buf_hdr_t), 7316 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7317 arc_state_multilist_index_func); 7318 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] = 7319 multilist_create(sizeof (arc_buf_hdr_t), 7320 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7321 arc_state_multilist_index_func); 7322 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] = 7323 multilist_create(sizeof (arc_buf_hdr_t), 7324 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7325 arc_state_multilist_index_func); 7326 arc_mfu->arcs_list[ARC_BUFC_METADATA] = 7327 multilist_create(sizeof (arc_buf_hdr_t), 7328 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7329 arc_state_multilist_index_func); 7330 arc_mfu->arcs_list[ARC_BUFC_DATA] = 7331 multilist_create(sizeof (arc_buf_hdr_t), 7332 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7333 arc_state_multilist_index_func); 7334 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] = 7335 multilist_create(sizeof (arc_buf_hdr_t), 7336 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7337 arc_state_multilist_index_func); 7338 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] = 7339 multilist_create(sizeof (arc_buf_hdr_t), 7340 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7341 arc_state_multilist_index_func); 7342 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] = 7343 multilist_create(sizeof (arc_buf_hdr_t), 7344 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7345 arc_state_multilist_index_func); 7346 arc_l2c_only->arcs_list[ARC_BUFC_DATA] = 7347 multilist_create(sizeof (arc_buf_hdr_t), 7348 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), 7349 arc_state_multilist_index_func); 7350 7351 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7352 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7353 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7354 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7355 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7356 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7357 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7358 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7359 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7360 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7361 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7362 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7363 7364 zfs_refcount_create(&arc_anon->arcs_size); 7365 zfs_refcount_create(&arc_mru->arcs_size); 7366 zfs_refcount_create(&arc_mru_ghost->arcs_size); 7367 zfs_refcount_create(&arc_mfu->arcs_size); 7368 zfs_refcount_create(&arc_mfu_ghost->arcs_size); 7369 zfs_refcount_create(&arc_l2c_only->arcs_size); 7370 7371 aggsum_init(&arc_meta_used, 0); 7372 aggsum_init(&arc_size, 0); 7373 aggsum_init(&astat_data_size, 0); 7374 aggsum_init(&astat_metadata_size, 0); 7375 aggsum_init(&astat_hdr_size, 0); 7376 aggsum_init(&astat_l2_hdr_size, 0); 7377 aggsum_init(&astat_bonus_size, 0); 7378 aggsum_init(&astat_dnode_size, 0); 7379 aggsum_init(&astat_dbuf_size, 0); 7380 aggsum_init(&astat_abd_chunk_waste_size, 0); 7381 7382 arc_anon->arcs_state = ARC_STATE_ANON; 7383 arc_mru->arcs_state = ARC_STATE_MRU; 7384 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST; 7385 arc_mfu->arcs_state = ARC_STATE_MFU; 7386 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST; 7387 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY; 7388 } 7389 7390 static void 7391 arc_state_fini(void) 7392 { 7393 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]); 7394 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]); 7395 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]); 7396 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]); 7397 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]); 7398 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]); 7399 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]); 7400 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]); 7401 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]); 7402 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]); 7403 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]); 7404 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]); 7405 7406 zfs_refcount_destroy(&arc_anon->arcs_size); 7407 zfs_refcount_destroy(&arc_mru->arcs_size); 7408 zfs_refcount_destroy(&arc_mru_ghost->arcs_size); 7409 zfs_refcount_destroy(&arc_mfu->arcs_size); 7410 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size); 7411 zfs_refcount_destroy(&arc_l2c_only->arcs_size); 7412 7413 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]); 7414 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]); 7415 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]); 7416 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]); 7417 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]); 7418 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]); 7419 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]); 7420 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]); 7421 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]); 7422 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]); 7423 7424 aggsum_fini(&arc_meta_used); 7425 aggsum_fini(&arc_size); 7426 aggsum_fini(&astat_data_size); 7427 aggsum_fini(&astat_metadata_size); 7428 aggsum_fini(&astat_hdr_size); 7429 aggsum_fini(&astat_l2_hdr_size); 7430 aggsum_fini(&astat_bonus_size); 7431 aggsum_fini(&astat_dnode_size); 7432 aggsum_fini(&astat_dbuf_size); 7433 aggsum_fini(&astat_abd_chunk_waste_size); 7434 } 7435 7436 uint64_t 7437 arc_target_bytes(void) 7438 { 7439 return (arc_c); 7440 } 7441 7442 void 7443 arc_init(void) 7444 { 7445 uint64_t percent, allmem = arc_all_memory(); 7446 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL); 7447 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t), 7448 offsetof(arc_evict_waiter_t, aew_node)); 7449 7450 arc_min_prefetch_ms = 1000; 7451 arc_min_prescient_prefetch_ms = 6000; 7452 7453 #if defined(_KERNEL) 7454 arc_lowmem_init(); 7455 #endif 7456 7457 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */ 7458 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT); 7459 7460 /* How to set default max varies by platform. */ 7461 arc_c_max = arc_default_max(arc_c_min, allmem); 7462 7463 #ifndef _KERNEL 7464 /* 7465 * In userland, there's only the memory pressure that we artificially 7466 * create (see arc_available_memory()). Don't let arc_c get too 7467 * small, because it can cause transactions to be larger than 7468 * arc_c, causing arc_tempreserve_space() to fail. 7469 */ 7470 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT); 7471 #endif 7472 7473 arc_c = arc_c_min; 7474 arc_p = (arc_c >> 1); 7475 7476 /* Set min to 1/2 of arc_c_min */ 7477 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT; 7478 /* Initialize maximum observed usage to zero */ 7479 arc_meta_max = 0; 7480 /* 7481 * Set arc_meta_limit to a percent of arc_c_max with a floor of 7482 * arc_meta_min, and a ceiling of arc_c_max. 7483 */ 7484 percent = MIN(zfs_arc_meta_limit_percent, 100); 7485 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100); 7486 percent = MIN(zfs_arc_dnode_limit_percent, 100); 7487 arc_dnode_size_limit = (percent * arc_meta_limit) / 100; 7488 7489 /* Apply user specified tunings */ 7490 arc_tuning_update(B_TRUE); 7491 7492 /* if kmem_flags are set, lets try to use less memory */ 7493 if (kmem_debugging()) 7494 arc_c = arc_c / 2; 7495 if (arc_c < arc_c_min) 7496 arc_c = arc_c_min; 7497 7498 arc_state_init(); 7499 7500 buf_init(); 7501 7502 list_create(&arc_prune_list, sizeof (arc_prune_t), 7503 offsetof(arc_prune_t, p_node)); 7504 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL); 7505 7506 arc_prune_taskq = taskq_create("arc_prune", boot_ncpus, defclsyspri, 7507 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 7508 7509 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED, 7510 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 7511 7512 if (arc_ksp != NULL) { 7513 arc_ksp->ks_data = &arc_stats; 7514 arc_ksp->ks_update = arc_kstat_update; 7515 kstat_install(arc_ksp); 7516 } 7517 7518 arc_evict_zthr = zthr_create_timer("arc_evict", 7519 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1)); 7520 arc_reap_zthr = zthr_create_timer("arc_reap", 7521 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1)); 7522 7523 arc_warm = B_FALSE; 7524 7525 /* 7526 * Calculate maximum amount of dirty data per pool. 7527 * 7528 * If it has been set by a module parameter, take that. 7529 * Otherwise, use a percentage of physical memory defined by 7530 * zfs_dirty_data_max_percent (default 10%) with a cap at 7531 * zfs_dirty_data_max_max (default 4G or 25% of physical memory). 7532 */ 7533 #ifdef __LP64__ 7534 if (zfs_dirty_data_max_max == 0) 7535 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024, 7536 allmem * zfs_dirty_data_max_max_percent / 100); 7537 #else 7538 if (zfs_dirty_data_max_max == 0) 7539 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024, 7540 allmem * zfs_dirty_data_max_max_percent / 100); 7541 #endif 7542 7543 if (zfs_dirty_data_max == 0) { 7544 zfs_dirty_data_max = allmem * 7545 zfs_dirty_data_max_percent / 100; 7546 zfs_dirty_data_max = MIN(zfs_dirty_data_max, 7547 zfs_dirty_data_max_max); 7548 } 7549 } 7550 7551 void 7552 arc_fini(void) 7553 { 7554 arc_prune_t *p; 7555 7556 #ifdef _KERNEL 7557 arc_lowmem_fini(); 7558 #endif /* _KERNEL */ 7559 7560 /* Use B_TRUE to ensure *all* buffers are evicted */ 7561 arc_flush(NULL, B_TRUE); 7562 7563 if (arc_ksp != NULL) { 7564 kstat_delete(arc_ksp); 7565 arc_ksp = NULL; 7566 } 7567 7568 taskq_wait(arc_prune_taskq); 7569 taskq_destroy(arc_prune_taskq); 7570 7571 mutex_enter(&arc_prune_mtx); 7572 while ((p = list_head(&arc_prune_list)) != NULL) { 7573 list_remove(&arc_prune_list, p); 7574 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list); 7575 zfs_refcount_destroy(&p->p_refcnt); 7576 kmem_free(p, sizeof (*p)); 7577 } 7578 mutex_exit(&arc_prune_mtx); 7579 7580 list_destroy(&arc_prune_list); 7581 mutex_destroy(&arc_prune_mtx); 7582 7583 (void) zthr_cancel(arc_evict_zthr); 7584 (void) zthr_cancel(arc_reap_zthr); 7585 7586 mutex_destroy(&arc_evict_lock); 7587 list_destroy(&arc_evict_waiters); 7588 7589 /* 7590 * Free any buffers that were tagged for destruction. This needs 7591 * to occur before arc_state_fini() runs and destroys the aggsum 7592 * values which are updated when freeing scatter ABDs. 7593 */ 7594 l2arc_do_free_on_write(); 7595 7596 /* 7597 * buf_fini() must proceed arc_state_fini() because buf_fin() may 7598 * trigger the release of kmem magazines, which can callback to 7599 * arc_space_return() which accesses aggsums freed in act_state_fini(). 7600 */ 7601 buf_fini(); 7602 arc_state_fini(); 7603 7604 /* 7605 * We destroy the zthrs after all the ARC state has been 7606 * torn down to avoid the case of them receiving any 7607 * wakeup() signals after they are destroyed. 7608 */ 7609 zthr_destroy(arc_evict_zthr); 7610 zthr_destroy(arc_reap_zthr); 7611 7612 ASSERT0(arc_loaned_bytes); 7613 } 7614 7615 /* 7616 * Level 2 ARC 7617 * 7618 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk. 7619 * It uses dedicated storage devices to hold cached data, which are populated 7620 * using large infrequent writes. The main role of this cache is to boost 7621 * the performance of random read workloads. The intended L2ARC devices 7622 * include short-stroked disks, solid state disks, and other media with 7623 * substantially faster read latency than disk. 7624 * 7625 * +-----------------------+ 7626 * | ARC | 7627 * +-----------------------+ 7628 * | ^ ^ 7629 * | | | 7630 * l2arc_feed_thread() arc_read() 7631 * | | | 7632 * | l2arc read | 7633 * V | | 7634 * +---------------+ | 7635 * | L2ARC | | 7636 * +---------------+ | 7637 * | ^ | 7638 * l2arc_write() | | 7639 * | | | 7640 * V | | 7641 * +-------+ +-------+ 7642 * | vdev | | vdev | 7643 * | cache | | cache | 7644 * +-------+ +-------+ 7645 * +=========+ .-----. 7646 * : L2ARC : |-_____-| 7647 * : devices : | Disks | 7648 * +=========+ `-_____-' 7649 * 7650 * Read requests are satisfied from the following sources, in order: 7651 * 7652 * 1) ARC 7653 * 2) vdev cache of L2ARC devices 7654 * 3) L2ARC devices 7655 * 4) vdev cache of disks 7656 * 5) disks 7657 * 7658 * Some L2ARC device types exhibit extremely slow write performance. 7659 * To accommodate for this there are some significant differences between 7660 * the L2ARC and traditional cache design: 7661 * 7662 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from 7663 * the ARC behave as usual, freeing buffers and placing headers on ghost 7664 * lists. The ARC does not send buffers to the L2ARC during eviction as 7665 * this would add inflated write latencies for all ARC memory pressure. 7666 * 7667 * 2. The L2ARC attempts to cache data from the ARC before it is evicted. 7668 * It does this by periodically scanning buffers from the eviction-end of 7669 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are 7670 * not already there. It scans until a headroom of buffers is satisfied, 7671 * which itself is a buffer for ARC eviction. If a compressible buffer is 7672 * found during scanning and selected for writing to an L2ARC device, we 7673 * temporarily boost scanning headroom during the next scan cycle to make 7674 * sure we adapt to compression effects (which might significantly reduce 7675 * the data volume we write to L2ARC). The thread that does this is 7676 * l2arc_feed_thread(), illustrated below; example sizes are included to 7677 * provide a better sense of ratio than this diagram: 7678 * 7679 * head --> tail 7680 * +---------------------+----------+ 7681 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC 7682 * +---------------------+----------+ | o L2ARC eligible 7683 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer 7684 * +---------------------+----------+ | 7685 * 15.9 Gbytes ^ 32 Mbytes | 7686 * headroom | 7687 * l2arc_feed_thread() 7688 * | 7689 * l2arc write hand <--[oooo]--' 7690 * | 8 Mbyte 7691 * | write max 7692 * V 7693 * +==============================+ 7694 * L2ARC dev |####|#|###|###| |####| ... | 7695 * +==============================+ 7696 * 32 Gbytes 7697 * 7698 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of 7699 * evicted, then the L2ARC has cached a buffer much sooner than it probably 7700 * needed to, potentially wasting L2ARC device bandwidth and storage. It is 7701 * safe to say that this is an uncommon case, since buffers at the end of 7702 * the ARC lists have moved there due to inactivity. 7703 * 7704 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom, 7705 * then the L2ARC simply misses copying some buffers. This serves as a 7706 * pressure valve to prevent heavy read workloads from both stalling the ARC 7707 * with waits and clogging the L2ARC with writes. This also helps prevent 7708 * the potential for the L2ARC to churn if it attempts to cache content too 7709 * quickly, such as during backups of the entire pool. 7710 * 7711 * 5. After system boot and before the ARC has filled main memory, there are 7712 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru 7713 * lists can remain mostly static. Instead of searching from tail of these 7714 * lists as pictured, the l2arc_feed_thread() will search from the list heads 7715 * for eligible buffers, greatly increasing its chance of finding them. 7716 * 7717 * The L2ARC device write speed is also boosted during this time so that 7718 * the L2ARC warms up faster. Since there have been no ARC evictions yet, 7719 * there are no L2ARC reads, and no fear of degrading read performance 7720 * through increased writes. 7721 * 7722 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that 7723 * the vdev queue can aggregate them into larger and fewer writes. Each 7724 * device is written to in a rotor fashion, sweeping writes through 7725 * available space then repeating. 7726 * 7727 * 7. The L2ARC does not store dirty content. It never needs to flush 7728 * write buffers back to disk based storage. 7729 * 7730 * 8. If an ARC buffer is written (and dirtied) which also exists in the 7731 * L2ARC, the now stale L2ARC buffer is immediately dropped. 7732 * 7733 * The performance of the L2ARC can be tweaked by a number of tunables, which 7734 * may be necessary for different workloads: 7735 * 7736 * l2arc_write_max max write bytes per interval 7737 * l2arc_write_boost extra write bytes during device warmup 7738 * l2arc_noprefetch skip caching prefetched buffers 7739 * l2arc_headroom number of max device writes to precache 7740 * l2arc_headroom_boost when we find compressed buffers during ARC 7741 * scanning, we multiply headroom by this 7742 * percentage factor for the next scan cycle, 7743 * since more compressed buffers are likely to 7744 * be present 7745 * l2arc_feed_secs seconds between L2ARC writing 7746 * 7747 * Tunables may be removed or added as future performance improvements are 7748 * integrated, and also may become zpool properties. 7749 * 7750 * There are three key functions that control how the L2ARC warms up: 7751 * 7752 * l2arc_write_eligible() check if a buffer is eligible to cache 7753 * l2arc_write_size() calculate how much to write 7754 * l2arc_write_interval() calculate sleep delay between writes 7755 * 7756 * These three functions determine what to write, how much, and how quickly 7757 * to send writes. 7758 * 7759 * L2ARC persistence: 7760 * 7761 * When writing buffers to L2ARC, we periodically add some metadata to 7762 * make sure we can pick them up after reboot, thus dramatically reducing 7763 * the impact that any downtime has on the performance of storage systems 7764 * with large caches. 7765 * 7766 * The implementation works fairly simply by integrating the following two 7767 * modifications: 7768 * 7769 * *) When writing to the L2ARC, we occasionally write a "l2arc log block", 7770 * which is an additional piece of metadata which describes what's been 7771 * written. This allows us to rebuild the arc_buf_hdr_t structures of the 7772 * main ARC buffers. There are 2 linked-lists of log blocks headed by 7773 * dh_start_lbps[2]. We alternate which chain we append to, so they are 7774 * time-wise and offset-wise interleaved, but that is an optimization rather 7775 * than for correctness. The log block also includes a pointer to the 7776 * previous block in its chain. 7777 * 7778 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device 7779 * for our header bookkeeping purposes. This contains a device header, 7780 * which contains our top-level reference structures. We update it each 7781 * time we write a new log block, so that we're able to locate it in the 7782 * L2ARC device. If this write results in an inconsistent device header 7783 * (e.g. due to power failure), we detect this by verifying the header's 7784 * checksum and simply fail to reconstruct the L2ARC after reboot. 7785 * 7786 * Implementation diagram: 7787 * 7788 * +=== L2ARC device (not to scale) ======================================+ 7789 * | ___two newest log block pointers__.__________ | 7790 * | / \dh_start_lbps[1] | 7791 * | / \ \dh_start_lbps[0]| 7792 * |.___/__. V V | 7793 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---| 7794 * || hdr| ^ /^ /^ / / | 7795 * |+------+ ...--\-------/ \-----/--\------/ / | 7796 * | \--------------/ \--------------/ | 7797 * +======================================================================+ 7798 * 7799 * As can be seen on the diagram, rather than using a simple linked list, 7800 * we use a pair of linked lists with alternating elements. This is a 7801 * performance enhancement due to the fact that we only find out the 7802 * address of the next log block access once the current block has been 7803 * completely read in. Obviously, this hurts performance, because we'd be 7804 * keeping the device's I/O queue at only a 1 operation deep, thus 7805 * incurring a large amount of I/O round-trip latency. Having two lists 7806 * allows us to fetch two log blocks ahead of where we are currently 7807 * rebuilding L2ARC buffers. 7808 * 7809 * On-device data structures: 7810 * 7811 * L2ARC device header: l2arc_dev_hdr_phys_t 7812 * L2ARC log block: l2arc_log_blk_phys_t 7813 * 7814 * L2ARC reconstruction: 7815 * 7816 * When writing data, we simply write in the standard rotary fashion, 7817 * evicting buffers as we go and simply writing new data over them (writing 7818 * a new log block every now and then). This obviously means that once we 7819 * loop around the end of the device, we will start cutting into an already 7820 * committed log block (and its referenced data buffers), like so: 7821 * 7822 * current write head__ __old tail 7823 * \ / 7824 * V V 7825 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |--> 7826 * ^ ^^^^^^^^^___________________________________ 7827 * | \ 7828 * <<nextwrite>> may overwrite this blk and/or its bufs --' 7829 * 7830 * When importing the pool, we detect this situation and use it to stop 7831 * our scanning process (see l2arc_rebuild). 7832 * 7833 * There is one significant caveat to consider when rebuilding ARC contents 7834 * from an L2ARC device: what about invalidated buffers? Given the above 7835 * construction, we cannot update blocks which we've already written to amend 7836 * them to remove buffers which were invalidated. Thus, during reconstruction, 7837 * we might be populating the cache with buffers for data that's not on the 7838 * main pool anymore, or may have been overwritten! 7839 * 7840 * As it turns out, this isn't a problem. Every arc_read request includes 7841 * both the DVA and, crucially, the birth TXG of the BP the caller is 7842 * looking for. So even if the cache were populated by completely rotten 7843 * blocks for data that had been long deleted and/or overwritten, we'll 7844 * never actually return bad data from the cache, since the DVA with the 7845 * birth TXG uniquely identify a block in space and time - once created, 7846 * a block is immutable on disk. The worst thing we have done is wasted 7847 * some time and memory at l2arc rebuild to reconstruct outdated ARC 7848 * entries that will get dropped from the l2arc as it is being updated 7849 * with new blocks. 7850 * 7851 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write 7852 * hand are not restored. This is done by saving the offset (in bytes) 7853 * l2arc_evict() has evicted to in the L2ARC device header and taking it 7854 * into account when restoring buffers. 7855 */ 7856 7857 static boolean_t 7858 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr) 7859 { 7860 /* 7861 * A buffer is *not* eligible for the L2ARC if it: 7862 * 1. belongs to a different spa. 7863 * 2. is already cached on the L2ARC. 7864 * 3. has an I/O in progress (it may be an incomplete read). 7865 * 4. is flagged not eligible (zfs property). 7866 */ 7867 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) || 7868 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr)) 7869 return (B_FALSE); 7870 7871 return (B_TRUE); 7872 } 7873 7874 static uint64_t 7875 l2arc_write_size(l2arc_dev_t *dev) 7876 { 7877 uint64_t size, dev_size, tsize; 7878 7879 /* 7880 * Make sure our globals have meaningful values in case the user 7881 * altered them. 7882 */ 7883 size = l2arc_write_max; 7884 if (size == 0) { 7885 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must " 7886 "be greater than zero, resetting it to the default (%d)", 7887 L2ARC_WRITE_SIZE); 7888 size = l2arc_write_max = L2ARC_WRITE_SIZE; 7889 } 7890 7891 if (arc_warm == B_FALSE) 7892 size += l2arc_write_boost; 7893 7894 /* 7895 * Make sure the write size does not exceed the size of the cache 7896 * device. This is important in l2arc_evict(), otherwise infinite 7897 * iteration can occur. 7898 */ 7899 dev_size = dev->l2ad_end - dev->l2ad_start; 7900 tsize = size + l2arc_log_blk_overhead(size, dev); 7901 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0) 7902 tsize += MAX(64 * 1024 * 1024, 7903 (tsize * l2arc_trim_ahead) / 100); 7904 7905 if (tsize >= dev_size) { 7906 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost " 7907 "plus the overhead of log blocks (persistent L2ARC, " 7908 "%llu bytes) exceeds the size of the cache device " 7909 "(guid %llu), resetting them to the default (%d)", 7910 l2arc_log_blk_overhead(size, dev), 7911 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE); 7912 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE; 7913 7914 if (arc_warm == B_FALSE) 7915 size += l2arc_write_boost; 7916 } 7917 7918 return (size); 7919 7920 } 7921 7922 static clock_t 7923 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote) 7924 { 7925 clock_t interval, next, now; 7926 7927 /* 7928 * If the ARC lists are busy, increase our write rate; if the 7929 * lists are stale, idle back. This is achieved by checking 7930 * how much we previously wrote - if it was more than half of 7931 * what we wanted, schedule the next write much sooner. 7932 */ 7933 if (l2arc_feed_again && wrote > (wanted / 2)) 7934 interval = (hz * l2arc_feed_min_ms) / 1000; 7935 else 7936 interval = hz * l2arc_feed_secs; 7937 7938 now = ddi_get_lbolt(); 7939 next = MAX(now, MIN(now + interval, began + interval)); 7940 7941 return (next); 7942 } 7943 7944 /* 7945 * Cycle through L2ARC devices. This is how L2ARC load balances. 7946 * If a device is returned, this also returns holding the spa config lock. 7947 */ 7948 static l2arc_dev_t * 7949 l2arc_dev_get_next(void) 7950 { 7951 l2arc_dev_t *first, *next = NULL; 7952 7953 /* 7954 * Lock out the removal of spas (spa_namespace_lock), then removal 7955 * of cache devices (l2arc_dev_mtx). Once a device has been selected, 7956 * both locks will be dropped and a spa config lock held instead. 7957 */ 7958 mutex_enter(&spa_namespace_lock); 7959 mutex_enter(&l2arc_dev_mtx); 7960 7961 /* if there are no vdevs, there is nothing to do */ 7962 if (l2arc_ndev == 0) 7963 goto out; 7964 7965 first = NULL; 7966 next = l2arc_dev_last; 7967 do { 7968 /* loop around the list looking for a non-faulted vdev */ 7969 if (next == NULL) { 7970 next = list_head(l2arc_dev_list); 7971 } else { 7972 next = list_next(l2arc_dev_list, next); 7973 if (next == NULL) 7974 next = list_head(l2arc_dev_list); 7975 } 7976 7977 /* if we have come back to the start, bail out */ 7978 if (first == NULL) 7979 first = next; 7980 else if (next == first) 7981 break; 7982 7983 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 7984 next->l2ad_trim_all); 7985 7986 /* if we were unable to find any usable vdevs, return NULL */ 7987 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild || 7988 next->l2ad_trim_all) 7989 next = NULL; 7990 7991 l2arc_dev_last = next; 7992 7993 out: 7994 mutex_exit(&l2arc_dev_mtx); 7995 7996 /* 7997 * Grab the config lock to prevent the 'next' device from being 7998 * removed while we are writing to it. 7999 */ 8000 if (next != NULL) 8001 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER); 8002 mutex_exit(&spa_namespace_lock); 8003 8004 return (next); 8005 } 8006 8007 /* 8008 * Free buffers that were tagged for destruction. 8009 */ 8010 static void 8011 l2arc_do_free_on_write(void) 8012 { 8013 list_t *buflist; 8014 l2arc_data_free_t *df, *df_prev; 8015 8016 mutex_enter(&l2arc_free_on_write_mtx); 8017 buflist = l2arc_free_on_write; 8018 8019 for (df = list_tail(buflist); df; df = df_prev) { 8020 df_prev = list_prev(buflist, df); 8021 ASSERT3P(df->l2df_abd, !=, NULL); 8022 abd_free(df->l2df_abd); 8023 list_remove(buflist, df); 8024 kmem_free(df, sizeof (l2arc_data_free_t)); 8025 } 8026 8027 mutex_exit(&l2arc_free_on_write_mtx); 8028 } 8029 8030 /* 8031 * A write to a cache device has completed. Update all headers to allow 8032 * reads from these buffers to begin. 8033 */ 8034 static void 8035 l2arc_write_done(zio_t *zio) 8036 { 8037 l2arc_write_callback_t *cb; 8038 l2arc_lb_abd_buf_t *abd_buf; 8039 l2arc_lb_ptr_buf_t *lb_ptr_buf; 8040 l2arc_dev_t *dev; 8041 l2arc_dev_hdr_phys_t *l2dhdr; 8042 list_t *buflist; 8043 arc_buf_hdr_t *head, *hdr, *hdr_prev; 8044 kmutex_t *hash_lock; 8045 int64_t bytes_dropped = 0; 8046 8047 cb = zio->io_private; 8048 ASSERT3P(cb, !=, NULL); 8049 dev = cb->l2wcb_dev; 8050 l2dhdr = dev->l2ad_dev_hdr; 8051 ASSERT3P(dev, !=, NULL); 8052 head = cb->l2wcb_head; 8053 ASSERT3P(head, !=, NULL); 8054 buflist = &dev->l2ad_buflist; 8055 ASSERT3P(buflist, !=, NULL); 8056 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio, 8057 l2arc_write_callback_t *, cb); 8058 8059 if (zio->io_error != 0) 8060 ARCSTAT_BUMP(arcstat_l2_writes_error); 8061 8062 /* 8063 * All writes completed, or an error was hit. 8064 */ 8065 top: 8066 mutex_enter(&dev->l2ad_mtx); 8067 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) { 8068 hdr_prev = list_prev(buflist, hdr); 8069 8070 hash_lock = HDR_LOCK(hdr); 8071 8072 /* 8073 * We cannot use mutex_enter or else we can deadlock 8074 * with l2arc_write_buffers (due to swapping the order 8075 * the hash lock and l2ad_mtx are taken). 8076 */ 8077 if (!mutex_tryenter(hash_lock)) { 8078 /* 8079 * Missed the hash lock. We must retry so we 8080 * don't leave the ARC_FLAG_L2_WRITING bit set. 8081 */ 8082 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry); 8083 8084 /* 8085 * We don't want to rescan the headers we've 8086 * already marked as having been written out, so 8087 * we reinsert the head node so we can pick up 8088 * where we left off. 8089 */ 8090 list_remove(buflist, head); 8091 list_insert_after(buflist, hdr, head); 8092 8093 mutex_exit(&dev->l2ad_mtx); 8094 8095 /* 8096 * We wait for the hash lock to become available 8097 * to try and prevent busy waiting, and increase 8098 * the chance we'll be able to acquire the lock 8099 * the next time around. 8100 */ 8101 mutex_enter(hash_lock); 8102 mutex_exit(hash_lock); 8103 goto top; 8104 } 8105 8106 /* 8107 * We could not have been moved into the arc_l2c_only 8108 * state while in-flight due to our ARC_FLAG_L2_WRITING 8109 * bit being set. Let's just ensure that's being enforced. 8110 */ 8111 ASSERT(HDR_HAS_L1HDR(hdr)); 8112 8113 /* 8114 * Skipped - drop L2ARC entry and mark the header as no 8115 * longer L2 eligibile. 8116 */ 8117 if (zio->io_error != 0) { 8118 /* 8119 * Error - drop L2ARC entry. 8120 */ 8121 list_remove(buflist, hdr); 8122 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR); 8123 8124 uint64_t psize = HDR_GET_PSIZE(hdr); 8125 ARCSTAT_INCR(arcstat_l2_psize, -psize); 8126 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr)); 8127 8128 bytes_dropped += 8129 vdev_psize_to_asize(dev->l2ad_vdev, psize); 8130 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, 8131 arc_hdr_size(hdr), hdr); 8132 } 8133 8134 /* 8135 * Allow ARC to begin reads and ghost list evictions to 8136 * this L2ARC entry. 8137 */ 8138 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING); 8139 8140 mutex_exit(hash_lock); 8141 } 8142 8143 /* 8144 * Free the allocated abd buffers for writing the log blocks. 8145 * If the zio failed reclaim the allocated space and remove the 8146 * pointers to these log blocks from the log block pointer list 8147 * of the L2ARC device. 8148 */ 8149 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) { 8150 abd_free(abd_buf->abd); 8151 zio_buf_free(abd_buf, sizeof (*abd_buf)); 8152 if (zio->io_error != 0) { 8153 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list); 8154 /* 8155 * L2BLK_GET_PSIZE returns aligned size for log 8156 * blocks. 8157 */ 8158 uint64_t asize = 8159 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop); 8160 bytes_dropped += asize; 8161 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8162 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8163 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8164 lb_ptr_buf); 8165 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8166 kmem_free(lb_ptr_buf->lb_ptr, 8167 sizeof (l2arc_log_blkptr_t)); 8168 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8169 } 8170 } 8171 list_destroy(&cb->l2wcb_abd_list); 8172 8173 if (zio->io_error != 0) { 8174 /* 8175 * Restore the lbps array in the header to its previous state. 8176 * If the list of log block pointers is empty, zero out the 8177 * log block pointers in the device header. 8178 */ 8179 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list); 8180 for (int i = 0; i < 2; i++) { 8181 if (lb_ptr_buf == NULL) { 8182 /* 8183 * If the list is empty zero out the device 8184 * header. Otherwise zero out the second log 8185 * block pointer in the header. 8186 */ 8187 if (i == 0) { 8188 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 8189 } else { 8190 bzero(&l2dhdr->dh_start_lbps[i], 8191 sizeof (l2arc_log_blkptr_t)); 8192 } 8193 break; 8194 } 8195 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i], 8196 sizeof (l2arc_log_blkptr_t)); 8197 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list, 8198 lb_ptr_buf); 8199 } 8200 } 8201 8202 atomic_inc_64(&l2arc_writes_done); 8203 list_remove(buflist, head); 8204 ASSERT(!HDR_HAS_L1HDR(head)); 8205 kmem_cache_free(hdr_l2only_cache, head); 8206 mutex_exit(&dev->l2ad_mtx); 8207 8208 ASSERT(dev->l2ad_vdev != NULL); 8209 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0); 8210 8211 l2arc_do_free_on_write(); 8212 8213 kmem_free(cb, sizeof (l2arc_write_callback_t)); 8214 } 8215 8216 static int 8217 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb) 8218 { 8219 int ret; 8220 spa_t *spa = zio->io_spa; 8221 arc_buf_hdr_t *hdr = cb->l2rcb_hdr; 8222 blkptr_t *bp = zio->io_bp; 8223 uint8_t salt[ZIO_DATA_SALT_LEN]; 8224 uint8_t iv[ZIO_DATA_IV_LEN]; 8225 uint8_t mac[ZIO_DATA_MAC_LEN]; 8226 boolean_t no_crypt = B_FALSE; 8227 8228 /* 8229 * ZIL data is never be written to the L2ARC, so we don't need 8230 * special handling for its unique MAC storage. 8231 */ 8232 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG); 8233 ASSERT(MUTEX_HELD(HDR_LOCK(hdr))); 8234 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8235 8236 /* 8237 * If the data was encrypted, decrypt it now. Note that 8238 * we must check the bp here and not the hdr, since the 8239 * hdr does not have its encryption parameters updated 8240 * until arc_read_done(). 8241 */ 8242 if (BP_IS_ENCRYPTED(bp)) { 8243 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8244 B_TRUE); 8245 8246 zio_crypt_decode_params_bp(bp, salt, iv); 8247 zio_crypt_decode_mac_bp(bp, mac); 8248 8249 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb, 8250 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), 8251 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd, 8252 hdr->b_l1hdr.b_pabd, &no_crypt); 8253 if (ret != 0) { 8254 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8255 goto error; 8256 } 8257 8258 /* 8259 * If we actually performed decryption, replace b_pabd 8260 * with the decrypted data. Otherwise we can just throw 8261 * our decryption buffer away. 8262 */ 8263 if (!no_crypt) { 8264 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8265 arc_hdr_size(hdr), hdr); 8266 hdr->b_l1hdr.b_pabd = eabd; 8267 zio->io_abd = eabd; 8268 } else { 8269 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr); 8270 } 8271 } 8272 8273 /* 8274 * If the L2ARC block was compressed, but ARC compression 8275 * is disabled we decompress the data into a new buffer and 8276 * replace the existing data. 8277 */ 8278 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8279 !HDR_COMPRESSION_ENABLED(hdr)) { 8280 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, 8281 B_TRUE); 8282 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr)); 8283 8284 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr), 8285 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr), 8286 HDR_GET_LSIZE(hdr), &hdr->b_complevel); 8287 if (ret != 0) { 8288 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8289 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr); 8290 goto error; 8291 } 8292 8293 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr)); 8294 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, 8295 arc_hdr_size(hdr), hdr); 8296 hdr->b_l1hdr.b_pabd = cabd; 8297 zio->io_abd = cabd; 8298 zio->io_size = HDR_GET_LSIZE(hdr); 8299 } 8300 8301 return (0); 8302 8303 error: 8304 return (ret); 8305 } 8306 8307 8308 /* 8309 * A read to a cache device completed. Validate buffer contents before 8310 * handing over to the regular ARC routines. 8311 */ 8312 static void 8313 l2arc_read_done(zio_t *zio) 8314 { 8315 int tfm_error = 0; 8316 l2arc_read_callback_t *cb = zio->io_private; 8317 arc_buf_hdr_t *hdr; 8318 kmutex_t *hash_lock; 8319 boolean_t valid_cksum; 8320 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) && 8321 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)); 8322 8323 ASSERT3P(zio->io_vd, !=, NULL); 8324 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE); 8325 8326 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd); 8327 8328 ASSERT3P(cb, !=, NULL); 8329 hdr = cb->l2rcb_hdr; 8330 ASSERT3P(hdr, !=, NULL); 8331 8332 hash_lock = HDR_LOCK(hdr); 8333 mutex_enter(hash_lock); 8334 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr)); 8335 8336 /* 8337 * If the data was read into a temporary buffer, 8338 * move it and free the buffer. 8339 */ 8340 if (cb->l2rcb_abd != NULL) { 8341 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size); 8342 if (zio->io_error == 0) { 8343 if (using_rdata) { 8344 abd_copy(hdr->b_crypt_hdr.b_rabd, 8345 cb->l2rcb_abd, arc_hdr_size(hdr)); 8346 } else { 8347 abd_copy(hdr->b_l1hdr.b_pabd, 8348 cb->l2rcb_abd, arc_hdr_size(hdr)); 8349 } 8350 } 8351 8352 /* 8353 * The following must be done regardless of whether 8354 * there was an error: 8355 * - free the temporary buffer 8356 * - point zio to the real ARC buffer 8357 * - set zio size accordingly 8358 * These are required because zio is either re-used for 8359 * an I/O of the block in the case of the error 8360 * or the zio is passed to arc_read_done() and it 8361 * needs real data. 8362 */ 8363 abd_free(cb->l2rcb_abd); 8364 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr); 8365 8366 if (using_rdata) { 8367 ASSERT(HDR_HAS_RABD(hdr)); 8368 zio->io_abd = zio->io_orig_abd = 8369 hdr->b_crypt_hdr.b_rabd; 8370 } else { 8371 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL); 8372 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd; 8373 } 8374 } 8375 8376 ASSERT3P(zio->io_abd, !=, NULL); 8377 8378 /* 8379 * Check this survived the L2ARC journey. 8380 */ 8381 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd || 8382 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd)); 8383 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */ 8384 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */ 8385 zio->io_prop.zp_complevel = hdr->b_complevel; 8386 8387 valid_cksum = arc_cksum_is_equal(hdr, zio); 8388 8389 /* 8390 * b_rabd will always match the data as it exists on disk if it is 8391 * being used. Therefore if we are reading into b_rabd we do not 8392 * attempt to untransform the data. 8393 */ 8394 if (valid_cksum && !using_rdata) 8395 tfm_error = l2arc_untransform(zio, cb); 8396 8397 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 && 8398 !HDR_L2_EVICTED(hdr)) { 8399 mutex_exit(hash_lock); 8400 zio->io_private = hdr; 8401 arc_read_done(zio); 8402 } else { 8403 /* 8404 * Buffer didn't survive caching. Increment stats and 8405 * reissue to the original storage device. 8406 */ 8407 if (zio->io_error != 0) { 8408 ARCSTAT_BUMP(arcstat_l2_io_error); 8409 } else { 8410 zio->io_error = SET_ERROR(EIO); 8411 } 8412 if (!valid_cksum || tfm_error != 0) 8413 ARCSTAT_BUMP(arcstat_l2_cksum_bad); 8414 8415 /* 8416 * If there's no waiter, issue an async i/o to the primary 8417 * storage now. If there *is* a waiter, the caller must 8418 * issue the i/o in a context where it's OK to block. 8419 */ 8420 if (zio->io_waiter == NULL) { 8421 zio_t *pio = zio_unique_parent(zio); 8422 void *abd = (using_rdata) ? 8423 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd; 8424 8425 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL); 8426 8427 zio = zio_read(pio, zio->io_spa, zio->io_bp, 8428 abd, zio->io_size, arc_read_done, 8429 hdr, zio->io_priority, cb->l2rcb_flags, 8430 &cb->l2rcb_zb); 8431 8432 /* 8433 * Original ZIO will be freed, so we need to update 8434 * ARC header with the new ZIO pointer to be used 8435 * by zio_change_priority() in arc_read(). 8436 */ 8437 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb; 8438 acb != NULL; acb = acb->acb_next) 8439 acb->acb_zio_head = zio; 8440 8441 mutex_exit(hash_lock); 8442 zio_nowait(zio); 8443 } else { 8444 mutex_exit(hash_lock); 8445 } 8446 } 8447 8448 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8449 } 8450 8451 /* 8452 * This is the list priority from which the L2ARC will search for pages to 8453 * cache. This is used within loops (0..3) to cycle through lists in the 8454 * desired order. This order can have a significant effect on cache 8455 * performance. 8456 * 8457 * Currently the metadata lists are hit first, MFU then MRU, followed by 8458 * the data lists. This function returns a locked list, and also returns 8459 * the lock pointer. 8460 */ 8461 static multilist_sublist_t * 8462 l2arc_sublist_lock(int list_num) 8463 { 8464 multilist_t *ml = NULL; 8465 unsigned int idx; 8466 8467 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES); 8468 8469 switch (list_num) { 8470 case 0: 8471 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA]; 8472 break; 8473 case 1: 8474 ml = arc_mru->arcs_list[ARC_BUFC_METADATA]; 8475 break; 8476 case 2: 8477 ml = arc_mfu->arcs_list[ARC_BUFC_DATA]; 8478 break; 8479 case 3: 8480 ml = arc_mru->arcs_list[ARC_BUFC_DATA]; 8481 break; 8482 default: 8483 return (NULL); 8484 } 8485 8486 /* 8487 * Return a randomly-selected sublist. This is acceptable 8488 * because the caller feeds only a little bit of data for each 8489 * call (8MB). Subsequent calls will result in different 8490 * sublists being selected. 8491 */ 8492 idx = multilist_get_random_index(ml); 8493 return (multilist_sublist_lock(ml, idx)); 8494 } 8495 8496 /* 8497 * Calculates the maximum overhead of L2ARC metadata log blocks for a given 8498 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this 8499 * overhead in processing to make sure there is enough headroom available 8500 * when writing buffers. 8501 */ 8502 static inline uint64_t 8503 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev) 8504 { 8505 if (dev->l2ad_log_entries == 0) { 8506 return (0); 8507 } else { 8508 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT; 8509 8510 uint64_t log_blocks = (log_entries + 8511 dev->l2ad_log_entries - 1) / 8512 dev->l2ad_log_entries; 8513 8514 return (vdev_psize_to_asize(dev->l2ad_vdev, 8515 sizeof (l2arc_log_blk_phys_t)) * log_blocks); 8516 } 8517 } 8518 8519 /* 8520 * Evict buffers from the device write hand to the distance specified in 8521 * bytes. This distance may span populated buffers, it may span nothing. 8522 * This is clearing a region on the L2ARC device ready for writing. 8523 * If the 'all' boolean is set, every buffer is evicted. 8524 */ 8525 static void 8526 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all) 8527 { 8528 list_t *buflist; 8529 arc_buf_hdr_t *hdr, *hdr_prev; 8530 kmutex_t *hash_lock; 8531 uint64_t taddr; 8532 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev; 8533 vdev_t *vd = dev->l2ad_vdev; 8534 boolean_t rerun; 8535 8536 buflist = &dev->l2ad_buflist; 8537 8538 /* 8539 * We need to add in the worst case scenario of log block overhead. 8540 */ 8541 distance += l2arc_log_blk_overhead(distance, dev); 8542 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) { 8543 /* 8544 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100) 8545 * times the write size, whichever is greater. 8546 */ 8547 distance += MAX(64 * 1024 * 1024, 8548 (distance * l2arc_trim_ahead) / 100); 8549 } 8550 8551 top: 8552 rerun = B_FALSE; 8553 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) { 8554 /* 8555 * When there is no space to accommodate upcoming writes, 8556 * evict to the end. Then bump the write and evict hands 8557 * to the start and iterate. This iteration does not 8558 * happen indefinitely as we make sure in 8559 * l2arc_write_size() that when the write hand is reset, 8560 * the write size does not exceed the end of the device. 8561 */ 8562 rerun = B_TRUE; 8563 taddr = dev->l2ad_end; 8564 } else { 8565 taddr = dev->l2ad_hand + distance; 8566 } 8567 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist, 8568 uint64_t, taddr, boolean_t, all); 8569 8570 if (!all) { 8571 /* 8572 * This check has to be placed after deciding whether to 8573 * iterate (rerun). 8574 */ 8575 if (dev->l2ad_first) { 8576 /* 8577 * This is the first sweep through the device. There is 8578 * nothing to evict. We have already trimmmed the 8579 * whole device. 8580 */ 8581 goto out; 8582 } else { 8583 /* 8584 * Trim the space to be evicted. 8585 */ 8586 if (vd->vdev_has_trim && dev->l2ad_evict < taddr && 8587 l2arc_trim_ahead > 0) { 8588 /* 8589 * We have to drop the spa_config lock because 8590 * vdev_trim_range() will acquire it. 8591 * l2ad_evict already accounts for the label 8592 * size. To prevent vdev_trim_ranges() from 8593 * adding it again, we subtract it from 8594 * l2ad_evict. 8595 */ 8596 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev); 8597 vdev_trim_simple(vd, 8598 dev->l2ad_evict - VDEV_LABEL_START_SIZE, 8599 taddr - dev->l2ad_evict); 8600 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev, 8601 RW_READER); 8602 } 8603 8604 /* 8605 * When rebuilding L2ARC we retrieve the evict hand 8606 * from the header of the device. Of note, l2arc_evict() 8607 * does not actually delete buffers from the cache 8608 * device, but trimming may do so depending on the 8609 * hardware implementation. Thus keeping track of the 8610 * evict hand is useful. 8611 */ 8612 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr); 8613 } 8614 } 8615 8616 retry: 8617 mutex_enter(&dev->l2ad_mtx); 8618 /* 8619 * We have to account for evicted log blocks. Run vdev_space_update() 8620 * on log blocks whose offset (in bytes) is before the evicted offset 8621 * (in bytes) by searching in the list of pointers to log blocks 8622 * present in the L2ARC device. 8623 */ 8624 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf; 8625 lb_ptr_buf = lb_ptr_buf_prev) { 8626 8627 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf); 8628 8629 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 8630 uint64_t asize = L2BLK_GET_PSIZE( 8631 (lb_ptr_buf->lb_ptr)->lbp_prop); 8632 8633 /* 8634 * We don't worry about log blocks left behind (ie 8635 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers() 8636 * will never write more than l2arc_evict() evicts. 8637 */ 8638 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) { 8639 break; 8640 } else { 8641 vdev_space_update(vd, -asize, 0, 0); 8642 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize); 8643 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count); 8644 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize, 8645 lb_ptr_buf); 8646 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf); 8647 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf); 8648 kmem_free(lb_ptr_buf->lb_ptr, 8649 sizeof (l2arc_log_blkptr_t)); 8650 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t)); 8651 } 8652 } 8653 8654 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) { 8655 hdr_prev = list_prev(buflist, hdr); 8656 8657 ASSERT(!HDR_EMPTY(hdr)); 8658 hash_lock = HDR_LOCK(hdr); 8659 8660 /* 8661 * We cannot use mutex_enter or else we can deadlock 8662 * with l2arc_write_buffers (due to swapping the order 8663 * the hash lock and l2ad_mtx are taken). 8664 */ 8665 if (!mutex_tryenter(hash_lock)) { 8666 /* 8667 * Missed the hash lock. Retry. 8668 */ 8669 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry); 8670 mutex_exit(&dev->l2ad_mtx); 8671 mutex_enter(hash_lock); 8672 mutex_exit(hash_lock); 8673 goto retry; 8674 } 8675 8676 /* 8677 * A header can't be on this list if it doesn't have L2 header. 8678 */ 8679 ASSERT(HDR_HAS_L2HDR(hdr)); 8680 8681 /* Ensure this header has finished being written. */ 8682 ASSERT(!HDR_L2_WRITING(hdr)); 8683 ASSERT(!HDR_L2_WRITE_HEAD(hdr)); 8684 8685 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict || 8686 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) { 8687 /* 8688 * We've evicted to the target address, 8689 * or the end of the device. 8690 */ 8691 mutex_exit(hash_lock); 8692 break; 8693 } 8694 8695 if (!HDR_HAS_L1HDR(hdr)) { 8696 ASSERT(!HDR_L2_READING(hdr)); 8697 /* 8698 * This doesn't exist in the ARC. Destroy. 8699 * arc_hdr_destroy() will call list_remove() 8700 * and decrement arcstat_l2_lsize. 8701 */ 8702 arc_change_state(arc_anon, hdr, hash_lock); 8703 arc_hdr_destroy(hdr); 8704 } else { 8705 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only); 8706 ARCSTAT_BUMP(arcstat_l2_evict_l1cached); 8707 /* 8708 * Invalidate issued or about to be issued 8709 * reads, since we may be about to write 8710 * over this location. 8711 */ 8712 if (HDR_L2_READING(hdr)) { 8713 ARCSTAT_BUMP(arcstat_l2_evict_reading); 8714 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED); 8715 } 8716 8717 arc_hdr_l2hdr_destroy(hdr); 8718 } 8719 mutex_exit(hash_lock); 8720 } 8721 mutex_exit(&dev->l2ad_mtx); 8722 8723 out: 8724 /* 8725 * We need to check if we evict all buffers, otherwise we may iterate 8726 * unnecessarily. 8727 */ 8728 if (!all && rerun) { 8729 /* 8730 * Bump device hand to the device start if it is approaching the 8731 * end. l2arc_evict() has already evicted ahead for this case. 8732 */ 8733 dev->l2ad_hand = dev->l2ad_start; 8734 dev->l2ad_evict = dev->l2ad_start; 8735 dev->l2ad_first = B_FALSE; 8736 goto top; 8737 } 8738 8739 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end); 8740 if (!dev->l2ad_first) 8741 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict); 8742 } 8743 8744 /* 8745 * Handle any abd transforms that might be required for writing to the L2ARC. 8746 * If successful, this function will always return an abd with the data 8747 * transformed as it is on disk in a new abd of asize bytes. 8748 */ 8749 static int 8750 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize, 8751 abd_t **abd_out) 8752 { 8753 int ret; 8754 void *tmp = NULL; 8755 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd; 8756 enum zio_compress compress = HDR_GET_COMPRESS(hdr); 8757 uint64_t psize = HDR_GET_PSIZE(hdr); 8758 uint64_t size = arc_hdr_size(hdr); 8759 boolean_t ismd = HDR_ISTYPE_METADATA(hdr); 8760 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS); 8761 dsl_crypto_key_t *dck = NULL; 8762 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 }; 8763 boolean_t no_crypt = B_FALSE; 8764 8765 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF && 8766 !HDR_COMPRESSION_ENABLED(hdr)) || 8767 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize); 8768 ASSERT3U(psize, <=, asize); 8769 8770 /* 8771 * If this data simply needs its own buffer, we simply allocate it 8772 * and copy the data. This may be done to eliminate a dependency on a 8773 * shared buffer or to reallocate the buffer to match asize. 8774 */ 8775 if (HDR_HAS_RABD(hdr) && asize != psize) { 8776 ASSERT3U(asize, >=, psize); 8777 to_write = abd_alloc_for_io(asize, ismd); 8778 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize); 8779 if (psize != asize) 8780 abd_zero_off(to_write, psize, asize - psize); 8781 goto out; 8782 } 8783 8784 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) && 8785 !HDR_ENCRYPTED(hdr)) { 8786 ASSERT3U(size, ==, psize); 8787 to_write = abd_alloc_for_io(asize, ismd); 8788 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8789 if (size != asize) 8790 abd_zero_off(to_write, size, asize - size); 8791 goto out; 8792 } 8793 8794 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) { 8795 cabd = abd_alloc_for_io(asize, ismd); 8796 tmp = abd_borrow_buf(cabd, asize); 8797 8798 psize = zio_compress_data(compress, to_write, tmp, size, 8799 hdr->b_complevel); 8800 8801 if (psize >= size) { 8802 abd_return_buf(cabd, tmp, asize); 8803 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF); 8804 to_write = cabd; 8805 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size); 8806 if (size != asize) 8807 abd_zero_off(to_write, size, asize - size); 8808 goto encrypt; 8809 } 8810 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr)); 8811 if (psize < asize) 8812 bzero((char *)tmp + psize, asize - psize); 8813 psize = HDR_GET_PSIZE(hdr); 8814 abd_return_buf_copy(cabd, tmp, asize); 8815 to_write = cabd; 8816 } 8817 8818 encrypt: 8819 if (HDR_ENCRYPTED(hdr)) { 8820 eabd = abd_alloc_for_io(asize, ismd); 8821 8822 /* 8823 * If the dataset was disowned before the buffer 8824 * made it to this point, the key to re-encrypt 8825 * it won't be available. In this case we simply 8826 * won't write the buffer to the L2ARC. 8827 */ 8828 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj, 8829 FTAG, &dck); 8830 if (ret != 0) 8831 goto error; 8832 8833 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key, 8834 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt, 8835 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd, 8836 &no_crypt); 8837 if (ret != 0) 8838 goto error; 8839 8840 if (no_crypt) 8841 abd_copy(eabd, to_write, psize); 8842 8843 if (psize != asize) 8844 abd_zero_off(eabd, psize, asize - psize); 8845 8846 /* assert that the MAC we got here matches the one we saved */ 8847 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN)); 8848 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8849 8850 if (to_write == cabd) 8851 abd_free(cabd); 8852 8853 to_write = eabd; 8854 } 8855 8856 out: 8857 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd); 8858 *abd_out = to_write; 8859 return (0); 8860 8861 error: 8862 if (dck != NULL) 8863 spa_keystore_dsl_key_rele(spa, dck, FTAG); 8864 if (cabd != NULL) 8865 abd_free(cabd); 8866 if (eabd != NULL) 8867 abd_free(eabd); 8868 8869 *abd_out = NULL; 8870 return (ret); 8871 } 8872 8873 static void 8874 l2arc_blk_fetch_done(zio_t *zio) 8875 { 8876 l2arc_read_callback_t *cb; 8877 8878 cb = zio->io_private; 8879 if (cb->l2rcb_abd != NULL) 8880 abd_put(cb->l2rcb_abd); 8881 kmem_free(cb, sizeof (l2arc_read_callback_t)); 8882 } 8883 8884 /* 8885 * Find and write ARC buffers to the L2ARC device. 8886 * 8887 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid 8888 * for reading until they have completed writing. 8889 * The headroom_boost is an in-out parameter used to maintain headroom boost 8890 * state between calls to this function. 8891 * 8892 * Returns the number of bytes actually written (which may be smaller than 8893 * the delta by which the device hand has changed due to alignment and the 8894 * writing of log blocks). 8895 */ 8896 static uint64_t 8897 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz) 8898 { 8899 arc_buf_hdr_t *hdr, *hdr_prev, *head; 8900 uint64_t write_asize, write_psize, write_lsize, headroom; 8901 boolean_t full; 8902 l2arc_write_callback_t *cb = NULL; 8903 zio_t *pio, *wzio; 8904 uint64_t guid = spa_load_guid(spa); 8905 8906 ASSERT3P(dev->l2ad_vdev, !=, NULL); 8907 8908 pio = NULL; 8909 write_lsize = write_asize = write_psize = 0; 8910 full = B_FALSE; 8911 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE); 8912 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR); 8913 8914 /* 8915 * Copy buffers for L2ARC writing. 8916 */ 8917 for (int try = 0; try < L2ARC_FEED_TYPES; try++) { 8918 /* 8919 * If try == 1 or 3, we cache MRU metadata and data 8920 * respectively. 8921 */ 8922 if (l2arc_mfuonly) { 8923 if (try == 1 || try == 3) 8924 continue; 8925 } 8926 8927 multilist_sublist_t *mls = l2arc_sublist_lock(try); 8928 uint64_t passed_sz = 0; 8929 8930 VERIFY3P(mls, !=, NULL); 8931 8932 /* 8933 * L2ARC fast warmup. 8934 * 8935 * Until the ARC is warm and starts to evict, read from the 8936 * head of the ARC lists rather than the tail. 8937 */ 8938 if (arc_warm == B_FALSE) 8939 hdr = multilist_sublist_head(mls); 8940 else 8941 hdr = multilist_sublist_tail(mls); 8942 8943 headroom = target_sz * l2arc_headroom; 8944 if (zfs_compressed_arc_enabled) 8945 headroom = (headroom * l2arc_headroom_boost) / 100; 8946 8947 for (; hdr; hdr = hdr_prev) { 8948 kmutex_t *hash_lock; 8949 abd_t *to_write = NULL; 8950 8951 if (arc_warm == B_FALSE) 8952 hdr_prev = multilist_sublist_next(mls, hdr); 8953 else 8954 hdr_prev = multilist_sublist_prev(mls, hdr); 8955 8956 hash_lock = HDR_LOCK(hdr); 8957 if (!mutex_tryenter(hash_lock)) { 8958 /* 8959 * Skip this buffer rather than waiting. 8960 */ 8961 continue; 8962 } 8963 8964 passed_sz += HDR_GET_LSIZE(hdr); 8965 if (l2arc_headroom != 0 && passed_sz > headroom) { 8966 /* 8967 * Searched too far. 8968 */ 8969 mutex_exit(hash_lock); 8970 break; 8971 } 8972 8973 if (!l2arc_write_eligible(guid, hdr)) { 8974 mutex_exit(hash_lock); 8975 continue; 8976 } 8977 8978 /* 8979 * We rely on the L1 portion of the header below, so 8980 * it's invalid for this header to have been evicted out 8981 * of the ghost cache, prior to being written out. The 8982 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 8983 */ 8984 ASSERT(HDR_HAS_L1HDR(hdr)); 8985 8986 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 8987 ASSERT3U(arc_hdr_size(hdr), >, 0); 8988 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 8989 HDR_HAS_RABD(hdr)); 8990 uint64_t psize = HDR_GET_PSIZE(hdr); 8991 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, 8992 psize); 8993 8994 if ((write_asize + asize) > target_sz) { 8995 full = B_TRUE; 8996 mutex_exit(hash_lock); 8997 break; 8998 } 8999 9000 /* 9001 * We rely on the L1 portion of the header below, so 9002 * it's invalid for this header to have been evicted out 9003 * of the ghost cache, prior to being written out. The 9004 * ARC_FLAG_L2_WRITING bit ensures this won't happen. 9005 */ 9006 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING); 9007 ASSERT(HDR_HAS_L1HDR(hdr)); 9008 9009 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0); 9010 ASSERT(hdr->b_l1hdr.b_pabd != NULL || 9011 HDR_HAS_RABD(hdr)); 9012 ASSERT3U(arc_hdr_size(hdr), >, 0); 9013 9014 /* 9015 * If this header has b_rabd, we can use this since it 9016 * must always match the data exactly as it exists on 9017 * disk. Otherwise, the L2ARC can normally use the 9018 * hdr's data, but if we're sharing data between the 9019 * hdr and one of its bufs, L2ARC needs its own copy of 9020 * the data so that the ZIO below can't race with the 9021 * buf consumer. To ensure that this copy will be 9022 * available for the lifetime of the ZIO and be cleaned 9023 * up afterwards, we add it to the l2arc_free_on_write 9024 * queue. If we need to apply any transforms to the 9025 * data (compression, encryption) we will also need the 9026 * extra buffer. 9027 */ 9028 if (HDR_HAS_RABD(hdr) && psize == asize) { 9029 to_write = hdr->b_crypt_hdr.b_rabd; 9030 } else if ((HDR_COMPRESSION_ENABLED(hdr) || 9031 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) && 9032 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) && 9033 psize == asize) { 9034 to_write = hdr->b_l1hdr.b_pabd; 9035 } else { 9036 int ret; 9037 arc_buf_contents_t type = arc_buf_type(hdr); 9038 9039 ret = l2arc_apply_transforms(spa, hdr, asize, 9040 &to_write); 9041 if (ret != 0) { 9042 arc_hdr_clear_flags(hdr, 9043 ARC_FLAG_L2_WRITING); 9044 mutex_exit(hash_lock); 9045 continue; 9046 } 9047 9048 l2arc_free_abd_on_write(to_write, asize, type); 9049 } 9050 9051 if (pio == NULL) { 9052 /* 9053 * Insert a dummy header on the buflist so 9054 * l2arc_write_done() can find where the 9055 * write buffers begin without searching. 9056 */ 9057 mutex_enter(&dev->l2ad_mtx); 9058 list_insert_head(&dev->l2ad_buflist, head); 9059 mutex_exit(&dev->l2ad_mtx); 9060 9061 cb = kmem_alloc( 9062 sizeof (l2arc_write_callback_t), KM_SLEEP); 9063 cb->l2wcb_dev = dev; 9064 cb->l2wcb_head = head; 9065 /* 9066 * Create a list to save allocated abd buffers 9067 * for l2arc_log_blk_commit(). 9068 */ 9069 list_create(&cb->l2wcb_abd_list, 9070 sizeof (l2arc_lb_abd_buf_t), 9071 offsetof(l2arc_lb_abd_buf_t, node)); 9072 pio = zio_root(spa, l2arc_write_done, cb, 9073 ZIO_FLAG_CANFAIL); 9074 } 9075 9076 hdr->b_l2hdr.b_dev = dev; 9077 hdr->b_l2hdr.b_hits = 0; 9078 9079 hdr->b_l2hdr.b_daddr = dev->l2ad_hand; 9080 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR); 9081 9082 mutex_enter(&dev->l2ad_mtx); 9083 list_insert_head(&dev->l2ad_buflist, hdr); 9084 mutex_exit(&dev->l2ad_mtx); 9085 9086 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 9087 arc_hdr_size(hdr), hdr); 9088 9089 wzio = zio_write_phys(pio, dev->l2ad_vdev, 9090 hdr->b_l2hdr.b_daddr, asize, to_write, 9091 ZIO_CHECKSUM_OFF, NULL, hdr, 9092 ZIO_PRIORITY_ASYNC_WRITE, 9093 ZIO_FLAG_CANFAIL, B_FALSE); 9094 9095 write_lsize += HDR_GET_LSIZE(hdr); 9096 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, 9097 zio_t *, wzio); 9098 9099 write_psize += psize; 9100 write_asize += asize; 9101 dev->l2ad_hand += asize; 9102 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 9103 9104 mutex_exit(hash_lock); 9105 9106 /* 9107 * Append buf info to current log and commit if full. 9108 * arcstat_l2_{size,asize} kstats are updated 9109 * internally. 9110 */ 9111 if (l2arc_log_blk_insert(dev, hdr)) 9112 l2arc_log_blk_commit(dev, pio, cb); 9113 9114 zio_nowait(wzio); 9115 } 9116 9117 multilist_sublist_unlock(mls); 9118 9119 if (full == B_TRUE) 9120 break; 9121 } 9122 9123 /* No buffers selected for writing? */ 9124 if (pio == NULL) { 9125 ASSERT0(write_lsize); 9126 ASSERT(!HDR_HAS_L1HDR(head)); 9127 kmem_cache_free(hdr_l2only_cache, head); 9128 9129 /* 9130 * Although we did not write any buffers l2ad_evict may 9131 * have advanced. 9132 */ 9133 l2arc_dev_hdr_update(dev); 9134 9135 return (0); 9136 } 9137 9138 if (!dev->l2ad_first) 9139 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict); 9140 9141 ASSERT3U(write_asize, <=, target_sz); 9142 ARCSTAT_BUMP(arcstat_l2_writes_sent); 9143 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize); 9144 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize); 9145 ARCSTAT_INCR(arcstat_l2_psize, write_psize); 9146 9147 dev->l2ad_writing = B_TRUE; 9148 (void) zio_wait(pio); 9149 dev->l2ad_writing = B_FALSE; 9150 9151 /* 9152 * Update the device header after the zio completes as 9153 * l2arc_write_done() may have updated the memory holding the log block 9154 * pointers in the device header. 9155 */ 9156 l2arc_dev_hdr_update(dev); 9157 9158 return (write_asize); 9159 } 9160 9161 static boolean_t 9162 l2arc_hdr_limit_reached(void) 9163 { 9164 int64_t s = aggsum_upper_bound(&astat_l2_hdr_size); 9165 9166 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) || 9167 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100)); 9168 } 9169 9170 /* 9171 * This thread feeds the L2ARC at regular intervals. This is the beating 9172 * heart of the L2ARC. 9173 */ 9174 /* ARGSUSED */ 9175 static void 9176 l2arc_feed_thread(void *unused) 9177 { 9178 callb_cpr_t cpr; 9179 l2arc_dev_t *dev; 9180 spa_t *spa; 9181 uint64_t size, wrote; 9182 clock_t begin, next = ddi_get_lbolt(); 9183 fstrans_cookie_t cookie; 9184 9185 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG); 9186 9187 mutex_enter(&l2arc_feed_thr_lock); 9188 9189 cookie = spl_fstrans_mark(); 9190 while (l2arc_thread_exit == 0) { 9191 CALLB_CPR_SAFE_BEGIN(&cpr); 9192 (void) cv_timedwait_idle(&l2arc_feed_thr_cv, 9193 &l2arc_feed_thr_lock, next); 9194 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock); 9195 next = ddi_get_lbolt() + hz; 9196 9197 /* 9198 * Quick check for L2ARC devices. 9199 */ 9200 mutex_enter(&l2arc_dev_mtx); 9201 if (l2arc_ndev == 0) { 9202 mutex_exit(&l2arc_dev_mtx); 9203 continue; 9204 } 9205 mutex_exit(&l2arc_dev_mtx); 9206 begin = ddi_get_lbolt(); 9207 9208 /* 9209 * This selects the next l2arc device to write to, and in 9210 * doing so the next spa to feed from: dev->l2ad_spa. This 9211 * will return NULL if there are now no l2arc devices or if 9212 * they are all faulted. 9213 * 9214 * If a device is returned, its spa's config lock is also 9215 * held to prevent device removal. l2arc_dev_get_next() 9216 * will grab and release l2arc_dev_mtx. 9217 */ 9218 if ((dev = l2arc_dev_get_next()) == NULL) 9219 continue; 9220 9221 spa = dev->l2ad_spa; 9222 ASSERT3P(spa, !=, NULL); 9223 9224 /* 9225 * If the pool is read-only then force the feed thread to 9226 * sleep a little longer. 9227 */ 9228 if (!spa_writeable(spa)) { 9229 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz; 9230 spa_config_exit(spa, SCL_L2ARC, dev); 9231 continue; 9232 } 9233 9234 /* 9235 * Avoid contributing to memory pressure. 9236 */ 9237 if (l2arc_hdr_limit_reached()) { 9238 ARCSTAT_BUMP(arcstat_l2_abort_lowmem); 9239 spa_config_exit(spa, SCL_L2ARC, dev); 9240 continue; 9241 } 9242 9243 ARCSTAT_BUMP(arcstat_l2_feeds); 9244 9245 size = l2arc_write_size(dev); 9246 9247 /* 9248 * Evict L2ARC buffers that will be overwritten. 9249 */ 9250 l2arc_evict(dev, size, B_FALSE); 9251 9252 /* 9253 * Write ARC buffers. 9254 */ 9255 wrote = l2arc_write_buffers(spa, dev, size); 9256 9257 /* 9258 * Calculate interval between writes. 9259 */ 9260 next = l2arc_write_interval(begin, size, wrote); 9261 spa_config_exit(spa, SCL_L2ARC, dev); 9262 } 9263 spl_fstrans_unmark(cookie); 9264 9265 l2arc_thread_exit = 0; 9266 cv_broadcast(&l2arc_feed_thr_cv); 9267 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */ 9268 thread_exit(); 9269 } 9270 9271 boolean_t 9272 l2arc_vdev_present(vdev_t *vd) 9273 { 9274 return (l2arc_vdev_get(vd) != NULL); 9275 } 9276 9277 /* 9278 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if 9279 * the vdev_t isn't an L2ARC device. 9280 */ 9281 l2arc_dev_t * 9282 l2arc_vdev_get(vdev_t *vd) 9283 { 9284 l2arc_dev_t *dev; 9285 9286 mutex_enter(&l2arc_dev_mtx); 9287 for (dev = list_head(l2arc_dev_list); dev != NULL; 9288 dev = list_next(l2arc_dev_list, dev)) { 9289 if (dev->l2ad_vdev == vd) 9290 break; 9291 } 9292 mutex_exit(&l2arc_dev_mtx); 9293 9294 return (dev); 9295 } 9296 9297 /* 9298 * Add a vdev for use by the L2ARC. By this point the spa has already 9299 * validated the vdev and opened it. 9300 */ 9301 void 9302 l2arc_add_vdev(spa_t *spa, vdev_t *vd) 9303 { 9304 l2arc_dev_t *adddev; 9305 uint64_t l2dhdr_asize; 9306 9307 ASSERT(!l2arc_vdev_present(vd)); 9308 9309 /* 9310 * Create a new l2arc device entry. 9311 */ 9312 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP); 9313 adddev->l2ad_spa = spa; 9314 adddev->l2ad_vdev = vd; 9315 /* leave extra size for an l2arc device header */ 9316 l2dhdr_asize = adddev->l2ad_dev_hdr_asize = 9317 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift); 9318 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize; 9319 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd); 9320 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end); 9321 adddev->l2ad_hand = adddev->l2ad_start; 9322 adddev->l2ad_evict = adddev->l2ad_start; 9323 adddev->l2ad_first = B_TRUE; 9324 adddev->l2ad_writing = B_FALSE; 9325 adddev->l2ad_trim_all = B_FALSE; 9326 list_link_init(&adddev->l2ad_node); 9327 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP); 9328 9329 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL); 9330 /* 9331 * This is a list of all ARC buffers that are still valid on the 9332 * device. 9333 */ 9334 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t), 9335 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node)); 9336 9337 /* 9338 * This is a list of pointers to log blocks that are still present 9339 * on the device. 9340 */ 9341 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t), 9342 offsetof(l2arc_lb_ptr_buf_t, node)); 9343 9344 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand); 9345 zfs_refcount_create(&adddev->l2ad_alloc); 9346 zfs_refcount_create(&adddev->l2ad_lb_asize); 9347 zfs_refcount_create(&adddev->l2ad_lb_count); 9348 9349 /* 9350 * Add device to global list 9351 */ 9352 mutex_enter(&l2arc_dev_mtx); 9353 list_insert_head(l2arc_dev_list, adddev); 9354 atomic_inc_64(&l2arc_ndev); 9355 mutex_exit(&l2arc_dev_mtx); 9356 9357 /* 9358 * Decide if vdev is eligible for L2ARC rebuild 9359 */ 9360 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE); 9361 } 9362 9363 void 9364 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen) 9365 { 9366 l2arc_dev_t *dev = NULL; 9367 l2arc_dev_hdr_phys_t *l2dhdr; 9368 uint64_t l2dhdr_asize; 9369 spa_t *spa; 9370 int err; 9371 boolean_t l2dhdr_valid = B_TRUE; 9372 9373 dev = l2arc_vdev_get(vd); 9374 ASSERT3P(dev, !=, NULL); 9375 spa = dev->l2ad_spa; 9376 l2dhdr = dev->l2ad_dev_hdr; 9377 l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9378 9379 /* 9380 * The L2ARC has to hold at least the payload of one log block for 9381 * them to be restored (persistent L2ARC). The payload of a log block 9382 * depends on the amount of its log entries. We always write log blocks 9383 * with 1022 entries. How many of them are committed or restored depends 9384 * on the size of the L2ARC device. Thus the maximum payload of 9385 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device 9386 * is less than that, we reduce the amount of committed and restored 9387 * log entries per block so as to enable persistence. 9388 */ 9389 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) { 9390 dev->l2ad_log_entries = 0; 9391 } else { 9392 dev->l2ad_log_entries = MIN((dev->l2ad_end - 9393 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT, 9394 L2ARC_LOG_BLK_MAX_ENTRIES); 9395 } 9396 9397 /* 9398 * Read the device header, if an error is returned do not rebuild L2ARC. 9399 */ 9400 if ((err = l2arc_dev_hdr_read(dev)) != 0) 9401 l2dhdr_valid = B_FALSE; 9402 9403 if (l2dhdr_valid && dev->l2ad_log_entries > 0) { 9404 /* 9405 * If we are onlining a cache device (vdev_reopen) that was 9406 * still present (l2arc_vdev_present()) and rebuild is enabled, 9407 * we should evict all ARC buffers and pointers to log blocks 9408 * and reclaim their space before restoring its contents to 9409 * L2ARC. 9410 */ 9411 if (reopen) { 9412 if (!l2arc_rebuild_enabled) { 9413 return; 9414 } else { 9415 l2arc_evict(dev, 0, B_TRUE); 9416 /* start a new log block */ 9417 dev->l2ad_log_ent_idx = 0; 9418 dev->l2ad_log_blk_payload_asize = 0; 9419 dev->l2ad_log_blk_payload_start = 0; 9420 } 9421 } 9422 /* 9423 * Just mark the device as pending for a rebuild. We won't 9424 * be starting a rebuild in line here as it would block pool 9425 * import. Instead spa_load_impl will hand that off to an 9426 * async task which will call l2arc_spa_rebuild_start. 9427 */ 9428 dev->l2ad_rebuild = B_TRUE; 9429 } else if (spa_writeable(spa)) { 9430 /* 9431 * In this case TRIM the whole device if l2arc_trim_ahead > 0, 9432 * otherwise create a new header. We zero out the memory holding 9433 * the header to reset dh_start_lbps. If we TRIM the whole 9434 * device the new header will be written by 9435 * vdev_trim_l2arc_thread() at the end of the TRIM to update the 9436 * trim_state in the header too. When reading the header, if 9437 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0 9438 * we opt to TRIM the whole device again. 9439 */ 9440 if (l2arc_trim_ahead > 0) { 9441 dev->l2ad_trim_all = B_TRUE; 9442 } else { 9443 bzero(l2dhdr, l2dhdr_asize); 9444 l2arc_dev_hdr_update(dev); 9445 } 9446 } 9447 } 9448 9449 /* 9450 * Remove a vdev from the L2ARC. 9451 */ 9452 void 9453 l2arc_remove_vdev(vdev_t *vd) 9454 { 9455 l2arc_dev_t *remdev = NULL; 9456 9457 /* 9458 * Find the device by vdev 9459 */ 9460 remdev = l2arc_vdev_get(vd); 9461 ASSERT3P(remdev, !=, NULL); 9462 9463 /* 9464 * Cancel any ongoing or scheduled rebuild. 9465 */ 9466 mutex_enter(&l2arc_rebuild_thr_lock); 9467 if (remdev->l2ad_rebuild_began == B_TRUE) { 9468 remdev->l2ad_rebuild_cancel = B_TRUE; 9469 while (remdev->l2ad_rebuild == B_TRUE) 9470 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock); 9471 } 9472 mutex_exit(&l2arc_rebuild_thr_lock); 9473 9474 /* 9475 * Remove device from global list 9476 */ 9477 mutex_enter(&l2arc_dev_mtx); 9478 list_remove(l2arc_dev_list, remdev); 9479 l2arc_dev_last = NULL; /* may have been invalidated */ 9480 atomic_dec_64(&l2arc_ndev); 9481 mutex_exit(&l2arc_dev_mtx); 9482 9483 /* 9484 * Clear all buflists and ARC references. L2ARC device flush. 9485 */ 9486 l2arc_evict(remdev, 0, B_TRUE); 9487 list_destroy(&remdev->l2ad_buflist); 9488 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list)); 9489 list_destroy(&remdev->l2ad_lbptr_list); 9490 mutex_destroy(&remdev->l2ad_mtx); 9491 zfs_refcount_destroy(&remdev->l2ad_alloc); 9492 zfs_refcount_destroy(&remdev->l2ad_lb_asize); 9493 zfs_refcount_destroy(&remdev->l2ad_lb_count); 9494 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize); 9495 vmem_free(remdev, sizeof (l2arc_dev_t)); 9496 } 9497 9498 void 9499 l2arc_init(void) 9500 { 9501 l2arc_thread_exit = 0; 9502 l2arc_ndev = 0; 9503 l2arc_writes_sent = 0; 9504 l2arc_writes_done = 0; 9505 9506 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9507 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL); 9508 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL); 9509 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL); 9510 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 9511 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL); 9512 9513 l2arc_dev_list = &L2ARC_dev_list; 9514 l2arc_free_on_write = &L2ARC_free_on_write; 9515 list_create(l2arc_dev_list, sizeof (l2arc_dev_t), 9516 offsetof(l2arc_dev_t, l2ad_node)); 9517 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t), 9518 offsetof(l2arc_data_free_t, l2df_list_node)); 9519 } 9520 9521 void 9522 l2arc_fini(void) 9523 { 9524 mutex_destroy(&l2arc_feed_thr_lock); 9525 cv_destroy(&l2arc_feed_thr_cv); 9526 mutex_destroy(&l2arc_rebuild_thr_lock); 9527 cv_destroy(&l2arc_rebuild_thr_cv); 9528 mutex_destroy(&l2arc_dev_mtx); 9529 mutex_destroy(&l2arc_free_on_write_mtx); 9530 9531 list_destroy(l2arc_dev_list); 9532 list_destroy(l2arc_free_on_write); 9533 } 9534 9535 void 9536 l2arc_start(void) 9537 { 9538 if (!(spa_mode_global & SPA_MODE_WRITE)) 9539 return; 9540 9541 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0, 9542 TS_RUN, defclsyspri); 9543 } 9544 9545 void 9546 l2arc_stop(void) 9547 { 9548 if (!(spa_mode_global & SPA_MODE_WRITE)) 9549 return; 9550 9551 mutex_enter(&l2arc_feed_thr_lock); 9552 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */ 9553 l2arc_thread_exit = 1; 9554 while (l2arc_thread_exit != 0) 9555 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock); 9556 mutex_exit(&l2arc_feed_thr_lock); 9557 } 9558 9559 /* 9560 * Punches out rebuild threads for the L2ARC devices in a spa. This should 9561 * be called after pool import from the spa async thread, since starting 9562 * these threads directly from spa_import() will make them part of the 9563 * "zpool import" context and delay process exit (and thus pool import). 9564 */ 9565 void 9566 l2arc_spa_rebuild_start(spa_t *spa) 9567 { 9568 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 9569 9570 /* 9571 * Locate the spa's l2arc devices and kick off rebuild threads. 9572 */ 9573 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) { 9574 l2arc_dev_t *dev = 9575 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]); 9576 if (dev == NULL) { 9577 /* Don't attempt a rebuild if the vdev is UNAVAIL */ 9578 continue; 9579 } 9580 mutex_enter(&l2arc_rebuild_thr_lock); 9581 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) { 9582 dev->l2ad_rebuild_began = B_TRUE; 9583 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread, 9584 dev, 0, &p0, TS_RUN, minclsyspri); 9585 } 9586 mutex_exit(&l2arc_rebuild_thr_lock); 9587 } 9588 } 9589 9590 /* 9591 * Main entry point for L2ARC rebuilding. 9592 */ 9593 static void 9594 l2arc_dev_rebuild_thread(void *arg) 9595 { 9596 l2arc_dev_t *dev = arg; 9597 9598 VERIFY(!dev->l2ad_rebuild_cancel); 9599 VERIFY(dev->l2ad_rebuild); 9600 (void) l2arc_rebuild(dev); 9601 mutex_enter(&l2arc_rebuild_thr_lock); 9602 dev->l2ad_rebuild_began = B_FALSE; 9603 dev->l2ad_rebuild = B_FALSE; 9604 mutex_exit(&l2arc_rebuild_thr_lock); 9605 9606 thread_exit(); 9607 } 9608 9609 /* 9610 * This function implements the actual L2ARC metadata rebuild. It: 9611 * starts reading the log block chain and restores each block's contents 9612 * to memory (reconstructing arc_buf_hdr_t's). 9613 * 9614 * Operation stops under any of the following conditions: 9615 * 9616 * 1) We reach the end of the log block chain. 9617 * 2) We encounter *any* error condition (cksum errors, io errors) 9618 */ 9619 static int 9620 l2arc_rebuild(l2arc_dev_t *dev) 9621 { 9622 vdev_t *vd = dev->l2ad_vdev; 9623 spa_t *spa = vd->vdev_spa; 9624 int err = 0; 9625 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9626 l2arc_log_blk_phys_t *this_lb, *next_lb; 9627 zio_t *this_io = NULL, *next_io = NULL; 9628 l2arc_log_blkptr_t lbps[2]; 9629 l2arc_lb_ptr_buf_t *lb_ptr_buf; 9630 boolean_t lock_held; 9631 9632 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP); 9633 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP); 9634 9635 /* 9636 * We prevent device removal while issuing reads to the device, 9637 * then during the rebuilding phases we drop this lock again so 9638 * that a spa_unload or device remove can be initiated - this is 9639 * safe, because the spa will signal us to stop before removing 9640 * our device and wait for us to stop. 9641 */ 9642 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER); 9643 lock_held = B_TRUE; 9644 9645 /* 9646 * Retrieve the persistent L2ARC device state. 9647 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9648 */ 9649 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start); 9650 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr + 9651 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop), 9652 dev->l2ad_start); 9653 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 9654 9655 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time; 9656 vd->vdev_trim_state = l2dhdr->dh_trim_state; 9657 9658 /* 9659 * In case the zfs module parameter l2arc_rebuild_enabled is false 9660 * we do not start the rebuild process. 9661 */ 9662 if (!l2arc_rebuild_enabled) 9663 goto out; 9664 9665 /* Prepare the rebuild process */ 9666 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps)); 9667 9668 /* Start the rebuild process */ 9669 for (;;) { 9670 if (!l2arc_log_blkptr_valid(dev, &lbps[0])) 9671 break; 9672 9673 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1], 9674 this_lb, next_lb, this_io, &next_io)) != 0) 9675 goto out; 9676 9677 /* 9678 * Our memory pressure valve. If the system is running low 9679 * on memory, rather than swamping memory with new ARC buf 9680 * hdrs, we opt not to rebuild the L2ARC. At this point, 9681 * however, we have already set up our L2ARC dev to chain in 9682 * new metadata log blocks, so the user may choose to offline/ 9683 * online the L2ARC dev at a later time (or re-import the pool) 9684 * to reconstruct it (when there's less memory pressure). 9685 */ 9686 if (l2arc_hdr_limit_reached()) { 9687 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem); 9688 cmn_err(CE_NOTE, "System running low on memory, " 9689 "aborting L2ARC rebuild."); 9690 err = SET_ERROR(ENOMEM); 9691 goto out; 9692 } 9693 9694 spa_config_exit(spa, SCL_L2ARC, vd); 9695 lock_held = B_FALSE; 9696 9697 /* 9698 * Now that we know that the next_lb checks out alright, we 9699 * can start reconstruction from this log block. 9700 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9701 */ 9702 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 9703 l2arc_log_blk_restore(dev, this_lb, asize, lbps[0].lbp_daddr); 9704 9705 /* 9706 * log block restored, include its pointer in the list of 9707 * pointers to log blocks present in the L2ARC device. 9708 */ 9709 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 9710 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), 9711 KM_SLEEP); 9712 bcopy(&lbps[0], lb_ptr_buf->lb_ptr, 9713 sizeof (l2arc_log_blkptr_t)); 9714 mutex_enter(&dev->l2ad_mtx); 9715 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf); 9716 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 9717 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 9718 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 9719 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 9720 mutex_exit(&dev->l2ad_mtx); 9721 vdev_space_update(vd, asize, 0, 0); 9722 9723 /* 9724 * Protection against loops of log blocks: 9725 * 9726 * l2ad_hand l2ad_evict 9727 * V V 9728 * l2ad_start |=======================================| l2ad_end 9729 * -----|||----|||---|||----||| 9730 * (3) (2) (1) (0) 9731 * ---|||---|||----|||---||| 9732 * (7) (6) (5) (4) 9733 * 9734 * In this situation the pointer of log block (4) passes 9735 * l2arc_log_blkptr_valid() but the log block should not be 9736 * restored as it is overwritten by the payload of log block 9737 * (0). Only log blocks (0)-(3) should be restored. We check 9738 * whether l2ad_evict lies in between the payload starting 9739 * offset of the next log block (lbps[1].lbp_payload_start) 9740 * and the payload starting offset of the present log block 9741 * (lbps[0].lbp_payload_start). If true and this isn't the 9742 * first pass, we are looping from the beginning and we should 9743 * stop. 9744 */ 9745 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 9746 lbps[0].lbp_payload_start, dev->l2ad_evict) && 9747 !dev->l2ad_first) 9748 goto out; 9749 9750 for (;;) { 9751 mutex_enter(&l2arc_rebuild_thr_lock); 9752 if (dev->l2ad_rebuild_cancel) { 9753 dev->l2ad_rebuild = B_FALSE; 9754 cv_signal(&l2arc_rebuild_thr_cv); 9755 mutex_exit(&l2arc_rebuild_thr_lock); 9756 err = SET_ERROR(ECANCELED); 9757 goto out; 9758 } 9759 mutex_exit(&l2arc_rebuild_thr_lock); 9760 if (spa_config_tryenter(spa, SCL_L2ARC, vd, 9761 RW_READER)) { 9762 lock_held = B_TRUE; 9763 break; 9764 } 9765 /* 9766 * L2ARC config lock held by somebody in writer, 9767 * possibly due to them trying to remove us. They'll 9768 * likely to want us to shut down, so after a little 9769 * delay, we check l2ad_rebuild_cancel and retry 9770 * the lock again. 9771 */ 9772 delay(1); 9773 } 9774 9775 /* 9776 * Continue with the next log block. 9777 */ 9778 lbps[0] = lbps[1]; 9779 lbps[1] = this_lb->lb_prev_lbp; 9780 PTR_SWAP(this_lb, next_lb); 9781 this_io = next_io; 9782 next_io = NULL; 9783 } 9784 9785 if (this_io != NULL) 9786 l2arc_log_blk_fetch_abort(this_io); 9787 out: 9788 if (next_io != NULL) 9789 l2arc_log_blk_fetch_abort(next_io); 9790 vmem_free(this_lb, sizeof (*this_lb)); 9791 vmem_free(next_lb, sizeof (*next_lb)); 9792 9793 if (!l2arc_rebuild_enabled) { 9794 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9795 "disabled"); 9796 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) { 9797 ARCSTAT_BUMP(arcstat_l2_rebuild_success); 9798 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9799 "successful, restored %llu blocks", 9800 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9801 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) { 9802 /* 9803 * No error but also nothing restored, meaning the lbps array 9804 * in the device header points to invalid/non-present log 9805 * blocks. Reset the header. 9806 */ 9807 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9808 "no valid log blocks"); 9809 bzero(l2dhdr, dev->l2ad_dev_hdr_asize); 9810 l2arc_dev_hdr_update(dev); 9811 } else if (err == ECANCELED) { 9812 /* 9813 * In case the rebuild was canceled do not log to spa history 9814 * log as the pool may be in the process of being removed. 9815 */ 9816 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks", 9817 zfs_refcount_count(&dev->l2ad_lb_count)); 9818 } else if (err != 0) { 9819 spa_history_log_internal(spa, "L2ARC rebuild", NULL, 9820 "aborted, restored %llu blocks", 9821 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count)); 9822 } 9823 9824 if (lock_held) 9825 spa_config_exit(spa, SCL_L2ARC, vd); 9826 9827 return (err); 9828 } 9829 9830 /* 9831 * Attempts to read the device header on the provided L2ARC device and writes 9832 * it to `hdr'. On success, this function returns 0, otherwise the appropriate 9833 * error code is returned. 9834 */ 9835 static int 9836 l2arc_dev_hdr_read(l2arc_dev_t *dev) 9837 { 9838 int err; 9839 uint64_t guid; 9840 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 9841 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 9842 abd_t *abd; 9843 9844 guid = spa_guid(dev->l2ad_vdev->vdev_spa); 9845 9846 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 9847 9848 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev, 9849 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, 9850 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_ASYNC_READ, 9851 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 9852 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 9853 ZIO_FLAG_SPECULATIVE, B_FALSE)); 9854 9855 abd_put(abd); 9856 9857 if (err != 0) { 9858 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors); 9859 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, " 9860 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 9861 return (err); 9862 } 9863 9864 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 9865 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr)); 9866 9867 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC || 9868 l2dhdr->dh_spa_guid != guid || 9869 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid || 9870 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION || 9871 l2dhdr->dh_log_entries != dev->l2ad_log_entries || 9872 l2dhdr->dh_end != dev->l2ad_end || 9873 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end, 9874 l2dhdr->dh_evict) || 9875 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE && 9876 l2arc_trim_ahead > 0)) { 9877 /* 9878 * Attempt to rebuild a device containing no actual dev hdr 9879 * or containing a header from some other pool or from another 9880 * version of persistent L2ARC. 9881 */ 9882 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported); 9883 return (SET_ERROR(ENOTSUP)); 9884 } 9885 9886 return (0); 9887 } 9888 9889 /* 9890 * Reads L2ARC log blocks from storage and validates their contents. 9891 * 9892 * This function implements a simple fetcher to make sure that while 9893 * we're processing one buffer the L2ARC is already fetching the next 9894 * one in the chain. 9895 * 9896 * The arguments this_lp and next_lp point to the current and next log block 9897 * address in the block chain. Similarly, this_lb and next_lb hold the 9898 * l2arc_log_blk_phys_t's of the current and next L2ARC blk. 9899 * 9900 * The `this_io' and `next_io' arguments are used for block fetching. 9901 * When issuing the first blk IO during rebuild, you should pass NULL for 9902 * `this_io'. This function will then issue a sync IO to read the block and 9903 * also issue an async IO to fetch the next block in the block chain. The 9904 * fetched IO is returned in `next_io'. On subsequent calls to this 9905 * function, pass the value returned in `next_io' from the previous call 9906 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO. 9907 * Prior to the call, you should initialize your `next_io' pointer to be 9908 * NULL. If no fetch IO was issued, the pointer is left set at NULL. 9909 * 9910 * On success, this function returns 0, otherwise it returns an appropriate 9911 * error code. On error the fetching IO is aborted and cleared before 9912 * returning from this function. Therefore, if we return `success', the 9913 * caller can assume that we have taken care of cleanup of fetch IOs. 9914 */ 9915 static int 9916 l2arc_log_blk_read(l2arc_dev_t *dev, 9917 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp, 9918 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb, 9919 zio_t *this_io, zio_t **next_io) 9920 { 9921 int err = 0; 9922 zio_cksum_t cksum; 9923 abd_t *abd = NULL; 9924 uint64_t asize; 9925 9926 ASSERT(this_lbp != NULL && next_lbp != NULL); 9927 ASSERT(this_lb != NULL && next_lb != NULL); 9928 ASSERT(next_io != NULL && *next_io == NULL); 9929 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp)); 9930 9931 /* 9932 * Check to see if we have issued the IO for this log block in a 9933 * previous run. If not, this is the first call, so issue it now. 9934 */ 9935 if (this_io == NULL) { 9936 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp, 9937 this_lb); 9938 } 9939 9940 /* 9941 * Peek to see if we can start issuing the next IO immediately. 9942 */ 9943 if (l2arc_log_blkptr_valid(dev, next_lbp)) { 9944 /* 9945 * Start issuing IO for the next log block early - this 9946 * should help keep the L2ARC device busy while we 9947 * decompress and restore this log block. 9948 */ 9949 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp, 9950 next_lb); 9951 } 9952 9953 /* Wait for the IO to read this log block to complete */ 9954 if ((err = zio_wait(this_io)) != 0) { 9955 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors); 9956 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, " 9957 "offset: %llu, vdev guid: %llu", err, this_lbp->lbp_daddr, 9958 dev->l2ad_vdev->vdev_guid); 9959 goto cleanup; 9960 } 9961 9962 /* 9963 * Make sure the buffer checks out. 9964 * L2BLK_GET_PSIZE returns aligned size for log blocks. 9965 */ 9966 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop); 9967 fletcher_4_native(this_lb, asize, NULL, &cksum); 9968 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) { 9969 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors); 9970 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, " 9971 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu", 9972 this_lbp->lbp_daddr, dev->l2ad_vdev->vdev_guid, 9973 dev->l2ad_hand, dev->l2ad_evict); 9974 err = SET_ERROR(ECKSUM); 9975 goto cleanup; 9976 } 9977 9978 /* Now we can take our time decoding this buffer */ 9979 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) { 9980 case ZIO_COMPRESS_OFF: 9981 break; 9982 case ZIO_COMPRESS_LZ4: 9983 abd = abd_alloc_for_io(asize, B_TRUE); 9984 abd_copy_from_buf_off(abd, this_lb, 0, asize); 9985 if ((err = zio_decompress_data( 9986 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop), 9987 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) { 9988 err = SET_ERROR(EINVAL); 9989 goto cleanup; 9990 } 9991 break; 9992 default: 9993 err = SET_ERROR(EINVAL); 9994 goto cleanup; 9995 } 9996 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 9997 byteswap_uint64_array(this_lb, sizeof (*this_lb)); 9998 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) { 9999 err = SET_ERROR(EINVAL); 10000 goto cleanup; 10001 } 10002 cleanup: 10003 /* Abort an in-flight fetch I/O in case of error */ 10004 if (err != 0 && *next_io != NULL) { 10005 l2arc_log_blk_fetch_abort(*next_io); 10006 *next_io = NULL; 10007 } 10008 if (abd != NULL) 10009 abd_free(abd); 10010 return (err); 10011 } 10012 10013 /* 10014 * Restores the payload of a log block to ARC. This creates empty ARC hdr 10015 * entries which only contain an l2arc hdr, essentially restoring the 10016 * buffers to their L2ARC evicted state. This function also updates space 10017 * usage on the L2ARC vdev to make sure it tracks restored buffers. 10018 */ 10019 static void 10020 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb, 10021 uint64_t lb_asize, uint64_t lb_daddr) 10022 { 10023 uint64_t size = 0, asize = 0; 10024 uint64_t log_entries = dev->l2ad_log_entries; 10025 10026 /* 10027 * Usually arc_adapt() is called only for data, not headers, but 10028 * since we may allocate significant amount of memory here, let ARC 10029 * grow its arc_c. 10030 */ 10031 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only); 10032 10033 for (int i = log_entries - 1; i >= 0; i--) { 10034 /* 10035 * Restore goes in the reverse temporal direction to preserve 10036 * correct temporal ordering of buffers in the l2ad_buflist. 10037 * l2arc_hdr_restore also does a list_insert_tail instead of 10038 * list_insert_head on the l2ad_buflist: 10039 * 10040 * LIST l2ad_buflist LIST 10041 * HEAD <------ (time) ------ TAIL 10042 * direction +-----+-----+-----+-----+-----+ direction 10043 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild 10044 * fill +-----+-----+-----+-----+-----+ 10045 * ^ ^ 10046 * | | 10047 * | | 10048 * l2arc_feed_thread l2arc_rebuild 10049 * will place new bufs here restores bufs here 10050 * 10051 * During l2arc_rebuild() the device is not used by 10052 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true. 10053 */ 10054 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop); 10055 asize += vdev_psize_to_asize(dev->l2ad_vdev, 10056 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop)); 10057 l2arc_hdr_restore(&lb->lb_entries[i], dev); 10058 } 10059 10060 /* 10061 * Record rebuild stats: 10062 * size Logical size of restored buffers in the L2ARC 10063 * asize Aligned size of restored buffers in the L2ARC 10064 */ 10065 ARCSTAT_INCR(arcstat_l2_rebuild_size, size); 10066 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize); 10067 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries); 10068 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize); 10069 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize); 10070 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks); 10071 } 10072 10073 /* 10074 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put 10075 * into a state indicating that it has been evicted to L2ARC. 10076 */ 10077 static void 10078 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev) 10079 { 10080 arc_buf_hdr_t *hdr, *exists; 10081 kmutex_t *hash_lock; 10082 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop); 10083 uint64_t asize; 10084 10085 /* 10086 * Do all the allocation before grabbing any locks, this lets us 10087 * sleep if memory is full and we don't have to deal with failed 10088 * allocations. 10089 */ 10090 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type, 10091 dev, le->le_dva, le->le_daddr, 10092 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth, 10093 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel, 10094 L2BLK_GET_PROTECTED((le)->le_prop), 10095 L2BLK_GET_PREFETCH((le)->le_prop)); 10096 asize = vdev_psize_to_asize(dev->l2ad_vdev, 10097 L2BLK_GET_PSIZE((le)->le_prop)); 10098 10099 /* 10100 * vdev_space_update() has to be called before arc_hdr_destroy() to 10101 * avoid underflow since the latter also calls the former. 10102 */ 10103 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10104 10105 ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(hdr)); 10106 ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(hdr)); 10107 10108 mutex_enter(&dev->l2ad_mtx); 10109 list_insert_tail(&dev->l2ad_buflist, hdr); 10110 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr); 10111 mutex_exit(&dev->l2ad_mtx); 10112 10113 exists = buf_hash_insert(hdr, &hash_lock); 10114 if (exists) { 10115 /* Buffer was already cached, no need to restore it. */ 10116 arc_hdr_destroy(hdr); 10117 /* 10118 * If the buffer is already cached, check whether it has 10119 * L2ARC metadata. If not, enter them and update the flag. 10120 * This is important is case of onlining a cache device, since 10121 * we previously evicted all L2ARC metadata from ARC. 10122 */ 10123 if (!HDR_HAS_L2HDR(exists)) { 10124 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR); 10125 exists->b_l2hdr.b_dev = dev; 10126 exists->b_l2hdr.b_daddr = le->le_daddr; 10127 mutex_enter(&dev->l2ad_mtx); 10128 list_insert_tail(&dev->l2ad_buflist, exists); 10129 (void) zfs_refcount_add_many(&dev->l2ad_alloc, 10130 arc_hdr_size(exists), exists); 10131 mutex_exit(&dev->l2ad_mtx); 10132 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10133 ARCSTAT_INCR(arcstat_l2_lsize, HDR_GET_LSIZE(exists)); 10134 ARCSTAT_INCR(arcstat_l2_psize, HDR_GET_PSIZE(exists)); 10135 } 10136 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached); 10137 } 10138 10139 mutex_exit(hash_lock); 10140 } 10141 10142 /* 10143 * Starts an asynchronous read IO to read a log block. This is used in log 10144 * block reconstruction to start reading the next block before we are done 10145 * decoding and reconstructing the current block, to keep the l2arc device 10146 * nice and hot with read IO to process. 10147 * The returned zio will contain a newly allocated memory buffers for the IO 10148 * data which should then be freed by the caller once the zio is no longer 10149 * needed (i.e. due to it having completed). If you wish to abort this 10150 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes 10151 * care of disposing of the allocated buffers correctly. 10152 */ 10153 static zio_t * 10154 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp, 10155 l2arc_log_blk_phys_t *lb) 10156 { 10157 uint32_t asize; 10158 zio_t *pio; 10159 l2arc_read_callback_t *cb; 10160 10161 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10162 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10163 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t)); 10164 10165 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP); 10166 cb->l2rcb_abd = abd_get_from_buf(lb, asize); 10167 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb, 10168 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | 10169 ZIO_FLAG_DONT_RETRY); 10170 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize, 10171 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10172 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | 10173 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE)); 10174 10175 return (pio); 10176 } 10177 10178 /* 10179 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data 10180 * buffers allocated for it. 10181 */ 10182 static void 10183 l2arc_log_blk_fetch_abort(zio_t *zio) 10184 { 10185 (void) zio_wait(zio); 10186 } 10187 10188 /* 10189 * Creates a zio to update the device header on an l2arc device. 10190 */ 10191 void 10192 l2arc_dev_hdr_update(l2arc_dev_t *dev) 10193 { 10194 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10195 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize; 10196 abd_t *abd; 10197 int err; 10198 10199 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER)); 10200 10201 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC; 10202 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION; 10203 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa); 10204 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid; 10205 l2dhdr->dh_log_entries = dev->l2ad_log_entries; 10206 l2dhdr->dh_evict = dev->l2ad_evict; 10207 l2dhdr->dh_start = dev->l2ad_start; 10208 l2dhdr->dh_end = dev->l2ad_end; 10209 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize); 10210 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count); 10211 l2dhdr->dh_flags = 0; 10212 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time; 10213 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state; 10214 if (dev->l2ad_first) 10215 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST; 10216 10217 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize); 10218 10219 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev, 10220 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL, 10221 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE)); 10222 10223 abd_put(abd); 10224 10225 if (err != 0) { 10226 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, " 10227 "vdev guid: %llu", err, dev->l2ad_vdev->vdev_guid); 10228 } 10229 } 10230 10231 /* 10232 * Commits a log block to the L2ARC device. This routine is invoked from 10233 * l2arc_write_buffers when the log block fills up. 10234 * This function allocates some memory to temporarily hold the serialized 10235 * buffer to be written. This is then released in l2arc_write_done. 10236 */ 10237 static void 10238 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb) 10239 { 10240 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10241 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr; 10242 uint64_t psize, asize; 10243 zio_t *wzio; 10244 l2arc_lb_abd_buf_t *abd_buf; 10245 uint8_t *tmpbuf; 10246 l2arc_lb_ptr_buf_t *lb_ptr_buf; 10247 10248 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries); 10249 10250 tmpbuf = zio_buf_alloc(sizeof (*lb)); 10251 abd_buf = zio_buf_alloc(sizeof (*abd_buf)); 10252 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb)); 10253 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP); 10254 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP); 10255 10256 /* link the buffer into the block chain */ 10257 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1]; 10258 lb->lb_magic = L2ARC_LOG_BLK_MAGIC; 10259 10260 /* 10261 * l2arc_log_blk_commit() may be called multiple times during a single 10262 * l2arc_write_buffers() call. Save the allocated abd buffers in a list 10263 * so we can free them in l2arc_write_done() later on. 10264 */ 10265 list_insert_tail(&cb->l2wcb_abd_list, abd_buf); 10266 10267 /* try to compress the buffer */ 10268 psize = zio_compress_data(ZIO_COMPRESS_LZ4, 10269 abd_buf->abd, tmpbuf, sizeof (*lb), 0); 10270 10271 /* a log block is never entirely zero */ 10272 ASSERT(psize != 0); 10273 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize); 10274 ASSERT(asize <= sizeof (*lb)); 10275 10276 /* 10277 * Update the start log block pointer in the device header to point 10278 * to the log block we're about to write. 10279 */ 10280 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0]; 10281 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand; 10282 l2dhdr->dh_start_lbps[0].lbp_payload_asize = 10283 dev->l2ad_log_blk_payload_asize; 10284 l2dhdr->dh_start_lbps[0].lbp_payload_start = 10285 dev->l2ad_log_blk_payload_start; 10286 _NOTE(CONSTCOND) 10287 L2BLK_SET_LSIZE( 10288 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb)); 10289 L2BLK_SET_PSIZE( 10290 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize); 10291 L2BLK_SET_CHECKSUM( 10292 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10293 ZIO_CHECKSUM_FLETCHER_4); 10294 if (asize < sizeof (*lb)) { 10295 /* compression succeeded */ 10296 bzero(tmpbuf + psize, asize - psize); 10297 L2BLK_SET_COMPRESS( 10298 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10299 ZIO_COMPRESS_LZ4); 10300 } else { 10301 /* compression failed */ 10302 bcopy(lb, tmpbuf, sizeof (*lb)); 10303 L2BLK_SET_COMPRESS( 10304 (&l2dhdr->dh_start_lbps[0])->lbp_prop, 10305 ZIO_COMPRESS_OFF); 10306 } 10307 10308 /* checksum what we're about to write */ 10309 fletcher_4_native(tmpbuf, asize, NULL, 10310 &l2dhdr->dh_start_lbps[0].lbp_cksum); 10311 10312 abd_put(abd_buf->abd); 10313 10314 /* perform the write itself */ 10315 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb)); 10316 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE); 10317 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand, 10318 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL, 10319 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE); 10320 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio); 10321 (void) zio_nowait(wzio); 10322 10323 dev->l2ad_hand += asize; 10324 /* 10325 * Include the committed log block's pointer in the list of pointers 10326 * to log blocks present in the L2ARC device. 10327 */ 10328 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr, 10329 sizeof (l2arc_log_blkptr_t)); 10330 mutex_enter(&dev->l2ad_mtx); 10331 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf); 10332 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize); 10333 ARCSTAT_BUMP(arcstat_l2_log_blk_count); 10334 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf); 10335 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf); 10336 mutex_exit(&dev->l2ad_mtx); 10337 vdev_space_update(dev->l2ad_vdev, asize, 0, 0); 10338 10339 /* bump the kstats */ 10340 ARCSTAT_INCR(arcstat_l2_write_bytes, asize); 10341 ARCSTAT_BUMP(arcstat_l2_log_blk_writes); 10342 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize); 10343 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, 10344 dev->l2ad_log_blk_payload_asize / asize); 10345 10346 /* start a new log block */ 10347 dev->l2ad_log_ent_idx = 0; 10348 dev->l2ad_log_blk_payload_asize = 0; 10349 dev->l2ad_log_blk_payload_start = 0; 10350 } 10351 10352 /* 10353 * Validates an L2ARC log block address to make sure that it can be read 10354 * from the provided L2ARC device. 10355 */ 10356 boolean_t 10357 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp) 10358 { 10359 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 10360 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop); 10361 uint64_t end = lbp->lbp_daddr + asize - 1; 10362 uint64_t start = lbp->lbp_payload_start; 10363 boolean_t evicted = B_FALSE; 10364 10365 /* 10366 * A log block is valid if all of the following conditions are true: 10367 * - it fits entirely (including its payload) between l2ad_start and 10368 * l2ad_end 10369 * - it has a valid size 10370 * - neither the log block itself nor part of its payload was evicted 10371 * by l2arc_evict(): 10372 * 10373 * l2ad_hand l2ad_evict 10374 * | | lbp_daddr 10375 * | start | | end 10376 * | | | | | 10377 * V V V V V 10378 * l2ad_start ============================================ l2ad_end 10379 * --------------------------|||| 10380 * ^ ^ 10381 * | log block 10382 * payload 10383 */ 10384 10385 evicted = 10386 l2arc_range_check_overlap(start, end, dev->l2ad_hand) || 10387 l2arc_range_check_overlap(start, end, dev->l2ad_evict) || 10388 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) || 10389 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end); 10390 10391 return (start >= dev->l2ad_start && end <= dev->l2ad_end && 10392 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) && 10393 (!evicted || dev->l2ad_first)); 10394 } 10395 10396 /* 10397 * Inserts ARC buffer header `hdr' into the current L2ARC log block on 10398 * the device. The buffer being inserted must be present in L2ARC. 10399 * Returns B_TRUE if the L2ARC log block is full and needs to be committed 10400 * to L2ARC, or B_FALSE if it still has room for more ARC buffers. 10401 */ 10402 static boolean_t 10403 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr) 10404 { 10405 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk; 10406 l2arc_log_ent_phys_t *le; 10407 10408 if (dev->l2ad_log_entries == 0) 10409 return (B_FALSE); 10410 10411 int index = dev->l2ad_log_ent_idx++; 10412 10413 ASSERT3S(index, <, dev->l2ad_log_entries); 10414 ASSERT(HDR_HAS_L2HDR(hdr)); 10415 10416 le = &lb->lb_entries[index]; 10417 bzero(le, sizeof (*le)); 10418 le->le_dva = hdr->b_dva; 10419 le->le_birth = hdr->b_birth; 10420 le->le_daddr = hdr->b_l2hdr.b_daddr; 10421 if (index == 0) 10422 dev->l2ad_log_blk_payload_start = le->le_daddr; 10423 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr)); 10424 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr)); 10425 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr)); 10426 le->le_complevel = hdr->b_complevel; 10427 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type); 10428 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr))); 10429 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr))); 10430 10431 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev, 10432 HDR_GET_PSIZE(hdr)); 10433 10434 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries); 10435 } 10436 10437 /* 10438 * Checks whether a given L2ARC device address sits in a time-sequential 10439 * range. The trick here is that the L2ARC is a rotary buffer, so we can't 10440 * just do a range comparison, we need to handle the situation in which the 10441 * range wraps around the end of the L2ARC device. Arguments: 10442 * bottom -- Lower end of the range to check (written to earlier). 10443 * top -- Upper end of the range to check (written to later). 10444 * check -- The address for which we want to determine if it sits in 10445 * between the top and bottom. 10446 * 10447 * The 3-way conditional below represents the following cases: 10448 * 10449 * bottom < top : Sequentially ordered case: 10450 * <check>--------+-------------------+ 10451 * | (overlap here?) | 10452 * L2ARC dev V V 10453 * |---------------<bottom>============<top>--------------| 10454 * 10455 * bottom > top: Looped-around case: 10456 * <check>--------+------------------+ 10457 * | (overlap here?) | 10458 * L2ARC dev V V 10459 * |===============<top>---------------<bottom>===========| 10460 * ^ ^ 10461 * | (or here?) | 10462 * +---------------+---------<check> 10463 * 10464 * top == bottom : Just a single address comparison. 10465 */ 10466 boolean_t 10467 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check) 10468 { 10469 if (bottom < top) 10470 return (bottom <= check && check <= top); 10471 else if (bottom > top) 10472 return (check <= top || bottom <= check); 10473 else 10474 return (check == top); 10475 } 10476 10477 EXPORT_SYMBOL(arc_buf_size); 10478 EXPORT_SYMBOL(arc_write); 10479 EXPORT_SYMBOL(arc_read); 10480 EXPORT_SYMBOL(arc_buf_info); 10481 EXPORT_SYMBOL(arc_getbuf_func); 10482 EXPORT_SYMBOL(arc_add_prune_callback); 10483 EXPORT_SYMBOL(arc_remove_prune_callback); 10484 10485 /* BEGIN CSTYLED */ 10486 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_long, 10487 param_get_long, ZMOD_RW, "Min arc size"); 10488 10489 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_long, 10490 param_get_long, ZMOD_RW, "Max arc size"); 10491 10492 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long, 10493 param_get_long, ZMOD_RW, "Metadata limit for arc size"); 10494 10495 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent, 10496 param_set_arc_long, param_get_long, ZMOD_RW, 10497 "Percent of arc size for arc meta limit"); 10498 10499 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long, 10500 param_get_long, ZMOD_RW, "Min arc metadata"); 10501 10502 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW, 10503 "Meta objects to scan for prune"); 10504 10505 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW, 10506 "Limit number of restarts in arc_evict_meta"); 10507 10508 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW, 10509 "Meta reclaim strategy"); 10510 10511 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int, 10512 param_get_int, ZMOD_RW, "Seconds before growing arc size"); 10513 10514 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW, 10515 "Disable arc_p adapt dampener"); 10516 10517 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int, 10518 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)"); 10519 10520 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW, 10521 "Percent of pagecache to reclaim arc to"); 10522 10523 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int, 10524 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p"); 10525 10526 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD, 10527 "Target average block size"); 10528 10529 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW, 10530 "Disable compressed arc buffers"); 10531 10532 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int, 10533 param_get_int, ZMOD_RW, "Min life of prefetch block in ms"); 10534 10535 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms, 10536 param_set_arc_int, param_get_int, ZMOD_RW, 10537 "Min life of prescient prefetched block in ms"); 10538 10539 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW, 10540 "Max write bytes per interval"); 10541 10542 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW, 10543 "Extra write bytes during device warmup"); 10544 10545 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW, 10546 "Number of max device writes to precache"); 10547 10548 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW, 10549 "Compressed l2arc_headroom multiplier"); 10550 10551 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW, 10552 "TRIM ahead L2ARC write size multiplier"); 10553 10554 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW, 10555 "Seconds between L2ARC writing"); 10556 10557 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW, 10558 "Min feed interval in milliseconds"); 10559 10560 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW, 10561 "Skip caching prefetched buffers"); 10562 10563 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW, 10564 "Turbo L2ARC warmup"); 10565 10566 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW, 10567 "No reads during writes"); 10568 10569 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW, 10570 "Percent of ARC size allowed for L2ARC-only headers"); 10571 10572 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW, 10573 "Rebuild the L2ARC when importing a pool"); 10574 10575 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW, 10576 "Min size in bytes to write rebuild log blocks in L2ARC"); 10577 10578 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW, 10579 "Cache only MFU data from ARC into L2ARC"); 10580 10581 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int, 10582 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes"); 10583 10584 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long, 10585 param_get_long, ZMOD_RW, "System free memory target size in bytes"); 10586 10587 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long, 10588 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc"); 10589 10590 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent, 10591 param_set_arc_long, param_get_long, ZMOD_RW, 10592 "Percent of ARC meta buffers for dnodes"); 10593 10594 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW, 10595 "Percentage of excess dnodes to try to unpin"); 10596 10597 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW, 10598 "When full, ARC allocation waits for eviction of this % of alloc size"); 10599 /* END CSTYLED */ 10600