xref: /freebsd-src/sys/contrib/openzfs/module/zfs/aggsum.c (revision eda14cbc264d6969b02f2b1994cef11148e914f1)
1*eda14cbcSMatt Macy /*
2*eda14cbcSMatt Macy  * CDDL HEADER START
3*eda14cbcSMatt Macy  *
4*eda14cbcSMatt Macy  * This file and its contents are supplied under the terms of the
5*eda14cbcSMatt Macy  * Common Development and Distribution License ("CDDL"), version 1.0.
6*eda14cbcSMatt Macy  * You may only use this file in accordance with the terms of version
7*eda14cbcSMatt Macy  * 1.0 of the CDDL.
8*eda14cbcSMatt Macy  *
9*eda14cbcSMatt Macy  * A full copy of the text of the CDDL should have accompanied this
10*eda14cbcSMatt Macy  * source.  A copy of the CDDL is also available via the Internet at
11*eda14cbcSMatt Macy  * http://www.illumos.org/license/CDDL.
12*eda14cbcSMatt Macy  *
13*eda14cbcSMatt Macy  * CDDL HEADER END
14*eda14cbcSMatt Macy  */
15*eda14cbcSMatt Macy /*
16*eda14cbcSMatt Macy  * Copyright (c) 2017, 2018 by Delphix. All rights reserved.
17*eda14cbcSMatt Macy  */
18*eda14cbcSMatt Macy 
19*eda14cbcSMatt Macy #include <sys/zfs_context.h>
20*eda14cbcSMatt Macy #include <sys/aggsum.h>
21*eda14cbcSMatt Macy 
22*eda14cbcSMatt Macy /*
23*eda14cbcSMatt Macy  * Aggregate-sum counters are a form of fanned-out counter, used when atomic
24*eda14cbcSMatt Macy  * instructions on a single field cause enough CPU cache line contention to
25*eda14cbcSMatt Macy  * slow system performance. Due to their increased overhead and the expense
26*eda14cbcSMatt Macy  * involved with precisely reading from them, they should only be used in cases
27*eda14cbcSMatt Macy  * where the write rate (increment/decrement) is much higher than the read rate
28*eda14cbcSMatt Macy  * (get value).
29*eda14cbcSMatt Macy  *
30*eda14cbcSMatt Macy  * Aggregate sum counters are comprised of two basic parts, the core and the
31*eda14cbcSMatt Macy  * buckets. The core counter contains a lock for the entire counter, as well
32*eda14cbcSMatt Macy  * as the current upper and lower bounds on the value of the counter. The
33*eda14cbcSMatt Macy  * aggsum_bucket structure contains a per-bucket lock to protect the contents of
34*eda14cbcSMatt Macy  * the bucket, the current amount that this bucket has changed from the global
35*eda14cbcSMatt Macy  * counter (called the delta), and the amount of increment and decrement we have
36*eda14cbcSMatt Macy  * "borrowed" from the core counter.
37*eda14cbcSMatt Macy  *
38*eda14cbcSMatt Macy  * The basic operation of an aggsum is simple. Threads that wish to modify the
39*eda14cbcSMatt Macy  * counter will modify one bucket's counter (determined by their current CPU, to
40*eda14cbcSMatt Macy  * help minimize lock and cache contention). If the bucket already has
41*eda14cbcSMatt Macy  * sufficient capacity borrowed from the core structure to handle their request,
42*eda14cbcSMatt Macy  * they simply modify the delta and return.  If the bucket does not, we clear
43*eda14cbcSMatt Macy  * the bucket's current state (to prevent the borrowed amounts from getting too
44*eda14cbcSMatt Macy  * large), and borrow more from the core counter. Borrowing is done by adding to
45*eda14cbcSMatt Macy  * the upper bound (or subtracting from the lower bound) of the core counter,
46*eda14cbcSMatt Macy  * and setting the borrow value for the bucket to the amount added (or
47*eda14cbcSMatt Macy  * subtracted).  Clearing the bucket is the opposite; we add the current delta
48*eda14cbcSMatt Macy  * to both the lower and upper bounds of the core counter, subtract the borrowed
49*eda14cbcSMatt Macy  * incremental from the upper bound, and add the borrowed decrement from the
50*eda14cbcSMatt Macy  * lower bound.  Note that only borrowing and clearing require access to the
51*eda14cbcSMatt Macy  * core counter; since all other operations access CPU-local resources,
52*eda14cbcSMatt Macy  * performance can be much higher than a traditional counter.
53*eda14cbcSMatt Macy  *
54*eda14cbcSMatt Macy  * Threads that wish to read from the counter have a slightly more challenging
55*eda14cbcSMatt Macy  * task. It is fast to determine the upper and lower bounds of the aggum; this
56*eda14cbcSMatt Macy  * does not require grabbing any locks. This suffices for cases where an
57*eda14cbcSMatt Macy  * approximation of the aggsum's value is acceptable. However, if one needs to
58*eda14cbcSMatt Macy  * know whether some specific value is above or below the current value in the
59*eda14cbcSMatt Macy  * aggsum, they invoke aggsum_compare(). This function operates by repeatedly
60*eda14cbcSMatt Macy  * comparing the target value to the upper and lower bounds of the aggsum, and
61*eda14cbcSMatt Macy  * then clearing a bucket. This proceeds until the target is outside of the
62*eda14cbcSMatt Macy  * upper and lower bounds and we return a response, or the last bucket has been
63*eda14cbcSMatt Macy  * cleared and we know that the target is equal to the aggsum's value. Finally,
64*eda14cbcSMatt Macy  * the most expensive operation is determining the precise value of the aggsum.
65*eda14cbcSMatt Macy  * To do this, we clear every bucket and then return the upper bound (which must
66*eda14cbcSMatt Macy  * be equal to the lower bound). What makes aggsum_compare() and aggsum_value()
67*eda14cbcSMatt Macy  * expensive is clearing buckets. This involves grabbing the global lock
68*eda14cbcSMatt Macy  * (serializing against themselves and borrow operations), grabbing a bucket's
69*eda14cbcSMatt Macy  * lock (preventing threads on those CPUs from modifying their delta), and
70*eda14cbcSMatt Macy  * zeroing out the borrowed value (forcing that thread to borrow on its next
71*eda14cbcSMatt Macy  * request, which will also be expensive).  This is what makes aggsums well
72*eda14cbcSMatt Macy  * suited for write-many read-rarely operations.
73*eda14cbcSMatt Macy  */
74*eda14cbcSMatt Macy 
75*eda14cbcSMatt Macy /*
76*eda14cbcSMatt Macy  * We will borrow aggsum_borrow_multiplier times the current request, so we will
77*eda14cbcSMatt Macy  * have to get the as_lock approximately every aggsum_borrow_multiplier calls to
78*eda14cbcSMatt Macy  * aggsum_delta().
79*eda14cbcSMatt Macy  */
80*eda14cbcSMatt Macy static uint_t aggsum_borrow_multiplier = 10;
81*eda14cbcSMatt Macy 
82*eda14cbcSMatt Macy void
83*eda14cbcSMatt Macy aggsum_init(aggsum_t *as, uint64_t value)
84*eda14cbcSMatt Macy {
85*eda14cbcSMatt Macy 	bzero(as, sizeof (*as));
86*eda14cbcSMatt Macy 	as->as_lower_bound = as->as_upper_bound = value;
87*eda14cbcSMatt Macy 	mutex_init(&as->as_lock, NULL, MUTEX_DEFAULT, NULL);
88*eda14cbcSMatt Macy 	as->as_numbuckets = boot_ncpus;
89*eda14cbcSMatt Macy 	as->as_buckets = kmem_zalloc(boot_ncpus * sizeof (aggsum_bucket_t),
90*eda14cbcSMatt Macy 	    KM_SLEEP);
91*eda14cbcSMatt Macy 	for (int i = 0; i < as->as_numbuckets; i++) {
92*eda14cbcSMatt Macy 		mutex_init(&as->as_buckets[i].asc_lock,
93*eda14cbcSMatt Macy 		    NULL, MUTEX_DEFAULT, NULL);
94*eda14cbcSMatt Macy 	}
95*eda14cbcSMatt Macy }
96*eda14cbcSMatt Macy 
97*eda14cbcSMatt Macy void
98*eda14cbcSMatt Macy aggsum_fini(aggsum_t *as)
99*eda14cbcSMatt Macy {
100*eda14cbcSMatt Macy 	for (int i = 0; i < as->as_numbuckets; i++)
101*eda14cbcSMatt Macy 		mutex_destroy(&as->as_buckets[i].asc_lock);
102*eda14cbcSMatt Macy 	kmem_free(as->as_buckets, as->as_numbuckets * sizeof (aggsum_bucket_t));
103*eda14cbcSMatt Macy 	mutex_destroy(&as->as_lock);
104*eda14cbcSMatt Macy }
105*eda14cbcSMatt Macy 
106*eda14cbcSMatt Macy int64_t
107*eda14cbcSMatt Macy aggsum_lower_bound(aggsum_t *as)
108*eda14cbcSMatt Macy {
109*eda14cbcSMatt Macy 	return (as->as_lower_bound);
110*eda14cbcSMatt Macy }
111*eda14cbcSMatt Macy 
112*eda14cbcSMatt Macy int64_t
113*eda14cbcSMatt Macy aggsum_upper_bound(aggsum_t *as)
114*eda14cbcSMatt Macy {
115*eda14cbcSMatt Macy 	return (as->as_upper_bound);
116*eda14cbcSMatt Macy }
117*eda14cbcSMatt Macy 
118*eda14cbcSMatt Macy static void
119*eda14cbcSMatt Macy aggsum_flush_bucket(aggsum_t *as, struct aggsum_bucket *asb)
120*eda14cbcSMatt Macy {
121*eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&as->as_lock));
122*eda14cbcSMatt Macy 	ASSERT(MUTEX_HELD(&asb->asc_lock));
123*eda14cbcSMatt Macy 
124*eda14cbcSMatt Macy 	/*
125*eda14cbcSMatt Macy 	 * We use atomic instructions for this because we read the upper and
126*eda14cbcSMatt Macy 	 * lower bounds without the lock, so we need stores to be atomic.
127*eda14cbcSMatt Macy 	 */
128*eda14cbcSMatt Macy 	atomic_add_64((volatile uint64_t *)&as->as_lower_bound,
129*eda14cbcSMatt Macy 	    asb->asc_delta + asb->asc_borrowed);
130*eda14cbcSMatt Macy 	atomic_add_64((volatile uint64_t *)&as->as_upper_bound,
131*eda14cbcSMatt Macy 	    asb->asc_delta - asb->asc_borrowed);
132*eda14cbcSMatt Macy 	asb->asc_delta = 0;
133*eda14cbcSMatt Macy 	asb->asc_borrowed = 0;
134*eda14cbcSMatt Macy }
135*eda14cbcSMatt Macy 
136*eda14cbcSMatt Macy uint64_t
137*eda14cbcSMatt Macy aggsum_value(aggsum_t *as)
138*eda14cbcSMatt Macy {
139*eda14cbcSMatt Macy 	int64_t rv;
140*eda14cbcSMatt Macy 
141*eda14cbcSMatt Macy 	mutex_enter(&as->as_lock);
142*eda14cbcSMatt Macy 	if (as->as_lower_bound == as->as_upper_bound) {
143*eda14cbcSMatt Macy 		rv = as->as_lower_bound;
144*eda14cbcSMatt Macy 		for (int i = 0; i < as->as_numbuckets; i++) {
145*eda14cbcSMatt Macy 			ASSERT0(as->as_buckets[i].asc_delta);
146*eda14cbcSMatt Macy 			ASSERT0(as->as_buckets[i].asc_borrowed);
147*eda14cbcSMatt Macy 		}
148*eda14cbcSMatt Macy 		mutex_exit(&as->as_lock);
149*eda14cbcSMatt Macy 		return (rv);
150*eda14cbcSMatt Macy 	}
151*eda14cbcSMatt Macy 	for (int i = 0; i < as->as_numbuckets; i++) {
152*eda14cbcSMatt Macy 		struct aggsum_bucket *asb = &as->as_buckets[i];
153*eda14cbcSMatt Macy 		mutex_enter(&asb->asc_lock);
154*eda14cbcSMatt Macy 		aggsum_flush_bucket(as, asb);
155*eda14cbcSMatt Macy 		mutex_exit(&asb->asc_lock);
156*eda14cbcSMatt Macy 	}
157*eda14cbcSMatt Macy 	VERIFY3U(as->as_lower_bound, ==, as->as_upper_bound);
158*eda14cbcSMatt Macy 	rv = as->as_lower_bound;
159*eda14cbcSMatt Macy 	mutex_exit(&as->as_lock);
160*eda14cbcSMatt Macy 
161*eda14cbcSMatt Macy 	return (rv);
162*eda14cbcSMatt Macy }
163*eda14cbcSMatt Macy 
164*eda14cbcSMatt Macy void
165*eda14cbcSMatt Macy aggsum_add(aggsum_t *as, int64_t delta)
166*eda14cbcSMatt Macy {
167*eda14cbcSMatt Macy 	struct aggsum_bucket *asb;
168*eda14cbcSMatt Macy 	int64_t borrow;
169*eda14cbcSMatt Macy 
170*eda14cbcSMatt Macy 	kpreempt_disable();
171*eda14cbcSMatt Macy 	asb = &as->as_buckets[CPU_SEQID % as->as_numbuckets];
172*eda14cbcSMatt Macy 	kpreempt_enable();
173*eda14cbcSMatt Macy 
174*eda14cbcSMatt Macy 	/* Try fast path if we already borrowed enough before. */
175*eda14cbcSMatt Macy 	mutex_enter(&asb->asc_lock);
176*eda14cbcSMatt Macy 	if (asb->asc_delta + delta <= (int64_t)asb->asc_borrowed &&
177*eda14cbcSMatt Macy 	    asb->asc_delta + delta >= -(int64_t)asb->asc_borrowed) {
178*eda14cbcSMatt Macy 		asb->asc_delta += delta;
179*eda14cbcSMatt Macy 		mutex_exit(&asb->asc_lock);
180*eda14cbcSMatt Macy 		return;
181*eda14cbcSMatt Macy 	}
182*eda14cbcSMatt Macy 	mutex_exit(&asb->asc_lock);
183*eda14cbcSMatt Macy 
184*eda14cbcSMatt Macy 	/*
185*eda14cbcSMatt Macy 	 * We haven't borrowed enough.  Take the global lock and borrow
186*eda14cbcSMatt Macy 	 * considering what is requested now and what we borrowed before.
187*eda14cbcSMatt Macy 	 */
188*eda14cbcSMatt Macy 	borrow = (delta < 0 ? -delta : delta) * aggsum_borrow_multiplier;
189*eda14cbcSMatt Macy 	mutex_enter(&as->as_lock);
190*eda14cbcSMatt Macy 	mutex_enter(&asb->asc_lock);
191*eda14cbcSMatt Macy 	delta += asb->asc_delta;
192*eda14cbcSMatt Macy 	asb->asc_delta = 0;
193*eda14cbcSMatt Macy 	if (borrow >= asb->asc_borrowed)
194*eda14cbcSMatt Macy 		borrow -= asb->asc_borrowed;
195*eda14cbcSMatt Macy 	else
196*eda14cbcSMatt Macy 		borrow = (borrow - (int64_t)asb->asc_borrowed) / 4;
197*eda14cbcSMatt Macy 	asb->asc_borrowed += borrow;
198*eda14cbcSMatt Macy 	atomic_add_64((volatile uint64_t *)&as->as_lower_bound,
199*eda14cbcSMatt Macy 	    delta - borrow);
200*eda14cbcSMatt Macy 	atomic_add_64((volatile uint64_t *)&as->as_upper_bound,
201*eda14cbcSMatt Macy 	    delta + borrow);
202*eda14cbcSMatt Macy 	mutex_exit(&asb->asc_lock);
203*eda14cbcSMatt Macy 	mutex_exit(&as->as_lock);
204*eda14cbcSMatt Macy }
205*eda14cbcSMatt Macy 
206*eda14cbcSMatt Macy /*
207*eda14cbcSMatt Macy  * Compare the aggsum value to target efficiently. Returns -1 if the value
208*eda14cbcSMatt Macy  * represented by the aggsum is less than target, 1 if it's greater, and 0 if
209*eda14cbcSMatt Macy  * they are equal.
210*eda14cbcSMatt Macy  */
211*eda14cbcSMatt Macy int
212*eda14cbcSMatt Macy aggsum_compare(aggsum_t *as, uint64_t target)
213*eda14cbcSMatt Macy {
214*eda14cbcSMatt Macy 	if (as->as_upper_bound < target)
215*eda14cbcSMatt Macy 		return (-1);
216*eda14cbcSMatt Macy 	if (as->as_lower_bound > target)
217*eda14cbcSMatt Macy 		return (1);
218*eda14cbcSMatt Macy 	mutex_enter(&as->as_lock);
219*eda14cbcSMatt Macy 	for (int i = 0; i < as->as_numbuckets; i++) {
220*eda14cbcSMatt Macy 		struct aggsum_bucket *asb = &as->as_buckets[i];
221*eda14cbcSMatt Macy 		mutex_enter(&asb->asc_lock);
222*eda14cbcSMatt Macy 		aggsum_flush_bucket(as, asb);
223*eda14cbcSMatt Macy 		mutex_exit(&asb->asc_lock);
224*eda14cbcSMatt Macy 		if (as->as_upper_bound < target) {
225*eda14cbcSMatt Macy 			mutex_exit(&as->as_lock);
226*eda14cbcSMatt Macy 			return (-1);
227*eda14cbcSMatt Macy 		}
228*eda14cbcSMatt Macy 		if (as->as_lower_bound > target) {
229*eda14cbcSMatt Macy 			mutex_exit(&as->as_lock);
230*eda14cbcSMatt Macy 			return (1);
231*eda14cbcSMatt Macy 		}
232*eda14cbcSMatt Macy 	}
233*eda14cbcSMatt Macy 	VERIFY3U(as->as_lower_bound, ==, as->as_upper_bound);
234*eda14cbcSMatt Macy 	ASSERT3U(as->as_lower_bound, ==, target);
235*eda14cbcSMatt Macy 	mutex_exit(&as->as_lock);
236*eda14cbcSMatt Macy 	return (0);
237*eda14cbcSMatt Macy }
238