1eda14cbcSMatt Macy /* 2eda14cbcSMatt Macy * CDDL HEADER START 3eda14cbcSMatt Macy * 4eda14cbcSMatt Macy * This file and its contents are supplied under the terms of the 5eda14cbcSMatt Macy * Common Development and Distribution License ("CDDL"), version 1.0. 6eda14cbcSMatt Macy * You may only use this file in accordance with the terms of version 7eda14cbcSMatt Macy * 1.0 of the CDDL. 8eda14cbcSMatt Macy * 9eda14cbcSMatt Macy * A full copy of the text of the CDDL should have accompanied this 10eda14cbcSMatt Macy * source. A copy of the CDDL is also available via the Internet at 11eda14cbcSMatt Macy * http://www.illumos.org/license/CDDL. 12eda14cbcSMatt Macy * 13eda14cbcSMatt Macy * CDDL HEADER END 14eda14cbcSMatt Macy */ 15eda14cbcSMatt Macy 16eda14cbcSMatt Macy /* 17eda14cbcSMatt Macy * Copyright (c) 2017, Datto, Inc. All rights reserved. 18eda14cbcSMatt Macy */ 19eda14cbcSMatt Macy 20eda14cbcSMatt Macy #include <sys/zio_crypt.h> 21eda14cbcSMatt Macy #include <sys/dmu.h> 22eda14cbcSMatt Macy #include <sys/dmu_objset.h> 23eda14cbcSMatt Macy #include <sys/dnode.h> 24eda14cbcSMatt Macy #include <sys/fs/zfs.h> 25eda14cbcSMatt Macy #include <sys/zio.h> 26eda14cbcSMatt Macy #include <sys/zil.h> 27eda14cbcSMatt Macy #include <sys/sha2.h> 28eda14cbcSMatt Macy #include <sys/hkdf.h> 29eda14cbcSMatt Macy #include <sys/qat.h> 30eda14cbcSMatt Macy 31eda14cbcSMatt Macy /* 32eda14cbcSMatt Macy * This file is responsible for handling all of the details of generating 33eda14cbcSMatt Macy * encryption parameters and performing encryption and authentication. 34eda14cbcSMatt Macy * 35eda14cbcSMatt Macy * BLOCK ENCRYPTION PARAMETERS: 36eda14cbcSMatt Macy * Encryption /Authentication Algorithm Suite (crypt): 37eda14cbcSMatt Macy * The encryption algorithm, mode, and key length we are going to use. We 38eda14cbcSMatt Macy * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit 39eda14cbcSMatt Macy * keys. All authentication is currently done with SHA512-HMAC. 40eda14cbcSMatt Macy * 41eda14cbcSMatt Macy * Plaintext: 42eda14cbcSMatt Macy * The unencrypted data that we want to encrypt. 43eda14cbcSMatt Macy * 44eda14cbcSMatt Macy * Initialization Vector (IV): 45eda14cbcSMatt Macy * An initialization vector for the encryption algorithms. This is used to 46eda14cbcSMatt Macy * "tweak" the encryption algorithms so that two blocks of the same data are 47eda14cbcSMatt Macy * encrypted into different ciphertext outputs, thus obfuscating block patterns. 48eda14cbcSMatt Macy * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is 49eda14cbcSMatt Macy * never reused with the same encryption key. This value is stored unencrypted 50eda14cbcSMatt Macy * and must simply be provided to the decryption function. We use a 96 bit IV 51eda14cbcSMatt Macy * (as recommended by NIST) for all block encryption. For non-dedup blocks we 52eda14cbcSMatt Macy * derive the IV randomly. The first 64 bits of the IV are stored in the second 53eda14cbcSMatt Macy * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of 54eda14cbcSMatt Macy * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits 55eda14cbcSMatt Macy * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count 56eda14cbcSMatt Macy * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of 57eda14cbcSMatt Macy * level 0 blocks is the number of allocated dnodes in that block. The on-disk 58eda14cbcSMatt Macy * format supports at most 2^15 slots per L0 dnode block, because the maximum 59eda14cbcSMatt Macy * block size is 16MB (2^24). In either case, for level 0 blocks this number 60eda14cbcSMatt Macy * will still be smaller than UINT32_MAX so it is safe to store the IV in the 61eda14cbcSMatt Macy * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count 62eda14cbcSMatt Macy * for the dnode code. 63eda14cbcSMatt Macy * 64eda14cbcSMatt Macy * Master key: 65eda14cbcSMatt Macy * This is the most important secret data of an encrypted dataset. It is used 66eda14cbcSMatt Macy * along with the salt to generate that actual encryption keys via HKDF. We 67eda14cbcSMatt Macy * do not use the master key to directly encrypt any data because there are 68eda14cbcSMatt Macy * theoretical limits on how much data can actually be safely encrypted with 69eda14cbcSMatt Macy * any encryption mode. The master key is stored encrypted on disk with the 70eda14cbcSMatt Macy * user's wrapping key. Its length is determined by the encryption algorithm. 71eda14cbcSMatt Macy * For details on how this is stored see the block comment in dsl_crypt.c 72eda14cbcSMatt Macy * 73eda14cbcSMatt Macy * Salt: 74eda14cbcSMatt Macy * Used as an input to the HKDF function, along with the master key. We use a 75eda14cbcSMatt Macy * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt 76eda14cbcSMatt Macy * can be used for encrypting many blocks, so we cache the current salt and the 77eda14cbcSMatt Macy * associated derived key in zio_crypt_t so we do not need to derive it again 78eda14cbcSMatt Macy * needlessly. 79eda14cbcSMatt Macy * 80eda14cbcSMatt Macy * Encryption Key: 81eda14cbcSMatt Macy * A secret binary key, generated from an HKDF function used to encrypt and 82eda14cbcSMatt Macy * decrypt data. 83eda14cbcSMatt Macy * 84eda14cbcSMatt Macy * Message Authentication Code (MAC) 85eda14cbcSMatt Macy * The MAC is an output of authenticated encryption modes such as AES-GCM and 86eda14cbcSMatt Macy * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted 87eda14cbcSMatt Macy * data on disk and return garbage to the application. Effectively, it is a 88eda14cbcSMatt Macy * checksum that can not be reproduced by an attacker. We store the MAC in the 89eda14cbcSMatt Macy * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated 90eda14cbcSMatt Macy * regular checksum of the ciphertext which can be used for scrubbing. 91eda14cbcSMatt Macy * 92eda14cbcSMatt Macy * OBJECT AUTHENTICATION: 93eda14cbcSMatt Macy * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because 94eda14cbcSMatt Macy * they contain some info that always needs to be readable. To prevent this 95eda14cbcSMatt Macy * data from being altered, we authenticate this data using SHA512-HMAC. This 96eda14cbcSMatt Macy * will produce a MAC (similar to the one produced via encryption) which can 97eda14cbcSMatt Macy * be used to verify the object was not modified. HMACs do not require key 98eda14cbcSMatt Macy * rotation or IVs, so we can keep up to the full 3 copies of authenticated 99eda14cbcSMatt Macy * data. 100eda14cbcSMatt Macy * 101eda14cbcSMatt Macy * ZIL ENCRYPTION: 102eda14cbcSMatt Macy * ZIL blocks have their bp written to disk ahead of the associated data, so we 103eda14cbcSMatt Macy * cannot store the MAC there as we normally do. For these blocks the MAC is 104eda14cbcSMatt Macy * stored in the embedded checksum within the zil_chain_t header. The salt and 105eda14cbcSMatt Macy * IV are generated for the block on bp allocation instead of at encryption 106eda14cbcSMatt Macy * time. In addition, ZIL blocks have some pieces that must be left in plaintext 107eda14cbcSMatt Macy * for claiming even though all of the sensitive user data still needs to be 108eda14cbcSMatt Macy * encrypted. The function zio_crypt_init_uios_zil() handles parsing which 109eda14cbcSMatt Macy * pieces of the block need to be encrypted. All data that is not encrypted is 110eda14cbcSMatt Macy * authenticated using the AAD mechanisms that the supported encryption modes 111eda14cbcSMatt Macy * provide for. In order to preserve the semantics of the ZIL for encrypted 112eda14cbcSMatt Macy * datasets, the ZIL is not protected at the objset level as described below. 113eda14cbcSMatt Macy * 114eda14cbcSMatt Macy * DNODE ENCRYPTION: 115eda14cbcSMatt Macy * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left 116eda14cbcSMatt Macy * in plaintext for scrubbing and claiming, but the bonus buffers might contain 117eda14cbcSMatt Macy * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing 11816038816SMartin Matuska * which pieces of the block need to be encrypted. For more details about 119eda14cbcSMatt Macy * dnode authentication and encryption, see zio_crypt_init_uios_dnode(). 120eda14cbcSMatt Macy * 121eda14cbcSMatt Macy * OBJECT SET AUTHENTICATION: 122eda14cbcSMatt Macy * Up to this point, everything we have encrypted and authenticated has been 123eda14cbcSMatt Macy * at level 0 (or -2 for the ZIL). If we did not do any further work the 124eda14cbcSMatt Macy * on-disk format would be susceptible to attacks that deleted or rearranged 125eda14cbcSMatt Macy * the order of level 0 blocks. Ideally, the cleanest solution would be to 126eda14cbcSMatt Macy * maintain a tree of authentication MACs going up the bp tree. However, this 127eda14cbcSMatt Macy * presents a problem for raw sends. Send files do not send information about 128eda14cbcSMatt Macy * indirect blocks so there would be no convenient way to transfer the MACs and 129eda14cbcSMatt Macy * they cannot be recalculated on the receive side without the master key which 130eda14cbcSMatt Macy * would defeat one of the purposes of raw sends in the first place. Instead, 131eda14cbcSMatt Macy * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs 132eda14cbcSMatt Macy * from the level below. We also include some portable fields from blk_prop such 133eda14cbcSMatt Macy * as the lsize and compression algorithm to prevent the data from being 134eda14cbcSMatt Macy * misinterpreted. 135eda14cbcSMatt Macy * 136eda14cbcSMatt Macy * At the objset level, we maintain 2 separate 256 bit MACs in the 137eda14cbcSMatt Macy * objset_phys_t. The first one is "portable" and is the logical root of the 138eda14cbcSMatt Macy * MAC tree maintained in the metadnode's bps. The second, is "local" and is 139eda14cbcSMatt Macy * used as the root MAC for the user accounting objects, which are also not 140eda14cbcSMatt Macy * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload 141eda14cbcSMatt Macy * of the send file. The useraccounting code ensures that the useraccounting 142eda14cbcSMatt Macy * info is not present upon a receive, so the local MAC can simply be cleared 143eda14cbcSMatt Macy * out at that time. For more info about objset_phys_t authentication, see 144eda14cbcSMatt Macy * zio_crypt_do_objset_hmacs(). 145eda14cbcSMatt Macy * 146eda14cbcSMatt Macy * CONSIDERATIONS FOR DEDUP: 147eda14cbcSMatt Macy * In order for dedup to work, blocks that we want to dedup with one another 148eda14cbcSMatt Macy * need to use the same IV and encryption key, so that they will have the same 149eda14cbcSMatt Macy * ciphertext. Normally, one should never reuse an IV with the same encryption 150eda14cbcSMatt Macy * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both 151eda14cbcSMatt Macy * blocks. In this case, however, since we are using the same plaintext as 152eda14cbcSMatt Macy * well all that we end up with is a duplicate of the original ciphertext we 153eda14cbcSMatt Macy * already had. As a result, an attacker with read access to the raw disk will 154eda14cbcSMatt Macy * be able to tell which blocks are the same but this information is given away 155eda14cbcSMatt Macy * by dedup anyway. In order to get the same IVs and encryption keys for 156eda14cbcSMatt Macy * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC 157eda14cbcSMatt Macy * here so that a reproducible checksum of the plaintext is never available to 158eda14cbcSMatt Macy * the attacker. The HMAC key is kept alongside the master key, encrypted on 159eda14cbcSMatt Macy * disk. The first 64 bits of the HMAC are used in place of the random salt, and 160eda14cbcSMatt Macy * the next 96 bits are used as the IV. As a result of this mechanism, dedup 161eda14cbcSMatt Macy * will only work within a clone family since encrypted dedup requires use of 162eda14cbcSMatt Macy * the same master and HMAC keys. 163eda14cbcSMatt Macy */ 164eda14cbcSMatt Macy 165eda14cbcSMatt Macy /* 166eda14cbcSMatt Macy * After encrypting many blocks with the same key we may start to run up 167eda14cbcSMatt Macy * against the theoretical limits of how much data can securely be encrypted 168eda14cbcSMatt Macy * with a single key using the supported encryption modes. The most obvious 169eda14cbcSMatt Macy * limitation is that our risk of generating 2 equivalent 96 bit IVs increases 170eda14cbcSMatt Macy * the more IVs we generate (which both GCM and CCM modes strictly forbid). 171eda14cbcSMatt Macy * This risk actually grows surprisingly quickly over time according to the 172eda14cbcSMatt Macy * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have 173eda14cbcSMatt Macy * generated n IVs with a cryptographically secure RNG, the approximate 174eda14cbcSMatt Macy * probability p(n) of a collision is given as: 175eda14cbcSMatt Macy * 176eda14cbcSMatt Macy * p(n) ~= e^(-n*(n-1)/(2*(2^96))) 177eda14cbcSMatt Macy * 178eda14cbcSMatt Macy * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html] 179eda14cbcSMatt Macy * 180eda14cbcSMatt Macy * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion 181eda14cbcSMatt Macy * we must not write more than 398,065,730 blocks with the same encryption key. 182eda14cbcSMatt Macy * Therefore, we rotate our keys after 400,000,000 blocks have been written by 183eda14cbcSMatt Macy * generating a new random 64 bit salt for our HKDF encryption key generation 184eda14cbcSMatt Macy * function. 185eda14cbcSMatt Macy */ 186eda14cbcSMatt Macy #define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000 187eda14cbcSMatt Macy #define ZFS_CURRENT_MAX_SALT_USES \ 188eda14cbcSMatt Macy (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT)) 189e92ffd9bSMartin Matuska static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT; 190eda14cbcSMatt Macy 191eda14cbcSMatt Macy typedef struct blkptr_auth_buf { 192eda14cbcSMatt Macy uint64_t bab_prop; /* blk_prop - portable mask */ 193eda14cbcSMatt Macy uint8_t bab_mac[ZIO_DATA_MAC_LEN]; /* MAC from blk_cksum */ 194eda14cbcSMatt Macy uint64_t bab_pad; /* reserved for future use */ 195eda14cbcSMatt Macy } blkptr_auth_buf_t; 196eda14cbcSMatt Macy 197e92ffd9bSMartin Matuska const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = { 198eda14cbcSMatt Macy {"", ZC_TYPE_NONE, 0, "inherit"}, 199eda14cbcSMatt Macy {"", ZC_TYPE_NONE, 0, "on"}, 200eda14cbcSMatt Macy {"", ZC_TYPE_NONE, 0, "off"}, 201eda14cbcSMatt Macy {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 16, "aes-128-ccm"}, 202eda14cbcSMatt Macy {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 24, "aes-192-ccm"}, 203eda14cbcSMatt Macy {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 32, "aes-256-ccm"}, 204eda14cbcSMatt Macy {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 16, "aes-128-gcm"}, 205eda14cbcSMatt Macy {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 24, "aes-192-gcm"}, 206eda14cbcSMatt Macy {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 32, "aes-256-gcm"} 207eda14cbcSMatt Macy }; 208eda14cbcSMatt Macy 209eda14cbcSMatt Macy void 210eda14cbcSMatt Macy zio_crypt_key_destroy(zio_crypt_key_t *key) 211eda14cbcSMatt Macy { 212eda14cbcSMatt Macy rw_destroy(&key->zk_salt_lock); 213eda14cbcSMatt Macy 214eda14cbcSMatt Macy /* free crypto templates */ 215eda14cbcSMatt Macy crypto_destroy_ctx_template(key->zk_current_tmpl); 216eda14cbcSMatt Macy crypto_destroy_ctx_template(key->zk_hmac_tmpl); 217eda14cbcSMatt Macy 218eda14cbcSMatt Macy /* zero out sensitive data */ 219da5137abSMartin Matuska memset(key, 0, sizeof (zio_crypt_key_t)); 220eda14cbcSMatt Macy } 221eda14cbcSMatt Macy 222eda14cbcSMatt Macy int 223eda14cbcSMatt Macy zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key) 224eda14cbcSMatt Macy { 225eda14cbcSMatt Macy int ret; 2262a58b312SMartin Matuska crypto_mechanism_t mech = {0}; 227eda14cbcSMatt Macy uint_t keydata_len; 228eda14cbcSMatt Macy 229eda14cbcSMatt Macy ASSERT(key != NULL); 230eda14cbcSMatt Macy ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 231eda14cbcSMatt Macy 232bb2d13b6SMartin Matuska /* 233bb2d13b6SMartin Matuska * Workaround for GCC 12+ with UBSan enabled deficencies. 234bb2d13b6SMartin Matuska * 235bb2d13b6SMartin Matuska * GCC 12+ invoked with -fsanitize=undefined incorrectly reports the code 236bb2d13b6SMartin Matuska * below as violating -Warray-bounds 237bb2d13b6SMartin Matuska */ 238bb2d13b6SMartin Matuska #if defined(__GNUC__) && !defined(__clang__) && \ 239bb2d13b6SMartin Matuska ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \ 240bb2d13b6SMartin Matuska defined(CONFIG_UBSAN)) 241bb2d13b6SMartin Matuska #pragma GCC diagnostic push 242bb2d13b6SMartin Matuska #pragma GCC diagnostic ignored "-Warray-bounds" 243bb2d13b6SMartin Matuska #endif 244eda14cbcSMatt Macy keydata_len = zio_crypt_table[crypt].ci_keylen; 245bb2d13b6SMartin Matuska #if defined(__GNUC__) && !defined(__clang__) && \ 246bb2d13b6SMartin Matuska ((!defined(_KERNEL) && defined(ZFS_UBSAN_ENABLED)) || \ 247bb2d13b6SMartin Matuska defined(CONFIG_UBSAN)) 248bb2d13b6SMartin Matuska #pragma GCC diagnostic pop 249bb2d13b6SMartin Matuska #endif 250da5137abSMartin Matuska memset(key, 0, sizeof (zio_crypt_key_t)); 251dbd5678dSMartin Matuska rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL); 252eda14cbcSMatt Macy 253eda14cbcSMatt Macy /* fill keydata buffers and salt with random data */ 254eda14cbcSMatt Macy ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t)); 255eda14cbcSMatt Macy if (ret != 0) 256eda14cbcSMatt Macy goto error; 257eda14cbcSMatt Macy 258eda14cbcSMatt Macy ret = random_get_bytes(key->zk_master_keydata, keydata_len); 259eda14cbcSMatt Macy if (ret != 0) 260eda14cbcSMatt Macy goto error; 261eda14cbcSMatt Macy 262eda14cbcSMatt Macy ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN); 263eda14cbcSMatt Macy if (ret != 0) 264eda14cbcSMatt Macy goto error; 265eda14cbcSMatt Macy 266eda14cbcSMatt Macy ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN); 267eda14cbcSMatt Macy if (ret != 0) 268eda14cbcSMatt Macy goto error; 269eda14cbcSMatt Macy 270eda14cbcSMatt Macy /* derive the current key from the master key */ 271eda14cbcSMatt Macy ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 272eda14cbcSMatt Macy key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, 273eda14cbcSMatt Macy keydata_len); 274eda14cbcSMatt Macy if (ret != 0) 275eda14cbcSMatt Macy goto error; 276eda14cbcSMatt Macy 277eda14cbcSMatt Macy /* initialize keys for the ICP */ 278eda14cbcSMatt Macy key->zk_current_key.ck_data = key->zk_current_keydata; 279eda14cbcSMatt Macy key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len); 280eda14cbcSMatt Macy 281eda14cbcSMatt Macy key->zk_hmac_key.ck_data = &key->zk_hmac_key; 282eda14cbcSMatt Macy key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN); 283eda14cbcSMatt Macy 284eda14cbcSMatt Macy /* 285eda14cbcSMatt Macy * Initialize the crypto templates. It's ok if this fails because 286eda14cbcSMatt Macy * this is just an optimization. 287eda14cbcSMatt Macy */ 288eda14cbcSMatt Macy mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname); 289eda14cbcSMatt Macy ret = crypto_create_ctx_template(&mech, &key->zk_current_key, 290c03c5b1cSMartin Matuska &key->zk_current_tmpl); 291eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) 292eda14cbcSMatt Macy key->zk_current_tmpl = NULL; 293eda14cbcSMatt Macy 294eda14cbcSMatt Macy mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 295eda14cbcSMatt Macy ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key, 296c03c5b1cSMartin Matuska &key->zk_hmac_tmpl); 297eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) 298eda14cbcSMatt Macy key->zk_hmac_tmpl = NULL; 299eda14cbcSMatt Macy 300eda14cbcSMatt Macy key->zk_crypt = crypt; 301eda14cbcSMatt Macy key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION; 302eda14cbcSMatt Macy key->zk_salt_count = 0; 303eda14cbcSMatt Macy 304eda14cbcSMatt Macy return (0); 305eda14cbcSMatt Macy 306eda14cbcSMatt Macy error: 307eda14cbcSMatt Macy zio_crypt_key_destroy(key); 308eda14cbcSMatt Macy return (ret); 309eda14cbcSMatt Macy } 310eda14cbcSMatt Macy 311eda14cbcSMatt Macy static int 312eda14cbcSMatt Macy zio_crypt_key_change_salt(zio_crypt_key_t *key) 313eda14cbcSMatt Macy { 314eda14cbcSMatt Macy int ret = 0; 315eda14cbcSMatt Macy uint8_t salt[ZIO_DATA_SALT_LEN]; 316eda14cbcSMatt Macy crypto_mechanism_t mech; 317eda14cbcSMatt Macy uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen; 318eda14cbcSMatt Macy 319eda14cbcSMatt Macy /* generate a new salt */ 320eda14cbcSMatt Macy ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN); 321eda14cbcSMatt Macy if (ret != 0) 322eda14cbcSMatt Macy goto error; 323eda14cbcSMatt Macy 324eda14cbcSMatt Macy rw_enter(&key->zk_salt_lock, RW_WRITER); 325eda14cbcSMatt Macy 326eda14cbcSMatt Macy /* someone beat us to the salt rotation, just unlock and return */ 327eda14cbcSMatt Macy if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES) 328eda14cbcSMatt Macy goto out_unlock; 329eda14cbcSMatt Macy 330eda14cbcSMatt Macy /* derive the current key from the master key and the new salt */ 331eda14cbcSMatt Macy ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 332eda14cbcSMatt Macy salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len); 333eda14cbcSMatt Macy if (ret != 0) 334eda14cbcSMatt Macy goto out_unlock; 335eda14cbcSMatt Macy 336eda14cbcSMatt Macy /* assign the salt and reset the usage count */ 337da5137abSMartin Matuska memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN); 338eda14cbcSMatt Macy key->zk_salt_count = 0; 339eda14cbcSMatt Macy 340eda14cbcSMatt Macy /* destroy the old context template and create the new one */ 341eda14cbcSMatt Macy crypto_destroy_ctx_template(key->zk_current_tmpl); 342eda14cbcSMatt Macy ret = crypto_create_ctx_template(&mech, &key->zk_current_key, 343c03c5b1cSMartin Matuska &key->zk_current_tmpl); 344eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) 345eda14cbcSMatt Macy key->zk_current_tmpl = NULL; 346eda14cbcSMatt Macy 347eda14cbcSMatt Macy rw_exit(&key->zk_salt_lock); 348eda14cbcSMatt Macy 349eda14cbcSMatt Macy return (0); 350eda14cbcSMatt Macy 351eda14cbcSMatt Macy out_unlock: 352eda14cbcSMatt Macy rw_exit(&key->zk_salt_lock); 353eda14cbcSMatt Macy error: 354eda14cbcSMatt Macy return (ret); 355eda14cbcSMatt Macy } 356eda14cbcSMatt Macy 357eda14cbcSMatt Macy /* See comment above zfs_key_max_salt_uses definition for details */ 358eda14cbcSMatt Macy int 359eda14cbcSMatt Macy zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt) 360eda14cbcSMatt Macy { 361eda14cbcSMatt Macy int ret; 362eda14cbcSMatt Macy boolean_t salt_change; 363eda14cbcSMatt Macy 364eda14cbcSMatt Macy rw_enter(&key->zk_salt_lock, RW_READER); 365eda14cbcSMatt Macy 366da5137abSMartin Matuska memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN); 367eda14cbcSMatt Macy salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >= 368eda14cbcSMatt Macy ZFS_CURRENT_MAX_SALT_USES); 369eda14cbcSMatt Macy 370eda14cbcSMatt Macy rw_exit(&key->zk_salt_lock); 371eda14cbcSMatt Macy 372eda14cbcSMatt Macy if (salt_change) { 373eda14cbcSMatt Macy ret = zio_crypt_key_change_salt(key); 374eda14cbcSMatt Macy if (ret != 0) 375eda14cbcSMatt Macy goto error; 376eda14cbcSMatt Macy } 377eda14cbcSMatt Macy 378eda14cbcSMatt Macy return (0); 379eda14cbcSMatt Macy 380eda14cbcSMatt Macy error: 381eda14cbcSMatt Macy return (ret); 382eda14cbcSMatt Macy } 383eda14cbcSMatt Macy 384eda14cbcSMatt Macy /* 385eda14cbcSMatt Macy * This function handles all encryption and decryption in zfs. When 386eda14cbcSMatt Macy * encrypting it expects puio to reference the plaintext and cuio to 387eda14cbcSMatt Macy * reference the ciphertext. cuio must have enough space for the 388eda14cbcSMatt Macy * ciphertext + room for a MAC. datalen should be the length of the 389eda14cbcSMatt Macy * plaintext / ciphertext alone. 390eda14cbcSMatt Macy */ 391eda14cbcSMatt Macy static int 392eda14cbcSMatt Macy zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key, 393eda14cbcSMatt Macy crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen, 394184c1b94SMartin Matuska zfs_uio_t *puio, zfs_uio_t *cuio, uint8_t *authbuf, uint_t auth_len) 395eda14cbcSMatt Macy { 396eda14cbcSMatt Macy int ret; 397eda14cbcSMatt Macy crypto_data_t plaindata, cipherdata; 398eda14cbcSMatt Macy CK_AES_CCM_PARAMS ccmp; 399eda14cbcSMatt Macy CK_AES_GCM_PARAMS gcmp; 400eda14cbcSMatt Macy crypto_mechanism_t mech; 401eda14cbcSMatt Macy zio_crypt_info_t crypt_info; 402eda14cbcSMatt Macy uint_t plain_full_len, maclen; 403eda14cbcSMatt Macy 404eda14cbcSMatt Macy ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 405eda14cbcSMatt Macy 406eda14cbcSMatt Macy /* lookup the encryption info */ 407eda14cbcSMatt Macy crypt_info = zio_crypt_table[crypt]; 408eda14cbcSMatt Macy 409eda14cbcSMatt Macy /* the mac will always be the last iovec_t in the cipher uio */ 410eda14cbcSMatt Macy maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len; 411eda14cbcSMatt Macy 412eda14cbcSMatt Macy ASSERT(maclen <= ZIO_DATA_MAC_LEN); 413eda14cbcSMatt Macy 414eda14cbcSMatt Macy /* setup encryption mechanism (same as crypt) */ 415eda14cbcSMatt Macy mech.cm_type = crypto_mech2id(crypt_info.ci_mechname); 416eda14cbcSMatt Macy 417eda14cbcSMatt Macy /* 418eda14cbcSMatt Macy * Strangely, the ICP requires that plain_full_len must include 419eda14cbcSMatt Macy * the MAC length when decrypting, even though the UIO does not 420eda14cbcSMatt Macy * need to have the extra space allocated. 421eda14cbcSMatt Macy */ 422eda14cbcSMatt Macy if (encrypt) { 423eda14cbcSMatt Macy plain_full_len = datalen; 424eda14cbcSMatt Macy } else { 425eda14cbcSMatt Macy plain_full_len = datalen + maclen; 426eda14cbcSMatt Macy } 427eda14cbcSMatt Macy 428eda14cbcSMatt Macy /* 429eda14cbcSMatt Macy * setup encryption params (currently only AES CCM and AES GCM 430eda14cbcSMatt Macy * are supported) 431eda14cbcSMatt Macy */ 432eda14cbcSMatt Macy if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) { 433eda14cbcSMatt Macy ccmp.ulNonceSize = ZIO_DATA_IV_LEN; 434eda14cbcSMatt Macy ccmp.ulAuthDataSize = auth_len; 435eda14cbcSMatt Macy ccmp.authData = authbuf; 436eda14cbcSMatt Macy ccmp.ulMACSize = maclen; 437eda14cbcSMatt Macy ccmp.nonce = ivbuf; 438eda14cbcSMatt Macy ccmp.ulDataSize = plain_full_len; 439eda14cbcSMatt Macy 440eda14cbcSMatt Macy mech.cm_param = (char *)(&ccmp); 441eda14cbcSMatt Macy mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS); 442eda14cbcSMatt Macy } else { 443eda14cbcSMatt Macy gcmp.ulIvLen = ZIO_DATA_IV_LEN; 444eda14cbcSMatt Macy gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN); 445eda14cbcSMatt Macy gcmp.ulAADLen = auth_len; 446eda14cbcSMatt Macy gcmp.pAAD = authbuf; 447eda14cbcSMatt Macy gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen); 448eda14cbcSMatt Macy gcmp.pIv = ivbuf; 449eda14cbcSMatt Macy 450eda14cbcSMatt Macy mech.cm_param = (char *)(&gcmp); 451eda14cbcSMatt Macy mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS); 452eda14cbcSMatt Macy } 453eda14cbcSMatt Macy 454eda14cbcSMatt Macy /* populate the cipher and plain data structs. */ 455eda14cbcSMatt Macy plaindata.cd_format = CRYPTO_DATA_UIO; 456eda14cbcSMatt Macy plaindata.cd_offset = 0; 457eda14cbcSMatt Macy plaindata.cd_uio = puio; 458eda14cbcSMatt Macy plaindata.cd_length = plain_full_len; 459eda14cbcSMatt Macy 460eda14cbcSMatt Macy cipherdata.cd_format = CRYPTO_DATA_UIO; 461eda14cbcSMatt Macy cipherdata.cd_offset = 0; 462eda14cbcSMatt Macy cipherdata.cd_uio = cuio; 463eda14cbcSMatt Macy cipherdata.cd_length = datalen + maclen; 464eda14cbcSMatt Macy 465eda14cbcSMatt Macy /* perform the actual encryption */ 466eda14cbcSMatt Macy if (encrypt) { 467c03c5b1cSMartin Matuska ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata); 468eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) { 469eda14cbcSMatt Macy ret = SET_ERROR(EIO); 470eda14cbcSMatt Macy goto error; 471eda14cbcSMatt Macy } 472eda14cbcSMatt Macy } else { 473c03c5b1cSMartin Matuska ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata); 474eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) { 475eda14cbcSMatt Macy ASSERT3U(ret, ==, CRYPTO_INVALID_MAC); 476eda14cbcSMatt Macy ret = SET_ERROR(ECKSUM); 477eda14cbcSMatt Macy goto error; 478eda14cbcSMatt Macy } 479eda14cbcSMatt Macy } 480eda14cbcSMatt Macy 481eda14cbcSMatt Macy return (0); 482eda14cbcSMatt Macy 483eda14cbcSMatt Macy error: 484eda14cbcSMatt Macy return (ret); 485eda14cbcSMatt Macy } 486eda14cbcSMatt Macy 487eda14cbcSMatt Macy int 488eda14cbcSMatt Macy zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv, 489eda14cbcSMatt Macy uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out) 490eda14cbcSMatt Macy { 491eda14cbcSMatt Macy int ret; 492184c1b94SMartin Matuska zfs_uio_t puio, cuio; 493eda14cbcSMatt Macy uint64_t aad[3]; 494eda14cbcSMatt Macy iovec_t plain_iovecs[2], cipher_iovecs[3]; 495eda14cbcSMatt Macy uint64_t crypt = key->zk_crypt; 496eda14cbcSMatt Macy uint_t enc_len, keydata_len, aad_len; 497eda14cbcSMatt Macy 498eda14cbcSMatt Macy ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 499eda14cbcSMatt Macy 500eda14cbcSMatt Macy keydata_len = zio_crypt_table[crypt].ci_keylen; 501eda14cbcSMatt Macy 502eda14cbcSMatt Macy /* generate iv for wrapping the master and hmac key */ 503eda14cbcSMatt Macy ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN); 504eda14cbcSMatt Macy if (ret != 0) 505eda14cbcSMatt Macy goto error; 506eda14cbcSMatt Macy 507184c1b94SMartin Matuska /* initialize zfs_uio_ts */ 508eda14cbcSMatt Macy plain_iovecs[0].iov_base = key->zk_master_keydata; 509eda14cbcSMatt Macy plain_iovecs[0].iov_len = keydata_len; 510eda14cbcSMatt Macy plain_iovecs[1].iov_base = key->zk_hmac_keydata; 511eda14cbcSMatt Macy plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 512eda14cbcSMatt Macy 513eda14cbcSMatt Macy cipher_iovecs[0].iov_base = keydata_out; 514eda14cbcSMatt Macy cipher_iovecs[0].iov_len = keydata_len; 515eda14cbcSMatt Macy cipher_iovecs[1].iov_base = hmac_keydata_out; 516eda14cbcSMatt Macy cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 517eda14cbcSMatt Macy cipher_iovecs[2].iov_base = mac; 518eda14cbcSMatt Macy cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN; 519eda14cbcSMatt Macy 520eda14cbcSMatt Macy /* 521eda14cbcSMatt Macy * Although we don't support writing to the old format, we do 522eda14cbcSMatt Macy * support rewrapping the key so that the user can move and 523eda14cbcSMatt Macy * quarantine datasets on the old format. 524eda14cbcSMatt Macy */ 525eda14cbcSMatt Macy if (key->zk_version == 0) { 526eda14cbcSMatt Macy aad_len = sizeof (uint64_t); 527eda14cbcSMatt Macy aad[0] = LE_64(key->zk_guid); 528eda14cbcSMatt Macy } else { 529eda14cbcSMatt Macy ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION); 530eda14cbcSMatt Macy aad_len = sizeof (uint64_t) * 3; 531eda14cbcSMatt Macy aad[0] = LE_64(key->zk_guid); 532eda14cbcSMatt Macy aad[1] = LE_64(crypt); 533eda14cbcSMatt Macy aad[2] = LE_64(key->zk_version); 534eda14cbcSMatt Macy } 535eda14cbcSMatt Macy 536eda14cbcSMatt Macy enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN; 537eda14cbcSMatt Macy puio.uio_iov = plain_iovecs; 538eda14cbcSMatt Macy puio.uio_iovcnt = 2; 539eda14cbcSMatt Macy puio.uio_segflg = UIO_SYSSPACE; 540eda14cbcSMatt Macy cuio.uio_iov = cipher_iovecs; 541eda14cbcSMatt Macy cuio.uio_iovcnt = 3; 542eda14cbcSMatt Macy cuio.uio_segflg = UIO_SYSSPACE; 543eda14cbcSMatt Macy 544eda14cbcSMatt Macy /* encrypt the keys and store the resulting ciphertext and mac */ 545eda14cbcSMatt Macy ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len, 546eda14cbcSMatt Macy &puio, &cuio, (uint8_t *)aad, aad_len); 547eda14cbcSMatt Macy if (ret != 0) 548eda14cbcSMatt Macy goto error; 549eda14cbcSMatt Macy 550eda14cbcSMatt Macy return (0); 551eda14cbcSMatt Macy 552eda14cbcSMatt Macy error: 553eda14cbcSMatt Macy return (ret); 554eda14cbcSMatt Macy } 555eda14cbcSMatt Macy 556eda14cbcSMatt Macy int 557eda14cbcSMatt Macy zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version, 558eda14cbcSMatt Macy uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv, 559eda14cbcSMatt Macy uint8_t *mac, zio_crypt_key_t *key) 560eda14cbcSMatt Macy { 561eda14cbcSMatt Macy crypto_mechanism_t mech; 562184c1b94SMartin Matuska zfs_uio_t puio, cuio; 563eda14cbcSMatt Macy uint64_t aad[3]; 564eda14cbcSMatt Macy iovec_t plain_iovecs[2], cipher_iovecs[3]; 565eda14cbcSMatt Macy uint_t enc_len, keydata_len, aad_len; 566eda14cbcSMatt Macy int ret; 567eda14cbcSMatt Macy 568eda14cbcSMatt Macy ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS); 569eda14cbcSMatt Macy 570eda14cbcSMatt Macy rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL); 571eda14cbcSMatt Macy 572eda14cbcSMatt Macy keydata_len = zio_crypt_table[crypt].ci_keylen; 573eda14cbcSMatt Macy 574184c1b94SMartin Matuska /* initialize zfs_uio_ts */ 575eda14cbcSMatt Macy plain_iovecs[0].iov_base = key->zk_master_keydata; 576eda14cbcSMatt Macy plain_iovecs[0].iov_len = keydata_len; 577eda14cbcSMatt Macy plain_iovecs[1].iov_base = key->zk_hmac_keydata; 578eda14cbcSMatt Macy plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 579eda14cbcSMatt Macy 580eda14cbcSMatt Macy cipher_iovecs[0].iov_base = keydata; 581eda14cbcSMatt Macy cipher_iovecs[0].iov_len = keydata_len; 582eda14cbcSMatt Macy cipher_iovecs[1].iov_base = hmac_keydata; 583eda14cbcSMatt Macy cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN; 584eda14cbcSMatt Macy cipher_iovecs[2].iov_base = mac; 585eda14cbcSMatt Macy cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN; 586eda14cbcSMatt Macy 587eda14cbcSMatt Macy if (version == 0) { 588eda14cbcSMatt Macy aad_len = sizeof (uint64_t); 589eda14cbcSMatt Macy aad[0] = LE_64(guid); 590eda14cbcSMatt Macy } else { 591eda14cbcSMatt Macy ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION); 592eda14cbcSMatt Macy aad_len = sizeof (uint64_t) * 3; 593eda14cbcSMatt Macy aad[0] = LE_64(guid); 594eda14cbcSMatt Macy aad[1] = LE_64(crypt); 595eda14cbcSMatt Macy aad[2] = LE_64(version); 596eda14cbcSMatt Macy } 597eda14cbcSMatt Macy 598eda14cbcSMatt Macy enc_len = keydata_len + SHA512_HMAC_KEYLEN; 599eda14cbcSMatt Macy puio.uio_iov = plain_iovecs; 600eda14cbcSMatt Macy puio.uio_segflg = UIO_SYSSPACE; 601eda14cbcSMatt Macy puio.uio_iovcnt = 2; 602eda14cbcSMatt Macy cuio.uio_iov = cipher_iovecs; 603eda14cbcSMatt Macy cuio.uio_iovcnt = 3; 604eda14cbcSMatt Macy cuio.uio_segflg = UIO_SYSSPACE; 605eda14cbcSMatt Macy 606eda14cbcSMatt Macy /* decrypt the keys and store the result in the output buffers */ 607eda14cbcSMatt Macy ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len, 608eda14cbcSMatt Macy &puio, &cuio, (uint8_t *)aad, aad_len); 609eda14cbcSMatt Macy if (ret != 0) 610eda14cbcSMatt Macy goto error; 611eda14cbcSMatt Macy 612eda14cbcSMatt Macy /* generate a fresh salt */ 613eda14cbcSMatt Macy ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN); 614eda14cbcSMatt Macy if (ret != 0) 615eda14cbcSMatt Macy goto error; 616eda14cbcSMatt Macy 617eda14cbcSMatt Macy /* derive the current key from the master key */ 618eda14cbcSMatt Macy ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 619eda14cbcSMatt Macy key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, 620eda14cbcSMatt Macy keydata_len); 621eda14cbcSMatt Macy if (ret != 0) 622eda14cbcSMatt Macy goto error; 623eda14cbcSMatt Macy 624eda14cbcSMatt Macy /* initialize keys for ICP */ 625eda14cbcSMatt Macy key->zk_current_key.ck_data = key->zk_current_keydata; 626eda14cbcSMatt Macy key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len); 627eda14cbcSMatt Macy 628eda14cbcSMatt Macy key->zk_hmac_key.ck_data = key->zk_hmac_keydata; 629eda14cbcSMatt Macy key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN); 630eda14cbcSMatt Macy 631eda14cbcSMatt Macy /* 632eda14cbcSMatt Macy * Initialize the crypto templates. It's ok if this fails because 633eda14cbcSMatt Macy * this is just an optimization. 634eda14cbcSMatt Macy */ 635eda14cbcSMatt Macy mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname); 636eda14cbcSMatt Macy ret = crypto_create_ctx_template(&mech, &key->zk_current_key, 637c03c5b1cSMartin Matuska &key->zk_current_tmpl); 638eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) 639eda14cbcSMatt Macy key->zk_current_tmpl = NULL; 640eda14cbcSMatt Macy 641eda14cbcSMatt Macy mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 642eda14cbcSMatt Macy ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key, 643c03c5b1cSMartin Matuska &key->zk_hmac_tmpl); 644eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) 645eda14cbcSMatt Macy key->zk_hmac_tmpl = NULL; 646eda14cbcSMatt Macy 647eda14cbcSMatt Macy key->zk_crypt = crypt; 648eda14cbcSMatt Macy key->zk_version = version; 649eda14cbcSMatt Macy key->zk_guid = guid; 650eda14cbcSMatt Macy key->zk_salt_count = 0; 651eda14cbcSMatt Macy 652eda14cbcSMatt Macy return (0); 653eda14cbcSMatt Macy 654eda14cbcSMatt Macy error: 655eda14cbcSMatt Macy zio_crypt_key_destroy(key); 656eda14cbcSMatt Macy return (ret); 657eda14cbcSMatt Macy } 658eda14cbcSMatt Macy 659eda14cbcSMatt Macy int 660eda14cbcSMatt Macy zio_crypt_generate_iv(uint8_t *ivbuf) 661eda14cbcSMatt Macy { 662eda14cbcSMatt Macy int ret; 663eda14cbcSMatt Macy 664eda14cbcSMatt Macy /* randomly generate the IV */ 665eda14cbcSMatt Macy ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN); 666eda14cbcSMatt Macy if (ret != 0) 667eda14cbcSMatt Macy goto error; 668eda14cbcSMatt Macy 669eda14cbcSMatt Macy return (0); 670eda14cbcSMatt Macy 671eda14cbcSMatt Macy error: 672da5137abSMartin Matuska memset(ivbuf, 0, ZIO_DATA_IV_LEN); 673eda14cbcSMatt Macy return (ret); 674eda14cbcSMatt Macy } 675eda14cbcSMatt Macy 676eda14cbcSMatt Macy int 677eda14cbcSMatt Macy zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen, 678eda14cbcSMatt Macy uint8_t *digestbuf, uint_t digestlen) 679eda14cbcSMatt Macy { 680eda14cbcSMatt Macy int ret; 681eda14cbcSMatt Macy crypto_mechanism_t mech; 682eda14cbcSMatt Macy crypto_data_t in_data, digest_data; 683eda14cbcSMatt Macy uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH]; 684eda14cbcSMatt Macy 685eda14cbcSMatt Macy ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH); 686eda14cbcSMatt Macy 687eda14cbcSMatt Macy /* initialize sha512-hmac mechanism and crypto data */ 688eda14cbcSMatt Macy mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 689eda14cbcSMatt Macy mech.cm_param = NULL; 690eda14cbcSMatt Macy mech.cm_param_len = 0; 691eda14cbcSMatt Macy 692eda14cbcSMatt Macy /* initialize the crypto data */ 693eda14cbcSMatt Macy in_data.cd_format = CRYPTO_DATA_RAW; 694eda14cbcSMatt Macy in_data.cd_offset = 0; 695eda14cbcSMatt Macy in_data.cd_length = datalen; 696eda14cbcSMatt Macy in_data.cd_raw.iov_base = (char *)data; 697eda14cbcSMatt Macy in_data.cd_raw.iov_len = in_data.cd_length; 698eda14cbcSMatt Macy 699eda14cbcSMatt Macy digest_data.cd_format = CRYPTO_DATA_RAW; 700eda14cbcSMatt Macy digest_data.cd_offset = 0; 701eda14cbcSMatt Macy digest_data.cd_length = SHA512_DIGEST_LENGTH; 702eda14cbcSMatt Macy digest_data.cd_raw.iov_base = (char *)raw_digestbuf; 703eda14cbcSMatt Macy digest_data.cd_raw.iov_len = digest_data.cd_length; 704eda14cbcSMatt Macy 705eda14cbcSMatt Macy /* generate the hmac */ 706eda14cbcSMatt Macy ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl, 707c03c5b1cSMartin Matuska &digest_data); 708eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) { 709eda14cbcSMatt Macy ret = SET_ERROR(EIO); 710eda14cbcSMatt Macy goto error; 711eda14cbcSMatt Macy } 712eda14cbcSMatt Macy 713da5137abSMartin Matuska memcpy(digestbuf, raw_digestbuf, digestlen); 714eda14cbcSMatt Macy 715eda14cbcSMatt Macy return (0); 716eda14cbcSMatt Macy 717eda14cbcSMatt Macy error: 718da5137abSMartin Matuska memset(digestbuf, 0, digestlen); 719eda14cbcSMatt Macy return (ret); 720eda14cbcSMatt Macy } 721eda14cbcSMatt Macy 722eda14cbcSMatt Macy int 723eda14cbcSMatt Macy zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data, 724eda14cbcSMatt Macy uint_t datalen, uint8_t *ivbuf, uint8_t *salt) 725eda14cbcSMatt Macy { 726eda14cbcSMatt Macy int ret; 727eda14cbcSMatt Macy uint8_t digestbuf[SHA512_DIGEST_LENGTH]; 728eda14cbcSMatt Macy 729eda14cbcSMatt Macy ret = zio_crypt_do_hmac(key, data, datalen, 730eda14cbcSMatt Macy digestbuf, SHA512_DIGEST_LENGTH); 731eda14cbcSMatt Macy if (ret != 0) 732eda14cbcSMatt Macy return (ret); 733eda14cbcSMatt Macy 734da5137abSMartin Matuska memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN); 735da5137abSMartin Matuska memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN); 736eda14cbcSMatt Macy 737eda14cbcSMatt Macy return (0); 738eda14cbcSMatt Macy } 739eda14cbcSMatt Macy 740eda14cbcSMatt Macy /* 741eda14cbcSMatt Macy * The following functions are used to encode and decode encryption parameters 742eda14cbcSMatt Macy * into blkptr_t and zil_header_t. The ICP wants to use these parameters as 743eda14cbcSMatt Macy * byte strings, which normally means that these strings would not need to deal 744eda14cbcSMatt Macy * with byteswapping at all. However, both blkptr_t and zil_header_t may be 745eda14cbcSMatt Macy * byteswapped by lower layers and so we must "undo" that byteswap here upon 746eda14cbcSMatt Macy * decoding and encoding in a non-native byteorder. These functions require 747eda14cbcSMatt Macy * that the byteorder bit is correct before being called. 748eda14cbcSMatt Macy */ 749eda14cbcSMatt Macy void 750eda14cbcSMatt Macy zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv) 751eda14cbcSMatt Macy { 752eda14cbcSMatt Macy uint64_t val64; 753eda14cbcSMatt Macy uint32_t val32; 754eda14cbcSMatt Macy 755eda14cbcSMatt Macy ASSERT(BP_IS_ENCRYPTED(bp)); 756eda14cbcSMatt Macy 757eda14cbcSMatt Macy if (!BP_SHOULD_BYTESWAP(bp)) { 758da5137abSMartin Matuska memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t)); 759da5137abSMartin Matuska memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t)); 760da5137abSMartin Matuska memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t)); 761eda14cbcSMatt Macy BP_SET_IV2(bp, val32); 762eda14cbcSMatt Macy } else { 763da5137abSMartin Matuska memcpy(&val64, salt, sizeof (uint64_t)); 764eda14cbcSMatt Macy bp->blk_dva[2].dva_word[0] = BSWAP_64(val64); 765eda14cbcSMatt Macy 766da5137abSMartin Matuska memcpy(&val64, iv, sizeof (uint64_t)); 767eda14cbcSMatt Macy bp->blk_dva[2].dva_word[1] = BSWAP_64(val64); 768eda14cbcSMatt Macy 769da5137abSMartin Matuska memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t)); 770eda14cbcSMatt Macy BP_SET_IV2(bp, BSWAP_32(val32)); 771eda14cbcSMatt Macy } 772eda14cbcSMatt Macy } 773eda14cbcSMatt Macy 774eda14cbcSMatt Macy void 775eda14cbcSMatt Macy zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv) 776eda14cbcSMatt Macy { 777eda14cbcSMatt Macy uint64_t val64; 778eda14cbcSMatt Macy uint32_t val32; 779eda14cbcSMatt Macy 780eda14cbcSMatt Macy ASSERT(BP_IS_PROTECTED(bp)); 781eda14cbcSMatt Macy 782eda14cbcSMatt Macy /* for convenience, so callers don't need to check */ 783eda14cbcSMatt Macy if (BP_IS_AUTHENTICATED(bp)) { 784da5137abSMartin Matuska memset(salt, 0, ZIO_DATA_SALT_LEN); 785da5137abSMartin Matuska memset(iv, 0, ZIO_DATA_IV_LEN); 786eda14cbcSMatt Macy return; 787eda14cbcSMatt Macy } 788eda14cbcSMatt Macy 789eda14cbcSMatt Macy if (!BP_SHOULD_BYTESWAP(bp)) { 790da5137abSMartin Matuska memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t)); 791da5137abSMartin Matuska memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t)); 792eda14cbcSMatt Macy 793eda14cbcSMatt Macy val32 = (uint32_t)BP_GET_IV2(bp); 794da5137abSMartin Matuska memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t)); 795eda14cbcSMatt Macy } else { 796eda14cbcSMatt Macy val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]); 797da5137abSMartin Matuska memcpy(salt, &val64, sizeof (uint64_t)); 798eda14cbcSMatt Macy 799eda14cbcSMatt Macy val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]); 800da5137abSMartin Matuska memcpy(iv, &val64, sizeof (uint64_t)); 801eda14cbcSMatt Macy 802eda14cbcSMatt Macy val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp)); 803da5137abSMartin Matuska memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t)); 804eda14cbcSMatt Macy } 805eda14cbcSMatt Macy } 806eda14cbcSMatt Macy 807eda14cbcSMatt Macy void 808eda14cbcSMatt Macy zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac) 809eda14cbcSMatt Macy { 810eda14cbcSMatt Macy uint64_t val64; 811eda14cbcSMatt Macy 812eda14cbcSMatt Macy ASSERT(BP_USES_CRYPT(bp)); 813eda14cbcSMatt Macy ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET); 814eda14cbcSMatt Macy 815eda14cbcSMatt Macy if (!BP_SHOULD_BYTESWAP(bp)) { 816da5137abSMartin Matuska memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t)); 817da5137abSMartin Matuska memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t), 818eda14cbcSMatt Macy sizeof (uint64_t)); 819eda14cbcSMatt Macy } else { 820da5137abSMartin Matuska memcpy(&val64, mac, sizeof (uint64_t)); 821eda14cbcSMatt Macy bp->blk_cksum.zc_word[2] = BSWAP_64(val64); 822eda14cbcSMatt Macy 823da5137abSMartin Matuska memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t)); 824eda14cbcSMatt Macy bp->blk_cksum.zc_word[3] = BSWAP_64(val64); 825eda14cbcSMatt Macy } 826eda14cbcSMatt Macy } 827eda14cbcSMatt Macy 828eda14cbcSMatt Macy void 829eda14cbcSMatt Macy zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac) 830eda14cbcSMatt Macy { 831eda14cbcSMatt Macy uint64_t val64; 832eda14cbcSMatt Macy 833eda14cbcSMatt Macy ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp)); 834eda14cbcSMatt Macy 835eda14cbcSMatt Macy /* for convenience, so callers don't need to check */ 836eda14cbcSMatt Macy if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) { 837da5137abSMartin Matuska memset(mac, 0, ZIO_DATA_MAC_LEN); 838eda14cbcSMatt Macy return; 839eda14cbcSMatt Macy } 840eda14cbcSMatt Macy 841eda14cbcSMatt Macy if (!BP_SHOULD_BYTESWAP(bp)) { 842da5137abSMartin Matuska memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t)); 843da5137abSMartin Matuska memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3], 844eda14cbcSMatt Macy sizeof (uint64_t)); 845eda14cbcSMatt Macy } else { 846eda14cbcSMatt Macy val64 = BSWAP_64(bp->blk_cksum.zc_word[2]); 847da5137abSMartin Matuska memcpy(mac, &val64, sizeof (uint64_t)); 848eda14cbcSMatt Macy 849eda14cbcSMatt Macy val64 = BSWAP_64(bp->blk_cksum.zc_word[3]); 850da5137abSMartin Matuska memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t)); 851eda14cbcSMatt Macy } 852eda14cbcSMatt Macy } 853eda14cbcSMatt Macy 854eda14cbcSMatt Macy void 855eda14cbcSMatt Macy zio_crypt_encode_mac_zil(void *data, uint8_t *mac) 856eda14cbcSMatt Macy { 857eda14cbcSMatt Macy zil_chain_t *zilc = data; 858eda14cbcSMatt Macy 859da5137abSMartin Matuska memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t)); 860da5137abSMartin Matuska memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t), 861eda14cbcSMatt Macy sizeof (uint64_t)); 862eda14cbcSMatt Macy } 863eda14cbcSMatt Macy 864eda14cbcSMatt Macy void 865eda14cbcSMatt Macy zio_crypt_decode_mac_zil(const void *data, uint8_t *mac) 866eda14cbcSMatt Macy { 867eda14cbcSMatt Macy /* 868eda14cbcSMatt Macy * The ZIL MAC is embedded in the block it protects, which will 869eda14cbcSMatt Macy * not have been byteswapped by the time this function has been called. 870eda14cbcSMatt Macy * As a result, we don't need to worry about byteswapping the MAC. 871eda14cbcSMatt Macy */ 872eda14cbcSMatt Macy const zil_chain_t *zilc = data; 873eda14cbcSMatt Macy 874da5137abSMartin Matuska memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t)); 875da5137abSMartin Matuska memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3], 876eda14cbcSMatt Macy sizeof (uint64_t)); 877eda14cbcSMatt Macy } 878eda14cbcSMatt Macy 879eda14cbcSMatt Macy /* 880eda14cbcSMatt Macy * This routine takes a block of dnodes (src_abd) and copies only the bonus 881eda14cbcSMatt Macy * buffers to the same offsets in the dst buffer. datalen should be the size 882eda14cbcSMatt Macy * of both the src_abd and the dst buffer (not just the length of the bonus 883eda14cbcSMatt Macy * buffers). 884eda14cbcSMatt Macy */ 885eda14cbcSMatt Macy void 886eda14cbcSMatt Macy zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen) 887eda14cbcSMatt Macy { 888eda14cbcSMatt Macy uint_t i, max_dnp = datalen >> DNODE_SHIFT; 889eda14cbcSMatt Macy uint8_t *src; 890eda14cbcSMatt Macy dnode_phys_t *dnp, *sdnp, *ddnp; 891eda14cbcSMatt Macy 892eda14cbcSMatt Macy src = abd_borrow_buf_copy(src_abd, datalen); 893eda14cbcSMatt Macy 894eda14cbcSMatt Macy sdnp = (dnode_phys_t *)src; 895eda14cbcSMatt Macy ddnp = (dnode_phys_t *)dst; 896eda14cbcSMatt Macy 897eda14cbcSMatt Macy for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) { 898eda14cbcSMatt Macy dnp = &sdnp[i]; 899eda14cbcSMatt Macy if (dnp->dn_type != DMU_OT_NONE && 900eda14cbcSMatt Macy DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) && 901eda14cbcSMatt Macy dnp->dn_bonuslen != 0) { 902da5137abSMartin Matuska memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), 903eda14cbcSMatt Macy DN_MAX_BONUS_LEN(dnp)); 904eda14cbcSMatt Macy } 905eda14cbcSMatt Macy } 906eda14cbcSMatt Macy 907eda14cbcSMatt Macy abd_return_buf(src_abd, src, datalen); 908eda14cbcSMatt Macy } 909eda14cbcSMatt Macy 910eda14cbcSMatt Macy /* 911eda14cbcSMatt Macy * This function decides what fields from blk_prop are included in 912eda14cbcSMatt Macy * the on-disk various MAC algorithms. 913eda14cbcSMatt Macy */ 914eda14cbcSMatt Macy static void 915eda14cbcSMatt Macy zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version) 916eda14cbcSMatt Macy { 917eda14cbcSMatt Macy /* 918eda14cbcSMatt Macy * Version 0 did not properly zero out all non-portable fields 919eda14cbcSMatt Macy * as it should have done. We maintain this code so that we can 920eda14cbcSMatt Macy * do read-only imports of pools on this version. 921eda14cbcSMatt Macy */ 922eda14cbcSMatt Macy if (version == 0) { 923eda14cbcSMatt Macy BP_SET_DEDUP(bp, 0); 924eda14cbcSMatt Macy BP_SET_CHECKSUM(bp, 0); 925eda14cbcSMatt Macy BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE); 926eda14cbcSMatt Macy return; 927eda14cbcSMatt Macy } 928eda14cbcSMatt Macy 929eda14cbcSMatt Macy ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION); 930eda14cbcSMatt Macy 931eda14cbcSMatt Macy /* 932eda14cbcSMatt Macy * The hole_birth feature might set these fields even if this bp 933eda14cbcSMatt Macy * is a hole. We zero them out here to guarantee that raw sends 934eda14cbcSMatt Macy * will function with or without the feature. 935eda14cbcSMatt Macy */ 936eda14cbcSMatt Macy if (BP_IS_HOLE(bp)) { 937eda14cbcSMatt Macy bp->blk_prop = 0ULL; 938eda14cbcSMatt Macy return; 939eda14cbcSMatt Macy } 940eda14cbcSMatt Macy 941eda14cbcSMatt Macy /* 942eda14cbcSMatt Macy * At L0 we want to verify these fields to ensure that data blocks 943eda14cbcSMatt Macy * can not be reinterpreted. For instance, we do not want an attacker 944eda14cbcSMatt Macy * to trick us into returning raw lz4 compressed data to the user 945eda14cbcSMatt Macy * by modifying the compression bits. At higher levels, we cannot 946eda14cbcSMatt Macy * enforce this policy since raw sends do not convey any information 947eda14cbcSMatt Macy * about indirect blocks, so these values might be different on the 948eda14cbcSMatt Macy * receive side. Fortunately, this does not open any new attack 949eda14cbcSMatt Macy * vectors, since any alterations that can be made to a higher level 950eda14cbcSMatt Macy * bp must still verify the correct order of the layer below it. 951eda14cbcSMatt Macy */ 952eda14cbcSMatt Macy if (BP_GET_LEVEL(bp) != 0) { 953eda14cbcSMatt Macy BP_SET_BYTEORDER(bp, 0); 954eda14cbcSMatt Macy BP_SET_COMPRESS(bp, 0); 955eda14cbcSMatt Macy 956eda14cbcSMatt Macy /* 957eda14cbcSMatt Macy * psize cannot be set to zero or it will trigger 958eda14cbcSMatt Macy * asserts, but the value doesn't really matter as 959eda14cbcSMatt Macy * long as it is constant. 960eda14cbcSMatt Macy */ 961eda14cbcSMatt Macy BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE); 962eda14cbcSMatt Macy } 963eda14cbcSMatt Macy 964eda14cbcSMatt Macy BP_SET_DEDUP(bp, 0); 965eda14cbcSMatt Macy BP_SET_CHECKSUM(bp, 0); 966eda14cbcSMatt Macy } 967eda14cbcSMatt Macy 968eda14cbcSMatt Macy static void 969eda14cbcSMatt Macy zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp, 970eda14cbcSMatt Macy blkptr_auth_buf_t *bab, uint_t *bab_len) 971eda14cbcSMatt Macy { 972eda14cbcSMatt Macy blkptr_t tmpbp = *bp; 973eda14cbcSMatt Macy 974eda14cbcSMatt Macy if (should_bswap) 975eda14cbcSMatt Macy byteswap_uint64_array(&tmpbp, sizeof (blkptr_t)); 976eda14cbcSMatt Macy 977eda14cbcSMatt Macy ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp)); 978eda14cbcSMatt Macy ASSERT0(BP_IS_EMBEDDED(&tmpbp)); 979eda14cbcSMatt Macy 980eda14cbcSMatt Macy zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac); 981eda14cbcSMatt Macy 982eda14cbcSMatt Macy /* 983eda14cbcSMatt Macy * We always MAC blk_prop in LE to ensure portability. This 984eda14cbcSMatt Macy * must be done after decoding the mac, since the endianness 985eda14cbcSMatt Macy * will get zero'd out here. 986eda14cbcSMatt Macy */ 987eda14cbcSMatt Macy zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version); 988eda14cbcSMatt Macy bab->bab_prop = LE_64(tmpbp.blk_prop); 989eda14cbcSMatt Macy bab->bab_pad = 0ULL; 990eda14cbcSMatt Macy 991eda14cbcSMatt Macy /* version 0 did not include the padding */ 992eda14cbcSMatt Macy *bab_len = sizeof (blkptr_auth_buf_t); 993eda14cbcSMatt Macy if (version == 0) 994eda14cbcSMatt Macy *bab_len -= sizeof (uint64_t); 995eda14cbcSMatt Macy } 996eda14cbcSMatt Macy 997eda14cbcSMatt Macy static int 998eda14cbcSMatt Macy zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version, 999eda14cbcSMatt Macy boolean_t should_bswap, blkptr_t *bp) 1000eda14cbcSMatt Macy { 1001eda14cbcSMatt Macy int ret; 1002eda14cbcSMatt Macy uint_t bab_len; 1003eda14cbcSMatt Macy blkptr_auth_buf_t bab; 1004eda14cbcSMatt Macy crypto_data_t cd; 1005eda14cbcSMatt Macy 1006eda14cbcSMatt Macy zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len); 1007eda14cbcSMatt Macy cd.cd_format = CRYPTO_DATA_RAW; 1008eda14cbcSMatt Macy cd.cd_offset = 0; 1009eda14cbcSMatt Macy cd.cd_length = bab_len; 1010eda14cbcSMatt Macy cd.cd_raw.iov_base = (char *)&bab; 1011eda14cbcSMatt Macy cd.cd_raw.iov_len = cd.cd_length; 1012eda14cbcSMatt Macy 1013c03c5b1cSMartin Matuska ret = crypto_mac_update(ctx, &cd); 1014eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) { 1015eda14cbcSMatt Macy ret = SET_ERROR(EIO); 1016eda14cbcSMatt Macy goto error; 1017eda14cbcSMatt Macy } 1018eda14cbcSMatt Macy 1019eda14cbcSMatt Macy return (0); 1020eda14cbcSMatt Macy 1021eda14cbcSMatt Macy error: 1022eda14cbcSMatt Macy return (ret); 1023eda14cbcSMatt Macy } 1024eda14cbcSMatt Macy 1025eda14cbcSMatt Macy static void 1026eda14cbcSMatt Macy zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version, 1027eda14cbcSMatt Macy boolean_t should_bswap, blkptr_t *bp) 1028eda14cbcSMatt Macy { 1029eda14cbcSMatt Macy uint_t bab_len; 1030eda14cbcSMatt Macy blkptr_auth_buf_t bab; 1031eda14cbcSMatt Macy 1032eda14cbcSMatt Macy zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len); 1033eda14cbcSMatt Macy SHA2Update(ctx, &bab, bab_len); 1034eda14cbcSMatt Macy } 1035eda14cbcSMatt Macy 1036eda14cbcSMatt Macy static void 1037eda14cbcSMatt Macy zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version, 1038eda14cbcSMatt Macy boolean_t should_bswap, blkptr_t *bp) 1039eda14cbcSMatt Macy { 1040eda14cbcSMatt Macy uint_t bab_len; 1041eda14cbcSMatt Macy blkptr_auth_buf_t bab; 1042eda14cbcSMatt Macy 1043eda14cbcSMatt Macy zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len); 1044da5137abSMartin Matuska memcpy(*aadp, &bab, bab_len); 1045eda14cbcSMatt Macy *aadp += bab_len; 1046eda14cbcSMatt Macy *aad_len += bab_len; 1047eda14cbcSMatt Macy } 1048eda14cbcSMatt Macy 1049eda14cbcSMatt Macy static int 1050eda14cbcSMatt Macy zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version, 1051eda14cbcSMatt Macy boolean_t should_bswap, dnode_phys_t *dnp) 1052eda14cbcSMatt Macy { 1053eda14cbcSMatt Macy int ret, i; 105433b8c039SMartin Matuska dnode_phys_t *adnp, tmp_dncore; 105533b8c039SMartin Matuska size_t dn_core_size = offsetof(dnode_phys_t, dn_blkptr); 1056eda14cbcSMatt Macy boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER); 1057eda14cbcSMatt Macy crypto_data_t cd; 1058eda14cbcSMatt Macy 1059eda14cbcSMatt Macy cd.cd_format = CRYPTO_DATA_RAW; 1060eda14cbcSMatt Macy cd.cd_offset = 0; 1061eda14cbcSMatt Macy 106233b8c039SMartin Matuska /* 106333b8c039SMartin Matuska * Authenticate the core dnode (masking out non-portable bits). 106433b8c039SMartin Matuska * We only copy the first 64 bytes we operate on to avoid the overhead 106533b8c039SMartin Matuska * of copying 512-64 unneeded bytes. The compiler seems to be fine 106633b8c039SMartin Matuska * with that. 106733b8c039SMartin Matuska */ 1068da5137abSMartin Matuska memcpy(&tmp_dncore, dnp, dn_core_size); 106933b8c039SMartin Matuska adnp = &tmp_dncore; 107033b8c039SMartin Matuska 1071eda14cbcSMatt Macy if (le_bswap) { 1072eda14cbcSMatt Macy adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec); 1073eda14cbcSMatt Macy adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen); 1074eda14cbcSMatt Macy adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid); 1075eda14cbcSMatt Macy adnp->dn_used = BSWAP_64(adnp->dn_used); 1076eda14cbcSMatt Macy } 1077eda14cbcSMatt Macy adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK; 1078eda14cbcSMatt Macy adnp->dn_used = 0; 1079eda14cbcSMatt Macy 108033b8c039SMartin Matuska cd.cd_length = dn_core_size; 1081eda14cbcSMatt Macy cd.cd_raw.iov_base = (char *)adnp; 1082eda14cbcSMatt Macy cd.cd_raw.iov_len = cd.cd_length; 1083eda14cbcSMatt Macy 1084c03c5b1cSMartin Matuska ret = crypto_mac_update(ctx, &cd); 1085eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) { 1086eda14cbcSMatt Macy ret = SET_ERROR(EIO); 1087eda14cbcSMatt Macy goto error; 1088eda14cbcSMatt Macy } 1089eda14cbcSMatt Macy 1090eda14cbcSMatt Macy for (i = 0; i < dnp->dn_nblkptr; i++) { 1091eda14cbcSMatt Macy ret = zio_crypt_bp_do_hmac_updates(ctx, version, 1092eda14cbcSMatt Macy should_bswap, &dnp->dn_blkptr[i]); 1093eda14cbcSMatt Macy if (ret != 0) 1094eda14cbcSMatt Macy goto error; 1095eda14cbcSMatt Macy } 1096eda14cbcSMatt Macy 1097eda14cbcSMatt Macy if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1098eda14cbcSMatt Macy ret = zio_crypt_bp_do_hmac_updates(ctx, version, 1099eda14cbcSMatt Macy should_bswap, DN_SPILL_BLKPTR(dnp)); 1100eda14cbcSMatt Macy if (ret != 0) 1101eda14cbcSMatt Macy goto error; 1102eda14cbcSMatt Macy } 1103eda14cbcSMatt Macy 1104eda14cbcSMatt Macy return (0); 1105eda14cbcSMatt Macy 1106eda14cbcSMatt Macy error: 1107eda14cbcSMatt Macy return (ret); 1108eda14cbcSMatt Macy } 1109eda14cbcSMatt Macy 1110eda14cbcSMatt Macy /* 1111eda14cbcSMatt Macy * objset_phys_t blocks introduce a number of exceptions to the normal 1112eda14cbcSMatt Macy * authentication process. objset_phys_t's contain 2 separate HMACS for 1113eda14cbcSMatt Macy * protecting the integrity of their data. The portable_mac protects the 1114eda14cbcSMatt Macy * metadnode. This MAC can be sent with a raw send and protects against 1115eda14cbcSMatt Macy * reordering of data within the metadnode. The local_mac protects the user 1116eda14cbcSMatt Macy * accounting objects which are not sent from one system to another. 1117eda14cbcSMatt Macy * 1118eda14cbcSMatt Macy * In addition, objset blocks are the only blocks that can be modified and 1119eda14cbcSMatt Macy * written to disk without the key loaded under certain circumstances. During 1120eda14cbcSMatt Macy * zil_claim() we need to be able to update the zil_header_t to complete 1121eda14cbcSMatt Macy * claiming log blocks and during raw receives we need to write out the 1122eda14cbcSMatt Macy * portable_mac from the send file. Both of these actions are possible 1123eda14cbcSMatt Macy * because these fields are not protected by either MAC so neither one will 1124eda14cbcSMatt Macy * need to modify the MACs without the key. However, when the modified blocks 1125eda14cbcSMatt Macy * are written out they will be byteswapped into the host machine's native 1126eda14cbcSMatt Macy * endianness which will modify fields protected by the MAC. As a result, MAC 1127eda14cbcSMatt Macy * calculation for objset blocks works slightly differently from other block 1128eda14cbcSMatt Macy * types. Where other block types MAC the data in whatever endianness is 1129eda14cbcSMatt Macy * written to disk, objset blocks always MAC little endian version of their 1130eda14cbcSMatt Macy * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP() 1131eda14cbcSMatt Macy * and le_bswap indicates whether a byteswap is needed to get this block 1132eda14cbcSMatt Macy * into little endian format. 1133eda14cbcSMatt Macy */ 1134eda14cbcSMatt Macy int 1135eda14cbcSMatt Macy zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen, 1136eda14cbcSMatt Macy boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac) 1137eda14cbcSMatt Macy { 1138eda14cbcSMatt Macy int ret; 1139eda14cbcSMatt Macy crypto_mechanism_t mech; 1140eda14cbcSMatt Macy crypto_context_t ctx; 1141eda14cbcSMatt Macy crypto_data_t cd; 1142eda14cbcSMatt Macy objset_phys_t *osp = data; 1143eda14cbcSMatt Macy uint64_t intval; 1144eda14cbcSMatt Macy boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER); 1145eda14cbcSMatt Macy uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH]; 1146eda14cbcSMatt Macy uint8_t raw_local_mac[SHA512_DIGEST_LENGTH]; 1147eda14cbcSMatt Macy 1148eda14cbcSMatt Macy /* initialize HMAC mechanism */ 1149eda14cbcSMatt Macy mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC); 1150eda14cbcSMatt Macy mech.cm_param = NULL; 1151eda14cbcSMatt Macy mech.cm_param_len = 0; 1152eda14cbcSMatt Macy 1153eda14cbcSMatt Macy cd.cd_format = CRYPTO_DATA_RAW; 1154eda14cbcSMatt Macy cd.cd_offset = 0; 1155eda14cbcSMatt Macy 1156eda14cbcSMatt Macy /* calculate the portable MAC from the portable fields and metadnode */ 1157c03c5b1cSMartin Matuska ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx); 1158eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) { 1159eda14cbcSMatt Macy ret = SET_ERROR(EIO); 1160eda14cbcSMatt Macy goto error; 1161eda14cbcSMatt Macy } 1162eda14cbcSMatt Macy 1163eda14cbcSMatt Macy /* add in the os_type */ 1164eda14cbcSMatt Macy intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type); 1165eda14cbcSMatt Macy cd.cd_length = sizeof (uint64_t); 1166eda14cbcSMatt Macy cd.cd_raw.iov_base = (char *)&intval; 1167eda14cbcSMatt Macy cd.cd_raw.iov_len = cd.cd_length; 1168eda14cbcSMatt Macy 1169c03c5b1cSMartin Matuska ret = crypto_mac_update(ctx, &cd); 1170eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) { 1171eda14cbcSMatt Macy ret = SET_ERROR(EIO); 1172eda14cbcSMatt Macy goto error; 1173eda14cbcSMatt Macy } 1174eda14cbcSMatt Macy 1175eda14cbcSMatt Macy /* add in the portable os_flags */ 1176eda14cbcSMatt Macy intval = osp->os_flags; 1177eda14cbcSMatt Macy if (should_bswap) 1178eda14cbcSMatt Macy intval = BSWAP_64(intval); 1179eda14cbcSMatt Macy intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK; 1180eda14cbcSMatt Macy if (!ZFS_HOST_BYTEORDER) 1181eda14cbcSMatt Macy intval = BSWAP_64(intval); 1182eda14cbcSMatt Macy 1183eda14cbcSMatt Macy cd.cd_length = sizeof (uint64_t); 1184eda14cbcSMatt Macy cd.cd_raw.iov_base = (char *)&intval; 1185eda14cbcSMatt Macy cd.cd_raw.iov_len = cd.cd_length; 1186eda14cbcSMatt Macy 1187c03c5b1cSMartin Matuska ret = crypto_mac_update(ctx, &cd); 1188eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) { 1189eda14cbcSMatt Macy ret = SET_ERROR(EIO); 1190eda14cbcSMatt Macy goto error; 1191eda14cbcSMatt Macy } 1192eda14cbcSMatt Macy 1193eda14cbcSMatt Macy /* add in fields from the metadnode */ 1194eda14cbcSMatt Macy ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1195eda14cbcSMatt Macy should_bswap, &osp->os_meta_dnode); 1196eda14cbcSMatt Macy if (ret) 1197eda14cbcSMatt Macy goto error; 1198eda14cbcSMatt Macy 1199eda14cbcSMatt Macy /* store the final digest in a temporary buffer and copy what we need */ 1200eda14cbcSMatt Macy cd.cd_length = SHA512_DIGEST_LENGTH; 1201eda14cbcSMatt Macy cd.cd_raw.iov_base = (char *)raw_portable_mac; 1202eda14cbcSMatt Macy cd.cd_raw.iov_len = cd.cd_length; 1203eda14cbcSMatt Macy 1204c03c5b1cSMartin Matuska ret = crypto_mac_final(ctx, &cd); 1205eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) { 1206eda14cbcSMatt Macy ret = SET_ERROR(EIO); 1207eda14cbcSMatt Macy goto error; 1208eda14cbcSMatt Macy } 1209eda14cbcSMatt Macy 1210da5137abSMartin Matuska memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN); 1211eda14cbcSMatt Macy 1212eda14cbcSMatt Macy /* 1213e92ffd9bSMartin Matuska * This is necessary here as we check next whether 1214e92ffd9bSMartin Matuska * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to 1215e92ffd9bSMartin Matuska * decide if the local_mac should be zeroed out. That flag will always 1216e92ffd9bSMartin Matuska * be set by dmu_objset_id_quota_upgrade_cb() and 1217e92ffd9bSMartin Matuska * dmu_objset_userspace_upgrade_cb() if useraccounting has been 1218e92ffd9bSMartin Matuska * completed. 1219e92ffd9bSMartin Matuska */ 1220e92ffd9bSMartin Matuska intval = osp->os_flags; 1221e92ffd9bSMartin Matuska if (should_bswap) 1222e92ffd9bSMartin Matuska intval = BSWAP_64(intval); 1223e92ffd9bSMartin Matuska boolean_t uacct_incomplete = 1224e92ffd9bSMartin Matuska !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE); 1225e92ffd9bSMartin Matuska 1226e92ffd9bSMartin Matuska /* 1227eda14cbcSMatt Macy * The local MAC protects the user, group and project accounting. 1228eda14cbcSMatt Macy * If these objects are not present, the local MAC is zeroed out. 1229eda14cbcSMatt Macy */ 1230e92ffd9bSMartin Matuska if (uacct_incomplete || 1231e92ffd9bSMartin Matuska (datalen >= OBJSET_PHYS_SIZE_V3 && 1232eda14cbcSMatt Macy osp->os_userused_dnode.dn_type == DMU_OT_NONE && 1233eda14cbcSMatt Macy osp->os_groupused_dnode.dn_type == DMU_OT_NONE && 1234eda14cbcSMatt Macy osp->os_projectused_dnode.dn_type == DMU_OT_NONE) || 1235eda14cbcSMatt Macy (datalen >= OBJSET_PHYS_SIZE_V2 && 1236eda14cbcSMatt Macy osp->os_userused_dnode.dn_type == DMU_OT_NONE && 1237eda14cbcSMatt Macy osp->os_groupused_dnode.dn_type == DMU_OT_NONE) || 123816038816SMartin Matuska (datalen <= OBJSET_PHYS_SIZE_V1)) { 1239da5137abSMartin Matuska memset(local_mac, 0, ZIO_OBJSET_MAC_LEN); 1240eda14cbcSMatt Macy return (0); 1241eda14cbcSMatt Macy } 1242eda14cbcSMatt Macy 1243eda14cbcSMatt Macy /* calculate the local MAC from the userused and groupused dnodes */ 1244c03c5b1cSMartin Matuska ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx); 1245eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) { 1246eda14cbcSMatt Macy ret = SET_ERROR(EIO); 1247eda14cbcSMatt Macy goto error; 1248eda14cbcSMatt Macy } 1249eda14cbcSMatt Macy 1250eda14cbcSMatt Macy /* add in the non-portable os_flags */ 1251eda14cbcSMatt Macy intval = osp->os_flags; 1252eda14cbcSMatt Macy if (should_bswap) 1253eda14cbcSMatt Macy intval = BSWAP_64(intval); 1254eda14cbcSMatt Macy intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK; 1255eda14cbcSMatt Macy if (!ZFS_HOST_BYTEORDER) 1256eda14cbcSMatt Macy intval = BSWAP_64(intval); 1257eda14cbcSMatt Macy 1258eda14cbcSMatt Macy cd.cd_length = sizeof (uint64_t); 1259eda14cbcSMatt Macy cd.cd_raw.iov_base = (char *)&intval; 1260eda14cbcSMatt Macy cd.cd_raw.iov_len = cd.cd_length; 1261eda14cbcSMatt Macy 1262c03c5b1cSMartin Matuska ret = crypto_mac_update(ctx, &cd); 1263eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) { 1264eda14cbcSMatt Macy ret = SET_ERROR(EIO); 1265eda14cbcSMatt Macy goto error; 1266eda14cbcSMatt Macy } 1267eda14cbcSMatt Macy 1268eda14cbcSMatt Macy /* add in fields from the user accounting dnodes */ 1269eda14cbcSMatt Macy if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) { 1270eda14cbcSMatt Macy ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1271eda14cbcSMatt Macy should_bswap, &osp->os_userused_dnode); 1272eda14cbcSMatt Macy if (ret) 1273eda14cbcSMatt Macy goto error; 1274eda14cbcSMatt Macy } 1275eda14cbcSMatt Macy 1276eda14cbcSMatt Macy if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) { 1277eda14cbcSMatt Macy ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1278eda14cbcSMatt Macy should_bswap, &osp->os_groupused_dnode); 1279eda14cbcSMatt Macy if (ret) 1280eda14cbcSMatt Macy goto error; 1281eda14cbcSMatt Macy } 1282eda14cbcSMatt Macy 1283eda14cbcSMatt Macy if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE && 1284eda14cbcSMatt Macy datalen >= OBJSET_PHYS_SIZE_V3) { 1285eda14cbcSMatt Macy ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version, 1286eda14cbcSMatt Macy should_bswap, &osp->os_projectused_dnode); 1287eda14cbcSMatt Macy if (ret) 1288eda14cbcSMatt Macy goto error; 1289eda14cbcSMatt Macy } 1290eda14cbcSMatt Macy 1291eda14cbcSMatt Macy /* store the final digest in a temporary buffer and copy what we need */ 1292eda14cbcSMatt Macy cd.cd_length = SHA512_DIGEST_LENGTH; 1293eda14cbcSMatt Macy cd.cd_raw.iov_base = (char *)raw_local_mac; 1294eda14cbcSMatt Macy cd.cd_raw.iov_len = cd.cd_length; 1295eda14cbcSMatt Macy 1296c03c5b1cSMartin Matuska ret = crypto_mac_final(ctx, &cd); 1297eda14cbcSMatt Macy if (ret != CRYPTO_SUCCESS) { 1298eda14cbcSMatt Macy ret = SET_ERROR(EIO); 1299eda14cbcSMatt Macy goto error; 1300eda14cbcSMatt Macy } 1301eda14cbcSMatt Macy 1302da5137abSMartin Matuska memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN); 1303eda14cbcSMatt Macy 1304eda14cbcSMatt Macy return (0); 1305eda14cbcSMatt Macy 1306eda14cbcSMatt Macy error: 1307da5137abSMartin Matuska memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN); 1308da5137abSMartin Matuska memset(local_mac, 0, ZIO_OBJSET_MAC_LEN); 1309eda14cbcSMatt Macy return (ret); 1310eda14cbcSMatt Macy } 1311eda14cbcSMatt Macy 1312eda14cbcSMatt Macy static void 1313184c1b94SMartin Matuska zio_crypt_destroy_uio(zfs_uio_t *uio) 1314eda14cbcSMatt Macy { 1315eda14cbcSMatt Macy if (uio->uio_iov) 1316eda14cbcSMatt Macy kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t)); 1317eda14cbcSMatt Macy } 1318eda14cbcSMatt Macy 1319eda14cbcSMatt Macy /* 1320eda14cbcSMatt Macy * This function parses an uncompressed indirect block and returns a checksum 1321eda14cbcSMatt Macy * of all the portable fields from all of the contained bps. The portable 1322eda14cbcSMatt Macy * fields are the MAC and all of the fields from blk_prop except for the dedup, 1323eda14cbcSMatt Macy * checksum, and psize bits. For an explanation of the purpose of this, see 1324eda14cbcSMatt Macy * the comment block on object set authentication. 1325eda14cbcSMatt Macy */ 1326eda14cbcSMatt Macy static int 1327eda14cbcSMatt Macy zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf, 1328eda14cbcSMatt Macy uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum) 1329eda14cbcSMatt Macy { 1330eda14cbcSMatt Macy blkptr_t *bp; 1331eda14cbcSMatt Macy int i, epb = datalen >> SPA_BLKPTRSHIFT; 1332eda14cbcSMatt Macy SHA2_CTX ctx; 1333eda14cbcSMatt Macy uint8_t digestbuf[SHA512_DIGEST_LENGTH]; 1334eda14cbcSMatt Macy 1335eda14cbcSMatt Macy /* checksum all of the MACs from the layer below */ 1336eda14cbcSMatt Macy SHA2Init(SHA512, &ctx); 1337eda14cbcSMatt Macy for (i = 0, bp = buf; i < epb; i++, bp++) { 1338eda14cbcSMatt Macy zio_crypt_bp_do_indrect_checksum_updates(&ctx, version, 1339eda14cbcSMatt Macy byteswap, bp); 1340eda14cbcSMatt Macy } 1341eda14cbcSMatt Macy SHA2Final(digestbuf, &ctx); 1342eda14cbcSMatt Macy 1343eda14cbcSMatt Macy if (generate) { 1344da5137abSMartin Matuska memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN); 1345eda14cbcSMatt Macy return (0); 1346eda14cbcSMatt Macy } 1347eda14cbcSMatt Macy 1348da5137abSMartin Matuska if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0) 1349eda14cbcSMatt Macy return (SET_ERROR(ECKSUM)); 1350eda14cbcSMatt Macy 1351eda14cbcSMatt Macy return (0); 1352eda14cbcSMatt Macy } 1353eda14cbcSMatt Macy 1354eda14cbcSMatt Macy int 1355eda14cbcSMatt Macy zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf, 1356eda14cbcSMatt Macy uint_t datalen, boolean_t byteswap, uint8_t *cksum) 1357eda14cbcSMatt Macy { 1358eda14cbcSMatt Macy int ret; 1359eda14cbcSMatt Macy 1360eda14cbcSMatt Macy /* 1361eda14cbcSMatt Macy * Unfortunately, callers of this function will not always have 1362eda14cbcSMatt Macy * easy access to the on-disk format version. This info is 1363eda14cbcSMatt Macy * normally found in the DSL Crypto Key, but the checksum-of-MACs 1364eda14cbcSMatt Macy * is expected to be verifiable even when the key isn't loaded. 1365eda14cbcSMatt Macy * Here, instead of doing a ZAP lookup for the version for each 1366eda14cbcSMatt Macy * zio, we simply try both existing formats. 1367eda14cbcSMatt Macy */ 1368eda14cbcSMatt Macy ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf, 1369eda14cbcSMatt Macy datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum); 1370eda14cbcSMatt Macy if (ret == ECKSUM) { 1371eda14cbcSMatt Macy ASSERT(!generate); 1372eda14cbcSMatt Macy ret = zio_crypt_do_indirect_mac_checksum_impl(generate, 1373eda14cbcSMatt Macy buf, datalen, 0, byteswap, cksum); 1374eda14cbcSMatt Macy } 1375eda14cbcSMatt Macy 1376eda14cbcSMatt Macy return (ret); 1377eda14cbcSMatt Macy } 1378eda14cbcSMatt Macy 1379eda14cbcSMatt Macy int 1380eda14cbcSMatt Macy zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd, 1381eda14cbcSMatt Macy uint_t datalen, boolean_t byteswap, uint8_t *cksum) 1382eda14cbcSMatt Macy { 1383eda14cbcSMatt Macy int ret; 1384eda14cbcSMatt Macy void *buf; 1385eda14cbcSMatt Macy 1386eda14cbcSMatt Macy buf = abd_borrow_buf_copy(abd, datalen); 1387eda14cbcSMatt Macy ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen, 1388eda14cbcSMatt Macy byteswap, cksum); 1389eda14cbcSMatt Macy abd_return_buf(abd, buf, datalen); 1390eda14cbcSMatt Macy 1391eda14cbcSMatt Macy return (ret); 1392eda14cbcSMatt Macy } 1393eda14cbcSMatt Macy 1394eda14cbcSMatt Macy /* 1395eda14cbcSMatt Macy * Special case handling routine for encrypting / decrypting ZIL blocks. 1396eda14cbcSMatt Macy * We do not check for the older ZIL chain because the encryption feature 1397eda14cbcSMatt Macy * was not available before the newer ZIL chain was introduced. The goal 1398eda14cbcSMatt Macy * here is to encrypt everything except the blkptr_t of a lr_write_t and 1399eda14cbcSMatt Macy * the zil_chain_t header. Everything that is not encrypted is authenticated. 1400eda14cbcSMatt Macy */ 1401eda14cbcSMatt Macy static int 1402eda14cbcSMatt Macy zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf, 1403184c1b94SMartin Matuska uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio, 1404184c1b94SMartin Matuska zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len, 1405eda14cbcSMatt Macy boolean_t *no_crypt) 1406eda14cbcSMatt Macy { 1407eda14cbcSMatt Macy int ret; 1408*525fe93dSMartin Matuska uint64_t txtype, lr_len, nused; 1409eda14cbcSMatt Macy uint_t nr_src, nr_dst, crypt_len; 1410eda14cbcSMatt Macy uint_t aad_len = 0, nr_iovecs = 0, total_len = 0; 1411eda14cbcSMatt Macy iovec_t *src_iovecs = NULL, *dst_iovecs = NULL; 1412eda14cbcSMatt Macy uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp; 1413eda14cbcSMatt Macy zil_chain_t *zilc; 1414eda14cbcSMatt Macy lr_t *lr; 1415eda14cbcSMatt Macy uint8_t *aadbuf = zio_buf_alloc(datalen); 1416eda14cbcSMatt Macy 1417eda14cbcSMatt Macy /* cipherbuf always needs an extra iovec for the MAC */ 1418eda14cbcSMatt Macy if (encrypt) { 1419eda14cbcSMatt Macy src = plainbuf; 1420eda14cbcSMatt Macy dst = cipherbuf; 1421eda14cbcSMatt Macy nr_src = 0; 1422eda14cbcSMatt Macy nr_dst = 1; 1423eda14cbcSMatt Macy } else { 1424eda14cbcSMatt Macy src = cipherbuf; 1425eda14cbcSMatt Macy dst = plainbuf; 1426eda14cbcSMatt Macy nr_src = 1; 1427eda14cbcSMatt Macy nr_dst = 0; 1428eda14cbcSMatt Macy } 1429da5137abSMartin Matuska memset(dst, 0, datalen); 1430eda14cbcSMatt Macy 1431eda14cbcSMatt Macy /* find the start and end record of the log block */ 1432eda14cbcSMatt Macy zilc = (zil_chain_t *)src; 1433eda14cbcSMatt Macy slrp = src + sizeof (zil_chain_t); 1434eda14cbcSMatt Macy aadp = aadbuf; 1435*525fe93dSMartin Matuska nused = ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused); 1436*525fe93dSMartin Matuska ASSERT3U(nused, >=, sizeof (zil_chain_t)); 1437*525fe93dSMartin Matuska ASSERT3U(nused, <=, datalen); 1438*525fe93dSMartin Matuska blkend = src + nused; 1439eda14cbcSMatt Macy 1440eda14cbcSMatt Macy /* calculate the number of encrypted iovecs we will need */ 1441eda14cbcSMatt Macy for (; slrp < blkend; slrp += lr_len) { 1442eda14cbcSMatt Macy lr = (lr_t *)slrp; 1443eda14cbcSMatt Macy 1444eda14cbcSMatt Macy if (!byteswap) { 1445eda14cbcSMatt Macy txtype = lr->lrc_txtype; 1446eda14cbcSMatt Macy lr_len = lr->lrc_reclen; 1447eda14cbcSMatt Macy } else { 1448eda14cbcSMatt Macy txtype = BSWAP_64(lr->lrc_txtype); 1449eda14cbcSMatt Macy lr_len = BSWAP_64(lr->lrc_reclen); 1450eda14cbcSMatt Macy } 1451*525fe93dSMartin Matuska ASSERT3U(lr_len, >=, sizeof (lr_t)); 1452*525fe93dSMartin Matuska ASSERT3U(lr_len, <=, blkend - slrp); 1453eda14cbcSMatt Macy 1454eda14cbcSMatt Macy nr_iovecs++; 1455eda14cbcSMatt Macy if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t)) 1456eda14cbcSMatt Macy nr_iovecs++; 1457eda14cbcSMatt Macy } 1458eda14cbcSMatt Macy 1459eda14cbcSMatt Macy nr_src += nr_iovecs; 1460eda14cbcSMatt Macy nr_dst += nr_iovecs; 1461eda14cbcSMatt Macy 1462eda14cbcSMatt Macy /* allocate the iovec arrays */ 1463eda14cbcSMatt Macy if (nr_src != 0) { 1464eda14cbcSMatt Macy src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP); 1465eda14cbcSMatt Macy if (src_iovecs == NULL) { 1466eda14cbcSMatt Macy ret = SET_ERROR(ENOMEM); 1467eda14cbcSMatt Macy goto error; 1468eda14cbcSMatt Macy } 1469eda14cbcSMatt Macy } 1470eda14cbcSMatt Macy 1471eda14cbcSMatt Macy if (nr_dst != 0) { 1472eda14cbcSMatt Macy dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP); 1473eda14cbcSMatt Macy if (dst_iovecs == NULL) { 1474eda14cbcSMatt Macy ret = SET_ERROR(ENOMEM); 1475eda14cbcSMatt Macy goto error; 1476eda14cbcSMatt Macy } 1477eda14cbcSMatt Macy } 1478eda14cbcSMatt Macy 1479eda14cbcSMatt Macy /* 1480eda14cbcSMatt Macy * Copy the plain zil header over and authenticate everything except 1481eda14cbcSMatt Macy * the checksum that will store our MAC. If we are writing the data 1482eda14cbcSMatt Macy * the embedded checksum will not have been calculated yet, so we don't 1483eda14cbcSMatt Macy * authenticate that. 1484eda14cbcSMatt Macy */ 1485da5137abSMartin Matuska memcpy(dst, src, sizeof (zil_chain_t)); 1486da5137abSMartin Matuska memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t)); 1487eda14cbcSMatt Macy aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t); 1488eda14cbcSMatt Macy aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t); 1489eda14cbcSMatt Macy 1490eda14cbcSMatt Macy /* loop over records again, filling in iovecs */ 1491eda14cbcSMatt Macy nr_iovecs = 0; 1492eda14cbcSMatt Macy slrp = src + sizeof (zil_chain_t); 1493eda14cbcSMatt Macy dlrp = dst + sizeof (zil_chain_t); 1494eda14cbcSMatt Macy 1495eda14cbcSMatt Macy for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) { 1496eda14cbcSMatt Macy lr = (lr_t *)slrp; 1497eda14cbcSMatt Macy 1498eda14cbcSMatt Macy if (!byteswap) { 1499eda14cbcSMatt Macy txtype = lr->lrc_txtype; 1500eda14cbcSMatt Macy lr_len = lr->lrc_reclen; 1501eda14cbcSMatt Macy } else { 1502eda14cbcSMatt Macy txtype = BSWAP_64(lr->lrc_txtype); 1503eda14cbcSMatt Macy lr_len = BSWAP_64(lr->lrc_reclen); 1504eda14cbcSMatt Macy } 1505eda14cbcSMatt Macy 1506eda14cbcSMatt Macy /* copy the common lr_t */ 1507da5137abSMartin Matuska memcpy(dlrp, slrp, sizeof (lr_t)); 1508da5137abSMartin Matuska memcpy(aadp, slrp, sizeof (lr_t)); 1509eda14cbcSMatt Macy aadp += sizeof (lr_t); 1510eda14cbcSMatt Macy aad_len += sizeof (lr_t); 1511eda14cbcSMatt Macy 1512eda14cbcSMatt Macy ASSERT3P(src_iovecs, !=, NULL); 1513eda14cbcSMatt Macy ASSERT3P(dst_iovecs, !=, NULL); 1514eda14cbcSMatt Macy 1515eda14cbcSMatt Macy /* 1516eda14cbcSMatt Macy * If this is a TX_WRITE record we want to encrypt everything 1517eda14cbcSMatt Macy * except the bp if exists. If the bp does exist we want to 1518eda14cbcSMatt Macy * authenticate it. 1519eda14cbcSMatt Macy */ 1520eda14cbcSMatt Macy if (txtype == TX_WRITE) { 15212276e539SMartin Matuska const size_t o = offsetof(lr_write_t, lr_blkptr); 15222276e539SMartin Matuska crypt_len = o - sizeof (lr_t); 1523eda14cbcSMatt Macy src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t); 1524eda14cbcSMatt Macy src_iovecs[nr_iovecs].iov_len = crypt_len; 1525eda14cbcSMatt Macy dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t); 1526eda14cbcSMatt Macy dst_iovecs[nr_iovecs].iov_len = crypt_len; 1527eda14cbcSMatt Macy 1528eda14cbcSMatt Macy /* copy the bp now since it will not be encrypted */ 15292276e539SMartin Matuska memcpy(dlrp + o, slrp + o, sizeof (blkptr_t)); 15302276e539SMartin Matuska memcpy(aadp, slrp + o, sizeof (blkptr_t)); 1531eda14cbcSMatt Macy aadp += sizeof (blkptr_t); 1532eda14cbcSMatt Macy aad_len += sizeof (blkptr_t); 1533eda14cbcSMatt Macy nr_iovecs++; 1534eda14cbcSMatt Macy total_len += crypt_len; 1535eda14cbcSMatt Macy 1536eda14cbcSMatt Macy if (lr_len != sizeof (lr_write_t)) { 1537eda14cbcSMatt Macy crypt_len = lr_len - sizeof (lr_write_t); 1538eda14cbcSMatt Macy src_iovecs[nr_iovecs].iov_base = 1539eda14cbcSMatt Macy slrp + sizeof (lr_write_t); 1540eda14cbcSMatt Macy src_iovecs[nr_iovecs].iov_len = crypt_len; 1541eda14cbcSMatt Macy dst_iovecs[nr_iovecs].iov_base = 1542eda14cbcSMatt Macy dlrp + sizeof (lr_write_t); 1543eda14cbcSMatt Macy dst_iovecs[nr_iovecs].iov_len = crypt_len; 1544eda14cbcSMatt Macy nr_iovecs++; 1545eda14cbcSMatt Macy total_len += crypt_len; 1546eda14cbcSMatt Macy } 15472276e539SMartin Matuska } else if (txtype == TX_CLONE_RANGE) { 15482276e539SMartin Matuska const size_t o = offsetof(lr_clone_range_t, lr_nbps); 15492276e539SMartin Matuska crypt_len = o - sizeof (lr_t); 15502276e539SMartin Matuska src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t); 15512276e539SMartin Matuska src_iovecs[nr_iovecs].iov_len = crypt_len; 15522276e539SMartin Matuska dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t); 15532276e539SMartin Matuska dst_iovecs[nr_iovecs].iov_len = crypt_len; 15542276e539SMartin Matuska 15552276e539SMartin Matuska /* copy the bps now since they will not be encrypted */ 15562276e539SMartin Matuska memcpy(dlrp + o, slrp + o, lr_len - o); 15572276e539SMartin Matuska memcpy(aadp, slrp + o, lr_len - o); 15582276e539SMartin Matuska aadp += lr_len - o; 15592276e539SMartin Matuska aad_len += lr_len - o; 15602276e539SMartin Matuska nr_iovecs++; 15612276e539SMartin Matuska total_len += crypt_len; 1562eda14cbcSMatt Macy } else { 1563eda14cbcSMatt Macy crypt_len = lr_len - sizeof (lr_t); 1564eda14cbcSMatt Macy src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t); 1565eda14cbcSMatt Macy src_iovecs[nr_iovecs].iov_len = crypt_len; 1566eda14cbcSMatt Macy dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t); 1567eda14cbcSMatt Macy dst_iovecs[nr_iovecs].iov_len = crypt_len; 1568eda14cbcSMatt Macy nr_iovecs++; 1569eda14cbcSMatt Macy total_len += crypt_len; 1570eda14cbcSMatt Macy } 1571eda14cbcSMatt Macy } 1572eda14cbcSMatt Macy 1573eda14cbcSMatt Macy *no_crypt = (nr_iovecs == 0); 1574eda14cbcSMatt Macy *enc_len = total_len; 1575eda14cbcSMatt Macy *authbuf = aadbuf; 1576eda14cbcSMatt Macy *auth_len = aad_len; 1577eda14cbcSMatt Macy 1578eda14cbcSMatt Macy if (encrypt) { 1579eda14cbcSMatt Macy puio->uio_iov = src_iovecs; 1580eda14cbcSMatt Macy puio->uio_iovcnt = nr_src; 1581eda14cbcSMatt Macy cuio->uio_iov = dst_iovecs; 1582eda14cbcSMatt Macy cuio->uio_iovcnt = nr_dst; 1583eda14cbcSMatt Macy } else { 1584eda14cbcSMatt Macy puio->uio_iov = dst_iovecs; 1585eda14cbcSMatt Macy puio->uio_iovcnt = nr_dst; 1586eda14cbcSMatt Macy cuio->uio_iov = src_iovecs; 1587eda14cbcSMatt Macy cuio->uio_iovcnt = nr_src; 1588eda14cbcSMatt Macy } 1589eda14cbcSMatt Macy 1590eda14cbcSMatt Macy return (0); 1591eda14cbcSMatt Macy 1592eda14cbcSMatt Macy error: 1593eda14cbcSMatt Macy zio_buf_free(aadbuf, datalen); 1594eda14cbcSMatt Macy if (src_iovecs != NULL) 1595eda14cbcSMatt Macy kmem_free(src_iovecs, nr_src * sizeof (iovec_t)); 1596eda14cbcSMatt Macy if (dst_iovecs != NULL) 1597eda14cbcSMatt Macy kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t)); 1598eda14cbcSMatt Macy 1599eda14cbcSMatt Macy *enc_len = 0; 1600eda14cbcSMatt Macy *authbuf = NULL; 1601eda14cbcSMatt Macy *auth_len = 0; 1602eda14cbcSMatt Macy *no_crypt = B_FALSE; 1603eda14cbcSMatt Macy puio->uio_iov = NULL; 1604eda14cbcSMatt Macy puio->uio_iovcnt = 0; 1605eda14cbcSMatt Macy cuio->uio_iov = NULL; 1606eda14cbcSMatt Macy cuio->uio_iovcnt = 0; 1607eda14cbcSMatt Macy return (ret); 1608eda14cbcSMatt Macy } 1609eda14cbcSMatt Macy 1610eda14cbcSMatt Macy /* 1611eda14cbcSMatt Macy * Special case handling routine for encrypting / decrypting dnode blocks. 1612eda14cbcSMatt Macy */ 1613eda14cbcSMatt Macy static int 1614eda14cbcSMatt Macy zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version, 1615eda14cbcSMatt Macy uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, 1616184c1b94SMartin Matuska zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, 1617eda14cbcSMatt Macy uint_t *auth_len, boolean_t *no_crypt) 1618eda14cbcSMatt Macy { 1619eda14cbcSMatt Macy int ret; 1620eda14cbcSMatt Macy uint_t nr_src, nr_dst, crypt_len; 1621eda14cbcSMatt Macy uint_t aad_len = 0, nr_iovecs = 0, total_len = 0; 1622eda14cbcSMatt Macy uint_t i, j, max_dnp = datalen >> DNODE_SHIFT; 1623eda14cbcSMatt Macy iovec_t *src_iovecs = NULL, *dst_iovecs = NULL; 1624eda14cbcSMatt Macy uint8_t *src, *dst, *aadp; 1625eda14cbcSMatt Macy dnode_phys_t *dnp, *adnp, *sdnp, *ddnp; 1626eda14cbcSMatt Macy uint8_t *aadbuf = zio_buf_alloc(datalen); 1627eda14cbcSMatt Macy 1628eda14cbcSMatt Macy if (encrypt) { 1629eda14cbcSMatt Macy src = plainbuf; 1630eda14cbcSMatt Macy dst = cipherbuf; 1631eda14cbcSMatt Macy nr_src = 0; 1632eda14cbcSMatt Macy nr_dst = 1; 1633eda14cbcSMatt Macy } else { 1634eda14cbcSMatt Macy src = cipherbuf; 1635eda14cbcSMatt Macy dst = plainbuf; 1636eda14cbcSMatt Macy nr_src = 1; 1637eda14cbcSMatt Macy nr_dst = 0; 1638eda14cbcSMatt Macy } 1639eda14cbcSMatt Macy 1640eda14cbcSMatt Macy sdnp = (dnode_phys_t *)src; 1641eda14cbcSMatt Macy ddnp = (dnode_phys_t *)dst; 1642eda14cbcSMatt Macy aadp = aadbuf; 1643eda14cbcSMatt Macy 1644eda14cbcSMatt Macy /* 1645eda14cbcSMatt Macy * Count the number of iovecs we will need to do the encryption by 1646eda14cbcSMatt Macy * counting the number of bonus buffers that need to be encrypted. 1647eda14cbcSMatt Macy */ 1648eda14cbcSMatt Macy for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) { 1649eda14cbcSMatt Macy /* 1650eda14cbcSMatt Macy * This block may still be byteswapped. However, all of the 1651eda14cbcSMatt Macy * values we use are either uint8_t's (for which byteswapping 1652eda14cbcSMatt Macy * is a noop) or a * != 0 check, which will work regardless 1653eda14cbcSMatt Macy * of whether or not we byteswap. 1654eda14cbcSMatt Macy */ 1655eda14cbcSMatt Macy if (sdnp[i].dn_type != DMU_OT_NONE && 1656eda14cbcSMatt Macy DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) && 1657eda14cbcSMatt Macy sdnp[i].dn_bonuslen != 0) { 1658eda14cbcSMatt Macy nr_iovecs++; 1659eda14cbcSMatt Macy } 1660eda14cbcSMatt Macy } 1661eda14cbcSMatt Macy 1662eda14cbcSMatt Macy nr_src += nr_iovecs; 1663eda14cbcSMatt Macy nr_dst += nr_iovecs; 1664eda14cbcSMatt Macy 1665eda14cbcSMatt Macy if (nr_src != 0) { 1666eda14cbcSMatt Macy src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP); 1667eda14cbcSMatt Macy if (src_iovecs == NULL) { 1668eda14cbcSMatt Macy ret = SET_ERROR(ENOMEM); 1669eda14cbcSMatt Macy goto error; 1670eda14cbcSMatt Macy } 1671eda14cbcSMatt Macy } 1672eda14cbcSMatt Macy 1673eda14cbcSMatt Macy if (nr_dst != 0) { 1674eda14cbcSMatt Macy dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP); 1675eda14cbcSMatt Macy if (dst_iovecs == NULL) { 1676eda14cbcSMatt Macy ret = SET_ERROR(ENOMEM); 1677eda14cbcSMatt Macy goto error; 1678eda14cbcSMatt Macy } 1679eda14cbcSMatt Macy } 1680eda14cbcSMatt Macy 1681eda14cbcSMatt Macy nr_iovecs = 0; 1682eda14cbcSMatt Macy 1683eda14cbcSMatt Macy /* 1684eda14cbcSMatt Macy * Iterate through the dnodes again, this time filling in the uios 1685eda14cbcSMatt Macy * we allocated earlier. We also concatenate any data we want to 1686eda14cbcSMatt Macy * authenticate onto aadbuf. 1687eda14cbcSMatt Macy */ 1688eda14cbcSMatt Macy for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) { 1689eda14cbcSMatt Macy dnp = &sdnp[i]; 1690eda14cbcSMatt Macy 1691eda14cbcSMatt Macy /* copy over the core fields and blkptrs (kept as plaintext) */ 1692da5137abSMartin Matuska memcpy(&ddnp[i], dnp, 1693da5137abSMartin Matuska (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp); 1694eda14cbcSMatt Macy 1695eda14cbcSMatt Macy if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1696da5137abSMartin Matuska memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp), 1697eda14cbcSMatt Macy sizeof (blkptr_t)); 1698eda14cbcSMatt Macy } 1699eda14cbcSMatt Macy 1700eda14cbcSMatt Macy /* 1701eda14cbcSMatt Macy * Handle authenticated data. We authenticate everything in 1702eda14cbcSMatt Macy * the dnode that can be brought over when we do a raw send. 1703eda14cbcSMatt Macy * This includes all of the core fields as well as the MACs 1704eda14cbcSMatt Macy * stored in the bp checksums and all of the portable bits 1705eda14cbcSMatt Macy * from blk_prop. We include the dnode padding here in case it 1706eda14cbcSMatt Macy * ever gets used in the future. Some dn_flags and dn_used are 1707eda14cbcSMatt Macy * not portable so we mask those out values out of the 1708eda14cbcSMatt Macy * authenticated data. 1709eda14cbcSMatt Macy */ 1710eda14cbcSMatt Macy crypt_len = offsetof(dnode_phys_t, dn_blkptr); 1711da5137abSMartin Matuska memcpy(aadp, dnp, crypt_len); 1712eda14cbcSMatt Macy adnp = (dnode_phys_t *)aadp; 1713eda14cbcSMatt Macy adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK; 1714eda14cbcSMatt Macy adnp->dn_used = 0; 1715eda14cbcSMatt Macy aadp += crypt_len; 1716eda14cbcSMatt Macy aad_len += crypt_len; 1717eda14cbcSMatt Macy 1718eda14cbcSMatt Macy for (j = 0; j < dnp->dn_nblkptr; j++) { 1719eda14cbcSMatt Macy zio_crypt_bp_do_aad_updates(&aadp, &aad_len, 1720eda14cbcSMatt Macy version, byteswap, &dnp->dn_blkptr[j]); 1721eda14cbcSMatt Macy } 1722eda14cbcSMatt Macy 1723eda14cbcSMatt Macy if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 1724eda14cbcSMatt Macy zio_crypt_bp_do_aad_updates(&aadp, &aad_len, 1725eda14cbcSMatt Macy version, byteswap, DN_SPILL_BLKPTR(dnp)); 1726eda14cbcSMatt Macy } 1727eda14cbcSMatt Macy 1728eda14cbcSMatt Macy /* 1729eda14cbcSMatt Macy * If this bonus buffer needs to be encrypted, we prepare an 1730eda14cbcSMatt Macy * iovec_t. The encryption / decryption functions will fill 1731eda14cbcSMatt Macy * this in for us with the encrypted or decrypted data. 1732eda14cbcSMatt Macy * Otherwise we add the bonus buffer to the authenticated 1733eda14cbcSMatt Macy * data buffer and copy it over to the destination. The 1734eda14cbcSMatt Macy * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that 1735eda14cbcSMatt Macy * we can guarantee alignment with the AES block size 1736eda14cbcSMatt Macy * (128 bits). 1737eda14cbcSMatt Macy */ 1738eda14cbcSMatt Macy crypt_len = DN_MAX_BONUS_LEN(dnp); 1739eda14cbcSMatt Macy if (dnp->dn_type != DMU_OT_NONE && 1740eda14cbcSMatt Macy DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) && 1741eda14cbcSMatt Macy dnp->dn_bonuslen != 0) { 1742eda14cbcSMatt Macy ASSERT3U(nr_iovecs, <, nr_src); 1743eda14cbcSMatt Macy ASSERT3U(nr_iovecs, <, nr_dst); 1744eda14cbcSMatt Macy ASSERT3P(src_iovecs, !=, NULL); 1745eda14cbcSMatt Macy ASSERT3P(dst_iovecs, !=, NULL); 1746eda14cbcSMatt Macy src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp); 1747eda14cbcSMatt Macy src_iovecs[nr_iovecs].iov_len = crypt_len; 1748eda14cbcSMatt Macy dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]); 1749eda14cbcSMatt Macy dst_iovecs[nr_iovecs].iov_len = crypt_len; 1750eda14cbcSMatt Macy 1751eda14cbcSMatt Macy nr_iovecs++; 1752eda14cbcSMatt Macy total_len += crypt_len; 1753eda14cbcSMatt Macy } else { 1754da5137abSMartin Matuska memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len); 1755da5137abSMartin Matuska memcpy(aadp, DN_BONUS(dnp), crypt_len); 1756eda14cbcSMatt Macy aadp += crypt_len; 1757eda14cbcSMatt Macy aad_len += crypt_len; 1758eda14cbcSMatt Macy } 1759eda14cbcSMatt Macy } 1760eda14cbcSMatt Macy 1761eda14cbcSMatt Macy *no_crypt = (nr_iovecs == 0); 1762eda14cbcSMatt Macy *enc_len = total_len; 1763eda14cbcSMatt Macy *authbuf = aadbuf; 1764eda14cbcSMatt Macy *auth_len = aad_len; 1765eda14cbcSMatt Macy 1766eda14cbcSMatt Macy if (encrypt) { 1767eda14cbcSMatt Macy puio->uio_iov = src_iovecs; 1768eda14cbcSMatt Macy puio->uio_iovcnt = nr_src; 1769eda14cbcSMatt Macy cuio->uio_iov = dst_iovecs; 1770eda14cbcSMatt Macy cuio->uio_iovcnt = nr_dst; 1771eda14cbcSMatt Macy } else { 1772eda14cbcSMatt Macy puio->uio_iov = dst_iovecs; 1773eda14cbcSMatt Macy puio->uio_iovcnt = nr_dst; 1774eda14cbcSMatt Macy cuio->uio_iov = src_iovecs; 1775eda14cbcSMatt Macy cuio->uio_iovcnt = nr_src; 1776eda14cbcSMatt Macy } 1777eda14cbcSMatt Macy 1778eda14cbcSMatt Macy return (0); 1779eda14cbcSMatt Macy 1780eda14cbcSMatt Macy error: 1781eda14cbcSMatt Macy zio_buf_free(aadbuf, datalen); 1782eda14cbcSMatt Macy if (src_iovecs != NULL) 1783eda14cbcSMatt Macy kmem_free(src_iovecs, nr_src * sizeof (iovec_t)); 1784eda14cbcSMatt Macy if (dst_iovecs != NULL) 1785eda14cbcSMatt Macy kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t)); 1786eda14cbcSMatt Macy 1787eda14cbcSMatt Macy *enc_len = 0; 1788eda14cbcSMatt Macy *authbuf = NULL; 1789eda14cbcSMatt Macy *auth_len = 0; 1790eda14cbcSMatt Macy *no_crypt = B_FALSE; 1791eda14cbcSMatt Macy puio->uio_iov = NULL; 1792eda14cbcSMatt Macy puio->uio_iovcnt = 0; 1793eda14cbcSMatt Macy cuio->uio_iov = NULL; 1794eda14cbcSMatt Macy cuio->uio_iovcnt = 0; 1795eda14cbcSMatt Macy return (ret); 1796eda14cbcSMatt Macy } 1797eda14cbcSMatt Macy 1798eda14cbcSMatt Macy static int 1799eda14cbcSMatt Macy zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf, 1800184c1b94SMartin Matuska uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *cuio, 1801eda14cbcSMatt Macy uint_t *enc_len) 1802eda14cbcSMatt Macy { 1803e92ffd9bSMartin Matuska (void) encrypt; 1804eda14cbcSMatt Macy int ret; 1805eda14cbcSMatt Macy uint_t nr_plain = 1, nr_cipher = 2; 1806eda14cbcSMatt Macy iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL; 1807eda14cbcSMatt Macy 1808eda14cbcSMatt Macy /* allocate the iovecs for the plain and cipher data */ 1809eda14cbcSMatt Macy plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t), 1810eda14cbcSMatt Macy KM_SLEEP); 1811eda14cbcSMatt Macy if (!plain_iovecs) { 1812eda14cbcSMatt Macy ret = SET_ERROR(ENOMEM); 1813eda14cbcSMatt Macy goto error; 1814eda14cbcSMatt Macy } 1815eda14cbcSMatt Macy 1816eda14cbcSMatt Macy cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t), 1817eda14cbcSMatt Macy KM_SLEEP); 1818eda14cbcSMatt Macy if (!cipher_iovecs) { 1819eda14cbcSMatt Macy ret = SET_ERROR(ENOMEM); 1820eda14cbcSMatt Macy goto error; 1821eda14cbcSMatt Macy } 1822eda14cbcSMatt Macy 1823eda14cbcSMatt Macy plain_iovecs[0].iov_base = plainbuf; 1824eda14cbcSMatt Macy plain_iovecs[0].iov_len = datalen; 1825eda14cbcSMatt Macy cipher_iovecs[0].iov_base = cipherbuf; 1826eda14cbcSMatt Macy cipher_iovecs[0].iov_len = datalen; 1827eda14cbcSMatt Macy 1828eda14cbcSMatt Macy *enc_len = datalen; 1829eda14cbcSMatt Macy puio->uio_iov = plain_iovecs; 1830eda14cbcSMatt Macy puio->uio_iovcnt = nr_plain; 1831eda14cbcSMatt Macy cuio->uio_iov = cipher_iovecs; 1832eda14cbcSMatt Macy cuio->uio_iovcnt = nr_cipher; 1833eda14cbcSMatt Macy 1834eda14cbcSMatt Macy return (0); 1835eda14cbcSMatt Macy 1836eda14cbcSMatt Macy error: 1837eda14cbcSMatt Macy if (plain_iovecs != NULL) 1838eda14cbcSMatt Macy kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t)); 1839eda14cbcSMatt Macy if (cipher_iovecs != NULL) 1840eda14cbcSMatt Macy kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t)); 1841eda14cbcSMatt Macy 1842eda14cbcSMatt Macy *enc_len = 0; 1843eda14cbcSMatt Macy puio->uio_iov = NULL; 1844eda14cbcSMatt Macy puio->uio_iovcnt = 0; 1845eda14cbcSMatt Macy cuio->uio_iov = NULL; 1846eda14cbcSMatt Macy cuio->uio_iovcnt = 0; 1847eda14cbcSMatt Macy return (ret); 1848eda14cbcSMatt Macy } 1849eda14cbcSMatt Macy 1850eda14cbcSMatt Macy /* 1851eda14cbcSMatt Macy * This function builds up the plaintext (puio) and ciphertext (cuio) uios so 1852eda14cbcSMatt Macy * that they can be used for encryption and decryption by zio_do_crypt_uio(). 1853eda14cbcSMatt Macy * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks 1854eda14cbcSMatt Macy * requiring special handling to parse out pieces that are to be encrypted. The 1855eda14cbcSMatt Macy * authbuf is used by these special cases to store additional authenticated 1856eda14cbcSMatt Macy * data (AAD) for the encryption modes. 1857eda14cbcSMatt Macy */ 1858eda14cbcSMatt Macy static int 1859eda14cbcSMatt Macy zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot, 1860eda14cbcSMatt Macy uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, 1861184c1b94SMartin Matuska uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, 1862184c1b94SMartin Matuska uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt) 1863eda14cbcSMatt Macy { 1864eda14cbcSMatt Macy int ret; 1865eda14cbcSMatt Macy iovec_t *mac_iov; 1866eda14cbcSMatt Macy 1867eda14cbcSMatt Macy ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE); 1868eda14cbcSMatt Macy 1869eda14cbcSMatt Macy /* route to handler */ 1870eda14cbcSMatt Macy switch (ot) { 1871eda14cbcSMatt Macy case DMU_OT_INTENT_LOG: 1872eda14cbcSMatt Macy ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf, 1873eda14cbcSMatt Macy datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len, 1874eda14cbcSMatt Macy no_crypt); 1875eda14cbcSMatt Macy break; 1876eda14cbcSMatt Macy case DMU_OT_DNODE: 1877eda14cbcSMatt Macy ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf, 1878eda14cbcSMatt Macy cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf, 1879eda14cbcSMatt Macy auth_len, no_crypt); 1880eda14cbcSMatt Macy break; 1881eda14cbcSMatt Macy default: 1882eda14cbcSMatt Macy ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf, 1883eda14cbcSMatt Macy datalen, puio, cuio, enc_len); 1884eda14cbcSMatt Macy *authbuf = NULL; 1885eda14cbcSMatt Macy *auth_len = 0; 1886eda14cbcSMatt Macy *no_crypt = B_FALSE; 1887eda14cbcSMatt Macy break; 1888eda14cbcSMatt Macy } 1889eda14cbcSMatt Macy 1890eda14cbcSMatt Macy if (ret != 0) 1891eda14cbcSMatt Macy goto error; 1892eda14cbcSMatt Macy 1893eda14cbcSMatt Macy /* populate the uios */ 1894eda14cbcSMatt Macy puio->uio_segflg = UIO_SYSSPACE; 1895eda14cbcSMatt Macy cuio->uio_segflg = UIO_SYSSPACE; 1896eda14cbcSMatt Macy 1897eda14cbcSMatt Macy mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]); 1898eda14cbcSMatt Macy mac_iov->iov_base = mac; 1899eda14cbcSMatt Macy mac_iov->iov_len = ZIO_DATA_MAC_LEN; 1900eda14cbcSMatt Macy 1901eda14cbcSMatt Macy return (0); 1902eda14cbcSMatt Macy 1903eda14cbcSMatt Macy error: 1904eda14cbcSMatt Macy return (ret); 1905eda14cbcSMatt Macy } 1906eda14cbcSMatt Macy 1907eda14cbcSMatt Macy /* 1908eda14cbcSMatt Macy * Primary encryption / decryption entrypoint for zio data. 1909eda14cbcSMatt Macy */ 1910eda14cbcSMatt Macy int 1911eda14cbcSMatt Macy zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key, 1912eda14cbcSMatt Macy dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv, 1913eda14cbcSMatt Macy uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf, 1914eda14cbcSMatt Macy boolean_t *no_crypt) 1915eda14cbcSMatt Macy { 1916eda14cbcSMatt Macy int ret; 1917eda14cbcSMatt Macy boolean_t locked = B_FALSE; 1918eda14cbcSMatt Macy uint64_t crypt = key->zk_crypt; 1919eda14cbcSMatt Macy uint_t keydata_len = zio_crypt_table[crypt].ci_keylen; 1920eda14cbcSMatt Macy uint_t enc_len, auth_len; 1921184c1b94SMartin Matuska zfs_uio_t puio, cuio; 1922eda14cbcSMatt Macy uint8_t enc_keydata[MASTER_KEY_MAX_LEN]; 1923eda14cbcSMatt Macy crypto_key_t tmp_ckey, *ckey = NULL; 1924eda14cbcSMatt Macy crypto_ctx_template_t tmpl; 1925eda14cbcSMatt Macy uint8_t *authbuf = NULL; 1926eda14cbcSMatt Macy 1927be181ee2SMartin Matuska memset(&puio, 0, sizeof (puio)); 1928be181ee2SMartin Matuska memset(&cuio, 0, sizeof (cuio)); 1929be181ee2SMartin Matuska 1930eda14cbcSMatt Macy /* 1931eda14cbcSMatt Macy * If the needed key is the current one, just use it. Otherwise we 1932eda14cbcSMatt Macy * need to generate a temporary one from the given salt + master key. 1933eda14cbcSMatt Macy * If we are encrypting, we must return a copy of the current salt 1934eda14cbcSMatt Macy * so that it can be stored in the blkptr_t. 1935eda14cbcSMatt Macy */ 1936eda14cbcSMatt Macy rw_enter(&key->zk_salt_lock, RW_READER); 1937eda14cbcSMatt Macy locked = B_TRUE; 1938eda14cbcSMatt Macy 1939da5137abSMartin Matuska if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) { 1940eda14cbcSMatt Macy ckey = &key->zk_current_key; 1941eda14cbcSMatt Macy tmpl = key->zk_current_tmpl; 1942eda14cbcSMatt Macy } else { 1943eda14cbcSMatt Macy rw_exit(&key->zk_salt_lock); 1944eda14cbcSMatt Macy locked = B_FALSE; 1945eda14cbcSMatt Macy 1946eda14cbcSMatt Macy ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0, 1947eda14cbcSMatt Macy salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len); 1948eda14cbcSMatt Macy if (ret != 0) 1949eda14cbcSMatt Macy goto error; 1950eda14cbcSMatt Macy 1951eda14cbcSMatt Macy tmp_ckey.ck_data = enc_keydata; 1952eda14cbcSMatt Macy tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len); 1953eda14cbcSMatt Macy 1954eda14cbcSMatt Macy ckey = &tmp_ckey; 1955eda14cbcSMatt Macy tmpl = NULL; 1956eda14cbcSMatt Macy } 1957eda14cbcSMatt Macy 1958eda14cbcSMatt Macy /* 1959eda14cbcSMatt Macy * Attempt to use QAT acceleration if we can. We currently don't 1960eda14cbcSMatt Macy * do this for metadnode and ZIL blocks, since they have a much 1961eda14cbcSMatt Macy * more involved buffer layout and the qat_crypt() function only 1962eda14cbcSMatt Macy * works in-place. 1963eda14cbcSMatt Macy */ 1964eda14cbcSMatt Macy if (qat_crypt_use_accel(datalen) && 1965eda14cbcSMatt Macy ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) { 1966eda14cbcSMatt Macy uint8_t *srcbuf, *dstbuf; 1967eda14cbcSMatt Macy 1968eda14cbcSMatt Macy if (encrypt) { 1969eda14cbcSMatt Macy srcbuf = plainbuf; 1970eda14cbcSMatt Macy dstbuf = cipherbuf; 1971eda14cbcSMatt Macy } else { 1972eda14cbcSMatt Macy srcbuf = cipherbuf; 1973eda14cbcSMatt Macy dstbuf = plainbuf; 1974eda14cbcSMatt Macy } 1975eda14cbcSMatt Macy 1976eda14cbcSMatt Macy ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf, 1977eda14cbcSMatt Macy dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen); 1978eda14cbcSMatt Macy if (ret == CPA_STATUS_SUCCESS) { 1979eda14cbcSMatt Macy if (locked) { 1980eda14cbcSMatt Macy rw_exit(&key->zk_salt_lock); 1981eda14cbcSMatt Macy locked = B_FALSE; 1982eda14cbcSMatt Macy } 1983eda14cbcSMatt Macy 1984eda14cbcSMatt Macy return (0); 1985eda14cbcSMatt Macy } 1986eda14cbcSMatt Macy /* If the hardware implementation fails fall back to software */ 1987eda14cbcSMatt Macy } 1988eda14cbcSMatt Macy 1989eda14cbcSMatt Macy /* create uios for encryption */ 1990eda14cbcSMatt Macy ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf, 1991eda14cbcSMatt Macy cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len, 1992eda14cbcSMatt Macy &authbuf, &auth_len, no_crypt); 1993eda14cbcSMatt Macy if (ret != 0) 1994eda14cbcSMatt Macy goto error; 1995eda14cbcSMatt Macy 1996eda14cbcSMatt Macy /* perform the encryption / decryption in software */ 1997eda14cbcSMatt Macy ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len, 1998eda14cbcSMatt Macy &puio, &cuio, authbuf, auth_len); 1999eda14cbcSMatt Macy if (ret != 0) 2000eda14cbcSMatt Macy goto error; 2001eda14cbcSMatt Macy 2002eda14cbcSMatt Macy if (locked) { 2003eda14cbcSMatt Macy rw_exit(&key->zk_salt_lock); 2004eda14cbcSMatt Macy } 2005eda14cbcSMatt Macy 2006eda14cbcSMatt Macy if (authbuf != NULL) 2007eda14cbcSMatt Macy zio_buf_free(authbuf, datalen); 2008eda14cbcSMatt Macy if (ckey == &tmp_ckey) 2009da5137abSMartin Matuska memset(enc_keydata, 0, keydata_len); 2010eda14cbcSMatt Macy zio_crypt_destroy_uio(&puio); 2011eda14cbcSMatt Macy zio_crypt_destroy_uio(&cuio); 2012eda14cbcSMatt Macy 2013eda14cbcSMatt Macy return (0); 2014eda14cbcSMatt Macy 2015eda14cbcSMatt Macy error: 2016eda14cbcSMatt Macy if (locked) 2017eda14cbcSMatt Macy rw_exit(&key->zk_salt_lock); 2018eda14cbcSMatt Macy if (authbuf != NULL) 2019eda14cbcSMatt Macy zio_buf_free(authbuf, datalen); 2020eda14cbcSMatt Macy if (ckey == &tmp_ckey) 2021da5137abSMartin Matuska memset(enc_keydata, 0, keydata_len); 2022eda14cbcSMatt Macy zio_crypt_destroy_uio(&puio); 2023eda14cbcSMatt Macy zio_crypt_destroy_uio(&cuio); 2024eda14cbcSMatt Macy 2025eda14cbcSMatt Macy return (ret); 2026eda14cbcSMatt Macy } 2027eda14cbcSMatt Macy 2028eda14cbcSMatt Macy /* 2029eda14cbcSMatt Macy * Simple wrapper around zio_do_crypt_data() to work with abd's instead of 2030eda14cbcSMatt Macy * linear buffers. 2031eda14cbcSMatt Macy */ 2032eda14cbcSMatt Macy int 2033eda14cbcSMatt Macy zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot, 2034eda14cbcSMatt Macy boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac, 2035eda14cbcSMatt Macy uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt) 2036eda14cbcSMatt Macy { 2037eda14cbcSMatt Macy int ret; 2038eda14cbcSMatt Macy void *ptmp, *ctmp; 2039eda14cbcSMatt Macy 2040eda14cbcSMatt Macy if (encrypt) { 2041eda14cbcSMatt Macy ptmp = abd_borrow_buf_copy(pabd, datalen); 2042eda14cbcSMatt Macy ctmp = abd_borrow_buf(cabd, datalen); 2043eda14cbcSMatt Macy } else { 2044eda14cbcSMatt Macy ptmp = abd_borrow_buf(pabd, datalen); 2045eda14cbcSMatt Macy ctmp = abd_borrow_buf_copy(cabd, datalen); 2046eda14cbcSMatt Macy } 2047eda14cbcSMatt Macy 2048eda14cbcSMatt Macy ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac, 2049eda14cbcSMatt Macy datalen, ptmp, ctmp, no_crypt); 2050eda14cbcSMatt Macy if (ret != 0) 2051eda14cbcSMatt Macy goto error; 2052eda14cbcSMatt Macy 2053eda14cbcSMatt Macy if (encrypt) { 2054eda14cbcSMatt Macy abd_return_buf(pabd, ptmp, datalen); 2055eda14cbcSMatt Macy abd_return_buf_copy(cabd, ctmp, datalen); 2056eda14cbcSMatt Macy } else { 2057eda14cbcSMatt Macy abd_return_buf_copy(pabd, ptmp, datalen); 2058eda14cbcSMatt Macy abd_return_buf(cabd, ctmp, datalen); 2059eda14cbcSMatt Macy } 2060eda14cbcSMatt Macy 2061eda14cbcSMatt Macy return (0); 2062eda14cbcSMatt Macy 2063eda14cbcSMatt Macy error: 2064eda14cbcSMatt Macy if (encrypt) { 2065eda14cbcSMatt Macy abd_return_buf(pabd, ptmp, datalen); 2066eda14cbcSMatt Macy abd_return_buf_copy(cabd, ctmp, datalen); 2067eda14cbcSMatt Macy } else { 2068eda14cbcSMatt Macy abd_return_buf_copy(pabd, ptmp, datalen); 2069eda14cbcSMatt Macy abd_return_buf(cabd, ctmp, datalen); 2070eda14cbcSMatt Macy } 2071eda14cbcSMatt Macy 2072eda14cbcSMatt Macy return (ret); 2073eda14cbcSMatt Macy } 2074eda14cbcSMatt Macy 2075eda14cbcSMatt Macy #if defined(_KERNEL) 2076eda14cbcSMatt Macy module_param(zfs_key_max_salt_uses, ulong, 0644); 2077eda14cbcSMatt Macy MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value " 2078eda14cbcSMatt Macy "can be used for generating encryption keys before it is rotated"); 2079eda14cbcSMatt Macy #endif 2080