1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved. 26 * Copyright 2017 Nexenta Systems, Inc. 27 */ 28 29 /* Portions Copyright 2007 Jeremy Teo */ 30 /* Portions Copyright 2010 Robert Milkowski */ 31 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/time.h> 36 #include <sys/sysmacros.h> 37 #include <sys/vfs.h> 38 #include <sys/file.h> 39 #include <sys/stat.h> 40 #include <sys/kmem.h> 41 #include <sys/taskq.h> 42 #include <sys/uio.h> 43 #include <sys/vmsystm.h> 44 #include <sys/atomic.h> 45 #include <sys/pathname.h> 46 #include <sys/cmn_err.h> 47 #include <sys/errno.h> 48 #include <sys/zfs_dir.h> 49 #include <sys/zfs_acl.h> 50 #include <sys/zfs_ioctl.h> 51 #include <sys/fs/zfs.h> 52 #include <sys/dmu.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/spa.h> 55 #include <sys/txg.h> 56 #include <sys/dbuf.h> 57 #include <sys/zap.h> 58 #include <sys/sa.h> 59 #include <sys/policy.h> 60 #include <sys/sunddi.h> 61 #include <sys/sid.h> 62 #include <sys/zfs_ctldir.h> 63 #include <sys/zfs_fuid.h> 64 #include <sys/zfs_quota.h> 65 #include <sys/zfs_sa.h> 66 #include <sys/zfs_vnops.h> 67 #include <sys/zfs_rlock.h> 68 #include <sys/cred.h> 69 #include <sys/zpl.h> 70 #include <sys/zil.h> 71 #include <sys/sa_impl.h> 72 73 /* 74 * Programming rules. 75 * 76 * Each vnode op performs some logical unit of work. To do this, the ZPL must 77 * properly lock its in-core state, create a DMU transaction, do the work, 78 * record this work in the intent log (ZIL), commit the DMU transaction, 79 * and wait for the intent log to commit if it is a synchronous operation. 80 * Moreover, the vnode ops must work in both normal and log replay context. 81 * The ordering of events is important to avoid deadlocks and references 82 * to freed memory. The example below illustrates the following Big Rules: 83 * 84 * (1) A check must be made in each zfs thread for a mounted file system. 85 * This is done avoiding races using ZFS_ENTER(zfsvfs). 86 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 87 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 88 * can return EIO from the calling function. 89 * 90 * (2) zrele() should always be the last thing except for zil_commit() 91 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 92 * First, if it's the last reference, the vnode/znode 93 * can be freed, so the zp may point to freed memory. Second, the last 94 * reference will call zfs_zinactive(), which may induce a lot of work -- 95 * pushing cached pages (which acquires range locks) and syncing out 96 * cached atime changes. Third, zfs_zinactive() may require a new tx, 97 * which could deadlock the system if you were already holding one. 98 * If you must call zrele() within a tx then use zfs_zrele_async(). 99 * 100 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 101 * as they can span dmu_tx_assign() calls. 102 * 103 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 104 * dmu_tx_assign(). This is critical because we don't want to block 105 * while holding locks. 106 * 107 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 108 * reduces lock contention and CPU usage when we must wait (note that if 109 * throughput is constrained by the storage, nearly every transaction 110 * must wait). 111 * 112 * Note, in particular, that if a lock is sometimes acquired before 113 * the tx assigns, and sometimes after (e.g. z_lock), then failing 114 * to use a non-blocking assign can deadlock the system. The scenario: 115 * 116 * Thread A has grabbed a lock before calling dmu_tx_assign(). 117 * Thread B is in an already-assigned tx, and blocks for this lock. 118 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 119 * forever, because the previous txg can't quiesce until B's tx commits. 120 * 121 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 122 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 123 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT, 124 * to indicate that this operation has already called dmu_tx_wait(). 125 * This will ensure that we don't retry forever, waiting a short bit 126 * each time. 127 * 128 * (5) If the operation succeeded, generate the intent log entry for it 129 * before dropping locks. This ensures that the ordering of events 130 * in the intent log matches the order in which they actually occurred. 131 * During ZIL replay the zfs_log_* functions will update the sequence 132 * number to indicate the zil transaction has replayed. 133 * 134 * (6) At the end of each vnode op, the DMU tx must always commit, 135 * regardless of whether there were any errors. 136 * 137 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 138 * to ensure that synchronous semantics are provided when necessary. 139 * 140 * In general, this is how things should be ordered in each vnode op: 141 * 142 * ZFS_ENTER(zfsvfs); // exit if unmounted 143 * top: 144 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab()) 145 * rw_enter(...); // grab any other locks you need 146 * tx = dmu_tx_create(...); // get DMU tx 147 * dmu_tx_hold_*(); // hold each object you might modify 148 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 149 * if (error) { 150 * rw_exit(...); // drop locks 151 * zfs_dirent_unlock(dl); // unlock directory entry 152 * zrele(...); // release held znodes 153 * if (error == ERESTART) { 154 * waited = B_TRUE; 155 * dmu_tx_wait(tx); 156 * dmu_tx_abort(tx); 157 * goto top; 158 * } 159 * dmu_tx_abort(tx); // abort DMU tx 160 * ZFS_EXIT(zfsvfs); // finished in zfs 161 * return (error); // really out of space 162 * } 163 * error = do_real_work(); // do whatever this VOP does 164 * if (error == 0) 165 * zfs_log_*(...); // on success, make ZIL entry 166 * dmu_tx_commit(tx); // commit DMU tx -- error or not 167 * rw_exit(...); // drop locks 168 * zfs_dirent_unlock(dl); // unlock directory entry 169 * zrele(...); // release held znodes 170 * zil_commit(zilog, foid); // synchronous when necessary 171 * ZFS_EXIT(zfsvfs); // finished in zfs 172 * return (error); // done, report error 173 */ 174 175 /* 176 * Virus scanning is unsupported. It would be possible to add a hook 177 * here to performance the required virus scan. This could be done 178 * entirely in the kernel or potentially as an update to invoke a 179 * scanning utility. 180 */ 181 static int 182 zfs_vscan(struct inode *ip, cred_t *cr, int async) 183 { 184 return (0); 185 } 186 187 /* ARGSUSED */ 188 int 189 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr) 190 { 191 znode_t *zp = ITOZ(ip); 192 zfsvfs_t *zfsvfs = ITOZSB(ip); 193 194 ZFS_ENTER(zfsvfs); 195 ZFS_VERIFY_ZP(zp); 196 197 /* Honor ZFS_APPENDONLY file attribute */ 198 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 199 ((flag & O_APPEND) == 0)) { 200 ZFS_EXIT(zfsvfs); 201 return (SET_ERROR(EPERM)); 202 } 203 204 /* Virus scan eligible files on open */ 205 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) && 206 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 207 if (zfs_vscan(ip, cr, 0) != 0) { 208 ZFS_EXIT(zfsvfs); 209 return (SET_ERROR(EACCES)); 210 } 211 } 212 213 /* Keep a count of the synchronous opens in the znode */ 214 if (flag & O_SYNC) 215 atomic_inc_32(&zp->z_sync_cnt); 216 217 ZFS_EXIT(zfsvfs); 218 return (0); 219 } 220 221 /* ARGSUSED */ 222 int 223 zfs_close(struct inode *ip, int flag, cred_t *cr) 224 { 225 znode_t *zp = ITOZ(ip); 226 zfsvfs_t *zfsvfs = ITOZSB(ip); 227 228 ZFS_ENTER(zfsvfs); 229 ZFS_VERIFY_ZP(zp); 230 231 /* Decrement the synchronous opens in the znode */ 232 if (flag & O_SYNC) 233 atomic_dec_32(&zp->z_sync_cnt); 234 235 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) && 236 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 237 VERIFY(zfs_vscan(ip, cr, 1) == 0); 238 239 ZFS_EXIT(zfsvfs); 240 return (0); 241 } 242 243 #if defined(_KERNEL) 244 /* 245 * When a file is memory mapped, we must keep the IO data synchronized 246 * between the DMU cache and the memory mapped pages. What this means: 247 * 248 * On Write: If we find a memory mapped page, we write to *both* 249 * the page and the dmu buffer. 250 */ 251 void 252 update_pages(znode_t *zp, int64_t start, int len, objset_t *os) 253 { 254 struct inode *ip = ZTOI(zp); 255 struct address_space *mp = ip->i_mapping; 256 struct page *pp; 257 uint64_t nbytes; 258 int64_t off; 259 void *pb; 260 261 off = start & (PAGE_SIZE-1); 262 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) { 263 nbytes = MIN(PAGE_SIZE - off, len); 264 265 pp = find_lock_page(mp, start >> PAGE_SHIFT); 266 if (pp) { 267 if (mapping_writably_mapped(mp)) 268 flush_dcache_page(pp); 269 270 pb = kmap(pp); 271 (void) dmu_read(os, zp->z_id, start + off, nbytes, 272 pb + off, DMU_READ_PREFETCH); 273 kunmap(pp); 274 275 if (mapping_writably_mapped(mp)) 276 flush_dcache_page(pp); 277 278 mark_page_accessed(pp); 279 SetPageUptodate(pp); 280 ClearPageError(pp); 281 unlock_page(pp); 282 put_page(pp); 283 } 284 285 len -= nbytes; 286 off = 0; 287 } 288 } 289 290 /* 291 * When a file is memory mapped, we must keep the IO data synchronized 292 * between the DMU cache and the memory mapped pages. What this means: 293 * 294 * On Read: We "read" preferentially from memory mapped pages, 295 * else we default from the dmu buffer. 296 * 297 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 298 * the file is memory mapped. 299 */ 300 int 301 mappedread(znode_t *zp, int nbytes, uio_t *uio) 302 { 303 struct inode *ip = ZTOI(zp); 304 struct address_space *mp = ip->i_mapping; 305 struct page *pp; 306 int64_t start, off; 307 uint64_t bytes; 308 int len = nbytes; 309 int error = 0; 310 void *pb; 311 312 start = uio->uio_loffset; 313 off = start & (PAGE_SIZE-1); 314 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) { 315 bytes = MIN(PAGE_SIZE - off, len); 316 317 pp = find_lock_page(mp, start >> PAGE_SHIFT); 318 if (pp) { 319 ASSERT(PageUptodate(pp)); 320 unlock_page(pp); 321 322 pb = kmap(pp); 323 error = uiomove(pb + off, bytes, UIO_READ, uio); 324 kunmap(pp); 325 326 if (mapping_writably_mapped(mp)) 327 flush_dcache_page(pp); 328 329 mark_page_accessed(pp); 330 put_page(pp); 331 } else { 332 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 333 uio, bytes); 334 } 335 336 len -= bytes; 337 off = 0; 338 if (error) 339 break; 340 } 341 return (error); 342 } 343 #endif /* _KERNEL */ 344 345 unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT; 346 347 /* 348 * Write the bytes to a file. 349 * 350 * IN: zp - znode of file to be written to 351 * data - bytes to write 352 * len - number of bytes to write 353 * pos - offset to start writing at 354 * 355 * OUT: resid - remaining bytes to write 356 * 357 * RETURN: 0 if success 358 * positive error code if failure. EIO is returned 359 * for a short write when residp isn't provided. 360 * 361 * Timestamps: 362 * zp - ctime|mtime updated if byte count > 0 363 */ 364 int 365 zfs_write_simple(znode_t *zp, const void *data, size_t len, 366 loff_t pos, size_t *residp) 367 { 368 fstrans_cookie_t cookie; 369 int error; 370 371 struct iovec iov; 372 iov.iov_base = (void *)data; 373 iov.iov_len = len; 374 375 uio_t uio; 376 uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0); 377 378 cookie = spl_fstrans_mark(); 379 error = zfs_write(zp, &uio, 0, kcred); 380 spl_fstrans_unmark(cookie); 381 382 if (error == 0) { 383 if (residp != NULL) 384 *residp = uio_resid(&uio); 385 else if (uio_resid(&uio) != 0) 386 error = SET_ERROR(EIO); 387 } 388 389 return (error); 390 } 391 392 void 393 zfs_zrele_async(znode_t *zp) 394 { 395 struct inode *ip = ZTOI(zp); 396 objset_t *os = ITOZSB(ip)->z_os; 397 398 ASSERT(atomic_read(&ip->i_count) > 0); 399 ASSERT(os != NULL); 400 401 if (atomic_read(&ip->i_count) == 1) 402 VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)), 403 (task_func_t *)iput, ip, TQ_SLEEP) != TASKQID_INVALID); 404 else 405 zrele(zp); 406 } 407 408 409 /* 410 * Lookup an entry in a directory, or an extended attribute directory. 411 * If it exists, return a held inode reference for it. 412 * 413 * IN: zdp - znode of directory to search. 414 * nm - name of entry to lookup. 415 * flags - LOOKUP_XATTR set if looking for an attribute. 416 * cr - credentials of caller. 417 * direntflags - directory lookup flags 418 * realpnp - returned pathname. 419 * 420 * OUT: zpp - znode of located entry, NULL if not found. 421 * 422 * RETURN: 0 on success, error code on failure. 423 * 424 * Timestamps: 425 * NA 426 */ 427 /* ARGSUSED */ 428 int 429 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr, 430 int *direntflags, pathname_t *realpnp) 431 { 432 zfsvfs_t *zfsvfs = ZTOZSB(zdp); 433 int error = 0; 434 435 /* 436 * Fast path lookup, however we must skip DNLC lookup 437 * for case folding or normalizing lookups because the 438 * DNLC code only stores the passed in name. This means 439 * creating 'a' and removing 'A' on a case insensitive 440 * file system would work, but DNLC still thinks 'a' 441 * exists and won't let you create it again on the next 442 * pass through fast path. 443 */ 444 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 445 446 if (!S_ISDIR(ZTOI(zdp)->i_mode)) { 447 return (SET_ERROR(ENOTDIR)); 448 } else if (zdp->z_sa_hdl == NULL) { 449 return (SET_ERROR(EIO)); 450 } 451 452 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 453 error = zfs_fastaccesschk_execute(zdp, cr); 454 if (!error) { 455 *zpp = zdp; 456 zhold(*zpp); 457 return (0); 458 } 459 return (error); 460 } 461 } 462 463 ZFS_ENTER(zfsvfs); 464 ZFS_VERIFY_ZP(zdp); 465 466 *zpp = NULL; 467 468 if (flags & LOOKUP_XATTR) { 469 /* 470 * We don't allow recursive attributes.. 471 * Maybe someday we will. 472 */ 473 if (zdp->z_pflags & ZFS_XATTR) { 474 ZFS_EXIT(zfsvfs); 475 return (SET_ERROR(EINVAL)); 476 } 477 478 if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) { 479 ZFS_EXIT(zfsvfs); 480 return (error); 481 } 482 483 /* 484 * Do we have permission to get into attribute directory? 485 */ 486 487 if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0, 488 B_FALSE, cr))) { 489 zrele(*zpp); 490 *zpp = NULL; 491 } 492 493 ZFS_EXIT(zfsvfs); 494 return (error); 495 } 496 497 if (!S_ISDIR(ZTOI(zdp)->i_mode)) { 498 ZFS_EXIT(zfsvfs); 499 return (SET_ERROR(ENOTDIR)); 500 } 501 502 /* 503 * Check accessibility of directory. 504 */ 505 506 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) { 507 ZFS_EXIT(zfsvfs); 508 return (error); 509 } 510 511 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 512 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 513 ZFS_EXIT(zfsvfs); 514 return (SET_ERROR(EILSEQ)); 515 } 516 517 error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp); 518 if ((error == 0) && (*zpp)) 519 zfs_inode_update(*zpp); 520 521 ZFS_EXIT(zfsvfs); 522 return (error); 523 } 524 525 /* 526 * Attempt to create a new entry in a directory. If the entry 527 * already exists, truncate the file if permissible, else return 528 * an error. Return the ip of the created or trunc'd file. 529 * 530 * IN: dzp - znode of directory to put new file entry in. 531 * name - name of new file entry. 532 * vap - attributes of new file. 533 * excl - flag indicating exclusive or non-exclusive mode. 534 * mode - mode to open file with. 535 * cr - credentials of caller. 536 * flag - file flag. 537 * vsecp - ACL to be set 538 * 539 * OUT: zpp - znode of created or trunc'd entry. 540 * 541 * RETURN: 0 on success, error code on failure. 542 * 543 * Timestamps: 544 * dzp - ctime|mtime updated if new entry created 545 * zp - ctime|mtime always, atime if new 546 */ 547 548 /* ARGSUSED */ 549 int 550 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl, 551 int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp) 552 { 553 znode_t *zp; 554 zfsvfs_t *zfsvfs = ZTOZSB(dzp); 555 zilog_t *zilog; 556 objset_t *os; 557 zfs_dirlock_t *dl; 558 dmu_tx_t *tx; 559 int error; 560 uid_t uid; 561 gid_t gid; 562 zfs_acl_ids_t acl_ids; 563 boolean_t fuid_dirtied; 564 boolean_t have_acl = B_FALSE; 565 boolean_t waited = B_FALSE; 566 567 /* 568 * If we have an ephemeral id, ACL, or XVATTR then 569 * make sure file system is at proper version 570 */ 571 572 gid = crgetgid(cr); 573 uid = crgetuid(cr); 574 575 if (zfsvfs->z_use_fuids == B_FALSE && 576 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 577 return (SET_ERROR(EINVAL)); 578 579 if (name == NULL) 580 return (SET_ERROR(EINVAL)); 581 582 ZFS_ENTER(zfsvfs); 583 ZFS_VERIFY_ZP(dzp); 584 os = zfsvfs->z_os; 585 zilog = zfsvfs->z_log; 586 587 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 588 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 589 ZFS_EXIT(zfsvfs); 590 return (SET_ERROR(EILSEQ)); 591 } 592 593 if (vap->va_mask & ATTR_XVATTR) { 594 if ((error = secpolicy_xvattr((xvattr_t *)vap, 595 crgetuid(cr), cr, vap->va_mode)) != 0) { 596 ZFS_EXIT(zfsvfs); 597 return (error); 598 } 599 } 600 601 top: 602 *zpp = NULL; 603 if (*name == '\0') { 604 /* 605 * Null component name refers to the directory itself. 606 */ 607 zhold(dzp); 608 zp = dzp; 609 dl = NULL; 610 error = 0; 611 } else { 612 /* possible igrab(zp) */ 613 int zflg = 0; 614 615 if (flag & FIGNORECASE) 616 zflg |= ZCILOOK; 617 618 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 619 NULL, NULL); 620 if (error) { 621 if (have_acl) 622 zfs_acl_ids_free(&acl_ids); 623 if (strcmp(name, "..") == 0) 624 error = SET_ERROR(EISDIR); 625 ZFS_EXIT(zfsvfs); 626 return (error); 627 } 628 } 629 630 if (zp == NULL) { 631 uint64_t txtype; 632 uint64_t projid = ZFS_DEFAULT_PROJID; 633 634 /* 635 * Create a new file object and update the directory 636 * to reference it. 637 */ 638 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) { 639 if (have_acl) 640 zfs_acl_ids_free(&acl_ids); 641 goto out; 642 } 643 644 /* 645 * We only support the creation of regular files in 646 * extended attribute directories. 647 */ 648 649 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) { 650 if (have_acl) 651 zfs_acl_ids_free(&acl_ids); 652 error = SET_ERROR(EINVAL); 653 goto out; 654 } 655 656 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 657 cr, vsecp, &acl_ids)) != 0) 658 goto out; 659 have_acl = B_TRUE; 660 661 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) 662 projid = zfs_inherit_projid(dzp); 663 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) { 664 zfs_acl_ids_free(&acl_ids); 665 error = SET_ERROR(EDQUOT); 666 goto out; 667 } 668 669 tx = dmu_tx_create(os); 670 671 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 672 ZFS_SA_BASE_ATTR_SIZE); 673 674 fuid_dirtied = zfsvfs->z_fuid_dirty; 675 if (fuid_dirtied) 676 zfs_fuid_txhold(zfsvfs, tx); 677 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 678 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 679 if (!zfsvfs->z_use_sa && 680 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 681 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 682 0, acl_ids.z_aclp->z_acl_bytes); 683 } 684 685 error = dmu_tx_assign(tx, 686 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 687 if (error) { 688 zfs_dirent_unlock(dl); 689 if (error == ERESTART) { 690 waited = B_TRUE; 691 dmu_tx_wait(tx); 692 dmu_tx_abort(tx); 693 goto top; 694 } 695 zfs_acl_ids_free(&acl_ids); 696 dmu_tx_abort(tx); 697 ZFS_EXIT(zfsvfs); 698 return (error); 699 } 700 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 701 702 error = zfs_link_create(dl, zp, tx, ZNEW); 703 if (error != 0) { 704 /* 705 * Since, we failed to add the directory entry for it, 706 * delete the newly created dnode. 707 */ 708 zfs_znode_delete(zp, tx); 709 remove_inode_hash(ZTOI(zp)); 710 zfs_acl_ids_free(&acl_ids); 711 dmu_tx_commit(tx); 712 goto out; 713 } 714 715 if (fuid_dirtied) 716 zfs_fuid_sync(zfsvfs, tx); 717 718 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 719 if (flag & FIGNORECASE) 720 txtype |= TX_CI; 721 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 722 vsecp, acl_ids.z_fuidp, vap); 723 zfs_acl_ids_free(&acl_ids); 724 dmu_tx_commit(tx); 725 } else { 726 int aflags = (flag & O_APPEND) ? V_APPEND : 0; 727 728 if (have_acl) 729 zfs_acl_ids_free(&acl_ids); 730 have_acl = B_FALSE; 731 732 /* 733 * A directory entry already exists for this name. 734 */ 735 /* 736 * Can't truncate an existing file if in exclusive mode. 737 */ 738 if (excl) { 739 error = SET_ERROR(EEXIST); 740 goto out; 741 } 742 /* 743 * Can't open a directory for writing. 744 */ 745 if (S_ISDIR(ZTOI(zp)->i_mode)) { 746 error = SET_ERROR(EISDIR); 747 goto out; 748 } 749 /* 750 * Verify requested access to file. 751 */ 752 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 753 goto out; 754 } 755 756 mutex_enter(&dzp->z_lock); 757 dzp->z_seq++; 758 mutex_exit(&dzp->z_lock); 759 760 /* 761 * Truncate regular files if requested. 762 */ 763 if (S_ISREG(ZTOI(zp)->i_mode) && 764 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) { 765 /* we can't hold any locks when calling zfs_freesp() */ 766 if (dl) { 767 zfs_dirent_unlock(dl); 768 dl = NULL; 769 } 770 error = zfs_freesp(zp, 0, 0, mode, TRUE); 771 } 772 } 773 out: 774 775 if (dl) 776 zfs_dirent_unlock(dl); 777 778 if (error) { 779 if (zp) 780 zrele(zp); 781 } else { 782 zfs_inode_update(dzp); 783 zfs_inode_update(zp); 784 *zpp = zp; 785 } 786 787 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 788 zil_commit(zilog, 0); 789 790 ZFS_EXIT(zfsvfs); 791 return (error); 792 } 793 794 /* ARGSUSED */ 795 int 796 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl, 797 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp) 798 { 799 znode_t *zp = NULL, *dzp = ITOZ(dip); 800 zfsvfs_t *zfsvfs = ITOZSB(dip); 801 objset_t *os; 802 dmu_tx_t *tx; 803 int error; 804 uid_t uid; 805 gid_t gid; 806 zfs_acl_ids_t acl_ids; 807 uint64_t projid = ZFS_DEFAULT_PROJID; 808 boolean_t fuid_dirtied; 809 boolean_t have_acl = B_FALSE; 810 boolean_t waited = B_FALSE; 811 812 /* 813 * If we have an ephemeral id, ACL, or XVATTR then 814 * make sure file system is at proper version 815 */ 816 817 gid = crgetgid(cr); 818 uid = crgetuid(cr); 819 820 if (zfsvfs->z_use_fuids == B_FALSE && 821 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 822 return (SET_ERROR(EINVAL)); 823 824 ZFS_ENTER(zfsvfs); 825 ZFS_VERIFY_ZP(dzp); 826 os = zfsvfs->z_os; 827 828 if (vap->va_mask & ATTR_XVATTR) { 829 if ((error = secpolicy_xvattr((xvattr_t *)vap, 830 crgetuid(cr), cr, vap->va_mode)) != 0) { 831 ZFS_EXIT(zfsvfs); 832 return (error); 833 } 834 } 835 836 top: 837 *ipp = NULL; 838 839 /* 840 * Create a new file object and update the directory 841 * to reference it. 842 */ 843 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) { 844 if (have_acl) 845 zfs_acl_ids_free(&acl_ids); 846 goto out; 847 } 848 849 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 850 cr, vsecp, &acl_ids)) != 0) 851 goto out; 852 have_acl = B_TRUE; 853 854 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) 855 projid = zfs_inherit_projid(dzp); 856 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) { 857 zfs_acl_ids_free(&acl_ids); 858 error = SET_ERROR(EDQUOT); 859 goto out; 860 } 861 862 tx = dmu_tx_create(os); 863 864 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 865 ZFS_SA_BASE_ATTR_SIZE); 866 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 867 868 fuid_dirtied = zfsvfs->z_fuid_dirty; 869 if (fuid_dirtied) 870 zfs_fuid_txhold(zfsvfs, tx); 871 if (!zfsvfs->z_use_sa && 872 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 873 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 874 0, acl_ids.z_aclp->z_acl_bytes); 875 } 876 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 877 if (error) { 878 if (error == ERESTART) { 879 waited = B_TRUE; 880 dmu_tx_wait(tx); 881 dmu_tx_abort(tx); 882 goto top; 883 } 884 zfs_acl_ids_free(&acl_ids); 885 dmu_tx_abort(tx); 886 ZFS_EXIT(zfsvfs); 887 return (error); 888 } 889 zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids); 890 891 if (fuid_dirtied) 892 zfs_fuid_sync(zfsvfs, tx); 893 894 /* Add to unlinked set */ 895 zp->z_unlinked = B_TRUE; 896 zfs_unlinked_add(zp, tx); 897 zfs_acl_ids_free(&acl_ids); 898 dmu_tx_commit(tx); 899 out: 900 901 if (error) { 902 if (zp) 903 zrele(zp); 904 } else { 905 zfs_inode_update(dzp); 906 zfs_inode_update(zp); 907 *ipp = ZTOI(zp); 908 } 909 910 ZFS_EXIT(zfsvfs); 911 return (error); 912 } 913 914 /* 915 * Remove an entry from a directory. 916 * 917 * IN: dzp - znode of directory to remove entry from. 918 * name - name of entry to remove. 919 * cr - credentials of caller. 920 * flags - case flags. 921 * 922 * RETURN: 0 if success 923 * error code if failure 924 * 925 * Timestamps: 926 * dzp - ctime|mtime 927 * ip - ctime (if nlink > 0) 928 */ 929 930 uint64_t null_xattr = 0; 931 932 /*ARGSUSED*/ 933 int 934 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags) 935 { 936 znode_t *zp; 937 znode_t *xzp; 938 zfsvfs_t *zfsvfs = ZTOZSB(dzp); 939 zilog_t *zilog; 940 uint64_t acl_obj, xattr_obj; 941 uint64_t xattr_obj_unlinked = 0; 942 uint64_t obj = 0; 943 uint64_t links; 944 zfs_dirlock_t *dl; 945 dmu_tx_t *tx; 946 boolean_t may_delete_now, delete_now = FALSE; 947 boolean_t unlinked, toobig = FALSE; 948 uint64_t txtype; 949 pathname_t *realnmp = NULL; 950 pathname_t realnm; 951 int error; 952 int zflg = ZEXISTS; 953 boolean_t waited = B_FALSE; 954 955 if (name == NULL) 956 return (SET_ERROR(EINVAL)); 957 958 ZFS_ENTER(zfsvfs); 959 ZFS_VERIFY_ZP(dzp); 960 zilog = zfsvfs->z_log; 961 962 if (flags & FIGNORECASE) { 963 zflg |= ZCILOOK; 964 pn_alloc(&realnm); 965 realnmp = &realnm; 966 } 967 968 top: 969 xattr_obj = 0; 970 xzp = NULL; 971 /* 972 * Attempt to lock directory; fail if entry doesn't exist. 973 */ 974 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 975 NULL, realnmp))) { 976 if (realnmp) 977 pn_free(realnmp); 978 ZFS_EXIT(zfsvfs); 979 return (error); 980 } 981 982 if ((error = zfs_zaccess_delete(dzp, zp, cr))) { 983 goto out; 984 } 985 986 /* 987 * Need to use rmdir for removing directories. 988 */ 989 if (S_ISDIR(ZTOI(zp)->i_mode)) { 990 error = SET_ERROR(EPERM); 991 goto out; 992 } 993 994 mutex_enter(&zp->z_lock); 995 may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 && 996 !(zp->z_is_mapped); 997 mutex_exit(&zp->z_lock); 998 999 /* 1000 * We may delete the znode now, or we may put it in the unlinked set; 1001 * it depends on whether we're the last link, and on whether there are 1002 * other holds on the inode. So we dmu_tx_hold() the right things to 1003 * allow for either case. 1004 */ 1005 obj = zp->z_id; 1006 tx = dmu_tx_create(zfsvfs->z_os); 1007 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1008 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1009 zfs_sa_upgrade_txholds(tx, zp); 1010 zfs_sa_upgrade_txholds(tx, dzp); 1011 if (may_delete_now) { 1012 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks; 1013 /* if the file is too big, only hold_free a token amount */ 1014 dmu_tx_hold_free(tx, zp->z_id, 0, 1015 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1016 } 1017 1018 /* are there any extended attributes? */ 1019 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1020 &xattr_obj, sizeof (xattr_obj)); 1021 if (error == 0 && xattr_obj) { 1022 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1023 ASSERT0(error); 1024 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1025 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1026 } 1027 1028 mutex_enter(&zp->z_lock); 1029 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1030 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1031 mutex_exit(&zp->z_lock); 1032 1033 /* charge as an update -- would be nice not to charge at all */ 1034 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1035 1036 /* 1037 * Mark this transaction as typically resulting in a net free of space 1038 */ 1039 dmu_tx_mark_netfree(tx); 1040 1041 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1042 if (error) { 1043 zfs_dirent_unlock(dl); 1044 if (error == ERESTART) { 1045 waited = B_TRUE; 1046 dmu_tx_wait(tx); 1047 dmu_tx_abort(tx); 1048 zrele(zp); 1049 if (xzp) 1050 zrele(xzp); 1051 goto top; 1052 } 1053 if (realnmp) 1054 pn_free(realnmp); 1055 dmu_tx_abort(tx); 1056 zrele(zp); 1057 if (xzp) 1058 zrele(xzp); 1059 ZFS_EXIT(zfsvfs); 1060 return (error); 1061 } 1062 1063 /* 1064 * Remove the directory entry. 1065 */ 1066 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1067 1068 if (error) { 1069 dmu_tx_commit(tx); 1070 goto out; 1071 } 1072 1073 if (unlinked) { 1074 /* 1075 * Hold z_lock so that we can make sure that the ACL obj 1076 * hasn't changed. Could have been deleted due to 1077 * zfs_sa_upgrade(). 1078 */ 1079 mutex_enter(&zp->z_lock); 1080 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1081 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1082 delete_now = may_delete_now && !toobig && 1083 atomic_read(&ZTOI(zp)->i_count) == 1 && 1084 !(zp->z_is_mapped) && xattr_obj == xattr_obj_unlinked && 1085 zfs_external_acl(zp) == acl_obj; 1086 } 1087 1088 if (delete_now) { 1089 if (xattr_obj_unlinked) { 1090 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2); 1091 mutex_enter(&xzp->z_lock); 1092 xzp->z_unlinked = B_TRUE; 1093 clear_nlink(ZTOI(xzp)); 1094 links = 0; 1095 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1096 &links, sizeof (links), tx); 1097 ASSERT3U(error, ==, 0); 1098 mutex_exit(&xzp->z_lock); 1099 zfs_unlinked_add(xzp, tx); 1100 1101 if (zp->z_is_sa) 1102 error = sa_remove(zp->z_sa_hdl, 1103 SA_ZPL_XATTR(zfsvfs), tx); 1104 else 1105 error = sa_update(zp->z_sa_hdl, 1106 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1107 sizeof (uint64_t), tx); 1108 ASSERT0(error); 1109 } 1110 /* 1111 * Add to the unlinked set because a new reference could be 1112 * taken concurrently resulting in a deferred destruction. 1113 */ 1114 zfs_unlinked_add(zp, tx); 1115 mutex_exit(&zp->z_lock); 1116 } else if (unlinked) { 1117 mutex_exit(&zp->z_lock); 1118 zfs_unlinked_add(zp, tx); 1119 } 1120 1121 txtype = TX_REMOVE; 1122 if (flags & FIGNORECASE) 1123 txtype |= TX_CI; 1124 zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked); 1125 1126 dmu_tx_commit(tx); 1127 out: 1128 if (realnmp) 1129 pn_free(realnmp); 1130 1131 zfs_dirent_unlock(dl); 1132 zfs_inode_update(dzp); 1133 zfs_inode_update(zp); 1134 1135 if (delete_now) 1136 zrele(zp); 1137 else 1138 zfs_zrele_async(zp); 1139 1140 if (xzp) { 1141 zfs_inode_update(xzp); 1142 zfs_zrele_async(xzp); 1143 } 1144 1145 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1146 zil_commit(zilog, 0); 1147 1148 ZFS_EXIT(zfsvfs); 1149 return (error); 1150 } 1151 1152 /* 1153 * Create a new directory and insert it into dzp using the name 1154 * provided. Return a pointer to the inserted directory. 1155 * 1156 * IN: dzp - znode of directory to add subdir to. 1157 * dirname - name of new directory. 1158 * vap - attributes of new directory. 1159 * cr - credentials of caller. 1160 * flags - case flags. 1161 * vsecp - ACL to be set 1162 * 1163 * OUT: zpp - znode of created directory. 1164 * 1165 * RETURN: 0 if success 1166 * error code if failure 1167 * 1168 * Timestamps: 1169 * dzp - ctime|mtime updated 1170 * zpp - ctime|mtime|atime updated 1171 */ 1172 /*ARGSUSED*/ 1173 int 1174 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp, 1175 cred_t *cr, int flags, vsecattr_t *vsecp) 1176 { 1177 znode_t *zp; 1178 zfsvfs_t *zfsvfs = ZTOZSB(dzp); 1179 zilog_t *zilog; 1180 zfs_dirlock_t *dl; 1181 uint64_t txtype; 1182 dmu_tx_t *tx; 1183 int error; 1184 int zf = ZNEW; 1185 uid_t uid; 1186 gid_t gid = crgetgid(cr); 1187 zfs_acl_ids_t acl_ids; 1188 boolean_t fuid_dirtied; 1189 boolean_t waited = B_FALSE; 1190 1191 ASSERT(S_ISDIR(vap->va_mode)); 1192 1193 /* 1194 * If we have an ephemeral id, ACL, or XVATTR then 1195 * make sure file system is at proper version 1196 */ 1197 1198 uid = crgetuid(cr); 1199 if (zfsvfs->z_use_fuids == B_FALSE && 1200 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1201 return (SET_ERROR(EINVAL)); 1202 1203 if (dirname == NULL) 1204 return (SET_ERROR(EINVAL)); 1205 1206 ZFS_ENTER(zfsvfs); 1207 ZFS_VERIFY_ZP(dzp); 1208 zilog = zfsvfs->z_log; 1209 1210 if (dzp->z_pflags & ZFS_XATTR) { 1211 ZFS_EXIT(zfsvfs); 1212 return (SET_ERROR(EINVAL)); 1213 } 1214 1215 if (zfsvfs->z_utf8 && u8_validate(dirname, 1216 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1217 ZFS_EXIT(zfsvfs); 1218 return (SET_ERROR(EILSEQ)); 1219 } 1220 if (flags & FIGNORECASE) 1221 zf |= ZCILOOK; 1222 1223 if (vap->va_mask & ATTR_XVATTR) { 1224 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1225 crgetuid(cr), cr, vap->va_mode)) != 0) { 1226 ZFS_EXIT(zfsvfs); 1227 return (error); 1228 } 1229 } 1230 1231 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1232 vsecp, &acl_ids)) != 0) { 1233 ZFS_EXIT(zfsvfs); 1234 return (error); 1235 } 1236 /* 1237 * First make sure the new directory doesn't exist. 1238 * 1239 * Existence is checked first to make sure we don't return 1240 * EACCES instead of EEXIST which can cause some applications 1241 * to fail. 1242 */ 1243 top: 1244 *zpp = NULL; 1245 1246 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1247 NULL, NULL))) { 1248 zfs_acl_ids_free(&acl_ids); 1249 ZFS_EXIT(zfsvfs); 1250 return (error); 1251 } 1252 1253 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) { 1254 zfs_acl_ids_free(&acl_ids); 1255 zfs_dirent_unlock(dl); 1256 ZFS_EXIT(zfsvfs); 1257 return (error); 1258 } 1259 1260 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) { 1261 zfs_acl_ids_free(&acl_ids); 1262 zfs_dirent_unlock(dl); 1263 ZFS_EXIT(zfsvfs); 1264 return (SET_ERROR(EDQUOT)); 1265 } 1266 1267 /* 1268 * Add a new entry to the directory. 1269 */ 1270 tx = dmu_tx_create(zfsvfs->z_os); 1271 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1272 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1273 fuid_dirtied = zfsvfs->z_fuid_dirty; 1274 if (fuid_dirtied) 1275 zfs_fuid_txhold(zfsvfs, tx); 1276 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1277 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1278 acl_ids.z_aclp->z_acl_bytes); 1279 } 1280 1281 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1282 ZFS_SA_BASE_ATTR_SIZE); 1283 1284 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1285 if (error) { 1286 zfs_dirent_unlock(dl); 1287 if (error == ERESTART) { 1288 waited = B_TRUE; 1289 dmu_tx_wait(tx); 1290 dmu_tx_abort(tx); 1291 goto top; 1292 } 1293 zfs_acl_ids_free(&acl_ids); 1294 dmu_tx_abort(tx); 1295 ZFS_EXIT(zfsvfs); 1296 return (error); 1297 } 1298 1299 /* 1300 * Create new node. 1301 */ 1302 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1303 1304 /* 1305 * Now put new name in parent dir. 1306 */ 1307 error = zfs_link_create(dl, zp, tx, ZNEW); 1308 if (error != 0) { 1309 zfs_znode_delete(zp, tx); 1310 remove_inode_hash(ZTOI(zp)); 1311 goto out; 1312 } 1313 1314 if (fuid_dirtied) 1315 zfs_fuid_sync(zfsvfs, tx); 1316 1317 *zpp = zp; 1318 1319 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1320 if (flags & FIGNORECASE) 1321 txtype |= TX_CI; 1322 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1323 acl_ids.z_fuidp, vap); 1324 1325 out: 1326 zfs_acl_ids_free(&acl_ids); 1327 1328 dmu_tx_commit(tx); 1329 1330 zfs_dirent_unlock(dl); 1331 1332 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1333 zil_commit(zilog, 0); 1334 1335 if (error != 0) { 1336 zrele(zp); 1337 } else { 1338 zfs_inode_update(dzp); 1339 zfs_inode_update(zp); 1340 } 1341 ZFS_EXIT(zfsvfs); 1342 return (error); 1343 } 1344 1345 /* 1346 * Remove a directory subdir entry. If the current working 1347 * directory is the same as the subdir to be removed, the 1348 * remove will fail. 1349 * 1350 * IN: dzp - znode of directory to remove from. 1351 * name - name of directory to be removed. 1352 * cwd - inode of current working directory. 1353 * cr - credentials of caller. 1354 * flags - case flags 1355 * 1356 * RETURN: 0 on success, error code on failure. 1357 * 1358 * Timestamps: 1359 * dzp - ctime|mtime updated 1360 */ 1361 /*ARGSUSED*/ 1362 int 1363 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr, 1364 int flags) 1365 { 1366 znode_t *zp; 1367 zfsvfs_t *zfsvfs = ZTOZSB(dzp); 1368 zilog_t *zilog; 1369 zfs_dirlock_t *dl; 1370 dmu_tx_t *tx; 1371 int error; 1372 int zflg = ZEXISTS; 1373 boolean_t waited = B_FALSE; 1374 1375 if (name == NULL) 1376 return (SET_ERROR(EINVAL)); 1377 1378 ZFS_ENTER(zfsvfs); 1379 ZFS_VERIFY_ZP(dzp); 1380 zilog = zfsvfs->z_log; 1381 1382 if (flags & FIGNORECASE) 1383 zflg |= ZCILOOK; 1384 top: 1385 zp = NULL; 1386 1387 /* 1388 * Attempt to lock directory; fail if entry doesn't exist. 1389 */ 1390 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1391 NULL, NULL))) { 1392 ZFS_EXIT(zfsvfs); 1393 return (error); 1394 } 1395 1396 if ((error = zfs_zaccess_delete(dzp, zp, cr))) { 1397 goto out; 1398 } 1399 1400 if (!S_ISDIR(ZTOI(zp)->i_mode)) { 1401 error = SET_ERROR(ENOTDIR); 1402 goto out; 1403 } 1404 1405 if (zp == cwd) { 1406 error = SET_ERROR(EINVAL); 1407 goto out; 1408 } 1409 1410 /* 1411 * Grab a lock on the directory to make sure that no one is 1412 * trying to add (or lookup) entries while we are removing it. 1413 */ 1414 rw_enter(&zp->z_name_lock, RW_WRITER); 1415 1416 /* 1417 * Grab a lock on the parent pointer to make sure we play well 1418 * with the treewalk and directory rename code. 1419 */ 1420 rw_enter(&zp->z_parent_lock, RW_WRITER); 1421 1422 tx = dmu_tx_create(zfsvfs->z_os); 1423 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1424 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1425 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1426 zfs_sa_upgrade_txholds(tx, zp); 1427 zfs_sa_upgrade_txholds(tx, dzp); 1428 dmu_tx_mark_netfree(tx); 1429 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 1430 if (error) { 1431 rw_exit(&zp->z_parent_lock); 1432 rw_exit(&zp->z_name_lock); 1433 zfs_dirent_unlock(dl); 1434 if (error == ERESTART) { 1435 waited = B_TRUE; 1436 dmu_tx_wait(tx); 1437 dmu_tx_abort(tx); 1438 zrele(zp); 1439 goto top; 1440 } 1441 dmu_tx_abort(tx); 1442 zrele(zp); 1443 ZFS_EXIT(zfsvfs); 1444 return (error); 1445 } 1446 1447 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1448 1449 if (error == 0) { 1450 uint64_t txtype = TX_RMDIR; 1451 if (flags & FIGNORECASE) 1452 txtype |= TX_CI; 1453 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT, 1454 B_FALSE); 1455 } 1456 1457 dmu_tx_commit(tx); 1458 1459 rw_exit(&zp->z_parent_lock); 1460 rw_exit(&zp->z_name_lock); 1461 out: 1462 zfs_dirent_unlock(dl); 1463 1464 zfs_inode_update(dzp); 1465 zfs_inode_update(zp); 1466 zrele(zp); 1467 1468 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1469 zil_commit(zilog, 0); 1470 1471 ZFS_EXIT(zfsvfs); 1472 return (error); 1473 } 1474 1475 /* 1476 * Read directory entries from the given directory cursor position and emit 1477 * name and position for each entry. 1478 * 1479 * IN: ip - inode of directory to read. 1480 * ctx - directory entry context. 1481 * cr - credentials of caller. 1482 * 1483 * RETURN: 0 if success 1484 * error code if failure 1485 * 1486 * Timestamps: 1487 * ip - atime updated 1488 * 1489 * Note that the low 4 bits of the cookie returned by zap is always zero. 1490 * This allows us to use the low range for "special" directory entries: 1491 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1492 * we use the offset 2 for the '.zfs' directory. 1493 */ 1494 /* ARGSUSED */ 1495 int 1496 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr) 1497 { 1498 znode_t *zp = ITOZ(ip); 1499 zfsvfs_t *zfsvfs = ITOZSB(ip); 1500 objset_t *os; 1501 zap_cursor_t zc; 1502 zap_attribute_t zap; 1503 int error; 1504 uint8_t prefetch; 1505 uint8_t type; 1506 int done = 0; 1507 uint64_t parent; 1508 uint64_t offset; /* must be unsigned; checks for < 1 */ 1509 1510 ZFS_ENTER(zfsvfs); 1511 ZFS_VERIFY_ZP(zp); 1512 1513 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 1514 &parent, sizeof (parent))) != 0) 1515 goto out; 1516 1517 /* 1518 * Quit if directory has been removed (posix) 1519 */ 1520 if (zp->z_unlinked) 1521 goto out; 1522 1523 error = 0; 1524 os = zfsvfs->z_os; 1525 offset = ctx->pos; 1526 prefetch = zp->z_zn_prefetch; 1527 1528 /* 1529 * Initialize the iterator cursor. 1530 */ 1531 if (offset <= 3) { 1532 /* 1533 * Start iteration from the beginning of the directory. 1534 */ 1535 zap_cursor_init(&zc, os, zp->z_id); 1536 } else { 1537 /* 1538 * The offset is a serialized cursor. 1539 */ 1540 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1541 } 1542 1543 /* 1544 * Transform to file-system independent format 1545 */ 1546 while (!done) { 1547 uint64_t objnum; 1548 /* 1549 * Special case `.', `..', and `.zfs'. 1550 */ 1551 if (offset == 0) { 1552 (void) strcpy(zap.za_name, "."); 1553 zap.za_normalization_conflict = 0; 1554 objnum = zp->z_id; 1555 type = DT_DIR; 1556 } else if (offset == 1) { 1557 (void) strcpy(zap.za_name, ".."); 1558 zap.za_normalization_conflict = 0; 1559 objnum = parent; 1560 type = DT_DIR; 1561 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1562 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1563 zap.za_normalization_conflict = 0; 1564 objnum = ZFSCTL_INO_ROOT; 1565 type = DT_DIR; 1566 } else { 1567 /* 1568 * Grab next entry. 1569 */ 1570 if ((error = zap_cursor_retrieve(&zc, &zap))) { 1571 if (error == ENOENT) 1572 break; 1573 else 1574 goto update; 1575 } 1576 1577 /* 1578 * Allow multiple entries provided the first entry is 1579 * the object id. Non-zpl consumers may safely make 1580 * use of the additional space. 1581 * 1582 * XXX: This should be a feature flag for compatibility 1583 */ 1584 if (zap.za_integer_length != 8 || 1585 zap.za_num_integers == 0) { 1586 cmn_err(CE_WARN, "zap_readdir: bad directory " 1587 "entry, obj = %lld, offset = %lld, " 1588 "length = %d, num = %lld\n", 1589 (u_longlong_t)zp->z_id, 1590 (u_longlong_t)offset, 1591 zap.za_integer_length, 1592 (u_longlong_t)zap.za_num_integers); 1593 error = SET_ERROR(ENXIO); 1594 goto update; 1595 } 1596 1597 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 1598 type = ZFS_DIRENT_TYPE(zap.za_first_integer); 1599 } 1600 1601 done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name), 1602 objnum, type); 1603 if (done) 1604 break; 1605 1606 /* Prefetch znode */ 1607 if (prefetch) { 1608 dmu_prefetch(os, objnum, 0, 0, 0, 1609 ZIO_PRIORITY_SYNC_READ); 1610 } 1611 1612 /* 1613 * Move to the next entry, fill in the previous offset. 1614 */ 1615 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1616 zap_cursor_advance(&zc); 1617 offset = zap_cursor_serialize(&zc); 1618 } else { 1619 offset += 1; 1620 } 1621 ctx->pos = offset; 1622 } 1623 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1624 1625 update: 1626 zap_cursor_fini(&zc); 1627 if (error == ENOENT) 1628 error = 0; 1629 out: 1630 ZFS_EXIT(zfsvfs); 1631 1632 return (error); 1633 } 1634 1635 /* 1636 * Get the basic file attributes and place them in the provided kstat 1637 * structure. The inode is assumed to be the authoritative source 1638 * for most of the attributes. However, the znode currently has the 1639 * authoritative atime, blksize, and block count. 1640 * 1641 * IN: ip - inode of file. 1642 * 1643 * OUT: sp - kstat values. 1644 * 1645 * RETURN: 0 (always succeeds) 1646 */ 1647 /* ARGSUSED */ 1648 int 1649 zfs_getattr_fast(struct inode *ip, struct kstat *sp) 1650 { 1651 znode_t *zp = ITOZ(ip); 1652 zfsvfs_t *zfsvfs = ITOZSB(ip); 1653 uint32_t blksize; 1654 u_longlong_t nblocks; 1655 1656 ZFS_ENTER(zfsvfs); 1657 ZFS_VERIFY_ZP(zp); 1658 1659 mutex_enter(&zp->z_lock); 1660 1661 generic_fillattr(ip, sp); 1662 /* 1663 * +1 link count for root inode with visible '.zfs' directory. 1664 */ 1665 if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp)) 1666 if (sp->nlink < ZFS_LINK_MAX) 1667 sp->nlink++; 1668 1669 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); 1670 sp->blksize = blksize; 1671 sp->blocks = nblocks; 1672 1673 if (unlikely(zp->z_blksz == 0)) { 1674 /* 1675 * Block size hasn't been set; suggest maximal I/O transfers. 1676 */ 1677 sp->blksize = zfsvfs->z_max_blksz; 1678 } 1679 1680 mutex_exit(&zp->z_lock); 1681 1682 /* 1683 * Required to prevent NFS client from detecting different inode 1684 * numbers of snapshot root dentry before and after snapshot mount. 1685 */ 1686 if (zfsvfs->z_issnap) { 1687 if (ip->i_sb->s_root->d_inode == ip) 1688 sp->ino = ZFSCTL_INO_SNAPDIRS - 1689 dmu_objset_id(zfsvfs->z_os); 1690 } 1691 1692 ZFS_EXIT(zfsvfs); 1693 1694 return (0); 1695 } 1696 1697 /* 1698 * For the operation of changing file's user/group/project, we need to 1699 * handle not only the main object that is assigned to the file directly, 1700 * but also the ones that are used by the file via hidden xattr directory. 1701 * 1702 * Because the xattr directory may contains many EA entries, as to it may 1703 * be impossible to change all of them via the transaction of changing the 1704 * main object's user/group/project attributes. Then we have to change them 1705 * via other multiple independent transactions one by one. It may be not good 1706 * solution, but we have no better idea yet. 1707 */ 1708 static int 1709 zfs_setattr_dir(znode_t *dzp) 1710 { 1711 struct inode *dxip = ZTOI(dzp); 1712 struct inode *xip = NULL; 1713 zfsvfs_t *zfsvfs = ZTOZSB(dzp); 1714 objset_t *os = zfsvfs->z_os; 1715 zap_cursor_t zc; 1716 zap_attribute_t zap; 1717 zfs_dirlock_t *dl; 1718 znode_t *zp = NULL; 1719 dmu_tx_t *tx = NULL; 1720 uint64_t uid, gid; 1721 sa_bulk_attr_t bulk[4]; 1722 int count; 1723 int err; 1724 1725 zap_cursor_init(&zc, os, dzp->z_id); 1726 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) { 1727 count = 0; 1728 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) { 1729 err = ENXIO; 1730 break; 1731 } 1732 1733 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp, 1734 ZEXISTS, NULL, NULL); 1735 if (err == ENOENT) 1736 goto next; 1737 if (err) 1738 break; 1739 1740 xip = ZTOI(zp); 1741 if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) && 1742 KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) && 1743 zp->z_projid == dzp->z_projid) 1744 goto next; 1745 1746 tx = dmu_tx_create(os); 1747 if (!(zp->z_pflags & ZFS_PROJID)) 1748 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1749 else 1750 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1751 1752 err = dmu_tx_assign(tx, TXG_WAIT); 1753 if (err) 1754 break; 1755 1756 mutex_enter(&dzp->z_lock); 1757 1758 if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) { 1759 xip->i_uid = dxip->i_uid; 1760 uid = zfs_uid_read(dxip); 1761 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1762 &uid, sizeof (uid)); 1763 } 1764 1765 if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) { 1766 xip->i_gid = dxip->i_gid; 1767 gid = zfs_gid_read(dxip); 1768 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1769 &gid, sizeof (gid)); 1770 } 1771 1772 if (zp->z_projid != dzp->z_projid) { 1773 if (!(zp->z_pflags & ZFS_PROJID)) { 1774 zp->z_pflags |= ZFS_PROJID; 1775 SA_ADD_BULK_ATTR(bulk, count, 1776 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags, 1777 sizeof (zp->z_pflags)); 1778 } 1779 1780 zp->z_projid = dzp->z_projid; 1781 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs), 1782 NULL, &zp->z_projid, sizeof (zp->z_projid)); 1783 } 1784 1785 mutex_exit(&dzp->z_lock); 1786 1787 if (likely(count > 0)) { 1788 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1789 dmu_tx_commit(tx); 1790 } else { 1791 dmu_tx_abort(tx); 1792 } 1793 tx = NULL; 1794 if (err != 0 && err != ENOENT) 1795 break; 1796 1797 next: 1798 if (zp) { 1799 zrele(zp); 1800 zp = NULL; 1801 zfs_dirent_unlock(dl); 1802 } 1803 zap_cursor_advance(&zc); 1804 } 1805 1806 if (tx) 1807 dmu_tx_abort(tx); 1808 if (zp) { 1809 zrele(zp); 1810 zfs_dirent_unlock(dl); 1811 } 1812 zap_cursor_fini(&zc); 1813 1814 return (err == ENOENT ? 0 : err); 1815 } 1816 1817 /* 1818 * Set the file attributes to the values contained in the 1819 * vattr structure. 1820 * 1821 * IN: zp - znode of file to be modified. 1822 * vap - new attribute values. 1823 * If ATTR_XVATTR set, then optional attrs are being set 1824 * flags - ATTR_UTIME set if non-default time values provided. 1825 * - ATTR_NOACLCHECK (CIFS context only). 1826 * cr - credentials of caller. 1827 * 1828 * RETURN: 0 if success 1829 * error code if failure 1830 * 1831 * Timestamps: 1832 * ip - ctime updated, mtime updated if size changed. 1833 */ 1834 /* ARGSUSED */ 1835 int 1836 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr) 1837 { 1838 struct inode *ip; 1839 zfsvfs_t *zfsvfs = ZTOZSB(zp); 1840 objset_t *os = zfsvfs->z_os; 1841 zilog_t *zilog; 1842 dmu_tx_t *tx; 1843 vattr_t oldva; 1844 xvattr_t *tmpxvattr; 1845 uint_t mask = vap->va_mask; 1846 uint_t saved_mask = 0; 1847 int trim_mask = 0; 1848 uint64_t new_mode; 1849 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid; 1850 uint64_t xattr_obj; 1851 uint64_t mtime[2], ctime[2], atime[2]; 1852 uint64_t projid = ZFS_INVALID_PROJID; 1853 znode_t *attrzp; 1854 int need_policy = FALSE; 1855 int err, err2 = 0; 1856 zfs_fuid_info_t *fuidp = NULL; 1857 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 1858 xoptattr_t *xoap; 1859 zfs_acl_t *aclp; 1860 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 1861 boolean_t fuid_dirtied = B_FALSE; 1862 boolean_t handle_eadir = B_FALSE; 1863 sa_bulk_attr_t *bulk, *xattr_bulk; 1864 int count = 0, xattr_count = 0, bulks = 8; 1865 1866 if (mask == 0) 1867 return (0); 1868 1869 ZFS_ENTER(zfsvfs); 1870 ZFS_VERIFY_ZP(zp); 1871 ip = ZTOI(zp); 1872 1873 /* 1874 * If this is a xvattr_t, then get a pointer to the structure of 1875 * optional attributes. If this is NULL, then we have a vattr_t. 1876 */ 1877 xoap = xva_getxoptattr(xvap); 1878 if (xoap != NULL && (mask & ATTR_XVATTR)) { 1879 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 1880 if (!dmu_objset_projectquota_enabled(os) || 1881 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) { 1882 ZFS_EXIT(zfsvfs); 1883 return (SET_ERROR(ENOTSUP)); 1884 } 1885 1886 projid = xoap->xoa_projid; 1887 if (unlikely(projid == ZFS_INVALID_PROJID)) { 1888 ZFS_EXIT(zfsvfs); 1889 return (SET_ERROR(EINVAL)); 1890 } 1891 1892 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID) 1893 projid = ZFS_INVALID_PROJID; 1894 else 1895 need_policy = TRUE; 1896 } 1897 1898 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) && 1899 (xoap->xoa_projinherit != 1900 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) && 1901 (!dmu_objset_projectquota_enabled(os) || 1902 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) { 1903 ZFS_EXIT(zfsvfs); 1904 return (SET_ERROR(ENOTSUP)); 1905 } 1906 } 1907 1908 zilog = zfsvfs->z_log; 1909 1910 /* 1911 * Make sure that if we have ephemeral uid/gid or xvattr specified 1912 * that file system is at proper version level 1913 */ 1914 1915 if (zfsvfs->z_use_fuids == B_FALSE && 1916 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) || 1917 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) || 1918 (mask & ATTR_XVATTR))) { 1919 ZFS_EXIT(zfsvfs); 1920 return (SET_ERROR(EINVAL)); 1921 } 1922 1923 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) { 1924 ZFS_EXIT(zfsvfs); 1925 return (SET_ERROR(EISDIR)); 1926 } 1927 1928 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) { 1929 ZFS_EXIT(zfsvfs); 1930 return (SET_ERROR(EINVAL)); 1931 } 1932 1933 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP); 1934 xva_init(tmpxvattr); 1935 1936 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP); 1937 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP); 1938 1939 /* 1940 * Immutable files can only alter immutable bit and atime 1941 */ 1942 if ((zp->z_pflags & ZFS_IMMUTABLE) && 1943 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) || 1944 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 1945 err = SET_ERROR(EPERM); 1946 goto out3; 1947 } 1948 1949 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 1950 err = SET_ERROR(EPERM); 1951 goto out3; 1952 } 1953 1954 /* 1955 * Verify timestamps doesn't overflow 32 bits. 1956 * ZFS can handle large timestamps, but 32bit syscalls can't 1957 * handle times greater than 2039. This check should be removed 1958 * once large timestamps are fully supported. 1959 */ 1960 if (mask & (ATTR_ATIME | ATTR_MTIME)) { 1961 if (((mask & ATTR_ATIME) && 1962 TIMESPEC_OVERFLOW(&vap->va_atime)) || 1963 ((mask & ATTR_MTIME) && 1964 TIMESPEC_OVERFLOW(&vap->va_mtime))) { 1965 err = SET_ERROR(EOVERFLOW); 1966 goto out3; 1967 } 1968 } 1969 1970 top: 1971 attrzp = NULL; 1972 aclp = NULL; 1973 1974 /* Can this be moved to before the top label? */ 1975 if (zfs_is_readonly(zfsvfs)) { 1976 err = SET_ERROR(EROFS); 1977 goto out3; 1978 } 1979 1980 /* 1981 * First validate permissions 1982 */ 1983 1984 if (mask & ATTR_SIZE) { 1985 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 1986 if (err) 1987 goto out3; 1988 1989 /* 1990 * XXX - Note, we are not providing any open 1991 * mode flags here (like FNDELAY), so we may 1992 * block if there are locks present... this 1993 * should be addressed in openat(). 1994 */ 1995 /* XXX - would it be OK to generate a log record here? */ 1996 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 1997 if (err) 1998 goto out3; 1999 } 2000 2001 if (mask & (ATTR_ATIME|ATTR_MTIME) || 2002 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2003 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2004 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2005 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2006 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2007 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2008 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2009 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2010 skipaclchk, cr); 2011 } 2012 2013 if (mask & (ATTR_UID|ATTR_GID)) { 2014 int idmask = (mask & (ATTR_UID|ATTR_GID)); 2015 int take_owner; 2016 int take_group; 2017 2018 /* 2019 * NOTE: even if a new mode is being set, 2020 * we may clear S_ISUID/S_ISGID bits. 2021 */ 2022 2023 if (!(mask & ATTR_MODE)) 2024 vap->va_mode = zp->z_mode; 2025 2026 /* 2027 * Take ownership or chgrp to group we are a member of 2028 */ 2029 2030 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr)); 2031 take_group = (mask & ATTR_GID) && 2032 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2033 2034 /* 2035 * If both ATTR_UID and ATTR_GID are set then take_owner and 2036 * take_group must both be set in order to allow taking 2037 * ownership. 2038 * 2039 * Otherwise, send the check through secpolicy_vnode_setattr() 2040 * 2041 */ 2042 2043 if (((idmask == (ATTR_UID|ATTR_GID)) && 2044 take_owner && take_group) || 2045 ((idmask == ATTR_UID) && take_owner) || 2046 ((idmask == ATTR_GID) && take_group)) { 2047 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2048 skipaclchk, cr) == 0) { 2049 /* 2050 * Remove setuid/setgid for non-privileged users 2051 */ 2052 (void) secpolicy_setid_clear(vap, cr); 2053 trim_mask = (mask & (ATTR_UID|ATTR_GID)); 2054 } else { 2055 need_policy = TRUE; 2056 } 2057 } else { 2058 need_policy = TRUE; 2059 } 2060 } 2061 2062 mutex_enter(&zp->z_lock); 2063 oldva.va_mode = zp->z_mode; 2064 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2065 if (mask & ATTR_XVATTR) { 2066 /* 2067 * Update xvattr mask to include only those attributes 2068 * that are actually changing. 2069 * 2070 * the bits will be restored prior to actually setting 2071 * the attributes so the caller thinks they were set. 2072 */ 2073 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2074 if (xoap->xoa_appendonly != 2075 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2076 need_policy = TRUE; 2077 } else { 2078 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2079 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY); 2080 } 2081 } 2082 2083 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 2084 if (xoap->xoa_projinherit != 2085 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) { 2086 need_policy = TRUE; 2087 } else { 2088 XVA_CLR_REQ(xvap, XAT_PROJINHERIT); 2089 XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT); 2090 } 2091 } 2092 2093 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2094 if (xoap->xoa_nounlink != 2095 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2096 need_policy = TRUE; 2097 } else { 2098 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2099 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK); 2100 } 2101 } 2102 2103 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2104 if (xoap->xoa_immutable != 2105 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2106 need_policy = TRUE; 2107 } else { 2108 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2109 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE); 2110 } 2111 } 2112 2113 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2114 if (xoap->xoa_nodump != 2115 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2116 need_policy = TRUE; 2117 } else { 2118 XVA_CLR_REQ(xvap, XAT_NODUMP); 2119 XVA_SET_REQ(tmpxvattr, XAT_NODUMP); 2120 } 2121 } 2122 2123 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2124 if (xoap->xoa_av_modified != 2125 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2126 need_policy = TRUE; 2127 } else { 2128 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2129 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED); 2130 } 2131 } 2132 2133 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2134 if ((!S_ISREG(ip->i_mode) && 2135 xoap->xoa_av_quarantined) || 2136 xoap->xoa_av_quarantined != 2137 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2138 need_policy = TRUE; 2139 } else { 2140 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2141 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED); 2142 } 2143 } 2144 2145 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2146 mutex_exit(&zp->z_lock); 2147 err = SET_ERROR(EPERM); 2148 goto out3; 2149 } 2150 2151 if (need_policy == FALSE && 2152 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2153 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2154 need_policy = TRUE; 2155 } 2156 } 2157 2158 mutex_exit(&zp->z_lock); 2159 2160 if (mask & ATTR_MODE) { 2161 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2162 err = secpolicy_setid_setsticky_clear(ip, vap, 2163 &oldva, cr); 2164 if (err) 2165 goto out3; 2166 2167 trim_mask |= ATTR_MODE; 2168 } else { 2169 need_policy = TRUE; 2170 } 2171 } 2172 2173 if (need_policy) { 2174 /* 2175 * If trim_mask is set then take ownership 2176 * has been granted or write_acl is present and user 2177 * has the ability to modify mode. In that case remove 2178 * UID|GID and or MODE from mask so that 2179 * secpolicy_vnode_setattr() doesn't revoke it. 2180 */ 2181 2182 if (trim_mask) { 2183 saved_mask = vap->va_mask; 2184 vap->va_mask &= ~trim_mask; 2185 } 2186 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags, 2187 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2188 if (err) 2189 goto out3; 2190 2191 if (trim_mask) 2192 vap->va_mask |= saved_mask; 2193 } 2194 2195 /* 2196 * secpolicy_vnode_setattr, or take ownership may have 2197 * changed va_mask 2198 */ 2199 mask = vap->va_mask; 2200 2201 if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) { 2202 handle_eadir = B_TRUE; 2203 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 2204 &xattr_obj, sizeof (xattr_obj)); 2205 2206 if (err == 0 && xattr_obj) { 2207 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp); 2208 if (err) 2209 goto out2; 2210 } 2211 if (mask & ATTR_UID) { 2212 new_kuid = zfs_fuid_create(zfsvfs, 2213 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2214 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) && 2215 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT, 2216 new_kuid)) { 2217 if (attrzp) 2218 zrele(attrzp); 2219 err = SET_ERROR(EDQUOT); 2220 goto out2; 2221 } 2222 } 2223 2224 if (mask & ATTR_GID) { 2225 new_kgid = zfs_fuid_create(zfsvfs, 2226 (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp); 2227 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) && 2228 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT, 2229 new_kgid)) { 2230 if (attrzp) 2231 zrele(attrzp); 2232 err = SET_ERROR(EDQUOT); 2233 goto out2; 2234 } 2235 } 2236 2237 if (projid != ZFS_INVALID_PROJID && 2238 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) { 2239 if (attrzp) 2240 zrele(attrzp); 2241 err = EDQUOT; 2242 goto out2; 2243 } 2244 } 2245 tx = dmu_tx_create(os); 2246 2247 if (mask & ATTR_MODE) { 2248 uint64_t pmode = zp->z_mode; 2249 uint64_t acl_obj; 2250 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2251 2252 if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED && 2253 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 2254 err = EPERM; 2255 goto out; 2256 } 2257 2258 if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))) 2259 goto out; 2260 2261 mutex_enter(&zp->z_lock); 2262 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 2263 /* 2264 * Are we upgrading ACL from old V0 format 2265 * to V1 format? 2266 */ 2267 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 2268 zfs_znode_acl_version(zp) == 2269 ZFS_ACL_VERSION_INITIAL) { 2270 dmu_tx_hold_free(tx, acl_obj, 0, 2271 DMU_OBJECT_END); 2272 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2273 0, aclp->z_acl_bytes); 2274 } else { 2275 dmu_tx_hold_write(tx, acl_obj, 0, 2276 aclp->z_acl_bytes); 2277 } 2278 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2279 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2280 0, aclp->z_acl_bytes); 2281 } 2282 mutex_exit(&zp->z_lock); 2283 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2284 } else { 2285 if (((mask & ATTR_XVATTR) && 2286 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 2287 (projid != ZFS_INVALID_PROJID && 2288 !(zp->z_pflags & ZFS_PROJID))) 2289 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2290 else 2291 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2292 } 2293 2294 if (attrzp) { 2295 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 2296 } 2297 2298 fuid_dirtied = zfsvfs->z_fuid_dirty; 2299 if (fuid_dirtied) 2300 zfs_fuid_txhold(zfsvfs, tx); 2301 2302 zfs_sa_upgrade_txholds(tx, zp); 2303 2304 err = dmu_tx_assign(tx, TXG_WAIT); 2305 if (err) 2306 goto out; 2307 2308 count = 0; 2309 /* 2310 * Set each attribute requested. 2311 * We group settings according to the locks they need to acquire. 2312 * 2313 * Note: you cannot set ctime directly, although it will be 2314 * updated as a side-effect of calling this function. 2315 */ 2316 2317 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) { 2318 /* 2319 * For the existed object that is upgraded from old system, 2320 * its on-disk layout has no slot for the project ID attribute. 2321 * But quota accounting logic needs to access related slots by 2322 * offset directly. So we need to adjust old objects' layout 2323 * to make the project ID to some unified and fixed offset. 2324 */ 2325 if (attrzp) 2326 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid); 2327 if (err == 0) 2328 err = sa_add_projid(zp->z_sa_hdl, tx, projid); 2329 2330 if (unlikely(err == EEXIST)) 2331 err = 0; 2332 else if (err != 0) 2333 goto out; 2334 else 2335 projid = ZFS_INVALID_PROJID; 2336 } 2337 2338 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE)) 2339 mutex_enter(&zp->z_acl_lock); 2340 mutex_enter(&zp->z_lock); 2341 2342 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 2343 &zp->z_pflags, sizeof (zp->z_pflags)); 2344 2345 if (attrzp) { 2346 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE)) 2347 mutex_enter(&attrzp->z_acl_lock); 2348 mutex_enter(&attrzp->z_lock); 2349 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2350 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 2351 sizeof (attrzp->z_pflags)); 2352 if (projid != ZFS_INVALID_PROJID) { 2353 attrzp->z_projid = projid; 2354 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2355 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid, 2356 sizeof (attrzp->z_projid)); 2357 } 2358 } 2359 2360 if (mask & (ATTR_UID|ATTR_GID)) { 2361 2362 if (mask & ATTR_UID) { 2363 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid); 2364 new_uid = zfs_uid_read(ZTOI(zp)); 2365 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 2366 &new_uid, sizeof (new_uid)); 2367 if (attrzp) { 2368 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2369 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 2370 sizeof (new_uid)); 2371 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid); 2372 } 2373 } 2374 2375 if (mask & ATTR_GID) { 2376 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid); 2377 new_gid = zfs_gid_read(ZTOI(zp)); 2378 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 2379 NULL, &new_gid, sizeof (new_gid)); 2380 if (attrzp) { 2381 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2382 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 2383 sizeof (new_gid)); 2384 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid); 2385 } 2386 } 2387 if (!(mask & ATTR_MODE)) { 2388 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 2389 NULL, &new_mode, sizeof (new_mode)); 2390 new_mode = zp->z_mode; 2391 } 2392 err = zfs_acl_chown_setattr(zp); 2393 ASSERT(err == 0); 2394 if (attrzp) { 2395 err = zfs_acl_chown_setattr(attrzp); 2396 ASSERT(err == 0); 2397 } 2398 } 2399 2400 if (mask & ATTR_MODE) { 2401 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 2402 &new_mode, sizeof (new_mode)); 2403 zp->z_mode = ZTOI(zp)->i_mode = new_mode; 2404 ASSERT3P(aclp, !=, NULL); 2405 err = zfs_aclset_common(zp, aclp, cr, tx); 2406 ASSERT0(err); 2407 if (zp->z_acl_cached) 2408 zfs_acl_free(zp->z_acl_cached); 2409 zp->z_acl_cached = aclp; 2410 aclp = NULL; 2411 } 2412 2413 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) { 2414 zp->z_atime_dirty = B_FALSE; 2415 ZFS_TIME_ENCODE(&ip->i_atime, atime); 2416 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 2417 &atime, sizeof (atime)); 2418 } 2419 2420 if (mask & (ATTR_MTIME | ATTR_SIZE)) { 2421 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 2422 ZTOI(zp)->i_mtime = zpl_inode_timestamp_truncate( 2423 vap->va_mtime, ZTOI(zp)); 2424 2425 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 2426 mtime, sizeof (mtime)); 2427 } 2428 2429 if (mask & (ATTR_CTIME | ATTR_SIZE)) { 2430 ZFS_TIME_ENCODE(&vap->va_ctime, ctime); 2431 ZTOI(zp)->i_ctime = zpl_inode_timestamp_truncate(vap->va_ctime, 2432 ZTOI(zp)); 2433 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 2434 ctime, sizeof (ctime)); 2435 } 2436 2437 if (projid != ZFS_INVALID_PROJID) { 2438 zp->z_projid = projid; 2439 SA_ADD_BULK_ATTR(bulk, count, 2440 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid, 2441 sizeof (zp->z_projid)); 2442 } 2443 2444 if (attrzp && mask) { 2445 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2446 SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 2447 sizeof (ctime)); 2448 } 2449 2450 /* 2451 * Do this after setting timestamps to prevent timestamp 2452 * update from toggling bit 2453 */ 2454 2455 if (xoap && (mask & ATTR_XVATTR)) { 2456 2457 /* 2458 * restore trimmed off masks 2459 * so that return masks can be set for caller. 2460 */ 2461 2462 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) { 2463 XVA_SET_REQ(xvap, XAT_APPENDONLY); 2464 } 2465 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) { 2466 XVA_SET_REQ(xvap, XAT_NOUNLINK); 2467 } 2468 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) { 2469 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 2470 } 2471 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) { 2472 XVA_SET_REQ(xvap, XAT_NODUMP); 2473 } 2474 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) { 2475 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 2476 } 2477 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) { 2478 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 2479 } 2480 if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) { 2481 XVA_SET_REQ(xvap, XAT_PROJINHERIT); 2482 } 2483 2484 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 2485 ASSERT(S_ISREG(ip->i_mode)); 2486 2487 zfs_xvattr_set(zp, xvap, tx); 2488 } 2489 2490 if (fuid_dirtied) 2491 zfs_fuid_sync(zfsvfs, tx); 2492 2493 if (mask != 0) 2494 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2495 2496 mutex_exit(&zp->z_lock); 2497 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE)) 2498 mutex_exit(&zp->z_acl_lock); 2499 2500 if (attrzp) { 2501 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE)) 2502 mutex_exit(&attrzp->z_acl_lock); 2503 mutex_exit(&attrzp->z_lock); 2504 } 2505 out: 2506 if (err == 0 && xattr_count > 0) { 2507 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 2508 xattr_count, tx); 2509 ASSERT(err2 == 0); 2510 } 2511 2512 if (aclp) 2513 zfs_acl_free(aclp); 2514 2515 if (fuidp) { 2516 zfs_fuid_info_free(fuidp); 2517 fuidp = NULL; 2518 } 2519 2520 if (err) { 2521 dmu_tx_abort(tx); 2522 if (attrzp) 2523 zrele(attrzp); 2524 if (err == ERESTART) 2525 goto top; 2526 } else { 2527 if (count > 0) 2528 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 2529 dmu_tx_commit(tx); 2530 if (attrzp) { 2531 if (err2 == 0 && handle_eadir) 2532 err2 = zfs_setattr_dir(attrzp); 2533 zrele(attrzp); 2534 } 2535 zfs_inode_update(zp); 2536 } 2537 2538 out2: 2539 if (os->os_sync == ZFS_SYNC_ALWAYS) 2540 zil_commit(zilog, 0); 2541 2542 out3: 2543 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks); 2544 kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks); 2545 kmem_free(tmpxvattr, sizeof (xvattr_t)); 2546 ZFS_EXIT(zfsvfs); 2547 return (err); 2548 } 2549 2550 typedef struct zfs_zlock { 2551 krwlock_t *zl_rwlock; /* lock we acquired */ 2552 znode_t *zl_znode; /* znode we held */ 2553 struct zfs_zlock *zl_next; /* next in list */ 2554 } zfs_zlock_t; 2555 2556 /* 2557 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2558 */ 2559 static void 2560 zfs_rename_unlock(zfs_zlock_t **zlpp) 2561 { 2562 zfs_zlock_t *zl; 2563 2564 while ((zl = *zlpp) != NULL) { 2565 if (zl->zl_znode != NULL) 2566 zfs_zrele_async(zl->zl_znode); 2567 rw_exit(zl->zl_rwlock); 2568 *zlpp = zl->zl_next; 2569 kmem_free(zl, sizeof (*zl)); 2570 } 2571 } 2572 2573 /* 2574 * Search back through the directory tree, using the ".." entries. 2575 * Lock each directory in the chain to prevent concurrent renames. 2576 * Fail any attempt to move a directory into one of its own descendants. 2577 * XXX - z_parent_lock can overlap with map or grow locks 2578 */ 2579 static int 2580 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2581 { 2582 zfs_zlock_t *zl; 2583 znode_t *zp = tdzp; 2584 uint64_t rootid = ZTOZSB(zp)->z_root; 2585 uint64_t oidp = zp->z_id; 2586 krwlock_t *rwlp = &szp->z_parent_lock; 2587 krw_t rw = RW_WRITER; 2588 2589 /* 2590 * First pass write-locks szp and compares to zp->z_id. 2591 * Later passes read-lock zp and compare to zp->z_parent. 2592 */ 2593 do { 2594 if (!rw_tryenter(rwlp, rw)) { 2595 /* 2596 * Another thread is renaming in this path. 2597 * Note that if we are a WRITER, we don't have any 2598 * parent_locks held yet. 2599 */ 2600 if (rw == RW_READER && zp->z_id > szp->z_id) { 2601 /* 2602 * Drop our locks and restart 2603 */ 2604 zfs_rename_unlock(&zl); 2605 *zlpp = NULL; 2606 zp = tdzp; 2607 oidp = zp->z_id; 2608 rwlp = &szp->z_parent_lock; 2609 rw = RW_WRITER; 2610 continue; 2611 } else { 2612 /* 2613 * Wait for other thread to drop its locks 2614 */ 2615 rw_enter(rwlp, rw); 2616 } 2617 } 2618 2619 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2620 zl->zl_rwlock = rwlp; 2621 zl->zl_znode = NULL; 2622 zl->zl_next = *zlpp; 2623 *zlpp = zl; 2624 2625 if (oidp == szp->z_id) /* We're a descendant of szp */ 2626 return (SET_ERROR(EINVAL)); 2627 2628 if (oidp == rootid) /* We've hit the top */ 2629 return (0); 2630 2631 if (rw == RW_READER) { /* i.e. not the first pass */ 2632 int error = zfs_zget(ZTOZSB(zp), oidp, &zp); 2633 if (error) 2634 return (error); 2635 zl->zl_znode = zp; 2636 } 2637 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)), 2638 &oidp, sizeof (oidp)); 2639 rwlp = &zp->z_parent_lock; 2640 rw = RW_READER; 2641 2642 } while (zp->z_id != sdzp->z_id); 2643 2644 return (0); 2645 } 2646 2647 /* 2648 * Move an entry from the provided source directory to the target 2649 * directory. Change the entry name as indicated. 2650 * 2651 * IN: sdzp - Source directory containing the "old entry". 2652 * snm - Old entry name. 2653 * tdzp - Target directory to contain the "new entry". 2654 * tnm - New entry name. 2655 * cr - credentials of caller. 2656 * flags - case flags 2657 * 2658 * RETURN: 0 on success, error code on failure. 2659 * 2660 * Timestamps: 2661 * sdzp,tdzp - ctime|mtime updated 2662 */ 2663 /*ARGSUSED*/ 2664 int 2665 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm, 2666 cred_t *cr, int flags) 2667 { 2668 znode_t *szp, *tzp; 2669 zfsvfs_t *zfsvfs = ZTOZSB(sdzp); 2670 zilog_t *zilog; 2671 zfs_dirlock_t *sdl, *tdl; 2672 dmu_tx_t *tx; 2673 zfs_zlock_t *zl; 2674 int cmp, serr, terr; 2675 int error = 0; 2676 int zflg = 0; 2677 boolean_t waited = B_FALSE; 2678 2679 if (snm == NULL || tnm == NULL) 2680 return (SET_ERROR(EINVAL)); 2681 2682 ZFS_ENTER(zfsvfs); 2683 ZFS_VERIFY_ZP(sdzp); 2684 zilog = zfsvfs->z_log; 2685 2686 ZFS_VERIFY_ZP(tdzp); 2687 2688 /* 2689 * We check i_sb because snapshots and the ctldir must have different 2690 * super blocks. 2691 */ 2692 if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb || 2693 zfsctl_is_node(ZTOI(tdzp))) { 2694 ZFS_EXIT(zfsvfs); 2695 return (SET_ERROR(EXDEV)); 2696 } 2697 2698 if (zfsvfs->z_utf8 && u8_validate(tnm, 2699 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2700 ZFS_EXIT(zfsvfs); 2701 return (SET_ERROR(EILSEQ)); 2702 } 2703 2704 if (flags & FIGNORECASE) 2705 zflg |= ZCILOOK; 2706 2707 top: 2708 szp = NULL; 2709 tzp = NULL; 2710 zl = NULL; 2711 2712 /* 2713 * This is to prevent the creation of links into attribute space 2714 * by renaming a linked file into/outof an attribute directory. 2715 * See the comment in zfs_link() for why this is considered bad. 2716 */ 2717 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 2718 ZFS_EXIT(zfsvfs); 2719 return (SET_ERROR(EINVAL)); 2720 } 2721 2722 /* 2723 * Lock source and target directory entries. To prevent deadlock, 2724 * a lock ordering must be defined. We lock the directory with 2725 * the smallest object id first, or if it's a tie, the one with 2726 * the lexically first name. 2727 */ 2728 if (sdzp->z_id < tdzp->z_id) { 2729 cmp = -1; 2730 } else if (sdzp->z_id > tdzp->z_id) { 2731 cmp = 1; 2732 } else { 2733 /* 2734 * First compare the two name arguments without 2735 * considering any case folding. 2736 */ 2737 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 2738 2739 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 2740 ASSERT(error == 0 || !zfsvfs->z_utf8); 2741 if (cmp == 0) { 2742 /* 2743 * POSIX: "If the old argument and the new argument 2744 * both refer to links to the same existing file, 2745 * the rename() function shall return successfully 2746 * and perform no other action." 2747 */ 2748 ZFS_EXIT(zfsvfs); 2749 return (0); 2750 } 2751 /* 2752 * If the file system is case-folding, then we may 2753 * have some more checking to do. A case-folding file 2754 * system is either supporting mixed case sensitivity 2755 * access or is completely case-insensitive. Note 2756 * that the file system is always case preserving. 2757 * 2758 * In mixed sensitivity mode case sensitive behavior 2759 * is the default. FIGNORECASE must be used to 2760 * explicitly request case insensitive behavior. 2761 * 2762 * If the source and target names provided differ only 2763 * by case (e.g., a request to rename 'tim' to 'Tim'), 2764 * we will treat this as a special case in the 2765 * case-insensitive mode: as long as the source name 2766 * is an exact match, we will allow this to proceed as 2767 * a name-change request. 2768 */ 2769 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 2770 (zfsvfs->z_case == ZFS_CASE_MIXED && 2771 flags & FIGNORECASE)) && 2772 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 2773 &error) == 0) { 2774 /* 2775 * case preserving rename request, require exact 2776 * name matches 2777 */ 2778 zflg |= ZCIEXACT; 2779 zflg &= ~ZCILOOK; 2780 } 2781 } 2782 2783 /* 2784 * If the source and destination directories are the same, we should 2785 * grab the z_name_lock of that directory only once. 2786 */ 2787 if (sdzp == tdzp) { 2788 zflg |= ZHAVELOCK; 2789 rw_enter(&sdzp->z_name_lock, RW_READER); 2790 } 2791 2792 if (cmp < 0) { 2793 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 2794 ZEXISTS | zflg, NULL, NULL); 2795 terr = zfs_dirent_lock(&tdl, 2796 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 2797 } else { 2798 terr = zfs_dirent_lock(&tdl, 2799 tdzp, tnm, &tzp, zflg, NULL, NULL); 2800 serr = zfs_dirent_lock(&sdl, 2801 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 2802 NULL, NULL); 2803 } 2804 2805 if (serr) { 2806 /* 2807 * Source entry invalid or not there. 2808 */ 2809 if (!terr) { 2810 zfs_dirent_unlock(tdl); 2811 if (tzp) 2812 zrele(tzp); 2813 } 2814 2815 if (sdzp == tdzp) 2816 rw_exit(&sdzp->z_name_lock); 2817 2818 if (strcmp(snm, "..") == 0) 2819 serr = EINVAL; 2820 ZFS_EXIT(zfsvfs); 2821 return (serr); 2822 } 2823 if (terr) { 2824 zfs_dirent_unlock(sdl); 2825 zrele(szp); 2826 2827 if (sdzp == tdzp) 2828 rw_exit(&sdzp->z_name_lock); 2829 2830 if (strcmp(tnm, "..") == 0) 2831 terr = EINVAL; 2832 ZFS_EXIT(zfsvfs); 2833 return (terr); 2834 } 2835 2836 /* 2837 * If we are using project inheritance, means if the directory has 2838 * ZFS_PROJINHERIT set, then its descendant directories will inherit 2839 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 2840 * such case, we only allow renames into our tree when the project 2841 * IDs are the same. 2842 */ 2843 if (tdzp->z_pflags & ZFS_PROJINHERIT && 2844 tdzp->z_projid != szp->z_projid) { 2845 error = SET_ERROR(EXDEV); 2846 goto out; 2847 } 2848 2849 /* 2850 * Must have write access at the source to remove the old entry 2851 * and write access at the target to create the new entry. 2852 * Note that if target and source are the same, this can be 2853 * done in a single check. 2854 */ 2855 2856 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))) 2857 goto out; 2858 2859 if (S_ISDIR(ZTOI(szp)->i_mode)) { 2860 /* 2861 * Check to make sure rename is valid. 2862 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2863 */ 2864 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl))) 2865 goto out; 2866 } 2867 2868 /* 2869 * Does target exist? 2870 */ 2871 if (tzp) { 2872 /* 2873 * Source and target must be the same type. 2874 */ 2875 if (S_ISDIR(ZTOI(szp)->i_mode)) { 2876 if (!S_ISDIR(ZTOI(tzp)->i_mode)) { 2877 error = SET_ERROR(ENOTDIR); 2878 goto out; 2879 } 2880 } else { 2881 if (S_ISDIR(ZTOI(tzp)->i_mode)) { 2882 error = SET_ERROR(EISDIR); 2883 goto out; 2884 } 2885 } 2886 /* 2887 * POSIX dictates that when the source and target 2888 * entries refer to the same file object, rename 2889 * must do nothing and exit without error. 2890 */ 2891 if (szp->z_id == tzp->z_id) { 2892 error = 0; 2893 goto out; 2894 } 2895 } 2896 2897 tx = dmu_tx_create(zfsvfs->z_os); 2898 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 2899 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 2900 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 2901 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 2902 if (sdzp != tdzp) { 2903 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 2904 zfs_sa_upgrade_txholds(tx, tdzp); 2905 } 2906 if (tzp) { 2907 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 2908 zfs_sa_upgrade_txholds(tx, tzp); 2909 } 2910 2911 zfs_sa_upgrade_txholds(tx, szp); 2912 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2913 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 2914 if (error) { 2915 if (zl != NULL) 2916 zfs_rename_unlock(&zl); 2917 zfs_dirent_unlock(sdl); 2918 zfs_dirent_unlock(tdl); 2919 2920 if (sdzp == tdzp) 2921 rw_exit(&sdzp->z_name_lock); 2922 2923 if (error == ERESTART) { 2924 waited = B_TRUE; 2925 dmu_tx_wait(tx); 2926 dmu_tx_abort(tx); 2927 zrele(szp); 2928 if (tzp) 2929 zrele(tzp); 2930 goto top; 2931 } 2932 dmu_tx_abort(tx); 2933 zrele(szp); 2934 if (tzp) 2935 zrele(tzp); 2936 ZFS_EXIT(zfsvfs); 2937 return (error); 2938 } 2939 2940 if (tzp) /* Attempt to remove the existing target */ 2941 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 2942 2943 if (error == 0) { 2944 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 2945 if (error == 0) { 2946 szp->z_pflags |= ZFS_AV_MODIFIED; 2947 if (tdzp->z_pflags & ZFS_PROJINHERIT) 2948 szp->z_pflags |= ZFS_PROJINHERIT; 2949 2950 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 2951 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 2952 ASSERT0(error); 2953 2954 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 2955 if (error == 0) { 2956 zfs_log_rename(zilog, tx, TX_RENAME | 2957 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 2958 sdl->dl_name, tdzp, tdl->dl_name, szp); 2959 } else { 2960 /* 2961 * At this point, we have successfully created 2962 * the target name, but have failed to remove 2963 * the source name. Since the create was done 2964 * with the ZRENAMING flag, there are 2965 * complications; for one, the link count is 2966 * wrong. The easiest way to deal with this 2967 * is to remove the newly created target, and 2968 * return the original error. This must 2969 * succeed; fortunately, it is very unlikely to 2970 * fail, since we just created it. 2971 */ 2972 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 2973 ZRENAMING, NULL), ==, 0); 2974 } 2975 } else { 2976 /* 2977 * If we had removed the existing target, subsequent 2978 * call to zfs_link_create() to add back the same entry 2979 * but, the new dnode (szp) should not fail. 2980 */ 2981 ASSERT(tzp == NULL); 2982 } 2983 } 2984 2985 dmu_tx_commit(tx); 2986 out: 2987 if (zl != NULL) 2988 zfs_rename_unlock(&zl); 2989 2990 zfs_dirent_unlock(sdl); 2991 zfs_dirent_unlock(tdl); 2992 2993 zfs_inode_update(sdzp); 2994 if (sdzp == tdzp) 2995 rw_exit(&sdzp->z_name_lock); 2996 2997 if (sdzp != tdzp) 2998 zfs_inode_update(tdzp); 2999 3000 zfs_inode_update(szp); 3001 zrele(szp); 3002 if (tzp) { 3003 zfs_inode_update(tzp); 3004 zrele(tzp); 3005 } 3006 3007 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3008 zil_commit(zilog, 0); 3009 3010 ZFS_EXIT(zfsvfs); 3011 return (error); 3012 } 3013 3014 /* 3015 * Insert the indicated symbolic reference entry into the directory. 3016 * 3017 * IN: dzp - Directory to contain new symbolic link. 3018 * name - Name of directory entry in dip. 3019 * vap - Attributes of new entry. 3020 * link - Name for new symlink entry. 3021 * cr - credentials of caller. 3022 * flags - case flags 3023 * 3024 * OUT: zpp - Znode for new symbolic link. 3025 * 3026 * RETURN: 0 on success, error code on failure. 3027 * 3028 * Timestamps: 3029 * dip - ctime|mtime updated 3030 */ 3031 /*ARGSUSED*/ 3032 int 3033 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link, 3034 znode_t **zpp, cred_t *cr, int flags) 3035 { 3036 znode_t *zp; 3037 zfs_dirlock_t *dl; 3038 dmu_tx_t *tx; 3039 zfsvfs_t *zfsvfs = ZTOZSB(dzp); 3040 zilog_t *zilog; 3041 uint64_t len = strlen(link); 3042 int error; 3043 int zflg = ZNEW; 3044 zfs_acl_ids_t acl_ids; 3045 boolean_t fuid_dirtied; 3046 uint64_t txtype = TX_SYMLINK; 3047 boolean_t waited = B_FALSE; 3048 3049 ASSERT(S_ISLNK(vap->va_mode)); 3050 3051 if (name == NULL) 3052 return (SET_ERROR(EINVAL)); 3053 3054 ZFS_ENTER(zfsvfs); 3055 ZFS_VERIFY_ZP(dzp); 3056 zilog = zfsvfs->z_log; 3057 3058 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3059 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3060 ZFS_EXIT(zfsvfs); 3061 return (SET_ERROR(EILSEQ)); 3062 } 3063 if (flags & FIGNORECASE) 3064 zflg |= ZCILOOK; 3065 3066 if (len > MAXPATHLEN) { 3067 ZFS_EXIT(zfsvfs); 3068 return (SET_ERROR(ENAMETOOLONG)); 3069 } 3070 3071 if ((error = zfs_acl_ids_create(dzp, 0, 3072 vap, cr, NULL, &acl_ids)) != 0) { 3073 ZFS_EXIT(zfsvfs); 3074 return (error); 3075 } 3076 top: 3077 *zpp = NULL; 3078 3079 /* 3080 * Attempt to lock directory; fail if entry already exists. 3081 */ 3082 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3083 if (error) { 3084 zfs_acl_ids_free(&acl_ids); 3085 ZFS_EXIT(zfsvfs); 3086 return (error); 3087 } 3088 3089 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) { 3090 zfs_acl_ids_free(&acl_ids); 3091 zfs_dirent_unlock(dl); 3092 ZFS_EXIT(zfsvfs); 3093 return (error); 3094 } 3095 3096 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) { 3097 zfs_acl_ids_free(&acl_ids); 3098 zfs_dirent_unlock(dl); 3099 ZFS_EXIT(zfsvfs); 3100 return (SET_ERROR(EDQUOT)); 3101 } 3102 tx = dmu_tx_create(zfsvfs->z_os); 3103 fuid_dirtied = zfsvfs->z_fuid_dirty; 3104 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3105 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3106 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3107 ZFS_SA_BASE_ATTR_SIZE + len); 3108 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3109 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3110 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3111 acl_ids.z_aclp->z_acl_bytes); 3112 } 3113 if (fuid_dirtied) 3114 zfs_fuid_txhold(zfsvfs, tx); 3115 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 3116 if (error) { 3117 zfs_dirent_unlock(dl); 3118 if (error == ERESTART) { 3119 waited = B_TRUE; 3120 dmu_tx_wait(tx); 3121 dmu_tx_abort(tx); 3122 goto top; 3123 } 3124 zfs_acl_ids_free(&acl_ids); 3125 dmu_tx_abort(tx); 3126 ZFS_EXIT(zfsvfs); 3127 return (error); 3128 } 3129 3130 /* 3131 * Create a new object for the symlink. 3132 * for version 4 ZPL datsets the symlink will be an SA attribute 3133 */ 3134 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3135 3136 if (fuid_dirtied) 3137 zfs_fuid_sync(zfsvfs, tx); 3138 3139 mutex_enter(&zp->z_lock); 3140 if (zp->z_is_sa) 3141 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3142 link, len, tx); 3143 else 3144 zfs_sa_symlink(zp, link, len, tx); 3145 mutex_exit(&zp->z_lock); 3146 3147 zp->z_size = len; 3148 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3149 &zp->z_size, sizeof (zp->z_size), tx); 3150 /* 3151 * Insert the new object into the directory. 3152 */ 3153 error = zfs_link_create(dl, zp, tx, ZNEW); 3154 if (error != 0) { 3155 zfs_znode_delete(zp, tx); 3156 remove_inode_hash(ZTOI(zp)); 3157 } else { 3158 if (flags & FIGNORECASE) 3159 txtype |= TX_CI; 3160 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3161 3162 zfs_inode_update(dzp); 3163 zfs_inode_update(zp); 3164 } 3165 3166 zfs_acl_ids_free(&acl_ids); 3167 3168 dmu_tx_commit(tx); 3169 3170 zfs_dirent_unlock(dl); 3171 3172 if (error == 0) { 3173 *zpp = zp; 3174 3175 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3176 zil_commit(zilog, 0); 3177 } else { 3178 zrele(zp); 3179 } 3180 3181 ZFS_EXIT(zfsvfs); 3182 return (error); 3183 } 3184 3185 /* 3186 * Return, in the buffer contained in the provided uio structure, 3187 * the symbolic path referred to by ip. 3188 * 3189 * IN: ip - inode of symbolic link 3190 * uio - structure to contain the link path. 3191 * cr - credentials of caller. 3192 * 3193 * RETURN: 0 if success 3194 * error code if failure 3195 * 3196 * Timestamps: 3197 * ip - atime updated 3198 */ 3199 /* ARGSUSED */ 3200 int 3201 zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr) 3202 { 3203 znode_t *zp = ITOZ(ip); 3204 zfsvfs_t *zfsvfs = ITOZSB(ip); 3205 int error; 3206 3207 ZFS_ENTER(zfsvfs); 3208 ZFS_VERIFY_ZP(zp); 3209 3210 mutex_enter(&zp->z_lock); 3211 if (zp->z_is_sa) 3212 error = sa_lookup_uio(zp->z_sa_hdl, 3213 SA_ZPL_SYMLINK(zfsvfs), uio); 3214 else 3215 error = zfs_sa_readlink(zp, uio); 3216 mutex_exit(&zp->z_lock); 3217 3218 ZFS_EXIT(zfsvfs); 3219 return (error); 3220 } 3221 3222 /* 3223 * Insert a new entry into directory tdzp referencing szp. 3224 * 3225 * IN: tdzp - Directory to contain new entry. 3226 * szp - znode of new entry. 3227 * name - name of new entry. 3228 * cr - credentials of caller. 3229 * flags - case flags. 3230 * 3231 * RETURN: 0 if success 3232 * error code if failure 3233 * 3234 * Timestamps: 3235 * tdzp - ctime|mtime updated 3236 * szp - ctime updated 3237 */ 3238 /* ARGSUSED */ 3239 int 3240 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr, 3241 int flags) 3242 { 3243 struct inode *sip = ZTOI(szp); 3244 znode_t *tzp; 3245 zfsvfs_t *zfsvfs = ZTOZSB(tdzp); 3246 zilog_t *zilog; 3247 zfs_dirlock_t *dl; 3248 dmu_tx_t *tx; 3249 int error; 3250 int zf = ZNEW; 3251 uint64_t parent; 3252 uid_t owner; 3253 boolean_t waited = B_FALSE; 3254 boolean_t is_tmpfile = 0; 3255 uint64_t txg; 3256 #ifdef HAVE_TMPFILE 3257 is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE)); 3258 #endif 3259 ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode)); 3260 3261 if (name == NULL) 3262 return (SET_ERROR(EINVAL)); 3263 3264 ZFS_ENTER(zfsvfs); 3265 ZFS_VERIFY_ZP(tdzp); 3266 zilog = zfsvfs->z_log; 3267 3268 /* 3269 * POSIX dictates that we return EPERM here. 3270 * Better choices include ENOTSUP or EISDIR. 3271 */ 3272 if (S_ISDIR(sip->i_mode)) { 3273 ZFS_EXIT(zfsvfs); 3274 return (SET_ERROR(EPERM)); 3275 } 3276 3277 ZFS_VERIFY_ZP(szp); 3278 3279 /* 3280 * If we are using project inheritance, means if the directory has 3281 * ZFS_PROJINHERIT set, then its descendant directories will inherit 3282 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 3283 * such case, we only allow hard link creation in our tree when the 3284 * project IDs are the same. 3285 */ 3286 if (tdzp->z_pflags & ZFS_PROJINHERIT && 3287 tdzp->z_projid != szp->z_projid) { 3288 ZFS_EXIT(zfsvfs); 3289 return (SET_ERROR(EXDEV)); 3290 } 3291 3292 /* 3293 * We check i_sb because snapshots and the ctldir must have different 3294 * super blocks. 3295 */ 3296 if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) { 3297 ZFS_EXIT(zfsvfs); 3298 return (SET_ERROR(EXDEV)); 3299 } 3300 3301 /* Prevent links to .zfs/shares files */ 3302 3303 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 3304 &parent, sizeof (uint64_t))) != 0) { 3305 ZFS_EXIT(zfsvfs); 3306 return (error); 3307 } 3308 if (parent == zfsvfs->z_shares_dir) { 3309 ZFS_EXIT(zfsvfs); 3310 return (SET_ERROR(EPERM)); 3311 } 3312 3313 if (zfsvfs->z_utf8 && u8_validate(name, 3314 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3315 ZFS_EXIT(zfsvfs); 3316 return (SET_ERROR(EILSEQ)); 3317 } 3318 if (flags & FIGNORECASE) 3319 zf |= ZCILOOK; 3320 3321 /* 3322 * We do not support links between attributes and non-attributes 3323 * because of the potential security risk of creating links 3324 * into "normal" file space in order to circumvent restrictions 3325 * imposed in attribute space. 3326 */ 3327 if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) { 3328 ZFS_EXIT(zfsvfs); 3329 return (SET_ERROR(EINVAL)); 3330 } 3331 3332 owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid), 3333 cr, ZFS_OWNER); 3334 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 3335 ZFS_EXIT(zfsvfs); 3336 return (SET_ERROR(EPERM)); 3337 } 3338 3339 if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr))) { 3340 ZFS_EXIT(zfsvfs); 3341 return (error); 3342 } 3343 3344 top: 3345 /* 3346 * Attempt to lock directory; fail if entry already exists. 3347 */ 3348 error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL); 3349 if (error) { 3350 ZFS_EXIT(zfsvfs); 3351 return (error); 3352 } 3353 3354 tx = dmu_tx_create(zfsvfs->z_os); 3355 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3356 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name); 3357 if (is_tmpfile) 3358 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3359 3360 zfs_sa_upgrade_txholds(tx, szp); 3361 zfs_sa_upgrade_txholds(tx, tdzp); 3362 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 3363 if (error) { 3364 zfs_dirent_unlock(dl); 3365 if (error == ERESTART) { 3366 waited = B_TRUE; 3367 dmu_tx_wait(tx); 3368 dmu_tx_abort(tx); 3369 goto top; 3370 } 3371 dmu_tx_abort(tx); 3372 ZFS_EXIT(zfsvfs); 3373 return (error); 3374 } 3375 /* unmark z_unlinked so zfs_link_create will not reject */ 3376 if (is_tmpfile) 3377 szp->z_unlinked = B_FALSE; 3378 error = zfs_link_create(dl, szp, tx, 0); 3379 3380 if (error == 0) { 3381 uint64_t txtype = TX_LINK; 3382 /* 3383 * tmpfile is created to be in z_unlinkedobj, so remove it. 3384 * Also, we don't log in ZIL, because all previous file 3385 * operation on the tmpfile are ignored by ZIL. Instead we 3386 * always wait for txg to sync to make sure all previous 3387 * operation are sync safe. 3388 */ 3389 if (is_tmpfile) { 3390 VERIFY(zap_remove_int(zfsvfs->z_os, 3391 zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0); 3392 } else { 3393 if (flags & FIGNORECASE) 3394 txtype |= TX_CI; 3395 zfs_log_link(zilog, tx, txtype, tdzp, szp, name); 3396 } 3397 } else if (is_tmpfile) { 3398 /* restore z_unlinked since when linking failed */ 3399 szp->z_unlinked = B_TRUE; 3400 } 3401 txg = dmu_tx_get_txg(tx); 3402 dmu_tx_commit(tx); 3403 3404 zfs_dirent_unlock(dl); 3405 3406 if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3407 zil_commit(zilog, 0); 3408 3409 if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) 3410 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg); 3411 3412 zfs_inode_update(tdzp); 3413 zfs_inode_update(szp); 3414 ZFS_EXIT(zfsvfs); 3415 return (error); 3416 } 3417 3418 static void 3419 zfs_putpage_commit_cb(void *arg) 3420 { 3421 struct page *pp = arg; 3422 3423 ClearPageError(pp); 3424 end_page_writeback(pp); 3425 } 3426 3427 /* 3428 * Push a page out to disk, once the page is on stable storage the 3429 * registered commit callback will be run as notification of completion. 3430 * 3431 * IN: ip - page mapped for inode. 3432 * pp - page to push (page is locked) 3433 * wbc - writeback control data 3434 * 3435 * RETURN: 0 if success 3436 * error code if failure 3437 * 3438 * Timestamps: 3439 * ip - ctime|mtime updated 3440 */ 3441 /* ARGSUSED */ 3442 int 3443 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc) 3444 { 3445 znode_t *zp = ITOZ(ip); 3446 zfsvfs_t *zfsvfs = ITOZSB(ip); 3447 loff_t offset; 3448 loff_t pgoff; 3449 unsigned int pglen; 3450 dmu_tx_t *tx; 3451 caddr_t va; 3452 int err = 0; 3453 uint64_t mtime[2], ctime[2]; 3454 sa_bulk_attr_t bulk[3]; 3455 int cnt = 0; 3456 struct address_space *mapping; 3457 3458 ZFS_ENTER(zfsvfs); 3459 ZFS_VERIFY_ZP(zp); 3460 3461 ASSERT(PageLocked(pp)); 3462 3463 pgoff = page_offset(pp); /* Page byte-offset in file */ 3464 offset = i_size_read(ip); /* File length in bytes */ 3465 pglen = MIN(PAGE_SIZE, /* Page length in bytes */ 3466 P2ROUNDUP(offset, PAGE_SIZE)-pgoff); 3467 3468 /* Page is beyond end of file */ 3469 if (pgoff >= offset) { 3470 unlock_page(pp); 3471 ZFS_EXIT(zfsvfs); 3472 return (0); 3473 } 3474 3475 /* Truncate page length to end of file */ 3476 if (pgoff + pglen > offset) 3477 pglen = offset - pgoff; 3478 3479 #if 0 3480 /* 3481 * FIXME: Allow mmap writes past its quota. The correct fix 3482 * is to register a page_mkwrite() handler to count the page 3483 * against its quota when it is about to be dirtied. 3484 */ 3485 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, 3486 KUID_TO_SUID(ip->i_uid)) || 3487 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, 3488 KGID_TO_SGID(ip->i_gid)) || 3489 (zp->z_projid != ZFS_DEFAULT_PROJID && 3490 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 3491 zp->z_projid))) { 3492 err = EDQUOT; 3493 } 3494 #endif 3495 3496 /* 3497 * The ordering here is critical and must adhere to the following 3498 * rules in order to avoid deadlocking in either zfs_read() or 3499 * zfs_free_range() due to a lock inversion. 3500 * 3501 * 1) The page must be unlocked prior to acquiring the range lock. 3502 * This is critical because zfs_read() calls find_lock_page() 3503 * which may block on the page lock while holding the range lock. 3504 * 3505 * 2) Before setting or clearing write back on a page the range lock 3506 * must be held in order to prevent a lock inversion with the 3507 * zfs_free_range() function. 3508 * 3509 * This presents a problem because upon entering this function the 3510 * page lock is already held. To safely acquire the range lock the 3511 * page lock must be dropped. This creates a window where another 3512 * process could truncate, invalidate, dirty, or write out the page. 3513 * 3514 * Therefore, after successfully reacquiring the range and page locks 3515 * the current page state is checked. In the common case everything 3516 * will be as is expected and it can be written out. However, if 3517 * the page state has changed it must be handled accordingly. 3518 */ 3519 mapping = pp->mapping; 3520 redirty_page_for_writepage(wbc, pp); 3521 unlock_page(pp); 3522 3523 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock, 3524 pgoff, pglen, RL_WRITER); 3525 lock_page(pp); 3526 3527 /* Page mapping changed or it was no longer dirty, we're done */ 3528 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) { 3529 unlock_page(pp); 3530 zfs_rangelock_exit(lr); 3531 ZFS_EXIT(zfsvfs); 3532 return (0); 3533 } 3534 3535 /* Another process started write block if required */ 3536 if (PageWriteback(pp)) { 3537 unlock_page(pp); 3538 zfs_rangelock_exit(lr); 3539 3540 if (wbc->sync_mode != WB_SYNC_NONE) { 3541 if (PageWriteback(pp)) 3542 wait_on_page_bit(pp, PG_writeback); 3543 } 3544 3545 ZFS_EXIT(zfsvfs); 3546 return (0); 3547 } 3548 3549 /* Clear the dirty flag the required locks are held */ 3550 if (!clear_page_dirty_for_io(pp)) { 3551 unlock_page(pp); 3552 zfs_rangelock_exit(lr); 3553 ZFS_EXIT(zfsvfs); 3554 return (0); 3555 } 3556 3557 /* 3558 * Counterpart for redirty_page_for_writepage() above. This page 3559 * was in fact not skipped and should not be counted as if it were. 3560 */ 3561 wbc->pages_skipped--; 3562 set_page_writeback(pp); 3563 unlock_page(pp); 3564 3565 tx = dmu_tx_create(zfsvfs->z_os); 3566 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen); 3567 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3568 zfs_sa_upgrade_txholds(tx, zp); 3569 3570 err = dmu_tx_assign(tx, TXG_NOWAIT); 3571 if (err != 0) { 3572 if (err == ERESTART) 3573 dmu_tx_wait(tx); 3574 3575 dmu_tx_abort(tx); 3576 __set_page_dirty_nobuffers(pp); 3577 ClearPageError(pp); 3578 end_page_writeback(pp); 3579 zfs_rangelock_exit(lr); 3580 ZFS_EXIT(zfsvfs); 3581 return (err); 3582 } 3583 3584 va = kmap(pp); 3585 ASSERT3U(pglen, <=, PAGE_SIZE); 3586 dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx); 3587 kunmap(pp); 3588 3589 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 3590 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 3591 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL, 3592 &zp->z_pflags, 8); 3593 3594 /* Preserve the mtime and ctime provided by the inode */ 3595 ZFS_TIME_ENCODE(&ip->i_mtime, mtime); 3596 ZFS_TIME_ENCODE(&ip->i_ctime, ctime); 3597 zp->z_atime_dirty = B_FALSE; 3598 zp->z_seq++; 3599 3600 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx); 3601 3602 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0, 3603 zfs_putpage_commit_cb, pp); 3604 dmu_tx_commit(tx); 3605 3606 zfs_rangelock_exit(lr); 3607 3608 if (wbc->sync_mode != WB_SYNC_NONE) { 3609 /* 3610 * Note that this is rarely called under writepages(), because 3611 * writepages() normally handles the entire commit for 3612 * performance reasons. 3613 */ 3614 zil_commit(zfsvfs->z_log, zp->z_id); 3615 } 3616 3617 ZFS_EXIT(zfsvfs); 3618 return (err); 3619 } 3620 3621 /* 3622 * Update the system attributes when the inode has been dirtied. For the 3623 * moment we only update the mode, atime, mtime, and ctime. 3624 */ 3625 int 3626 zfs_dirty_inode(struct inode *ip, int flags) 3627 { 3628 znode_t *zp = ITOZ(ip); 3629 zfsvfs_t *zfsvfs = ITOZSB(ip); 3630 dmu_tx_t *tx; 3631 uint64_t mode, atime[2], mtime[2], ctime[2]; 3632 sa_bulk_attr_t bulk[4]; 3633 int error = 0; 3634 int cnt = 0; 3635 3636 if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os)) 3637 return (0); 3638 3639 ZFS_ENTER(zfsvfs); 3640 ZFS_VERIFY_ZP(zp); 3641 3642 #ifdef I_DIRTY_TIME 3643 /* 3644 * This is the lazytime semantic introduced in Linux 4.0 3645 * This flag will only be called from update_time when lazytime is set. 3646 * (Note, I_DIRTY_SYNC will also set if not lazytime) 3647 * Fortunately mtime and ctime are managed within ZFS itself, so we 3648 * only need to dirty atime. 3649 */ 3650 if (flags == I_DIRTY_TIME) { 3651 zp->z_atime_dirty = B_TRUE; 3652 goto out; 3653 } 3654 #endif 3655 3656 tx = dmu_tx_create(zfsvfs->z_os); 3657 3658 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3659 zfs_sa_upgrade_txholds(tx, zp); 3660 3661 error = dmu_tx_assign(tx, TXG_WAIT); 3662 if (error) { 3663 dmu_tx_abort(tx); 3664 goto out; 3665 } 3666 3667 mutex_enter(&zp->z_lock); 3668 zp->z_atime_dirty = B_FALSE; 3669 3670 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 3671 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16); 3672 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 3673 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 3674 3675 /* Preserve the mode, mtime and ctime provided by the inode */ 3676 ZFS_TIME_ENCODE(&ip->i_atime, atime); 3677 ZFS_TIME_ENCODE(&ip->i_mtime, mtime); 3678 ZFS_TIME_ENCODE(&ip->i_ctime, ctime); 3679 mode = ip->i_mode; 3680 3681 zp->z_mode = mode; 3682 3683 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx); 3684 mutex_exit(&zp->z_lock); 3685 3686 dmu_tx_commit(tx); 3687 out: 3688 ZFS_EXIT(zfsvfs); 3689 return (error); 3690 } 3691 3692 /*ARGSUSED*/ 3693 void 3694 zfs_inactive(struct inode *ip) 3695 { 3696 znode_t *zp = ITOZ(ip); 3697 zfsvfs_t *zfsvfs = ITOZSB(ip); 3698 uint64_t atime[2]; 3699 int error; 3700 int need_unlock = 0; 3701 3702 /* Only read lock if we haven't already write locked, e.g. rollback */ 3703 if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) { 3704 need_unlock = 1; 3705 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3706 } 3707 if (zp->z_sa_hdl == NULL) { 3708 if (need_unlock) 3709 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3710 return; 3711 } 3712 3713 if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) { 3714 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3715 3716 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3717 zfs_sa_upgrade_txholds(tx, zp); 3718 error = dmu_tx_assign(tx, TXG_WAIT); 3719 if (error) { 3720 dmu_tx_abort(tx); 3721 } else { 3722 ZFS_TIME_ENCODE(&ip->i_atime, atime); 3723 mutex_enter(&zp->z_lock); 3724 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 3725 (void *)&atime, sizeof (atime), tx); 3726 zp->z_atime_dirty = B_FALSE; 3727 mutex_exit(&zp->z_lock); 3728 dmu_tx_commit(tx); 3729 } 3730 } 3731 3732 zfs_zinactive(zp); 3733 if (need_unlock) 3734 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3735 } 3736 3737 /* 3738 * Fill pages with data from the disk. 3739 */ 3740 static int 3741 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages) 3742 { 3743 znode_t *zp = ITOZ(ip); 3744 zfsvfs_t *zfsvfs = ITOZSB(ip); 3745 objset_t *os; 3746 struct page *cur_pp; 3747 u_offset_t io_off, total; 3748 size_t io_len; 3749 loff_t i_size; 3750 unsigned page_idx; 3751 int err; 3752 3753 os = zfsvfs->z_os; 3754 io_len = nr_pages << PAGE_SHIFT; 3755 i_size = i_size_read(ip); 3756 io_off = page_offset(pl[0]); 3757 3758 if (io_off + io_len > i_size) 3759 io_len = i_size - io_off; 3760 3761 /* 3762 * Iterate over list of pages and read each page individually. 3763 */ 3764 page_idx = 0; 3765 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3766 caddr_t va; 3767 3768 cur_pp = pl[page_idx++]; 3769 va = kmap(cur_pp); 3770 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 3771 DMU_READ_PREFETCH); 3772 kunmap(cur_pp); 3773 if (err) { 3774 /* convert checksum errors into IO errors */ 3775 if (err == ECKSUM) 3776 err = SET_ERROR(EIO); 3777 return (err); 3778 } 3779 } 3780 3781 return (0); 3782 } 3783 3784 /* 3785 * Uses zfs_fillpage to read data from the file and fill the pages. 3786 * 3787 * IN: ip - inode of file to get data from. 3788 * pl - list of pages to read 3789 * nr_pages - number of pages to read 3790 * 3791 * RETURN: 0 on success, error code on failure. 3792 * 3793 * Timestamps: 3794 * vp - atime updated 3795 */ 3796 /* ARGSUSED */ 3797 int 3798 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages) 3799 { 3800 znode_t *zp = ITOZ(ip); 3801 zfsvfs_t *zfsvfs = ITOZSB(ip); 3802 int err; 3803 3804 if (pl == NULL) 3805 return (0); 3806 3807 ZFS_ENTER(zfsvfs); 3808 ZFS_VERIFY_ZP(zp); 3809 3810 err = zfs_fillpage(ip, pl, nr_pages); 3811 3812 ZFS_EXIT(zfsvfs); 3813 return (err); 3814 } 3815 3816 /* 3817 * Check ZFS specific permissions to memory map a section of a file. 3818 * 3819 * IN: ip - inode of the file to mmap 3820 * off - file offset 3821 * addrp - start address in memory region 3822 * len - length of memory region 3823 * vm_flags- address flags 3824 * 3825 * RETURN: 0 if success 3826 * error code if failure 3827 */ 3828 /*ARGSUSED*/ 3829 int 3830 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len, 3831 unsigned long vm_flags) 3832 { 3833 znode_t *zp = ITOZ(ip); 3834 zfsvfs_t *zfsvfs = ITOZSB(ip); 3835 3836 ZFS_ENTER(zfsvfs); 3837 ZFS_VERIFY_ZP(zp); 3838 3839 if ((vm_flags & VM_WRITE) && (zp->z_pflags & 3840 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 3841 ZFS_EXIT(zfsvfs); 3842 return (SET_ERROR(EPERM)); 3843 } 3844 3845 if ((vm_flags & (VM_READ | VM_EXEC)) && 3846 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 3847 ZFS_EXIT(zfsvfs); 3848 return (SET_ERROR(EACCES)); 3849 } 3850 3851 if (off < 0 || len > MAXOFFSET_T - off) { 3852 ZFS_EXIT(zfsvfs); 3853 return (SET_ERROR(ENXIO)); 3854 } 3855 3856 ZFS_EXIT(zfsvfs); 3857 return (0); 3858 } 3859 3860 /* 3861 * Free or allocate space in a file. Currently, this function only 3862 * supports the `F_FREESP' command. However, this command is somewhat 3863 * misnamed, as its functionality includes the ability to allocate as 3864 * well as free space. 3865 * 3866 * IN: zp - znode of file to free data in. 3867 * cmd - action to take (only F_FREESP supported). 3868 * bfp - section of file to free/alloc. 3869 * flag - current file open mode flags. 3870 * offset - current file offset. 3871 * cr - credentials of caller. 3872 * 3873 * RETURN: 0 on success, error code on failure. 3874 * 3875 * Timestamps: 3876 * zp - ctime|mtime updated 3877 */ 3878 /* ARGSUSED */ 3879 int 3880 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag, 3881 offset_t offset, cred_t *cr) 3882 { 3883 zfsvfs_t *zfsvfs = ZTOZSB(zp); 3884 uint64_t off, len; 3885 int error; 3886 3887 ZFS_ENTER(zfsvfs); 3888 ZFS_VERIFY_ZP(zp); 3889 3890 if (cmd != F_FREESP) { 3891 ZFS_EXIT(zfsvfs); 3892 return (SET_ERROR(EINVAL)); 3893 } 3894 3895 /* 3896 * Callers might not be able to detect properly that we are read-only, 3897 * so check it explicitly here. 3898 */ 3899 if (zfs_is_readonly(zfsvfs)) { 3900 ZFS_EXIT(zfsvfs); 3901 return (SET_ERROR(EROFS)); 3902 } 3903 3904 if (bfp->l_len < 0) { 3905 ZFS_EXIT(zfsvfs); 3906 return (SET_ERROR(EINVAL)); 3907 } 3908 3909 /* 3910 * Permissions aren't checked on Solaris because on this OS 3911 * zfs_space() can only be called with an opened file handle. 3912 * On Linux we can get here through truncate_range() which 3913 * operates directly on inodes, so we need to check access rights. 3914 */ 3915 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) { 3916 ZFS_EXIT(zfsvfs); 3917 return (error); 3918 } 3919 3920 off = bfp->l_start; 3921 len = bfp->l_len; /* 0 means from off to end of file */ 3922 3923 error = zfs_freesp(zp, off, len, flag, TRUE); 3924 3925 ZFS_EXIT(zfsvfs); 3926 return (error); 3927 } 3928 3929 /*ARGSUSED*/ 3930 int 3931 zfs_fid(struct inode *ip, fid_t *fidp) 3932 { 3933 znode_t *zp = ITOZ(ip); 3934 zfsvfs_t *zfsvfs = ITOZSB(ip); 3935 uint32_t gen; 3936 uint64_t gen64; 3937 uint64_t object = zp->z_id; 3938 zfid_short_t *zfid; 3939 int size, i, error; 3940 3941 ZFS_ENTER(zfsvfs); 3942 ZFS_VERIFY_ZP(zp); 3943 3944 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 3945 &gen64, sizeof (uint64_t))) != 0) { 3946 ZFS_EXIT(zfsvfs); 3947 return (error); 3948 } 3949 3950 gen = (uint32_t)gen64; 3951 3952 size = SHORT_FID_LEN; 3953 3954 zfid = (zfid_short_t *)fidp; 3955 3956 zfid->zf_len = size; 3957 3958 for (i = 0; i < sizeof (zfid->zf_object); i++) 3959 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3960 3961 /* Must have a non-zero generation number to distinguish from .zfs */ 3962 if (gen == 0) 3963 gen = 1; 3964 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3965 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3966 3967 ZFS_EXIT(zfsvfs); 3968 return (0); 3969 } 3970 3971 #if defined(_KERNEL) 3972 EXPORT_SYMBOL(zfs_open); 3973 EXPORT_SYMBOL(zfs_close); 3974 EXPORT_SYMBOL(zfs_lookup); 3975 EXPORT_SYMBOL(zfs_create); 3976 EXPORT_SYMBOL(zfs_tmpfile); 3977 EXPORT_SYMBOL(zfs_remove); 3978 EXPORT_SYMBOL(zfs_mkdir); 3979 EXPORT_SYMBOL(zfs_rmdir); 3980 EXPORT_SYMBOL(zfs_readdir); 3981 EXPORT_SYMBOL(zfs_getattr_fast); 3982 EXPORT_SYMBOL(zfs_setattr); 3983 EXPORT_SYMBOL(zfs_rename); 3984 EXPORT_SYMBOL(zfs_symlink); 3985 EXPORT_SYMBOL(zfs_readlink); 3986 EXPORT_SYMBOL(zfs_link); 3987 EXPORT_SYMBOL(zfs_inactive); 3988 EXPORT_SYMBOL(zfs_space); 3989 EXPORT_SYMBOL(zfs_fid); 3990 EXPORT_SYMBOL(zfs_getpage); 3991 EXPORT_SYMBOL(zfs_putpage); 3992 EXPORT_SYMBOL(zfs_dirty_inode); 3993 EXPORT_SYMBOL(zfs_map); 3994 3995 /* BEGIN CSTYLED */ 3996 module_param(zfs_delete_blocks, ulong, 0644); 3997 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async"); 3998 /* END CSTYLED */ 3999 4000 #endif 4001