xref: /freebsd-src/sys/contrib/openzfs/module/os/linux/zfs/zfs_vnops_os.c (revision b97ee269eae3cbaf35c18f51a459aea581c2a7dc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/zfs_ctldir.h>
63 #include <sys/zfs_fuid.h>
64 #include <sys/zfs_quota.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
72 
73 /*
74  * Programming rules.
75  *
76  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
77  * properly lock its in-core state, create a DMU transaction, do the work,
78  * record this work in the intent log (ZIL), commit the DMU transaction,
79  * and wait for the intent log to commit if it is a synchronous operation.
80  * Moreover, the vnode ops must work in both normal and log replay context.
81  * The ordering of events is important to avoid deadlocks and references
82  * to freed memory.  The example below illustrates the following Big Rules:
83  *
84  *  (1) A check must be made in each zfs thread for a mounted file system.
85  *	This is done avoiding races using zfs_enter(zfsvfs).
86  *      A zfs_exit(zfsvfs) is needed before all returns.  Any znodes
87  *      must be checked with zfs_verify_zp(zp).  Both of these macros
88  *      can return EIO from the calling function.
89  *
90  *  (2) zrele() should always be the last thing except for zil_commit() (if
91  *	necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
92  *	last reference, the vnode/znode can be freed, so the zp may point to
93  *	freed memory.  Second, the last reference will call zfs_zinactive(),
94  *	which may induce a lot of work -- pushing cached pages (which acquires
95  *	range locks) and syncing out cached atime changes.  Third,
96  *	zfs_zinactive() may require a new tx, which could deadlock the system
97  *	if you were already holding one. This deadlock occurs because the tx
98  *	currently being operated on prevents a txg from syncing, which
99  *	prevents the new tx from progressing, resulting in a deadlock.  If you
100  *	must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
101  *	is a synonym for zrele().
102  *
103  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
104  *	as they can span dmu_tx_assign() calls.
105  *
106  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
107  *      dmu_tx_assign().  This is critical because we don't want to block
108  *      while holding locks.
109  *
110  *	If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT.  This
111  *	reduces lock contention and CPU usage when we must wait (note that if
112  *	throughput is constrained by the storage, nearly every transaction
113  *	must wait).
114  *
115  *      Note, in particular, that if a lock is sometimes acquired before
116  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
117  *      to use a non-blocking assign can deadlock the system.  The scenario:
118  *
119  *	Thread A has grabbed a lock before calling dmu_tx_assign().
120  *	Thread B is in an already-assigned tx, and blocks for this lock.
121  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
122  *	forever, because the previous txg can't quiesce until B's tx commits.
123  *
124  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
125  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
126  *	calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
127  *	to indicate that this operation has already called dmu_tx_wait().
128  *	This will ensure that we don't retry forever, waiting a short bit
129  *	each time.
130  *
131  *  (5)	If the operation succeeded, generate the intent log entry for it
132  *	before dropping locks.  This ensures that the ordering of events
133  *	in the intent log matches the order in which they actually occurred.
134  *	During ZIL replay the zfs_log_* functions will update the sequence
135  *	number to indicate the zil transaction has replayed.
136  *
137  *  (6)	At the end of each vnode op, the DMU tx must always commit,
138  *	regardless of whether there were any errors.
139  *
140  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
141  *	to ensure that synchronous semantics are provided when necessary.
142  *
143  * In general, this is how things should be ordered in each vnode op:
144  *
145  *	zfs_enter(zfsvfs);		// exit if unmounted
146  * top:
147  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may igrab())
148  *	rw_enter(...);			// grab any other locks you need
149  *	tx = dmu_tx_create(...);	// get DMU tx
150  *	dmu_tx_hold_*();		// hold each object you might modify
151  *	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
152  *	if (error) {
153  *		rw_exit(...);		// drop locks
154  *		zfs_dirent_unlock(dl);	// unlock directory entry
155  *		zrele(...);		// release held znodes
156  *		if (error == ERESTART) {
157  *			waited = B_TRUE;
158  *			dmu_tx_wait(tx);
159  *			dmu_tx_abort(tx);
160  *			goto top;
161  *		}
162  *		dmu_tx_abort(tx);	// abort DMU tx
163  *		zfs_exit(zfsvfs);	// finished in zfs
164  *		return (error);		// really out of space
165  *	}
166  *	error = do_real_work();		// do whatever this VOP does
167  *	if (error == 0)
168  *		zfs_log_*(...);		// on success, make ZIL entry
169  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
170  *	rw_exit(...);			// drop locks
171  *	zfs_dirent_unlock(dl);		// unlock directory entry
172  *	zrele(...);			// release held znodes
173  *	zil_commit(zilog, foid);	// synchronous when necessary
174  *	zfs_exit(zfsvfs);		// finished in zfs
175  *	return (error);			// done, report error
176  */
177 int
178 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
179 {
180 	(void) cr;
181 	znode_t	*zp = ITOZ(ip);
182 	zfsvfs_t *zfsvfs = ITOZSB(ip);
183 	int error;
184 
185 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
186 		return (error);
187 
188 	/* Honor ZFS_APPENDONLY file attribute */
189 	if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
190 	    ((flag & O_APPEND) == 0)) {
191 		zfs_exit(zfsvfs, FTAG);
192 		return (SET_ERROR(EPERM));
193 	}
194 
195 	/* Keep a count of the synchronous opens in the znode */
196 	if (flag & O_SYNC)
197 		atomic_inc_32(&zp->z_sync_cnt);
198 
199 	zfs_exit(zfsvfs, FTAG);
200 	return (0);
201 }
202 
203 int
204 zfs_close(struct inode *ip, int flag, cred_t *cr)
205 {
206 	(void) cr;
207 	znode_t	*zp = ITOZ(ip);
208 	zfsvfs_t *zfsvfs = ITOZSB(ip);
209 	int error;
210 
211 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
212 		return (error);
213 
214 	/* Decrement the synchronous opens in the znode */
215 	if (flag & O_SYNC)
216 		atomic_dec_32(&zp->z_sync_cnt);
217 
218 	zfs_exit(zfsvfs, FTAG);
219 	return (0);
220 }
221 
222 #if defined(_KERNEL)
223 /*
224  * When a file is memory mapped, we must keep the IO data synchronized
225  * between the DMU cache and the memory mapped pages.  What this means:
226  *
227  * On Write:	If we find a memory mapped page, we write to *both*
228  *		the page and the dmu buffer.
229  */
230 void
231 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
232 {
233 	struct inode *ip = ZTOI(zp);
234 	struct address_space *mp = ip->i_mapping;
235 	struct page *pp;
236 	uint64_t nbytes;
237 	int64_t	off;
238 	void *pb;
239 
240 	off = start & (PAGE_SIZE-1);
241 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
242 		nbytes = MIN(PAGE_SIZE - off, len);
243 
244 		pp = find_lock_page(mp, start >> PAGE_SHIFT);
245 		if (pp) {
246 			if (mapping_writably_mapped(mp))
247 				flush_dcache_page(pp);
248 
249 			pb = kmap(pp);
250 			(void) dmu_read(os, zp->z_id, start + off, nbytes,
251 			    pb + off, DMU_READ_PREFETCH);
252 			kunmap(pp);
253 
254 			if (mapping_writably_mapped(mp))
255 				flush_dcache_page(pp);
256 
257 			mark_page_accessed(pp);
258 			SetPageUptodate(pp);
259 			ClearPageError(pp);
260 			unlock_page(pp);
261 			put_page(pp);
262 		}
263 
264 		len -= nbytes;
265 		off = 0;
266 	}
267 }
268 
269 /*
270  * When a file is memory mapped, we must keep the IO data synchronized
271  * between the DMU cache and the memory mapped pages.  What this means:
272  *
273  * On Read:	We "read" preferentially from memory mapped pages,
274  *		else we default from the dmu buffer.
275  *
276  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
277  *	 the file is memory mapped.
278  */
279 int
280 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
281 {
282 	struct inode *ip = ZTOI(zp);
283 	struct address_space *mp = ip->i_mapping;
284 	struct page *pp;
285 	int64_t	start, off;
286 	uint64_t bytes;
287 	int len = nbytes;
288 	int error = 0;
289 	void *pb;
290 
291 	start = uio->uio_loffset;
292 	off = start & (PAGE_SIZE-1);
293 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
294 		bytes = MIN(PAGE_SIZE - off, len);
295 
296 		pp = find_lock_page(mp, start >> PAGE_SHIFT);
297 		if (pp) {
298 			ASSERT(PageUptodate(pp));
299 			unlock_page(pp);
300 
301 			pb = kmap(pp);
302 			error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
303 			kunmap(pp);
304 
305 			if (mapping_writably_mapped(mp))
306 				flush_dcache_page(pp);
307 
308 			mark_page_accessed(pp);
309 			put_page(pp);
310 		} else {
311 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
312 			    uio, bytes);
313 		}
314 
315 		len -= bytes;
316 		off = 0;
317 		if (error)
318 			break;
319 	}
320 	return (error);
321 }
322 #endif /* _KERNEL */
323 
324 static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
325 
326 /*
327  * Write the bytes to a file.
328  *
329  *	IN:	zp	- znode of file to be written to
330  *		data	- bytes to write
331  *		len	- number of bytes to write
332  *		pos	- offset to start writing at
333  *
334  *	OUT:	resid	- remaining bytes to write
335  *
336  *	RETURN:	0 if success
337  *		positive error code if failure.  EIO is	returned
338  *		for a short write when residp isn't provided.
339  *
340  * Timestamps:
341  *	zp - ctime|mtime updated if byte count > 0
342  */
343 int
344 zfs_write_simple(znode_t *zp, const void *data, size_t len,
345     loff_t pos, size_t *residp)
346 {
347 	fstrans_cookie_t cookie;
348 	int error;
349 
350 	struct iovec iov;
351 	iov.iov_base = (void *)data;
352 	iov.iov_len = len;
353 
354 	zfs_uio_t uio;
355 	zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
356 
357 	cookie = spl_fstrans_mark();
358 	error = zfs_write(zp, &uio, 0, kcred);
359 	spl_fstrans_unmark(cookie);
360 
361 	if (error == 0) {
362 		if (residp != NULL)
363 			*residp = zfs_uio_resid(&uio);
364 		else if (zfs_uio_resid(&uio) != 0)
365 			error = SET_ERROR(EIO);
366 	}
367 
368 	return (error);
369 }
370 
371 static void
372 zfs_rele_async_task(void *arg)
373 {
374 	iput(arg);
375 }
376 
377 void
378 zfs_zrele_async(znode_t *zp)
379 {
380 	struct inode *ip = ZTOI(zp);
381 	objset_t *os = ITOZSB(ip)->z_os;
382 
383 	ASSERT(atomic_read(&ip->i_count) > 0);
384 	ASSERT(os != NULL);
385 
386 	/*
387 	 * If decrementing the count would put us at 0, we can't do it inline
388 	 * here, because that would be synchronous. Instead, dispatch an iput
389 	 * to run later.
390 	 *
391 	 * For more information on the dangers of a synchronous iput, see the
392 	 * header comment of this file.
393 	 */
394 	if (!atomic_add_unless(&ip->i_count, -1, 1)) {
395 		VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
396 		    zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
397 	}
398 }
399 
400 
401 /*
402  * Lookup an entry in a directory, or an extended attribute directory.
403  * If it exists, return a held inode reference for it.
404  *
405  *	IN:	zdp	- znode of directory to search.
406  *		nm	- name of entry to lookup.
407  *		flags	- LOOKUP_XATTR set if looking for an attribute.
408  *		cr	- credentials of caller.
409  *		direntflags - directory lookup flags
410  *		realpnp - returned pathname.
411  *
412  *	OUT:	zpp	- znode of located entry, NULL if not found.
413  *
414  *	RETURN:	0 on success, error code on failure.
415  *
416  * Timestamps:
417  *	NA
418  */
419 int
420 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
421     int *direntflags, pathname_t *realpnp)
422 {
423 	zfsvfs_t *zfsvfs = ZTOZSB(zdp);
424 	int error = 0;
425 
426 	/*
427 	 * Fast path lookup, however we must skip DNLC lookup
428 	 * for case folding or normalizing lookups because the
429 	 * DNLC code only stores the passed in name.  This means
430 	 * creating 'a' and removing 'A' on a case insensitive
431 	 * file system would work, but DNLC still thinks 'a'
432 	 * exists and won't let you create it again on the next
433 	 * pass through fast path.
434 	 */
435 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
436 
437 		if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
438 			return (SET_ERROR(ENOTDIR));
439 		} else if (zdp->z_sa_hdl == NULL) {
440 			return (SET_ERROR(EIO));
441 		}
442 
443 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
444 			error = zfs_fastaccesschk_execute(zdp, cr);
445 			if (!error) {
446 				*zpp = zdp;
447 				zhold(*zpp);
448 				return (0);
449 			}
450 			return (error);
451 		}
452 	}
453 
454 	if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
455 		return (error);
456 
457 	*zpp = NULL;
458 
459 	if (flags & LOOKUP_XATTR) {
460 		/*
461 		 * We don't allow recursive attributes..
462 		 * Maybe someday we will.
463 		 */
464 		if (zdp->z_pflags & ZFS_XATTR) {
465 			zfs_exit(zfsvfs, FTAG);
466 			return (SET_ERROR(EINVAL));
467 		}
468 
469 		if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
470 			zfs_exit(zfsvfs, FTAG);
471 			return (error);
472 		}
473 
474 		/*
475 		 * Do we have permission to get into attribute directory?
476 		 */
477 
478 		if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
479 		    B_TRUE, cr))) {
480 			zrele(*zpp);
481 			*zpp = NULL;
482 		}
483 
484 		zfs_exit(zfsvfs, FTAG);
485 		return (error);
486 	}
487 
488 	if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
489 		zfs_exit(zfsvfs, FTAG);
490 		return (SET_ERROR(ENOTDIR));
491 	}
492 
493 	/*
494 	 * Check accessibility of directory.
495 	 */
496 
497 	if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
498 		zfs_exit(zfsvfs, FTAG);
499 		return (error);
500 	}
501 
502 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
503 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
504 		zfs_exit(zfsvfs, FTAG);
505 		return (SET_ERROR(EILSEQ));
506 	}
507 
508 	error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
509 	if ((error == 0) && (*zpp))
510 		zfs_znode_update_vfs(*zpp);
511 
512 	zfs_exit(zfsvfs, FTAG);
513 	return (error);
514 }
515 
516 /*
517  * Attempt to create a new entry in a directory.  If the entry
518  * already exists, truncate the file if permissible, else return
519  * an error.  Return the ip of the created or trunc'd file.
520  *
521  *	IN:	dzp	- znode of directory to put new file entry in.
522  *		name	- name of new file entry.
523  *		vap	- attributes of new file.
524  *		excl	- flag indicating exclusive or non-exclusive mode.
525  *		mode	- mode to open file with.
526  *		cr	- credentials of caller.
527  *		flag	- file flag.
528  *		vsecp	- ACL to be set
529  *
530  *	OUT:	zpp	- znode of created or trunc'd entry.
531  *
532  *	RETURN:	0 on success, error code on failure.
533  *
534  * Timestamps:
535  *	dzp - ctime|mtime updated if new entry created
536  *	 zp - ctime|mtime always, atime if new
537  */
538 int
539 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
540     int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp)
541 {
542 	znode_t		*zp;
543 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
544 	zilog_t		*zilog;
545 	objset_t	*os;
546 	zfs_dirlock_t	*dl;
547 	dmu_tx_t	*tx;
548 	int		error;
549 	uid_t		uid;
550 	gid_t		gid;
551 	zfs_acl_ids_t   acl_ids;
552 	boolean_t	fuid_dirtied;
553 	boolean_t	have_acl = B_FALSE;
554 	boolean_t	waited = B_FALSE;
555 
556 	/*
557 	 * If we have an ephemeral id, ACL, or XVATTR then
558 	 * make sure file system is at proper version
559 	 */
560 
561 	gid = crgetgid(cr);
562 	uid = crgetuid(cr);
563 
564 	if (zfsvfs->z_use_fuids == B_FALSE &&
565 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
566 		return (SET_ERROR(EINVAL));
567 
568 	if (name == NULL)
569 		return (SET_ERROR(EINVAL));
570 
571 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
572 		return (error);
573 	os = zfsvfs->z_os;
574 	zilog = zfsvfs->z_log;
575 
576 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
577 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
578 		zfs_exit(zfsvfs, FTAG);
579 		return (SET_ERROR(EILSEQ));
580 	}
581 
582 	if (vap->va_mask & ATTR_XVATTR) {
583 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
584 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
585 			zfs_exit(zfsvfs, FTAG);
586 			return (error);
587 		}
588 	}
589 
590 top:
591 	*zpp = NULL;
592 	if (*name == '\0') {
593 		/*
594 		 * Null component name refers to the directory itself.
595 		 */
596 		zhold(dzp);
597 		zp = dzp;
598 		dl = NULL;
599 		error = 0;
600 	} else {
601 		/* possible igrab(zp) */
602 		int zflg = 0;
603 
604 		if (flag & FIGNORECASE)
605 			zflg |= ZCILOOK;
606 
607 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
608 		    NULL, NULL);
609 		if (error) {
610 			if (have_acl)
611 				zfs_acl_ids_free(&acl_ids);
612 			if (strcmp(name, "..") == 0)
613 				error = SET_ERROR(EISDIR);
614 			zfs_exit(zfsvfs, FTAG);
615 			return (error);
616 		}
617 	}
618 
619 	if (zp == NULL) {
620 		uint64_t txtype;
621 		uint64_t projid = ZFS_DEFAULT_PROJID;
622 
623 		/*
624 		 * Create a new file object and update the directory
625 		 * to reference it.
626 		 */
627 		if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
628 			if (have_acl)
629 				zfs_acl_ids_free(&acl_ids);
630 			goto out;
631 		}
632 
633 		/*
634 		 * We only support the creation of regular files in
635 		 * extended attribute directories.
636 		 */
637 
638 		if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
639 			if (have_acl)
640 				zfs_acl_ids_free(&acl_ids);
641 			error = SET_ERROR(EINVAL);
642 			goto out;
643 		}
644 
645 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
646 		    cr, vsecp, &acl_ids)) != 0)
647 			goto out;
648 		have_acl = B_TRUE;
649 
650 		if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
651 			projid = zfs_inherit_projid(dzp);
652 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
653 			zfs_acl_ids_free(&acl_ids);
654 			error = SET_ERROR(EDQUOT);
655 			goto out;
656 		}
657 
658 		tx = dmu_tx_create(os);
659 
660 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
661 		    ZFS_SA_BASE_ATTR_SIZE);
662 
663 		fuid_dirtied = zfsvfs->z_fuid_dirty;
664 		if (fuid_dirtied)
665 			zfs_fuid_txhold(zfsvfs, tx);
666 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
667 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
668 		if (!zfsvfs->z_use_sa &&
669 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
670 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
671 			    0, acl_ids.z_aclp->z_acl_bytes);
672 		}
673 
674 		error = dmu_tx_assign(tx,
675 		    (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
676 		if (error) {
677 			zfs_dirent_unlock(dl);
678 			if (error == ERESTART) {
679 				waited = B_TRUE;
680 				dmu_tx_wait(tx);
681 				dmu_tx_abort(tx);
682 				goto top;
683 			}
684 			zfs_acl_ids_free(&acl_ids);
685 			dmu_tx_abort(tx);
686 			zfs_exit(zfsvfs, FTAG);
687 			return (error);
688 		}
689 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
690 
691 		error = zfs_link_create(dl, zp, tx, ZNEW);
692 		if (error != 0) {
693 			/*
694 			 * Since, we failed to add the directory entry for it,
695 			 * delete the newly created dnode.
696 			 */
697 			zfs_znode_delete(zp, tx);
698 			remove_inode_hash(ZTOI(zp));
699 			zfs_acl_ids_free(&acl_ids);
700 			dmu_tx_commit(tx);
701 			goto out;
702 		}
703 
704 		if (fuid_dirtied)
705 			zfs_fuid_sync(zfsvfs, tx);
706 
707 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
708 		if (flag & FIGNORECASE)
709 			txtype |= TX_CI;
710 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
711 		    vsecp, acl_ids.z_fuidp, vap);
712 		zfs_acl_ids_free(&acl_ids);
713 		dmu_tx_commit(tx);
714 	} else {
715 		int aflags = (flag & O_APPEND) ? V_APPEND : 0;
716 
717 		if (have_acl)
718 			zfs_acl_ids_free(&acl_ids);
719 		have_acl = B_FALSE;
720 
721 		/*
722 		 * A directory entry already exists for this name.
723 		 */
724 		/*
725 		 * Can't truncate an existing file if in exclusive mode.
726 		 */
727 		if (excl) {
728 			error = SET_ERROR(EEXIST);
729 			goto out;
730 		}
731 		/*
732 		 * Can't open a directory for writing.
733 		 */
734 		if (S_ISDIR(ZTOI(zp)->i_mode)) {
735 			error = SET_ERROR(EISDIR);
736 			goto out;
737 		}
738 		/*
739 		 * Verify requested access to file.
740 		 */
741 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
742 			goto out;
743 		}
744 
745 		mutex_enter(&dzp->z_lock);
746 		dzp->z_seq++;
747 		mutex_exit(&dzp->z_lock);
748 
749 		/*
750 		 * Truncate regular files if requested.
751 		 */
752 		if (S_ISREG(ZTOI(zp)->i_mode) &&
753 		    (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
754 			/* we can't hold any locks when calling zfs_freesp() */
755 			if (dl) {
756 				zfs_dirent_unlock(dl);
757 				dl = NULL;
758 			}
759 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
760 		}
761 	}
762 out:
763 
764 	if (dl)
765 		zfs_dirent_unlock(dl);
766 
767 	if (error) {
768 		if (zp)
769 			zrele(zp);
770 	} else {
771 		zfs_znode_update_vfs(dzp);
772 		zfs_znode_update_vfs(zp);
773 		*zpp = zp;
774 	}
775 
776 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
777 		zil_commit(zilog, 0);
778 
779 	zfs_exit(zfsvfs, FTAG);
780 	return (error);
781 }
782 
783 int
784 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
785     int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
786 {
787 	(void) excl, (void) mode, (void) flag;
788 	znode_t		*zp = NULL, *dzp = ITOZ(dip);
789 	zfsvfs_t	*zfsvfs = ITOZSB(dip);
790 	objset_t	*os;
791 	dmu_tx_t	*tx;
792 	int		error;
793 	uid_t		uid;
794 	gid_t		gid;
795 	zfs_acl_ids_t   acl_ids;
796 	uint64_t	projid = ZFS_DEFAULT_PROJID;
797 	boolean_t	fuid_dirtied;
798 	boolean_t	have_acl = B_FALSE;
799 	boolean_t	waited = B_FALSE;
800 
801 	/*
802 	 * If we have an ephemeral id, ACL, or XVATTR then
803 	 * make sure file system is at proper version
804 	 */
805 
806 	gid = crgetgid(cr);
807 	uid = crgetuid(cr);
808 
809 	if (zfsvfs->z_use_fuids == B_FALSE &&
810 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
811 		return (SET_ERROR(EINVAL));
812 
813 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
814 		return (error);
815 	os = zfsvfs->z_os;
816 
817 	if (vap->va_mask & ATTR_XVATTR) {
818 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
819 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
820 			zfs_exit(zfsvfs, FTAG);
821 			return (error);
822 		}
823 	}
824 
825 top:
826 	*ipp = NULL;
827 
828 	/*
829 	 * Create a new file object and update the directory
830 	 * to reference it.
831 	 */
832 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
833 		if (have_acl)
834 			zfs_acl_ids_free(&acl_ids);
835 		goto out;
836 	}
837 
838 	if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
839 	    cr, vsecp, &acl_ids)) != 0)
840 		goto out;
841 	have_acl = B_TRUE;
842 
843 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
844 		projid = zfs_inherit_projid(dzp);
845 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
846 		zfs_acl_ids_free(&acl_ids);
847 		error = SET_ERROR(EDQUOT);
848 		goto out;
849 	}
850 
851 	tx = dmu_tx_create(os);
852 
853 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
854 	    ZFS_SA_BASE_ATTR_SIZE);
855 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
856 
857 	fuid_dirtied = zfsvfs->z_fuid_dirty;
858 	if (fuid_dirtied)
859 		zfs_fuid_txhold(zfsvfs, tx);
860 	if (!zfsvfs->z_use_sa &&
861 	    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
862 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
863 		    0, acl_ids.z_aclp->z_acl_bytes);
864 	}
865 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
866 	if (error) {
867 		if (error == ERESTART) {
868 			waited = B_TRUE;
869 			dmu_tx_wait(tx);
870 			dmu_tx_abort(tx);
871 			goto top;
872 		}
873 		zfs_acl_ids_free(&acl_ids);
874 		dmu_tx_abort(tx);
875 		zfs_exit(zfsvfs, FTAG);
876 		return (error);
877 	}
878 	zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
879 
880 	if (fuid_dirtied)
881 		zfs_fuid_sync(zfsvfs, tx);
882 
883 	/* Add to unlinked set */
884 	zp->z_unlinked = B_TRUE;
885 	zfs_unlinked_add(zp, tx);
886 	zfs_acl_ids_free(&acl_ids);
887 	dmu_tx_commit(tx);
888 out:
889 
890 	if (error) {
891 		if (zp)
892 			zrele(zp);
893 	} else {
894 		zfs_znode_update_vfs(dzp);
895 		zfs_znode_update_vfs(zp);
896 		*ipp = ZTOI(zp);
897 	}
898 
899 	zfs_exit(zfsvfs, FTAG);
900 	return (error);
901 }
902 
903 /*
904  * Remove an entry from a directory.
905  *
906  *	IN:	dzp	- znode of directory to remove entry from.
907  *		name	- name of entry to remove.
908  *		cr	- credentials of caller.
909  *		flags	- case flags.
910  *
911  *	RETURN:	0 if success
912  *		error code if failure
913  *
914  * Timestamps:
915  *	dzp - ctime|mtime
916  *	 ip - ctime (if nlink > 0)
917  */
918 
919 static uint64_t null_xattr = 0;
920 
921 int
922 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
923 {
924 	znode_t		*zp;
925 	znode_t		*xzp;
926 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
927 	zilog_t		*zilog;
928 	uint64_t	acl_obj, xattr_obj;
929 	uint64_t	xattr_obj_unlinked = 0;
930 	uint64_t	obj = 0;
931 	uint64_t	links;
932 	zfs_dirlock_t	*dl;
933 	dmu_tx_t	*tx;
934 	boolean_t	may_delete_now, delete_now = FALSE;
935 	boolean_t	unlinked, toobig = FALSE;
936 	uint64_t	txtype;
937 	pathname_t	*realnmp = NULL;
938 	pathname_t	realnm;
939 	int		error;
940 	int		zflg = ZEXISTS;
941 	boolean_t	waited = B_FALSE;
942 
943 	if (name == NULL)
944 		return (SET_ERROR(EINVAL));
945 
946 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
947 		return (error);
948 	zilog = zfsvfs->z_log;
949 
950 	if (flags & FIGNORECASE) {
951 		zflg |= ZCILOOK;
952 		pn_alloc(&realnm);
953 		realnmp = &realnm;
954 	}
955 
956 top:
957 	xattr_obj = 0;
958 	xzp = NULL;
959 	/*
960 	 * Attempt to lock directory; fail if entry doesn't exist.
961 	 */
962 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
963 	    NULL, realnmp))) {
964 		if (realnmp)
965 			pn_free(realnmp);
966 		zfs_exit(zfsvfs, FTAG);
967 		return (error);
968 	}
969 
970 	if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
971 		goto out;
972 	}
973 
974 	/*
975 	 * Need to use rmdir for removing directories.
976 	 */
977 	if (S_ISDIR(ZTOI(zp)->i_mode)) {
978 		error = SET_ERROR(EPERM);
979 		goto out;
980 	}
981 
982 	mutex_enter(&zp->z_lock);
983 	may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
984 	    !(zp->z_is_mapped);
985 	mutex_exit(&zp->z_lock);
986 
987 	/*
988 	 * We may delete the znode now, or we may put it in the unlinked set;
989 	 * it depends on whether we're the last link, and on whether there are
990 	 * other holds on the inode.  So we dmu_tx_hold() the right things to
991 	 * allow for either case.
992 	 */
993 	obj = zp->z_id;
994 	tx = dmu_tx_create(zfsvfs->z_os);
995 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
996 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
997 	zfs_sa_upgrade_txholds(tx, zp);
998 	zfs_sa_upgrade_txholds(tx, dzp);
999 	if (may_delete_now) {
1000 		toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1001 		/* if the file is too big, only hold_free a token amount */
1002 		dmu_tx_hold_free(tx, zp->z_id, 0,
1003 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1004 	}
1005 
1006 	/* are there any extended attributes? */
1007 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1008 	    &xattr_obj, sizeof (xattr_obj));
1009 	if (error == 0 && xattr_obj) {
1010 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1011 		ASSERT0(error);
1012 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1013 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1014 	}
1015 
1016 	mutex_enter(&zp->z_lock);
1017 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1018 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1019 	mutex_exit(&zp->z_lock);
1020 
1021 	/* charge as an update -- would be nice not to charge at all */
1022 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1023 
1024 	/*
1025 	 * Mark this transaction as typically resulting in a net free of space
1026 	 */
1027 	dmu_tx_mark_netfree(tx);
1028 
1029 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1030 	if (error) {
1031 		zfs_dirent_unlock(dl);
1032 		if (error == ERESTART) {
1033 			waited = B_TRUE;
1034 			dmu_tx_wait(tx);
1035 			dmu_tx_abort(tx);
1036 			zrele(zp);
1037 			if (xzp)
1038 				zrele(xzp);
1039 			goto top;
1040 		}
1041 		if (realnmp)
1042 			pn_free(realnmp);
1043 		dmu_tx_abort(tx);
1044 		zrele(zp);
1045 		if (xzp)
1046 			zrele(xzp);
1047 		zfs_exit(zfsvfs, FTAG);
1048 		return (error);
1049 	}
1050 
1051 	/*
1052 	 * Remove the directory entry.
1053 	 */
1054 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1055 
1056 	if (error) {
1057 		dmu_tx_commit(tx);
1058 		goto out;
1059 	}
1060 
1061 	if (unlinked) {
1062 		/*
1063 		 * Hold z_lock so that we can make sure that the ACL obj
1064 		 * hasn't changed.  Could have been deleted due to
1065 		 * zfs_sa_upgrade().
1066 		 */
1067 		mutex_enter(&zp->z_lock);
1068 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1069 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1070 		delete_now = may_delete_now && !toobig &&
1071 		    atomic_read(&ZTOI(zp)->i_count) == 1 &&
1072 		    !(zp->z_is_mapped) && xattr_obj == xattr_obj_unlinked &&
1073 		    zfs_external_acl(zp) == acl_obj;
1074 	}
1075 
1076 	if (delete_now) {
1077 		if (xattr_obj_unlinked) {
1078 			ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1079 			mutex_enter(&xzp->z_lock);
1080 			xzp->z_unlinked = B_TRUE;
1081 			clear_nlink(ZTOI(xzp));
1082 			links = 0;
1083 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1084 			    &links, sizeof (links), tx);
1085 			ASSERT3U(error,  ==,  0);
1086 			mutex_exit(&xzp->z_lock);
1087 			zfs_unlinked_add(xzp, tx);
1088 
1089 			if (zp->z_is_sa)
1090 				error = sa_remove(zp->z_sa_hdl,
1091 				    SA_ZPL_XATTR(zfsvfs), tx);
1092 			else
1093 				error = sa_update(zp->z_sa_hdl,
1094 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1095 				    sizeof (uint64_t), tx);
1096 			ASSERT0(error);
1097 		}
1098 		/*
1099 		 * Add to the unlinked set because a new reference could be
1100 		 * taken concurrently resulting in a deferred destruction.
1101 		 */
1102 		zfs_unlinked_add(zp, tx);
1103 		mutex_exit(&zp->z_lock);
1104 	} else if (unlinked) {
1105 		mutex_exit(&zp->z_lock);
1106 		zfs_unlinked_add(zp, tx);
1107 	}
1108 
1109 	txtype = TX_REMOVE;
1110 	if (flags & FIGNORECASE)
1111 		txtype |= TX_CI;
1112 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1113 
1114 	dmu_tx_commit(tx);
1115 out:
1116 	if (realnmp)
1117 		pn_free(realnmp);
1118 
1119 	zfs_dirent_unlock(dl);
1120 	zfs_znode_update_vfs(dzp);
1121 	zfs_znode_update_vfs(zp);
1122 
1123 	if (delete_now)
1124 		zrele(zp);
1125 	else
1126 		zfs_zrele_async(zp);
1127 
1128 	if (xzp) {
1129 		zfs_znode_update_vfs(xzp);
1130 		zfs_zrele_async(xzp);
1131 	}
1132 
1133 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1134 		zil_commit(zilog, 0);
1135 
1136 	zfs_exit(zfsvfs, FTAG);
1137 	return (error);
1138 }
1139 
1140 /*
1141  * Create a new directory and insert it into dzp using the name
1142  * provided.  Return a pointer to the inserted directory.
1143  *
1144  *	IN:	dzp	- znode of directory to add subdir to.
1145  *		dirname	- name of new directory.
1146  *		vap	- attributes of new directory.
1147  *		cr	- credentials of caller.
1148  *		flags	- case flags.
1149  *		vsecp	- ACL to be set
1150  *
1151  *	OUT:	zpp	- znode of created directory.
1152  *
1153  *	RETURN:	0 if success
1154  *		error code if failure
1155  *
1156  * Timestamps:
1157  *	dzp - ctime|mtime updated
1158  *	zpp - ctime|mtime|atime updated
1159  */
1160 int
1161 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1162     cred_t *cr, int flags, vsecattr_t *vsecp)
1163 {
1164 	znode_t		*zp;
1165 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1166 	zilog_t		*zilog;
1167 	zfs_dirlock_t	*dl;
1168 	uint64_t	txtype;
1169 	dmu_tx_t	*tx;
1170 	int		error;
1171 	int		zf = ZNEW;
1172 	uid_t		uid;
1173 	gid_t		gid = crgetgid(cr);
1174 	zfs_acl_ids_t   acl_ids;
1175 	boolean_t	fuid_dirtied;
1176 	boolean_t	waited = B_FALSE;
1177 
1178 	ASSERT(S_ISDIR(vap->va_mode));
1179 
1180 	/*
1181 	 * If we have an ephemeral id, ACL, or XVATTR then
1182 	 * make sure file system is at proper version
1183 	 */
1184 
1185 	uid = crgetuid(cr);
1186 	if (zfsvfs->z_use_fuids == B_FALSE &&
1187 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1188 		return (SET_ERROR(EINVAL));
1189 
1190 	if (dirname == NULL)
1191 		return (SET_ERROR(EINVAL));
1192 
1193 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1194 		return (error);
1195 	zilog = zfsvfs->z_log;
1196 
1197 	if (dzp->z_pflags & ZFS_XATTR) {
1198 		zfs_exit(zfsvfs, FTAG);
1199 		return (SET_ERROR(EINVAL));
1200 	}
1201 
1202 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1203 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1204 		zfs_exit(zfsvfs, FTAG);
1205 		return (SET_ERROR(EILSEQ));
1206 	}
1207 	if (flags & FIGNORECASE)
1208 		zf |= ZCILOOK;
1209 
1210 	if (vap->va_mask & ATTR_XVATTR) {
1211 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1212 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
1213 			zfs_exit(zfsvfs, FTAG);
1214 			return (error);
1215 		}
1216 	}
1217 
1218 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1219 	    vsecp, &acl_ids)) != 0) {
1220 		zfs_exit(zfsvfs, FTAG);
1221 		return (error);
1222 	}
1223 	/*
1224 	 * First make sure the new directory doesn't exist.
1225 	 *
1226 	 * Existence is checked first to make sure we don't return
1227 	 * EACCES instead of EEXIST which can cause some applications
1228 	 * to fail.
1229 	 */
1230 top:
1231 	*zpp = NULL;
1232 
1233 	if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1234 	    NULL, NULL))) {
1235 		zfs_acl_ids_free(&acl_ids);
1236 		zfs_exit(zfsvfs, FTAG);
1237 		return (error);
1238 	}
1239 
1240 	if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
1241 		zfs_acl_ids_free(&acl_ids);
1242 		zfs_dirent_unlock(dl);
1243 		zfs_exit(zfsvfs, FTAG);
1244 		return (error);
1245 	}
1246 
1247 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1248 		zfs_acl_ids_free(&acl_ids);
1249 		zfs_dirent_unlock(dl);
1250 		zfs_exit(zfsvfs, FTAG);
1251 		return (SET_ERROR(EDQUOT));
1252 	}
1253 
1254 	/*
1255 	 * Add a new entry to the directory.
1256 	 */
1257 	tx = dmu_tx_create(zfsvfs->z_os);
1258 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1259 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1260 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1261 	if (fuid_dirtied)
1262 		zfs_fuid_txhold(zfsvfs, tx);
1263 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1264 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1265 		    acl_ids.z_aclp->z_acl_bytes);
1266 	}
1267 
1268 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1269 	    ZFS_SA_BASE_ATTR_SIZE);
1270 
1271 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1272 	if (error) {
1273 		zfs_dirent_unlock(dl);
1274 		if (error == ERESTART) {
1275 			waited = B_TRUE;
1276 			dmu_tx_wait(tx);
1277 			dmu_tx_abort(tx);
1278 			goto top;
1279 		}
1280 		zfs_acl_ids_free(&acl_ids);
1281 		dmu_tx_abort(tx);
1282 		zfs_exit(zfsvfs, FTAG);
1283 		return (error);
1284 	}
1285 
1286 	/*
1287 	 * Create new node.
1288 	 */
1289 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1290 
1291 	/*
1292 	 * Now put new name in parent dir.
1293 	 */
1294 	error = zfs_link_create(dl, zp, tx, ZNEW);
1295 	if (error != 0) {
1296 		zfs_znode_delete(zp, tx);
1297 		remove_inode_hash(ZTOI(zp));
1298 		goto out;
1299 	}
1300 
1301 	if (fuid_dirtied)
1302 		zfs_fuid_sync(zfsvfs, tx);
1303 
1304 	*zpp = zp;
1305 
1306 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1307 	if (flags & FIGNORECASE)
1308 		txtype |= TX_CI;
1309 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1310 	    acl_ids.z_fuidp, vap);
1311 
1312 out:
1313 	zfs_acl_ids_free(&acl_ids);
1314 
1315 	dmu_tx_commit(tx);
1316 
1317 	zfs_dirent_unlock(dl);
1318 
1319 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1320 		zil_commit(zilog, 0);
1321 
1322 	if (error != 0) {
1323 		zrele(zp);
1324 	} else {
1325 		zfs_znode_update_vfs(dzp);
1326 		zfs_znode_update_vfs(zp);
1327 	}
1328 	zfs_exit(zfsvfs, FTAG);
1329 	return (error);
1330 }
1331 
1332 /*
1333  * Remove a directory subdir entry.  If the current working
1334  * directory is the same as the subdir to be removed, the
1335  * remove will fail.
1336  *
1337  *	IN:	dzp	- znode of directory to remove from.
1338  *		name	- name of directory to be removed.
1339  *		cwd	- inode of current working directory.
1340  *		cr	- credentials of caller.
1341  *		flags	- case flags
1342  *
1343  *	RETURN:	0 on success, error code on failure.
1344  *
1345  * Timestamps:
1346  *	dzp - ctime|mtime updated
1347  */
1348 int
1349 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1350     int flags)
1351 {
1352 	znode_t		*zp;
1353 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1354 	zilog_t		*zilog;
1355 	zfs_dirlock_t	*dl;
1356 	dmu_tx_t	*tx;
1357 	int		error;
1358 	int		zflg = ZEXISTS;
1359 	boolean_t	waited = B_FALSE;
1360 
1361 	if (name == NULL)
1362 		return (SET_ERROR(EINVAL));
1363 
1364 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1365 		return (error);
1366 	zilog = zfsvfs->z_log;
1367 
1368 	if (flags & FIGNORECASE)
1369 		zflg |= ZCILOOK;
1370 top:
1371 	zp = NULL;
1372 
1373 	/*
1374 	 * Attempt to lock directory; fail if entry doesn't exist.
1375 	 */
1376 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1377 	    NULL, NULL))) {
1378 		zfs_exit(zfsvfs, FTAG);
1379 		return (error);
1380 	}
1381 
1382 	if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1383 		goto out;
1384 	}
1385 
1386 	if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1387 		error = SET_ERROR(ENOTDIR);
1388 		goto out;
1389 	}
1390 
1391 	if (zp == cwd) {
1392 		error = SET_ERROR(EINVAL);
1393 		goto out;
1394 	}
1395 
1396 	/*
1397 	 * Grab a lock on the directory to make sure that no one is
1398 	 * trying to add (or lookup) entries while we are removing it.
1399 	 */
1400 	rw_enter(&zp->z_name_lock, RW_WRITER);
1401 
1402 	/*
1403 	 * Grab a lock on the parent pointer to make sure we play well
1404 	 * with the treewalk and directory rename code.
1405 	 */
1406 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1407 
1408 	tx = dmu_tx_create(zfsvfs->z_os);
1409 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1410 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1411 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1412 	zfs_sa_upgrade_txholds(tx, zp);
1413 	zfs_sa_upgrade_txholds(tx, dzp);
1414 	dmu_tx_mark_netfree(tx);
1415 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1416 	if (error) {
1417 		rw_exit(&zp->z_parent_lock);
1418 		rw_exit(&zp->z_name_lock);
1419 		zfs_dirent_unlock(dl);
1420 		if (error == ERESTART) {
1421 			waited = B_TRUE;
1422 			dmu_tx_wait(tx);
1423 			dmu_tx_abort(tx);
1424 			zrele(zp);
1425 			goto top;
1426 		}
1427 		dmu_tx_abort(tx);
1428 		zrele(zp);
1429 		zfs_exit(zfsvfs, FTAG);
1430 		return (error);
1431 	}
1432 
1433 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1434 
1435 	if (error == 0) {
1436 		uint64_t txtype = TX_RMDIR;
1437 		if (flags & FIGNORECASE)
1438 			txtype |= TX_CI;
1439 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1440 		    B_FALSE);
1441 	}
1442 
1443 	dmu_tx_commit(tx);
1444 
1445 	rw_exit(&zp->z_parent_lock);
1446 	rw_exit(&zp->z_name_lock);
1447 out:
1448 	zfs_dirent_unlock(dl);
1449 
1450 	zfs_znode_update_vfs(dzp);
1451 	zfs_znode_update_vfs(zp);
1452 	zrele(zp);
1453 
1454 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1455 		zil_commit(zilog, 0);
1456 
1457 	zfs_exit(zfsvfs, FTAG);
1458 	return (error);
1459 }
1460 
1461 /*
1462  * Read directory entries from the given directory cursor position and emit
1463  * name and position for each entry.
1464  *
1465  *	IN:	ip	- inode of directory to read.
1466  *		ctx	- directory entry context.
1467  *		cr	- credentials of caller.
1468  *
1469  *	RETURN:	0 if success
1470  *		error code if failure
1471  *
1472  * Timestamps:
1473  *	ip - atime updated
1474  *
1475  * Note that the low 4 bits of the cookie returned by zap is always zero.
1476  * This allows us to use the low range for "special" directory entries:
1477  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1478  * we use the offset 2 for the '.zfs' directory.
1479  */
1480 int
1481 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
1482 {
1483 	(void) cr;
1484 	znode_t		*zp = ITOZ(ip);
1485 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
1486 	objset_t	*os;
1487 	zap_cursor_t	zc;
1488 	zap_attribute_t	zap;
1489 	int		error;
1490 	uint8_t		prefetch;
1491 	uint8_t		type;
1492 	int		done = 0;
1493 	uint64_t	parent;
1494 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1495 
1496 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1497 		return (error);
1498 
1499 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1500 	    &parent, sizeof (parent))) != 0)
1501 		goto out;
1502 
1503 	/*
1504 	 * Quit if directory has been removed (posix)
1505 	 */
1506 	if (zp->z_unlinked)
1507 		goto out;
1508 
1509 	error = 0;
1510 	os = zfsvfs->z_os;
1511 	offset = ctx->pos;
1512 	prefetch = zp->z_zn_prefetch;
1513 
1514 	/*
1515 	 * Initialize the iterator cursor.
1516 	 */
1517 	if (offset <= 3) {
1518 		/*
1519 		 * Start iteration from the beginning of the directory.
1520 		 */
1521 		zap_cursor_init(&zc, os, zp->z_id);
1522 	} else {
1523 		/*
1524 		 * The offset is a serialized cursor.
1525 		 */
1526 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1527 	}
1528 
1529 	/*
1530 	 * Transform to file-system independent format
1531 	 */
1532 	while (!done) {
1533 		uint64_t objnum;
1534 		/*
1535 		 * Special case `.', `..', and `.zfs'.
1536 		 */
1537 		if (offset == 0) {
1538 			(void) strcpy(zap.za_name, ".");
1539 			zap.za_normalization_conflict = 0;
1540 			objnum = zp->z_id;
1541 			type = DT_DIR;
1542 		} else if (offset == 1) {
1543 			(void) strcpy(zap.za_name, "..");
1544 			zap.za_normalization_conflict = 0;
1545 			objnum = parent;
1546 			type = DT_DIR;
1547 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1548 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1549 			zap.za_normalization_conflict = 0;
1550 			objnum = ZFSCTL_INO_ROOT;
1551 			type = DT_DIR;
1552 		} else {
1553 			/*
1554 			 * Grab next entry.
1555 			 */
1556 			if ((error = zap_cursor_retrieve(&zc, &zap))) {
1557 				if (error == ENOENT)
1558 					break;
1559 				else
1560 					goto update;
1561 			}
1562 
1563 			/*
1564 			 * Allow multiple entries provided the first entry is
1565 			 * the object id.  Non-zpl consumers may safely make
1566 			 * use of the additional space.
1567 			 *
1568 			 * XXX: This should be a feature flag for compatibility
1569 			 */
1570 			if (zap.za_integer_length != 8 ||
1571 			    zap.za_num_integers == 0) {
1572 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1573 				    "entry, obj = %lld, offset = %lld, "
1574 				    "length = %d, num = %lld\n",
1575 				    (u_longlong_t)zp->z_id,
1576 				    (u_longlong_t)offset,
1577 				    zap.za_integer_length,
1578 				    (u_longlong_t)zap.za_num_integers);
1579 				error = SET_ERROR(ENXIO);
1580 				goto update;
1581 			}
1582 
1583 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1584 			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1585 		}
1586 
1587 		done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
1588 		    objnum, type);
1589 		if (done)
1590 			break;
1591 
1592 		/* Prefetch znode */
1593 		if (prefetch) {
1594 			dmu_prefetch(os, objnum, 0, 0, 0,
1595 			    ZIO_PRIORITY_SYNC_READ);
1596 		}
1597 
1598 		/*
1599 		 * Move to the next entry, fill in the previous offset.
1600 		 */
1601 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1602 			zap_cursor_advance(&zc);
1603 			offset = zap_cursor_serialize(&zc);
1604 		} else {
1605 			offset += 1;
1606 		}
1607 		ctx->pos = offset;
1608 	}
1609 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1610 
1611 update:
1612 	zap_cursor_fini(&zc);
1613 	if (error == ENOENT)
1614 		error = 0;
1615 out:
1616 	zfs_exit(zfsvfs, FTAG);
1617 
1618 	return (error);
1619 }
1620 
1621 /*
1622  * Get the basic file attributes and place them in the provided kstat
1623  * structure.  The inode is assumed to be the authoritative source
1624  * for most of the attributes.  However, the znode currently has the
1625  * authoritative atime, blksize, and block count.
1626  *
1627  *	IN:	ip	- inode of file.
1628  *
1629  *	OUT:	sp	- kstat values.
1630  *
1631  *	RETURN:	0 (always succeeds)
1632  */
1633 int
1634 zfs_getattr_fast(struct user_namespace *user_ns, struct inode *ip,
1635     struct kstat *sp)
1636 {
1637 	znode_t *zp = ITOZ(ip);
1638 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1639 	uint32_t blksize;
1640 	u_longlong_t nblocks;
1641 	int error;
1642 
1643 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1644 		return (error);
1645 
1646 	mutex_enter(&zp->z_lock);
1647 
1648 	zpl_generic_fillattr(user_ns, ip, sp);
1649 	/*
1650 	 * +1 link count for root inode with visible '.zfs' directory.
1651 	 */
1652 	if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1653 		if (sp->nlink < ZFS_LINK_MAX)
1654 			sp->nlink++;
1655 
1656 	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1657 	sp->blksize = blksize;
1658 	sp->blocks = nblocks;
1659 
1660 	if (unlikely(zp->z_blksz == 0)) {
1661 		/*
1662 		 * Block size hasn't been set; suggest maximal I/O transfers.
1663 		 */
1664 		sp->blksize = zfsvfs->z_max_blksz;
1665 	}
1666 
1667 	mutex_exit(&zp->z_lock);
1668 
1669 	/*
1670 	 * Required to prevent NFS client from detecting different inode
1671 	 * numbers of snapshot root dentry before and after snapshot mount.
1672 	 */
1673 	if (zfsvfs->z_issnap) {
1674 		if (ip->i_sb->s_root->d_inode == ip)
1675 			sp->ino = ZFSCTL_INO_SNAPDIRS -
1676 			    dmu_objset_id(zfsvfs->z_os);
1677 	}
1678 
1679 	zfs_exit(zfsvfs, FTAG);
1680 
1681 	return (0);
1682 }
1683 
1684 /*
1685  * For the operation of changing file's user/group/project, we need to
1686  * handle not only the main object that is assigned to the file directly,
1687  * but also the ones that are used by the file via hidden xattr directory.
1688  *
1689  * Because the xattr directory may contains many EA entries, as to it may
1690  * be impossible to change all of them via the transaction of changing the
1691  * main object's user/group/project attributes. Then we have to change them
1692  * via other multiple independent transactions one by one. It may be not good
1693  * solution, but we have no better idea yet.
1694  */
1695 static int
1696 zfs_setattr_dir(znode_t *dzp)
1697 {
1698 	struct inode	*dxip = ZTOI(dzp);
1699 	struct inode	*xip = NULL;
1700 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1701 	objset_t	*os = zfsvfs->z_os;
1702 	zap_cursor_t	zc;
1703 	zap_attribute_t	zap;
1704 	zfs_dirlock_t	*dl;
1705 	znode_t		*zp = NULL;
1706 	dmu_tx_t	*tx = NULL;
1707 	uint64_t	uid, gid;
1708 	sa_bulk_attr_t	bulk[4];
1709 	int		count;
1710 	int		err;
1711 
1712 	zap_cursor_init(&zc, os, dzp->z_id);
1713 	while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
1714 		count = 0;
1715 		if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
1716 			err = ENXIO;
1717 			break;
1718 		}
1719 
1720 		err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
1721 		    ZEXISTS, NULL, NULL);
1722 		if (err == ENOENT)
1723 			goto next;
1724 		if (err)
1725 			break;
1726 
1727 		xip = ZTOI(zp);
1728 		if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1729 		    KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1730 		    zp->z_projid == dzp->z_projid)
1731 			goto next;
1732 
1733 		tx = dmu_tx_create(os);
1734 		if (!(zp->z_pflags & ZFS_PROJID))
1735 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1736 		else
1737 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1738 
1739 		err = dmu_tx_assign(tx, TXG_WAIT);
1740 		if (err)
1741 			break;
1742 
1743 		mutex_enter(&dzp->z_lock);
1744 
1745 		if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1746 			xip->i_uid = dxip->i_uid;
1747 			uid = zfs_uid_read(dxip);
1748 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1749 			    &uid, sizeof (uid));
1750 		}
1751 
1752 		if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1753 			xip->i_gid = dxip->i_gid;
1754 			gid = zfs_gid_read(dxip);
1755 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1756 			    &gid, sizeof (gid));
1757 		}
1758 
1759 		if (zp->z_projid != dzp->z_projid) {
1760 			if (!(zp->z_pflags & ZFS_PROJID)) {
1761 				zp->z_pflags |= ZFS_PROJID;
1762 				SA_ADD_BULK_ATTR(bulk, count,
1763 				    SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
1764 				    sizeof (zp->z_pflags));
1765 			}
1766 
1767 			zp->z_projid = dzp->z_projid;
1768 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
1769 			    NULL, &zp->z_projid, sizeof (zp->z_projid));
1770 		}
1771 
1772 		mutex_exit(&dzp->z_lock);
1773 
1774 		if (likely(count > 0)) {
1775 			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1776 			dmu_tx_commit(tx);
1777 		} else {
1778 			dmu_tx_abort(tx);
1779 		}
1780 		tx = NULL;
1781 		if (err != 0 && err != ENOENT)
1782 			break;
1783 
1784 next:
1785 		if (zp) {
1786 			zrele(zp);
1787 			zp = NULL;
1788 			zfs_dirent_unlock(dl);
1789 		}
1790 		zap_cursor_advance(&zc);
1791 	}
1792 
1793 	if (tx)
1794 		dmu_tx_abort(tx);
1795 	if (zp) {
1796 		zrele(zp);
1797 		zfs_dirent_unlock(dl);
1798 	}
1799 	zap_cursor_fini(&zc);
1800 
1801 	return (err == ENOENT ? 0 : err);
1802 }
1803 
1804 /*
1805  * Set the file attributes to the values contained in the
1806  * vattr structure.
1807  *
1808  *	IN:	zp	- znode of file to be modified.
1809  *		vap	- new attribute values.
1810  *			  If ATTR_XVATTR set, then optional attrs are being set
1811  *		flags	- ATTR_UTIME set if non-default time values provided.
1812  *			- ATTR_NOACLCHECK (CIFS context only).
1813  *		cr	- credentials of caller.
1814  *
1815  *	RETURN:	0 if success
1816  *		error code if failure
1817  *
1818  * Timestamps:
1819  *	ip - ctime updated, mtime updated if size changed.
1820  */
1821 int
1822 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr)
1823 {
1824 	struct inode	*ip;
1825 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1826 	objset_t	*os = zfsvfs->z_os;
1827 	zilog_t		*zilog;
1828 	dmu_tx_t	*tx;
1829 	vattr_t		oldva;
1830 	xvattr_t	*tmpxvattr;
1831 	uint_t		mask = vap->va_mask;
1832 	uint_t		saved_mask = 0;
1833 	int		trim_mask = 0;
1834 	uint64_t	new_mode;
1835 	uint64_t	new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1836 	uint64_t	xattr_obj;
1837 	uint64_t	mtime[2], ctime[2], atime[2];
1838 	uint64_t	projid = ZFS_INVALID_PROJID;
1839 	znode_t		*attrzp;
1840 	int		need_policy = FALSE;
1841 	int		err, err2 = 0;
1842 	zfs_fuid_info_t *fuidp = NULL;
1843 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
1844 	xoptattr_t	*xoap;
1845 	zfs_acl_t	*aclp;
1846 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1847 	boolean_t	fuid_dirtied = B_FALSE;
1848 	boolean_t	handle_eadir = B_FALSE;
1849 	sa_bulk_attr_t	*bulk, *xattr_bulk;
1850 	int		count = 0, xattr_count = 0, bulks = 8;
1851 
1852 	if (mask == 0)
1853 		return (0);
1854 
1855 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1856 		return (err);
1857 	ip = ZTOI(zp);
1858 
1859 	/*
1860 	 * If this is a xvattr_t, then get a pointer to the structure of
1861 	 * optional attributes.  If this is NULL, then we have a vattr_t.
1862 	 */
1863 	xoap = xva_getxoptattr(xvap);
1864 	if (xoap != NULL && (mask & ATTR_XVATTR)) {
1865 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1866 			if (!dmu_objset_projectquota_enabled(os) ||
1867 			    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1868 				zfs_exit(zfsvfs, FTAG);
1869 				return (SET_ERROR(ENOTSUP));
1870 			}
1871 
1872 			projid = xoap->xoa_projid;
1873 			if (unlikely(projid == ZFS_INVALID_PROJID)) {
1874 				zfs_exit(zfsvfs, FTAG);
1875 				return (SET_ERROR(EINVAL));
1876 			}
1877 
1878 			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1879 				projid = ZFS_INVALID_PROJID;
1880 			else
1881 				need_policy = TRUE;
1882 		}
1883 
1884 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1885 		    (xoap->xoa_projinherit !=
1886 		    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1887 		    (!dmu_objset_projectquota_enabled(os) ||
1888 		    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1889 			zfs_exit(zfsvfs, FTAG);
1890 			return (SET_ERROR(ENOTSUP));
1891 		}
1892 	}
1893 
1894 	zilog = zfsvfs->z_log;
1895 
1896 	/*
1897 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
1898 	 * that file system is at proper version level
1899 	 */
1900 
1901 	if (zfsvfs->z_use_fuids == B_FALSE &&
1902 	    (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
1903 	    ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
1904 	    (mask & ATTR_XVATTR))) {
1905 		zfs_exit(zfsvfs, FTAG);
1906 		return (SET_ERROR(EINVAL));
1907 	}
1908 
1909 	if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
1910 		zfs_exit(zfsvfs, FTAG);
1911 		return (SET_ERROR(EISDIR));
1912 	}
1913 
1914 	if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
1915 		zfs_exit(zfsvfs, FTAG);
1916 		return (SET_ERROR(EINVAL));
1917 	}
1918 
1919 	tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
1920 	xva_init(tmpxvattr);
1921 
1922 	bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1923 	xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1924 
1925 	/*
1926 	 * Immutable files can only alter immutable bit and atime
1927 	 */
1928 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
1929 	    ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
1930 	    ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
1931 		err = SET_ERROR(EPERM);
1932 		goto out3;
1933 	}
1934 
1935 	if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
1936 		err = SET_ERROR(EPERM);
1937 		goto out3;
1938 	}
1939 
1940 	/*
1941 	 * Verify timestamps doesn't overflow 32 bits.
1942 	 * ZFS can handle large timestamps, but 32bit syscalls can't
1943 	 * handle times greater than 2039.  This check should be removed
1944 	 * once large timestamps are fully supported.
1945 	 */
1946 	if (mask & (ATTR_ATIME | ATTR_MTIME)) {
1947 		if (((mask & ATTR_ATIME) &&
1948 		    TIMESPEC_OVERFLOW(&vap->va_atime)) ||
1949 		    ((mask & ATTR_MTIME) &&
1950 		    TIMESPEC_OVERFLOW(&vap->va_mtime))) {
1951 			err = SET_ERROR(EOVERFLOW);
1952 			goto out3;
1953 		}
1954 	}
1955 
1956 top:
1957 	attrzp = NULL;
1958 	aclp = NULL;
1959 
1960 	/* Can this be moved to before the top label? */
1961 	if (zfs_is_readonly(zfsvfs)) {
1962 		err = SET_ERROR(EROFS);
1963 		goto out3;
1964 	}
1965 
1966 	/*
1967 	 * First validate permissions
1968 	 */
1969 
1970 	if (mask & ATTR_SIZE) {
1971 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
1972 		if (err)
1973 			goto out3;
1974 
1975 		/*
1976 		 * XXX - Note, we are not providing any open
1977 		 * mode flags here (like FNDELAY), so we may
1978 		 * block if there are locks present... this
1979 		 * should be addressed in openat().
1980 		 */
1981 		/* XXX - would it be OK to generate a log record here? */
1982 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
1983 		if (err)
1984 			goto out3;
1985 	}
1986 
1987 	if (mask & (ATTR_ATIME|ATTR_MTIME) ||
1988 	    ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
1989 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
1990 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
1991 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
1992 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
1993 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
1994 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
1995 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
1996 		    skipaclchk, cr);
1997 	}
1998 
1999 	if (mask & (ATTR_UID|ATTR_GID)) {
2000 		int	idmask = (mask & (ATTR_UID|ATTR_GID));
2001 		int	take_owner;
2002 		int	take_group;
2003 
2004 		/*
2005 		 * NOTE: even if a new mode is being set,
2006 		 * we may clear S_ISUID/S_ISGID bits.
2007 		 */
2008 
2009 		if (!(mask & ATTR_MODE))
2010 			vap->va_mode = zp->z_mode;
2011 
2012 		/*
2013 		 * Take ownership or chgrp to group we are a member of
2014 		 */
2015 
2016 		take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
2017 		take_group = (mask & ATTR_GID) &&
2018 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2019 
2020 		/*
2021 		 * If both ATTR_UID and ATTR_GID are set then take_owner and
2022 		 * take_group must both be set in order to allow taking
2023 		 * ownership.
2024 		 *
2025 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2026 		 *
2027 		 */
2028 
2029 		if (((idmask == (ATTR_UID|ATTR_GID)) &&
2030 		    take_owner && take_group) ||
2031 		    ((idmask == ATTR_UID) && take_owner) ||
2032 		    ((idmask == ATTR_GID) && take_group)) {
2033 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2034 			    skipaclchk, cr) == 0) {
2035 				/*
2036 				 * Remove setuid/setgid for non-privileged users
2037 				 */
2038 				(void) secpolicy_setid_clear(vap, cr);
2039 				trim_mask = (mask & (ATTR_UID|ATTR_GID));
2040 			} else {
2041 				need_policy =  TRUE;
2042 			}
2043 		} else {
2044 			need_policy =  TRUE;
2045 		}
2046 	}
2047 
2048 	mutex_enter(&zp->z_lock);
2049 	oldva.va_mode = zp->z_mode;
2050 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2051 	if (mask & ATTR_XVATTR) {
2052 		/*
2053 		 * Update xvattr mask to include only those attributes
2054 		 * that are actually changing.
2055 		 *
2056 		 * the bits will be restored prior to actually setting
2057 		 * the attributes so the caller thinks they were set.
2058 		 */
2059 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2060 			if (xoap->xoa_appendonly !=
2061 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2062 				need_policy = TRUE;
2063 			} else {
2064 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2065 				XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2066 			}
2067 		}
2068 
2069 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2070 			if (xoap->xoa_projinherit !=
2071 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2072 				need_policy = TRUE;
2073 			} else {
2074 				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2075 				XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2076 			}
2077 		}
2078 
2079 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2080 			if (xoap->xoa_nounlink !=
2081 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2082 				need_policy = TRUE;
2083 			} else {
2084 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2085 				XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2086 			}
2087 		}
2088 
2089 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2090 			if (xoap->xoa_immutable !=
2091 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2092 				need_policy = TRUE;
2093 			} else {
2094 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2095 				XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2096 			}
2097 		}
2098 
2099 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2100 			if (xoap->xoa_nodump !=
2101 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2102 				need_policy = TRUE;
2103 			} else {
2104 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2105 				XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2106 			}
2107 		}
2108 
2109 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2110 			if (xoap->xoa_av_modified !=
2111 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2112 				need_policy = TRUE;
2113 			} else {
2114 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2115 				XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2116 			}
2117 		}
2118 
2119 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2120 			if ((!S_ISREG(ip->i_mode) &&
2121 			    xoap->xoa_av_quarantined) ||
2122 			    xoap->xoa_av_quarantined !=
2123 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2124 				need_policy = TRUE;
2125 			} else {
2126 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2127 				XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2128 			}
2129 		}
2130 
2131 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2132 			mutex_exit(&zp->z_lock);
2133 			err = SET_ERROR(EPERM);
2134 			goto out3;
2135 		}
2136 
2137 		if (need_policy == FALSE &&
2138 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2139 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2140 			need_policy = TRUE;
2141 		}
2142 	}
2143 
2144 	mutex_exit(&zp->z_lock);
2145 
2146 	if (mask & ATTR_MODE) {
2147 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2148 			err = secpolicy_setid_setsticky_clear(ip, vap,
2149 			    &oldva, cr);
2150 			if (err)
2151 				goto out3;
2152 
2153 			trim_mask |= ATTR_MODE;
2154 		} else {
2155 			need_policy = TRUE;
2156 		}
2157 	}
2158 
2159 	if (need_policy) {
2160 		/*
2161 		 * If trim_mask is set then take ownership
2162 		 * has been granted or write_acl is present and user
2163 		 * has the ability to modify mode.  In that case remove
2164 		 * UID|GID and or MODE from mask so that
2165 		 * secpolicy_vnode_setattr() doesn't revoke it.
2166 		 */
2167 
2168 		if (trim_mask) {
2169 			saved_mask = vap->va_mask;
2170 			vap->va_mask &= ~trim_mask;
2171 		}
2172 		err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2173 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2174 		if (err)
2175 			goto out3;
2176 
2177 		if (trim_mask)
2178 			vap->va_mask |= saved_mask;
2179 	}
2180 
2181 	/*
2182 	 * secpolicy_vnode_setattr, or take ownership may have
2183 	 * changed va_mask
2184 	 */
2185 	mask = vap->va_mask;
2186 
2187 	if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2188 		handle_eadir = B_TRUE;
2189 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2190 		    &xattr_obj, sizeof (xattr_obj));
2191 
2192 		if (err == 0 && xattr_obj) {
2193 			err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2194 			if (err)
2195 				goto out2;
2196 		}
2197 		if (mask & ATTR_UID) {
2198 			new_kuid = zfs_fuid_create(zfsvfs,
2199 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2200 			if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2201 			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2202 			    new_kuid)) {
2203 				if (attrzp)
2204 					zrele(attrzp);
2205 				err = SET_ERROR(EDQUOT);
2206 				goto out2;
2207 			}
2208 		}
2209 
2210 		if (mask & ATTR_GID) {
2211 			new_kgid = zfs_fuid_create(zfsvfs,
2212 			    (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2213 			if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2214 			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2215 			    new_kgid)) {
2216 				if (attrzp)
2217 					zrele(attrzp);
2218 				err = SET_ERROR(EDQUOT);
2219 				goto out2;
2220 			}
2221 		}
2222 
2223 		if (projid != ZFS_INVALID_PROJID &&
2224 		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2225 			if (attrzp)
2226 				zrele(attrzp);
2227 			err = EDQUOT;
2228 			goto out2;
2229 		}
2230 	}
2231 	tx = dmu_tx_create(os);
2232 
2233 	if (mask & ATTR_MODE) {
2234 		uint64_t pmode = zp->z_mode;
2235 		uint64_t acl_obj;
2236 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2237 
2238 		if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2239 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2240 			err = EPERM;
2241 			goto out;
2242 		}
2243 
2244 		if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2245 			goto out;
2246 
2247 		mutex_enter(&zp->z_lock);
2248 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2249 			/*
2250 			 * Are we upgrading ACL from old V0 format
2251 			 * to V1 format?
2252 			 */
2253 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2254 			    zfs_znode_acl_version(zp) ==
2255 			    ZFS_ACL_VERSION_INITIAL) {
2256 				dmu_tx_hold_free(tx, acl_obj, 0,
2257 				    DMU_OBJECT_END);
2258 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2259 				    0, aclp->z_acl_bytes);
2260 			} else {
2261 				dmu_tx_hold_write(tx, acl_obj, 0,
2262 				    aclp->z_acl_bytes);
2263 			}
2264 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2265 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2266 			    0, aclp->z_acl_bytes);
2267 		}
2268 		mutex_exit(&zp->z_lock);
2269 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2270 	} else {
2271 		if (((mask & ATTR_XVATTR) &&
2272 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2273 		    (projid != ZFS_INVALID_PROJID &&
2274 		    !(zp->z_pflags & ZFS_PROJID)))
2275 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2276 		else
2277 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2278 	}
2279 
2280 	if (attrzp) {
2281 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2282 	}
2283 
2284 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2285 	if (fuid_dirtied)
2286 		zfs_fuid_txhold(zfsvfs, tx);
2287 
2288 	zfs_sa_upgrade_txholds(tx, zp);
2289 
2290 	err = dmu_tx_assign(tx, TXG_WAIT);
2291 	if (err)
2292 		goto out;
2293 
2294 	count = 0;
2295 	/*
2296 	 * Set each attribute requested.
2297 	 * We group settings according to the locks they need to acquire.
2298 	 *
2299 	 * Note: you cannot set ctime directly, although it will be
2300 	 * updated as a side-effect of calling this function.
2301 	 */
2302 
2303 	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2304 		/*
2305 		 * For the existed object that is upgraded from old system,
2306 		 * its on-disk layout has no slot for the project ID attribute.
2307 		 * But quota accounting logic needs to access related slots by
2308 		 * offset directly. So we need to adjust old objects' layout
2309 		 * to make the project ID to some unified and fixed offset.
2310 		 */
2311 		if (attrzp)
2312 			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2313 		if (err == 0)
2314 			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2315 
2316 		if (unlikely(err == EEXIST))
2317 			err = 0;
2318 		else if (err != 0)
2319 			goto out;
2320 		else
2321 			projid = ZFS_INVALID_PROJID;
2322 	}
2323 
2324 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2325 		mutex_enter(&zp->z_acl_lock);
2326 	mutex_enter(&zp->z_lock);
2327 
2328 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2329 	    &zp->z_pflags, sizeof (zp->z_pflags));
2330 
2331 	if (attrzp) {
2332 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2333 			mutex_enter(&attrzp->z_acl_lock);
2334 		mutex_enter(&attrzp->z_lock);
2335 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2336 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2337 		    sizeof (attrzp->z_pflags));
2338 		if (projid != ZFS_INVALID_PROJID) {
2339 			attrzp->z_projid = projid;
2340 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2341 			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2342 			    sizeof (attrzp->z_projid));
2343 		}
2344 	}
2345 
2346 	if (mask & (ATTR_UID|ATTR_GID)) {
2347 
2348 		if (mask & ATTR_UID) {
2349 			ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2350 			new_uid = zfs_uid_read(ZTOI(zp));
2351 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2352 			    &new_uid, sizeof (new_uid));
2353 			if (attrzp) {
2354 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2355 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2356 				    sizeof (new_uid));
2357 				ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2358 			}
2359 		}
2360 
2361 		if (mask & ATTR_GID) {
2362 			ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2363 			new_gid = zfs_gid_read(ZTOI(zp));
2364 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2365 			    NULL, &new_gid, sizeof (new_gid));
2366 			if (attrzp) {
2367 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2368 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2369 				    sizeof (new_gid));
2370 				ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2371 			}
2372 		}
2373 		if (!(mask & ATTR_MODE)) {
2374 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2375 			    NULL, &new_mode, sizeof (new_mode));
2376 			new_mode = zp->z_mode;
2377 		}
2378 		err = zfs_acl_chown_setattr(zp);
2379 		ASSERT(err == 0);
2380 		if (attrzp) {
2381 			err = zfs_acl_chown_setattr(attrzp);
2382 			ASSERT(err == 0);
2383 		}
2384 	}
2385 
2386 	if (mask & ATTR_MODE) {
2387 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2388 		    &new_mode, sizeof (new_mode));
2389 		zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2390 		ASSERT3P(aclp, !=, NULL);
2391 		err = zfs_aclset_common(zp, aclp, cr, tx);
2392 		ASSERT0(err);
2393 		if (zp->z_acl_cached)
2394 			zfs_acl_free(zp->z_acl_cached);
2395 		zp->z_acl_cached = aclp;
2396 		aclp = NULL;
2397 	}
2398 
2399 	if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2400 		zp->z_atime_dirty = B_FALSE;
2401 		ZFS_TIME_ENCODE(&ip->i_atime, atime);
2402 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2403 		    &atime, sizeof (atime));
2404 	}
2405 
2406 	if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2407 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2408 		ZTOI(zp)->i_mtime = zpl_inode_timestamp_truncate(
2409 		    vap->va_mtime, ZTOI(zp));
2410 
2411 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2412 		    mtime, sizeof (mtime));
2413 	}
2414 
2415 	if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2416 		ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2417 		ZTOI(zp)->i_ctime = zpl_inode_timestamp_truncate(vap->va_ctime,
2418 		    ZTOI(zp));
2419 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2420 		    ctime, sizeof (ctime));
2421 	}
2422 
2423 	if (projid != ZFS_INVALID_PROJID) {
2424 		zp->z_projid = projid;
2425 		SA_ADD_BULK_ATTR(bulk, count,
2426 		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2427 		    sizeof (zp->z_projid));
2428 	}
2429 
2430 	if (attrzp && mask) {
2431 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2432 		    SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2433 		    sizeof (ctime));
2434 	}
2435 
2436 	/*
2437 	 * Do this after setting timestamps to prevent timestamp
2438 	 * update from toggling bit
2439 	 */
2440 
2441 	if (xoap && (mask & ATTR_XVATTR)) {
2442 
2443 		/*
2444 		 * restore trimmed off masks
2445 		 * so that return masks can be set for caller.
2446 		 */
2447 
2448 		if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2449 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2450 		}
2451 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2452 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2453 		}
2454 		if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2455 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2456 		}
2457 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2458 			XVA_SET_REQ(xvap, XAT_NODUMP);
2459 		}
2460 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2461 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2462 		}
2463 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2464 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2465 		}
2466 		if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2467 			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2468 		}
2469 
2470 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2471 			ASSERT(S_ISREG(ip->i_mode));
2472 
2473 		zfs_xvattr_set(zp, xvap, tx);
2474 	}
2475 
2476 	if (fuid_dirtied)
2477 		zfs_fuid_sync(zfsvfs, tx);
2478 
2479 	if (mask != 0)
2480 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2481 
2482 	mutex_exit(&zp->z_lock);
2483 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2484 		mutex_exit(&zp->z_acl_lock);
2485 
2486 	if (attrzp) {
2487 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2488 			mutex_exit(&attrzp->z_acl_lock);
2489 		mutex_exit(&attrzp->z_lock);
2490 	}
2491 out:
2492 	if (err == 0 && xattr_count > 0) {
2493 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2494 		    xattr_count, tx);
2495 		ASSERT(err2 == 0);
2496 	}
2497 
2498 	if (aclp)
2499 		zfs_acl_free(aclp);
2500 
2501 	if (fuidp) {
2502 		zfs_fuid_info_free(fuidp);
2503 		fuidp = NULL;
2504 	}
2505 
2506 	if (err) {
2507 		dmu_tx_abort(tx);
2508 		if (attrzp)
2509 			zrele(attrzp);
2510 		if (err == ERESTART)
2511 			goto top;
2512 	} else {
2513 		if (count > 0)
2514 			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2515 		dmu_tx_commit(tx);
2516 		if (attrzp) {
2517 			if (err2 == 0 && handle_eadir)
2518 				err2 = zfs_setattr_dir(attrzp);
2519 			zrele(attrzp);
2520 		}
2521 		zfs_znode_update_vfs(zp);
2522 	}
2523 
2524 out2:
2525 	if (os->os_sync == ZFS_SYNC_ALWAYS)
2526 		zil_commit(zilog, 0);
2527 
2528 out3:
2529 	kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2530 	kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2531 	kmem_free(tmpxvattr, sizeof (xvattr_t));
2532 	zfs_exit(zfsvfs, FTAG);
2533 	return (err);
2534 }
2535 
2536 typedef struct zfs_zlock {
2537 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2538 	znode_t		*zl_znode;	/* znode we held */
2539 	struct zfs_zlock *zl_next;	/* next in list */
2540 } zfs_zlock_t;
2541 
2542 /*
2543  * Drop locks and release vnodes that were held by zfs_rename_lock().
2544  */
2545 static void
2546 zfs_rename_unlock(zfs_zlock_t **zlpp)
2547 {
2548 	zfs_zlock_t *zl;
2549 
2550 	while ((zl = *zlpp) != NULL) {
2551 		if (zl->zl_znode != NULL)
2552 			zfs_zrele_async(zl->zl_znode);
2553 		rw_exit(zl->zl_rwlock);
2554 		*zlpp = zl->zl_next;
2555 		kmem_free(zl, sizeof (*zl));
2556 	}
2557 }
2558 
2559 /*
2560  * Search back through the directory tree, using the ".." entries.
2561  * Lock each directory in the chain to prevent concurrent renames.
2562  * Fail any attempt to move a directory into one of its own descendants.
2563  * XXX - z_parent_lock can overlap with map or grow locks
2564  */
2565 static int
2566 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2567 {
2568 	zfs_zlock_t	*zl;
2569 	znode_t		*zp = tdzp;
2570 	uint64_t	rootid = ZTOZSB(zp)->z_root;
2571 	uint64_t	oidp = zp->z_id;
2572 	krwlock_t	*rwlp = &szp->z_parent_lock;
2573 	krw_t		rw = RW_WRITER;
2574 
2575 	/*
2576 	 * First pass write-locks szp and compares to zp->z_id.
2577 	 * Later passes read-lock zp and compare to zp->z_parent.
2578 	 */
2579 	do {
2580 		if (!rw_tryenter(rwlp, rw)) {
2581 			/*
2582 			 * Another thread is renaming in this path.
2583 			 * Note that if we are a WRITER, we don't have any
2584 			 * parent_locks held yet.
2585 			 */
2586 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2587 				/*
2588 				 * Drop our locks and restart
2589 				 */
2590 				zfs_rename_unlock(&zl);
2591 				*zlpp = NULL;
2592 				zp = tdzp;
2593 				oidp = zp->z_id;
2594 				rwlp = &szp->z_parent_lock;
2595 				rw = RW_WRITER;
2596 				continue;
2597 			} else {
2598 				/*
2599 				 * Wait for other thread to drop its locks
2600 				 */
2601 				rw_enter(rwlp, rw);
2602 			}
2603 		}
2604 
2605 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2606 		zl->zl_rwlock = rwlp;
2607 		zl->zl_znode = NULL;
2608 		zl->zl_next = *zlpp;
2609 		*zlpp = zl;
2610 
2611 		if (oidp == szp->z_id)		/* We're a descendant of szp */
2612 			return (SET_ERROR(EINVAL));
2613 
2614 		if (oidp == rootid)		/* We've hit the top */
2615 			return (0);
2616 
2617 		if (rw == RW_READER) {		/* i.e. not the first pass */
2618 			int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2619 			if (error)
2620 				return (error);
2621 			zl->zl_znode = zp;
2622 		}
2623 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2624 		    &oidp, sizeof (oidp));
2625 		rwlp = &zp->z_parent_lock;
2626 		rw = RW_READER;
2627 
2628 	} while (zp->z_id != sdzp->z_id);
2629 
2630 	return (0);
2631 }
2632 
2633 /*
2634  * Move an entry from the provided source directory to the target
2635  * directory.  Change the entry name as indicated.
2636  *
2637  *	IN:	sdzp	- Source directory containing the "old entry".
2638  *		snm	- Old entry name.
2639  *		tdzp	- Target directory to contain the "new entry".
2640  *		tnm	- New entry name.
2641  *		cr	- credentials of caller.
2642  *		flags	- case flags
2643  *
2644  *	RETURN:	0 on success, error code on failure.
2645  *
2646  * Timestamps:
2647  *	sdzp,tdzp - ctime|mtime updated
2648  */
2649 int
2650 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2651     cred_t *cr, int flags)
2652 {
2653 	znode_t		*szp, *tzp;
2654 	zfsvfs_t	*zfsvfs = ZTOZSB(sdzp);
2655 	zilog_t		*zilog;
2656 	zfs_dirlock_t	*sdl, *tdl;
2657 	dmu_tx_t	*tx;
2658 	zfs_zlock_t	*zl;
2659 	int		cmp, serr, terr;
2660 	int		error = 0;
2661 	int		zflg = 0;
2662 	boolean_t	waited = B_FALSE;
2663 
2664 	if (snm == NULL || tnm == NULL)
2665 		return (SET_ERROR(EINVAL));
2666 
2667 	if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
2668 		return (error);
2669 	zilog = zfsvfs->z_log;
2670 
2671 	if ((error = zfs_verify_zp(tdzp)) != 0) {
2672 		zfs_exit(zfsvfs, FTAG);
2673 		return (error);
2674 	}
2675 
2676 	/*
2677 	 * We check i_sb because snapshots and the ctldir must have different
2678 	 * super blocks.
2679 	 */
2680 	if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2681 	    zfsctl_is_node(ZTOI(tdzp))) {
2682 		zfs_exit(zfsvfs, FTAG);
2683 		return (SET_ERROR(EXDEV));
2684 	}
2685 
2686 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2687 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2688 		zfs_exit(zfsvfs, FTAG);
2689 		return (SET_ERROR(EILSEQ));
2690 	}
2691 
2692 	if (flags & FIGNORECASE)
2693 		zflg |= ZCILOOK;
2694 
2695 top:
2696 	szp = NULL;
2697 	tzp = NULL;
2698 	zl = NULL;
2699 
2700 	/*
2701 	 * This is to prevent the creation of links into attribute space
2702 	 * by renaming a linked file into/outof an attribute directory.
2703 	 * See the comment in zfs_link() for why this is considered bad.
2704 	 */
2705 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2706 		zfs_exit(zfsvfs, FTAG);
2707 		return (SET_ERROR(EINVAL));
2708 	}
2709 
2710 	/*
2711 	 * Lock source and target directory entries.  To prevent deadlock,
2712 	 * a lock ordering must be defined.  We lock the directory with
2713 	 * the smallest object id first, or if it's a tie, the one with
2714 	 * the lexically first name.
2715 	 */
2716 	if (sdzp->z_id < tdzp->z_id) {
2717 		cmp = -1;
2718 	} else if (sdzp->z_id > tdzp->z_id) {
2719 		cmp = 1;
2720 	} else {
2721 		/*
2722 		 * First compare the two name arguments without
2723 		 * considering any case folding.
2724 		 */
2725 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2726 
2727 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2728 		ASSERT(error == 0 || !zfsvfs->z_utf8);
2729 		if (cmp == 0) {
2730 			/*
2731 			 * POSIX: "If the old argument and the new argument
2732 			 * both refer to links to the same existing file,
2733 			 * the rename() function shall return successfully
2734 			 * and perform no other action."
2735 			 */
2736 			zfs_exit(zfsvfs, FTAG);
2737 			return (0);
2738 		}
2739 		/*
2740 		 * If the file system is case-folding, then we may
2741 		 * have some more checking to do.  A case-folding file
2742 		 * system is either supporting mixed case sensitivity
2743 		 * access or is completely case-insensitive.  Note
2744 		 * that the file system is always case preserving.
2745 		 *
2746 		 * In mixed sensitivity mode case sensitive behavior
2747 		 * is the default.  FIGNORECASE must be used to
2748 		 * explicitly request case insensitive behavior.
2749 		 *
2750 		 * If the source and target names provided differ only
2751 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
2752 		 * we will treat this as a special case in the
2753 		 * case-insensitive mode: as long as the source name
2754 		 * is an exact match, we will allow this to proceed as
2755 		 * a name-change request.
2756 		 */
2757 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2758 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
2759 		    flags & FIGNORECASE)) &&
2760 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2761 		    &error) == 0) {
2762 			/*
2763 			 * case preserving rename request, require exact
2764 			 * name matches
2765 			 */
2766 			zflg |= ZCIEXACT;
2767 			zflg &= ~ZCILOOK;
2768 		}
2769 	}
2770 
2771 	/*
2772 	 * If the source and destination directories are the same, we should
2773 	 * grab the z_name_lock of that directory only once.
2774 	 */
2775 	if (sdzp == tdzp) {
2776 		zflg |= ZHAVELOCK;
2777 		rw_enter(&sdzp->z_name_lock, RW_READER);
2778 	}
2779 
2780 	if (cmp < 0) {
2781 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2782 		    ZEXISTS | zflg, NULL, NULL);
2783 		terr = zfs_dirent_lock(&tdl,
2784 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2785 	} else {
2786 		terr = zfs_dirent_lock(&tdl,
2787 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
2788 		serr = zfs_dirent_lock(&sdl,
2789 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2790 		    NULL, NULL);
2791 	}
2792 
2793 	if (serr) {
2794 		/*
2795 		 * Source entry invalid or not there.
2796 		 */
2797 		if (!terr) {
2798 			zfs_dirent_unlock(tdl);
2799 			if (tzp)
2800 				zrele(tzp);
2801 		}
2802 
2803 		if (sdzp == tdzp)
2804 			rw_exit(&sdzp->z_name_lock);
2805 
2806 		if (strcmp(snm, "..") == 0)
2807 			serr = EINVAL;
2808 		zfs_exit(zfsvfs, FTAG);
2809 		return (serr);
2810 	}
2811 	if (terr) {
2812 		zfs_dirent_unlock(sdl);
2813 		zrele(szp);
2814 
2815 		if (sdzp == tdzp)
2816 			rw_exit(&sdzp->z_name_lock);
2817 
2818 		if (strcmp(tnm, "..") == 0)
2819 			terr = EINVAL;
2820 		zfs_exit(zfsvfs, FTAG);
2821 		return (terr);
2822 	}
2823 
2824 	/*
2825 	 * If we are using project inheritance, means if the directory has
2826 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2827 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2828 	 * such case, we only allow renames into our tree when the project
2829 	 * IDs are the same.
2830 	 */
2831 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2832 	    tdzp->z_projid != szp->z_projid) {
2833 		error = SET_ERROR(EXDEV);
2834 		goto out;
2835 	}
2836 
2837 	/*
2838 	 * Must have write access at the source to remove the old entry
2839 	 * and write access at the target to create the new entry.
2840 	 * Note that if target and source are the same, this can be
2841 	 * done in a single check.
2842 	 */
2843 
2844 	if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
2845 		goto out;
2846 
2847 	if (S_ISDIR(ZTOI(szp)->i_mode)) {
2848 		/*
2849 		 * Check to make sure rename is valid.
2850 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2851 		 */
2852 		if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2853 			goto out;
2854 	}
2855 
2856 	/*
2857 	 * Does target exist?
2858 	 */
2859 	if (tzp) {
2860 		/*
2861 		 * Source and target must be the same type.
2862 		 */
2863 		if (S_ISDIR(ZTOI(szp)->i_mode)) {
2864 			if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
2865 				error = SET_ERROR(ENOTDIR);
2866 				goto out;
2867 			}
2868 		} else {
2869 			if (S_ISDIR(ZTOI(tzp)->i_mode)) {
2870 				error = SET_ERROR(EISDIR);
2871 				goto out;
2872 			}
2873 		}
2874 		/*
2875 		 * POSIX dictates that when the source and target
2876 		 * entries refer to the same file object, rename
2877 		 * must do nothing and exit without error.
2878 		 */
2879 		if (szp->z_id == tzp->z_id) {
2880 			error = 0;
2881 			goto out;
2882 		}
2883 	}
2884 
2885 	tx = dmu_tx_create(zfsvfs->z_os);
2886 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
2887 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2888 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
2889 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
2890 	if (sdzp != tdzp) {
2891 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
2892 		zfs_sa_upgrade_txholds(tx, tdzp);
2893 	}
2894 	if (tzp) {
2895 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
2896 		zfs_sa_upgrade_txholds(tx, tzp);
2897 	}
2898 
2899 	zfs_sa_upgrade_txholds(tx, szp);
2900 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2901 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2902 	if (error) {
2903 		if (zl != NULL)
2904 			zfs_rename_unlock(&zl);
2905 		zfs_dirent_unlock(sdl);
2906 		zfs_dirent_unlock(tdl);
2907 
2908 		if (sdzp == tdzp)
2909 			rw_exit(&sdzp->z_name_lock);
2910 
2911 		if (error == ERESTART) {
2912 			waited = B_TRUE;
2913 			dmu_tx_wait(tx);
2914 			dmu_tx_abort(tx);
2915 			zrele(szp);
2916 			if (tzp)
2917 				zrele(tzp);
2918 			goto top;
2919 		}
2920 		dmu_tx_abort(tx);
2921 		zrele(szp);
2922 		if (tzp)
2923 			zrele(tzp);
2924 		zfs_exit(zfsvfs, FTAG);
2925 		return (error);
2926 	}
2927 
2928 	if (tzp)	/* Attempt to remove the existing target */
2929 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
2930 
2931 	if (error == 0) {
2932 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
2933 		if (error == 0) {
2934 			szp->z_pflags |= ZFS_AV_MODIFIED;
2935 			if (tdzp->z_pflags & ZFS_PROJINHERIT)
2936 				szp->z_pflags |= ZFS_PROJINHERIT;
2937 
2938 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
2939 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
2940 			ASSERT0(error);
2941 
2942 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
2943 			if (error == 0) {
2944 				zfs_log_rename(zilog, tx, TX_RENAME |
2945 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
2946 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
2947 			} else {
2948 				/*
2949 				 * At this point, we have successfully created
2950 				 * the target name, but have failed to remove
2951 				 * the source name.  Since the create was done
2952 				 * with the ZRENAMING flag, there are
2953 				 * complications; for one, the link count is
2954 				 * wrong.  The easiest way to deal with this
2955 				 * is to remove the newly created target, and
2956 				 * return the original error.  This must
2957 				 * succeed; fortunately, it is very unlikely to
2958 				 * fail, since we just created it.
2959 				 */
2960 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
2961 				    ZRENAMING, NULL), ==, 0);
2962 			}
2963 		} else {
2964 			/*
2965 			 * If we had removed the existing target, subsequent
2966 			 * call to zfs_link_create() to add back the same entry
2967 			 * but, the new dnode (szp) should not fail.
2968 			 */
2969 			ASSERT(tzp == NULL);
2970 		}
2971 	}
2972 
2973 	dmu_tx_commit(tx);
2974 out:
2975 	if (zl != NULL)
2976 		zfs_rename_unlock(&zl);
2977 
2978 	zfs_dirent_unlock(sdl);
2979 	zfs_dirent_unlock(tdl);
2980 
2981 	zfs_znode_update_vfs(sdzp);
2982 	if (sdzp == tdzp)
2983 		rw_exit(&sdzp->z_name_lock);
2984 
2985 	if (sdzp != tdzp)
2986 		zfs_znode_update_vfs(tdzp);
2987 
2988 	zfs_znode_update_vfs(szp);
2989 	zrele(szp);
2990 	if (tzp) {
2991 		zfs_znode_update_vfs(tzp);
2992 		zrele(tzp);
2993 	}
2994 
2995 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2996 		zil_commit(zilog, 0);
2997 
2998 	zfs_exit(zfsvfs, FTAG);
2999 	return (error);
3000 }
3001 
3002 /*
3003  * Insert the indicated symbolic reference entry into the directory.
3004  *
3005  *	IN:	dzp	- Directory to contain new symbolic link.
3006  *		name	- Name of directory entry in dip.
3007  *		vap	- Attributes of new entry.
3008  *		link	- Name for new symlink entry.
3009  *		cr	- credentials of caller.
3010  *		flags	- case flags
3011  *
3012  *	OUT:	zpp	- Znode for new symbolic link.
3013  *
3014  *	RETURN:	0 on success, error code on failure.
3015  *
3016  * Timestamps:
3017  *	dip - ctime|mtime updated
3018  */
3019 int
3020 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3021     znode_t **zpp, cred_t *cr, int flags)
3022 {
3023 	znode_t		*zp;
3024 	zfs_dirlock_t	*dl;
3025 	dmu_tx_t	*tx;
3026 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
3027 	zilog_t		*zilog;
3028 	uint64_t	len = strlen(link);
3029 	int		error;
3030 	int		zflg = ZNEW;
3031 	zfs_acl_ids_t	acl_ids;
3032 	boolean_t	fuid_dirtied;
3033 	uint64_t	txtype = TX_SYMLINK;
3034 	boolean_t	waited = B_FALSE;
3035 
3036 	ASSERT(S_ISLNK(vap->va_mode));
3037 
3038 	if (name == NULL)
3039 		return (SET_ERROR(EINVAL));
3040 
3041 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3042 		return (error);
3043 	zilog = zfsvfs->z_log;
3044 
3045 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3046 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3047 		zfs_exit(zfsvfs, FTAG);
3048 		return (SET_ERROR(EILSEQ));
3049 	}
3050 	if (flags & FIGNORECASE)
3051 		zflg |= ZCILOOK;
3052 
3053 	if (len > MAXPATHLEN) {
3054 		zfs_exit(zfsvfs, FTAG);
3055 		return (SET_ERROR(ENAMETOOLONG));
3056 	}
3057 
3058 	if ((error = zfs_acl_ids_create(dzp, 0,
3059 	    vap, cr, NULL, &acl_ids)) != 0) {
3060 		zfs_exit(zfsvfs, FTAG);
3061 		return (error);
3062 	}
3063 top:
3064 	*zpp = NULL;
3065 
3066 	/*
3067 	 * Attempt to lock directory; fail if entry already exists.
3068 	 */
3069 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3070 	if (error) {
3071 		zfs_acl_ids_free(&acl_ids);
3072 		zfs_exit(zfsvfs, FTAG);
3073 		return (error);
3074 	}
3075 
3076 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3077 		zfs_acl_ids_free(&acl_ids);
3078 		zfs_dirent_unlock(dl);
3079 		zfs_exit(zfsvfs, FTAG);
3080 		return (error);
3081 	}
3082 
3083 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3084 		zfs_acl_ids_free(&acl_ids);
3085 		zfs_dirent_unlock(dl);
3086 		zfs_exit(zfsvfs, FTAG);
3087 		return (SET_ERROR(EDQUOT));
3088 	}
3089 	tx = dmu_tx_create(zfsvfs->z_os);
3090 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3091 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3092 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3093 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3094 	    ZFS_SA_BASE_ATTR_SIZE + len);
3095 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3096 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3097 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3098 		    acl_ids.z_aclp->z_acl_bytes);
3099 	}
3100 	if (fuid_dirtied)
3101 		zfs_fuid_txhold(zfsvfs, tx);
3102 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3103 	if (error) {
3104 		zfs_dirent_unlock(dl);
3105 		if (error == ERESTART) {
3106 			waited = B_TRUE;
3107 			dmu_tx_wait(tx);
3108 			dmu_tx_abort(tx);
3109 			goto top;
3110 		}
3111 		zfs_acl_ids_free(&acl_ids);
3112 		dmu_tx_abort(tx);
3113 		zfs_exit(zfsvfs, FTAG);
3114 		return (error);
3115 	}
3116 
3117 	/*
3118 	 * Create a new object for the symlink.
3119 	 * for version 4 ZPL datasets the symlink will be an SA attribute
3120 	 */
3121 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3122 
3123 	if (fuid_dirtied)
3124 		zfs_fuid_sync(zfsvfs, tx);
3125 
3126 	mutex_enter(&zp->z_lock);
3127 	if (zp->z_is_sa)
3128 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3129 		    link, len, tx);
3130 	else
3131 		zfs_sa_symlink(zp, link, len, tx);
3132 	mutex_exit(&zp->z_lock);
3133 
3134 	zp->z_size = len;
3135 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3136 	    &zp->z_size, sizeof (zp->z_size), tx);
3137 	/*
3138 	 * Insert the new object into the directory.
3139 	 */
3140 	error = zfs_link_create(dl, zp, tx, ZNEW);
3141 	if (error != 0) {
3142 		zfs_znode_delete(zp, tx);
3143 		remove_inode_hash(ZTOI(zp));
3144 	} else {
3145 		if (flags & FIGNORECASE)
3146 			txtype |= TX_CI;
3147 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3148 
3149 		zfs_znode_update_vfs(dzp);
3150 		zfs_znode_update_vfs(zp);
3151 	}
3152 
3153 	zfs_acl_ids_free(&acl_ids);
3154 
3155 	dmu_tx_commit(tx);
3156 
3157 	zfs_dirent_unlock(dl);
3158 
3159 	if (error == 0) {
3160 		*zpp = zp;
3161 
3162 		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3163 			zil_commit(zilog, 0);
3164 	} else {
3165 		zrele(zp);
3166 	}
3167 
3168 	zfs_exit(zfsvfs, FTAG);
3169 	return (error);
3170 }
3171 
3172 /*
3173  * Return, in the buffer contained in the provided uio structure,
3174  * the symbolic path referred to by ip.
3175  *
3176  *	IN:	ip	- inode of symbolic link
3177  *		uio	- structure to contain the link path.
3178  *		cr	- credentials of caller.
3179  *
3180  *	RETURN:	0 if success
3181  *		error code if failure
3182  *
3183  * Timestamps:
3184  *	ip - atime updated
3185  */
3186 int
3187 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3188 {
3189 	(void) cr;
3190 	znode_t		*zp = ITOZ(ip);
3191 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3192 	int		error;
3193 
3194 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3195 		return (error);
3196 
3197 	mutex_enter(&zp->z_lock);
3198 	if (zp->z_is_sa)
3199 		error = sa_lookup_uio(zp->z_sa_hdl,
3200 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3201 	else
3202 		error = zfs_sa_readlink(zp, uio);
3203 	mutex_exit(&zp->z_lock);
3204 
3205 	zfs_exit(zfsvfs, FTAG);
3206 	return (error);
3207 }
3208 
3209 /*
3210  * Insert a new entry into directory tdzp referencing szp.
3211  *
3212  *	IN:	tdzp	- Directory to contain new entry.
3213  *		szp	- znode of new entry.
3214  *		name	- name of new entry.
3215  *		cr	- credentials of caller.
3216  *		flags	- case flags.
3217  *
3218  *	RETURN:	0 if success
3219  *		error code if failure
3220  *
3221  * Timestamps:
3222  *	tdzp - ctime|mtime updated
3223  *	 szp - ctime updated
3224  */
3225 int
3226 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3227     int flags)
3228 {
3229 	struct inode *sip = ZTOI(szp);
3230 	znode_t		*tzp;
3231 	zfsvfs_t	*zfsvfs = ZTOZSB(tdzp);
3232 	zilog_t		*zilog;
3233 	zfs_dirlock_t	*dl;
3234 	dmu_tx_t	*tx;
3235 	int		error;
3236 	int		zf = ZNEW;
3237 	uint64_t	parent;
3238 	uid_t		owner;
3239 	boolean_t	waited = B_FALSE;
3240 	boolean_t	is_tmpfile = 0;
3241 	uint64_t	txg;
3242 #ifdef HAVE_TMPFILE
3243 	is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3244 #endif
3245 	ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3246 
3247 	if (name == NULL)
3248 		return (SET_ERROR(EINVAL));
3249 
3250 	if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3251 		return (error);
3252 	zilog = zfsvfs->z_log;
3253 
3254 	/*
3255 	 * POSIX dictates that we return EPERM here.
3256 	 * Better choices include ENOTSUP or EISDIR.
3257 	 */
3258 	if (S_ISDIR(sip->i_mode)) {
3259 		zfs_exit(zfsvfs, FTAG);
3260 		return (SET_ERROR(EPERM));
3261 	}
3262 
3263 	if ((error = zfs_verify_zp(szp)) != 0) {
3264 		zfs_exit(zfsvfs, FTAG);
3265 		return (error);
3266 	}
3267 
3268 	/*
3269 	 * If we are using project inheritance, means if the directory has
3270 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3271 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3272 	 * such case, we only allow hard link creation in our tree when the
3273 	 * project IDs are the same.
3274 	 */
3275 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3276 	    tdzp->z_projid != szp->z_projid) {
3277 		zfs_exit(zfsvfs, FTAG);
3278 		return (SET_ERROR(EXDEV));
3279 	}
3280 
3281 	/*
3282 	 * We check i_sb because snapshots and the ctldir must have different
3283 	 * super blocks.
3284 	 */
3285 	if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3286 		zfs_exit(zfsvfs, FTAG);
3287 		return (SET_ERROR(EXDEV));
3288 	}
3289 
3290 	/* Prevent links to .zfs/shares files */
3291 
3292 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3293 	    &parent, sizeof (uint64_t))) != 0) {
3294 		zfs_exit(zfsvfs, FTAG);
3295 		return (error);
3296 	}
3297 	if (parent == zfsvfs->z_shares_dir) {
3298 		zfs_exit(zfsvfs, FTAG);
3299 		return (SET_ERROR(EPERM));
3300 	}
3301 
3302 	if (zfsvfs->z_utf8 && u8_validate(name,
3303 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3304 		zfs_exit(zfsvfs, FTAG);
3305 		return (SET_ERROR(EILSEQ));
3306 	}
3307 	if (flags & FIGNORECASE)
3308 		zf |= ZCILOOK;
3309 
3310 	/*
3311 	 * We do not support links between attributes and non-attributes
3312 	 * because of the potential security risk of creating links
3313 	 * into "normal" file space in order to circumvent restrictions
3314 	 * imposed in attribute space.
3315 	 */
3316 	if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3317 		zfs_exit(zfsvfs, FTAG);
3318 		return (SET_ERROR(EINVAL));
3319 	}
3320 
3321 	owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3322 	    cr, ZFS_OWNER);
3323 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3324 		zfs_exit(zfsvfs, FTAG);
3325 		return (SET_ERROR(EPERM));
3326 	}
3327 
3328 	if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3329 		zfs_exit(zfsvfs, FTAG);
3330 		return (error);
3331 	}
3332 
3333 top:
3334 	/*
3335 	 * Attempt to lock directory; fail if entry already exists.
3336 	 */
3337 	error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3338 	if (error) {
3339 		zfs_exit(zfsvfs, FTAG);
3340 		return (error);
3341 	}
3342 
3343 	tx = dmu_tx_create(zfsvfs->z_os);
3344 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3345 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3346 	if (is_tmpfile)
3347 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3348 
3349 	zfs_sa_upgrade_txholds(tx, szp);
3350 	zfs_sa_upgrade_txholds(tx, tdzp);
3351 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3352 	if (error) {
3353 		zfs_dirent_unlock(dl);
3354 		if (error == ERESTART) {
3355 			waited = B_TRUE;
3356 			dmu_tx_wait(tx);
3357 			dmu_tx_abort(tx);
3358 			goto top;
3359 		}
3360 		dmu_tx_abort(tx);
3361 		zfs_exit(zfsvfs, FTAG);
3362 		return (error);
3363 	}
3364 	/* unmark z_unlinked so zfs_link_create will not reject */
3365 	if (is_tmpfile)
3366 		szp->z_unlinked = B_FALSE;
3367 	error = zfs_link_create(dl, szp, tx, 0);
3368 
3369 	if (error == 0) {
3370 		uint64_t txtype = TX_LINK;
3371 		/*
3372 		 * tmpfile is created to be in z_unlinkedobj, so remove it.
3373 		 * Also, we don't log in ZIL, because all previous file
3374 		 * operation on the tmpfile are ignored by ZIL. Instead we
3375 		 * always wait for txg to sync to make sure all previous
3376 		 * operation are sync safe.
3377 		 */
3378 		if (is_tmpfile) {
3379 			VERIFY(zap_remove_int(zfsvfs->z_os,
3380 			    zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3381 		} else {
3382 			if (flags & FIGNORECASE)
3383 				txtype |= TX_CI;
3384 			zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3385 		}
3386 	} else if (is_tmpfile) {
3387 		/* restore z_unlinked since when linking failed */
3388 		szp->z_unlinked = B_TRUE;
3389 	}
3390 	txg = dmu_tx_get_txg(tx);
3391 	dmu_tx_commit(tx);
3392 
3393 	zfs_dirent_unlock(dl);
3394 
3395 	if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3396 		zil_commit(zilog, 0);
3397 
3398 	if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
3399 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
3400 
3401 	zfs_znode_update_vfs(tdzp);
3402 	zfs_znode_update_vfs(szp);
3403 	zfs_exit(zfsvfs, FTAG);
3404 	return (error);
3405 }
3406 
3407 static void
3408 zfs_putpage_sync_commit_cb(void *arg)
3409 {
3410 	struct page *pp = arg;
3411 
3412 	ClearPageError(pp);
3413 	end_page_writeback(pp);
3414 }
3415 
3416 static void
3417 zfs_putpage_async_commit_cb(void *arg)
3418 {
3419 	struct page *pp = arg;
3420 	znode_t *zp = ITOZ(pp->mapping->host);
3421 
3422 	ClearPageError(pp);
3423 	end_page_writeback(pp);
3424 	atomic_dec_32(&zp->z_async_writes_cnt);
3425 }
3426 
3427 /*
3428  * Push a page out to disk, once the page is on stable storage the
3429  * registered commit callback will be run as notification of completion.
3430  *
3431  *	IN:	ip	 - page mapped for inode.
3432  *		pp	 - page to push (page is locked)
3433  *		wbc	 - writeback control data
3434  *		for_sync - does the caller intend to wait synchronously for the
3435  *			   page writeback to complete?
3436  *
3437  *	RETURN:	0 if success
3438  *		error code if failure
3439  *
3440  * Timestamps:
3441  *	ip - ctime|mtime updated
3442  */
3443 int
3444 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
3445     boolean_t for_sync)
3446 {
3447 	znode_t		*zp = ITOZ(ip);
3448 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3449 	loff_t		offset;
3450 	loff_t		pgoff;
3451 	unsigned int	pglen;
3452 	dmu_tx_t	*tx;
3453 	caddr_t		va;
3454 	int		err = 0;
3455 	uint64_t	mtime[2], ctime[2];
3456 	sa_bulk_attr_t	bulk[3];
3457 	int		cnt = 0;
3458 	struct address_space *mapping;
3459 
3460 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3461 		return (err);
3462 
3463 	ASSERT(PageLocked(pp));
3464 
3465 	pgoff = page_offset(pp);	/* Page byte-offset in file */
3466 	offset = i_size_read(ip);	/* File length in bytes */
3467 	pglen = MIN(PAGE_SIZE,		/* Page length in bytes */
3468 	    P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3469 
3470 	/* Page is beyond end of file */
3471 	if (pgoff >= offset) {
3472 		unlock_page(pp);
3473 		zfs_exit(zfsvfs, FTAG);
3474 		return (0);
3475 	}
3476 
3477 	/* Truncate page length to end of file */
3478 	if (pgoff + pglen > offset)
3479 		pglen = offset - pgoff;
3480 
3481 #if 0
3482 	/*
3483 	 * FIXME: Allow mmap writes past its quota.  The correct fix
3484 	 * is to register a page_mkwrite() handler to count the page
3485 	 * against its quota when it is about to be dirtied.
3486 	 */
3487 	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3488 	    KUID_TO_SUID(ip->i_uid)) ||
3489 	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3490 	    KGID_TO_SGID(ip->i_gid)) ||
3491 	    (zp->z_projid != ZFS_DEFAULT_PROJID &&
3492 	    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3493 	    zp->z_projid))) {
3494 		err = EDQUOT;
3495 	}
3496 #endif
3497 
3498 	/*
3499 	 * The ordering here is critical and must adhere to the following
3500 	 * rules in order to avoid deadlocking in either zfs_read() or
3501 	 * zfs_free_range() due to a lock inversion.
3502 	 *
3503 	 * 1) The page must be unlocked prior to acquiring the range lock.
3504 	 *    This is critical because zfs_read() calls find_lock_page()
3505 	 *    which may block on the page lock while holding the range lock.
3506 	 *
3507 	 * 2) Before setting or clearing write back on a page the range lock
3508 	 *    must be held in order to prevent a lock inversion with the
3509 	 *    zfs_free_range() function.
3510 	 *
3511 	 * This presents a problem because upon entering this function the
3512 	 * page lock is already held.  To safely acquire the range lock the
3513 	 * page lock must be dropped.  This creates a window where another
3514 	 * process could truncate, invalidate, dirty, or write out the page.
3515 	 *
3516 	 * Therefore, after successfully reacquiring the range and page locks
3517 	 * the current page state is checked.  In the common case everything
3518 	 * will be as is expected and it can be written out.  However, if
3519 	 * the page state has changed it must be handled accordingly.
3520 	 */
3521 	mapping = pp->mapping;
3522 	redirty_page_for_writepage(wbc, pp);
3523 	unlock_page(pp);
3524 
3525 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3526 	    pgoff, pglen, RL_WRITER);
3527 	lock_page(pp);
3528 
3529 	/* Page mapping changed or it was no longer dirty, we're done */
3530 	if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3531 		unlock_page(pp);
3532 		zfs_rangelock_exit(lr);
3533 		zfs_exit(zfsvfs, FTAG);
3534 		return (0);
3535 	}
3536 
3537 	/* Another process started write block if required */
3538 	if (PageWriteback(pp)) {
3539 		unlock_page(pp);
3540 		zfs_rangelock_exit(lr);
3541 
3542 		if (wbc->sync_mode != WB_SYNC_NONE) {
3543 			/*
3544 			 * Speed up any non-sync page writebacks since
3545 			 * they may take several seconds to complete.
3546 			 * Refer to the comment in zpl_fsync() (when
3547 			 * HAVE_FSYNC_RANGE is defined) for details.
3548 			 */
3549 			if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
3550 				zil_commit(zfsvfs->z_log, zp->z_id);
3551 			}
3552 
3553 			if (PageWriteback(pp))
3554 #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3555 				folio_wait_bit(page_folio(pp), PG_writeback);
3556 #else
3557 				wait_on_page_bit(pp, PG_writeback);
3558 #endif
3559 		}
3560 
3561 		zfs_exit(zfsvfs, FTAG);
3562 		return (0);
3563 	}
3564 
3565 	/* Clear the dirty flag the required locks are held */
3566 	if (!clear_page_dirty_for_io(pp)) {
3567 		unlock_page(pp);
3568 		zfs_rangelock_exit(lr);
3569 		zfs_exit(zfsvfs, FTAG);
3570 		return (0);
3571 	}
3572 
3573 	/*
3574 	 * Counterpart for redirty_page_for_writepage() above.  This page
3575 	 * was in fact not skipped and should not be counted as if it were.
3576 	 */
3577 	wbc->pages_skipped--;
3578 	if (!for_sync)
3579 		atomic_inc_32(&zp->z_async_writes_cnt);
3580 	set_page_writeback(pp);
3581 	unlock_page(pp);
3582 
3583 	tx = dmu_tx_create(zfsvfs->z_os);
3584 	dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3585 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3586 	zfs_sa_upgrade_txholds(tx, zp);
3587 
3588 	err = dmu_tx_assign(tx, TXG_NOWAIT);
3589 	if (err != 0) {
3590 		if (err == ERESTART)
3591 			dmu_tx_wait(tx);
3592 
3593 		dmu_tx_abort(tx);
3594 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
3595 		filemap_dirty_folio(page_mapping(pp), page_folio(pp));
3596 #else
3597 		__set_page_dirty_nobuffers(pp);
3598 #endif
3599 		ClearPageError(pp);
3600 		end_page_writeback(pp);
3601 		if (!for_sync)
3602 			atomic_dec_32(&zp->z_async_writes_cnt);
3603 		zfs_rangelock_exit(lr);
3604 		zfs_exit(zfsvfs, FTAG);
3605 		return (err);
3606 	}
3607 
3608 	va = kmap(pp);
3609 	ASSERT3U(pglen, <=, PAGE_SIZE);
3610 	dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3611 	kunmap(pp);
3612 
3613 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3614 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3615 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3616 	    &zp->z_pflags, 8);
3617 
3618 	/* Preserve the mtime and ctime provided by the inode */
3619 	ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3620 	ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3621 	zp->z_atime_dirty = B_FALSE;
3622 	zp->z_seq++;
3623 
3624 	err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3625 
3626 	zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
3627 	    for_sync ? zfs_putpage_sync_commit_cb :
3628 	    zfs_putpage_async_commit_cb, pp);
3629 
3630 	dmu_tx_commit(tx);
3631 
3632 	zfs_rangelock_exit(lr);
3633 
3634 	if (wbc->sync_mode != WB_SYNC_NONE) {
3635 		/*
3636 		 * Note that this is rarely called under writepages(), because
3637 		 * writepages() normally handles the entire commit for
3638 		 * performance reasons.
3639 		 */
3640 		zil_commit(zfsvfs->z_log, zp->z_id);
3641 	} else if (!for_sync && atomic_load_32(&zp->z_sync_writes_cnt) > 0) {
3642 		/*
3643 		 * If the caller does not intend to wait synchronously
3644 		 * for this page writeback to complete and there are active
3645 		 * synchronous calls on this file, do a commit so that
3646 		 * the latter don't accidentally end up waiting for
3647 		 * our writeback to complete. Refer to the comment in
3648 		 * zpl_fsync() (when HAVE_FSYNC_RANGE is defined) for details.
3649 		 */
3650 		zil_commit(zfsvfs->z_log, zp->z_id);
3651 	}
3652 
3653 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
3654 
3655 	zfs_exit(zfsvfs, FTAG);
3656 	return (err);
3657 }
3658 
3659 /*
3660  * Update the system attributes when the inode has been dirtied.  For the
3661  * moment we only update the mode, atime, mtime, and ctime.
3662  */
3663 int
3664 zfs_dirty_inode(struct inode *ip, int flags)
3665 {
3666 	znode_t		*zp = ITOZ(ip);
3667 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3668 	dmu_tx_t	*tx;
3669 	uint64_t	mode, atime[2], mtime[2], ctime[2];
3670 	sa_bulk_attr_t	bulk[4];
3671 	int		error = 0;
3672 	int		cnt = 0;
3673 
3674 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3675 		return (0);
3676 
3677 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3678 		return (error);
3679 
3680 #ifdef I_DIRTY_TIME
3681 	/*
3682 	 * This is the lazytime semantic introduced in Linux 4.0
3683 	 * This flag will only be called from update_time when lazytime is set.
3684 	 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3685 	 * Fortunately mtime and ctime are managed within ZFS itself, so we
3686 	 * only need to dirty atime.
3687 	 */
3688 	if (flags == I_DIRTY_TIME) {
3689 		zp->z_atime_dirty = B_TRUE;
3690 		goto out;
3691 	}
3692 #endif
3693 
3694 	tx = dmu_tx_create(zfsvfs->z_os);
3695 
3696 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3697 	zfs_sa_upgrade_txholds(tx, zp);
3698 
3699 	error = dmu_tx_assign(tx, TXG_WAIT);
3700 	if (error) {
3701 		dmu_tx_abort(tx);
3702 		goto out;
3703 	}
3704 
3705 	mutex_enter(&zp->z_lock);
3706 	zp->z_atime_dirty = B_FALSE;
3707 
3708 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3709 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
3710 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3711 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3712 
3713 	/* Preserve the mode, mtime and ctime provided by the inode */
3714 	ZFS_TIME_ENCODE(&ip->i_atime, atime);
3715 	ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3716 	ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3717 	mode = ip->i_mode;
3718 
3719 	zp->z_mode = mode;
3720 
3721 	error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3722 	mutex_exit(&zp->z_lock);
3723 
3724 	dmu_tx_commit(tx);
3725 out:
3726 	zfs_exit(zfsvfs, FTAG);
3727 	return (error);
3728 }
3729 
3730 void
3731 zfs_inactive(struct inode *ip)
3732 {
3733 	znode_t	*zp = ITOZ(ip);
3734 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3735 	uint64_t atime[2];
3736 	int error;
3737 	int need_unlock = 0;
3738 
3739 	/* Only read lock if we haven't already write locked, e.g. rollback */
3740 	if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
3741 		need_unlock = 1;
3742 		rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3743 	}
3744 	if (zp->z_sa_hdl == NULL) {
3745 		if (need_unlock)
3746 			rw_exit(&zfsvfs->z_teardown_inactive_lock);
3747 		return;
3748 	}
3749 
3750 	if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
3751 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3752 
3753 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3754 		zfs_sa_upgrade_txholds(tx, zp);
3755 		error = dmu_tx_assign(tx, TXG_WAIT);
3756 		if (error) {
3757 			dmu_tx_abort(tx);
3758 		} else {
3759 			ZFS_TIME_ENCODE(&ip->i_atime, atime);
3760 			mutex_enter(&zp->z_lock);
3761 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
3762 			    (void *)&atime, sizeof (atime), tx);
3763 			zp->z_atime_dirty = B_FALSE;
3764 			mutex_exit(&zp->z_lock);
3765 			dmu_tx_commit(tx);
3766 		}
3767 	}
3768 
3769 	zfs_zinactive(zp);
3770 	if (need_unlock)
3771 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
3772 }
3773 
3774 /*
3775  * Fill pages with data from the disk.
3776  */
3777 static int
3778 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
3779 {
3780 	znode_t *zp = ITOZ(ip);
3781 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3782 	objset_t *os;
3783 	struct page *cur_pp;
3784 	u_offset_t io_off, total;
3785 	size_t io_len;
3786 	loff_t i_size;
3787 	unsigned page_idx;
3788 	int err;
3789 
3790 	os = zfsvfs->z_os;
3791 	io_len = nr_pages << PAGE_SHIFT;
3792 	i_size = i_size_read(ip);
3793 	io_off = page_offset(pl[0]);
3794 
3795 	if (io_off + io_len > i_size)
3796 		io_len = i_size - io_off;
3797 
3798 	/*
3799 	 * Iterate over list of pages and read each page individually.
3800 	 */
3801 	page_idx = 0;
3802 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3803 		caddr_t va;
3804 
3805 		cur_pp = pl[page_idx++];
3806 		va = kmap(cur_pp);
3807 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
3808 		    DMU_READ_PREFETCH);
3809 		kunmap(cur_pp);
3810 		if (err) {
3811 			/* convert checksum errors into IO errors */
3812 			if (err == ECKSUM)
3813 				err = SET_ERROR(EIO);
3814 			return (err);
3815 		}
3816 	}
3817 
3818 	return (0);
3819 }
3820 
3821 /*
3822  * Uses zfs_fillpage to read data from the file and fill the pages.
3823  *
3824  *	IN:	ip	 - inode of file to get data from.
3825  *		pl	 - list of pages to read
3826  *		nr_pages - number of pages to read
3827  *
3828  *	RETURN:	0 on success, error code on failure.
3829  *
3830  * Timestamps:
3831  *	vp - atime updated
3832  */
3833 int
3834 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
3835 {
3836 	znode_t	 *zp  = ITOZ(ip);
3837 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3838 	int	 err;
3839 
3840 	if (pl == NULL)
3841 		return (0);
3842 
3843 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3844 		return (err);
3845 
3846 	err = zfs_fillpage(ip, pl, nr_pages);
3847 
3848 	dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nr_pages*PAGESIZE);
3849 
3850 	zfs_exit(zfsvfs, FTAG);
3851 	return (err);
3852 }
3853 
3854 /*
3855  * Check ZFS specific permissions to memory map a section of a file.
3856  *
3857  *	IN:	ip	- inode of the file to mmap
3858  *		off	- file offset
3859  *		addrp	- start address in memory region
3860  *		len	- length of memory region
3861  *		vm_flags- address flags
3862  *
3863  *	RETURN:	0 if success
3864  *		error code if failure
3865  */
3866 int
3867 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
3868     unsigned long vm_flags)
3869 {
3870 	(void) addrp;
3871 	znode_t  *zp = ITOZ(ip);
3872 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3873 	int error;
3874 
3875 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3876 		return (error);
3877 
3878 	if ((vm_flags & VM_WRITE) && (zp->z_pflags &
3879 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
3880 		zfs_exit(zfsvfs, FTAG);
3881 		return (SET_ERROR(EPERM));
3882 	}
3883 
3884 	if ((vm_flags & (VM_READ | VM_EXEC)) &&
3885 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
3886 		zfs_exit(zfsvfs, FTAG);
3887 		return (SET_ERROR(EACCES));
3888 	}
3889 
3890 	if (off < 0 || len > MAXOFFSET_T - off) {
3891 		zfs_exit(zfsvfs, FTAG);
3892 		return (SET_ERROR(ENXIO));
3893 	}
3894 
3895 	zfs_exit(zfsvfs, FTAG);
3896 	return (0);
3897 }
3898 
3899 /*
3900  * Free or allocate space in a file.  Currently, this function only
3901  * supports the `F_FREESP' command.  However, this command is somewhat
3902  * misnamed, as its functionality includes the ability to allocate as
3903  * well as free space.
3904  *
3905  *	IN:	zp	- znode of file to free data in.
3906  *		cmd	- action to take (only F_FREESP supported).
3907  *		bfp	- section of file to free/alloc.
3908  *		flag	- current file open mode flags.
3909  *		offset	- current file offset.
3910  *		cr	- credentials of caller.
3911  *
3912  *	RETURN:	0 on success, error code on failure.
3913  *
3914  * Timestamps:
3915  *	zp - ctime|mtime updated
3916  */
3917 int
3918 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
3919     offset_t offset, cred_t *cr)
3920 {
3921 	(void) offset;
3922 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
3923 	uint64_t	off, len;
3924 	int		error;
3925 
3926 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3927 		return (error);
3928 
3929 	if (cmd != F_FREESP) {
3930 		zfs_exit(zfsvfs, FTAG);
3931 		return (SET_ERROR(EINVAL));
3932 	}
3933 
3934 	/*
3935 	 * Callers might not be able to detect properly that we are read-only,
3936 	 * so check it explicitly here.
3937 	 */
3938 	if (zfs_is_readonly(zfsvfs)) {
3939 		zfs_exit(zfsvfs, FTAG);
3940 		return (SET_ERROR(EROFS));
3941 	}
3942 
3943 	if (bfp->l_len < 0) {
3944 		zfs_exit(zfsvfs, FTAG);
3945 		return (SET_ERROR(EINVAL));
3946 	}
3947 
3948 	/*
3949 	 * Permissions aren't checked on Solaris because on this OS
3950 	 * zfs_space() can only be called with an opened file handle.
3951 	 * On Linux we can get here through truncate_range() which
3952 	 * operates directly on inodes, so we need to check access rights.
3953 	 */
3954 	if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
3955 		zfs_exit(zfsvfs, FTAG);
3956 		return (error);
3957 	}
3958 
3959 	off = bfp->l_start;
3960 	len = bfp->l_len; /* 0 means from off to end of file */
3961 
3962 	error = zfs_freesp(zp, off, len, flag, TRUE);
3963 
3964 	zfs_exit(zfsvfs, FTAG);
3965 	return (error);
3966 }
3967 
3968 int
3969 zfs_fid(struct inode *ip, fid_t *fidp)
3970 {
3971 	znode_t		*zp = ITOZ(ip);
3972 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3973 	uint32_t	gen;
3974 	uint64_t	gen64;
3975 	uint64_t	object = zp->z_id;
3976 	zfid_short_t	*zfid;
3977 	int		size, i, error;
3978 
3979 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
3980 		return (error);
3981 
3982 	if (fidp->fid_len < SHORT_FID_LEN) {
3983 		fidp->fid_len = SHORT_FID_LEN;
3984 		zfs_exit(zfsvfs, FTAG);
3985 		return (SET_ERROR(ENOSPC));
3986 	}
3987 
3988 	if ((error = zfs_verify_zp(zp)) != 0) {
3989 		zfs_exit(zfsvfs, FTAG);
3990 		return (error);
3991 	}
3992 
3993 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
3994 	    &gen64, sizeof (uint64_t))) != 0) {
3995 		zfs_exit(zfsvfs, FTAG);
3996 		return (error);
3997 	}
3998 
3999 	gen = (uint32_t)gen64;
4000 
4001 	size = SHORT_FID_LEN;
4002 
4003 	zfid = (zfid_short_t *)fidp;
4004 
4005 	zfid->zf_len = size;
4006 
4007 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4008 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4009 
4010 	/* Must have a non-zero generation number to distinguish from .zfs */
4011 	if (gen == 0)
4012 		gen = 1;
4013 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4014 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4015 
4016 	zfs_exit(zfsvfs, FTAG);
4017 	return (0);
4018 }
4019 
4020 #if defined(_KERNEL)
4021 EXPORT_SYMBOL(zfs_open);
4022 EXPORT_SYMBOL(zfs_close);
4023 EXPORT_SYMBOL(zfs_lookup);
4024 EXPORT_SYMBOL(zfs_create);
4025 EXPORT_SYMBOL(zfs_tmpfile);
4026 EXPORT_SYMBOL(zfs_remove);
4027 EXPORT_SYMBOL(zfs_mkdir);
4028 EXPORT_SYMBOL(zfs_rmdir);
4029 EXPORT_SYMBOL(zfs_readdir);
4030 EXPORT_SYMBOL(zfs_getattr_fast);
4031 EXPORT_SYMBOL(zfs_setattr);
4032 EXPORT_SYMBOL(zfs_rename);
4033 EXPORT_SYMBOL(zfs_symlink);
4034 EXPORT_SYMBOL(zfs_readlink);
4035 EXPORT_SYMBOL(zfs_link);
4036 EXPORT_SYMBOL(zfs_inactive);
4037 EXPORT_SYMBOL(zfs_space);
4038 EXPORT_SYMBOL(zfs_fid);
4039 EXPORT_SYMBOL(zfs_getpage);
4040 EXPORT_SYMBOL(zfs_putpage);
4041 EXPORT_SYMBOL(zfs_dirty_inode);
4042 EXPORT_SYMBOL(zfs_map);
4043 
4044 /* CSTYLED */
4045 module_param(zfs_delete_blocks, ulong, 0644);
4046 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4047 
4048 #endif
4049