xref: /freebsd-src/sys/contrib/openzfs/module/os/linux/zfs/zfs_vnops_os.c (revision 7a7741af18d6c8a804cc643cb7ecda9d730c6aa6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/zfs_ctldir.h>
63 #include <sys/zfs_fuid.h>
64 #include <sys/zfs_quota.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
72 #include <linux/mm_compat.h>
73 
74 /*
75  * Programming rules.
76  *
77  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
78  * properly lock its in-core state, create a DMU transaction, do the work,
79  * record this work in the intent log (ZIL), commit the DMU transaction,
80  * and wait for the intent log to commit if it is a synchronous operation.
81  * Moreover, the vnode ops must work in both normal and log replay context.
82  * The ordering of events is important to avoid deadlocks and references
83  * to freed memory.  The example below illustrates the following Big Rules:
84  *
85  *  (1) A check must be made in each zfs thread for a mounted file system.
86  *	This is done avoiding races using zfs_enter(zfsvfs).
87  *      A zfs_exit(zfsvfs) is needed before all returns.  Any znodes
88  *      must be checked with zfs_verify_zp(zp).  Both of these macros
89  *      can return EIO from the calling function.
90  *
91  *  (2) zrele() should always be the last thing except for zil_commit() (if
92  *	necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
93  *	last reference, the vnode/znode can be freed, so the zp may point to
94  *	freed memory.  Second, the last reference will call zfs_zinactive(),
95  *	which may induce a lot of work -- pushing cached pages (which acquires
96  *	range locks) and syncing out cached atime changes.  Third,
97  *	zfs_zinactive() may require a new tx, which could deadlock the system
98  *	if you were already holding one. This deadlock occurs because the tx
99  *	currently being operated on prevents a txg from syncing, which
100  *	prevents the new tx from progressing, resulting in a deadlock.  If you
101  *	must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
102  *	is a synonym for zrele().
103  *
104  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
105  *	as they can span dmu_tx_assign() calls.
106  *
107  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
108  *      dmu_tx_assign().  This is critical because we don't want to block
109  *      while holding locks.
110  *
111  *	If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT.  This
112  *	reduces lock contention and CPU usage when we must wait (note that if
113  *	throughput is constrained by the storage, nearly every transaction
114  *	must wait).
115  *
116  *      Note, in particular, that if a lock is sometimes acquired before
117  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
118  *      to use a non-blocking assign can deadlock the system.  The scenario:
119  *
120  *	Thread A has grabbed a lock before calling dmu_tx_assign().
121  *	Thread B is in an already-assigned tx, and blocks for this lock.
122  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
123  *	forever, because the previous txg can't quiesce until B's tx commits.
124  *
125  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
126  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
127  *	calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
128  *	to indicate that this operation has already called dmu_tx_wait().
129  *	This will ensure that we don't retry forever, waiting a short bit
130  *	each time.
131  *
132  *  (5)	If the operation succeeded, generate the intent log entry for it
133  *	before dropping locks.  This ensures that the ordering of events
134  *	in the intent log matches the order in which they actually occurred.
135  *	During ZIL replay the zfs_log_* functions will update the sequence
136  *	number to indicate the zil transaction has replayed.
137  *
138  *  (6)	At the end of each vnode op, the DMU tx must always commit,
139  *	regardless of whether there were any errors.
140  *
141  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
142  *	to ensure that synchronous semantics are provided when necessary.
143  *
144  * In general, this is how things should be ordered in each vnode op:
145  *
146  *	zfs_enter(zfsvfs);		// exit if unmounted
147  * top:
148  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may igrab())
149  *	rw_enter(...);			// grab any other locks you need
150  *	tx = dmu_tx_create(...);	// get DMU tx
151  *	dmu_tx_hold_*();		// hold each object you might modify
152  *	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
153  *	if (error) {
154  *		rw_exit(...);		// drop locks
155  *		zfs_dirent_unlock(dl);	// unlock directory entry
156  *		zrele(...);		// release held znodes
157  *		if (error == ERESTART) {
158  *			waited = B_TRUE;
159  *			dmu_tx_wait(tx);
160  *			dmu_tx_abort(tx);
161  *			goto top;
162  *		}
163  *		dmu_tx_abort(tx);	// abort DMU tx
164  *		zfs_exit(zfsvfs);	// finished in zfs
165  *		return (error);		// really out of space
166  *	}
167  *	error = do_real_work();		// do whatever this VOP does
168  *	if (error == 0)
169  *		zfs_log_*(...);		// on success, make ZIL entry
170  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
171  *	rw_exit(...);			// drop locks
172  *	zfs_dirent_unlock(dl);		// unlock directory entry
173  *	zrele(...);			// release held znodes
174  *	zil_commit(zilog, foid);	// synchronous when necessary
175  *	zfs_exit(zfsvfs);		// finished in zfs
176  *	return (error);			// done, report error
177  */
178 int
179 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
180 {
181 	(void) cr;
182 	znode_t	*zp = ITOZ(ip);
183 	zfsvfs_t *zfsvfs = ITOZSB(ip);
184 	int error;
185 
186 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
187 		return (error);
188 
189 	/* Honor ZFS_APPENDONLY file attribute */
190 	if (blk_mode_is_open_write(mode) && (zp->z_pflags & ZFS_APPENDONLY) &&
191 	    ((flag & O_APPEND) == 0)) {
192 		zfs_exit(zfsvfs, FTAG);
193 		return (SET_ERROR(EPERM));
194 	}
195 
196 	/*
197 	 * Keep a count of the synchronous opens in the znode.  On first
198 	 * synchronous open we must convert all previous async transactions
199 	 * into sync to keep correct ordering.
200 	 */
201 	if (flag & O_SYNC) {
202 		if (atomic_inc_32_nv(&zp->z_sync_cnt) == 1)
203 			zil_async_to_sync(zfsvfs->z_log, zp->z_id);
204 	}
205 
206 	zfs_exit(zfsvfs, FTAG);
207 	return (0);
208 }
209 
210 int
211 zfs_close(struct inode *ip, int flag, cred_t *cr)
212 {
213 	(void) cr;
214 	znode_t	*zp = ITOZ(ip);
215 	zfsvfs_t *zfsvfs = ITOZSB(ip);
216 	int error;
217 
218 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
219 		return (error);
220 
221 	/* Decrement the synchronous opens in the znode */
222 	if (flag & O_SYNC)
223 		atomic_dec_32(&zp->z_sync_cnt);
224 
225 	zfs_exit(zfsvfs, FTAG);
226 	return (0);
227 }
228 
229 #if defined(_KERNEL)
230 
231 static int zfs_fillpage(struct inode *ip, struct page *pp);
232 
233 /*
234  * When a file is memory mapped, we must keep the IO data synchronized
235  * between the DMU cache and the memory mapped pages.  Update all mapped
236  * pages with the contents of the coresponding dmu buffer.
237  */
238 void
239 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
240 {
241 	struct address_space *mp = ZTOI(zp)->i_mapping;
242 	int64_t off = start & (PAGE_SIZE - 1);
243 
244 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
245 		uint64_t nbytes = MIN(PAGE_SIZE - off, len);
246 
247 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
248 		if (pp) {
249 			if (mapping_writably_mapped(mp))
250 				flush_dcache_page(pp);
251 
252 			void *pb = kmap(pp);
253 			int error = dmu_read(os, zp->z_id, start + off,
254 			    nbytes, pb + off, DMU_READ_PREFETCH);
255 			kunmap(pp);
256 
257 			if (error) {
258 				SetPageError(pp);
259 				ClearPageUptodate(pp);
260 			} else {
261 				ClearPageError(pp);
262 				SetPageUptodate(pp);
263 				if (!PagePrivate(pp)) {
264 					/*
265 					 * Set private bit so page migration
266 					 * will wait for us to finish writeback
267 					 * before calling migrate_folio().
268 					 */
269 					SetPagePrivate(pp);
270 					get_page(pp);
271 				}
272 
273 				if (mapping_writably_mapped(mp))
274 					flush_dcache_page(pp);
275 
276 				mark_page_accessed(pp);
277 			}
278 
279 			unlock_page(pp);
280 			put_page(pp);
281 		}
282 
283 		len -= nbytes;
284 		off = 0;
285 	}
286 }
287 
288 /*
289  * When a file is memory mapped, we must keep the I/O data synchronized
290  * between the DMU cache and the memory mapped pages.  Preferentially read
291  * from memory mapped pages, otherwise fallback to reading through the dmu.
292  */
293 int
294 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
295 {
296 	struct inode *ip = ZTOI(zp);
297 	struct address_space *mp = ip->i_mapping;
298 	int64_t start = uio->uio_loffset;
299 	int64_t off = start & (PAGE_SIZE - 1);
300 	int len = nbytes;
301 	int error = 0;
302 
303 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
304 		uint64_t bytes = MIN(PAGE_SIZE - off, len);
305 
306 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
307 		if (pp) {
308 
309 			/*
310 			 * If filemap_fault() retries there exists a window
311 			 * where the page will be unlocked and not up to date.
312 			 * In this case we must try and fill the page.
313 			 */
314 			if (unlikely(!PageUptodate(pp))) {
315 				error = zfs_fillpage(ip, pp);
316 				if (error) {
317 					unlock_page(pp);
318 					put_page(pp);
319 					return (error);
320 				}
321 			}
322 
323 			ASSERT(PageUptodate(pp) || PageDirty(pp));
324 
325 			unlock_page(pp);
326 
327 			void *pb = kmap(pp);
328 			error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
329 			kunmap(pp);
330 
331 			if (mapping_writably_mapped(mp))
332 				flush_dcache_page(pp);
333 
334 			mark_page_accessed(pp);
335 			put_page(pp);
336 		} else {
337 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
338 			    uio, bytes);
339 		}
340 
341 		len -= bytes;
342 		off = 0;
343 
344 		if (error)
345 			break;
346 	}
347 
348 	return (error);
349 }
350 #endif /* _KERNEL */
351 
352 static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
353 
354 /*
355  * Write the bytes to a file.
356  *
357  *	IN:	zp	- znode of file to be written to
358  *		data	- bytes to write
359  *		len	- number of bytes to write
360  *		pos	- offset to start writing at
361  *
362  *	OUT:	resid	- remaining bytes to write
363  *
364  *	RETURN:	0 if success
365  *		positive error code if failure.  EIO is	returned
366  *		for a short write when residp isn't provided.
367  *
368  * Timestamps:
369  *	zp - ctime|mtime updated if byte count > 0
370  */
371 int
372 zfs_write_simple(znode_t *zp, const void *data, size_t len,
373     loff_t pos, size_t *residp)
374 {
375 	fstrans_cookie_t cookie;
376 	int error;
377 
378 	struct iovec iov;
379 	iov.iov_base = (void *)data;
380 	iov.iov_len = len;
381 
382 	zfs_uio_t uio;
383 	zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
384 
385 	cookie = spl_fstrans_mark();
386 	error = zfs_write(zp, &uio, 0, kcred);
387 	spl_fstrans_unmark(cookie);
388 
389 	if (error == 0) {
390 		if (residp != NULL)
391 			*residp = zfs_uio_resid(&uio);
392 		else if (zfs_uio_resid(&uio) != 0)
393 			error = SET_ERROR(EIO);
394 	}
395 
396 	return (error);
397 }
398 
399 static void
400 zfs_rele_async_task(void *arg)
401 {
402 	iput(arg);
403 }
404 
405 void
406 zfs_zrele_async(znode_t *zp)
407 {
408 	struct inode *ip = ZTOI(zp);
409 	objset_t *os = ITOZSB(ip)->z_os;
410 
411 	ASSERT(atomic_read(&ip->i_count) > 0);
412 	ASSERT(os != NULL);
413 
414 	/*
415 	 * If decrementing the count would put us at 0, we can't do it inline
416 	 * here, because that would be synchronous. Instead, dispatch an iput
417 	 * to run later.
418 	 *
419 	 * For more information on the dangers of a synchronous iput, see the
420 	 * header comment of this file.
421 	 */
422 	if (!atomic_add_unless(&ip->i_count, -1, 1)) {
423 		VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
424 		    zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
425 	}
426 }
427 
428 
429 /*
430  * Lookup an entry in a directory, or an extended attribute directory.
431  * If it exists, return a held inode reference for it.
432  *
433  *	IN:	zdp	- znode of directory to search.
434  *		nm	- name of entry to lookup.
435  *		flags	- LOOKUP_XATTR set if looking for an attribute.
436  *		cr	- credentials of caller.
437  *		direntflags - directory lookup flags
438  *		realpnp - returned pathname.
439  *
440  *	OUT:	zpp	- znode of located entry, NULL if not found.
441  *
442  *	RETURN:	0 on success, error code on failure.
443  *
444  * Timestamps:
445  *	NA
446  */
447 int
448 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
449     int *direntflags, pathname_t *realpnp)
450 {
451 	zfsvfs_t *zfsvfs = ZTOZSB(zdp);
452 	int error = 0;
453 
454 	/*
455 	 * Fast path lookup, however we must skip DNLC lookup
456 	 * for case folding or normalizing lookups because the
457 	 * DNLC code only stores the passed in name.  This means
458 	 * creating 'a' and removing 'A' on a case insensitive
459 	 * file system would work, but DNLC still thinks 'a'
460 	 * exists and won't let you create it again on the next
461 	 * pass through fast path.
462 	 */
463 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
464 
465 		if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
466 			return (SET_ERROR(ENOTDIR));
467 		} else if (zdp->z_sa_hdl == NULL) {
468 			return (SET_ERROR(EIO));
469 		}
470 
471 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
472 			error = zfs_fastaccesschk_execute(zdp, cr);
473 			if (!error) {
474 				*zpp = zdp;
475 				zhold(*zpp);
476 				return (0);
477 			}
478 			return (error);
479 		}
480 	}
481 
482 	if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
483 		return (error);
484 
485 	*zpp = NULL;
486 
487 	if (flags & LOOKUP_XATTR) {
488 		/*
489 		 * We don't allow recursive attributes..
490 		 * Maybe someday we will.
491 		 */
492 		if (zdp->z_pflags & ZFS_XATTR) {
493 			zfs_exit(zfsvfs, FTAG);
494 			return (SET_ERROR(EINVAL));
495 		}
496 
497 		if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
498 			zfs_exit(zfsvfs, FTAG);
499 			return (error);
500 		}
501 
502 		/*
503 		 * Do we have permission to get into attribute directory?
504 		 */
505 
506 		if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
507 		    B_TRUE, cr, zfs_init_idmap))) {
508 			zrele(*zpp);
509 			*zpp = NULL;
510 		}
511 
512 		zfs_exit(zfsvfs, FTAG);
513 		return (error);
514 	}
515 
516 	if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
517 		zfs_exit(zfsvfs, FTAG);
518 		return (SET_ERROR(ENOTDIR));
519 	}
520 
521 	/*
522 	 * Check accessibility of directory.
523 	 */
524 
525 	if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr,
526 	    zfs_init_idmap))) {
527 		zfs_exit(zfsvfs, FTAG);
528 		return (error);
529 	}
530 
531 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
532 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
533 		zfs_exit(zfsvfs, FTAG);
534 		return (SET_ERROR(EILSEQ));
535 	}
536 
537 	error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
538 	if ((error == 0) && (*zpp))
539 		zfs_znode_update_vfs(*zpp);
540 
541 	zfs_exit(zfsvfs, FTAG);
542 	return (error);
543 }
544 
545 /*
546  * Perform a linear search in directory for the name of specific inode.
547  * Note we don't pass in the buffer size of name because it's hardcoded to
548  * NAME_MAX+1(256) in Linux.
549  *
550  *	IN:	dzp	- znode of directory to search.
551  *		zp	- znode of the target
552  *
553  *	OUT:	name	- dentry name of the target
554  *
555  *	RETURN:	0 on success, error code on failure.
556  */
557 int
558 zfs_get_name(znode_t *dzp, char *name, znode_t *zp)
559 {
560 	zfsvfs_t *zfsvfs = ZTOZSB(dzp);
561 	int error = 0;
562 
563 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
564 		return (error);
565 
566 	if ((error = zfs_verify_zp(zp)) != 0) {
567 		zfs_exit(zfsvfs, FTAG);
568 		return (error);
569 	}
570 
571 	/* ctldir should have got their name in zfs_vget */
572 	if (dzp->z_is_ctldir || zp->z_is_ctldir) {
573 		zfs_exit(zfsvfs, FTAG);
574 		return (ENOENT);
575 	}
576 
577 	/* buffer len is hardcoded to 256 in Linux kernel */
578 	error = zap_value_search(zfsvfs->z_os, dzp->z_id, zp->z_id,
579 	    ZFS_DIRENT_OBJ(-1ULL), name, ZAP_MAXNAMELEN);
580 
581 	zfs_exit(zfsvfs, FTAG);
582 	return (error);
583 }
584 
585 /*
586  * Attempt to create a new entry in a directory.  If the entry
587  * already exists, truncate the file if permissible, else return
588  * an error.  Return the ip of the created or trunc'd file.
589  *
590  *	IN:	dzp	- znode of directory to put new file entry in.
591  *		name	- name of new file entry.
592  *		vap	- attributes of new file.
593  *		excl	- flag indicating exclusive or non-exclusive mode.
594  *		mode	- mode to open file with.
595  *		cr	- credentials of caller.
596  *		flag	- file flag.
597  *		vsecp	- ACL to be set
598  *		mnt_ns	- user namespace of the mount
599  *
600  *	OUT:	zpp	- znode of created or trunc'd entry.
601  *
602  *	RETURN:	0 on success, error code on failure.
603  *
604  * Timestamps:
605  *	dzp - ctime|mtime updated if new entry created
606  *	 zp - ctime|mtime always, atime if new
607  */
608 int
609 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
610     int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp,
611     zidmap_t *mnt_ns)
612 {
613 	znode_t		*zp;
614 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
615 	zilog_t		*zilog;
616 	objset_t	*os;
617 	zfs_dirlock_t	*dl;
618 	dmu_tx_t	*tx;
619 	int		error;
620 	uid_t		uid;
621 	gid_t		gid;
622 	zfs_acl_ids_t   acl_ids;
623 	boolean_t	fuid_dirtied;
624 	boolean_t	have_acl = B_FALSE;
625 	boolean_t	waited = B_FALSE;
626 	boolean_t	skip_acl = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
627 
628 	/*
629 	 * If we have an ephemeral id, ACL, or XVATTR then
630 	 * make sure file system is at proper version
631 	 */
632 
633 	gid = crgetgid(cr);
634 	uid = crgetuid(cr);
635 
636 	if (zfsvfs->z_use_fuids == B_FALSE &&
637 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
638 		return (SET_ERROR(EINVAL));
639 
640 	if (name == NULL)
641 		return (SET_ERROR(EINVAL));
642 
643 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
644 		return (error);
645 	os = zfsvfs->z_os;
646 	zilog = zfsvfs->z_log;
647 
648 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
649 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
650 		zfs_exit(zfsvfs, FTAG);
651 		return (SET_ERROR(EILSEQ));
652 	}
653 
654 	if (vap->va_mask & ATTR_XVATTR) {
655 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
656 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
657 			zfs_exit(zfsvfs, FTAG);
658 			return (error);
659 		}
660 	}
661 
662 top:
663 	*zpp = NULL;
664 	if (*name == '\0') {
665 		/*
666 		 * Null component name refers to the directory itself.
667 		 */
668 		zhold(dzp);
669 		zp = dzp;
670 		dl = NULL;
671 		error = 0;
672 	} else {
673 		/* possible igrab(zp) */
674 		int zflg = 0;
675 
676 		if (flag & FIGNORECASE)
677 			zflg |= ZCILOOK;
678 
679 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
680 		    NULL, NULL);
681 		if (error) {
682 			if (have_acl)
683 				zfs_acl_ids_free(&acl_ids);
684 			if (strcmp(name, "..") == 0)
685 				error = SET_ERROR(EISDIR);
686 			zfs_exit(zfsvfs, FTAG);
687 			return (error);
688 		}
689 	}
690 
691 	if (zp == NULL) {
692 		uint64_t txtype;
693 		uint64_t projid = ZFS_DEFAULT_PROJID;
694 
695 		/*
696 		 * Create a new file object and update the directory
697 		 * to reference it.
698 		 */
699 		if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, skip_acl, cr,
700 		    mnt_ns))) {
701 			if (have_acl)
702 				zfs_acl_ids_free(&acl_ids);
703 			goto out;
704 		}
705 
706 		/*
707 		 * We only support the creation of regular files in
708 		 * extended attribute directories.
709 		 */
710 
711 		if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
712 			if (have_acl)
713 				zfs_acl_ids_free(&acl_ids);
714 			error = SET_ERROR(EINVAL);
715 			goto out;
716 		}
717 
718 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
719 		    cr, vsecp, &acl_ids, mnt_ns)) != 0)
720 			goto out;
721 		have_acl = B_TRUE;
722 
723 		if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
724 			projid = zfs_inherit_projid(dzp);
725 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
726 			zfs_acl_ids_free(&acl_ids);
727 			error = SET_ERROR(EDQUOT);
728 			goto out;
729 		}
730 
731 		tx = dmu_tx_create(os);
732 
733 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
734 		    ZFS_SA_BASE_ATTR_SIZE);
735 
736 		fuid_dirtied = zfsvfs->z_fuid_dirty;
737 		if (fuid_dirtied)
738 			zfs_fuid_txhold(zfsvfs, tx);
739 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
740 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
741 		if (!zfsvfs->z_use_sa &&
742 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
743 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
744 			    0, acl_ids.z_aclp->z_acl_bytes);
745 		}
746 
747 		error = dmu_tx_assign(tx,
748 		    (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
749 		if (error) {
750 			zfs_dirent_unlock(dl);
751 			if (error == ERESTART) {
752 				waited = B_TRUE;
753 				dmu_tx_wait(tx);
754 				dmu_tx_abort(tx);
755 				goto top;
756 			}
757 			zfs_acl_ids_free(&acl_ids);
758 			dmu_tx_abort(tx);
759 			zfs_exit(zfsvfs, FTAG);
760 			return (error);
761 		}
762 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
763 
764 		error = zfs_link_create(dl, zp, tx, ZNEW);
765 		if (error != 0) {
766 			/*
767 			 * Since, we failed to add the directory entry for it,
768 			 * delete the newly created dnode.
769 			 */
770 			zfs_znode_delete(zp, tx);
771 			remove_inode_hash(ZTOI(zp));
772 			zfs_acl_ids_free(&acl_ids);
773 			dmu_tx_commit(tx);
774 			goto out;
775 		}
776 
777 		if (fuid_dirtied)
778 			zfs_fuid_sync(zfsvfs, tx);
779 
780 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
781 		if (flag & FIGNORECASE)
782 			txtype |= TX_CI;
783 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
784 		    vsecp, acl_ids.z_fuidp, vap);
785 		zfs_acl_ids_free(&acl_ids);
786 		dmu_tx_commit(tx);
787 	} else {
788 		int aflags = (flag & O_APPEND) ? V_APPEND : 0;
789 
790 		if (have_acl)
791 			zfs_acl_ids_free(&acl_ids);
792 
793 		/*
794 		 * A directory entry already exists for this name.
795 		 */
796 		/*
797 		 * Can't truncate an existing file if in exclusive mode.
798 		 */
799 		if (excl) {
800 			error = SET_ERROR(EEXIST);
801 			goto out;
802 		}
803 		/*
804 		 * Can't open a directory for writing.
805 		 */
806 		if (S_ISDIR(ZTOI(zp)->i_mode)) {
807 			error = SET_ERROR(EISDIR);
808 			goto out;
809 		}
810 		/*
811 		 * Verify requested access to file.
812 		 */
813 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr,
814 		    mnt_ns))) {
815 			goto out;
816 		}
817 
818 		mutex_enter(&dzp->z_lock);
819 		dzp->z_seq++;
820 		mutex_exit(&dzp->z_lock);
821 
822 		/*
823 		 * Truncate regular files if requested.
824 		 */
825 		if (S_ISREG(ZTOI(zp)->i_mode) &&
826 		    (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
827 			/* we can't hold any locks when calling zfs_freesp() */
828 			if (dl) {
829 				zfs_dirent_unlock(dl);
830 				dl = NULL;
831 			}
832 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
833 		}
834 	}
835 out:
836 
837 	if (dl)
838 		zfs_dirent_unlock(dl);
839 
840 	if (error) {
841 		if (zp)
842 			zrele(zp);
843 	} else {
844 		zfs_znode_update_vfs(dzp);
845 		zfs_znode_update_vfs(zp);
846 		*zpp = zp;
847 	}
848 
849 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
850 		zil_commit(zilog, 0);
851 
852 	zfs_exit(zfsvfs, FTAG);
853 	return (error);
854 }
855 
856 int
857 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
858     int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp,
859     zidmap_t *mnt_ns)
860 {
861 	(void) excl, (void) mode, (void) flag;
862 	znode_t		*zp = NULL, *dzp = ITOZ(dip);
863 	zfsvfs_t	*zfsvfs = ITOZSB(dip);
864 	objset_t	*os;
865 	dmu_tx_t	*tx;
866 	int		error;
867 	uid_t		uid;
868 	gid_t		gid;
869 	zfs_acl_ids_t   acl_ids;
870 	uint64_t	projid = ZFS_DEFAULT_PROJID;
871 	boolean_t	fuid_dirtied;
872 	boolean_t	have_acl = B_FALSE;
873 	boolean_t	waited = B_FALSE;
874 
875 	/*
876 	 * If we have an ephemeral id, ACL, or XVATTR then
877 	 * make sure file system is at proper version
878 	 */
879 
880 	gid = crgetgid(cr);
881 	uid = crgetuid(cr);
882 
883 	if (zfsvfs->z_use_fuids == B_FALSE &&
884 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
885 		return (SET_ERROR(EINVAL));
886 
887 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
888 		return (error);
889 	os = zfsvfs->z_os;
890 
891 	if (vap->va_mask & ATTR_XVATTR) {
892 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
893 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
894 			zfs_exit(zfsvfs, FTAG);
895 			return (error);
896 		}
897 	}
898 
899 top:
900 	*ipp = NULL;
901 
902 	/*
903 	 * Create a new file object and update the directory
904 	 * to reference it.
905 	 */
906 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
907 		if (have_acl)
908 			zfs_acl_ids_free(&acl_ids);
909 		goto out;
910 	}
911 
912 	if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
913 	    cr, vsecp, &acl_ids, mnt_ns)) != 0)
914 		goto out;
915 	have_acl = B_TRUE;
916 
917 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
918 		projid = zfs_inherit_projid(dzp);
919 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
920 		zfs_acl_ids_free(&acl_ids);
921 		error = SET_ERROR(EDQUOT);
922 		goto out;
923 	}
924 
925 	tx = dmu_tx_create(os);
926 
927 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
928 	    ZFS_SA_BASE_ATTR_SIZE);
929 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
930 
931 	fuid_dirtied = zfsvfs->z_fuid_dirty;
932 	if (fuid_dirtied)
933 		zfs_fuid_txhold(zfsvfs, tx);
934 	if (!zfsvfs->z_use_sa &&
935 	    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
936 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
937 		    0, acl_ids.z_aclp->z_acl_bytes);
938 	}
939 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
940 	if (error) {
941 		if (error == ERESTART) {
942 			waited = B_TRUE;
943 			dmu_tx_wait(tx);
944 			dmu_tx_abort(tx);
945 			goto top;
946 		}
947 		zfs_acl_ids_free(&acl_ids);
948 		dmu_tx_abort(tx);
949 		zfs_exit(zfsvfs, FTAG);
950 		return (error);
951 	}
952 	zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
953 
954 	if (fuid_dirtied)
955 		zfs_fuid_sync(zfsvfs, tx);
956 
957 	/* Add to unlinked set */
958 	zp->z_unlinked = B_TRUE;
959 	zfs_unlinked_add(zp, tx);
960 	zfs_acl_ids_free(&acl_ids);
961 	dmu_tx_commit(tx);
962 out:
963 
964 	if (error) {
965 		if (zp)
966 			zrele(zp);
967 	} else {
968 		zfs_znode_update_vfs(dzp);
969 		zfs_znode_update_vfs(zp);
970 		*ipp = ZTOI(zp);
971 	}
972 
973 	zfs_exit(zfsvfs, FTAG);
974 	return (error);
975 }
976 
977 /*
978  * Remove an entry from a directory.
979  *
980  *	IN:	dzp	- znode of directory to remove entry from.
981  *		name	- name of entry to remove.
982  *		cr	- credentials of caller.
983  *		flags	- case flags.
984  *
985  *	RETURN:	0 if success
986  *		error code if failure
987  *
988  * Timestamps:
989  *	dzp - ctime|mtime
990  *	 ip - ctime (if nlink > 0)
991  */
992 
993 static uint64_t null_xattr = 0;
994 
995 int
996 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
997 {
998 	znode_t		*zp;
999 	znode_t		*xzp;
1000 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1001 	zilog_t		*zilog;
1002 	uint64_t	acl_obj, xattr_obj;
1003 	uint64_t	xattr_obj_unlinked = 0;
1004 	uint64_t	obj = 0;
1005 	uint64_t	links;
1006 	zfs_dirlock_t	*dl;
1007 	dmu_tx_t	*tx;
1008 	boolean_t	may_delete_now, delete_now = FALSE;
1009 	boolean_t	unlinked, toobig = FALSE;
1010 	uint64_t	txtype;
1011 	pathname_t	*realnmp = NULL;
1012 	pathname_t	realnm;
1013 	int		error;
1014 	int		zflg = ZEXISTS;
1015 	boolean_t	waited = B_FALSE;
1016 
1017 	if (name == NULL)
1018 		return (SET_ERROR(EINVAL));
1019 
1020 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1021 		return (error);
1022 	zilog = zfsvfs->z_log;
1023 
1024 	if (flags & FIGNORECASE) {
1025 		zflg |= ZCILOOK;
1026 		pn_alloc(&realnm);
1027 		realnmp = &realnm;
1028 	}
1029 
1030 top:
1031 	xattr_obj = 0;
1032 	xzp = NULL;
1033 	/*
1034 	 * Attempt to lock directory; fail if entry doesn't exist.
1035 	 */
1036 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1037 	    NULL, realnmp))) {
1038 		if (realnmp)
1039 			pn_free(realnmp);
1040 		zfs_exit(zfsvfs, FTAG);
1041 		return (error);
1042 	}
1043 
1044 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1045 		goto out;
1046 	}
1047 
1048 	/*
1049 	 * Need to use rmdir for removing directories.
1050 	 */
1051 	if (S_ISDIR(ZTOI(zp)->i_mode)) {
1052 		error = SET_ERROR(EPERM);
1053 		goto out;
1054 	}
1055 
1056 	mutex_enter(&zp->z_lock);
1057 	may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
1058 	    !zn_has_cached_data(zp, 0, LLONG_MAX);
1059 	mutex_exit(&zp->z_lock);
1060 
1061 	/*
1062 	 * We may delete the znode now, or we may put it in the unlinked set;
1063 	 * it depends on whether we're the last link, and on whether there are
1064 	 * other holds on the inode.  So we dmu_tx_hold() the right things to
1065 	 * allow for either case.
1066 	 */
1067 	obj = zp->z_id;
1068 	tx = dmu_tx_create(zfsvfs->z_os);
1069 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1070 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1071 	zfs_sa_upgrade_txholds(tx, zp);
1072 	zfs_sa_upgrade_txholds(tx, dzp);
1073 	if (may_delete_now) {
1074 		toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1075 		/* if the file is too big, only hold_free a token amount */
1076 		dmu_tx_hold_free(tx, zp->z_id, 0,
1077 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1078 	}
1079 
1080 	/* are there any extended attributes? */
1081 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1082 	    &xattr_obj, sizeof (xattr_obj));
1083 	if (error == 0 && xattr_obj) {
1084 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1085 		ASSERT0(error);
1086 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1087 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1088 	}
1089 
1090 	mutex_enter(&zp->z_lock);
1091 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1092 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1093 	mutex_exit(&zp->z_lock);
1094 
1095 	/* charge as an update -- would be nice not to charge at all */
1096 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1097 
1098 	/*
1099 	 * Mark this transaction as typically resulting in a net free of space
1100 	 */
1101 	dmu_tx_mark_netfree(tx);
1102 
1103 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1104 	if (error) {
1105 		zfs_dirent_unlock(dl);
1106 		if (error == ERESTART) {
1107 			waited = B_TRUE;
1108 			dmu_tx_wait(tx);
1109 			dmu_tx_abort(tx);
1110 			zrele(zp);
1111 			if (xzp)
1112 				zrele(xzp);
1113 			goto top;
1114 		}
1115 		if (realnmp)
1116 			pn_free(realnmp);
1117 		dmu_tx_abort(tx);
1118 		zrele(zp);
1119 		if (xzp)
1120 			zrele(xzp);
1121 		zfs_exit(zfsvfs, FTAG);
1122 		return (error);
1123 	}
1124 
1125 	/*
1126 	 * Remove the directory entry.
1127 	 */
1128 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1129 
1130 	if (error) {
1131 		dmu_tx_commit(tx);
1132 		goto out;
1133 	}
1134 
1135 	if (unlinked) {
1136 		/*
1137 		 * Hold z_lock so that we can make sure that the ACL obj
1138 		 * hasn't changed.  Could have been deleted due to
1139 		 * zfs_sa_upgrade().
1140 		 */
1141 		mutex_enter(&zp->z_lock);
1142 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1143 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1144 		delete_now = may_delete_now && !toobig &&
1145 		    atomic_read(&ZTOI(zp)->i_count) == 1 &&
1146 		    !zn_has_cached_data(zp, 0, LLONG_MAX) &&
1147 		    xattr_obj == xattr_obj_unlinked &&
1148 		    zfs_external_acl(zp) == acl_obj;
1149 		VERIFY_IMPLY(xattr_obj_unlinked, xzp);
1150 	}
1151 
1152 	if (delete_now) {
1153 		if (xattr_obj_unlinked) {
1154 			ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1155 			mutex_enter(&xzp->z_lock);
1156 			xzp->z_unlinked = B_TRUE;
1157 			clear_nlink(ZTOI(xzp));
1158 			links = 0;
1159 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1160 			    &links, sizeof (links), tx);
1161 			ASSERT3U(error,  ==,  0);
1162 			mutex_exit(&xzp->z_lock);
1163 			zfs_unlinked_add(xzp, tx);
1164 
1165 			if (zp->z_is_sa)
1166 				error = sa_remove(zp->z_sa_hdl,
1167 				    SA_ZPL_XATTR(zfsvfs), tx);
1168 			else
1169 				error = sa_update(zp->z_sa_hdl,
1170 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1171 				    sizeof (uint64_t), tx);
1172 			ASSERT0(error);
1173 		}
1174 		/*
1175 		 * Add to the unlinked set because a new reference could be
1176 		 * taken concurrently resulting in a deferred destruction.
1177 		 */
1178 		zfs_unlinked_add(zp, tx);
1179 		mutex_exit(&zp->z_lock);
1180 	} else if (unlinked) {
1181 		mutex_exit(&zp->z_lock);
1182 		zfs_unlinked_add(zp, tx);
1183 	}
1184 
1185 	txtype = TX_REMOVE;
1186 	if (flags & FIGNORECASE)
1187 		txtype |= TX_CI;
1188 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1189 
1190 	dmu_tx_commit(tx);
1191 out:
1192 	if (realnmp)
1193 		pn_free(realnmp);
1194 
1195 	zfs_dirent_unlock(dl);
1196 	zfs_znode_update_vfs(dzp);
1197 	zfs_znode_update_vfs(zp);
1198 
1199 	if (delete_now)
1200 		zrele(zp);
1201 	else
1202 		zfs_zrele_async(zp);
1203 
1204 	if (xzp) {
1205 		zfs_znode_update_vfs(xzp);
1206 		zfs_zrele_async(xzp);
1207 	}
1208 
1209 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1210 		zil_commit(zilog, 0);
1211 
1212 	zfs_exit(zfsvfs, FTAG);
1213 	return (error);
1214 }
1215 
1216 /*
1217  * Create a new directory and insert it into dzp using the name
1218  * provided.  Return a pointer to the inserted directory.
1219  *
1220  *	IN:	dzp	- znode of directory to add subdir to.
1221  *		dirname	- name of new directory.
1222  *		vap	- attributes of new directory.
1223  *		cr	- credentials of caller.
1224  *		flags	- case flags.
1225  *		vsecp	- ACL to be set
1226  *		mnt_ns	- user namespace of the mount
1227  *
1228  *	OUT:	zpp	- znode of created directory.
1229  *
1230  *	RETURN:	0 if success
1231  *		error code if failure
1232  *
1233  * Timestamps:
1234  *	dzp - ctime|mtime updated
1235  *	zpp - ctime|mtime|atime updated
1236  */
1237 int
1238 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1239     cred_t *cr, int flags, vsecattr_t *vsecp, zidmap_t *mnt_ns)
1240 {
1241 	znode_t		*zp;
1242 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1243 	zilog_t		*zilog;
1244 	zfs_dirlock_t	*dl;
1245 	uint64_t	txtype;
1246 	dmu_tx_t	*tx;
1247 	int		error;
1248 	int		zf = ZNEW;
1249 	uid_t		uid;
1250 	gid_t		gid = crgetgid(cr);
1251 	zfs_acl_ids_t   acl_ids;
1252 	boolean_t	fuid_dirtied;
1253 	boolean_t	waited = B_FALSE;
1254 
1255 	ASSERT(S_ISDIR(vap->va_mode));
1256 
1257 	/*
1258 	 * If we have an ephemeral id, ACL, or XVATTR then
1259 	 * make sure file system is at proper version
1260 	 */
1261 
1262 	uid = crgetuid(cr);
1263 	if (zfsvfs->z_use_fuids == B_FALSE &&
1264 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1265 		return (SET_ERROR(EINVAL));
1266 
1267 	if (dirname == NULL)
1268 		return (SET_ERROR(EINVAL));
1269 
1270 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1271 		return (error);
1272 	zilog = zfsvfs->z_log;
1273 
1274 	if (dzp->z_pflags & ZFS_XATTR) {
1275 		zfs_exit(zfsvfs, FTAG);
1276 		return (SET_ERROR(EINVAL));
1277 	}
1278 
1279 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1280 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1281 		zfs_exit(zfsvfs, FTAG);
1282 		return (SET_ERROR(EILSEQ));
1283 	}
1284 	if (flags & FIGNORECASE)
1285 		zf |= ZCILOOK;
1286 
1287 	if (vap->va_mask & ATTR_XVATTR) {
1288 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1289 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
1290 			zfs_exit(zfsvfs, FTAG);
1291 			return (error);
1292 		}
1293 	}
1294 
1295 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1296 	    vsecp, &acl_ids, mnt_ns)) != 0) {
1297 		zfs_exit(zfsvfs, FTAG);
1298 		return (error);
1299 	}
1300 	/*
1301 	 * First make sure the new directory doesn't exist.
1302 	 *
1303 	 * Existence is checked first to make sure we don't return
1304 	 * EACCES instead of EEXIST which can cause some applications
1305 	 * to fail.
1306 	 */
1307 top:
1308 	*zpp = NULL;
1309 
1310 	if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1311 	    NULL, NULL))) {
1312 		zfs_acl_ids_free(&acl_ids);
1313 		zfs_exit(zfsvfs, FTAG);
1314 		return (error);
1315 	}
1316 
1317 	if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr,
1318 	    mnt_ns))) {
1319 		zfs_acl_ids_free(&acl_ids);
1320 		zfs_dirent_unlock(dl);
1321 		zfs_exit(zfsvfs, FTAG);
1322 		return (error);
1323 	}
1324 
1325 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1326 		zfs_acl_ids_free(&acl_ids);
1327 		zfs_dirent_unlock(dl);
1328 		zfs_exit(zfsvfs, FTAG);
1329 		return (SET_ERROR(EDQUOT));
1330 	}
1331 
1332 	/*
1333 	 * Add a new entry to the directory.
1334 	 */
1335 	tx = dmu_tx_create(zfsvfs->z_os);
1336 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1337 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1338 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1339 	if (fuid_dirtied)
1340 		zfs_fuid_txhold(zfsvfs, tx);
1341 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1342 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1343 		    acl_ids.z_aclp->z_acl_bytes);
1344 	}
1345 
1346 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1347 	    ZFS_SA_BASE_ATTR_SIZE);
1348 
1349 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1350 	if (error) {
1351 		zfs_dirent_unlock(dl);
1352 		if (error == ERESTART) {
1353 			waited = B_TRUE;
1354 			dmu_tx_wait(tx);
1355 			dmu_tx_abort(tx);
1356 			goto top;
1357 		}
1358 		zfs_acl_ids_free(&acl_ids);
1359 		dmu_tx_abort(tx);
1360 		zfs_exit(zfsvfs, FTAG);
1361 		return (error);
1362 	}
1363 
1364 	/*
1365 	 * Create new node.
1366 	 */
1367 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1368 
1369 	/*
1370 	 * Now put new name in parent dir.
1371 	 */
1372 	error = zfs_link_create(dl, zp, tx, ZNEW);
1373 	if (error != 0) {
1374 		zfs_znode_delete(zp, tx);
1375 		remove_inode_hash(ZTOI(zp));
1376 		goto out;
1377 	}
1378 
1379 	if (fuid_dirtied)
1380 		zfs_fuid_sync(zfsvfs, tx);
1381 
1382 	*zpp = zp;
1383 
1384 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1385 	if (flags & FIGNORECASE)
1386 		txtype |= TX_CI;
1387 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1388 	    acl_ids.z_fuidp, vap);
1389 
1390 out:
1391 	zfs_acl_ids_free(&acl_ids);
1392 
1393 	dmu_tx_commit(tx);
1394 
1395 	zfs_dirent_unlock(dl);
1396 
1397 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1398 		zil_commit(zilog, 0);
1399 
1400 	if (error != 0) {
1401 		zrele(zp);
1402 	} else {
1403 		zfs_znode_update_vfs(dzp);
1404 		zfs_znode_update_vfs(zp);
1405 	}
1406 	zfs_exit(zfsvfs, FTAG);
1407 	return (error);
1408 }
1409 
1410 /*
1411  * Remove a directory subdir entry.  If the current working
1412  * directory is the same as the subdir to be removed, the
1413  * remove will fail.
1414  *
1415  *	IN:	dzp	- znode of directory to remove from.
1416  *		name	- name of directory to be removed.
1417  *		cwd	- inode of current working directory.
1418  *		cr	- credentials of caller.
1419  *		flags	- case flags
1420  *
1421  *	RETURN:	0 on success, error code on failure.
1422  *
1423  * Timestamps:
1424  *	dzp - ctime|mtime updated
1425  */
1426 int
1427 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1428     int flags)
1429 {
1430 	znode_t		*zp;
1431 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1432 	zilog_t		*zilog;
1433 	zfs_dirlock_t	*dl;
1434 	dmu_tx_t	*tx;
1435 	int		error;
1436 	int		zflg = ZEXISTS;
1437 	boolean_t	waited = B_FALSE;
1438 
1439 	if (name == NULL)
1440 		return (SET_ERROR(EINVAL));
1441 
1442 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1443 		return (error);
1444 	zilog = zfsvfs->z_log;
1445 
1446 	if (flags & FIGNORECASE)
1447 		zflg |= ZCILOOK;
1448 top:
1449 	zp = NULL;
1450 
1451 	/*
1452 	 * Attempt to lock directory; fail if entry doesn't exist.
1453 	 */
1454 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1455 	    NULL, NULL))) {
1456 		zfs_exit(zfsvfs, FTAG);
1457 		return (error);
1458 	}
1459 
1460 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1461 		goto out;
1462 	}
1463 
1464 	if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1465 		error = SET_ERROR(ENOTDIR);
1466 		goto out;
1467 	}
1468 
1469 	if (zp == cwd) {
1470 		error = SET_ERROR(EINVAL);
1471 		goto out;
1472 	}
1473 
1474 	/*
1475 	 * Grab a lock on the directory to make sure that no one is
1476 	 * trying to add (or lookup) entries while we are removing it.
1477 	 */
1478 	rw_enter(&zp->z_name_lock, RW_WRITER);
1479 
1480 	/*
1481 	 * Grab a lock on the parent pointer to make sure we play well
1482 	 * with the treewalk and directory rename code.
1483 	 */
1484 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1485 
1486 	tx = dmu_tx_create(zfsvfs->z_os);
1487 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1488 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1489 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1490 	zfs_sa_upgrade_txholds(tx, zp);
1491 	zfs_sa_upgrade_txholds(tx, dzp);
1492 	dmu_tx_mark_netfree(tx);
1493 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1494 	if (error) {
1495 		rw_exit(&zp->z_parent_lock);
1496 		rw_exit(&zp->z_name_lock);
1497 		zfs_dirent_unlock(dl);
1498 		if (error == ERESTART) {
1499 			waited = B_TRUE;
1500 			dmu_tx_wait(tx);
1501 			dmu_tx_abort(tx);
1502 			zrele(zp);
1503 			goto top;
1504 		}
1505 		dmu_tx_abort(tx);
1506 		zrele(zp);
1507 		zfs_exit(zfsvfs, FTAG);
1508 		return (error);
1509 	}
1510 
1511 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1512 
1513 	if (error == 0) {
1514 		uint64_t txtype = TX_RMDIR;
1515 		if (flags & FIGNORECASE)
1516 			txtype |= TX_CI;
1517 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1518 		    B_FALSE);
1519 	}
1520 
1521 	dmu_tx_commit(tx);
1522 
1523 	rw_exit(&zp->z_parent_lock);
1524 	rw_exit(&zp->z_name_lock);
1525 out:
1526 	zfs_dirent_unlock(dl);
1527 
1528 	zfs_znode_update_vfs(dzp);
1529 	zfs_znode_update_vfs(zp);
1530 	zrele(zp);
1531 
1532 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1533 		zil_commit(zilog, 0);
1534 
1535 	zfs_exit(zfsvfs, FTAG);
1536 	return (error);
1537 }
1538 
1539 /*
1540  * Read directory entries from the given directory cursor position and emit
1541  * name and position for each entry.
1542  *
1543  *	IN:	ip	- inode of directory to read.
1544  *		ctx	- directory entry context.
1545  *		cr	- credentials of caller.
1546  *
1547  *	RETURN:	0 if success
1548  *		error code if failure
1549  *
1550  * Timestamps:
1551  *	ip - atime updated
1552  *
1553  * Note that the low 4 bits of the cookie returned by zap is always zero.
1554  * This allows us to use the low range for "special" directory entries:
1555  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1556  * we use the offset 2 for the '.zfs' directory.
1557  */
1558 int
1559 zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
1560 {
1561 	(void) cr;
1562 	znode_t		*zp = ITOZ(ip);
1563 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
1564 	objset_t	*os;
1565 	zap_cursor_t	zc;
1566 	zap_attribute_t	*zap;
1567 	int		error;
1568 	uint8_t		prefetch;
1569 	uint8_t		type;
1570 	int		done = 0;
1571 	uint64_t	parent;
1572 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1573 
1574 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1575 		return (error);
1576 
1577 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1578 	    &parent, sizeof (parent))) != 0)
1579 		goto out;
1580 
1581 	/*
1582 	 * Quit if directory has been removed (posix)
1583 	 */
1584 	if (zp->z_unlinked)
1585 		goto out;
1586 
1587 	error = 0;
1588 	os = zfsvfs->z_os;
1589 	offset = ctx->pos;
1590 	prefetch = zp->z_zn_prefetch;
1591 	zap = zap_attribute_long_alloc();
1592 
1593 	/*
1594 	 * Initialize the iterator cursor.
1595 	 */
1596 	if (offset <= 3) {
1597 		/*
1598 		 * Start iteration from the beginning of the directory.
1599 		 */
1600 		zap_cursor_init(&zc, os, zp->z_id);
1601 	} else {
1602 		/*
1603 		 * The offset is a serialized cursor.
1604 		 */
1605 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1606 	}
1607 
1608 	/*
1609 	 * Transform to file-system independent format
1610 	 */
1611 	while (!done) {
1612 		uint64_t objnum;
1613 		/*
1614 		 * Special case `.', `..', and `.zfs'.
1615 		 */
1616 		if (offset == 0) {
1617 			(void) strcpy(zap->za_name, ".");
1618 			zap->za_normalization_conflict = 0;
1619 			objnum = zp->z_id;
1620 			type = DT_DIR;
1621 		} else if (offset == 1) {
1622 			(void) strcpy(zap->za_name, "..");
1623 			zap->za_normalization_conflict = 0;
1624 			objnum = parent;
1625 			type = DT_DIR;
1626 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1627 			(void) strcpy(zap->za_name, ZFS_CTLDIR_NAME);
1628 			zap->za_normalization_conflict = 0;
1629 			objnum = ZFSCTL_INO_ROOT;
1630 			type = DT_DIR;
1631 		} else {
1632 			/*
1633 			 * Grab next entry.
1634 			 */
1635 			if ((error = zap_cursor_retrieve(&zc, zap))) {
1636 				if (error == ENOENT)
1637 					break;
1638 				else
1639 					goto update;
1640 			}
1641 
1642 			/*
1643 			 * Allow multiple entries provided the first entry is
1644 			 * the object id.  Non-zpl consumers may safely make
1645 			 * use of the additional space.
1646 			 *
1647 			 * XXX: This should be a feature flag for compatibility
1648 			 */
1649 			if (zap->za_integer_length != 8 ||
1650 			    zap->za_num_integers == 0) {
1651 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1652 				    "entry, obj = %lld, offset = %lld, "
1653 				    "length = %d, num = %lld\n",
1654 				    (u_longlong_t)zp->z_id,
1655 				    (u_longlong_t)offset,
1656 				    zap->za_integer_length,
1657 				    (u_longlong_t)zap->za_num_integers);
1658 				error = SET_ERROR(ENXIO);
1659 				goto update;
1660 			}
1661 
1662 			objnum = ZFS_DIRENT_OBJ(zap->za_first_integer);
1663 			type = ZFS_DIRENT_TYPE(zap->za_first_integer);
1664 		}
1665 
1666 		done = !dir_emit(ctx, zap->za_name, strlen(zap->za_name),
1667 		    objnum, type);
1668 		if (done)
1669 			break;
1670 
1671 		if (prefetch)
1672 			dmu_prefetch_dnode(os, objnum, ZIO_PRIORITY_SYNC_READ);
1673 
1674 		/*
1675 		 * Move to the next entry, fill in the previous offset.
1676 		 */
1677 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1678 			zap_cursor_advance(&zc);
1679 			offset = zap_cursor_serialize(&zc);
1680 		} else {
1681 			offset += 1;
1682 		}
1683 		ctx->pos = offset;
1684 	}
1685 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1686 
1687 update:
1688 	zap_cursor_fini(&zc);
1689 	zap_attribute_free(zap);
1690 	if (error == ENOENT)
1691 		error = 0;
1692 out:
1693 	zfs_exit(zfsvfs, FTAG);
1694 
1695 	return (error);
1696 }
1697 
1698 /*
1699  * Get the basic file attributes and place them in the provided kstat
1700  * structure.  The inode is assumed to be the authoritative source
1701  * for most of the attributes.  However, the znode currently has the
1702  * authoritative atime, blksize, and block count.
1703  *
1704  *	IN:	ip	- inode of file.
1705  *
1706  *	OUT:	sp	- kstat values.
1707  *
1708  *	RETURN:	0 (always succeeds)
1709  */
1710 int
1711 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
1712 zfs_getattr_fast(zidmap_t *user_ns, u32 request_mask, struct inode *ip,
1713     struct kstat *sp)
1714 #else
1715 zfs_getattr_fast(zidmap_t *user_ns, struct inode *ip, struct kstat *sp)
1716 #endif
1717 {
1718 	znode_t *zp = ITOZ(ip);
1719 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1720 	uint32_t blksize;
1721 	u_longlong_t nblocks;
1722 	int error;
1723 
1724 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1725 		return (error);
1726 
1727 	mutex_enter(&zp->z_lock);
1728 
1729 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
1730 	zpl_generic_fillattr(user_ns, request_mask, ip, sp);
1731 #else
1732 	zpl_generic_fillattr(user_ns, ip, sp);
1733 #endif
1734 	/*
1735 	 * +1 link count for root inode with visible '.zfs' directory.
1736 	 */
1737 	if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1738 		if (sp->nlink < ZFS_LINK_MAX)
1739 			sp->nlink++;
1740 
1741 	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1742 	sp->blksize = blksize;
1743 	sp->blocks = nblocks;
1744 
1745 	if (unlikely(zp->z_blksz == 0)) {
1746 		/*
1747 		 * Block size hasn't been set; suggest maximal I/O transfers.
1748 		 */
1749 		sp->blksize = zfsvfs->z_max_blksz;
1750 	}
1751 
1752 	mutex_exit(&zp->z_lock);
1753 
1754 	/*
1755 	 * Required to prevent NFS client from detecting different inode
1756 	 * numbers of snapshot root dentry before and after snapshot mount.
1757 	 */
1758 	if (zfsvfs->z_issnap) {
1759 		if (ip->i_sb->s_root->d_inode == ip)
1760 			sp->ino = ZFSCTL_INO_SNAPDIRS -
1761 			    dmu_objset_id(zfsvfs->z_os);
1762 	}
1763 
1764 	zfs_exit(zfsvfs, FTAG);
1765 
1766 	return (0);
1767 }
1768 
1769 /*
1770  * For the operation of changing file's user/group/project, we need to
1771  * handle not only the main object that is assigned to the file directly,
1772  * but also the ones that are used by the file via hidden xattr directory.
1773  *
1774  * Because the xattr directory may contains many EA entries, as to it may
1775  * be impossible to change all of them via the transaction of changing the
1776  * main object's user/group/project attributes. Then we have to change them
1777  * via other multiple independent transactions one by one. It may be not good
1778  * solution, but we have no better idea yet.
1779  */
1780 static int
1781 zfs_setattr_dir(znode_t *dzp)
1782 {
1783 	struct inode	*dxip = ZTOI(dzp);
1784 	struct inode	*xip = NULL;
1785 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1786 	objset_t	*os = zfsvfs->z_os;
1787 	zap_cursor_t	zc;
1788 	zap_attribute_t	*zap;
1789 	zfs_dirlock_t	*dl;
1790 	znode_t		*zp = NULL;
1791 	dmu_tx_t	*tx = NULL;
1792 	uint64_t	uid, gid;
1793 	sa_bulk_attr_t	bulk[4];
1794 	int		count;
1795 	int		err;
1796 
1797 	zap = zap_attribute_alloc();
1798 	zap_cursor_init(&zc, os, dzp->z_id);
1799 	while ((err = zap_cursor_retrieve(&zc, zap)) == 0) {
1800 		count = 0;
1801 		if (zap->za_integer_length != 8 || zap->za_num_integers != 1) {
1802 			err = ENXIO;
1803 			break;
1804 		}
1805 
1806 		err = zfs_dirent_lock(&dl, dzp, (char *)zap->za_name, &zp,
1807 		    ZEXISTS, NULL, NULL);
1808 		if (err == ENOENT)
1809 			goto next;
1810 		if (err)
1811 			break;
1812 
1813 		xip = ZTOI(zp);
1814 		if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1815 		    KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1816 		    zp->z_projid == dzp->z_projid)
1817 			goto next;
1818 
1819 		tx = dmu_tx_create(os);
1820 		if (!(zp->z_pflags & ZFS_PROJID))
1821 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1822 		else
1823 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1824 
1825 		err = dmu_tx_assign(tx, TXG_WAIT);
1826 		if (err)
1827 			break;
1828 
1829 		mutex_enter(&dzp->z_lock);
1830 
1831 		if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1832 			xip->i_uid = dxip->i_uid;
1833 			uid = zfs_uid_read(dxip);
1834 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1835 			    &uid, sizeof (uid));
1836 		}
1837 
1838 		if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1839 			xip->i_gid = dxip->i_gid;
1840 			gid = zfs_gid_read(dxip);
1841 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1842 			    &gid, sizeof (gid));
1843 		}
1844 
1845 
1846 		uint64_t projid = dzp->z_projid;
1847 		if (zp->z_projid != projid) {
1848 			if (!(zp->z_pflags & ZFS_PROJID)) {
1849 				err = sa_add_projid(zp->z_sa_hdl, tx, projid);
1850 				if (unlikely(err == EEXIST)) {
1851 					err = 0;
1852 				} else if (err != 0) {
1853 					goto sa_add_projid_err;
1854 				} else {
1855 					projid = ZFS_INVALID_PROJID;
1856 				}
1857 			}
1858 
1859 			if (projid != ZFS_INVALID_PROJID) {
1860 				zp->z_projid = projid;
1861 				SA_ADD_BULK_ATTR(bulk, count,
1862 				    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
1863 				    sizeof (zp->z_projid));
1864 			}
1865 		}
1866 
1867 sa_add_projid_err:
1868 		mutex_exit(&dzp->z_lock);
1869 
1870 		if (likely(count > 0)) {
1871 			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1872 			dmu_tx_commit(tx);
1873 		} else if (projid == ZFS_INVALID_PROJID) {
1874 			dmu_tx_commit(tx);
1875 		} else {
1876 			dmu_tx_abort(tx);
1877 		}
1878 		tx = NULL;
1879 		if (err != 0 && err != ENOENT)
1880 			break;
1881 
1882 next:
1883 		if (zp) {
1884 			zrele(zp);
1885 			zp = NULL;
1886 			zfs_dirent_unlock(dl);
1887 		}
1888 		zap_cursor_advance(&zc);
1889 	}
1890 
1891 	if (tx)
1892 		dmu_tx_abort(tx);
1893 	if (zp) {
1894 		zrele(zp);
1895 		zfs_dirent_unlock(dl);
1896 	}
1897 	zap_cursor_fini(&zc);
1898 	zap_attribute_free(zap);
1899 
1900 	return (err == ENOENT ? 0 : err);
1901 }
1902 
1903 /*
1904  * Set the file attributes to the values contained in the
1905  * vattr structure.
1906  *
1907  *	IN:	zp	- znode of file to be modified.
1908  *		vap	- new attribute values.
1909  *			  If ATTR_XVATTR set, then optional attrs are being set
1910  *		flags	- ATTR_UTIME set if non-default time values provided.
1911  *			- ATTR_NOACLCHECK (CIFS context only).
1912  *		cr	- credentials of caller.
1913  *		mnt_ns	- user namespace of the mount
1914  *
1915  *	RETURN:	0 if success
1916  *		error code if failure
1917  *
1918  * Timestamps:
1919  *	ip - ctime updated, mtime updated if size changed.
1920  */
1921 int
1922 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zidmap_t *mnt_ns)
1923 {
1924 	struct inode	*ip;
1925 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1926 	objset_t	*os;
1927 	zilog_t		*zilog;
1928 	dmu_tx_t	*tx;
1929 	vattr_t		oldva;
1930 	xvattr_t	*tmpxvattr;
1931 	uint_t		mask = vap->va_mask;
1932 	uint_t		saved_mask = 0;
1933 	int		trim_mask = 0;
1934 	uint64_t	new_mode;
1935 	uint64_t	new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1936 	uint64_t	xattr_obj;
1937 	uint64_t	mtime[2], ctime[2], atime[2];
1938 	uint64_t	projid = ZFS_INVALID_PROJID;
1939 	znode_t		*attrzp;
1940 	int		need_policy = FALSE;
1941 	int		err, err2 = 0;
1942 	zfs_fuid_info_t *fuidp = NULL;
1943 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
1944 	xoptattr_t	*xoap;
1945 	zfs_acl_t	*aclp;
1946 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1947 	boolean_t	fuid_dirtied = B_FALSE;
1948 	boolean_t	handle_eadir = B_FALSE;
1949 	sa_bulk_attr_t	*bulk, *xattr_bulk;
1950 	int		count = 0, xattr_count = 0, bulks = 8;
1951 
1952 	if (mask == 0)
1953 		return (0);
1954 
1955 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1956 		return (err);
1957 	ip = ZTOI(zp);
1958 	os = zfsvfs->z_os;
1959 
1960 	/*
1961 	 * If this is a xvattr_t, then get a pointer to the structure of
1962 	 * optional attributes.  If this is NULL, then we have a vattr_t.
1963 	 */
1964 	xoap = xva_getxoptattr(xvap);
1965 	if (xoap != NULL && (mask & ATTR_XVATTR)) {
1966 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1967 			if (!dmu_objset_projectquota_enabled(os) ||
1968 			    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1969 				zfs_exit(zfsvfs, FTAG);
1970 				return (SET_ERROR(ENOTSUP));
1971 			}
1972 
1973 			projid = xoap->xoa_projid;
1974 			if (unlikely(projid == ZFS_INVALID_PROJID)) {
1975 				zfs_exit(zfsvfs, FTAG);
1976 				return (SET_ERROR(EINVAL));
1977 			}
1978 
1979 			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1980 				projid = ZFS_INVALID_PROJID;
1981 			else
1982 				need_policy = TRUE;
1983 		}
1984 
1985 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1986 		    (xoap->xoa_projinherit !=
1987 		    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1988 		    (!dmu_objset_projectquota_enabled(os) ||
1989 		    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1990 			zfs_exit(zfsvfs, FTAG);
1991 			return (SET_ERROR(ENOTSUP));
1992 		}
1993 	}
1994 
1995 	zilog = zfsvfs->z_log;
1996 
1997 	/*
1998 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
1999 	 * that file system is at proper version level
2000 	 */
2001 
2002 	if (zfsvfs->z_use_fuids == B_FALSE &&
2003 	    (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2004 	    ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2005 	    (mask & ATTR_XVATTR))) {
2006 		zfs_exit(zfsvfs, FTAG);
2007 		return (SET_ERROR(EINVAL));
2008 	}
2009 
2010 	if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2011 		zfs_exit(zfsvfs, FTAG);
2012 		return (SET_ERROR(EISDIR));
2013 	}
2014 
2015 	if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2016 		zfs_exit(zfsvfs, FTAG);
2017 		return (SET_ERROR(EINVAL));
2018 	}
2019 
2020 	tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2021 	xva_init(tmpxvattr);
2022 
2023 	bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2024 	xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2025 
2026 	/*
2027 	 * Immutable files can only alter immutable bit and atime
2028 	 */
2029 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2030 	    ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2031 	    ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2032 		err = SET_ERROR(EPERM);
2033 		goto out3;
2034 	}
2035 
2036 	if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2037 		err = SET_ERROR(EPERM);
2038 		goto out3;
2039 	}
2040 
2041 	/*
2042 	 * Verify timestamps doesn't overflow 32 bits.
2043 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2044 	 * handle times greater than 2039.  This check should be removed
2045 	 * once large timestamps are fully supported.
2046 	 */
2047 	if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2048 		if (((mask & ATTR_ATIME) &&
2049 		    TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2050 		    ((mask & ATTR_MTIME) &&
2051 		    TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2052 			err = SET_ERROR(EOVERFLOW);
2053 			goto out3;
2054 		}
2055 	}
2056 
2057 top:
2058 	attrzp = NULL;
2059 	aclp = NULL;
2060 
2061 	/* Can this be moved to before the top label? */
2062 	if (zfs_is_readonly(zfsvfs)) {
2063 		err = SET_ERROR(EROFS);
2064 		goto out3;
2065 	}
2066 
2067 	/*
2068 	 * First validate permissions
2069 	 */
2070 
2071 	if (mask & ATTR_SIZE) {
2072 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr,
2073 		    mnt_ns);
2074 		if (err)
2075 			goto out3;
2076 
2077 		/*
2078 		 * XXX - Note, we are not providing any open
2079 		 * mode flags here (like FNDELAY), so we may
2080 		 * block if there are locks present... this
2081 		 * should be addressed in openat().
2082 		 */
2083 		/* XXX - would it be OK to generate a log record here? */
2084 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2085 		if (err)
2086 			goto out3;
2087 	}
2088 
2089 	if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2090 	    ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2091 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2092 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2093 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2094 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2095 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2096 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2097 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2098 		    skipaclchk, cr, mnt_ns);
2099 	}
2100 
2101 	if (mask & (ATTR_UID|ATTR_GID)) {
2102 		int	idmask = (mask & (ATTR_UID|ATTR_GID));
2103 		int	take_owner;
2104 		int	take_group;
2105 		uid_t	uid;
2106 		gid_t	gid;
2107 
2108 		/*
2109 		 * NOTE: even if a new mode is being set,
2110 		 * we may clear S_ISUID/S_ISGID bits.
2111 		 */
2112 
2113 		if (!(mask & ATTR_MODE))
2114 			vap->va_mode = zp->z_mode;
2115 
2116 		/*
2117 		 * Take ownership or chgrp to group we are a member of
2118 		 */
2119 
2120 		uid = zfs_uid_to_vfsuid(mnt_ns, zfs_i_user_ns(ip),
2121 		    vap->va_uid);
2122 		gid = zfs_gid_to_vfsgid(mnt_ns, zfs_i_user_ns(ip),
2123 		    vap->va_gid);
2124 		take_owner = (mask & ATTR_UID) && (uid == crgetuid(cr));
2125 		take_group = (mask & ATTR_GID) &&
2126 		    zfs_groupmember(zfsvfs, gid, cr);
2127 
2128 		/*
2129 		 * If both ATTR_UID and ATTR_GID are set then take_owner and
2130 		 * take_group must both be set in order to allow taking
2131 		 * ownership.
2132 		 *
2133 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2134 		 *
2135 		 */
2136 
2137 		if (((idmask == (ATTR_UID|ATTR_GID)) &&
2138 		    take_owner && take_group) ||
2139 		    ((idmask == ATTR_UID) && take_owner) ||
2140 		    ((idmask == ATTR_GID) && take_group)) {
2141 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2142 			    skipaclchk, cr, mnt_ns) == 0) {
2143 				/*
2144 				 * Remove setuid/setgid for non-privileged users
2145 				 */
2146 				(void) secpolicy_setid_clear(vap, cr);
2147 				trim_mask = (mask & (ATTR_UID|ATTR_GID));
2148 			} else {
2149 				need_policy =  TRUE;
2150 			}
2151 		} else {
2152 			need_policy =  TRUE;
2153 		}
2154 	}
2155 
2156 	mutex_enter(&zp->z_lock);
2157 	oldva.va_mode = zp->z_mode;
2158 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2159 	if (mask & ATTR_XVATTR) {
2160 		/*
2161 		 * Update xvattr mask to include only those attributes
2162 		 * that are actually changing.
2163 		 *
2164 		 * the bits will be restored prior to actually setting
2165 		 * the attributes so the caller thinks they were set.
2166 		 */
2167 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2168 			if (xoap->xoa_appendonly !=
2169 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2170 				need_policy = TRUE;
2171 			} else {
2172 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2173 				XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2174 			}
2175 		}
2176 
2177 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2178 			if (xoap->xoa_projinherit !=
2179 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2180 				need_policy = TRUE;
2181 			} else {
2182 				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2183 				XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2184 			}
2185 		}
2186 
2187 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2188 			if (xoap->xoa_nounlink !=
2189 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2190 				need_policy = TRUE;
2191 			} else {
2192 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2193 				XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2194 			}
2195 		}
2196 
2197 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2198 			if (xoap->xoa_immutable !=
2199 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2200 				need_policy = TRUE;
2201 			} else {
2202 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2203 				XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2204 			}
2205 		}
2206 
2207 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2208 			if (xoap->xoa_nodump !=
2209 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2210 				need_policy = TRUE;
2211 			} else {
2212 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2213 				XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2214 			}
2215 		}
2216 
2217 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2218 			if (xoap->xoa_av_modified !=
2219 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2220 				need_policy = TRUE;
2221 			} else {
2222 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2223 				XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2224 			}
2225 		}
2226 
2227 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2228 			if ((!S_ISREG(ip->i_mode) &&
2229 			    xoap->xoa_av_quarantined) ||
2230 			    xoap->xoa_av_quarantined !=
2231 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2232 				need_policy = TRUE;
2233 			} else {
2234 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2235 				XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2236 			}
2237 		}
2238 
2239 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2240 			mutex_exit(&zp->z_lock);
2241 			err = SET_ERROR(EPERM);
2242 			goto out3;
2243 		}
2244 
2245 		if (need_policy == FALSE &&
2246 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2247 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2248 			need_policy = TRUE;
2249 		}
2250 	}
2251 
2252 	mutex_exit(&zp->z_lock);
2253 
2254 	if (mask & ATTR_MODE) {
2255 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr,
2256 		    mnt_ns) == 0) {
2257 			err = secpolicy_setid_setsticky_clear(ip, vap,
2258 			    &oldva, cr, mnt_ns, zfs_i_user_ns(ip));
2259 			if (err)
2260 				goto out3;
2261 			trim_mask |= ATTR_MODE;
2262 		} else {
2263 			need_policy = TRUE;
2264 		}
2265 	}
2266 
2267 	if (need_policy) {
2268 		/*
2269 		 * If trim_mask is set then take ownership
2270 		 * has been granted or write_acl is present and user
2271 		 * has the ability to modify mode.  In that case remove
2272 		 * UID|GID and or MODE from mask so that
2273 		 * secpolicy_vnode_setattr() doesn't revoke it.
2274 		 */
2275 
2276 		if (trim_mask) {
2277 			saved_mask = vap->va_mask;
2278 			vap->va_mask &= ~trim_mask;
2279 		}
2280 		err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2281 		    zfs_zaccess_unix, zp);
2282 		if (err)
2283 			goto out3;
2284 
2285 		if (trim_mask)
2286 			vap->va_mask |= saved_mask;
2287 	}
2288 
2289 	/*
2290 	 * secpolicy_vnode_setattr, or take ownership may have
2291 	 * changed va_mask
2292 	 */
2293 	mask = vap->va_mask;
2294 
2295 	if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2296 		handle_eadir = B_TRUE;
2297 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2298 		    &xattr_obj, sizeof (xattr_obj));
2299 
2300 		if (err == 0 && xattr_obj) {
2301 			err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2302 			if (err)
2303 				goto out2;
2304 		}
2305 		if (mask & ATTR_UID) {
2306 			new_kuid = zfs_fuid_create(zfsvfs,
2307 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2308 			if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2309 			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2310 			    new_kuid)) {
2311 				if (attrzp)
2312 					zrele(attrzp);
2313 				err = SET_ERROR(EDQUOT);
2314 				goto out2;
2315 			}
2316 		}
2317 
2318 		if (mask & ATTR_GID) {
2319 			new_kgid = zfs_fuid_create(zfsvfs,
2320 			    (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2321 			if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2322 			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2323 			    new_kgid)) {
2324 				if (attrzp)
2325 					zrele(attrzp);
2326 				err = SET_ERROR(EDQUOT);
2327 				goto out2;
2328 			}
2329 		}
2330 
2331 		if (projid != ZFS_INVALID_PROJID &&
2332 		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2333 			if (attrzp)
2334 				zrele(attrzp);
2335 			err = EDQUOT;
2336 			goto out2;
2337 		}
2338 	}
2339 	tx = dmu_tx_create(os);
2340 
2341 	if (mask & ATTR_MODE) {
2342 		uint64_t pmode = zp->z_mode;
2343 		uint64_t acl_obj;
2344 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2345 
2346 		if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2347 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2348 			err = EPERM;
2349 			goto out;
2350 		}
2351 
2352 		if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2353 			goto out;
2354 
2355 		mutex_enter(&zp->z_lock);
2356 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2357 			/*
2358 			 * Are we upgrading ACL from old V0 format
2359 			 * to V1 format?
2360 			 */
2361 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2362 			    zfs_znode_acl_version(zp) ==
2363 			    ZFS_ACL_VERSION_INITIAL) {
2364 				dmu_tx_hold_free(tx, acl_obj, 0,
2365 				    DMU_OBJECT_END);
2366 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2367 				    0, aclp->z_acl_bytes);
2368 			} else {
2369 				dmu_tx_hold_write(tx, acl_obj, 0,
2370 				    aclp->z_acl_bytes);
2371 			}
2372 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2373 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2374 			    0, aclp->z_acl_bytes);
2375 		}
2376 		mutex_exit(&zp->z_lock);
2377 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2378 	} else {
2379 		if (((mask & ATTR_XVATTR) &&
2380 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2381 		    (projid != ZFS_INVALID_PROJID &&
2382 		    !(zp->z_pflags & ZFS_PROJID)))
2383 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2384 		else
2385 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2386 	}
2387 
2388 	if (attrzp) {
2389 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2390 	}
2391 
2392 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2393 	if (fuid_dirtied)
2394 		zfs_fuid_txhold(zfsvfs, tx);
2395 
2396 	zfs_sa_upgrade_txholds(tx, zp);
2397 
2398 	err = dmu_tx_assign(tx, TXG_WAIT);
2399 	if (err)
2400 		goto out;
2401 
2402 	count = 0;
2403 	/*
2404 	 * Set each attribute requested.
2405 	 * We group settings according to the locks they need to acquire.
2406 	 *
2407 	 * Note: you cannot set ctime directly, although it will be
2408 	 * updated as a side-effect of calling this function.
2409 	 */
2410 
2411 	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2412 		/*
2413 		 * For the existed object that is upgraded from old system,
2414 		 * its on-disk layout has no slot for the project ID attribute.
2415 		 * But quota accounting logic needs to access related slots by
2416 		 * offset directly. So we need to adjust old objects' layout
2417 		 * to make the project ID to some unified and fixed offset.
2418 		 */
2419 		if (attrzp)
2420 			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2421 		if (err == 0)
2422 			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2423 
2424 		if (unlikely(err == EEXIST))
2425 			err = 0;
2426 		else if (err != 0)
2427 			goto out;
2428 		else
2429 			projid = ZFS_INVALID_PROJID;
2430 	}
2431 
2432 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2433 		mutex_enter(&zp->z_acl_lock);
2434 	mutex_enter(&zp->z_lock);
2435 
2436 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2437 	    &zp->z_pflags, sizeof (zp->z_pflags));
2438 
2439 	if (attrzp) {
2440 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2441 			mutex_enter(&attrzp->z_acl_lock);
2442 		mutex_enter(&attrzp->z_lock);
2443 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2444 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2445 		    sizeof (attrzp->z_pflags));
2446 		if (projid != ZFS_INVALID_PROJID) {
2447 			attrzp->z_projid = projid;
2448 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2449 			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2450 			    sizeof (attrzp->z_projid));
2451 		}
2452 	}
2453 
2454 	if (mask & (ATTR_UID|ATTR_GID)) {
2455 
2456 		if (mask & ATTR_UID) {
2457 			ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2458 			new_uid = zfs_uid_read(ZTOI(zp));
2459 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2460 			    &new_uid, sizeof (new_uid));
2461 			if (attrzp) {
2462 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2463 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2464 				    sizeof (new_uid));
2465 				ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2466 			}
2467 		}
2468 
2469 		if (mask & ATTR_GID) {
2470 			ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2471 			new_gid = zfs_gid_read(ZTOI(zp));
2472 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2473 			    NULL, &new_gid, sizeof (new_gid));
2474 			if (attrzp) {
2475 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2476 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2477 				    sizeof (new_gid));
2478 				ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2479 			}
2480 		}
2481 		if (!(mask & ATTR_MODE)) {
2482 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2483 			    NULL, &new_mode, sizeof (new_mode));
2484 			new_mode = zp->z_mode;
2485 		}
2486 		err = zfs_acl_chown_setattr(zp);
2487 		ASSERT(err == 0);
2488 		if (attrzp) {
2489 			err = zfs_acl_chown_setattr(attrzp);
2490 			ASSERT(err == 0);
2491 		}
2492 	}
2493 
2494 	if (mask & ATTR_MODE) {
2495 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2496 		    &new_mode, sizeof (new_mode));
2497 		zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2498 		ASSERT3P(aclp, !=, NULL);
2499 		err = zfs_aclset_common(zp, aclp, cr, tx);
2500 		ASSERT0(err);
2501 		if (zp->z_acl_cached)
2502 			zfs_acl_free(zp->z_acl_cached);
2503 		zp->z_acl_cached = aclp;
2504 		aclp = NULL;
2505 	}
2506 
2507 	if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2508 		zp->z_atime_dirty = B_FALSE;
2509 		inode_timespec_t tmp_atime = zpl_inode_get_atime(ip);
2510 		ZFS_TIME_ENCODE(&tmp_atime, atime);
2511 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2512 		    &atime, sizeof (atime));
2513 	}
2514 
2515 	if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2516 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2517 		zpl_inode_set_mtime_to_ts(ZTOI(zp),
2518 		    zpl_inode_timestamp_truncate(vap->va_mtime, ZTOI(zp)));
2519 
2520 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2521 		    mtime, sizeof (mtime));
2522 	}
2523 
2524 	if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2525 		ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2526 		zpl_inode_set_ctime_to_ts(ZTOI(zp),
2527 		    zpl_inode_timestamp_truncate(vap->va_ctime, ZTOI(zp)));
2528 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2529 		    ctime, sizeof (ctime));
2530 	}
2531 
2532 	if (projid != ZFS_INVALID_PROJID) {
2533 		zp->z_projid = projid;
2534 		SA_ADD_BULK_ATTR(bulk, count,
2535 		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2536 		    sizeof (zp->z_projid));
2537 	}
2538 
2539 	if (attrzp && mask) {
2540 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2541 		    SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2542 		    sizeof (ctime));
2543 	}
2544 
2545 	/*
2546 	 * Do this after setting timestamps to prevent timestamp
2547 	 * update from toggling bit
2548 	 */
2549 
2550 	if (xoap && (mask & ATTR_XVATTR)) {
2551 
2552 		/*
2553 		 * restore trimmed off masks
2554 		 * so that return masks can be set for caller.
2555 		 */
2556 
2557 		if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2558 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2559 		}
2560 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2561 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2562 		}
2563 		if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2564 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2565 		}
2566 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2567 			XVA_SET_REQ(xvap, XAT_NODUMP);
2568 		}
2569 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2570 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2571 		}
2572 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2573 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2574 		}
2575 		if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2576 			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2577 		}
2578 
2579 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2580 			ASSERT(S_ISREG(ip->i_mode));
2581 
2582 		zfs_xvattr_set(zp, xvap, tx);
2583 	}
2584 
2585 	if (fuid_dirtied)
2586 		zfs_fuid_sync(zfsvfs, tx);
2587 
2588 	if (mask != 0)
2589 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2590 
2591 	mutex_exit(&zp->z_lock);
2592 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2593 		mutex_exit(&zp->z_acl_lock);
2594 
2595 	if (attrzp) {
2596 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2597 			mutex_exit(&attrzp->z_acl_lock);
2598 		mutex_exit(&attrzp->z_lock);
2599 	}
2600 out:
2601 	if (err == 0 && xattr_count > 0) {
2602 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2603 		    xattr_count, tx);
2604 		ASSERT(err2 == 0);
2605 	}
2606 
2607 	if (aclp)
2608 		zfs_acl_free(aclp);
2609 
2610 	if (fuidp) {
2611 		zfs_fuid_info_free(fuidp);
2612 		fuidp = NULL;
2613 	}
2614 
2615 	if (err) {
2616 		dmu_tx_abort(tx);
2617 		if (attrzp)
2618 			zrele(attrzp);
2619 		if (err == ERESTART)
2620 			goto top;
2621 	} else {
2622 		if (count > 0)
2623 			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2624 		dmu_tx_commit(tx);
2625 		if (attrzp) {
2626 			if (err2 == 0 && handle_eadir)
2627 				err = zfs_setattr_dir(attrzp);
2628 			zrele(attrzp);
2629 		}
2630 		zfs_znode_update_vfs(zp);
2631 	}
2632 
2633 out2:
2634 	if (os->os_sync == ZFS_SYNC_ALWAYS)
2635 		zil_commit(zilog, 0);
2636 
2637 out3:
2638 	kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2639 	kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2640 	kmem_free(tmpxvattr, sizeof (xvattr_t));
2641 	zfs_exit(zfsvfs, FTAG);
2642 	return (err);
2643 }
2644 
2645 typedef struct zfs_zlock {
2646 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2647 	znode_t		*zl_znode;	/* znode we held */
2648 	struct zfs_zlock *zl_next;	/* next in list */
2649 } zfs_zlock_t;
2650 
2651 /*
2652  * Drop locks and release vnodes that were held by zfs_rename_lock().
2653  */
2654 static void
2655 zfs_rename_unlock(zfs_zlock_t **zlpp)
2656 {
2657 	zfs_zlock_t *zl;
2658 
2659 	while ((zl = *zlpp) != NULL) {
2660 		if (zl->zl_znode != NULL)
2661 			zfs_zrele_async(zl->zl_znode);
2662 		rw_exit(zl->zl_rwlock);
2663 		*zlpp = zl->zl_next;
2664 		kmem_free(zl, sizeof (*zl));
2665 	}
2666 }
2667 
2668 /*
2669  * Search back through the directory tree, using the ".." entries.
2670  * Lock each directory in the chain to prevent concurrent renames.
2671  * Fail any attempt to move a directory into one of its own descendants.
2672  * XXX - z_parent_lock can overlap with map or grow locks
2673  */
2674 static int
2675 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2676 {
2677 	zfs_zlock_t	*zl;
2678 	znode_t		*zp = tdzp;
2679 	uint64_t	rootid = ZTOZSB(zp)->z_root;
2680 	uint64_t	oidp = zp->z_id;
2681 	krwlock_t	*rwlp = &szp->z_parent_lock;
2682 	krw_t		rw = RW_WRITER;
2683 
2684 	/*
2685 	 * First pass write-locks szp and compares to zp->z_id.
2686 	 * Later passes read-lock zp and compare to zp->z_parent.
2687 	 */
2688 	do {
2689 		if (!rw_tryenter(rwlp, rw)) {
2690 			/*
2691 			 * Another thread is renaming in this path.
2692 			 * Note that if we are a WRITER, we don't have any
2693 			 * parent_locks held yet.
2694 			 */
2695 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2696 				/*
2697 				 * Drop our locks and restart
2698 				 */
2699 				zfs_rename_unlock(&zl);
2700 				*zlpp = NULL;
2701 				zp = tdzp;
2702 				oidp = zp->z_id;
2703 				rwlp = &szp->z_parent_lock;
2704 				rw = RW_WRITER;
2705 				continue;
2706 			} else {
2707 				/*
2708 				 * Wait for other thread to drop its locks
2709 				 */
2710 				rw_enter(rwlp, rw);
2711 			}
2712 		}
2713 
2714 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2715 		zl->zl_rwlock = rwlp;
2716 		zl->zl_znode = NULL;
2717 		zl->zl_next = *zlpp;
2718 		*zlpp = zl;
2719 
2720 		if (oidp == szp->z_id)		/* We're a descendant of szp */
2721 			return (SET_ERROR(EINVAL));
2722 
2723 		if (oidp == rootid)		/* We've hit the top */
2724 			return (0);
2725 
2726 		if (rw == RW_READER) {		/* i.e. not the first pass */
2727 			int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2728 			if (error)
2729 				return (error);
2730 			zl->zl_znode = zp;
2731 		}
2732 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2733 		    &oidp, sizeof (oidp));
2734 		rwlp = &zp->z_parent_lock;
2735 		rw = RW_READER;
2736 
2737 	} while (zp->z_id != sdzp->z_id);
2738 
2739 	return (0);
2740 }
2741 
2742 /*
2743  * Move an entry from the provided source directory to the target
2744  * directory.  Change the entry name as indicated.
2745  *
2746  *	IN:	sdzp	- Source directory containing the "old entry".
2747  *		snm	- Old entry name.
2748  *		tdzp	- Target directory to contain the "new entry".
2749  *		tnm	- New entry name.
2750  *		cr	- credentials of caller.
2751  *		flags	- case flags
2752  *		rflags  - RENAME_* flags
2753  *		wa_vap  - attributes for RENAME_WHITEOUT (must be a char 0:0).
2754  *		mnt_ns	- user namespace of the mount
2755  *
2756  *	RETURN:	0 on success, error code on failure.
2757  *
2758  * Timestamps:
2759  *	sdzp,tdzp - ctime|mtime updated
2760  */
2761 int
2762 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2763     cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zidmap_t *mnt_ns)
2764 {
2765 	znode_t		*szp, *tzp;
2766 	zfsvfs_t	*zfsvfs = ZTOZSB(sdzp);
2767 	zilog_t		*zilog;
2768 	zfs_dirlock_t	*sdl, *tdl;
2769 	dmu_tx_t	*tx;
2770 	zfs_zlock_t	*zl;
2771 	int		cmp, serr, terr;
2772 	int		error = 0;
2773 	int		zflg = 0;
2774 	boolean_t	waited = B_FALSE;
2775 	/* Needed for whiteout inode creation. */
2776 	boolean_t	fuid_dirtied;
2777 	zfs_acl_ids_t	acl_ids;
2778 	boolean_t	have_acl = B_FALSE;
2779 	znode_t		*wzp = NULL;
2780 
2781 
2782 	if (snm == NULL || tnm == NULL)
2783 		return (SET_ERROR(EINVAL));
2784 
2785 	if (rflags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2786 		return (SET_ERROR(EINVAL));
2787 
2788 	/* Already checked by Linux VFS, but just to make sure. */
2789 	if (rflags & RENAME_EXCHANGE &&
2790 	    (rflags & (RENAME_NOREPLACE | RENAME_WHITEOUT)))
2791 		return (SET_ERROR(EINVAL));
2792 
2793 	/*
2794 	 * Make sure we only get wo_vap iff. RENAME_WHITEOUT and that it's the
2795 	 * right kind of vattr_t for the whiteout file. These are set
2796 	 * internally by ZFS so should never be incorrect.
2797 	 */
2798 	VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL);
2799 	VERIFY_IMPLY(wo_vap, wo_vap->va_mode == S_IFCHR);
2800 	VERIFY_IMPLY(wo_vap, wo_vap->va_rdev == makedevice(0, 0));
2801 
2802 	if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
2803 		return (error);
2804 	zilog = zfsvfs->z_log;
2805 
2806 	if ((error = zfs_verify_zp(tdzp)) != 0) {
2807 		zfs_exit(zfsvfs, FTAG);
2808 		return (error);
2809 	}
2810 
2811 	/*
2812 	 * We check i_sb because snapshots and the ctldir must have different
2813 	 * super blocks.
2814 	 */
2815 	if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2816 	    zfsctl_is_node(ZTOI(tdzp))) {
2817 		zfs_exit(zfsvfs, FTAG);
2818 		return (SET_ERROR(EXDEV));
2819 	}
2820 
2821 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2822 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2823 		zfs_exit(zfsvfs, FTAG);
2824 		return (SET_ERROR(EILSEQ));
2825 	}
2826 
2827 	if (flags & FIGNORECASE)
2828 		zflg |= ZCILOOK;
2829 
2830 top:
2831 	szp = NULL;
2832 	tzp = NULL;
2833 	zl = NULL;
2834 
2835 	/*
2836 	 * This is to prevent the creation of links into attribute space
2837 	 * by renaming a linked file into/outof an attribute directory.
2838 	 * See the comment in zfs_link() for why this is considered bad.
2839 	 */
2840 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2841 		zfs_exit(zfsvfs, FTAG);
2842 		return (SET_ERROR(EINVAL));
2843 	}
2844 
2845 	/*
2846 	 * Lock source and target directory entries.  To prevent deadlock,
2847 	 * a lock ordering must be defined.  We lock the directory with
2848 	 * the smallest object id first, or if it's a tie, the one with
2849 	 * the lexically first name.
2850 	 */
2851 	if (sdzp->z_id < tdzp->z_id) {
2852 		cmp = -1;
2853 	} else if (sdzp->z_id > tdzp->z_id) {
2854 		cmp = 1;
2855 	} else {
2856 		/*
2857 		 * First compare the two name arguments without
2858 		 * considering any case folding.
2859 		 */
2860 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2861 
2862 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2863 		ASSERT(error == 0 || !zfsvfs->z_utf8);
2864 		if (cmp == 0) {
2865 			/*
2866 			 * POSIX: "If the old argument and the new argument
2867 			 * both refer to links to the same existing file,
2868 			 * the rename() function shall return successfully
2869 			 * and perform no other action."
2870 			 */
2871 			zfs_exit(zfsvfs, FTAG);
2872 			return (0);
2873 		}
2874 		/*
2875 		 * If the file system is case-folding, then we may
2876 		 * have some more checking to do.  A case-folding file
2877 		 * system is either supporting mixed case sensitivity
2878 		 * access or is completely case-insensitive.  Note
2879 		 * that the file system is always case preserving.
2880 		 *
2881 		 * In mixed sensitivity mode case sensitive behavior
2882 		 * is the default.  FIGNORECASE must be used to
2883 		 * explicitly request case insensitive behavior.
2884 		 *
2885 		 * If the source and target names provided differ only
2886 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
2887 		 * we will treat this as a special case in the
2888 		 * case-insensitive mode: as long as the source name
2889 		 * is an exact match, we will allow this to proceed as
2890 		 * a name-change request.
2891 		 */
2892 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2893 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
2894 		    flags & FIGNORECASE)) &&
2895 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2896 		    &error) == 0) {
2897 			/*
2898 			 * case preserving rename request, require exact
2899 			 * name matches
2900 			 */
2901 			zflg |= ZCIEXACT;
2902 			zflg &= ~ZCILOOK;
2903 		}
2904 	}
2905 
2906 	/*
2907 	 * If the source and destination directories are the same, we should
2908 	 * grab the z_name_lock of that directory only once.
2909 	 */
2910 	if (sdzp == tdzp) {
2911 		zflg |= ZHAVELOCK;
2912 		rw_enter(&sdzp->z_name_lock, RW_READER);
2913 	}
2914 
2915 	if (cmp < 0) {
2916 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2917 		    ZEXISTS | zflg, NULL, NULL);
2918 		terr = zfs_dirent_lock(&tdl,
2919 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2920 	} else {
2921 		terr = zfs_dirent_lock(&tdl,
2922 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
2923 		serr = zfs_dirent_lock(&sdl,
2924 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2925 		    NULL, NULL);
2926 	}
2927 
2928 	if (serr) {
2929 		/*
2930 		 * Source entry invalid or not there.
2931 		 */
2932 		if (!terr) {
2933 			zfs_dirent_unlock(tdl);
2934 			if (tzp)
2935 				zrele(tzp);
2936 		}
2937 
2938 		if (sdzp == tdzp)
2939 			rw_exit(&sdzp->z_name_lock);
2940 
2941 		if (strcmp(snm, "..") == 0)
2942 			serr = EINVAL;
2943 		zfs_exit(zfsvfs, FTAG);
2944 		return (serr);
2945 	}
2946 	if (terr) {
2947 		zfs_dirent_unlock(sdl);
2948 		zrele(szp);
2949 
2950 		if (sdzp == tdzp)
2951 			rw_exit(&sdzp->z_name_lock);
2952 
2953 		if (strcmp(tnm, "..") == 0)
2954 			terr = EINVAL;
2955 		zfs_exit(zfsvfs, FTAG);
2956 		return (terr);
2957 	}
2958 
2959 	/*
2960 	 * If we are using project inheritance, means if the directory has
2961 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2962 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2963 	 * such case, we only allow renames into our tree when the project
2964 	 * IDs are the same.
2965 	 */
2966 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2967 	    tdzp->z_projid != szp->z_projid) {
2968 		error = SET_ERROR(EXDEV);
2969 		goto out;
2970 	}
2971 
2972 	/*
2973 	 * Must have write access at the source to remove the old entry
2974 	 * and write access at the target to create the new entry.
2975 	 * Note that if target and source are the same, this can be
2976 	 * done in a single check.
2977 	 */
2978 	if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, mnt_ns)))
2979 		goto out;
2980 
2981 	if (S_ISDIR(ZTOI(szp)->i_mode)) {
2982 		/*
2983 		 * Check to make sure rename is valid.
2984 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2985 		 */
2986 		if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2987 			goto out;
2988 	}
2989 
2990 	/*
2991 	 * Does target exist?
2992 	 */
2993 	if (tzp) {
2994 		if (rflags & RENAME_NOREPLACE) {
2995 			error = SET_ERROR(EEXIST);
2996 			goto out;
2997 		}
2998 		/*
2999 		 * Source and target must be the same type (unless exchanging).
3000 		 */
3001 		if (!(rflags & RENAME_EXCHANGE)) {
3002 			boolean_t s_is_dir = S_ISDIR(ZTOI(szp)->i_mode) != 0;
3003 			boolean_t t_is_dir = S_ISDIR(ZTOI(tzp)->i_mode) != 0;
3004 
3005 			if (s_is_dir != t_is_dir) {
3006 				error = SET_ERROR(s_is_dir ? ENOTDIR : EISDIR);
3007 				goto out;
3008 			}
3009 		}
3010 		/*
3011 		 * POSIX dictates that when the source and target
3012 		 * entries refer to the same file object, rename
3013 		 * must do nothing and exit without error.
3014 		 */
3015 		if (szp->z_id == tzp->z_id) {
3016 			error = 0;
3017 			goto out;
3018 		}
3019 	} else if (rflags & RENAME_EXCHANGE) {
3020 		/* Target must exist for RENAME_EXCHANGE. */
3021 		error = SET_ERROR(ENOENT);
3022 		goto out;
3023 	}
3024 
3025 	/* Set up inode creation for RENAME_WHITEOUT. */
3026 	if (rflags & RENAME_WHITEOUT) {
3027 		/*
3028 		 * Whiteout files are not regular files or directories, so to
3029 		 * match zfs_create() we do not inherit the project id.
3030 		 */
3031 		uint64_t wo_projid = ZFS_DEFAULT_PROJID;
3032 
3033 		error = zfs_zaccess(sdzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns);
3034 		if (error)
3035 			goto out;
3036 
3037 		if (!have_acl) {
3038 			error = zfs_acl_ids_create(sdzp, 0, wo_vap, cr, NULL,
3039 			    &acl_ids, mnt_ns);
3040 			if (error)
3041 				goto out;
3042 			have_acl = B_TRUE;
3043 		}
3044 
3045 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, wo_projid)) {
3046 			error = SET_ERROR(EDQUOT);
3047 			goto out;
3048 		}
3049 	}
3050 
3051 	tx = dmu_tx_create(zfsvfs->z_os);
3052 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3053 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3054 	dmu_tx_hold_zap(tx, sdzp->z_id,
3055 	    (rflags & RENAME_EXCHANGE) ? TRUE : FALSE, snm);
3056 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3057 	if (sdzp != tdzp) {
3058 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3059 		zfs_sa_upgrade_txholds(tx, tdzp);
3060 	}
3061 	if (tzp) {
3062 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3063 		zfs_sa_upgrade_txholds(tx, tzp);
3064 	}
3065 	if (rflags & RENAME_WHITEOUT) {
3066 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3067 		    ZFS_SA_BASE_ATTR_SIZE);
3068 
3069 		dmu_tx_hold_zap(tx, sdzp->z_id, TRUE, snm);
3070 		dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3071 		if (!zfsvfs->z_use_sa &&
3072 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3073 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3074 			    0, acl_ids.z_aclp->z_acl_bytes);
3075 		}
3076 	}
3077 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3078 	if (fuid_dirtied)
3079 		zfs_fuid_txhold(zfsvfs, tx);
3080 	zfs_sa_upgrade_txholds(tx, szp);
3081 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3082 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3083 	if (error) {
3084 		if (zl != NULL)
3085 			zfs_rename_unlock(&zl);
3086 		zfs_dirent_unlock(sdl);
3087 		zfs_dirent_unlock(tdl);
3088 
3089 		if (sdzp == tdzp)
3090 			rw_exit(&sdzp->z_name_lock);
3091 
3092 		if (error == ERESTART) {
3093 			waited = B_TRUE;
3094 			dmu_tx_wait(tx);
3095 			dmu_tx_abort(tx);
3096 			zrele(szp);
3097 			if (tzp)
3098 				zrele(tzp);
3099 			goto top;
3100 		}
3101 		dmu_tx_abort(tx);
3102 		zrele(szp);
3103 		if (tzp)
3104 			zrele(tzp);
3105 		zfs_exit(zfsvfs, FTAG);
3106 		return (error);
3107 	}
3108 
3109 	/*
3110 	 * Unlink the source.
3111 	 */
3112 	szp->z_pflags |= ZFS_AV_MODIFIED;
3113 	if (tdzp->z_pflags & ZFS_PROJINHERIT)
3114 		szp->z_pflags |= ZFS_PROJINHERIT;
3115 
3116 	error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3117 	    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3118 	VERIFY0(error);
3119 
3120 	error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3121 	if (error)
3122 		goto commit;
3123 
3124 	/*
3125 	 * Unlink the target.
3126 	 */
3127 	if (tzp) {
3128 		int tzflg = zflg;
3129 
3130 		if (rflags & RENAME_EXCHANGE) {
3131 			/* This inode will be re-linked soon. */
3132 			tzflg |= ZRENAMING;
3133 
3134 			tzp->z_pflags |= ZFS_AV_MODIFIED;
3135 			if (sdzp->z_pflags & ZFS_PROJINHERIT)
3136 				tzp->z_pflags |= ZFS_PROJINHERIT;
3137 
3138 			error = sa_update(tzp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3139 			    (void *)&tzp->z_pflags, sizeof (uint64_t), tx);
3140 			ASSERT0(error);
3141 		}
3142 		error = zfs_link_destroy(tdl, tzp, tx, tzflg, NULL);
3143 		if (error)
3144 			goto commit_link_szp;
3145 	}
3146 
3147 	/*
3148 	 * Create the new target links:
3149 	 *   * We always link the target.
3150 	 *   * RENAME_EXCHANGE: Link the old target to the source.
3151 	 *   * RENAME_WHITEOUT: Create a whiteout inode in-place of the source.
3152 	 */
3153 	error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3154 	if (error) {
3155 		/*
3156 		 * If we have removed the existing target, a subsequent call to
3157 		 * zfs_link_create() to add back the same entry, but with a new
3158 		 * dnode (szp), should not fail.
3159 		 */
3160 		ASSERT3P(tzp, ==, NULL);
3161 		goto commit_link_tzp;
3162 	}
3163 
3164 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3165 	case RENAME_EXCHANGE:
3166 		error = zfs_link_create(sdl, tzp, tx, ZRENAMING);
3167 		/*
3168 		 * The same argument as zfs_link_create() failing for
3169 		 * szp applies here, since the source directory must
3170 		 * have had an entry we are replacing.
3171 		 */
3172 		ASSERT0(error);
3173 		if (error)
3174 			goto commit_unlink_td_szp;
3175 		break;
3176 	case RENAME_WHITEOUT:
3177 		zfs_mknode(sdzp, wo_vap, tx, cr, 0, &wzp, &acl_ids);
3178 		error = zfs_link_create(sdl, wzp, tx, ZNEW);
3179 		if (error) {
3180 			zfs_znode_delete(wzp, tx);
3181 			remove_inode_hash(ZTOI(wzp));
3182 			goto commit_unlink_td_szp;
3183 		}
3184 		break;
3185 	}
3186 
3187 	if (fuid_dirtied)
3188 		zfs_fuid_sync(zfsvfs, tx);
3189 
3190 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3191 	case RENAME_EXCHANGE:
3192 		zfs_log_rename_exchange(zilog, tx,
3193 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3194 		    tdzp, tdl->dl_name, szp);
3195 		break;
3196 	case RENAME_WHITEOUT:
3197 		zfs_log_rename_whiteout(zilog, tx,
3198 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3199 		    tdzp, tdl->dl_name, szp, wzp);
3200 		break;
3201 	default:
3202 		ASSERT0(rflags & ~RENAME_NOREPLACE);
3203 		zfs_log_rename(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0),
3204 		    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3205 		break;
3206 	}
3207 
3208 commit:
3209 	dmu_tx_commit(tx);
3210 out:
3211 	if (have_acl)
3212 		zfs_acl_ids_free(&acl_ids);
3213 
3214 	zfs_znode_update_vfs(sdzp);
3215 	if (sdzp == tdzp)
3216 		rw_exit(&sdzp->z_name_lock);
3217 
3218 	if (sdzp != tdzp)
3219 		zfs_znode_update_vfs(tdzp);
3220 
3221 	zfs_znode_update_vfs(szp);
3222 	zrele(szp);
3223 	if (wzp) {
3224 		zfs_znode_update_vfs(wzp);
3225 		zrele(wzp);
3226 	}
3227 	if (tzp) {
3228 		zfs_znode_update_vfs(tzp);
3229 		zrele(tzp);
3230 	}
3231 
3232 	if (zl != NULL)
3233 		zfs_rename_unlock(&zl);
3234 
3235 	zfs_dirent_unlock(sdl);
3236 	zfs_dirent_unlock(tdl);
3237 
3238 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3239 		zil_commit(zilog, 0);
3240 
3241 	zfs_exit(zfsvfs, FTAG);
3242 	return (error);
3243 
3244 	/*
3245 	 * Clean-up path for broken link state.
3246 	 *
3247 	 * At this point we are in a (very) bad state, so we need to do our
3248 	 * best to correct the state. In particular, all of the nlinks are
3249 	 * wrong because we were destroying and creating links with ZRENAMING.
3250 	 *
3251 	 * In some form, all of these operations have to resolve the state:
3252 	 *
3253 	 *  * link_destroy() *must* succeed. Fortunately, this is very likely
3254 	 *    since we only just created it.
3255 	 *
3256 	 *  * link_create()s are allowed to fail (though they shouldn't because
3257 	 *    we only just unlinked them and are putting the entries back
3258 	 *    during clean-up). But if they fail, we can just forcefully drop
3259 	 *    the nlink value to (at the very least) avoid broken nlink values
3260 	 *    -- though in the case of non-empty directories we will have to
3261 	 *    panic (otherwise we'd have a leaked directory with a broken ..).
3262 	 */
3263 commit_unlink_td_szp:
3264 	VERIFY0(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL));
3265 commit_link_tzp:
3266 	if (tzp) {
3267 		if (zfs_link_create(tdl, tzp, tx, ZRENAMING))
3268 			VERIFY0(zfs_drop_nlink(tzp, tx, NULL));
3269 	}
3270 commit_link_szp:
3271 	if (zfs_link_create(sdl, szp, tx, ZRENAMING))
3272 		VERIFY0(zfs_drop_nlink(szp, tx, NULL));
3273 	goto commit;
3274 }
3275 
3276 /*
3277  * Insert the indicated symbolic reference entry into the directory.
3278  *
3279  *	IN:	dzp	- Directory to contain new symbolic link.
3280  *		name	- Name of directory entry in dip.
3281  *		vap	- Attributes of new entry.
3282  *		link	- Name for new symlink entry.
3283  *		cr	- credentials of caller.
3284  *		flags	- case flags
3285  *		mnt_ns	- user namespace of the mount
3286  *
3287  *	OUT:	zpp	- Znode for new symbolic link.
3288  *
3289  *	RETURN:	0 on success, error code on failure.
3290  *
3291  * Timestamps:
3292  *	dip - ctime|mtime updated
3293  */
3294 int
3295 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3296     znode_t **zpp, cred_t *cr, int flags, zidmap_t *mnt_ns)
3297 {
3298 	znode_t		*zp;
3299 	zfs_dirlock_t	*dl;
3300 	dmu_tx_t	*tx;
3301 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
3302 	zilog_t		*zilog;
3303 	uint64_t	len = strlen(link);
3304 	int		error;
3305 	int		zflg = ZNEW;
3306 	zfs_acl_ids_t	acl_ids;
3307 	boolean_t	fuid_dirtied;
3308 	uint64_t	txtype = TX_SYMLINK;
3309 	boolean_t	waited = B_FALSE;
3310 
3311 	ASSERT(S_ISLNK(vap->va_mode));
3312 
3313 	if (name == NULL)
3314 		return (SET_ERROR(EINVAL));
3315 
3316 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3317 		return (error);
3318 	zilog = zfsvfs->z_log;
3319 
3320 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3321 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3322 		zfs_exit(zfsvfs, FTAG);
3323 		return (SET_ERROR(EILSEQ));
3324 	}
3325 	if (flags & FIGNORECASE)
3326 		zflg |= ZCILOOK;
3327 
3328 	if (len > MAXPATHLEN) {
3329 		zfs_exit(zfsvfs, FTAG);
3330 		return (SET_ERROR(ENAMETOOLONG));
3331 	}
3332 
3333 	if ((error = zfs_acl_ids_create(dzp, 0,
3334 	    vap, cr, NULL, &acl_ids, mnt_ns)) != 0) {
3335 		zfs_exit(zfsvfs, FTAG);
3336 		return (error);
3337 	}
3338 top:
3339 	*zpp = NULL;
3340 
3341 	/*
3342 	 * Attempt to lock directory; fail if entry already exists.
3343 	 */
3344 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3345 	if (error) {
3346 		zfs_acl_ids_free(&acl_ids);
3347 		zfs_exit(zfsvfs, FTAG);
3348 		return (error);
3349 	}
3350 
3351 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
3352 		zfs_acl_ids_free(&acl_ids);
3353 		zfs_dirent_unlock(dl);
3354 		zfs_exit(zfsvfs, FTAG);
3355 		return (error);
3356 	}
3357 
3358 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3359 		zfs_acl_ids_free(&acl_ids);
3360 		zfs_dirent_unlock(dl);
3361 		zfs_exit(zfsvfs, FTAG);
3362 		return (SET_ERROR(EDQUOT));
3363 	}
3364 	tx = dmu_tx_create(zfsvfs->z_os);
3365 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3366 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3367 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3368 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3369 	    ZFS_SA_BASE_ATTR_SIZE + len);
3370 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3371 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3372 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3373 		    acl_ids.z_aclp->z_acl_bytes);
3374 	}
3375 	if (fuid_dirtied)
3376 		zfs_fuid_txhold(zfsvfs, tx);
3377 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3378 	if (error) {
3379 		zfs_dirent_unlock(dl);
3380 		if (error == ERESTART) {
3381 			waited = B_TRUE;
3382 			dmu_tx_wait(tx);
3383 			dmu_tx_abort(tx);
3384 			goto top;
3385 		}
3386 		zfs_acl_ids_free(&acl_ids);
3387 		dmu_tx_abort(tx);
3388 		zfs_exit(zfsvfs, FTAG);
3389 		return (error);
3390 	}
3391 
3392 	/*
3393 	 * Create a new object for the symlink.
3394 	 * for version 4 ZPL datasets the symlink will be an SA attribute
3395 	 */
3396 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3397 
3398 	if (fuid_dirtied)
3399 		zfs_fuid_sync(zfsvfs, tx);
3400 
3401 	mutex_enter(&zp->z_lock);
3402 	if (zp->z_is_sa)
3403 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3404 		    link, len, tx);
3405 	else
3406 		zfs_sa_symlink(zp, link, len, tx);
3407 	mutex_exit(&zp->z_lock);
3408 
3409 	zp->z_size = len;
3410 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3411 	    &zp->z_size, sizeof (zp->z_size), tx);
3412 	/*
3413 	 * Insert the new object into the directory.
3414 	 */
3415 	error = zfs_link_create(dl, zp, tx, ZNEW);
3416 	if (error != 0) {
3417 		zfs_znode_delete(zp, tx);
3418 		remove_inode_hash(ZTOI(zp));
3419 	} else {
3420 		if (flags & FIGNORECASE)
3421 			txtype |= TX_CI;
3422 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3423 
3424 		zfs_znode_update_vfs(dzp);
3425 		zfs_znode_update_vfs(zp);
3426 	}
3427 
3428 	zfs_acl_ids_free(&acl_ids);
3429 
3430 	dmu_tx_commit(tx);
3431 
3432 	zfs_dirent_unlock(dl);
3433 
3434 	if (error == 0) {
3435 		*zpp = zp;
3436 
3437 		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3438 			zil_commit(zilog, 0);
3439 	} else {
3440 		zrele(zp);
3441 	}
3442 
3443 	zfs_exit(zfsvfs, FTAG);
3444 	return (error);
3445 }
3446 
3447 /*
3448  * Return, in the buffer contained in the provided uio structure,
3449  * the symbolic path referred to by ip.
3450  *
3451  *	IN:	ip	- inode of symbolic link
3452  *		uio	- structure to contain the link path.
3453  *		cr	- credentials of caller.
3454  *
3455  *	RETURN:	0 if success
3456  *		error code if failure
3457  *
3458  * Timestamps:
3459  *	ip - atime updated
3460  */
3461 int
3462 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3463 {
3464 	(void) cr;
3465 	znode_t		*zp = ITOZ(ip);
3466 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3467 	int		error;
3468 
3469 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3470 		return (error);
3471 
3472 	mutex_enter(&zp->z_lock);
3473 	if (zp->z_is_sa)
3474 		error = sa_lookup_uio(zp->z_sa_hdl,
3475 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3476 	else
3477 		error = zfs_sa_readlink(zp, uio);
3478 	mutex_exit(&zp->z_lock);
3479 
3480 	zfs_exit(zfsvfs, FTAG);
3481 	return (error);
3482 }
3483 
3484 /*
3485  * Insert a new entry into directory tdzp referencing szp.
3486  *
3487  *	IN:	tdzp	- Directory to contain new entry.
3488  *		szp	- znode of new entry.
3489  *		name	- name of new entry.
3490  *		cr	- credentials of caller.
3491  *		flags	- case flags.
3492  *
3493  *	RETURN:	0 if success
3494  *		error code if failure
3495  *
3496  * Timestamps:
3497  *	tdzp - ctime|mtime updated
3498  *	 szp - ctime updated
3499  */
3500 int
3501 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3502     int flags)
3503 {
3504 	struct inode *sip = ZTOI(szp);
3505 	znode_t		*tzp;
3506 	zfsvfs_t	*zfsvfs = ZTOZSB(tdzp);
3507 	zilog_t		*zilog;
3508 	zfs_dirlock_t	*dl;
3509 	dmu_tx_t	*tx;
3510 	int		error;
3511 	int		zf = ZNEW;
3512 	uint64_t	parent;
3513 	uid_t		owner;
3514 	boolean_t	waited = B_FALSE;
3515 	boolean_t	is_tmpfile = 0;
3516 	uint64_t	txg;
3517 
3518 	is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3519 
3520 	ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3521 
3522 	if (name == NULL)
3523 		return (SET_ERROR(EINVAL));
3524 
3525 	if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3526 		return (error);
3527 	zilog = zfsvfs->z_log;
3528 
3529 	/*
3530 	 * POSIX dictates that we return EPERM here.
3531 	 * Better choices include ENOTSUP or EISDIR.
3532 	 */
3533 	if (S_ISDIR(sip->i_mode)) {
3534 		zfs_exit(zfsvfs, FTAG);
3535 		return (SET_ERROR(EPERM));
3536 	}
3537 
3538 	if ((error = zfs_verify_zp(szp)) != 0) {
3539 		zfs_exit(zfsvfs, FTAG);
3540 		return (error);
3541 	}
3542 
3543 	/*
3544 	 * If we are using project inheritance, means if the directory has
3545 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3546 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3547 	 * such case, we only allow hard link creation in our tree when the
3548 	 * project IDs are the same.
3549 	 */
3550 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3551 	    tdzp->z_projid != szp->z_projid) {
3552 		zfs_exit(zfsvfs, FTAG);
3553 		return (SET_ERROR(EXDEV));
3554 	}
3555 
3556 	/*
3557 	 * We check i_sb because snapshots and the ctldir must have different
3558 	 * super blocks.
3559 	 */
3560 	if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3561 		zfs_exit(zfsvfs, FTAG);
3562 		return (SET_ERROR(EXDEV));
3563 	}
3564 
3565 	/* Prevent links to .zfs/shares files */
3566 
3567 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3568 	    &parent, sizeof (uint64_t))) != 0) {
3569 		zfs_exit(zfsvfs, FTAG);
3570 		return (error);
3571 	}
3572 	if (parent == zfsvfs->z_shares_dir) {
3573 		zfs_exit(zfsvfs, FTAG);
3574 		return (SET_ERROR(EPERM));
3575 	}
3576 
3577 	if (zfsvfs->z_utf8 && u8_validate(name,
3578 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3579 		zfs_exit(zfsvfs, FTAG);
3580 		return (SET_ERROR(EILSEQ));
3581 	}
3582 	if (flags & FIGNORECASE)
3583 		zf |= ZCILOOK;
3584 
3585 	/*
3586 	 * We do not support links between attributes and non-attributes
3587 	 * because of the potential security risk of creating links
3588 	 * into "normal" file space in order to circumvent restrictions
3589 	 * imposed in attribute space.
3590 	 */
3591 	if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3592 		zfs_exit(zfsvfs, FTAG);
3593 		return (SET_ERROR(EINVAL));
3594 	}
3595 
3596 	owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3597 	    cr, ZFS_OWNER);
3598 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3599 		zfs_exit(zfsvfs, FTAG);
3600 		return (SET_ERROR(EPERM));
3601 	}
3602 
3603 	if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr,
3604 	    zfs_init_idmap))) {
3605 		zfs_exit(zfsvfs, FTAG);
3606 		return (error);
3607 	}
3608 
3609 top:
3610 	/*
3611 	 * Attempt to lock directory; fail if entry already exists.
3612 	 */
3613 	error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3614 	if (error) {
3615 		zfs_exit(zfsvfs, FTAG);
3616 		return (error);
3617 	}
3618 
3619 	tx = dmu_tx_create(zfsvfs->z_os);
3620 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3621 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3622 	if (is_tmpfile)
3623 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3624 
3625 	zfs_sa_upgrade_txholds(tx, szp);
3626 	zfs_sa_upgrade_txholds(tx, tdzp);
3627 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3628 	if (error) {
3629 		zfs_dirent_unlock(dl);
3630 		if (error == ERESTART) {
3631 			waited = B_TRUE;
3632 			dmu_tx_wait(tx);
3633 			dmu_tx_abort(tx);
3634 			goto top;
3635 		}
3636 		dmu_tx_abort(tx);
3637 		zfs_exit(zfsvfs, FTAG);
3638 		return (error);
3639 	}
3640 	/* unmark z_unlinked so zfs_link_create will not reject */
3641 	if (is_tmpfile)
3642 		szp->z_unlinked = B_FALSE;
3643 	error = zfs_link_create(dl, szp, tx, 0);
3644 
3645 	if (error == 0) {
3646 		uint64_t txtype = TX_LINK;
3647 		/*
3648 		 * tmpfile is created to be in z_unlinkedobj, so remove it.
3649 		 * Also, we don't log in ZIL, because all previous file
3650 		 * operation on the tmpfile are ignored by ZIL. Instead we
3651 		 * always wait for txg to sync to make sure all previous
3652 		 * operation are sync safe.
3653 		 */
3654 		if (is_tmpfile) {
3655 			VERIFY(zap_remove_int(zfsvfs->z_os,
3656 			    zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3657 		} else {
3658 			if (flags & FIGNORECASE)
3659 				txtype |= TX_CI;
3660 			zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3661 		}
3662 	} else if (is_tmpfile) {
3663 		/* restore z_unlinked since when linking failed */
3664 		szp->z_unlinked = B_TRUE;
3665 	}
3666 	txg = dmu_tx_get_txg(tx);
3667 	dmu_tx_commit(tx);
3668 
3669 	zfs_dirent_unlock(dl);
3670 
3671 	if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3672 		zil_commit(zilog, 0);
3673 
3674 	if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
3675 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
3676 
3677 	zfs_znode_update_vfs(tdzp);
3678 	zfs_znode_update_vfs(szp);
3679 	zfs_exit(zfsvfs, FTAG);
3680 	return (error);
3681 }
3682 
3683 static void
3684 zfs_putpage_sync_commit_cb(void *arg)
3685 {
3686 	struct page *pp = arg;
3687 
3688 	ClearPageError(pp);
3689 	end_page_writeback(pp);
3690 }
3691 
3692 static void
3693 zfs_putpage_async_commit_cb(void *arg)
3694 {
3695 	struct page *pp = arg;
3696 	znode_t *zp = ITOZ(pp->mapping->host);
3697 
3698 	ClearPageError(pp);
3699 	end_page_writeback(pp);
3700 	atomic_dec_32(&zp->z_async_writes_cnt);
3701 }
3702 
3703 /*
3704  * Push a page out to disk, once the page is on stable storage the
3705  * registered commit callback will be run as notification of completion.
3706  *
3707  *	IN:	ip	 - page mapped for inode.
3708  *		pp	 - page to push (page is locked)
3709  *		wbc	 - writeback control data
3710  *		for_sync - does the caller intend to wait synchronously for the
3711  *			   page writeback to complete?
3712  *
3713  *	RETURN:	0 if success
3714  *		error code if failure
3715  *
3716  * Timestamps:
3717  *	ip - ctime|mtime updated
3718  */
3719 int
3720 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
3721     boolean_t for_sync)
3722 {
3723 	znode_t		*zp = ITOZ(ip);
3724 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3725 	loff_t		offset;
3726 	loff_t		pgoff;
3727 	unsigned int	pglen;
3728 	dmu_tx_t	*tx;
3729 	caddr_t		va;
3730 	int		err = 0;
3731 	uint64_t	mtime[2], ctime[2];
3732 	inode_timespec_t tmp_ts;
3733 	sa_bulk_attr_t	bulk[3];
3734 	int		cnt = 0;
3735 	struct address_space *mapping;
3736 
3737 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3738 		return (err);
3739 
3740 	ASSERT(PageLocked(pp));
3741 
3742 	pgoff = page_offset(pp);	/* Page byte-offset in file */
3743 	offset = i_size_read(ip);	/* File length in bytes */
3744 	pglen = MIN(PAGE_SIZE,		/* Page length in bytes */
3745 	    P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3746 
3747 	/* Page is beyond end of file */
3748 	if (pgoff >= offset) {
3749 		unlock_page(pp);
3750 		zfs_exit(zfsvfs, FTAG);
3751 		return (0);
3752 	}
3753 
3754 	/* Truncate page length to end of file */
3755 	if (pgoff + pglen > offset)
3756 		pglen = offset - pgoff;
3757 
3758 #if 0
3759 	/*
3760 	 * FIXME: Allow mmap writes past its quota.  The correct fix
3761 	 * is to register a page_mkwrite() handler to count the page
3762 	 * against its quota when it is about to be dirtied.
3763 	 */
3764 	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3765 	    KUID_TO_SUID(ip->i_uid)) ||
3766 	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3767 	    KGID_TO_SGID(ip->i_gid)) ||
3768 	    (zp->z_projid != ZFS_DEFAULT_PROJID &&
3769 	    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3770 	    zp->z_projid))) {
3771 		err = EDQUOT;
3772 	}
3773 #endif
3774 
3775 	/*
3776 	 * The ordering here is critical and must adhere to the following
3777 	 * rules in order to avoid deadlocking in either zfs_read() or
3778 	 * zfs_free_range() due to a lock inversion.
3779 	 *
3780 	 * 1) The page must be unlocked prior to acquiring the range lock.
3781 	 *    This is critical because zfs_read() calls find_lock_page()
3782 	 *    which may block on the page lock while holding the range lock.
3783 	 *
3784 	 * 2) Before setting or clearing write back on a page the range lock
3785 	 *    must be held in order to prevent a lock inversion with the
3786 	 *    zfs_free_range() function.
3787 	 *
3788 	 * This presents a problem because upon entering this function the
3789 	 * page lock is already held.  To safely acquire the range lock the
3790 	 * page lock must be dropped.  This creates a window where another
3791 	 * process could truncate, invalidate, dirty, or write out the page.
3792 	 *
3793 	 * Therefore, after successfully reacquiring the range and page locks
3794 	 * the current page state is checked.  In the common case everything
3795 	 * will be as is expected and it can be written out.  However, if
3796 	 * the page state has changed it must be handled accordingly.
3797 	 */
3798 	mapping = pp->mapping;
3799 	redirty_page_for_writepage(wbc, pp);
3800 	unlock_page(pp);
3801 
3802 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3803 	    pgoff, pglen, RL_WRITER);
3804 	lock_page(pp);
3805 
3806 	/* Page mapping changed or it was no longer dirty, we're done */
3807 	if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3808 		unlock_page(pp);
3809 		zfs_rangelock_exit(lr);
3810 		zfs_exit(zfsvfs, FTAG);
3811 		return (0);
3812 	}
3813 
3814 	/* Another process started write block if required */
3815 	if (PageWriteback(pp)) {
3816 		unlock_page(pp);
3817 		zfs_rangelock_exit(lr);
3818 
3819 		if (wbc->sync_mode != WB_SYNC_NONE) {
3820 			/*
3821 			 * Speed up any non-sync page writebacks since
3822 			 * they may take several seconds to complete.
3823 			 * Refer to the comment in zpl_fsync() for details.
3824 			 */
3825 			if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
3826 				zil_commit(zfsvfs->z_log, zp->z_id);
3827 			}
3828 
3829 			if (PageWriteback(pp))
3830 #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3831 				folio_wait_bit(page_folio(pp), PG_writeback);
3832 #else
3833 				wait_on_page_bit(pp, PG_writeback);
3834 #endif
3835 		}
3836 
3837 		zfs_exit(zfsvfs, FTAG);
3838 		return (0);
3839 	}
3840 
3841 	/* Clear the dirty flag the required locks are held */
3842 	if (!clear_page_dirty_for_io(pp)) {
3843 		unlock_page(pp);
3844 		zfs_rangelock_exit(lr);
3845 		zfs_exit(zfsvfs, FTAG);
3846 		return (0);
3847 	}
3848 
3849 	/*
3850 	 * Counterpart for redirty_page_for_writepage() above.  This page
3851 	 * was in fact not skipped and should not be counted as if it were.
3852 	 */
3853 	wbc->pages_skipped--;
3854 	if (!for_sync)
3855 		atomic_inc_32(&zp->z_async_writes_cnt);
3856 	set_page_writeback(pp);
3857 	unlock_page(pp);
3858 
3859 	tx = dmu_tx_create(zfsvfs->z_os);
3860 	dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3861 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3862 	zfs_sa_upgrade_txholds(tx, zp);
3863 
3864 	err = dmu_tx_assign(tx, TXG_WAIT);
3865 	if (err != 0) {
3866 		dmu_tx_abort(tx);
3867 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
3868 		filemap_dirty_folio(page_mapping(pp), page_folio(pp));
3869 #else
3870 		__set_page_dirty_nobuffers(pp);
3871 #endif
3872 		ClearPageError(pp);
3873 		end_page_writeback(pp);
3874 		if (!for_sync)
3875 			atomic_dec_32(&zp->z_async_writes_cnt);
3876 		zfs_rangelock_exit(lr);
3877 		zfs_exit(zfsvfs, FTAG);
3878 		return (err);
3879 	}
3880 
3881 	va = kmap(pp);
3882 	ASSERT3U(pglen, <=, PAGE_SIZE);
3883 	dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3884 	kunmap(pp);
3885 
3886 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3887 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3888 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3889 	    &zp->z_pflags, 8);
3890 
3891 	/* Preserve the mtime and ctime provided by the inode */
3892 	tmp_ts = zpl_inode_get_mtime(ip);
3893 	ZFS_TIME_ENCODE(&tmp_ts, mtime);
3894 	tmp_ts = zpl_inode_get_ctime(ip);
3895 	ZFS_TIME_ENCODE(&tmp_ts, ctime);
3896 	zp->z_atime_dirty = B_FALSE;
3897 	zp->z_seq++;
3898 
3899 	err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3900 
3901 	boolean_t commit = B_FALSE;
3902 	if (wbc->sync_mode != WB_SYNC_NONE) {
3903 		/*
3904 		 * Note that this is rarely called under writepages(), because
3905 		 * writepages() normally handles the entire commit for
3906 		 * performance reasons.
3907 		 */
3908 		commit = B_TRUE;
3909 	} else if (!for_sync && atomic_load_32(&zp->z_sync_writes_cnt) > 0) {
3910 		/*
3911 		 * If the caller does not intend to wait synchronously
3912 		 * for this page writeback to complete and there are active
3913 		 * synchronous calls on this file, do a commit so that
3914 		 * the latter don't accidentally end up waiting for
3915 		 * our writeback to complete. Refer to the comment in
3916 		 * zpl_fsync() (when HAVE_FSYNC_RANGE is defined) for details.
3917 		 */
3918 		commit = B_TRUE;
3919 	}
3920 
3921 	zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, commit,
3922 	    B_FALSE, for_sync ? zfs_putpage_sync_commit_cb :
3923 	    zfs_putpage_async_commit_cb, pp);
3924 
3925 	dmu_tx_commit(tx);
3926 
3927 	zfs_rangelock_exit(lr);
3928 
3929 	if (commit)
3930 		zil_commit(zfsvfs->z_log, zp->z_id);
3931 
3932 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
3933 
3934 	zfs_exit(zfsvfs, FTAG);
3935 	return (err);
3936 }
3937 
3938 /*
3939  * Update the system attributes when the inode has been dirtied.  For the
3940  * moment we only update the mode, atime, mtime, and ctime.
3941  */
3942 int
3943 zfs_dirty_inode(struct inode *ip, int flags)
3944 {
3945 	znode_t		*zp = ITOZ(ip);
3946 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3947 	dmu_tx_t	*tx;
3948 	uint64_t	mode, atime[2], mtime[2], ctime[2];
3949 	inode_timespec_t tmp_ts;
3950 	sa_bulk_attr_t	bulk[4];
3951 	int		error = 0;
3952 	int		cnt = 0;
3953 
3954 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3955 		return (0);
3956 
3957 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3958 		return (error);
3959 
3960 #ifdef I_DIRTY_TIME
3961 	/*
3962 	 * This is the lazytime semantic introduced in Linux 4.0
3963 	 * This flag will only be called from update_time when lazytime is set.
3964 	 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3965 	 * Fortunately mtime and ctime are managed within ZFS itself, so we
3966 	 * only need to dirty atime.
3967 	 */
3968 	if (flags == I_DIRTY_TIME) {
3969 		zp->z_atime_dirty = B_TRUE;
3970 		goto out;
3971 	}
3972 #endif
3973 
3974 	tx = dmu_tx_create(zfsvfs->z_os);
3975 
3976 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3977 	zfs_sa_upgrade_txholds(tx, zp);
3978 
3979 	error = dmu_tx_assign(tx, TXG_WAIT);
3980 	if (error) {
3981 		dmu_tx_abort(tx);
3982 		goto out;
3983 	}
3984 
3985 	mutex_enter(&zp->z_lock);
3986 	zp->z_atime_dirty = B_FALSE;
3987 
3988 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3989 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
3990 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3991 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3992 
3993 	/* Preserve the mode, mtime and ctime provided by the inode */
3994 	tmp_ts = zpl_inode_get_atime(ip);
3995 	ZFS_TIME_ENCODE(&tmp_ts, atime);
3996 	tmp_ts = zpl_inode_get_mtime(ip);
3997 	ZFS_TIME_ENCODE(&tmp_ts, mtime);
3998 	tmp_ts = zpl_inode_get_ctime(ip);
3999 	ZFS_TIME_ENCODE(&tmp_ts, ctime);
4000 	mode = ip->i_mode;
4001 
4002 	zp->z_mode = mode;
4003 
4004 	error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4005 	mutex_exit(&zp->z_lock);
4006 
4007 	dmu_tx_commit(tx);
4008 out:
4009 	zfs_exit(zfsvfs, FTAG);
4010 	return (error);
4011 }
4012 
4013 void
4014 zfs_inactive(struct inode *ip)
4015 {
4016 	znode_t	*zp = ITOZ(ip);
4017 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4018 	uint64_t atime[2];
4019 	int error;
4020 	int need_unlock = 0;
4021 
4022 	/* Only read lock if we haven't already write locked, e.g. rollback */
4023 	if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
4024 		need_unlock = 1;
4025 		rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4026 	}
4027 	if (zp->z_sa_hdl == NULL) {
4028 		if (need_unlock)
4029 			rw_exit(&zfsvfs->z_teardown_inactive_lock);
4030 		return;
4031 	}
4032 
4033 	if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
4034 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4035 
4036 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4037 		zfs_sa_upgrade_txholds(tx, zp);
4038 		error = dmu_tx_assign(tx, TXG_WAIT);
4039 		if (error) {
4040 			dmu_tx_abort(tx);
4041 		} else {
4042 			inode_timespec_t tmp_atime;
4043 			tmp_atime = zpl_inode_get_atime(ip);
4044 			ZFS_TIME_ENCODE(&tmp_atime, atime);
4045 			mutex_enter(&zp->z_lock);
4046 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4047 			    (void *)&atime, sizeof (atime), tx);
4048 			zp->z_atime_dirty = B_FALSE;
4049 			mutex_exit(&zp->z_lock);
4050 			dmu_tx_commit(tx);
4051 		}
4052 	}
4053 
4054 	zfs_zinactive(zp);
4055 	if (need_unlock)
4056 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4057 }
4058 
4059 /*
4060  * Fill pages with data from the disk.
4061  */
4062 static int
4063 zfs_fillpage(struct inode *ip, struct page *pp)
4064 {
4065 	znode_t *zp = ITOZ(ip);
4066 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4067 	loff_t i_size = i_size_read(ip);
4068 	u_offset_t io_off = page_offset(pp);
4069 	size_t io_len = PAGE_SIZE;
4070 
4071 	ASSERT3U(io_off, <, i_size);
4072 
4073 	if (io_off + io_len > i_size)
4074 		io_len = i_size - io_off;
4075 
4076 	void *va = kmap(pp);
4077 	int error = dmu_read(zfsvfs->z_os, zp->z_id, io_off,
4078 	    io_len, va, DMU_READ_PREFETCH);
4079 	if (io_len != PAGE_SIZE)
4080 		memset((char *)va + io_len, 0, PAGE_SIZE - io_len);
4081 	kunmap(pp);
4082 
4083 	if (error) {
4084 		/* convert checksum errors into IO errors */
4085 		if (error == ECKSUM)
4086 			error = SET_ERROR(EIO);
4087 
4088 		SetPageError(pp);
4089 		ClearPageUptodate(pp);
4090 	} else {
4091 		ClearPageError(pp);
4092 		SetPageUptodate(pp);
4093 		if (!PagePrivate(pp)) {
4094 			/*
4095 			 * Set private bit so page migration will wait for us to
4096 			 * finish writeback before calling migrate_folio().
4097 			 */
4098 			SetPagePrivate(pp);
4099 			get_page(pp);
4100 		}
4101 	}
4102 
4103 	return (error);
4104 }
4105 
4106 /*
4107  * Uses zfs_fillpage to read data from the file and fill the page.
4108  *
4109  *	IN:	ip	 - inode of file to get data from.
4110  *		pp	 - page to read
4111  *
4112  *	RETURN:	0 on success, error code on failure.
4113  *
4114  * Timestamps:
4115  *	vp - atime updated
4116  */
4117 int
4118 zfs_getpage(struct inode *ip, struct page *pp)
4119 {
4120 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4121 	znode_t *zp = ITOZ(ip);
4122 	int error;
4123 	loff_t i_size = i_size_read(ip);
4124 	u_offset_t io_off = page_offset(pp);
4125 	size_t io_len = PAGE_SIZE;
4126 
4127 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4128 		return (error);
4129 
4130 	ASSERT3U(io_off, <, i_size);
4131 
4132 	if (io_off + io_len > i_size)
4133 		io_len = i_size - io_off;
4134 
4135 	/*
4136 	 * It is important to hold the rangelock here because it is possible
4137 	 * a Direct I/O write or block clone might be taking place at the same
4138 	 * time that a page is being faulted in through filemap_fault(). With
4139 	 * Direct I/O writes and block cloning db->db_data will be set to NULL
4140 	 * with dbuf_clear_data() in dmu_buif_will_clone_or_dio(). If the
4141 	 * rangelock is not held, then there is a race between faulting in a
4142 	 * page and writing out a Direct I/O write or block cloning. Without
4143 	 * the rangelock a NULL pointer dereference can occur in
4144 	 * dmu_read_impl() for db->db_data during the mempcy operation when
4145 	 * zfs_fillpage() calls dmu_read().
4146 	 */
4147 	zfs_locked_range_t *lr = zfs_rangelock_tryenter(&zp->z_rangelock,
4148 	    io_off, io_len, RL_READER);
4149 	if (lr == NULL) {
4150 		/*
4151 		 * It is important to drop the page lock before grabbing the
4152 		 * rangelock to avoid another deadlock between here and
4153 		 * zfs_write() -> update_pages(). update_pages() holds both the
4154 		 * rangelock and the page lock.
4155 		 */
4156 		get_page(pp);
4157 		unlock_page(pp);
4158 		lr = zfs_rangelock_enter(&zp->z_rangelock, io_off,
4159 		    io_len, RL_READER);
4160 		lock_page(pp);
4161 		put_page(pp);
4162 	}
4163 	error = zfs_fillpage(ip, pp);
4164 	zfs_rangelock_exit(lr);
4165 
4166 	if (error == 0)
4167 		dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, PAGE_SIZE);
4168 
4169 	zfs_exit(zfsvfs, FTAG);
4170 
4171 	return (error);
4172 }
4173 
4174 /*
4175  * Check ZFS specific permissions to memory map a section of a file.
4176  *
4177  *	IN:	ip	- inode of the file to mmap
4178  *		off	- file offset
4179  *		addrp	- start address in memory region
4180  *		len	- length of memory region
4181  *		vm_flags- address flags
4182  *
4183  *	RETURN:	0 if success
4184  *		error code if failure
4185  */
4186 int
4187 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4188     unsigned long vm_flags)
4189 {
4190 	(void) addrp;
4191 	znode_t  *zp = ITOZ(ip);
4192 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4193 	int error;
4194 
4195 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4196 		return (error);
4197 
4198 	if ((vm_flags & VM_WRITE) && (vm_flags & VM_SHARED) &&
4199 	    (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4200 		zfs_exit(zfsvfs, FTAG);
4201 		return (SET_ERROR(EPERM));
4202 	}
4203 
4204 	if ((vm_flags & (VM_READ | VM_EXEC)) &&
4205 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4206 		zfs_exit(zfsvfs, FTAG);
4207 		return (SET_ERROR(EACCES));
4208 	}
4209 
4210 	if (off < 0 || len > MAXOFFSET_T - off) {
4211 		zfs_exit(zfsvfs, FTAG);
4212 		return (SET_ERROR(ENXIO));
4213 	}
4214 
4215 	zfs_exit(zfsvfs, FTAG);
4216 	return (0);
4217 }
4218 
4219 /*
4220  * Free or allocate space in a file.  Currently, this function only
4221  * supports the `F_FREESP' command.  However, this command is somewhat
4222  * misnamed, as its functionality includes the ability to allocate as
4223  * well as free space.
4224  *
4225  *	IN:	zp	- znode of file to free data in.
4226  *		cmd	- action to take (only F_FREESP supported).
4227  *		bfp	- section of file to free/alloc.
4228  *		flag	- current file open mode flags.
4229  *		offset	- current file offset.
4230  *		cr	- credentials of caller.
4231  *
4232  *	RETURN:	0 on success, error code on failure.
4233  *
4234  * Timestamps:
4235  *	zp - ctime|mtime updated
4236  */
4237 int
4238 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
4239     offset_t offset, cred_t *cr)
4240 {
4241 	(void) offset;
4242 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
4243 	uint64_t	off, len;
4244 	int		error;
4245 
4246 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4247 		return (error);
4248 
4249 	if (cmd != F_FREESP) {
4250 		zfs_exit(zfsvfs, FTAG);
4251 		return (SET_ERROR(EINVAL));
4252 	}
4253 
4254 	/*
4255 	 * Callers might not be able to detect properly that we are read-only,
4256 	 * so check it explicitly here.
4257 	 */
4258 	if (zfs_is_readonly(zfsvfs)) {
4259 		zfs_exit(zfsvfs, FTAG);
4260 		return (SET_ERROR(EROFS));
4261 	}
4262 
4263 	if (bfp->l_len < 0) {
4264 		zfs_exit(zfsvfs, FTAG);
4265 		return (SET_ERROR(EINVAL));
4266 	}
4267 
4268 	/*
4269 	 * Permissions aren't checked on Solaris because on this OS
4270 	 * zfs_space() can only be called with an opened file handle.
4271 	 * On Linux we can get here through truncate_range() which
4272 	 * operates directly on inodes, so we need to check access rights.
4273 	 */
4274 	if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr,
4275 	    zfs_init_idmap))) {
4276 		zfs_exit(zfsvfs, FTAG);
4277 		return (error);
4278 	}
4279 
4280 	off = bfp->l_start;
4281 	len = bfp->l_len; /* 0 means from off to end of file */
4282 
4283 	error = zfs_freesp(zp, off, len, flag, TRUE);
4284 
4285 	zfs_exit(zfsvfs, FTAG);
4286 	return (error);
4287 }
4288 
4289 int
4290 zfs_fid(struct inode *ip, fid_t *fidp)
4291 {
4292 	znode_t		*zp = ITOZ(ip);
4293 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
4294 	uint32_t	gen;
4295 	uint64_t	gen64;
4296 	uint64_t	object = zp->z_id;
4297 	zfid_short_t	*zfid;
4298 	int		size, i, error;
4299 
4300 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
4301 		return (error);
4302 
4303 	if (fidp->fid_len < SHORT_FID_LEN) {
4304 		fidp->fid_len = SHORT_FID_LEN;
4305 		zfs_exit(zfsvfs, FTAG);
4306 		return (SET_ERROR(ENOSPC));
4307 	}
4308 
4309 	if ((error = zfs_verify_zp(zp)) != 0) {
4310 		zfs_exit(zfsvfs, FTAG);
4311 		return (error);
4312 	}
4313 
4314 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4315 	    &gen64, sizeof (uint64_t))) != 0) {
4316 		zfs_exit(zfsvfs, FTAG);
4317 		return (error);
4318 	}
4319 
4320 	gen = (uint32_t)gen64;
4321 
4322 	size = SHORT_FID_LEN;
4323 
4324 	zfid = (zfid_short_t *)fidp;
4325 
4326 	zfid->zf_len = size;
4327 
4328 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4329 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4330 
4331 	/* Must have a non-zero generation number to distinguish from .zfs */
4332 	if (gen == 0)
4333 		gen = 1;
4334 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4335 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4336 
4337 	zfs_exit(zfsvfs, FTAG);
4338 	return (0);
4339 }
4340 
4341 #if defined(_KERNEL)
4342 EXPORT_SYMBOL(zfs_open);
4343 EXPORT_SYMBOL(zfs_close);
4344 EXPORT_SYMBOL(zfs_lookup);
4345 EXPORT_SYMBOL(zfs_create);
4346 EXPORT_SYMBOL(zfs_tmpfile);
4347 EXPORT_SYMBOL(zfs_remove);
4348 EXPORT_SYMBOL(zfs_mkdir);
4349 EXPORT_SYMBOL(zfs_rmdir);
4350 EXPORT_SYMBOL(zfs_readdir);
4351 EXPORT_SYMBOL(zfs_getattr_fast);
4352 EXPORT_SYMBOL(zfs_setattr);
4353 EXPORT_SYMBOL(zfs_rename);
4354 EXPORT_SYMBOL(zfs_symlink);
4355 EXPORT_SYMBOL(zfs_readlink);
4356 EXPORT_SYMBOL(zfs_link);
4357 EXPORT_SYMBOL(zfs_inactive);
4358 EXPORT_SYMBOL(zfs_space);
4359 EXPORT_SYMBOL(zfs_fid);
4360 EXPORT_SYMBOL(zfs_getpage);
4361 EXPORT_SYMBOL(zfs_putpage);
4362 EXPORT_SYMBOL(zfs_dirty_inode);
4363 EXPORT_SYMBOL(zfs_map);
4364 
4365 /* CSTYLED */
4366 module_param(zfs_delete_blocks, ulong, 0644);
4367 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4368 #endif
4369