xref: /freebsd-src/sys/contrib/openzfs/module/os/linux/zfs/zfs_vnops_os.c (revision 2eb4d8dc723da3cf7d735a3226ae49da4c8c5dbc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/zfs_ctldir.h>
63 #include <sys/zfs_fuid.h>
64 #include <sys/zfs_quota.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
72 
73 /*
74  * Programming rules.
75  *
76  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
77  * properly lock its in-core state, create a DMU transaction, do the work,
78  * record this work in the intent log (ZIL), commit the DMU transaction,
79  * and wait for the intent log to commit if it is a synchronous operation.
80  * Moreover, the vnode ops must work in both normal and log replay context.
81  * The ordering of events is important to avoid deadlocks and references
82  * to freed memory.  The example below illustrates the following Big Rules:
83  *
84  *  (1) A check must be made in each zfs thread for a mounted file system.
85  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
86  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
87  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
88  *      can return EIO from the calling function.
89  *
90  *  (2) zrele() should always be the last thing except for zil_commit() (if
91  *	necessary) and ZFS_EXIT(). This is for 3 reasons: First, if it's the
92  *	last reference, the vnode/znode can be freed, so the zp may point to
93  *	freed memory.  Second, the last reference will call zfs_zinactive(),
94  *	which may induce a lot of work -- pushing cached pages (which acquires
95  *	range locks) and syncing out cached atime changes.  Third,
96  *	zfs_zinactive() may require a new tx, which could deadlock the system
97  *	if you were already holding one. This deadlock occurs because the tx
98  *	currently being operated on prevents a txg from syncing, which
99  *	prevents the new tx from progressing, resulting in a deadlock.  If you
100  *	must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
101  *	is a synonym for zrele().
102  *
103  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
104  *	as they can span dmu_tx_assign() calls.
105  *
106  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
107  *      dmu_tx_assign().  This is critical because we don't want to block
108  *      while holding locks.
109  *
110  *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
111  *	reduces lock contention and CPU usage when we must wait (note that if
112  *	throughput is constrained by the storage, nearly every transaction
113  *	must wait).
114  *
115  *      Note, in particular, that if a lock is sometimes acquired before
116  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
117  *      to use a non-blocking assign can deadlock the system.  The scenario:
118  *
119  *	Thread A has grabbed a lock before calling dmu_tx_assign().
120  *	Thread B is in an already-assigned tx, and blocks for this lock.
121  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
122  *	forever, because the previous txg can't quiesce until B's tx commits.
123  *
124  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
125  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
126  *	calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
127  *	to indicate that this operation has already called dmu_tx_wait().
128  *	This will ensure that we don't retry forever, waiting a short bit
129  *	each time.
130  *
131  *  (5)	If the operation succeeded, generate the intent log entry for it
132  *	before dropping locks.  This ensures that the ordering of events
133  *	in the intent log matches the order in which they actually occurred.
134  *	During ZIL replay the zfs_log_* functions will update the sequence
135  *	number to indicate the zil transaction has replayed.
136  *
137  *  (6)	At the end of each vnode op, the DMU tx must always commit,
138  *	regardless of whether there were any errors.
139  *
140  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
141  *	to ensure that synchronous semantics are provided when necessary.
142  *
143  * In general, this is how things should be ordered in each vnode op:
144  *
145  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
146  * top:
147  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may igrab())
148  *	rw_enter(...);			// grab any other locks you need
149  *	tx = dmu_tx_create(...);	// get DMU tx
150  *	dmu_tx_hold_*();		// hold each object you might modify
151  *	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
152  *	if (error) {
153  *		rw_exit(...);		// drop locks
154  *		zfs_dirent_unlock(dl);	// unlock directory entry
155  *		zrele(...);		// release held znodes
156  *		if (error == ERESTART) {
157  *			waited = B_TRUE;
158  *			dmu_tx_wait(tx);
159  *			dmu_tx_abort(tx);
160  *			goto top;
161  *		}
162  *		dmu_tx_abort(tx);	// abort DMU tx
163  *		ZFS_EXIT(zfsvfs);	// finished in zfs
164  *		return (error);		// really out of space
165  *	}
166  *	error = do_real_work();		// do whatever this VOP does
167  *	if (error == 0)
168  *		zfs_log_*(...);		// on success, make ZIL entry
169  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
170  *	rw_exit(...);			// drop locks
171  *	zfs_dirent_unlock(dl);		// unlock directory entry
172  *	zrele(...);			// release held znodes
173  *	zil_commit(zilog, foid);	// synchronous when necessary
174  *	ZFS_EXIT(zfsvfs);		// finished in zfs
175  *	return (error);			// done, report error
176  */
177 
178 /* ARGSUSED */
179 int
180 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
181 {
182 	znode_t	*zp = ITOZ(ip);
183 	zfsvfs_t *zfsvfs = ITOZSB(ip);
184 
185 	ZFS_ENTER(zfsvfs);
186 	ZFS_VERIFY_ZP(zp);
187 
188 	/* Honor ZFS_APPENDONLY file attribute */
189 	if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
190 	    ((flag & O_APPEND) == 0)) {
191 		ZFS_EXIT(zfsvfs);
192 		return (SET_ERROR(EPERM));
193 	}
194 
195 	/* Keep a count of the synchronous opens in the znode */
196 	if (flag & O_SYNC)
197 		atomic_inc_32(&zp->z_sync_cnt);
198 
199 	ZFS_EXIT(zfsvfs);
200 	return (0);
201 }
202 
203 /* ARGSUSED */
204 int
205 zfs_close(struct inode *ip, int flag, cred_t *cr)
206 {
207 	znode_t	*zp = ITOZ(ip);
208 	zfsvfs_t *zfsvfs = ITOZSB(ip);
209 
210 	ZFS_ENTER(zfsvfs);
211 	ZFS_VERIFY_ZP(zp);
212 
213 	/* Decrement the synchronous opens in the znode */
214 	if (flag & O_SYNC)
215 		atomic_dec_32(&zp->z_sync_cnt);
216 
217 	ZFS_EXIT(zfsvfs);
218 	return (0);
219 }
220 
221 #if defined(_KERNEL)
222 /*
223  * When a file is memory mapped, we must keep the IO data synchronized
224  * between the DMU cache and the memory mapped pages.  What this means:
225  *
226  * On Write:	If we find a memory mapped page, we write to *both*
227  *		the page and the dmu buffer.
228  */
229 void
230 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
231 {
232 	struct inode *ip = ZTOI(zp);
233 	struct address_space *mp = ip->i_mapping;
234 	struct page *pp;
235 	uint64_t nbytes;
236 	int64_t	off;
237 	void *pb;
238 
239 	off = start & (PAGE_SIZE-1);
240 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
241 		nbytes = MIN(PAGE_SIZE - off, len);
242 
243 		pp = find_lock_page(mp, start >> PAGE_SHIFT);
244 		if (pp) {
245 			if (mapping_writably_mapped(mp))
246 				flush_dcache_page(pp);
247 
248 			pb = kmap(pp);
249 			(void) dmu_read(os, zp->z_id, start + off, nbytes,
250 			    pb + off, DMU_READ_PREFETCH);
251 			kunmap(pp);
252 
253 			if (mapping_writably_mapped(mp))
254 				flush_dcache_page(pp);
255 
256 			mark_page_accessed(pp);
257 			SetPageUptodate(pp);
258 			ClearPageError(pp);
259 			unlock_page(pp);
260 			put_page(pp);
261 		}
262 
263 		len -= nbytes;
264 		off = 0;
265 	}
266 }
267 
268 /*
269  * When a file is memory mapped, we must keep the IO data synchronized
270  * between the DMU cache and the memory mapped pages.  What this means:
271  *
272  * On Read:	We "read" preferentially from memory mapped pages,
273  *		else we default from the dmu buffer.
274  *
275  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
276  *	 the file is memory mapped.
277  */
278 int
279 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
280 {
281 	struct inode *ip = ZTOI(zp);
282 	struct address_space *mp = ip->i_mapping;
283 	struct page *pp;
284 	int64_t	start, off;
285 	uint64_t bytes;
286 	int len = nbytes;
287 	int error = 0;
288 	void *pb;
289 
290 	start = uio->uio_loffset;
291 	off = start & (PAGE_SIZE-1);
292 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
293 		bytes = MIN(PAGE_SIZE - off, len);
294 
295 		pp = find_lock_page(mp, start >> PAGE_SHIFT);
296 		if (pp) {
297 			ASSERT(PageUptodate(pp));
298 			unlock_page(pp);
299 
300 			pb = kmap(pp);
301 			error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
302 			kunmap(pp);
303 
304 			if (mapping_writably_mapped(mp))
305 				flush_dcache_page(pp);
306 
307 			mark_page_accessed(pp);
308 			put_page(pp);
309 		} else {
310 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
311 			    uio, bytes);
312 		}
313 
314 		len -= bytes;
315 		off = 0;
316 		if (error)
317 			break;
318 	}
319 	return (error);
320 }
321 #endif /* _KERNEL */
322 
323 unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
324 
325 /*
326  * Write the bytes to a file.
327  *
328  *	IN:	zp	- znode of file to be written to
329  *		data	- bytes to write
330  *		len	- number of bytes to write
331  *		pos	- offset to start writing at
332  *
333  *	OUT:	resid	- remaining bytes to write
334  *
335  *	RETURN:	0 if success
336  *		positive error code if failure.  EIO is	returned
337  *		for a short write when residp isn't provided.
338  *
339  * Timestamps:
340  *	zp - ctime|mtime updated if byte count > 0
341  */
342 int
343 zfs_write_simple(znode_t *zp, const void *data, size_t len,
344     loff_t pos, size_t *residp)
345 {
346 	fstrans_cookie_t cookie;
347 	int error;
348 
349 	struct iovec iov;
350 	iov.iov_base = (void *)data;
351 	iov.iov_len = len;
352 
353 	zfs_uio_t uio;
354 	zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
355 
356 	cookie = spl_fstrans_mark();
357 	error = zfs_write(zp, &uio, 0, kcred);
358 	spl_fstrans_unmark(cookie);
359 
360 	if (error == 0) {
361 		if (residp != NULL)
362 			*residp = zfs_uio_resid(&uio);
363 		else if (zfs_uio_resid(&uio) != 0)
364 			error = SET_ERROR(EIO);
365 	}
366 
367 	return (error);
368 }
369 
370 void
371 zfs_zrele_async(znode_t *zp)
372 {
373 	struct inode *ip = ZTOI(zp);
374 	objset_t *os = ITOZSB(ip)->z_os;
375 
376 	ASSERT(atomic_read(&ip->i_count) > 0);
377 	ASSERT(os != NULL);
378 
379 	/*
380 	 * If decrementing the count would put us at 0, we can't do it inline
381 	 * here, because that would be synchronous. Instead, dispatch an iput
382 	 * to run later.
383 	 *
384 	 * For more information on the dangers of a synchronous iput, see the
385 	 * header comment of this file.
386 	 */
387 	if (!atomic_add_unless(&ip->i_count, -1, 1)) {
388 		VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
389 		    (task_func_t *)iput, ip, TQ_SLEEP) != TASKQID_INVALID);
390 	}
391 }
392 
393 
394 /*
395  * Lookup an entry in a directory, or an extended attribute directory.
396  * If it exists, return a held inode reference for it.
397  *
398  *	IN:	zdp	- znode of directory to search.
399  *		nm	- name of entry to lookup.
400  *		flags	- LOOKUP_XATTR set if looking for an attribute.
401  *		cr	- credentials of caller.
402  *		direntflags - directory lookup flags
403  *		realpnp - returned pathname.
404  *
405  *	OUT:	zpp	- znode of located entry, NULL if not found.
406  *
407  *	RETURN:	0 on success, error code on failure.
408  *
409  * Timestamps:
410  *	NA
411  */
412 /* ARGSUSED */
413 int
414 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
415     int *direntflags, pathname_t *realpnp)
416 {
417 	zfsvfs_t *zfsvfs = ZTOZSB(zdp);
418 	int error = 0;
419 
420 	/*
421 	 * Fast path lookup, however we must skip DNLC lookup
422 	 * for case folding or normalizing lookups because the
423 	 * DNLC code only stores the passed in name.  This means
424 	 * creating 'a' and removing 'A' on a case insensitive
425 	 * file system would work, but DNLC still thinks 'a'
426 	 * exists and won't let you create it again on the next
427 	 * pass through fast path.
428 	 */
429 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
430 
431 		if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
432 			return (SET_ERROR(ENOTDIR));
433 		} else if (zdp->z_sa_hdl == NULL) {
434 			return (SET_ERROR(EIO));
435 		}
436 
437 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
438 			error = zfs_fastaccesschk_execute(zdp, cr);
439 			if (!error) {
440 				*zpp = zdp;
441 				zhold(*zpp);
442 				return (0);
443 			}
444 			return (error);
445 		}
446 	}
447 
448 	ZFS_ENTER(zfsvfs);
449 	ZFS_VERIFY_ZP(zdp);
450 
451 	*zpp = NULL;
452 
453 	if (flags & LOOKUP_XATTR) {
454 		/*
455 		 * We don't allow recursive attributes..
456 		 * Maybe someday we will.
457 		 */
458 		if (zdp->z_pflags & ZFS_XATTR) {
459 			ZFS_EXIT(zfsvfs);
460 			return (SET_ERROR(EINVAL));
461 		}
462 
463 		if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
464 			ZFS_EXIT(zfsvfs);
465 			return (error);
466 		}
467 
468 		/*
469 		 * Do we have permission to get into attribute directory?
470 		 */
471 
472 		if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
473 		    B_FALSE, cr))) {
474 			zrele(*zpp);
475 			*zpp = NULL;
476 		}
477 
478 		ZFS_EXIT(zfsvfs);
479 		return (error);
480 	}
481 
482 	if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
483 		ZFS_EXIT(zfsvfs);
484 		return (SET_ERROR(ENOTDIR));
485 	}
486 
487 	/*
488 	 * Check accessibility of directory.
489 	 */
490 
491 	if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
492 		ZFS_EXIT(zfsvfs);
493 		return (error);
494 	}
495 
496 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
497 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
498 		ZFS_EXIT(zfsvfs);
499 		return (SET_ERROR(EILSEQ));
500 	}
501 
502 	error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
503 	if ((error == 0) && (*zpp))
504 		zfs_znode_update_vfs(*zpp);
505 
506 	ZFS_EXIT(zfsvfs);
507 	return (error);
508 }
509 
510 /*
511  * Attempt to create a new entry in a directory.  If the entry
512  * already exists, truncate the file if permissible, else return
513  * an error.  Return the ip of the created or trunc'd file.
514  *
515  *	IN:	dzp	- znode of directory to put new file entry in.
516  *		name	- name of new file entry.
517  *		vap	- attributes of new file.
518  *		excl	- flag indicating exclusive or non-exclusive mode.
519  *		mode	- mode to open file with.
520  *		cr	- credentials of caller.
521  *		flag	- file flag.
522  *		vsecp	- ACL to be set
523  *
524  *	OUT:	zpp	- znode of created or trunc'd entry.
525  *
526  *	RETURN:	0 on success, error code on failure.
527  *
528  * Timestamps:
529  *	dzp - ctime|mtime updated if new entry created
530  *	 zp - ctime|mtime always, atime if new
531  */
532 
533 /* ARGSUSED */
534 int
535 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
536     int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp)
537 {
538 	znode_t		*zp;
539 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
540 	zilog_t		*zilog;
541 	objset_t	*os;
542 	zfs_dirlock_t	*dl;
543 	dmu_tx_t	*tx;
544 	int		error;
545 	uid_t		uid;
546 	gid_t		gid;
547 	zfs_acl_ids_t   acl_ids;
548 	boolean_t	fuid_dirtied;
549 	boolean_t	have_acl = B_FALSE;
550 	boolean_t	waited = B_FALSE;
551 
552 	/*
553 	 * If we have an ephemeral id, ACL, or XVATTR then
554 	 * make sure file system is at proper version
555 	 */
556 
557 	gid = crgetgid(cr);
558 	uid = crgetuid(cr);
559 
560 	if (zfsvfs->z_use_fuids == B_FALSE &&
561 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
562 		return (SET_ERROR(EINVAL));
563 
564 	if (name == NULL)
565 		return (SET_ERROR(EINVAL));
566 
567 	ZFS_ENTER(zfsvfs);
568 	ZFS_VERIFY_ZP(dzp);
569 	os = zfsvfs->z_os;
570 	zilog = zfsvfs->z_log;
571 
572 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
573 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
574 		ZFS_EXIT(zfsvfs);
575 		return (SET_ERROR(EILSEQ));
576 	}
577 
578 	if (vap->va_mask & ATTR_XVATTR) {
579 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
580 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
581 			ZFS_EXIT(zfsvfs);
582 			return (error);
583 		}
584 	}
585 
586 top:
587 	*zpp = NULL;
588 	if (*name == '\0') {
589 		/*
590 		 * Null component name refers to the directory itself.
591 		 */
592 		zhold(dzp);
593 		zp = dzp;
594 		dl = NULL;
595 		error = 0;
596 	} else {
597 		/* possible igrab(zp) */
598 		int zflg = 0;
599 
600 		if (flag & FIGNORECASE)
601 			zflg |= ZCILOOK;
602 
603 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
604 		    NULL, NULL);
605 		if (error) {
606 			if (have_acl)
607 				zfs_acl_ids_free(&acl_ids);
608 			if (strcmp(name, "..") == 0)
609 				error = SET_ERROR(EISDIR);
610 			ZFS_EXIT(zfsvfs);
611 			return (error);
612 		}
613 	}
614 
615 	if (zp == NULL) {
616 		uint64_t txtype;
617 		uint64_t projid = ZFS_DEFAULT_PROJID;
618 
619 		/*
620 		 * Create a new file object and update the directory
621 		 * to reference it.
622 		 */
623 		if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
624 			if (have_acl)
625 				zfs_acl_ids_free(&acl_ids);
626 			goto out;
627 		}
628 
629 		/*
630 		 * We only support the creation of regular files in
631 		 * extended attribute directories.
632 		 */
633 
634 		if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
635 			if (have_acl)
636 				zfs_acl_ids_free(&acl_ids);
637 			error = SET_ERROR(EINVAL);
638 			goto out;
639 		}
640 
641 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
642 		    cr, vsecp, &acl_ids)) != 0)
643 			goto out;
644 		have_acl = B_TRUE;
645 
646 		if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
647 			projid = zfs_inherit_projid(dzp);
648 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
649 			zfs_acl_ids_free(&acl_ids);
650 			error = SET_ERROR(EDQUOT);
651 			goto out;
652 		}
653 
654 		tx = dmu_tx_create(os);
655 
656 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
657 		    ZFS_SA_BASE_ATTR_SIZE);
658 
659 		fuid_dirtied = zfsvfs->z_fuid_dirty;
660 		if (fuid_dirtied)
661 			zfs_fuid_txhold(zfsvfs, tx);
662 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
663 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
664 		if (!zfsvfs->z_use_sa &&
665 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
666 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
667 			    0, acl_ids.z_aclp->z_acl_bytes);
668 		}
669 
670 		error = dmu_tx_assign(tx,
671 		    (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
672 		if (error) {
673 			zfs_dirent_unlock(dl);
674 			if (error == ERESTART) {
675 				waited = B_TRUE;
676 				dmu_tx_wait(tx);
677 				dmu_tx_abort(tx);
678 				goto top;
679 			}
680 			zfs_acl_ids_free(&acl_ids);
681 			dmu_tx_abort(tx);
682 			ZFS_EXIT(zfsvfs);
683 			return (error);
684 		}
685 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
686 
687 		error = zfs_link_create(dl, zp, tx, ZNEW);
688 		if (error != 0) {
689 			/*
690 			 * Since, we failed to add the directory entry for it,
691 			 * delete the newly created dnode.
692 			 */
693 			zfs_znode_delete(zp, tx);
694 			remove_inode_hash(ZTOI(zp));
695 			zfs_acl_ids_free(&acl_ids);
696 			dmu_tx_commit(tx);
697 			goto out;
698 		}
699 
700 		if (fuid_dirtied)
701 			zfs_fuid_sync(zfsvfs, tx);
702 
703 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
704 		if (flag & FIGNORECASE)
705 			txtype |= TX_CI;
706 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
707 		    vsecp, acl_ids.z_fuidp, vap);
708 		zfs_acl_ids_free(&acl_ids);
709 		dmu_tx_commit(tx);
710 	} else {
711 		int aflags = (flag & O_APPEND) ? V_APPEND : 0;
712 
713 		if (have_acl)
714 			zfs_acl_ids_free(&acl_ids);
715 		have_acl = B_FALSE;
716 
717 		/*
718 		 * A directory entry already exists for this name.
719 		 */
720 		/*
721 		 * Can't truncate an existing file if in exclusive mode.
722 		 */
723 		if (excl) {
724 			error = SET_ERROR(EEXIST);
725 			goto out;
726 		}
727 		/*
728 		 * Can't open a directory for writing.
729 		 */
730 		if (S_ISDIR(ZTOI(zp)->i_mode)) {
731 			error = SET_ERROR(EISDIR);
732 			goto out;
733 		}
734 		/*
735 		 * Verify requested access to file.
736 		 */
737 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
738 			goto out;
739 		}
740 
741 		mutex_enter(&dzp->z_lock);
742 		dzp->z_seq++;
743 		mutex_exit(&dzp->z_lock);
744 
745 		/*
746 		 * Truncate regular files if requested.
747 		 */
748 		if (S_ISREG(ZTOI(zp)->i_mode) &&
749 		    (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
750 			/* we can't hold any locks when calling zfs_freesp() */
751 			if (dl) {
752 				zfs_dirent_unlock(dl);
753 				dl = NULL;
754 			}
755 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
756 		}
757 	}
758 out:
759 
760 	if (dl)
761 		zfs_dirent_unlock(dl);
762 
763 	if (error) {
764 		if (zp)
765 			zrele(zp);
766 	} else {
767 		zfs_znode_update_vfs(dzp);
768 		zfs_znode_update_vfs(zp);
769 		*zpp = zp;
770 	}
771 
772 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
773 		zil_commit(zilog, 0);
774 
775 	ZFS_EXIT(zfsvfs);
776 	return (error);
777 }
778 
779 /* ARGSUSED */
780 int
781 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
782     int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
783 {
784 	znode_t		*zp = NULL, *dzp = ITOZ(dip);
785 	zfsvfs_t	*zfsvfs = ITOZSB(dip);
786 	objset_t	*os;
787 	dmu_tx_t	*tx;
788 	int		error;
789 	uid_t		uid;
790 	gid_t		gid;
791 	zfs_acl_ids_t   acl_ids;
792 	uint64_t	projid = ZFS_DEFAULT_PROJID;
793 	boolean_t	fuid_dirtied;
794 	boolean_t	have_acl = B_FALSE;
795 	boolean_t	waited = B_FALSE;
796 
797 	/*
798 	 * If we have an ephemeral id, ACL, or XVATTR then
799 	 * make sure file system is at proper version
800 	 */
801 
802 	gid = crgetgid(cr);
803 	uid = crgetuid(cr);
804 
805 	if (zfsvfs->z_use_fuids == B_FALSE &&
806 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
807 		return (SET_ERROR(EINVAL));
808 
809 	ZFS_ENTER(zfsvfs);
810 	ZFS_VERIFY_ZP(dzp);
811 	os = zfsvfs->z_os;
812 
813 	if (vap->va_mask & ATTR_XVATTR) {
814 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
815 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
816 			ZFS_EXIT(zfsvfs);
817 			return (error);
818 		}
819 	}
820 
821 top:
822 	*ipp = NULL;
823 
824 	/*
825 	 * Create a new file object and update the directory
826 	 * to reference it.
827 	 */
828 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
829 		if (have_acl)
830 			zfs_acl_ids_free(&acl_ids);
831 		goto out;
832 	}
833 
834 	if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
835 	    cr, vsecp, &acl_ids)) != 0)
836 		goto out;
837 	have_acl = B_TRUE;
838 
839 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
840 		projid = zfs_inherit_projid(dzp);
841 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
842 		zfs_acl_ids_free(&acl_ids);
843 		error = SET_ERROR(EDQUOT);
844 		goto out;
845 	}
846 
847 	tx = dmu_tx_create(os);
848 
849 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
850 	    ZFS_SA_BASE_ATTR_SIZE);
851 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
852 
853 	fuid_dirtied = zfsvfs->z_fuid_dirty;
854 	if (fuid_dirtied)
855 		zfs_fuid_txhold(zfsvfs, tx);
856 	if (!zfsvfs->z_use_sa &&
857 	    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
858 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
859 		    0, acl_ids.z_aclp->z_acl_bytes);
860 	}
861 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
862 	if (error) {
863 		if (error == ERESTART) {
864 			waited = B_TRUE;
865 			dmu_tx_wait(tx);
866 			dmu_tx_abort(tx);
867 			goto top;
868 		}
869 		zfs_acl_ids_free(&acl_ids);
870 		dmu_tx_abort(tx);
871 		ZFS_EXIT(zfsvfs);
872 		return (error);
873 	}
874 	zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
875 
876 	if (fuid_dirtied)
877 		zfs_fuid_sync(zfsvfs, tx);
878 
879 	/* Add to unlinked set */
880 	zp->z_unlinked = B_TRUE;
881 	zfs_unlinked_add(zp, tx);
882 	zfs_acl_ids_free(&acl_ids);
883 	dmu_tx_commit(tx);
884 out:
885 
886 	if (error) {
887 		if (zp)
888 			zrele(zp);
889 	} else {
890 		zfs_znode_update_vfs(dzp);
891 		zfs_znode_update_vfs(zp);
892 		*ipp = ZTOI(zp);
893 	}
894 
895 	ZFS_EXIT(zfsvfs);
896 	return (error);
897 }
898 
899 /*
900  * Remove an entry from a directory.
901  *
902  *	IN:	dzp	- znode of directory to remove entry from.
903  *		name	- name of entry to remove.
904  *		cr	- credentials of caller.
905  *		flags	- case flags.
906  *
907  *	RETURN:	0 if success
908  *		error code if failure
909  *
910  * Timestamps:
911  *	dzp - ctime|mtime
912  *	 ip - ctime (if nlink > 0)
913  */
914 
915 uint64_t null_xattr = 0;
916 
917 /*ARGSUSED*/
918 int
919 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
920 {
921 	znode_t		*zp;
922 	znode_t		*xzp;
923 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
924 	zilog_t		*zilog;
925 	uint64_t	acl_obj, xattr_obj;
926 	uint64_t	xattr_obj_unlinked = 0;
927 	uint64_t	obj = 0;
928 	uint64_t	links;
929 	zfs_dirlock_t	*dl;
930 	dmu_tx_t	*tx;
931 	boolean_t	may_delete_now, delete_now = FALSE;
932 	boolean_t	unlinked, toobig = FALSE;
933 	uint64_t	txtype;
934 	pathname_t	*realnmp = NULL;
935 	pathname_t	realnm;
936 	int		error;
937 	int		zflg = ZEXISTS;
938 	boolean_t	waited = B_FALSE;
939 
940 	if (name == NULL)
941 		return (SET_ERROR(EINVAL));
942 
943 	ZFS_ENTER(zfsvfs);
944 	ZFS_VERIFY_ZP(dzp);
945 	zilog = zfsvfs->z_log;
946 
947 	if (flags & FIGNORECASE) {
948 		zflg |= ZCILOOK;
949 		pn_alloc(&realnm);
950 		realnmp = &realnm;
951 	}
952 
953 top:
954 	xattr_obj = 0;
955 	xzp = NULL;
956 	/*
957 	 * Attempt to lock directory; fail if entry doesn't exist.
958 	 */
959 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
960 	    NULL, realnmp))) {
961 		if (realnmp)
962 			pn_free(realnmp);
963 		ZFS_EXIT(zfsvfs);
964 		return (error);
965 	}
966 
967 	if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
968 		goto out;
969 	}
970 
971 	/*
972 	 * Need to use rmdir for removing directories.
973 	 */
974 	if (S_ISDIR(ZTOI(zp)->i_mode)) {
975 		error = SET_ERROR(EPERM);
976 		goto out;
977 	}
978 
979 	mutex_enter(&zp->z_lock);
980 	may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
981 	    !(zp->z_is_mapped);
982 	mutex_exit(&zp->z_lock);
983 
984 	/*
985 	 * We may delete the znode now, or we may put it in the unlinked set;
986 	 * it depends on whether we're the last link, and on whether there are
987 	 * other holds on the inode.  So we dmu_tx_hold() the right things to
988 	 * allow for either case.
989 	 */
990 	obj = zp->z_id;
991 	tx = dmu_tx_create(zfsvfs->z_os);
992 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
993 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
994 	zfs_sa_upgrade_txholds(tx, zp);
995 	zfs_sa_upgrade_txholds(tx, dzp);
996 	if (may_delete_now) {
997 		toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
998 		/* if the file is too big, only hold_free a token amount */
999 		dmu_tx_hold_free(tx, zp->z_id, 0,
1000 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1001 	}
1002 
1003 	/* are there any extended attributes? */
1004 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1005 	    &xattr_obj, sizeof (xattr_obj));
1006 	if (error == 0 && xattr_obj) {
1007 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1008 		ASSERT0(error);
1009 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1010 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1011 	}
1012 
1013 	mutex_enter(&zp->z_lock);
1014 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1015 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1016 	mutex_exit(&zp->z_lock);
1017 
1018 	/* charge as an update -- would be nice not to charge at all */
1019 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1020 
1021 	/*
1022 	 * Mark this transaction as typically resulting in a net free of space
1023 	 */
1024 	dmu_tx_mark_netfree(tx);
1025 
1026 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1027 	if (error) {
1028 		zfs_dirent_unlock(dl);
1029 		if (error == ERESTART) {
1030 			waited = B_TRUE;
1031 			dmu_tx_wait(tx);
1032 			dmu_tx_abort(tx);
1033 			zrele(zp);
1034 			if (xzp)
1035 				zrele(xzp);
1036 			goto top;
1037 		}
1038 		if (realnmp)
1039 			pn_free(realnmp);
1040 		dmu_tx_abort(tx);
1041 		zrele(zp);
1042 		if (xzp)
1043 			zrele(xzp);
1044 		ZFS_EXIT(zfsvfs);
1045 		return (error);
1046 	}
1047 
1048 	/*
1049 	 * Remove the directory entry.
1050 	 */
1051 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1052 
1053 	if (error) {
1054 		dmu_tx_commit(tx);
1055 		goto out;
1056 	}
1057 
1058 	if (unlinked) {
1059 		/*
1060 		 * Hold z_lock so that we can make sure that the ACL obj
1061 		 * hasn't changed.  Could have been deleted due to
1062 		 * zfs_sa_upgrade().
1063 		 */
1064 		mutex_enter(&zp->z_lock);
1065 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1066 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1067 		delete_now = may_delete_now && !toobig &&
1068 		    atomic_read(&ZTOI(zp)->i_count) == 1 &&
1069 		    !(zp->z_is_mapped) && xattr_obj == xattr_obj_unlinked &&
1070 		    zfs_external_acl(zp) == acl_obj;
1071 	}
1072 
1073 	if (delete_now) {
1074 		if (xattr_obj_unlinked) {
1075 			ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1076 			mutex_enter(&xzp->z_lock);
1077 			xzp->z_unlinked = B_TRUE;
1078 			clear_nlink(ZTOI(xzp));
1079 			links = 0;
1080 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1081 			    &links, sizeof (links), tx);
1082 			ASSERT3U(error,  ==,  0);
1083 			mutex_exit(&xzp->z_lock);
1084 			zfs_unlinked_add(xzp, tx);
1085 
1086 			if (zp->z_is_sa)
1087 				error = sa_remove(zp->z_sa_hdl,
1088 				    SA_ZPL_XATTR(zfsvfs), tx);
1089 			else
1090 				error = sa_update(zp->z_sa_hdl,
1091 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1092 				    sizeof (uint64_t), tx);
1093 			ASSERT0(error);
1094 		}
1095 		/*
1096 		 * Add to the unlinked set because a new reference could be
1097 		 * taken concurrently resulting in a deferred destruction.
1098 		 */
1099 		zfs_unlinked_add(zp, tx);
1100 		mutex_exit(&zp->z_lock);
1101 	} else if (unlinked) {
1102 		mutex_exit(&zp->z_lock);
1103 		zfs_unlinked_add(zp, tx);
1104 	}
1105 
1106 	txtype = TX_REMOVE;
1107 	if (flags & FIGNORECASE)
1108 		txtype |= TX_CI;
1109 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1110 
1111 	dmu_tx_commit(tx);
1112 out:
1113 	if (realnmp)
1114 		pn_free(realnmp);
1115 
1116 	zfs_dirent_unlock(dl);
1117 	zfs_znode_update_vfs(dzp);
1118 	zfs_znode_update_vfs(zp);
1119 
1120 	if (delete_now)
1121 		zrele(zp);
1122 	else
1123 		zfs_zrele_async(zp);
1124 
1125 	if (xzp) {
1126 		zfs_znode_update_vfs(xzp);
1127 		zfs_zrele_async(xzp);
1128 	}
1129 
1130 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1131 		zil_commit(zilog, 0);
1132 
1133 	ZFS_EXIT(zfsvfs);
1134 	return (error);
1135 }
1136 
1137 /*
1138  * Create a new directory and insert it into dzp using the name
1139  * provided.  Return a pointer to the inserted directory.
1140  *
1141  *	IN:	dzp	- znode of directory to add subdir to.
1142  *		dirname	- name of new directory.
1143  *		vap	- attributes of new directory.
1144  *		cr	- credentials of caller.
1145  *		flags	- case flags.
1146  *		vsecp	- ACL to be set
1147  *
1148  *	OUT:	zpp	- znode of created directory.
1149  *
1150  *	RETURN:	0 if success
1151  *		error code if failure
1152  *
1153  * Timestamps:
1154  *	dzp - ctime|mtime updated
1155  *	zpp - ctime|mtime|atime updated
1156  */
1157 /*ARGSUSED*/
1158 int
1159 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1160     cred_t *cr, int flags, vsecattr_t *vsecp)
1161 {
1162 	znode_t		*zp;
1163 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1164 	zilog_t		*zilog;
1165 	zfs_dirlock_t	*dl;
1166 	uint64_t	txtype;
1167 	dmu_tx_t	*tx;
1168 	int		error;
1169 	int		zf = ZNEW;
1170 	uid_t		uid;
1171 	gid_t		gid = crgetgid(cr);
1172 	zfs_acl_ids_t   acl_ids;
1173 	boolean_t	fuid_dirtied;
1174 	boolean_t	waited = B_FALSE;
1175 
1176 	ASSERT(S_ISDIR(vap->va_mode));
1177 
1178 	/*
1179 	 * If we have an ephemeral id, ACL, or XVATTR then
1180 	 * make sure file system is at proper version
1181 	 */
1182 
1183 	uid = crgetuid(cr);
1184 	if (zfsvfs->z_use_fuids == B_FALSE &&
1185 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1186 		return (SET_ERROR(EINVAL));
1187 
1188 	if (dirname == NULL)
1189 		return (SET_ERROR(EINVAL));
1190 
1191 	ZFS_ENTER(zfsvfs);
1192 	ZFS_VERIFY_ZP(dzp);
1193 	zilog = zfsvfs->z_log;
1194 
1195 	if (dzp->z_pflags & ZFS_XATTR) {
1196 		ZFS_EXIT(zfsvfs);
1197 		return (SET_ERROR(EINVAL));
1198 	}
1199 
1200 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1201 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1202 		ZFS_EXIT(zfsvfs);
1203 		return (SET_ERROR(EILSEQ));
1204 	}
1205 	if (flags & FIGNORECASE)
1206 		zf |= ZCILOOK;
1207 
1208 	if (vap->va_mask & ATTR_XVATTR) {
1209 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1210 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
1211 			ZFS_EXIT(zfsvfs);
1212 			return (error);
1213 		}
1214 	}
1215 
1216 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1217 	    vsecp, &acl_ids)) != 0) {
1218 		ZFS_EXIT(zfsvfs);
1219 		return (error);
1220 	}
1221 	/*
1222 	 * First make sure the new directory doesn't exist.
1223 	 *
1224 	 * Existence is checked first to make sure we don't return
1225 	 * EACCES instead of EEXIST which can cause some applications
1226 	 * to fail.
1227 	 */
1228 top:
1229 	*zpp = NULL;
1230 
1231 	if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1232 	    NULL, NULL))) {
1233 		zfs_acl_ids_free(&acl_ids);
1234 		ZFS_EXIT(zfsvfs);
1235 		return (error);
1236 	}
1237 
1238 	if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
1239 		zfs_acl_ids_free(&acl_ids);
1240 		zfs_dirent_unlock(dl);
1241 		ZFS_EXIT(zfsvfs);
1242 		return (error);
1243 	}
1244 
1245 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1246 		zfs_acl_ids_free(&acl_ids);
1247 		zfs_dirent_unlock(dl);
1248 		ZFS_EXIT(zfsvfs);
1249 		return (SET_ERROR(EDQUOT));
1250 	}
1251 
1252 	/*
1253 	 * Add a new entry to the directory.
1254 	 */
1255 	tx = dmu_tx_create(zfsvfs->z_os);
1256 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1257 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1258 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1259 	if (fuid_dirtied)
1260 		zfs_fuid_txhold(zfsvfs, tx);
1261 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1262 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1263 		    acl_ids.z_aclp->z_acl_bytes);
1264 	}
1265 
1266 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1267 	    ZFS_SA_BASE_ATTR_SIZE);
1268 
1269 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1270 	if (error) {
1271 		zfs_dirent_unlock(dl);
1272 		if (error == ERESTART) {
1273 			waited = B_TRUE;
1274 			dmu_tx_wait(tx);
1275 			dmu_tx_abort(tx);
1276 			goto top;
1277 		}
1278 		zfs_acl_ids_free(&acl_ids);
1279 		dmu_tx_abort(tx);
1280 		ZFS_EXIT(zfsvfs);
1281 		return (error);
1282 	}
1283 
1284 	/*
1285 	 * Create new node.
1286 	 */
1287 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1288 
1289 	/*
1290 	 * Now put new name in parent dir.
1291 	 */
1292 	error = zfs_link_create(dl, zp, tx, ZNEW);
1293 	if (error != 0) {
1294 		zfs_znode_delete(zp, tx);
1295 		remove_inode_hash(ZTOI(zp));
1296 		goto out;
1297 	}
1298 
1299 	if (fuid_dirtied)
1300 		zfs_fuid_sync(zfsvfs, tx);
1301 
1302 	*zpp = zp;
1303 
1304 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1305 	if (flags & FIGNORECASE)
1306 		txtype |= TX_CI;
1307 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1308 	    acl_ids.z_fuidp, vap);
1309 
1310 out:
1311 	zfs_acl_ids_free(&acl_ids);
1312 
1313 	dmu_tx_commit(tx);
1314 
1315 	zfs_dirent_unlock(dl);
1316 
1317 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1318 		zil_commit(zilog, 0);
1319 
1320 	if (error != 0) {
1321 		zrele(zp);
1322 	} else {
1323 		zfs_znode_update_vfs(dzp);
1324 		zfs_znode_update_vfs(zp);
1325 	}
1326 	ZFS_EXIT(zfsvfs);
1327 	return (error);
1328 }
1329 
1330 /*
1331  * Remove a directory subdir entry.  If the current working
1332  * directory is the same as the subdir to be removed, the
1333  * remove will fail.
1334  *
1335  *	IN:	dzp	- znode of directory to remove from.
1336  *		name	- name of directory to be removed.
1337  *		cwd	- inode of current working directory.
1338  *		cr	- credentials of caller.
1339  *		flags	- case flags
1340  *
1341  *	RETURN:	0 on success, error code on failure.
1342  *
1343  * Timestamps:
1344  *	dzp - ctime|mtime updated
1345  */
1346 /*ARGSUSED*/
1347 int
1348 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1349     int flags)
1350 {
1351 	znode_t		*zp;
1352 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1353 	zilog_t		*zilog;
1354 	zfs_dirlock_t	*dl;
1355 	dmu_tx_t	*tx;
1356 	int		error;
1357 	int		zflg = ZEXISTS;
1358 	boolean_t	waited = B_FALSE;
1359 
1360 	if (name == NULL)
1361 		return (SET_ERROR(EINVAL));
1362 
1363 	ZFS_ENTER(zfsvfs);
1364 	ZFS_VERIFY_ZP(dzp);
1365 	zilog = zfsvfs->z_log;
1366 
1367 	if (flags & FIGNORECASE)
1368 		zflg |= ZCILOOK;
1369 top:
1370 	zp = NULL;
1371 
1372 	/*
1373 	 * Attempt to lock directory; fail if entry doesn't exist.
1374 	 */
1375 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1376 	    NULL, NULL))) {
1377 		ZFS_EXIT(zfsvfs);
1378 		return (error);
1379 	}
1380 
1381 	if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1382 		goto out;
1383 	}
1384 
1385 	if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1386 		error = SET_ERROR(ENOTDIR);
1387 		goto out;
1388 	}
1389 
1390 	if (zp == cwd) {
1391 		error = SET_ERROR(EINVAL);
1392 		goto out;
1393 	}
1394 
1395 	/*
1396 	 * Grab a lock on the directory to make sure that no one is
1397 	 * trying to add (or lookup) entries while we are removing it.
1398 	 */
1399 	rw_enter(&zp->z_name_lock, RW_WRITER);
1400 
1401 	/*
1402 	 * Grab a lock on the parent pointer to make sure we play well
1403 	 * with the treewalk and directory rename code.
1404 	 */
1405 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1406 
1407 	tx = dmu_tx_create(zfsvfs->z_os);
1408 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1409 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1410 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1411 	zfs_sa_upgrade_txholds(tx, zp);
1412 	zfs_sa_upgrade_txholds(tx, dzp);
1413 	dmu_tx_mark_netfree(tx);
1414 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1415 	if (error) {
1416 		rw_exit(&zp->z_parent_lock);
1417 		rw_exit(&zp->z_name_lock);
1418 		zfs_dirent_unlock(dl);
1419 		if (error == ERESTART) {
1420 			waited = B_TRUE;
1421 			dmu_tx_wait(tx);
1422 			dmu_tx_abort(tx);
1423 			zrele(zp);
1424 			goto top;
1425 		}
1426 		dmu_tx_abort(tx);
1427 		zrele(zp);
1428 		ZFS_EXIT(zfsvfs);
1429 		return (error);
1430 	}
1431 
1432 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1433 
1434 	if (error == 0) {
1435 		uint64_t txtype = TX_RMDIR;
1436 		if (flags & FIGNORECASE)
1437 			txtype |= TX_CI;
1438 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1439 		    B_FALSE);
1440 	}
1441 
1442 	dmu_tx_commit(tx);
1443 
1444 	rw_exit(&zp->z_parent_lock);
1445 	rw_exit(&zp->z_name_lock);
1446 out:
1447 	zfs_dirent_unlock(dl);
1448 
1449 	zfs_znode_update_vfs(dzp);
1450 	zfs_znode_update_vfs(zp);
1451 	zrele(zp);
1452 
1453 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1454 		zil_commit(zilog, 0);
1455 
1456 	ZFS_EXIT(zfsvfs);
1457 	return (error);
1458 }
1459 
1460 /*
1461  * Read directory entries from the given directory cursor position and emit
1462  * name and position for each entry.
1463  *
1464  *	IN:	ip	- inode of directory to read.
1465  *		ctx	- directory entry context.
1466  *		cr	- credentials of caller.
1467  *
1468  *	RETURN:	0 if success
1469  *		error code if failure
1470  *
1471  * Timestamps:
1472  *	ip - atime updated
1473  *
1474  * Note that the low 4 bits of the cookie returned by zap is always zero.
1475  * This allows us to use the low range for "special" directory entries:
1476  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1477  * we use the offset 2 for the '.zfs' directory.
1478  */
1479 /* ARGSUSED */
1480 int
1481 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
1482 {
1483 	znode_t		*zp = ITOZ(ip);
1484 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
1485 	objset_t	*os;
1486 	zap_cursor_t	zc;
1487 	zap_attribute_t	zap;
1488 	int		error;
1489 	uint8_t		prefetch;
1490 	uint8_t		type;
1491 	int		done = 0;
1492 	uint64_t	parent;
1493 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1494 
1495 	ZFS_ENTER(zfsvfs);
1496 	ZFS_VERIFY_ZP(zp);
1497 
1498 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1499 	    &parent, sizeof (parent))) != 0)
1500 		goto out;
1501 
1502 	/*
1503 	 * Quit if directory has been removed (posix)
1504 	 */
1505 	if (zp->z_unlinked)
1506 		goto out;
1507 
1508 	error = 0;
1509 	os = zfsvfs->z_os;
1510 	offset = ctx->pos;
1511 	prefetch = zp->z_zn_prefetch;
1512 
1513 	/*
1514 	 * Initialize the iterator cursor.
1515 	 */
1516 	if (offset <= 3) {
1517 		/*
1518 		 * Start iteration from the beginning of the directory.
1519 		 */
1520 		zap_cursor_init(&zc, os, zp->z_id);
1521 	} else {
1522 		/*
1523 		 * The offset is a serialized cursor.
1524 		 */
1525 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1526 	}
1527 
1528 	/*
1529 	 * Transform to file-system independent format
1530 	 */
1531 	while (!done) {
1532 		uint64_t objnum;
1533 		/*
1534 		 * Special case `.', `..', and `.zfs'.
1535 		 */
1536 		if (offset == 0) {
1537 			(void) strcpy(zap.za_name, ".");
1538 			zap.za_normalization_conflict = 0;
1539 			objnum = zp->z_id;
1540 			type = DT_DIR;
1541 		} else if (offset == 1) {
1542 			(void) strcpy(zap.za_name, "..");
1543 			zap.za_normalization_conflict = 0;
1544 			objnum = parent;
1545 			type = DT_DIR;
1546 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1547 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1548 			zap.za_normalization_conflict = 0;
1549 			objnum = ZFSCTL_INO_ROOT;
1550 			type = DT_DIR;
1551 		} else {
1552 			/*
1553 			 * Grab next entry.
1554 			 */
1555 			if ((error = zap_cursor_retrieve(&zc, &zap))) {
1556 				if (error == ENOENT)
1557 					break;
1558 				else
1559 					goto update;
1560 			}
1561 
1562 			/*
1563 			 * Allow multiple entries provided the first entry is
1564 			 * the object id.  Non-zpl consumers may safely make
1565 			 * use of the additional space.
1566 			 *
1567 			 * XXX: This should be a feature flag for compatibility
1568 			 */
1569 			if (zap.za_integer_length != 8 ||
1570 			    zap.za_num_integers == 0) {
1571 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1572 				    "entry, obj = %lld, offset = %lld, "
1573 				    "length = %d, num = %lld\n",
1574 				    (u_longlong_t)zp->z_id,
1575 				    (u_longlong_t)offset,
1576 				    zap.za_integer_length,
1577 				    (u_longlong_t)zap.za_num_integers);
1578 				error = SET_ERROR(ENXIO);
1579 				goto update;
1580 			}
1581 
1582 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1583 			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1584 		}
1585 
1586 		done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
1587 		    objnum, type);
1588 		if (done)
1589 			break;
1590 
1591 		/* Prefetch znode */
1592 		if (prefetch) {
1593 			dmu_prefetch(os, objnum, 0, 0, 0,
1594 			    ZIO_PRIORITY_SYNC_READ);
1595 		}
1596 
1597 		/*
1598 		 * Move to the next entry, fill in the previous offset.
1599 		 */
1600 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1601 			zap_cursor_advance(&zc);
1602 			offset = zap_cursor_serialize(&zc);
1603 		} else {
1604 			offset += 1;
1605 		}
1606 		ctx->pos = offset;
1607 	}
1608 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1609 
1610 update:
1611 	zap_cursor_fini(&zc);
1612 	if (error == ENOENT)
1613 		error = 0;
1614 out:
1615 	ZFS_EXIT(zfsvfs);
1616 
1617 	return (error);
1618 }
1619 
1620 /*
1621  * Get the basic file attributes and place them in the provided kstat
1622  * structure.  The inode is assumed to be the authoritative source
1623  * for most of the attributes.  However, the znode currently has the
1624  * authoritative atime, blksize, and block count.
1625  *
1626  *	IN:	ip	- inode of file.
1627  *
1628  *	OUT:	sp	- kstat values.
1629  *
1630  *	RETURN:	0 (always succeeds)
1631  */
1632 /* ARGSUSED */
1633 int
1634 zfs_getattr_fast(struct user_namespace *user_ns, struct inode *ip,
1635     struct kstat *sp)
1636 {
1637 	znode_t *zp = ITOZ(ip);
1638 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1639 	uint32_t blksize;
1640 	u_longlong_t nblocks;
1641 
1642 	ZFS_ENTER(zfsvfs);
1643 	ZFS_VERIFY_ZP(zp);
1644 
1645 	mutex_enter(&zp->z_lock);
1646 
1647 	zpl_generic_fillattr(user_ns, ip, sp);
1648 	/*
1649 	 * +1 link count for root inode with visible '.zfs' directory.
1650 	 */
1651 	if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1652 		if (sp->nlink < ZFS_LINK_MAX)
1653 			sp->nlink++;
1654 
1655 	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1656 	sp->blksize = blksize;
1657 	sp->blocks = nblocks;
1658 
1659 	if (unlikely(zp->z_blksz == 0)) {
1660 		/*
1661 		 * Block size hasn't been set; suggest maximal I/O transfers.
1662 		 */
1663 		sp->blksize = zfsvfs->z_max_blksz;
1664 	}
1665 
1666 	mutex_exit(&zp->z_lock);
1667 
1668 	/*
1669 	 * Required to prevent NFS client from detecting different inode
1670 	 * numbers of snapshot root dentry before and after snapshot mount.
1671 	 */
1672 	if (zfsvfs->z_issnap) {
1673 		if (ip->i_sb->s_root->d_inode == ip)
1674 			sp->ino = ZFSCTL_INO_SNAPDIRS -
1675 			    dmu_objset_id(zfsvfs->z_os);
1676 	}
1677 
1678 	ZFS_EXIT(zfsvfs);
1679 
1680 	return (0);
1681 }
1682 
1683 /*
1684  * For the operation of changing file's user/group/project, we need to
1685  * handle not only the main object that is assigned to the file directly,
1686  * but also the ones that are used by the file via hidden xattr directory.
1687  *
1688  * Because the xattr directory may contains many EA entries, as to it may
1689  * be impossible to change all of them via the transaction of changing the
1690  * main object's user/group/project attributes. Then we have to change them
1691  * via other multiple independent transactions one by one. It may be not good
1692  * solution, but we have no better idea yet.
1693  */
1694 static int
1695 zfs_setattr_dir(znode_t *dzp)
1696 {
1697 	struct inode	*dxip = ZTOI(dzp);
1698 	struct inode	*xip = NULL;
1699 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1700 	objset_t	*os = zfsvfs->z_os;
1701 	zap_cursor_t	zc;
1702 	zap_attribute_t	zap;
1703 	zfs_dirlock_t	*dl;
1704 	znode_t		*zp = NULL;
1705 	dmu_tx_t	*tx = NULL;
1706 	uint64_t	uid, gid;
1707 	sa_bulk_attr_t	bulk[4];
1708 	int		count;
1709 	int		err;
1710 
1711 	zap_cursor_init(&zc, os, dzp->z_id);
1712 	while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
1713 		count = 0;
1714 		if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
1715 			err = ENXIO;
1716 			break;
1717 		}
1718 
1719 		err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
1720 		    ZEXISTS, NULL, NULL);
1721 		if (err == ENOENT)
1722 			goto next;
1723 		if (err)
1724 			break;
1725 
1726 		xip = ZTOI(zp);
1727 		if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1728 		    KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1729 		    zp->z_projid == dzp->z_projid)
1730 			goto next;
1731 
1732 		tx = dmu_tx_create(os);
1733 		if (!(zp->z_pflags & ZFS_PROJID))
1734 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1735 		else
1736 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1737 
1738 		err = dmu_tx_assign(tx, TXG_WAIT);
1739 		if (err)
1740 			break;
1741 
1742 		mutex_enter(&dzp->z_lock);
1743 
1744 		if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1745 			xip->i_uid = dxip->i_uid;
1746 			uid = zfs_uid_read(dxip);
1747 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1748 			    &uid, sizeof (uid));
1749 		}
1750 
1751 		if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1752 			xip->i_gid = dxip->i_gid;
1753 			gid = zfs_gid_read(dxip);
1754 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1755 			    &gid, sizeof (gid));
1756 		}
1757 
1758 		if (zp->z_projid != dzp->z_projid) {
1759 			if (!(zp->z_pflags & ZFS_PROJID)) {
1760 				zp->z_pflags |= ZFS_PROJID;
1761 				SA_ADD_BULK_ATTR(bulk, count,
1762 				    SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
1763 				    sizeof (zp->z_pflags));
1764 			}
1765 
1766 			zp->z_projid = dzp->z_projid;
1767 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
1768 			    NULL, &zp->z_projid, sizeof (zp->z_projid));
1769 		}
1770 
1771 		mutex_exit(&dzp->z_lock);
1772 
1773 		if (likely(count > 0)) {
1774 			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1775 			dmu_tx_commit(tx);
1776 		} else {
1777 			dmu_tx_abort(tx);
1778 		}
1779 		tx = NULL;
1780 		if (err != 0 && err != ENOENT)
1781 			break;
1782 
1783 next:
1784 		if (zp) {
1785 			zrele(zp);
1786 			zp = NULL;
1787 			zfs_dirent_unlock(dl);
1788 		}
1789 		zap_cursor_advance(&zc);
1790 	}
1791 
1792 	if (tx)
1793 		dmu_tx_abort(tx);
1794 	if (zp) {
1795 		zrele(zp);
1796 		zfs_dirent_unlock(dl);
1797 	}
1798 	zap_cursor_fini(&zc);
1799 
1800 	return (err == ENOENT ? 0 : err);
1801 }
1802 
1803 /*
1804  * Set the file attributes to the values contained in the
1805  * vattr structure.
1806  *
1807  *	IN:	zp	- znode of file to be modified.
1808  *		vap	- new attribute values.
1809  *			  If ATTR_XVATTR set, then optional attrs are being set
1810  *		flags	- ATTR_UTIME set if non-default time values provided.
1811  *			- ATTR_NOACLCHECK (CIFS context only).
1812  *		cr	- credentials of caller.
1813  *
1814  *	RETURN:	0 if success
1815  *		error code if failure
1816  *
1817  * Timestamps:
1818  *	ip - ctime updated, mtime updated if size changed.
1819  */
1820 /* ARGSUSED */
1821 int
1822 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr)
1823 {
1824 	struct inode	*ip;
1825 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1826 	objset_t	*os = zfsvfs->z_os;
1827 	zilog_t		*zilog;
1828 	dmu_tx_t	*tx;
1829 	vattr_t		oldva;
1830 	xvattr_t	*tmpxvattr;
1831 	uint_t		mask = vap->va_mask;
1832 	uint_t		saved_mask = 0;
1833 	int		trim_mask = 0;
1834 	uint64_t	new_mode;
1835 	uint64_t	new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1836 	uint64_t	xattr_obj;
1837 	uint64_t	mtime[2], ctime[2], atime[2];
1838 	uint64_t	projid = ZFS_INVALID_PROJID;
1839 	znode_t		*attrzp;
1840 	int		need_policy = FALSE;
1841 	int		err, err2 = 0;
1842 	zfs_fuid_info_t *fuidp = NULL;
1843 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
1844 	xoptattr_t	*xoap;
1845 	zfs_acl_t	*aclp;
1846 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1847 	boolean_t	fuid_dirtied = B_FALSE;
1848 	boolean_t	handle_eadir = B_FALSE;
1849 	sa_bulk_attr_t	*bulk, *xattr_bulk;
1850 	int		count = 0, xattr_count = 0, bulks = 8;
1851 
1852 	if (mask == 0)
1853 		return (0);
1854 
1855 	ZFS_ENTER(zfsvfs);
1856 	ZFS_VERIFY_ZP(zp);
1857 	ip = ZTOI(zp);
1858 
1859 	/*
1860 	 * If this is a xvattr_t, then get a pointer to the structure of
1861 	 * optional attributes.  If this is NULL, then we have a vattr_t.
1862 	 */
1863 	xoap = xva_getxoptattr(xvap);
1864 	if (xoap != NULL && (mask & ATTR_XVATTR)) {
1865 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1866 			if (!dmu_objset_projectquota_enabled(os) ||
1867 			    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1868 				ZFS_EXIT(zfsvfs);
1869 				return (SET_ERROR(ENOTSUP));
1870 			}
1871 
1872 			projid = xoap->xoa_projid;
1873 			if (unlikely(projid == ZFS_INVALID_PROJID)) {
1874 				ZFS_EXIT(zfsvfs);
1875 				return (SET_ERROR(EINVAL));
1876 			}
1877 
1878 			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1879 				projid = ZFS_INVALID_PROJID;
1880 			else
1881 				need_policy = TRUE;
1882 		}
1883 
1884 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1885 		    (xoap->xoa_projinherit !=
1886 		    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1887 		    (!dmu_objset_projectquota_enabled(os) ||
1888 		    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1889 			ZFS_EXIT(zfsvfs);
1890 			return (SET_ERROR(ENOTSUP));
1891 		}
1892 	}
1893 
1894 	zilog = zfsvfs->z_log;
1895 
1896 	/*
1897 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
1898 	 * that file system is at proper version level
1899 	 */
1900 
1901 	if (zfsvfs->z_use_fuids == B_FALSE &&
1902 	    (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
1903 	    ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
1904 	    (mask & ATTR_XVATTR))) {
1905 		ZFS_EXIT(zfsvfs);
1906 		return (SET_ERROR(EINVAL));
1907 	}
1908 
1909 	if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
1910 		ZFS_EXIT(zfsvfs);
1911 		return (SET_ERROR(EISDIR));
1912 	}
1913 
1914 	if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
1915 		ZFS_EXIT(zfsvfs);
1916 		return (SET_ERROR(EINVAL));
1917 	}
1918 
1919 	tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
1920 	xva_init(tmpxvattr);
1921 
1922 	bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1923 	xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1924 
1925 	/*
1926 	 * Immutable files can only alter immutable bit and atime
1927 	 */
1928 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
1929 	    ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
1930 	    ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
1931 		err = SET_ERROR(EPERM);
1932 		goto out3;
1933 	}
1934 
1935 	if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
1936 		err = SET_ERROR(EPERM);
1937 		goto out3;
1938 	}
1939 
1940 	/*
1941 	 * Verify timestamps doesn't overflow 32 bits.
1942 	 * ZFS can handle large timestamps, but 32bit syscalls can't
1943 	 * handle times greater than 2039.  This check should be removed
1944 	 * once large timestamps are fully supported.
1945 	 */
1946 	if (mask & (ATTR_ATIME | ATTR_MTIME)) {
1947 		if (((mask & ATTR_ATIME) &&
1948 		    TIMESPEC_OVERFLOW(&vap->va_atime)) ||
1949 		    ((mask & ATTR_MTIME) &&
1950 		    TIMESPEC_OVERFLOW(&vap->va_mtime))) {
1951 			err = SET_ERROR(EOVERFLOW);
1952 			goto out3;
1953 		}
1954 	}
1955 
1956 top:
1957 	attrzp = NULL;
1958 	aclp = NULL;
1959 
1960 	/* Can this be moved to before the top label? */
1961 	if (zfs_is_readonly(zfsvfs)) {
1962 		err = SET_ERROR(EROFS);
1963 		goto out3;
1964 	}
1965 
1966 	/*
1967 	 * First validate permissions
1968 	 */
1969 
1970 	if (mask & ATTR_SIZE) {
1971 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
1972 		if (err)
1973 			goto out3;
1974 
1975 		/*
1976 		 * XXX - Note, we are not providing any open
1977 		 * mode flags here (like FNDELAY), so we may
1978 		 * block if there are locks present... this
1979 		 * should be addressed in openat().
1980 		 */
1981 		/* XXX - would it be OK to generate a log record here? */
1982 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
1983 		if (err)
1984 			goto out3;
1985 	}
1986 
1987 	if (mask & (ATTR_ATIME|ATTR_MTIME) ||
1988 	    ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
1989 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
1990 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
1991 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
1992 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
1993 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
1994 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
1995 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
1996 		    skipaclchk, cr);
1997 	}
1998 
1999 	if (mask & (ATTR_UID|ATTR_GID)) {
2000 		int	idmask = (mask & (ATTR_UID|ATTR_GID));
2001 		int	take_owner;
2002 		int	take_group;
2003 
2004 		/*
2005 		 * NOTE: even if a new mode is being set,
2006 		 * we may clear S_ISUID/S_ISGID bits.
2007 		 */
2008 
2009 		if (!(mask & ATTR_MODE))
2010 			vap->va_mode = zp->z_mode;
2011 
2012 		/*
2013 		 * Take ownership or chgrp to group we are a member of
2014 		 */
2015 
2016 		take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
2017 		take_group = (mask & ATTR_GID) &&
2018 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2019 
2020 		/*
2021 		 * If both ATTR_UID and ATTR_GID are set then take_owner and
2022 		 * take_group must both be set in order to allow taking
2023 		 * ownership.
2024 		 *
2025 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2026 		 *
2027 		 */
2028 
2029 		if (((idmask == (ATTR_UID|ATTR_GID)) &&
2030 		    take_owner && take_group) ||
2031 		    ((idmask == ATTR_UID) && take_owner) ||
2032 		    ((idmask == ATTR_GID) && take_group)) {
2033 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2034 			    skipaclchk, cr) == 0) {
2035 				/*
2036 				 * Remove setuid/setgid for non-privileged users
2037 				 */
2038 				(void) secpolicy_setid_clear(vap, cr);
2039 				trim_mask = (mask & (ATTR_UID|ATTR_GID));
2040 			} else {
2041 				need_policy =  TRUE;
2042 			}
2043 		} else {
2044 			need_policy =  TRUE;
2045 		}
2046 	}
2047 
2048 	mutex_enter(&zp->z_lock);
2049 	oldva.va_mode = zp->z_mode;
2050 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2051 	if (mask & ATTR_XVATTR) {
2052 		/*
2053 		 * Update xvattr mask to include only those attributes
2054 		 * that are actually changing.
2055 		 *
2056 		 * the bits will be restored prior to actually setting
2057 		 * the attributes so the caller thinks they were set.
2058 		 */
2059 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2060 			if (xoap->xoa_appendonly !=
2061 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2062 				need_policy = TRUE;
2063 			} else {
2064 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2065 				XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2066 			}
2067 		}
2068 
2069 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2070 			if (xoap->xoa_projinherit !=
2071 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2072 				need_policy = TRUE;
2073 			} else {
2074 				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2075 				XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2076 			}
2077 		}
2078 
2079 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2080 			if (xoap->xoa_nounlink !=
2081 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2082 				need_policy = TRUE;
2083 			} else {
2084 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2085 				XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2086 			}
2087 		}
2088 
2089 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2090 			if (xoap->xoa_immutable !=
2091 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2092 				need_policy = TRUE;
2093 			} else {
2094 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2095 				XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2096 			}
2097 		}
2098 
2099 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2100 			if (xoap->xoa_nodump !=
2101 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2102 				need_policy = TRUE;
2103 			} else {
2104 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2105 				XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2106 			}
2107 		}
2108 
2109 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2110 			if (xoap->xoa_av_modified !=
2111 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2112 				need_policy = TRUE;
2113 			} else {
2114 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2115 				XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2116 			}
2117 		}
2118 
2119 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2120 			if ((!S_ISREG(ip->i_mode) &&
2121 			    xoap->xoa_av_quarantined) ||
2122 			    xoap->xoa_av_quarantined !=
2123 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2124 				need_policy = TRUE;
2125 			} else {
2126 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2127 				XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2128 			}
2129 		}
2130 
2131 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2132 			mutex_exit(&zp->z_lock);
2133 			err = SET_ERROR(EPERM);
2134 			goto out3;
2135 		}
2136 
2137 		if (need_policy == FALSE &&
2138 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2139 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2140 			need_policy = TRUE;
2141 		}
2142 	}
2143 
2144 	mutex_exit(&zp->z_lock);
2145 
2146 	if (mask & ATTR_MODE) {
2147 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2148 			err = secpolicy_setid_setsticky_clear(ip, vap,
2149 			    &oldva, cr);
2150 			if (err)
2151 				goto out3;
2152 
2153 			trim_mask |= ATTR_MODE;
2154 		} else {
2155 			need_policy = TRUE;
2156 		}
2157 	}
2158 
2159 	if (need_policy) {
2160 		/*
2161 		 * If trim_mask is set then take ownership
2162 		 * has been granted or write_acl is present and user
2163 		 * has the ability to modify mode.  In that case remove
2164 		 * UID|GID and or MODE from mask so that
2165 		 * secpolicy_vnode_setattr() doesn't revoke it.
2166 		 */
2167 
2168 		if (trim_mask) {
2169 			saved_mask = vap->va_mask;
2170 			vap->va_mask &= ~trim_mask;
2171 		}
2172 		err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2173 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2174 		if (err)
2175 			goto out3;
2176 
2177 		if (trim_mask)
2178 			vap->va_mask |= saved_mask;
2179 	}
2180 
2181 	/*
2182 	 * secpolicy_vnode_setattr, or take ownership may have
2183 	 * changed va_mask
2184 	 */
2185 	mask = vap->va_mask;
2186 
2187 	if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2188 		handle_eadir = B_TRUE;
2189 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2190 		    &xattr_obj, sizeof (xattr_obj));
2191 
2192 		if (err == 0 && xattr_obj) {
2193 			err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2194 			if (err)
2195 				goto out2;
2196 		}
2197 		if (mask & ATTR_UID) {
2198 			new_kuid = zfs_fuid_create(zfsvfs,
2199 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2200 			if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2201 			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2202 			    new_kuid)) {
2203 				if (attrzp)
2204 					zrele(attrzp);
2205 				err = SET_ERROR(EDQUOT);
2206 				goto out2;
2207 			}
2208 		}
2209 
2210 		if (mask & ATTR_GID) {
2211 			new_kgid = zfs_fuid_create(zfsvfs,
2212 			    (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2213 			if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2214 			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2215 			    new_kgid)) {
2216 				if (attrzp)
2217 					zrele(attrzp);
2218 				err = SET_ERROR(EDQUOT);
2219 				goto out2;
2220 			}
2221 		}
2222 
2223 		if (projid != ZFS_INVALID_PROJID &&
2224 		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2225 			if (attrzp)
2226 				zrele(attrzp);
2227 			err = EDQUOT;
2228 			goto out2;
2229 		}
2230 	}
2231 	tx = dmu_tx_create(os);
2232 
2233 	if (mask & ATTR_MODE) {
2234 		uint64_t pmode = zp->z_mode;
2235 		uint64_t acl_obj;
2236 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2237 
2238 		if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2239 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2240 			err = EPERM;
2241 			goto out;
2242 		}
2243 
2244 		if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2245 			goto out;
2246 
2247 		mutex_enter(&zp->z_lock);
2248 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2249 			/*
2250 			 * Are we upgrading ACL from old V0 format
2251 			 * to V1 format?
2252 			 */
2253 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2254 			    zfs_znode_acl_version(zp) ==
2255 			    ZFS_ACL_VERSION_INITIAL) {
2256 				dmu_tx_hold_free(tx, acl_obj, 0,
2257 				    DMU_OBJECT_END);
2258 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2259 				    0, aclp->z_acl_bytes);
2260 			} else {
2261 				dmu_tx_hold_write(tx, acl_obj, 0,
2262 				    aclp->z_acl_bytes);
2263 			}
2264 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2265 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2266 			    0, aclp->z_acl_bytes);
2267 		}
2268 		mutex_exit(&zp->z_lock);
2269 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2270 	} else {
2271 		if (((mask & ATTR_XVATTR) &&
2272 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2273 		    (projid != ZFS_INVALID_PROJID &&
2274 		    !(zp->z_pflags & ZFS_PROJID)))
2275 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2276 		else
2277 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2278 	}
2279 
2280 	if (attrzp) {
2281 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2282 	}
2283 
2284 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2285 	if (fuid_dirtied)
2286 		zfs_fuid_txhold(zfsvfs, tx);
2287 
2288 	zfs_sa_upgrade_txholds(tx, zp);
2289 
2290 	err = dmu_tx_assign(tx, TXG_WAIT);
2291 	if (err)
2292 		goto out;
2293 
2294 	count = 0;
2295 	/*
2296 	 * Set each attribute requested.
2297 	 * We group settings according to the locks they need to acquire.
2298 	 *
2299 	 * Note: you cannot set ctime directly, although it will be
2300 	 * updated as a side-effect of calling this function.
2301 	 */
2302 
2303 	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2304 		/*
2305 		 * For the existed object that is upgraded from old system,
2306 		 * its on-disk layout has no slot for the project ID attribute.
2307 		 * But quota accounting logic needs to access related slots by
2308 		 * offset directly. So we need to adjust old objects' layout
2309 		 * to make the project ID to some unified and fixed offset.
2310 		 */
2311 		if (attrzp)
2312 			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2313 		if (err == 0)
2314 			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2315 
2316 		if (unlikely(err == EEXIST))
2317 			err = 0;
2318 		else if (err != 0)
2319 			goto out;
2320 		else
2321 			projid = ZFS_INVALID_PROJID;
2322 	}
2323 
2324 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2325 		mutex_enter(&zp->z_acl_lock);
2326 	mutex_enter(&zp->z_lock);
2327 
2328 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2329 	    &zp->z_pflags, sizeof (zp->z_pflags));
2330 
2331 	if (attrzp) {
2332 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2333 			mutex_enter(&attrzp->z_acl_lock);
2334 		mutex_enter(&attrzp->z_lock);
2335 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2336 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2337 		    sizeof (attrzp->z_pflags));
2338 		if (projid != ZFS_INVALID_PROJID) {
2339 			attrzp->z_projid = projid;
2340 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2341 			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2342 			    sizeof (attrzp->z_projid));
2343 		}
2344 	}
2345 
2346 	if (mask & (ATTR_UID|ATTR_GID)) {
2347 
2348 		if (mask & ATTR_UID) {
2349 			ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2350 			new_uid = zfs_uid_read(ZTOI(zp));
2351 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2352 			    &new_uid, sizeof (new_uid));
2353 			if (attrzp) {
2354 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2355 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2356 				    sizeof (new_uid));
2357 				ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2358 			}
2359 		}
2360 
2361 		if (mask & ATTR_GID) {
2362 			ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2363 			new_gid = zfs_gid_read(ZTOI(zp));
2364 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2365 			    NULL, &new_gid, sizeof (new_gid));
2366 			if (attrzp) {
2367 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2368 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2369 				    sizeof (new_gid));
2370 				ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2371 			}
2372 		}
2373 		if (!(mask & ATTR_MODE)) {
2374 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2375 			    NULL, &new_mode, sizeof (new_mode));
2376 			new_mode = zp->z_mode;
2377 		}
2378 		err = zfs_acl_chown_setattr(zp);
2379 		ASSERT(err == 0);
2380 		if (attrzp) {
2381 			err = zfs_acl_chown_setattr(attrzp);
2382 			ASSERT(err == 0);
2383 		}
2384 	}
2385 
2386 	if (mask & ATTR_MODE) {
2387 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2388 		    &new_mode, sizeof (new_mode));
2389 		zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2390 		ASSERT3P(aclp, !=, NULL);
2391 		err = zfs_aclset_common(zp, aclp, cr, tx);
2392 		ASSERT0(err);
2393 		if (zp->z_acl_cached)
2394 			zfs_acl_free(zp->z_acl_cached);
2395 		zp->z_acl_cached = aclp;
2396 		aclp = NULL;
2397 	}
2398 
2399 	if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2400 		zp->z_atime_dirty = B_FALSE;
2401 		ZFS_TIME_ENCODE(&ip->i_atime, atime);
2402 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2403 		    &atime, sizeof (atime));
2404 	}
2405 
2406 	if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2407 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2408 		ZTOI(zp)->i_mtime = zpl_inode_timestamp_truncate(
2409 		    vap->va_mtime, ZTOI(zp));
2410 
2411 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2412 		    mtime, sizeof (mtime));
2413 	}
2414 
2415 	if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2416 		ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2417 		ZTOI(zp)->i_ctime = zpl_inode_timestamp_truncate(vap->va_ctime,
2418 		    ZTOI(zp));
2419 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2420 		    ctime, sizeof (ctime));
2421 	}
2422 
2423 	if (projid != ZFS_INVALID_PROJID) {
2424 		zp->z_projid = projid;
2425 		SA_ADD_BULK_ATTR(bulk, count,
2426 		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2427 		    sizeof (zp->z_projid));
2428 	}
2429 
2430 	if (attrzp && mask) {
2431 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2432 		    SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2433 		    sizeof (ctime));
2434 	}
2435 
2436 	/*
2437 	 * Do this after setting timestamps to prevent timestamp
2438 	 * update from toggling bit
2439 	 */
2440 
2441 	if (xoap && (mask & ATTR_XVATTR)) {
2442 
2443 		/*
2444 		 * restore trimmed off masks
2445 		 * so that return masks can be set for caller.
2446 		 */
2447 
2448 		if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2449 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2450 		}
2451 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2452 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2453 		}
2454 		if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2455 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2456 		}
2457 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2458 			XVA_SET_REQ(xvap, XAT_NODUMP);
2459 		}
2460 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2461 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2462 		}
2463 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2464 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2465 		}
2466 		if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2467 			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2468 		}
2469 
2470 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2471 			ASSERT(S_ISREG(ip->i_mode));
2472 
2473 		zfs_xvattr_set(zp, xvap, tx);
2474 	}
2475 
2476 	if (fuid_dirtied)
2477 		zfs_fuid_sync(zfsvfs, tx);
2478 
2479 	if (mask != 0)
2480 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2481 
2482 	mutex_exit(&zp->z_lock);
2483 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2484 		mutex_exit(&zp->z_acl_lock);
2485 
2486 	if (attrzp) {
2487 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2488 			mutex_exit(&attrzp->z_acl_lock);
2489 		mutex_exit(&attrzp->z_lock);
2490 	}
2491 out:
2492 	if (err == 0 && xattr_count > 0) {
2493 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2494 		    xattr_count, tx);
2495 		ASSERT(err2 == 0);
2496 	}
2497 
2498 	if (aclp)
2499 		zfs_acl_free(aclp);
2500 
2501 	if (fuidp) {
2502 		zfs_fuid_info_free(fuidp);
2503 		fuidp = NULL;
2504 	}
2505 
2506 	if (err) {
2507 		dmu_tx_abort(tx);
2508 		if (attrzp)
2509 			zrele(attrzp);
2510 		if (err == ERESTART)
2511 			goto top;
2512 	} else {
2513 		if (count > 0)
2514 			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2515 		dmu_tx_commit(tx);
2516 		if (attrzp) {
2517 			if (err2 == 0 && handle_eadir)
2518 				err2 = zfs_setattr_dir(attrzp);
2519 			zrele(attrzp);
2520 		}
2521 		zfs_znode_update_vfs(zp);
2522 	}
2523 
2524 out2:
2525 	if (os->os_sync == ZFS_SYNC_ALWAYS)
2526 		zil_commit(zilog, 0);
2527 
2528 out3:
2529 	kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2530 	kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2531 	kmem_free(tmpxvattr, sizeof (xvattr_t));
2532 	ZFS_EXIT(zfsvfs);
2533 	return (err);
2534 }
2535 
2536 typedef struct zfs_zlock {
2537 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2538 	znode_t		*zl_znode;	/* znode we held */
2539 	struct zfs_zlock *zl_next;	/* next in list */
2540 } zfs_zlock_t;
2541 
2542 /*
2543  * Drop locks and release vnodes that were held by zfs_rename_lock().
2544  */
2545 static void
2546 zfs_rename_unlock(zfs_zlock_t **zlpp)
2547 {
2548 	zfs_zlock_t *zl;
2549 
2550 	while ((zl = *zlpp) != NULL) {
2551 		if (zl->zl_znode != NULL)
2552 			zfs_zrele_async(zl->zl_znode);
2553 		rw_exit(zl->zl_rwlock);
2554 		*zlpp = zl->zl_next;
2555 		kmem_free(zl, sizeof (*zl));
2556 	}
2557 }
2558 
2559 /*
2560  * Search back through the directory tree, using the ".." entries.
2561  * Lock each directory in the chain to prevent concurrent renames.
2562  * Fail any attempt to move a directory into one of its own descendants.
2563  * XXX - z_parent_lock can overlap with map or grow locks
2564  */
2565 static int
2566 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2567 {
2568 	zfs_zlock_t	*zl;
2569 	znode_t		*zp = tdzp;
2570 	uint64_t	rootid = ZTOZSB(zp)->z_root;
2571 	uint64_t	oidp = zp->z_id;
2572 	krwlock_t	*rwlp = &szp->z_parent_lock;
2573 	krw_t		rw = RW_WRITER;
2574 
2575 	/*
2576 	 * First pass write-locks szp and compares to zp->z_id.
2577 	 * Later passes read-lock zp and compare to zp->z_parent.
2578 	 */
2579 	do {
2580 		if (!rw_tryenter(rwlp, rw)) {
2581 			/*
2582 			 * Another thread is renaming in this path.
2583 			 * Note that if we are a WRITER, we don't have any
2584 			 * parent_locks held yet.
2585 			 */
2586 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2587 				/*
2588 				 * Drop our locks and restart
2589 				 */
2590 				zfs_rename_unlock(&zl);
2591 				*zlpp = NULL;
2592 				zp = tdzp;
2593 				oidp = zp->z_id;
2594 				rwlp = &szp->z_parent_lock;
2595 				rw = RW_WRITER;
2596 				continue;
2597 			} else {
2598 				/*
2599 				 * Wait for other thread to drop its locks
2600 				 */
2601 				rw_enter(rwlp, rw);
2602 			}
2603 		}
2604 
2605 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2606 		zl->zl_rwlock = rwlp;
2607 		zl->zl_znode = NULL;
2608 		zl->zl_next = *zlpp;
2609 		*zlpp = zl;
2610 
2611 		if (oidp == szp->z_id)		/* We're a descendant of szp */
2612 			return (SET_ERROR(EINVAL));
2613 
2614 		if (oidp == rootid)		/* We've hit the top */
2615 			return (0);
2616 
2617 		if (rw == RW_READER) {		/* i.e. not the first pass */
2618 			int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2619 			if (error)
2620 				return (error);
2621 			zl->zl_znode = zp;
2622 		}
2623 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2624 		    &oidp, sizeof (oidp));
2625 		rwlp = &zp->z_parent_lock;
2626 		rw = RW_READER;
2627 
2628 	} while (zp->z_id != sdzp->z_id);
2629 
2630 	return (0);
2631 }
2632 
2633 /*
2634  * Move an entry from the provided source directory to the target
2635  * directory.  Change the entry name as indicated.
2636  *
2637  *	IN:	sdzp	- Source directory containing the "old entry".
2638  *		snm	- Old entry name.
2639  *		tdzp	- Target directory to contain the "new entry".
2640  *		tnm	- New entry name.
2641  *		cr	- credentials of caller.
2642  *		flags	- case flags
2643  *
2644  *	RETURN:	0 on success, error code on failure.
2645  *
2646  * Timestamps:
2647  *	sdzp,tdzp - ctime|mtime updated
2648  */
2649 /*ARGSUSED*/
2650 int
2651 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2652     cred_t *cr, int flags)
2653 {
2654 	znode_t		*szp, *tzp;
2655 	zfsvfs_t	*zfsvfs = ZTOZSB(sdzp);
2656 	zilog_t		*zilog;
2657 	zfs_dirlock_t	*sdl, *tdl;
2658 	dmu_tx_t	*tx;
2659 	zfs_zlock_t	*zl;
2660 	int		cmp, serr, terr;
2661 	int		error = 0;
2662 	int		zflg = 0;
2663 	boolean_t	waited = B_FALSE;
2664 
2665 	if (snm == NULL || tnm == NULL)
2666 		return (SET_ERROR(EINVAL));
2667 
2668 	ZFS_ENTER(zfsvfs);
2669 	ZFS_VERIFY_ZP(sdzp);
2670 	zilog = zfsvfs->z_log;
2671 
2672 	ZFS_VERIFY_ZP(tdzp);
2673 
2674 	/*
2675 	 * We check i_sb because snapshots and the ctldir must have different
2676 	 * super blocks.
2677 	 */
2678 	if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2679 	    zfsctl_is_node(ZTOI(tdzp))) {
2680 		ZFS_EXIT(zfsvfs);
2681 		return (SET_ERROR(EXDEV));
2682 	}
2683 
2684 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2685 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2686 		ZFS_EXIT(zfsvfs);
2687 		return (SET_ERROR(EILSEQ));
2688 	}
2689 
2690 	if (flags & FIGNORECASE)
2691 		zflg |= ZCILOOK;
2692 
2693 top:
2694 	szp = NULL;
2695 	tzp = NULL;
2696 	zl = NULL;
2697 
2698 	/*
2699 	 * This is to prevent the creation of links into attribute space
2700 	 * by renaming a linked file into/outof an attribute directory.
2701 	 * See the comment in zfs_link() for why this is considered bad.
2702 	 */
2703 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2704 		ZFS_EXIT(zfsvfs);
2705 		return (SET_ERROR(EINVAL));
2706 	}
2707 
2708 	/*
2709 	 * Lock source and target directory entries.  To prevent deadlock,
2710 	 * a lock ordering must be defined.  We lock the directory with
2711 	 * the smallest object id first, or if it's a tie, the one with
2712 	 * the lexically first name.
2713 	 */
2714 	if (sdzp->z_id < tdzp->z_id) {
2715 		cmp = -1;
2716 	} else if (sdzp->z_id > tdzp->z_id) {
2717 		cmp = 1;
2718 	} else {
2719 		/*
2720 		 * First compare the two name arguments without
2721 		 * considering any case folding.
2722 		 */
2723 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2724 
2725 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2726 		ASSERT(error == 0 || !zfsvfs->z_utf8);
2727 		if (cmp == 0) {
2728 			/*
2729 			 * POSIX: "If the old argument and the new argument
2730 			 * both refer to links to the same existing file,
2731 			 * the rename() function shall return successfully
2732 			 * and perform no other action."
2733 			 */
2734 			ZFS_EXIT(zfsvfs);
2735 			return (0);
2736 		}
2737 		/*
2738 		 * If the file system is case-folding, then we may
2739 		 * have some more checking to do.  A case-folding file
2740 		 * system is either supporting mixed case sensitivity
2741 		 * access or is completely case-insensitive.  Note
2742 		 * that the file system is always case preserving.
2743 		 *
2744 		 * In mixed sensitivity mode case sensitive behavior
2745 		 * is the default.  FIGNORECASE must be used to
2746 		 * explicitly request case insensitive behavior.
2747 		 *
2748 		 * If the source and target names provided differ only
2749 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
2750 		 * we will treat this as a special case in the
2751 		 * case-insensitive mode: as long as the source name
2752 		 * is an exact match, we will allow this to proceed as
2753 		 * a name-change request.
2754 		 */
2755 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2756 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
2757 		    flags & FIGNORECASE)) &&
2758 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2759 		    &error) == 0) {
2760 			/*
2761 			 * case preserving rename request, require exact
2762 			 * name matches
2763 			 */
2764 			zflg |= ZCIEXACT;
2765 			zflg &= ~ZCILOOK;
2766 		}
2767 	}
2768 
2769 	/*
2770 	 * If the source and destination directories are the same, we should
2771 	 * grab the z_name_lock of that directory only once.
2772 	 */
2773 	if (sdzp == tdzp) {
2774 		zflg |= ZHAVELOCK;
2775 		rw_enter(&sdzp->z_name_lock, RW_READER);
2776 	}
2777 
2778 	if (cmp < 0) {
2779 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2780 		    ZEXISTS | zflg, NULL, NULL);
2781 		terr = zfs_dirent_lock(&tdl,
2782 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2783 	} else {
2784 		terr = zfs_dirent_lock(&tdl,
2785 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
2786 		serr = zfs_dirent_lock(&sdl,
2787 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2788 		    NULL, NULL);
2789 	}
2790 
2791 	if (serr) {
2792 		/*
2793 		 * Source entry invalid or not there.
2794 		 */
2795 		if (!terr) {
2796 			zfs_dirent_unlock(tdl);
2797 			if (tzp)
2798 				zrele(tzp);
2799 		}
2800 
2801 		if (sdzp == tdzp)
2802 			rw_exit(&sdzp->z_name_lock);
2803 
2804 		if (strcmp(snm, "..") == 0)
2805 			serr = EINVAL;
2806 		ZFS_EXIT(zfsvfs);
2807 		return (serr);
2808 	}
2809 	if (terr) {
2810 		zfs_dirent_unlock(sdl);
2811 		zrele(szp);
2812 
2813 		if (sdzp == tdzp)
2814 			rw_exit(&sdzp->z_name_lock);
2815 
2816 		if (strcmp(tnm, "..") == 0)
2817 			terr = EINVAL;
2818 		ZFS_EXIT(zfsvfs);
2819 		return (terr);
2820 	}
2821 
2822 	/*
2823 	 * If we are using project inheritance, means if the directory has
2824 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2825 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2826 	 * such case, we only allow renames into our tree when the project
2827 	 * IDs are the same.
2828 	 */
2829 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2830 	    tdzp->z_projid != szp->z_projid) {
2831 		error = SET_ERROR(EXDEV);
2832 		goto out;
2833 	}
2834 
2835 	/*
2836 	 * Must have write access at the source to remove the old entry
2837 	 * and write access at the target to create the new entry.
2838 	 * Note that if target and source are the same, this can be
2839 	 * done in a single check.
2840 	 */
2841 
2842 	if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
2843 		goto out;
2844 
2845 	if (S_ISDIR(ZTOI(szp)->i_mode)) {
2846 		/*
2847 		 * Check to make sure rename is valid.
2848 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2849 		 */
2850 		if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2851 			goto out;
2852 	}
2853 
2854 	/*
2855 	 * Does target exist?
2856 	 */
2857 	if (tzp) {
2858 		/*
2859 		 * Source and target must be the same type.
2860 		 */
2861 		if (S_ISDIR(ZTOI(szp)->i_mode)) {
2862 			if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
2863 				error = SET_ERROR(ENOTDIR);
2864 				goto out;
2865 			}
2866 		} else {
2867 			if (S_ISDIR(ZTOI(tzp)->i_mode)) {
2868 				error = SET_ERROR(EISDIR);
2869 				goto out;
2870 			}
2871 		}
2872 		/*
2873 		 * POSIX dictates that when the source and target
2874 		 * entries refer to the same file object, rename
2875 		 * must do nothing and exit without error.
2876 		 */
2877 		if (szp->z_id == tzp->z_id) {
2878 			error = 0;
2879 			goto out;
2880 		}
2881 	}
2882 
2883 	tx = dmu_tx_create(zfsvfs->z_os);
2884 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
2885 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2886 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
2887 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
2888 	if (sdzp != tdzp) {
2889 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
2890 		zfs_sa_upgrade_txholds(tx, tdzp);
2891 	}
2892 	if (tzp) {
2893 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
2894 		zfs_sa_upgrade_txholds(tx, tzp);
2895 	}
2896 
2897 	zfs_sa_upgrade_txholds(tx, szp);
2898 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2899 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2900 	if (error) {
2901 		if (zl != NULL)
2902 			zfs_rename_unlock(&zl);
2903 		zfs_dirent_unlock(sdl);
2904 		zfs_dirent_unlock(tdl);
2905 
2906 		if (sdzp == tdzp)
2907 			rw_exit(&sdzp->z_name_lock);
2908 
2909 		if (error == ERESTART) {
2910 			waited = B_TRUE;
2911 			dmu_tx_wait(tx);
2912 			dmu_tx_abort(tx);
2913 			zrele(szp);
2914 			if (tzp)
2915 				zrele(tzp);
2916 			goto top;
2917 		}
2918 		dmu_tx_abort(tx);
2919 		zrele(szp);
2920 		if (tzp)
2921 			zrele(tzp);
2922 		ZFS_EXIT(zfsvfs);
2923 		return (error);
2924 	}
2925 
2926 	if (tzp)	/* Attempt to remove the existing target */
2927 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
2928 
2929 	if (error == 0) {
2930 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
2931 		if (error == 0) {
2932 			szp->z_pflags |= ZFS_AV_MODIFIED;
2933 			if (tdzp->z_pflags & ZFS_PROJINHERIT)
2934 				szp->z_pflags |= ZFS_PROJINHERIT;
2935 
2936 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
2937 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
2938 			ASSERT0(error);
2939 
2940 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
2941 			if (error == 0) {
2942 				zfs_log_rename(zilog, tx, TX_RENAME |
2943 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
2944 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
2945 			} else {
2946 				/*
2947 				 * At this point, we have successfully created
2948 				 * the target name, but have failed to remove
2949 				 * the source name.  Since the create was done
2950 				 * with the ZRENAMING flag, there are
2951 				 * complications; for one, the link count is
2952 				 * wrong.  The easiest way to deal with this
2953 				 * is to remove the newly created target, and
2954 				 * return the original error.  This must
2955 				 * succeed; fortunately, it is very unlikely to
2956 				 * fail, since we just created it.
2957 				 */
2958 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
2959 				    ZRENAMING, NULL), ==, 0);
2960 			}
2961 		} else {
2962 			/*
2963 			 * If we had removed the existing target, subsequent
2964 			 * call to zfs_link_create() to add back the same entry
2965 			 * but, the new dnode (szp) should not fail.
2966 			 */
2967 			ASSERT(tzp == NULL);
2968 		}
2969 	}
2970 
2971 	dmu_tx_commit(tx);
2972 out:
2973 	if (zl != NULL)
2974 		zfs_rename_unlock(&zl);
2975 
2976 	zfs_dirent_unlock(sdl);
2977 	zfs_dirent_unlock(tdl);
2978 
2979 	zfs_znode_update_vfs(sdzp);
2980 	if (sdzp == tdzp)
2981 		rw_exit(&sdzp->z_name_lock);
2982 
2983 	if (sdzp != tdzp)
2984 		zfs_znode_update_vfs(tdzp);
2985 
2986 	zfs_znode_update_vfs(szp);
2987 	zrele(szp);
2988 	if (tzp) {
2989 		zfs_znode_update_vfs(tzp);
2990 		zrele(tzp);
2991 	}
2992 
2993 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2994 		zil_commit(zilog, 0);
2995 
2996 	ZFS_EXIT(zfsvfs);
2997 	return (error);
2998 }
2999 
3000 /*
3001  * Insert the indicated symbolic reference entry into the directory.
3002  *
3003  *	IN:	dzp	- Directory to contain new symbolic link.
3004  *		name	- Name of directory entry in dip.
3005  *		vap	- Attributes of new entry.
3006  *		link	- Name for new symlink entry.
3007  *		cr	- credentials of caller.
3008  *		flags	- case flags
3009  *
3010  *	OUT:	zpp	- Znode for new symbolic link.
3011  *
3012  *	RETURN:	0 on success, error code on failure.
3013  *
3014  * Timestamps:
3015  *	dip - ctime|mtime updated
3016  */
3017 /*ARGSUSED*/
3018 int
3019 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3020     znode_t **zpp, cred_t *cr, int flags)
3021 {
3022 	znode_t		*zp;
3023 	zfs_dirlock_t	*dl;
3024 	dmu_tx_t	*tx;
3025 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
3026 	zilog_t		*zilog;
3027 	uint64_t	len = strlen(link);
3028 	int		error;
3029 	int		zflg = ZNEW;
3030 	zfs_acl_ids_t	acl_ids;
3031 	boolean_t	fuid_dirtied;
3032 	uint64_t	txtype = TX_SYMLINK;
3033 	boolean_t	waited = B_FALSE;
3034 
3035 	ASSERT(S_ISLNK(vap->va_mode));
3036 
3037 	if (name == NULL)
3038 		return (SET_ERROR(EINVAL));
3039 
3040 	ZFS_ENTER(zfsvfs);
3041 	ZFS_VERIFY_ZP(dzp);
3042 	zilog = zfsvfs->z_log;
3043 
3044 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3045 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3046 		ZFS_EXIT(zfsvfs);
3047 		return (SET_ERROR(EILSEQ));
3048 	}
3049 	if (flags & FIGNORECASE)
3050 		zflg |= ZCILOOK;
3051 
3052 	if (len > MAXPATHLEN) {
3053 		ZFS_EXIT(zfsvfs);
3054 		return (SET_ERROR(ENAMETOOLONG));
3055 	}
3056 
3057 	if ((error = zfs_acl_ids_create(dzp, 0,
3058 	    vap, cr, NULL, &acl_ids)) != 0) {
3059 		ZFS_EXIT(zfsvfs);
3060 		return (error);
3061 	}
3062 top:
3063 	*zpp = NULL;
3064 
3065 	/*
3066 	 * Attempt to lock directory; fail if entry already exists.
3067 	 */
3068 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3069 	if (error) {
3070 		zfs_acl_ids_free(&acl_ids);
3071 		ZFS_EXIT(zfsvfs);
3072 		return (error);
3073 	}
3074 
3075 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3076 		zfs_acl_ids_free(&acl_ids);
3077 		zfs_dirent_unlock(dl);
3078 		ZFS_EXIT(zfsvfs);
3079 		return (error);
3080 	}
3081 
3082 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3083 		zfs_acl_ids_free(&acl_ids);
3084 		zfs_dirent_unlock(dl);
3085 		ZFS_EXIT(zfsvfs);
3086 		return (SET_ERROR(EDQUOT));
3087 	}
3088 	tx = dmu_tx_create(zfsvfs->z_os);
3089 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3090 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3091 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3092 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3093 	    ZFS_SA_BASE_ATTR_SIZE + len);
3094 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3095 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3096 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3097 		    acl_ids.z_aclp->z_acl_bytes);
3098 	}
3099 	if (fuid_dirtied)
3100 		zfs_fuid_txhold(zfsvfs, tx);
3101 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3102 	if (error) {
3103 		zfs_dirent_unlock(dl);
3104 		if (error == ERESTART) {
3105 			waited = B_TRUE;
3106 			dmu_tx_wait(tx);
3107 			dmu_tx_abort(tx);
3108 			goto top;
3109 		}
3110 		zfs_acl_ids_free(&acl_ids);
3111 		dmu_tx_abort(tx);
3112 		ZFS_EXIT(zfsvfs);
3113 		return (error);
3114 	}
3115 
3116 	/*
3117 	 * Create a new object for the symlink.
3118 	 * for version 4 ZPL datasets the symlink will be an SA attribute
3119 	 */
3120 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3121 
3122 	if (fuid_dirtied)
3123 		zfs_fuid_sync(zfsvfs, tx);
3124 
3125 	mutex_enter(&zp->z_lock);
3126 	if (zp->z_is_sa)
3127 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3128 		    link, len, tx);
3129 	else
3130 		zfs_sa_symlink(zp, link, len, tx);
3131 	mutex_exit(&zp->z_lock);
3132 
3133 	zp->z_size = len;
3134 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3135 	    &zp->z_size, sizeof (zp->z_size), tx);
3136 	/*
3137 	 * Insert the new object into the directory.
3138 	 */
3139 	error = zfs_link_create(dl, zp, tx, ZNEW);
3140 	if (error != 0) {
3141 		zfs_znode_delete(zp, tx);
3142 		remove_inode_hash(ZTOI(zp));
3143 	} else {
3144 		if (flags & FIGNORECASE)
3145 			txtype |= TX_CI;
3146 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3147 
3148 		zfs_znode_update_vfs(dzp);
3149 		zfs_znode_update_vfs(zp);
3150 	}
3151 
3152 	zfs_acl_ids_free(&acl_ids);
3153 
3154 	dmu_tx_commit(tx);
3155 
3156 	zfs_dirent_unlock(dl);
3157 
3158 	if (error == 0) {
3159 		*zpp = zp;
3160 
3161 		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3162 			zil_commit(zilog, 0);
3163 	} else {
3164 		zrele(zp);
3165 	}
3166 
3167 	ZFS_EXIT(zfsvfs);
3168 	return (error);
3169 }
3170 
3171 /*
3172  * Return, in the buffer contained in the provided uio structure,
3173  * the symbolic path referred to by ip.
3174  *
3175  *	IN:	ip	- inode of symbolic link
3176  *		uio	- structure to contain the link path.
3177  *		cr	- credentials of caller.
3178  *
3179  *	RETURN:	0 if success
3180  *		error code if failure
3181  *
3182  * Timestamps:
3183  *	ip - atime updated
3184  */
3185 /* ARGSUSED */
3186 int
3187 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3188 {
3189 	znode_t		*zp = ITOZ(ip);
3190 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3191 	int		error;
3192 
3193 	ZFS_ENTER(zfsvfs);
3194 	ZFS_VERIFY_ZP(zp);
3195 
3196 	mutex_enter(&zp->z_lock);
3197 	if (zp->z_is_sa)
3198 		error = sa_lookup_uio(zp->z_sa_hdl,
3199 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3200 	else
3201 		error = zfs_sa_readlink(zp, uio);
3202 	mutex_exit(&zp->z_lock);
3203 
3204 	ZFS_EXIT(zfsvfs);
3205 	return (error);
3206 }
3207 
3208 /*
3209  * Insert a new entry into directory tdzp referencing szp.
3210  *
3211  *	IN:	tdzp	- Directory to contain new entry.
3212  *		szp	- znode of new entry.
3213  *		name	- name of new entry.
3214  *		cr	- credentials of caller.
3215  *		flags	- case flags.
3216  *
3217  *	RETURN:	0 if success
3218  *		error code if failure
3219  *
3220  * Timestamps:
3221  *	tdzp - ctime|mtime updated
3222  *	 szp - ctime updated
3223  */
3224 /* ARGSUSED */
3225 int
3226 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3227     int flags)
3228 {
3229 	struct inode *sip = ZTOI(szp);
3230 	znode_t		*tzp;
3231 	zfsvfs_t	*zfsvfs = ZTOZSB(tdzp);
3232 	zilog_t		*zilog;
3233 	zfs_dirlock_t	*dl;
3234 	dmu_tx_t	*tx;
3235 	int		error;
3236 	int		zf = ZNEW;
3237 	uint64_t	parent;
3238 	uid_t		owner;
3239 	boolean_t	waited = B_FALSE;
3240 	boolean_t	is_tmpfile = 0;
3241 	uint64_t	txg;
3242 #ifdef HAVE_TMPFILE
3243 	is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3244 #endif
3245 	ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3246 
3247 	if (name == NULL)
3248 		return (SET_ERROR(EINVAL));
3249 
3250 	ZFS_ENTER(zfsvfs);
3251 	ZFS_VERIFY_ZP(tdzp);
3252 	zilog = zfsvfs->z_log;
3253 
3254 	/*
3255 	 * POSIX dictates that we return EPERM here.
3256 	 * Better choices include ENOTSUP or EISDIR.
3257 	 */
3258 	if (S_ISDIR(sip->i_mode)) {
3259 		ZFS_EXIT(zfsvfs);
3260 		return (SET_ERROR(EPERM));
3261 	}
3262 
3263 	ZFS_VERIFY_ZP(szp);
3264 
3265 	/*
3266 	 * If we are using project inheritance, means if the directory has
3267 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3268 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3269 	 * such case, we only allow hard link creation in our tree when the
3270 	 * project IDs are the same.
3271 	 */
3272 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3273 	    tdzp->z_projid != szp->z_projid) {
3274 		ZFS_EXIT(zfsvfs);
3275 		return (SET_ERROR(EXDEV));
3276 	}
3277 
3278 	/*
3279 	 * We check i_sb because snapshots and the ctldir must have different
3280 	 * super blocks.
3281 	 */
3282 	if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3283 		ZFS_EXIT(zfsvfs);
3284 		return (SET_ERROR(EXDEV));
3285 	}
3286 
3287 	/* Prevent links to .zfs/shares files */
3288 
3289 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3290 	    &parent, sizeof (uint64_t))) != 0) {
3291 		ZFS_EXIT(zfsvfs);
3292 		return (error);
3293 	}
3294 	if (parent == zfsvfs->z_shares_dir) {
3295 		ZFS_EXIT(zfsvfs);
3296 		return (SET_ERROR(EPERM));
3297 	}
3298 
3299 	if (zfsvfs->z_utf8 && u8_validate(name,
3300 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3301 		ZFS_EXIT(zfsvfs);
3302 		return (SET_ERROR(EILSEQ));
3303 	}
3304 	if (flags & FIGNORECASE)
3305 		zf |= ZCILOOK;
3306 
3307 	/*
3308 	 * We do not support links between attributes and non-attributes
3309 	 * because of the potential security risk of creating links
3310 	 * into "normal" file space in order to circumvent restrictions
3311 	 * imposed in attribute space.
3312 	 */
3313 	if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3314 		ZFS_EXIT(zfsvfs);
3315 		return (SET_ERROR(EINVAL));
3316 	}
3317 
3318 	owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3319 	    cr, ZFS_OWNER);
3320 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3321 		ZFS_EXIT(zfsvfs);
3322 		return (SET_ERROR(EPERM));
3323 	}
3324 
3325 	if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3326 		ZFS_EXIT(zfsvfs);
3327 		return (error);
3328 	}
3329 
3330 top:
3331 	/*
3332 	 * Attempt to lock directory; fail if entry already exists.
3333 	 */
3334 	error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3335 	if (error) {
3336 		ZFS_EXIT(zfsvfs);
3337 		return (error);
3338 	}
3339 
3340 	tx = dmu_tx_create(zfsvfs->z_os);
3341 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3342 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3343 	if (is_tmpfile)
3344 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3345 
3346 	zfs_sa_upgrade_txholds(tx, szp);
3347 	zfs_sa_upgrade_txholds(tx, tdzp);
3348 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3349 	if (error) {
3350 		zfs_dirent_unlock(dl);
3351 		if (error == ERESTART) {
3352 			waited = B_TRUE;
3353 			dmu_tx_wait(tx);
3354 			dmu_tx_abort(tx);
3355 			goto top;
3356 		}
3357 		dmu_tx_abort(tx);
3358 		ZFS_EXIT(zfsvfs);
3359 		return (error);
3360 	}
3361 	/* unmark z_unlinked so zfs_link_create will not reject */
3362 	if (is_tmpfile)
3363 		szp->z_unlinked = B_FALSE;
3364 	error = zfs_link_create(dl, szp, tx, 0);
3365 
3366 	if (error == 0) {
3367 		uint64_t txtype = TX_LINK;
3368 		/*
3369 		 * tmpfile is created to be in z_unlinkedobj, so remove it.
3370 		 * Also, we don't log in ZIL, because all previous file
3371 		 * operation on the tmpfile are ignored by ZIL. Instead we
3372 		 * always wait for txg to sync to make sure all previous
3373 		 * operation are sync safe.
3374 		 */
3375 		if (is_tmpfile) {
3376 			VERIFY(zap_remove_int(zfsvfs->z_os,
3377 			    zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3378 		} else {
3379 			if (flags & FIGNORECASE)
3380 				txtype |= TX_CI;
3381 			zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3382 		}
3383 	} else if (is_tmpfile) {
3384 		/* restore z_unlinked since when linking failed */
3385 		szp->z_unlinked = B_TRUE;
3386 	}
3387 	txg = dmu_tx_get_txg(tx);
3388 	dmu_tx_commit(tx);
3389 
3390 	zfs_dirent_unlock(dl);
3391 
3392 	if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3393 		zil_commit(zilog, 0);
3394 
3395 	if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
3396 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
3397 
3398 	zfs_znode_update_vfs(tdzp);
3399 	zfs_znode_update_vfs(szp);
3400 	ZFS_EXIT(zfsvfs);
3401 	return (error);
3402 }
3403 
3404 static void
3405 zfs_putpage_commit_cb(void *arg)
3406 {
3407 	struct page *pp = arg;
3408 
3409 	ClearPageError(pp);
3410 	end_page_writeback(pp);
3411 }
3412 
3413 /*
3414  * Push a page out to disk, once the page is on stable storage the
3415  * registered commit callback will be run as notification of completion.
3416  *
3417  *	IN:	ip	- page mapped for inode.
3418  *		pp	- page to push (page is locked)
3419  *		wbc	- writeback control data
3420  *
3421  *	RETURN:	0 if success
3422  *		error code if failure
3423  *
3424  * Timestamps:
3425  *	ip - ctime|mtime updated
3426  */
3427 /* ARGSUSED */
3428 int
3429 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
3430 {
3431 	znode_t		*zp = ITOZ(ip);
3432 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3433 	loff_t		offset;
3434 	loff_t		pgoff;
3435 	unsigned int	pglen;
3436 	dmu_tx_t	*tx;
3437 	caddr_t		va;
3438 	int		err = 0;
3439 	uint64_t	mtime[2], ctime[2];
3440 	sa_bulk_attr_t	bulk[3];
3441 	int		cnt = 0;
3442 	struct address_space *mapping;
3443 
3444 	ZFS_ENTER(zfsvfs);
3445 	ZFS_VERIFY_ZP(zp);
3446 
3447 	ASSERT(PageLocked(pp));
3448 
3449 	pgoff = page_offset(pp);	/* Page byte-offset in file */
3450 	offset = i_size_read(ip);	/* File length in bytes */
3451 	pglen = MIN(PAGE_SIZE,		/* Page length in bytes */
3452 	    P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3453 
3454 	/* Page is beyond end of file */
3455 	if (pgoff >= offset) {
3456 		unlock_page(pp);
3457 		ZFS_EXIT(zfsvfs);
3458 		return (0);
3459 	}
3460 
3461 	/* Truncate page length to end of file */
3462 	if (pgoff + pglen > offset)
3463 		pglen = offset - pgoff;
3464 
3465 #if 0
3466 	/*
3467 	 * FIXME: Allow mmap writes past its quota.  The correct fix
3468 	 * is to register a page_mkwrite() handler to count the page
3469 	 * against its quota when it is about to be dirtied.
3470 	 */
3471 	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3472 	    KUID_TO_SUID(ip->i_uid)) ||
3473 	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3474 	    KGID_TO_SGID(ip->i_gid)) ||
3475 	    (zp->z_projid != ZFS_DEFAULT_PROJID &&
3476 	    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3477 	    zp->z_projid))) {
3478 		err = EDQUOT;
3479 	}
3480 #endif
3481 
3482 	/*
3483 	 * The ordering here is critical and must adhere to the following
3484 	 * rules in order to avoid deadlocking in either zfs_read() or
3485 	 * zfs_free_range() due to a lock inversion.
3486 	 *
3487 	 * 1) The page must be unlocked prior to acquiring the range lock.
3488 	 *    This is critical because zfs_read() calls find_lock_page()
3489 	 *    which may block on the page lock while holding the range lock.
3490 	 *
3491 	 * 2) Before setting or clearing write back on a page the range lock
3492 	 *    must be held in order to prevent a lock inversion with the
3493 	 *    zfs_free_range() function.
3494 	 *
3495 	 * This presents a problem because upon entering this function the
3496 	 * page lock is already held.  To safely acquire the range lock the
3497 	 * page lock must be dropped.  This creates a window where another
3498 	 * process could truncate, invalidate, dirty, or write out the page.
3499 	 *
3500 	 * Therefore, after successfully reacquiring the range and page locks
3501 	 * the current page state is checked.  In the common case everything
3502 	 * will be as is expected and it can be written out.  However, if
3503 	 * the page state has changed it must be handled accordingly.
3504 	 */
3505 	mapping = pp->mapping;
3506 	redirty_page_for_writepage(wbc, pp);
3507 	unlock_page(pp);
3508 
3509 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3510 	    pgoff, pglen, RL_WRITER);
3511 	lock_page(pp);
3512 
3513 	/* Page mapping changed or it was no longer dirty, we're done */
3514 	if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3515 		unlock_page(pp);
3516 		zfs_rangelock_exit(lr);
3517 		ZFS_EXIT(zfsvfs);
3518 		return (0);
3519 	}
3520 
3521 	/* Another process started write block if required */
3522 	if (PageWriteback(pp)) {
3523 		unlock_page(pp);
3524 		zfs_rangelock_exit(lr);
3525 
3526 		if (wbc->sync_mode != WB_SYNC_NONE) {
3527 			if (PageWriteback(pp))
3528 				wait_on_page_bit(pp, PG_writeback);
3529 		}
3530 
3531 		ZFS_EXIT(zfsvfs);
3532 		return (0);
3533 	}
3534 
3535 	/* Clear the dirty flag the required locks are held */
3536 	if (!clear_page_dirty_for_io(pp)) {
3537 		unlock_page(pp);
3538 		zfs_rangelock_exit(lr);
3539 		ZFS_EXIT(zfsvfs);
3540 		return (0);
3541 	}
3542 
3543 	/*
3544 	 * Counterpart for redirty_page_for_writepage() above.  This page
3545 	 * was in fact not skipped and should not be counted as if it were.
3546 	 */
3547 	wbc->pages_skipped--;
3548 	set_page_writeback(pp);
3549 	unlock_page(pp);
3550 
3551 	tx = dmu_tx_create(zfsvfs->z_os);
3552 	dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3553 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3554 	zfs_sa_upgrade_txholds(tx, zp);
3555 
3556 	err = dmu_tx_assign(tx, TXG_NOWAIT);
3557 	if (err != 0) {
3558 		if (err == ERESTART)
3559 			dmu_tx_wait(tx);
3560 
3561 		dmu_tx_abort(tx);
3562 		__set_page_dirty_nobuffers(pp);
3563 		ClearPageError(pp);
3564 		end_page_writeback(pp);
3565 		zfs_rangelock_exit(lr);
3566 		ZFS_EXIT(zfsvfs);
3567 		return (err);
3568 	}
3569 
3570 	va = kmap(pp);
3571 	ASSERT3U(pglen, <=, PAGE_SIZE);
3572 	dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3573 	kunmap(pp);
3574 
3575 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3576 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3577 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3578 	    &zp->z_pflags, 8);
3579 
3580 	/* Preserve the mtime and ctime provided by the inode */
3581 	ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3582 	ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3583 	zp->z_atime_dirty = B_FALSE;
3584 	zp->z_seq++;
3585 
3586 	err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3587 
3588 	zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
3589 	    zfs_putpage_commit_cb, pp);
3590 	dmu_tx_commit(tx);
3591 
3592 	zfs_rangelock_exit(lr);
3593 
3594 	if (wbc->sync_mode != WB_SYNC_NONE) {
3595 		/*
3596 		 * Note that this is rarely called under writepages(), because
3597 		 * writepages() normally handles the entire commit for
3598 		 * performance reasons.
3599 		 */
3600 		zil_commit(zfsvfs->z_log, zp->z_id);
3601 	}
3602 
3603 	ZFS_EXIT(zfsvfs);
3604 	return (err);
3605 }
3606 
3607 /*
3608  * Update the system attributes when the inode has been dirtied.  For the
3609  * moment we only update the mode, atime, mtime, and ctime.
3610  */
3611 int
3612 zfs_dirty_inode(struct inode *ip, int flags)
3613 {
3614 	znode_t		*zp = ITOZ(ip);
3615 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3616 	dmu_tx_t	*tx;
3617 	uint64_t	mode, atime[2], mtime[2], ctime[2];
3618 	sa_bulk_attr_t	bulk[4];
3619 	int		error = 0;
3620 	int		cnt = 0;
3621 
3622 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3623 		return (0);
3624 
3625 	ZFS_ENTER(zfsvfs);
3626 	ZFS_VERIFY_ZP(zp);
3627 
3628 #ifdef I_DIRTY_TIME
3629 	/*
3630 	 * This is the lazytime semantic introduced in Linux 4.0
3631 	 * This flag will only be called from update_time when lazytime is set.
3632 	 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3633 	 * Fortunately mtime and ctime are managed within ZFS itself, so we
3634 	 * only need to dirty atime.
3635 	 */
3636 	if (flags == I_DIRTY_TIME) {
3637 		zp->z_atime_dirty = B_TRUE;
3638 		goto out;
3639 	}
3640 #endif
3641 
3642 	tx = dmu_tx_create(zfsvfs->z_os);
3643 
3644 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3645 	zfs_sa_upgrade_txholds(tx, zp);
3646 
3647 	error = dmu_tx_assign(tx, TXG_WAIT);
3648 	if (error) {
3649 		dmu_tx_abort(tx);
3650 		goto out;
3651 	}
3652 
3653 	mutex_enter(&zp->z_lock);
3654 	zp->z_atime_dirty = B_FALSE;
3655 
3656 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3657 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
3658 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3659 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3660 
3661 	/* Preserve the mode, mtime and ctime provided by the inode */
3662 	ZFS_TIME_ENCODE(&ip->i_atime, atime);
3663 	ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3664 	ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3665 	mode = ip->i_mode;
3666 
3667 	zp->z_mode = mode;
3668 
3669 	error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3670 	mutex_exit(&zp->z_lock);
3671 
3672 	dmu_tx_commit(tx);
3673 out:
3674 	ZFS_EXIT(zfsvfs);
3675 	return (error);
3676 }
3677 
3678 /*ARGSUSED*/
3679 void
3680 zfs_inactive(struct inode *ip)
3681 {
3682 	znode_t	*zp = ITOZ(ip);
3683 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3684 	uint64_t atime[2];
3685 	int error;
3686 	int need_unlock = 0;
3687 
3688 	/* Only read lock if we haven't already write locked, e.g. rollback */
3689 	if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
3690 		need_unlock = 1;
3691 		rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3692 	}
3693 	if (zp->z_sa_hdl == NULL) {
3694 		if (need_unlock)
3695 			rw_exit(&zfsvfs->z_teardown_inactive_lock);
3696 		return;
3697 	}
3698 
3699 	if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
3700 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3701 
3702 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3703 		zfs_sa_upgrade_txholds(tx, zp);
3704 		error = dmu_tx_assign(tx, TXG_WAIT);
3705 		if (error) {
3706 			dmu_tx_abort(tx);
3707 		} else {
3708 			ZFS_TIME_ENCODE(&ip->i_atime, atime);
3709 			mutex_enter(&zp->z_lock);
3710 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
3711 			    (void *)&atime, sizeof (atime), tx);
3712 			zp->z_atime_dirty = B_FALSE;
3713 			mutex_exit(&zp->z_lock);
3714 			dmu_tx_commit(tx);
3715 		}
3716 	}
3717 
3718 	zfs_zinactive(zp);
3719 	if (need_unlock)
3720 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
3721 }
3722 
3723 /*
3724  * Fill pages with data from the disk.
3725  */
3726 static int
3727 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
3728 {
3729 	znode_t *zp = ITOZ(ip);
3730 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3731 	objset_t *os;
3732 	struct page *cur_pp;
3733 	u_offset_t io_off, total;
3734 	size_t io_len;
3735 	loff_t i_size;
3736 	unsigned page_idx;
3737 	int err;
3738 
3739 	os = zfsvfs->z_os;
3740 	io_len = nr_pages << PAGE_SHIFT;
3741 	i_size = i_size_read(ip);
3742 	io_off = page_offset(pl[0]);
3743 
3744 	if (io_off + io_len > i_size)
3745 		io_len = i_size - io_off;
3746 
3747 	/*
3748 	 * Iterate over list of pages and read each page individually.
3749 	 */
3750 	page_idx = 0;
3751 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3752 		caddr_t va;
3753 
3754 		cur_pp = pl[page_idx++];
3755 		va = kmap(cur_pp);
3756 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
3757 		    DMU_READ_PREFETCH);
3758 		kunmap(cur_pp);
3759 		if (err) {
3760 			/* convert checksum errors into IO errors */
3761 			if (err == ECKSUM)
3762 				err = SET_ERROR(EIO);
3763 			return (err);
3764 		}
3765 	}
3766 
3767 	return (0);
3768 }
3769 
3770 /*
3771  * Uses zfs_fillpage to read data from the file and fill the pages.
3772  *
3773  *	IN:	ip	 - inode of file to get data from.
3774  *		pl	 - list of pages to read
3775  *		nr_pages - number of pages to read
3776  *
3777  *	RETURN:	0 on success, error code on failure.
3778  *
3779  * Timestamps:
3780  *	vp - atime updated
3781  */
3782 /* ARGSUSED */
3783 int
3784 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
3785 {
3786 	znode_t	 *zp  = ITOZ(ip);
3787 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3788 	int	 err;
3789 
3790 	if (pl == NULL)
3791 		return (0);
3792 
3793 	ZFS_ENTER(zfsvfs);
3794 	ZFS_VERIFY_ZP(zp);
3795 
3796 	err = zfs_fillpage(ip, pl, nr_pages);
3797 
3798 	ZFS_EXIT(zfsvfs);
3799 	return (err);
3800 }
3801 
3802 /*
3803  * Check ZFS specific permissions to memory map a section of a file.
3804  *
3805  *	IN:	ip	- inode of the file to mmap
3806  *		off	- file offset
3807  *		addrp	- start address in memory region
3808  *		len	- length of memory region
3809  *		vm_flags- address flags
3810  *
3811  *	RETURN:	0 if success
3812  *		error code if failure
3813  */
3814 /*ARGSUSED*/
3815 int
3816 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
3817     unsigned long vm_flags)
3818 {
3819 	znode_t  *zp = ITOZ(ip);
3820 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3821 
3822 	ZFS_ENTER(zfsvfs);
3823 	ZFS_VERIFY_ZP(zp);
3824 
3825 	if ((vm_flags & VM_WRITE) && (zp->z_pflags &
3826 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
3827 		ZFS_EXIT(zfsvfs);
3828 		return (SET_ERROR(EPERM));
3829 	}
3830 
3831 	if ((vm_flags & (VM_READ | VM_EXEC)) &&
3832 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
3833 		ZFS_EXIT(zfsvfs);
3834 		return (SET_ERROR(EACCES));
3835 	}
3836 
3837 	if (off < 0 || len > MAXOFFSET_T - off) {
3838 		ZFS_EXIT(zfsvfs);
3839 		return (SET_ERROR(ENXIO));
3840 	}
3841 
3842 	ZFS_EXIT(zfsvfs);
3843 	return (0);
3844 }
3845 
3846 /*
3847  * Free or allocate space in a file.  Currently, this function only
3848  * supports the `F_FREESP' command.  However, this command is somewhat
3849  * misnamed, as its functionality includes the ability to allocate as
3850  * well as free space.
3851  *
3852  *	IN:	zp	- znode of file to free data in.
3853  *		cmd	- action to take (only F_FREESP supported).
3854  *		bfp	- section of file to free/alloc.
3855  *		flag	- current file open mode flags.
3856  *		offset	- current file offset.
3857  *		cr	- credentials of caller.
3858  *
3859  *	RETURN:	0 on success, error code on failure.
3860  *
3861  * Timestamps:
3862  *	zp - ctime|mtime updated
3863  */
3864 /* ARGSUSED */
3865 int
3866 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
3867     offset_t offset, cred_t *cr)
3868 {
3869 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
3870 	uint64_t	off, len;
3871 	int		error;
3872 
3873 	ZFS_ENTER(zfsvfs);
3874 	ZFS_VERIFY_ZP(zp);
3875 
3876 	if (cmd != F_FREESP) {
3877 		ZFS_EXIT(zfsvfs);
3878 		return (SET_ERROR(EINVAL));
3879 	}
3880 
3881 	/*
3882 	 * Callers might not be able to detect properly that we are read-only,
3883 	 * so check it explicitly here.
3884 	 */
3885 	if (zfs_is_readonly(zfsvfs)) {
3886 		ZFS_EXIT(zfsvfs);
3887 		return (SET_ERROR(EROFS));
3888 	}
3889 
3890 	if (bfp->l_len < 0) {
3891 		ZFS_EXIT(zfsvfs);
3892 		return (SET_ERROR(EINVAL));
3893 	}
3894 
3895 	/*
3896 	 * Permissions aren't checked on Solaris because on this OS
3897 	 * zfs_space() can only be called with an opened file handle.
3898 	 * On Linux we can get here through truncate_range() which
3899 	 * operates directly on inodes, so we need to check access rights.
3900 	 */
3901 	if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
3902 		ZFS_EXIT(zfsvfs);
3903 		return (error);
3904 	}
3905 
3906 	off = bfp->l_start;
3907 	len = bfp->l_len; /* 0 means from off to end of file */
3908 
3909 	error = zfs_freesp(zp, off, len, flag, TRUE);
3910 
3911 	ZFS_EXIT(zfsvfs);
3912 	return (error);
3913 }
3914 
3915 /*ARGSUSED*/
3916 int
3917 zfs_fid(struct inode *ip, fid_t *fidp)
3918 {
3919 	znode_t		*zp = ITOZ(ip);
3920 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3921 	uint32_t	gen;
3922 	uint64_t	gen64;
3923 	uint64_t	object = zp->z_id;
3924 	zfid_short_t	*zfid;
3925 	int		size, i, error;
3926 
3927 	ZFS_ENTER(zfsvfs);
3928 
3929 	if (fidp->fid_len < SHORT_FID_LEN) {
3930 		fidp->fid_len = SHORT_FID_LEN;
3931 		ZFS_EXIT(zfsvfs);
3932 		return (SET_ERROR(ENOSPC));
3933 	}
3934 
3935 	ZFS_VERIFY_ZP(zp);
3936 
3937 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
3938 	    &gen64, sizeof (uint64_t))) != 0) {
3939 		ZFS_EXIT(zfsvfs);
3940 		return (error);
3941 	}
3942 
3943 	gen = (uint32_t)gen64;
3944 
3945 	size = SHORT_FID_LEN;
3946 
3947 	zfid = (zfid_short_t *)fidp;
3948 
3949 	zfid->zf_len = size;
3950 
3951 	for (i = 0; i < sizeof (zfid->zf_object); i++)
3952 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
3953 
3954 	/* Must have a non-zero generation number to distinguish from .zfs */
3955 	if (gen == 0)
3956 		gen = 1;
3957 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
3958 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
3959 
3960 	ZFS_EXIT(zfsvfs);
3961 	return (0);
3962 }
3963 
3964 #if defined(_KERNEL)
3965 EXPORT_SYMBOL(zfs_open);
3966 EXPORT_SYMBOL(zfs_close);
3967 EXPORT_SYMBOL(zfs_lookup);
3968 EXPORT_SYMBOL(zfs_create);
3969 EXPORT_SYMBOL(zfs_tmpfile);
3970 EXPORT_SYMBOL(zfs_remove);
3971 EXPORT_SYMBOL(zfs_mkdir);
3972 EXPORT_SYMBOL(zfs_rmdir);
3973 EXPORT_SYMBOL(zfs_readdir);
3974 EXPORT_SYMBOL(zfs_getattr_fast);
3975 EXPORT_SYMBOL(zfs_setattr);
3976 EXPORT_SYMBOL(zfs_rename);
3977 EXPORT_SYMBOL(zfs_symlink);
3978 EXPORT_SYMBOL(zfs_readlink);
3979 EXPORT_SYMBOL(zfs_link);
3980 EXPORT_SYMBOL(zfs_inactive);
3981 EXPORT_SYMBOL(zfs_space);
3982 EXPORT_SYMBOL(zfs_fid);
3983 EXPORT_SYMBOL(zfs_getpage);
3984 EXPORT_SYMBOL(zfs_putpage);
3985 EXPORT_SYMBOL(zfs_dirty_inode);
3986 EXPORT_SYMBOL(zfs_map);
3987 
3988 /* BEGIN CSTYLED */
3989 module_param(zfs_delete_blocks, ulong, 0644);
3990 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
3991 /* END CSTYLED */
3992 
3993 #endif
3994