xref: /freebsd-src/sys/contrib/openzfs/module/os/linux/zfs/zfs_vnops_os.c (revision 0a7e5f1f02aad2ff5fff1c60f44c6975fd07e1d9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26  * Copyright 2017 Nexenta Systems, Inc.
27  */
28 
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/zfs_ctldir.h>
63 #include <sys/zfs_fuid.h>
64 #include <sys/zfs_quota.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
72 #include <linux/mm_compat.h>
73 
74 /*
75  * Programming rules.
76  *
77  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
78  * properly lock its in-core state, create a DMU transaction, do the work,
79  * record this work in the intent log (ZIL), commit the DMU transaction,
80  * and wait for the intent log to commit if it is a synchronous operation.
81  * Moreover, the vnode ops must work in both normal and log replay context.
82  * The ordering of events is important to avoid deadlocks and references
83  * to freed memory.  The example below illustrates the following Big Rules:
84  *
85  *  (1) A check must be made in each zfs thread for a mounted file system.
86  *	This is done avoiding races using zfs_enter(zfsvfs).
87  *      A zfs_exit(zfsvfs) is needed before all returns.  Any znodes
88  *      must be checked with zfs_verify_zp(zp).  Both of these macros
89  *      can return EIO from the calling function.
90  *
91  *  (2) zrele() should always be the last thing except for zil_commit() (if
92  *	necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
93  *	last reference, the vnode/znode can be freed, so the zp may point to
94  *	freed memory.  Second, the last reference will call zfs_zinactive(),
95  *	which may induce a lot of work -- pushing cached pages (which acquires
96  *	range locks) and syncing out cached atime changes.  Third,
97  *	zfs_zinactive() may require a new tx, which could deadlock the system
98  *	if you were already holding one. This deadlock occurs because the tx
99  *	currently being operated on prevents a txg from syncing, which
100  *	prevents the new tx from progressing, resulting in a deadlock.  If you
101  *	must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
102  *	is a synonym for zrele().
103  *
104  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
105  *	as they can span dmu_tx_assign() calls.
106  *
107  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
108  *      dmu_tx_assign().  This is critical because we don't want to block
109  *      while holding locks.
110  *
111  *	If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT.  This
112  *	reduces lock contention and CPU usage when we must wait (note that if
113  *	throughput is constrained by the storage, nearly every transaction
114  *	must wait).
115  *
116  *      Note, in particular, that if a lock is sometimes acquired before
117  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
118  *      to use a non-blocking assign can deadlock the system.  The scenario:
119  *
120  *	Thread A has grabbed a lock before calling dmu_tx_assign().
121  *	Thread B is in an already-assigned tx, and blocks for this lock.
122  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
123  *	forever, because the previous txg can't quiesce until B's tx commits.
124  *
125  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
126  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
127  *	calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
128  *	to indicate that this operation has already called dmu_tx_wait().
129  *	This will ensure that we don't retry forever, waiting a short bit
130  *	each time.
131  *
132  *  (5)	If the operation succeeded, generate the intent log entry for it
133  *	before dropping locks.  This ensures that the ordering of events
134  *	in the intent log matches the order in which they actually occurred.
135  *	During ZIL replay the zfs_log_* functions will update the sequence
136  *	number to indicate the zil transaction has replayed.
137  *
138  *  (6)	At the end of each vnode op, the DMU tx must always commit,
139  *	regardless of whether there were any errors.
140  *
141  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
142  *	to ensure that synchronous semantics are provided when necessary.
143  *
144  * In general, this is how things should be ordered in each vnode op:
145  *
146  *	zfs_enter(zfsvfs);		// exit if unmounted
147  * top:
148  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may igrab())
149  *	rw_enter(...);			// grab any other locks you need
150  *	tx = dmu_tx_create(...);	// get DMU tx
151  *	dmu_tx_hold_*();		// hold each object you might modify
152  *	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
153  *	if (error) {
154  *		rw_exit(...);		// drop locks
155  *		zfs_dirent_unlock(dl);	// unlock directory entry
156  *		zrele(...);		// release held znodes
157  *		if (error == ERESTART) {
158  *			waited = B_TRUE;
159  *			dmu_tx_wait(tx);
160  *			dmu_tx_abort(tx);
161  *			goto top;
162  *		}
163  *		dmu_tx_abort(tx);	// abort DMU tx
164  *		zfs_exit(zfsvfs);	// finished in zfs
165  *		return (error);		// really out of space
166  *	}
167  *	error = do_real_work();		// do whatever this VOP does
168  *	if (error == 0)
169  *		zfs_log_*(...);		// on success, make ZIL entry
170  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
171  *	rw_exit(...);			// drop locks
172  *	zfs_dirent_unlock(dl);		// unlock directory entry
173  *	zrele(...);			// release held znodes
174  *	zil_commit(zilog, foid);	// synchronous when necessary
175  *	zfs_exit(zfsvfs);		// finished in zfs
176  *	return (error);			// done, report error
177  */
178 int
179 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
180 {
181 	(void) cr;
182 	znode_t	*zp = ITOZ(ip);
183 	zfsvfs_t *zfsvfs = ITOZSB(ip);
184 	int error;
185 
186 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
187 		return (error);
188 
189 	/* Honor ZFS_APPENDONLY file attribute */
190 	if (blk_mode_is_open_write(mode) && (zp->z_pflags & ZFS_APPENDONLY) &&
191 	    ((flag & O_APPEND) == 0)) {
192 		zfs_exit(zfsvfs, FTAG);
193 		return (SET_ERROR(EPERM));
194 	}
195 
196 	/*
197 	 * Keep a count of the synchronous opens in the znode.  On first
198 	 * synchronous open we must convert all previous async transactions
199 	 * into sync to keep correct ordering.
200 	 */
201 	if (flag & O_SYNC) {
202 		if (atomic_inc_32_nv(&zp->z_sync_cnt) == 1)
203 			zil_async_to_sync(zfsvfs->z_log, zp->z_id);
204 	}
205 
206 	zfs_exit(zfsvfs, FTAG);
207 	return (0);
208 }
209 
210 int
211 zfs_close(struct inode *ip, int flag, cred_t *cr)
212 {
213 	(void) cr;
214 	znode_t	*zp = ITOZ(ip);
215 	zfsvfs_t *zfsvfs = ITOZSB(ip);
216 	int error;
217 
218 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
219 		return (error);
220 
221 	/* Decrement the synchronous opens in the znode */
222 	if (flag & O_SYNC)
223 		atomic_dec_32(&zp->z_sync_cnt);
224 
225 	zfs_exit(zfsvfs, FTAG);
226 	return (0);
227 }
228 
229 #if defined(_KERNEL)
230 
231 static int zfs_fillpage(struct inode *ip, struct page *pp);
232 
233 /*
234  * When a file is memory mapped, we must keep the IO data synchronized
235  * between the DMU cache and the memory mapped pages.  Update all mapped
236  * pages with the contents of the coresponding dmu buffer.
237  */
238 void
239 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
240 {
241 	struct address_space *mp = ZTOI(zp)->i_mapping;
242 	int64_t off = start & (PAGE_SIZE - 1);
243 
244 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
245 		uint64_t nbytes = MIN(PAGE_SIZE - off, len);
246 
247 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
248 		if (pp) {
249 			if (mapping_writably_mapped(mp))
250 				flush_dcache_page(pp);
251 
252 			void *pb = kmap(pp);
253 			int error = dmu_read(os, zp->z_id, start + off,
254 			    nbytes, pb + off, DMU_READ_PREFETCH);
255 			kunmap(pp);
256 
257 			if (error) {
258 				SetPageError(pp);
259 				ClearPageUptodate(pp);
260 			} else {
261 				ClearPageError(pp);
262 				SetPageUptodate(pp);
263 
264 				if (mapping_writably_mapped(mp))
265 					flush_dcache_page(pp);
266 
267 				mark_page_accessed(pp);
268 			}
269 
270 			unlock_page(pp);
271 			put_page(pp);
272 		}
273 
274 		len -= nbytes;
275 		off = 0;
276 	}
277 }
278 
279 /*
280  * When a file is memory mapped, we must keep the I/O data synchronized
281  * between the DMU cache and the memory mapped pages.  Preferentially read
282  * from memory mapped pages, otherwise fallback to reading through the dmu.
283  */
284 int
285 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
286 {
287 	struct inode *ip = ZTOI(zp);
288 	struct address_space *mp = ip->i_mapping;
289 	int64_t start = uio->uio_loffset;
290 	int64_t off = start & (PAGE_SIZE - 1);
291 	int len = nbytes;
292 	int error = 0;
293 
294 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
295 		uint64_t bytes = MIN(PAGE_SIZE - off, len);
296 
297 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
298 		if (pp) {
299 			/*
300 			 * If filemap_fault() retries there exists a window
301 			 * where the page will be unlocked and not up to date.
302 			 * In this case we must try and fill the page.
303 			 */
304 			if (unlikely(!PageUptodate(pp))) {
305 				error = zfs_fillpage(ip, pp);
306 				if (error) {
307 					unlock_page(pp);
308 					put_page(pp);
309 					return (error);
310 				}
311 			}
312 
313 			ASSERT(PageUptodate(pp) || PageDirty(pp));
314 
315 			unlock_page(pp);
316 
317 			void *pb = kmap(pp);
318 			error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
319 			kunmap(pp);
320 
321 			if (mapping_writably_mapped(mp))
322 				flush_dcache_page(pp);
323 
324 			mark_page_accessed(pp);
325 			put_page(pp);
326 		} else {
327 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
328 			    uio, bytes);
329 		}
330 
331 		len -= bytes;
332 		off = 0;
333 
334 		if (error)
335 			break;
336 	}
337 
338 	return (error);
339 }
340 #endif /* _KERNEL */
341 
342 static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
343 
344 /*
345  * Write the bytes to a file.
346  *
347  *	IN:	zp	- znode of file to be written to
348  *		data	- bytes to write
349  *		len	- number of bytes to write
350  *		pos	- offset to start writing at
351  *
352  *	OUT:	resid	- remaining bytes to write
353  *
354  *	RETURN:	0 if success
355  *		positive error code if failure.  EIO is	returned
356  *		for a short write when residp isn't provided.
357  *
358  * Timestamps:
359  *	zp - ctime|mtime updated if byte count > 0
360  */
361 int
362 zfs_write_simple(znode_t *zp, const void *data, size_t len,
363     loff_t pos, size_t *residp)
364 {
365 	fstrans_cookie_t cookie;
366 	int error;
367 
368 	struct iovec iov;
369 	iov.iov_base = (void *)data;
370 	iov.iov_len = len;
371 
372 	zfs_uio_t uio;
373 	zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
374 
375 	cookie = spl_fstrans_mark();
376 	error = zfs_write(zp, &uio, 0, kcred);
377 	spl_fstrans_unmark(cookie);
378 
379 	if (error == 0) {
380 		if (residp != NULL)
381 			*residp = zfs_uio_resid(&uio);
382 		else if (zfs_uio_resid(&uio) != 0)
383 			error = SET_ERROR(EIO);
384 	}
385 
386 	return (error);
387 }
388 
389 static void
390 zfs_rele_async_task(void *arg)
391 {
392 	iput(arg);
393 }
394 
395 void
396 zfs_zrele_async(znode_t *zp)
397 {
398 	struct inode *ip = ZTOI(zp);
399 	objset_t *os = ITOZSB(ip)->z_os;
400 
401 	ASSERT(atomic_read(&ip->i_count) > 0);
402 	ASSERT(os != NULL);
403 
404 	/*
405 	 * If decrementing the count would put us at 0, we can't do it inline
406 	 * here, because that would be synchronous. Instead, dispatch an iput
407 	 * to run later.
408 	 *
409 	 * For more information on the dangers of a synchronous iput, see the
410 	 * header comment of this file.
411 	 */
412 	if (!atomic_add_unless(&ip->i_count, -1, 1)) {
413 		VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
414 		    zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
415 	}
416 }
417 
418 
419 /*
420  * Lookup an entry in a directory, or an extended attribute directory.
421  * If it exists, return a held inode reference for it.
422  *
423  *	IN:	zdp	- znode of directory to search.
424  *		nm	- name of entry to lookup.
425  *		flags	- LOOKUP_XATTR set if looking for an attribute.
426  *		cr	- credentials of caller.
427  *		direntflags - directory lookup flags
428  *		realpnp - returned pathname.
429  *
430  *	OUT:	zpp	- znode of located entry, NULL if not found.
431  *
432  *	RETURN:	0 on success, error code on failure.
433  *
434  * Timestamps:
435  *	NA
436  */
437 int
438 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
439     int *direntflags, pathname_t *realpnp)
440 {
441 	zfsvfs_t *zfsvfs = ZTOZSB(zdp);
442 	int error = 0;
443 
444 	/*
445 	 * Fast path lookup, however we must skip DNLC lookup
446 	 * for case folding or normalizing lookups because the
447 	 * DNLC code only stores the passed in name.  This means
448 	 * creating 'a' and removing 'A' on a case insensitive
449 	 * file system would work, but DNLC still thinks 'a'
450 	 * exists and won't let you create it again on the next
451 	 * pass through fast path.
452 	 */
453 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
454 
455 		if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
456 			return (SET_ERROR(ENOTDIR));
457 		} else if (zdp->z_sa_hdl == NULL) {
458 			return (SET_ERROR(EIO));
459 		}
460 
461 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
462 			error = zfs_fastaccesschk_execute(zdp, cr);
463 			if (!error) {
464 				*zpp = zdp;
465 				zhold(*zpp);
466 				return (0);
467 			}
468 			return (error);
469 		}
470 	}
471 
472 	if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
473 		return (error);
474 
475 	*zpp = NULL;
476 
477 	if (flags & LOOKUP_XATTR) {
478 		/*
479 		 * We don't allow recursive attributes..
480 		 * Maybe someday we will.
481 		 */
482 		if (zdp->z_pflags & ZFS_XATTR) {
483 			zfs_exit(zfsvfs, FTAG);
484 			return (SET_ERROR(EINVAL));
485 		}
486 
487 		if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
488 			zfs_exit(zfsvfs, FTAG);
489 			return (error);
490 		}
491 
492 		/*
493 		 * Do we have permission to get into attribute directory?
494 		 */
495 
496 		if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
497 		    B_TRUE, cr, zfs_init_idmap))) {
498 			zrele(*zpp);
499 			*zpp = NULL;
500 		}
501 
502 		zfs_exit(zfsvfs, FTAG);
503 		return (error);
504 	}
505 
506 	if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
507 		zfs_exit(zfsvfs, FTAG);
508 		return (SET_ERROR(ENOTDIR));
509 	}
510 
511 	/*
512 	 * Check accessibility of directory.
513 	 */
514 
515 	if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr,
516 	    zfs_init_idmap))) {
517 		zfs_exit(zfsvfs, FTAG);
518 		return (error);
519 	}
520 
521 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
522 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
523 		zfs_exit(zfsvfs, FTAG);
524 		return (SET_ERROR(EILSEQ));
525 	}
526 
527 	error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
528 	if ((error == 0) && (*zpp))
529 		zfs_znode_update_vfs(*zpp);
530 
531 	zfs_exit(zfsvfs, FTAG);
532 	return (error);
533 }
534 
535 /*
536  * Attempt to create a new entry in a directory.  If the entry
537  * already exists, truncate the file if permissible, else return
538  * an error.  Return the ip of the created or trunc'd file.
539  *
540  *	IN:	dzp	- znode of directory to put new file entry in.
541  *		name	- name of new file entry.
542  *		vap	- attributes of new file.
543  *		excl	- flag indicating exclusive or non-exclusive mode.
544  *		mode	- mode to open file with.
545  *		cr	- credentials of caller.
546  *		flag	- file flag.
547  *		vsecp	- ACL to be set
548  *		mnt_ns	- user namespace of the mount
549  *
550  *	OUT:	zpp	- znode of created or trunc'd entry.
551  *
552  *	RETURN:	0 on success, error code on failure.
553  *
554  * Timestamps:
555  *	dzp - ctime|mtime updated if new entry created
556  *	 zp - ctime|mtime always, atime if new
557  */
558 int
559 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
560     int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp,
561     zidmap_t *mnt_ns)
562 {
563 	znode_t		*zp;
564 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
565 	zilog_t		*zilog;
566 	objset_t	*os;
567 	zfs_dirlock_t	*dl;
568 	dmu_tx_t	*tx;
569 	int		error;
570 	uid_t		uid;
571 	gid_t		gid;
572 	zfs_acl_ids_t   acl_ids;
573 	boolean_t	fuid_dirtied;
574 	boolean_t	have_acl = B_FALSE;
575 	boolean_t	waited = B_FALSE;
576 	boolean_t	skip_acl = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
577 
578 	/*
579 	 * If we have an ephemeral id, ACL, or XVATTR then
580 	 * make sure file system is at proper version
581 	 */
582 
583 	gid = crgetgid(cr);
584 	uid = crgetuid(cr);
585 
586 	if (zfsvfs->z_use_fuids == B_FALSE &&
587 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
588 		return (SET_ERROR(EINVAL));
589 
590 	if (name == NULL)
591 		return (SET_ERROR(EINVAL));
592 
593 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
594 		return (error);
595 	os = zfsvfs->z_os;
596 	zilog = zfsvfs->z_log;
597 
598 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
599 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
600 		zfs_exit(zfsvfs, FTAG);
601 		return (SET_ERROR(EILSEQ));
602 	}
603 
604 	if (vap->va_mask & ATTR_XVATTR) {
605 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
606 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
607 			zfs_exit(zfsvfs, FTAG);
608 			return (error);
609 		}
610 	}
611 
612 top:
613 	*zpp = NULL;
614 	if (*name == '\0') {
615 		/*
616 		 * Null component name refers to the directory itself.
617 		 */
618 		zhold(dzp);
619 		zp = dzp;
620 		dl = NULL;
621 		error = 0;
622 	} else {
623 		/* possible igrab(zp) */
624 		int zflg = 0;
625 
626 		if (flag & FIGNORECASE)
627 			zflg |= ZCILOOK;
628 
629 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
630 		    NULL, NULL);
631 		if (error) {
632 			if (have_acl)
633 				zfs_acl_ids_free(&acl_ids);
634 			if (strcmp(name, "..") == 0)
635 				error = SET_ERROR(EISDIR);
636 			zfs_exit(zfsvfs, FTAG);
637 			return (error);
638 		}
639 	}
640 
641 	if (zp == NULL) {
642 		uint64_t txtype;
643 		uint64_t projid = ZFS_DEFAULT_PROJID;
644 
645 		/*
646 		 * Create a new file object and update the directory
647 		 * to reference it.
648 		 */
649 		if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, skip_acl, cr,
650 		    mnt_ns))) {
651 			if (have_acl)
652 				zfs_acl_ids_free(&acl_ids);
653 			goto out;
654 		}
655 
656 		/*
657 		 * We only support the creation of regular files in
658 		 * extended attribute directories.
659 		 */
660 
661 		if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
662 			if (have_acl)
663 				zfs_acl_ids_free(&acl_ids);
664 			error = SET_ERROR(EINVAL);
665 			goto out;
666 		}
667 
668 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
669 		    cr, vsecp, &acl_ids, mnt_ns)) != 0)
670 			goto out;
671 		have_acl = B_TRUE;
672 
673 		if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
674 			projid = zfs_inherit_projid(dzp);
675 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
676 			zfs_acl_ids_free(&acl_ids);
677 			error = SET_ERROR(EDQUOT);
678 			goto out;
679 		}
680 
681 		tx = dmu_tx_create(os);
682 
683 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
684 		    ZFS_SA_BASE_ATTR_SIZE);
685 
686 		fuid_dirtied = zfsvfs->z_fuid_dirty;
687 		if (fuid_dirtied)
688 			zfs_fuid_txhold(zfsvfs, tx);
689 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
690 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
691 		if (!zfsvfs->z_use_sa &&
692 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
693 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
694 			    0, acl_ids.z_aclp->z_acl_bytes);
695 		}
696 
697 		error = dmu_tx_assign(tx,
698 		    (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
699 		if (error) {
700 			zfs_dirent_unlock(dl);
701 			if (error == ERESTART) {
702 				waited = B_TRUE;
703 				dmu_tx_wait(tx);
704 				dmu_tx_abort(tx);
705 				goto top;
706 			}
707 			zfs_acl_ids_free(&acl_ids);
708 			dmu_tx_abort(tx);
709 			zfs_exit(zfsvfs, FTAG);
710 			return (error);
711 		}
712 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
713 
714 		error = zfs_link_create(dl, zp, tx, ZNEW);
715 		if (error != 0) {
716 			/*
717 			 * Since, we failed to add the directory entry for it,
718 			 * delete the newly created dnode.
719 			 */
720 			zfs_znode_delete(zp, tx);
721 			remove_inode_hash(ZTOI(zp));
722 			zfs_acl_ids_free(&acl_ids);
723 			dmu_tx_commit(tx);
724 			goto out;
725 		}
726 
727 		if (fuid_dirtied)
728 			zfs_fuid_sync(zfsvfs, tx);
729 
730 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
731 		if (flag & FIGNORECASE)
732 			txtype |= TX_CI;
733 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
734 		    vsecp, acl_ids.z_fuidp, vap);
735 		zfs_acl_ids_free(&acl_ids);
736 		dmu_tx_commit(tx);
737 	} else {
738 		int aflags = (flag & O_APPEND) ? V_APPEND : 0;
739 
740 		if (have_acl)
741 			zfs_acl_ids_free(&acl_ids);
742 
743 		/*
744 		 * A directory entry already exists for this name.
745 		 */
746 		/*
747 		 * Can't truncate an existing file if in exclusive mode.
748 		 */
749 		if (excl) {
750 			error = SET_ERROR(EEXIST);
751 			goto out;
752 		}
753 		/*
754 		 * Can't open a directory for writing.
755 		 */
756 		if (S_ISDIR(ZTOI(zp)->i_mode)) {
757 			error = SET_ERROR(EISDIR);
758 			goto out;
759 		}
760 		/*
761 		 * Verify requested access to file.
762 		 */
763 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr,
764 		    mnt_ns))) {
765 			goto out;
766 		}
767 
768 		mutex_enter(&dzp->z_lock);
769 		dzp->z_seq++;
770 		mutex_exit(&dzp->z_lock);
771 
772 		/*
773 		 * Truncate regular files if requested.
774 		 */
775 		if (S_ISREG(ZTOI(zp)->i_mode) &&
776 		    (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
777 			/* we can't hold any locks when calling zfs_freesp() */
778 			if (dl) {
779 				zfs_dirent_unlock(dl);
780 				dl = NULL;
781 			}
782 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
783 		}
784 	}
785 out:
786 
787 	if (dl)
788 		zfs_dirent_unlock(dl);
789 
790 	if (error) {
791 		if (zp)
792 			zrele(zp);
793 	} else {
794 		zfs_znode_update_vfs(dzp);
795 		zfs_znode_update_vfs(zp);
796 		*zpp = zp;
797 	}
798 
799 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
800 		zil_commit(zilog, 0);
801 
802 	zfs_exit(zfsvfs, FTAG);
803 	return (error);
804 }
805 
806 int
807 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
808     int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp,
809     zidmap_t *mnt_ns)
810 {
811 	(void) excl, (void) mode, (void) flag;
812 	znode_t		*zp = NULL, *dzp = ITOZ(dip);
813 	zfsvfs_t	*zfsvfs = ITOZSB(dip);
814 	objset_t	*os;
815 	dmu_tx_t	*tx;
816 	int		error;
817 	uid_t		uid;
818 	gid_t		gid;
819 	zfs_acl_ids_t   acl_ids;
820 	uint64_t	projid = ZFS_DEFAULT_PROJID;
821 	boolean_t	fuid_dirtied;
822 	boolean_t	have_acl = B_FALSE;
823 	boolean_t	waited = B_FALSE;
824 
825 	/*
826 	 * If we have an ephemeral id, ACL, or XVATTR then
827 	 * make sure file system is at proper version
828 	 */
829 
830 	gid = crgetgid(cr);
831 	uid = crgetuid(cr);
832 
833 	if (zfsvfs->z_use_fuids == B_FALSE &&
834 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
835 		return (SET_ERROR(EINVAL));
836 
837 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
838 		return (error);
839 	os = zfsvfs->z_os;
840 
841 	if (vap->va_mask & ATTR_XVATTR) {
842 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
843 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
844 			zfs_exit(zfsvfs, FTAG);
845 			return (error);
846 		}
847 	}
848 
849 top:
850 	*ipp = NULL;
851 
852 	/*
853 	 * Create a new file object and update the directory
854 	 * to reference it.
855 	 */
856 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
857 		if (have_acl)
858 			zfs_acl_ids_free(&acl_ids);
859 		goto out;
860 	}
861 
862 	if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
863 	    cr, vsecp, &acl_ids, mnt_ns)) != 0)
864 		goto out;
865 	have_acl = B_TRUE;
866 
867 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
868 		projid = zfs_inherit_projid(dzp);
869 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
870 		zfs_acl_ids_free(&acl_ids);
871 		error = SET_ERROR(EDQUOT);
872 		goto out;
873 	}
874 
875 	tx = dmu_tx_create(os);
876 
877 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
878 	    ZFS_SA_BASE_ATTR_SIZE);
879 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
880 
881 	fuid_dirtied = zfsvfs->z_fuid_dirty;
882 	if (fuid_dirtied)
883 		zfs_fuid_txhold(zfsvfs, tx);
884 	if (!zfsvfs->z_use_sa &&
885 	    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
886 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
887 		    0, acl_ids.z_aclp->z_acl_bytes);
888 	}
889 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
890 	if (error) {
891 		if (error == ERESTART) {
892 			waited = B_TRUE;
893 			dmu_tx_wait(tx);
894 			dmu_tx_abort(tx);
895 			goto top;
896 		}
897 		zfs_acl_ids_free(&acl_ids);
898 		dmu_tx_abort(tx);
899 		zfs_exit(zfsvfs, FTAG);
900 		return (error);
901 	}
902 	zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
903 
904 	if (fuid_dirtied)
905 		zfs_fuid_sync(zfsvfs, tx);
906 
907 	/* Add to unlinked set */
908 	zp->z_unlinked = B_TRUE;
909 	zfs_unlinked_add(zp, tx);
910 	zfs_acl_ids_free(&acl_ids);
911 	dmu_tx_commit(tx);
912 out:
913 
914 	if (error) {
915 		if (zp)
916 			zrele(zp);
917 	} else {
918 		zfs_znode_update_vfs(dzp);
919 		zfs_znode_update_vfs(zp);
920 		*ipp = ZTOI(zp);
921 	}
922 
923 	zfs_exit(zfsvfs, FTAG);
924 	return (error);
925 }
926 
927 /*
928  * Remove an entry from a directory.
929  *
930  *	IN:	dzp	- znode of directory to remove entry from.
931  *		name	- name of entry to remove.
932  *		cr	- credentials of caller.
933  *		flags	- case flags.
934  *
935  *	RETURN:	0 if success
936  *		error code if failure
937  *
938  * Timestamps:
939  *	dzp - ctime|mtime
940  *	 ip - ctime (if nlink > 0)
941  */
942 
943 static uint64_t null_xattr = 0;
944 
945 int
946 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
947 {
948 	znode_t		*zp;
949 	znode_t		*xzp;
950 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
951 	zilog_t		*zilog;
952 	uint64_t	acl_obj, xattr_obj;
953 	uint64_t	xattr_obj_unlinked = 0;
954 	uint64_t	obj = 0;
955 	uint64_t	links;
956 	zfs_dirlock_t	*dl;
957 	dmu_tx_t	*tx;
958 	boolean_t	may_delete_now, delete_now = FALSE;
959 	boolean_t	unlinked, toobig = FALSE;
960 	uint64_t	txtype;
961 	pathname_t	*realnmp = NULL;
962 	pathname_t	realnm;
963 	int		error;
964 	int		zflg = ZEXISTS;
965 	boolean_t	waited = B_FALSE;
966 
967 	if (name == NULL)
968 		return (SET_ERROR(EINVAL));
969 
970 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
971 		return (error);
972 	zilog = zfsvfs->z_log;
973 
974 	if (flags & FIGNORECASE) {
975 		zflg |= ZCILOOK;
976 		pn_alloc(&realnm);
977 		realnmp = &realnm;
978 	}
979 
980 top:
981 	xattr_obj = 0;
982 	xzp = NULL;
983 	/*
984 	 * Attempt to lock directory; fail if entry doesn't exist.
985 	 */
986 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
987 	    NULL, realnmp))) {
988 		if (realnmp)
989 			pn_free(realnmp);
990 		zfs_exit(zfsvfs, FTAG);
991 		return (error);
992 	}
993 
994 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
995 		goto out;
996 	}
997 
998 	/*
999 	 * Need to use rmdir for removing directories.
1000 	 */
1001 	if (S_ISDIR(ZTOI(zp)->i_mode)) {
1002 		error = SET_ERROR(EPERM);
1003 		goto out;
1004 	}
1005 
1006 	mutex_enter(&zp->z_lock);
1007 	may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
1008 	    !zn_has_cached_data(zp, 0, LLONG_MAX);
1009 	mutex_exit(&zp->z_lock);
1010 
1011 	/*
1012 	 * We may delete the znode now, or we may put it in the unlinked set;
1013 	 * it depends on whether we're the last link, and on whether there are
1014 	 * other holds on the inode.  So we dmu_tx_hold() the right things to
1015 	 * allow for either case.
1016 	 */
1017 	obj = zp->z_id;
1018 	tx = dmu_tx_create(zfsvfs->z_os);
1019 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1020 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1021 	zfs_sa_upgrade_txholds(tx, zp);
1022 	zfs_sa_upgrade_txholds(tx, dzp);
1023 	if (may_delete_now) {
1024 		toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1025 		/* if the file is too big, only hold_free a token amount */
1026 		dmu_tx_hold_free(tx, zp->z_id, 0,
1027 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1028 	}
1029 
1030 	/* are there any extended attributes? */
1031 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1032 	    &xattr_obj, sizeof (xattr_obj));
1033 	if (error == 0 && xattr_obj) {
1034 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1035 		ASSERT0(error);
1036 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1037 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1038 	}
1039 
1040 	mutex_enter(&zp->z_lock);
1041 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1042 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1043 	mutex_exit(&zp->z_lock);
1044 
1045 	/* charge as an update -- would be nice not to charge at all */
1046 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1047 
1048 	/*
1049 	 * Mark this transaction as typically resulting in a net free of space
1050 	 */
1051 	dmu_tx_mark_netfree(tx);
1052 
1053 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1054 	if (error) {
1055 		zfs_dirent_unlock(dl);
1056 		if (error == ERESTART) {
1057 			waited = B_TRUE;
1058 			dmu_tx_wait(tx);
1059 			dmu_tx_abort(tx);
1060 			zrele(zp);
1061 			if (xzp)
1062 				zrele(xzp);
1063 			goto top;
1064 		}
1065 		if (realnmp)
1066 			pn_free(realnmp);
1067 		dmu_tx_abort(tx);
1068 		zrele(zp);
1069 		if (xzp)
1070 			zrele(xzp);
1071 		zfs_exit(zfsvfs, FTAG);
1072 		return (error);
1073 	}
1074 
1075 	/*
1076 	 * Remove the directory entry.
1077 	 */
1078 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1079 
1080 	if (error) {
1081 		dmu_tx_commit(tx);
1082 		goto out;
1083 	}
1084 
1085 	if (unlinked) {
1086 		/*
1087 		 * Hold z_lock so that we can make sure that the ACL obj
1088 		 * hasn't changed.  Could have been deleted due to
1089 		 * zfs_sa_upgrade().
1090 		 */
1091 		mutex_enter(&zp->z_lock);
1092 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1093 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1094 		delete_now = may_delete_now && !toobig &&
1095 		    atomic_read(&ZTOI(zp)->i_count) == 1 &&
1096 		    !zn_has_cached_data(zp, 0, LLONG_MAX) &&
1097 		    xattr_obj == xattr_obj_unlinked &&
1098 		    zfs_external_acl(zp) == acl_obj;
1099 		VERIFY_IMPLY(xattr_obj_unlinked, xzp);
1100 	}
1101 
1102 	if (delete_now) {
1103 		if (xattr_obj_unlinked) {
1104 			ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1105 			mutex_enter(&xzp->z_lock);
1106 			xzp->z_unlinked = B_TRUE;
1107 			clear_nlink(ZTOI(xzp));
1108 			links = 0;
1109 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1110 			    &links, sizeof (links), tx);
1111 			ASSERT3U(error,  ==,  0);
1112 			mutex_exit(&xzp->z_lock);
1113 			zfs_unlinked_add(xzp, tx);
1114 
1115 			if (zp->z_is_sa)
1116 				error = sa_remove(zp->z_sa_hdl,
1117 				    SA_ZPL_XATTR(zfsvfs), tx);
1118 			else
1119 				error = sa_update(zp->z_sa_hdl,
1120 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1121 				    sizeof (uint64_t), tx);
1122 			ASSERT0(error);
1123 		}
1124 		/*
1125 		 * Add to the unlinked set because a new reference could be
1126 		 * taken concurrently resulting in a deferred destruction.
1127 		 */
1128 		zfs_unlinked_add(zp, tx);
1129 		mutex_exit(&zp->z_lock);
1130 	} else if (unlinked) {
1131 		mutex_exit(&zp->z_lock);
1132 		zfs_unlinked_add(zp, tx);
1133 	}
1134 
1135 	txtype = TX_REMOVE;
1136 	if (flags & FIGNORECASE)
1137 		txtype |= TX_CI;
1138 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1139 
1140 	dmu_tx_commit(tx);
1141 out:
1142 	if (realnmp)
1143 		pn_free(realnmp);
1144 
1145 	zfs_dirent_unlock(dl);
1146 	zfs_znode_update_vfs(dzp);
1147 	zfs_znode_update_vfs(zp);
1148 
1149 	if (delete_now)
1150 		zrele(zp);
1151 	else
1152 		zfs_zrele_async(zp);
1153 
1154 	if (xzp) {
1155 		zfs_znode_update_vfs(xzp);
1156 		zfs_zrele_async(xzp);
1157 	}
1158 
1159 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1160 		zil_commit(zilog, 0);
1161 
1162 	zfs_exit(zfsvfs, FTAG);
1163 	return (error);
1164 }
1165 
1166 /*
1167  * Create a new directory and insert it into dzp using the name
1168  * provided.  Return a pointer to the inserted directory.
1169  *
1170  *	IN:	dzp	- znode of directory to add subdir to.
1171  *		dirname	- name of new directory.
1172  *		vap	- attributes of new directory.
1173  *		cr	- credentials of caller.
1174  *		flags	- case flags.
1175  *		vsecp	- ACL to be set
1176  *		mnt_ns	- user namespace of the mount
1177  *
1178  *	OUT:	zpp	- znode of created directory.
1179  *
1180  *	RETURN:	0 if success
1181  *		error code if failure
1182  *
1183  * Timestamps:
1184  *	dzp - ctime|mtime updated
1185  *	zpp - ctime|mtime|atime updated
1186  */
1187 int
1188 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1189     cred_t *cr, int flags, vsecattr_t *vsecp, zidmap_t *mnt_ns)
1190 {
1191 	znode_t		*zp;
1192 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1193 	zilog_t		*zilog;
1194 	zfs_dirlock_t	*dl;
1195 	uint64_t	txtype;
1196 	dmu_tx_t	*tx;
1197 	int		error;
1198 	int		zf = ZNEW;
1199 	uid_t		uid;
1200 	gid_t		gid = crgetgid(cr);
1201 	zfs_acl_ids_t   acl_ids;
1202 	boolean_t	fuid_dirtied;
1203 	boolean_t	waited = B_FALSE;
1204 
1205 	ASSERT(S_ISDIR(vap->va_mode));
1206 
1207 	/*
1208 	 * If we have an ephemeral id, ACL, or XVATTR then
1209 	 * make sure file system is at proper version
1210 	 */
1211 
1212 	uid = crgetuid(cr);
1213 	if (zfsvfs->z_use_fuids == B_FALSE &&
1214 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1215 		return (SET_ERROR(EINVAL));
1216 
1217 	if (dirname == NULL)
1218 		return (SET_ERROR(EINVAL));
1219 
1220 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1221 		return (error);
1222 	zilog = zfsvfs->z_log;
1223 
1224 	if (dzp->z_pflags & ZFS_XATTR) {
1225 		zfs_exit(zfsvfs, FTAG);
1226 		return (SET_ERROR(EINVAL));
1227 	}
1228 
1229 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1230 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1231 		zfs_exit(zfsvfs, FTAG);
1232 		return (SET_ERROR(EILSEQ));
1233 	}
1234 	if (flags & FIGNORECASE)
1235 		zf |= ZCILOOK;
1236 
1237 	if (vap->va_mask & ATTR_XVATTR) {
1238 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1239 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
1240 			zfs_exit(zfsvfs, FTAG);
1241 			return (error);
1242 		}
1243 	}
1244 
1245 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1246 	    vsecp, &acl_ids, mnt_ns)) != 0) {
1247 		zfs_exit(zfsvfs, FTAG);
1248 		return (error);
1249 	}
1250 	/*
1251 	 * First make sure the new directory doesn't exist.
1252 	 *
1253 	 * Existence is checked first to make sure we don't return
1254 	 * EACCES instead of EEXIST which can cause some applications
1255 	 * to fail.
1256 	 */
1257 top:
1258 	*zpp = NULL;
1259 
1260 	if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1261 	    NULL, NULL))) {
1262 		zfs_acl_ids_free(&acl_ids);
1263 		zfs_exit(zfsvfs, FTAG);
1264 		return (error);
1265 	}
1266 
1267 	if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr,
1268 	    mnt_ns))) {
1269 		zfs_acl_ids_free(&acl_ids);
1270 		zfs_dirent_unlock(dl);
1271 		zfs_exit(zfsvfs, FTAG);
1272 		return (error);
1273 	}
1274 
1275 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1276 		zfs_acl_ids_free(&acl_ids);
1277 		zfs_dirent_unlock(dl);
1278 		zfs_exit(zfsvfs, FTAG);
1279 		return (SET_ERROR(EDQUOT));
1280 	}
1281 
1282 	/*
1283 	 * Add a new entry to the directory.
1284 	 */
1285 	tx = dmu_tx_create(zfsvfs->z_os);
1286 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1287 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1288 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1289 	if (fuid_dirtied)
1290 		zfs_fuid_txhold(zfsvfs, tx);
1291 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1292 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1293 		    acl_ids.z_aclp->z_acl_bytes);
1294 	}
1295 
1296 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1297 	    ZFS_SA_BASE_ATTR_SIZE);
1298 
1299 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1300 	if (error) {
1301 		zfs_dirent_unlock(dl);
1302 		if (error == ERESTART) {
1303 			waited = B_TRUE;
1304 			dmu_tx_wait(tx);
1305 			dmu_tx_abort(tx);
1306 			goto top;
1307 		}
1308 		zfs_acl_ids_free(&acl_ids);
1309 		dmu_tx_abort(tx);
1310 		zfs_exit(zfsvfs, FTAG);
1311 		return (error);
1312 	}
1313 
1314 	/*
1315 	 * Create new node.
1316 	 */
1317 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1318 
1319 	/*
1320 	 * Now put new name in parent dir.
1321 	 */
1322 	error = zfs_link_create(dl, zp, tx, ZNEW);
1323 	if (error != 0) {
1324 		zfs_znode_delete(zp, tx);
1325 		remove_inode_hash(ZTOI(zp));
1326 		goto out;
1327 	}
1328 
1329 	if (fuid_dirtied)
1330 		zfs_fuid_sync(zfsvfs, tx);
1331 
1332 	*zpp = zp;
1333 
1334 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1335 	if (flags & FIGNORECASE)
1336 		txtype |= TX_CI;
1337 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1338 	    acl_ids.z_fuidp, vap);
1339 
1340 out:
1341 	zfs_acl_ids_free(&acl_ids);
1342 
1343 	dmu_tx_commit(tx);
1344 
1345 	zfs_dirent_unlock(dl);
1346 
1347 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1348 		zil_commit(zilog, 0);
1349 
1350 	if (error != 0) {
1351 		zrele(zp);
1352 	} else {
1353 		zfs_znode_update_vfs(dzp);
1354 		zfs_znode_update_vfs(zp);
1355 	}
1356 	zfs_exit(zfsvfs, FTAG);
1357 	return (error);
1358 }
1359 
1360 /*
1361  * Remove a directory subdir entry.  If the current working
1362  * directory is the same as the subdir to be removed, the
1363  * remove will fail.
1364  *
1365  *	IN:	dzp	- znode of directory to remove from.
1366  *		name	- name of directory to be removed.
1367  *		cwd	- inode of current working directory.
1368  *		cr	- credentials of caller.
1369  *		flags	- case flags
1370  *
1371  *	RETURN:	0 on success, error code on failure.
1372  *
1373  * Timestamps:
1374  *	dzp - ctime|mtime updated
1375  */
1376 int
1377 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1378     int flags)
1379 {
1380 	znode_t		*zp;
1381 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1382 	zilog_t		*zilog;
1383 	zfs_dirlock_t	*dl;
1384 	dmu_tx_t	*tx;
1385 	int		error;
1386 	int		zflg = ZEXISTS;
1387 	boolean_t	waited = B_FALSE;
1388 
1389 	if (name == NULL)
1390 		return (SET_ERROR(EINVAL));
1391 
1392 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1393 		return (error);
1394 	zilog = zfsvfs->z_log;
1395 
1396 	if (flags & FIGNORECASE)
1397 		zflg |= ZCILOOK;
1398 top:
1399 	zp = NULL;
1400 
1401 	/*
1402 	 * Attempt to lock directory; fail if entry doesn't exist.
1403 	 */
1404 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1405 	    NULL, NULL))) {
1406 		zfs_exit(zfsvfs, FTAG);
1407 		return (error);
1408 	}
1409 
1410 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1411 		goto out;
1412 	}
1413 
1414 	if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1415 		error = SET_ERROR(ENOTDIR);
1416 		goto out;
1417 	}
1418 
1419 	if (zp == cwd) {
1420 		error = SET_ERROR(EINVAL);
1421 		goto out;
1422 	}
1423 
1424 	/*
1425 	 * Grab a lock on the directory to make sure that no one is
1426 	 * trying to add (or lookup) entries while we are removing it.
1427 	 */
1428 	rw_enter(&zp->z_name_lock, RW_WRITER);
1429 
1430 	/*
1431 	 * Grab a lock on the parent pointer to make sure we play well
1432 	 * with the treewalk and directory rename code.
1433 	 */
1434 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1435 
1436 	tx = dmu_tx_create(zfsvfs->z_os);
1437 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1438 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1439 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1440 	zfs_sa_upgrade_txholds(tx, zp);
1441 	zfs_sa_upgrade_txholds(tx, dzp);
1442 	dmu_tx_mark_netfree(tx);
1443 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1444 	if (error) {
1445 		rw_exit(&zp->z_parent_lock);
1446 		rw_exit(&zp->z_name_lock);
1447 		zfs_dirent_unlock(dl);
1448 		if (error == ERESTART) {
1449 			waited = B_TRUE;
1450 			dmu_tx_wait(tx);
1451 			dmu_tx_abort(tx);
1452 			zrele(zp);
1453 			goto top;
1454 		}
1455 		dmu_tx_abort(tx);
1456 		zrele(zp);
1457 		zfs_exit(zfsvfs, FTAG);
1458 		return (error);
1459 	}
1460 
1461 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1462 
1463 	if (error == 0) {
1464 		uint64_t txtype = TX_RMDIR;
1465 		if (flags & FIGNORECASE)
1466 			txtype |= TX_CI;
1467 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1468 		    B_FALSE);
1469 	}
1470 
1471 	dmu_tx_commit(tx);
1472 
1473 	rw_exit(&zp->z_parent_lock);
1474 	rw_exit(&zp->z_name_lock);
1475 out:
1476 	zfs_dirent_unlock(dl);
1477 
1478 	zfs_znode_update_vfs(dzp);
1479 	zfs_znode_update_vfs(zp);
1480 	zrele(zp);
1481 
1482 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1483 		zil_commit(zilog, 0);
1484 
1485 	zfs_exit(zfsvfs, FTAG);
1486 	return (error);
1487 }
1488 
1489 /*
1490  * Read directory entries from the given directory cursor position and emit
1491  * name and position for each entry.
1492  *
1493  *	IN:	ip	- inode of directory to read.
1494  *		ctx	- directory entry context.
1495  *		cr	- credentials of caller.
1496  *
1497  *	RETURN:	0 if success
1498  *		error code if failure
1499  *
1500  * Timestamps:
1501  *	ip - atime updated
1502  *
1503  * Note that the low 4 bits of the cookie returned by zap is always zero.
1504  * This allows us to use the low range for "special" directory entries:
1505  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1506  * we use the offset 2 for the '.zfs' directory.
1507  */
1508 int
1509 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
1510 {
1511 	(void) cr;
1512 	znode_t		*zp = ITOZ(ip);
1513 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
1514 	objset_t	*os;
1515 	zap_cursor_t	zc;
1516 	zap_attribute_t	zap;
1517 	int		error;
1518 	uint8_t		prefetch;
1519 	uint8_t		type;
1520 	int		done = 0;
1521 	uint64_t	parent;
1522 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1523 
1524 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1525 		return (error);
1526 
1527 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1528 	    &parent, sizeof (parent))) != 0)
1529 		goto out;
1530 
1531 	/*
1532 	 * Quit if directory has been removed (posix)
1533 	 */
1534 	if (zp->z_unlinked)
1535 		goto out;
1536 
1537 	error = 0;
1538 	os = zfsvfs->z_os;
1539 	offset = ctx->pos;
1540 	prefetch = zp->z_zn_prefetch;
1541 
1542 	/*
1543 	 * Initialize the iterator cursor.
1544 	 */
1545 	if (offset <= 3) {
1546 		/*
1547 		 * Start iteration from the beginning of the directory.
1548 		 */
1549 		zap_cursor_init(&zc, os, zp->z_id);
1550 	} else {
1551 		/*
1552 		 * The offset is a serialized cursor.
1553 		 */
1554 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1555 	}
1556 
1557 	/*
1558 	 * Transform to file-system independent format
1559 	 */
1560 	while (!done) {
1561 		uint64_t objnum;
1562 		/*
1563 		 * Special case `.', `..', and `.zfs'.
1564 		 */
1565 		if (offset == 0) {
1566 			(void) strcpy(zap.za_name, ".");
1567 			zap.za_normalization_conflict = 0;
1568 			objnum = zp->z_id;
1569 			type = DT_DIR;
1570 		} else if (offset == 1) {
1571 			(void) strcpy(zap.za_name, "..");
1572 			zap.za_normalization_conflict = 0;
1573 			objnum = parent;
1574 			type = DT_DIR;
1575 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1576 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1577 			zap.za_normalization_conflict = 0;
1578 			objnum = ZFSCTL_INO_ROOT;
1579 			type = DT_DIR;
1580 		} else {
1581 			/*
1582 			 * Grab next entry.
1583 			 */
1584 			if ((error = zap_cursor_retrieve(&zc, &zap))) {
1585 				if (error == ENOENT)
1586 					break;
1587 				else
1588 					goto update;
1589 			}
1590 
1591 			/*
1592 			 * Allow multiple entries provided the first entry is
1593 			 * the object id.  Non-zpl consumers may safely make
1594 			 * use of the additional space.
1595 			 *
1596 			 * XXX: This should be a feature flag for compatibility
1597 			 */
1598 			if (zap.za_integer_length != 8 ||
1599 			    zap.za_num_integers == 0) {
1600 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1601 				    "entry, obj = %lld, offset = %lld, "
1602 				    "length = %d, num = %lld\n",
1603 				    (u_longlong_t)zp->z_id,
1604 				    (u_longlong_t)offset,
1605 				    zap.za_integer_length,
1606 				    (u_longlong_t)zap.za_num_integers);
1607 				error = SET_ERROR(ENXIO);
1608 				goto update;
1609 			}
1610 
1611 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1612 			type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1613 		}
1614 
1615 		done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
1616 		    objnum, type);
1617 		if (done)
1618 			break;
1619 
1620 		if (prefetch)
1621 			dmu_prefetch_dnode(os, objnum, ZIO_PRIORITY_SYNC_READ);
1622 
1623 		/*
1624 		 * Move to the next entry, fill in the previous offset.
1625 		 */
1626 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1627 			zap_cursor_advance(&zc);
1628 			offset = zap_cursor_serialize(&zc);
1629 		} else {
1630 			offset += 1;
1631 		}
1632 		ctx->pos = offset;
1633 	}
1634 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1635 
1636 update:
1637 	zap_cursor_fini(&zc);
1638 	if (error == ENOENT)
1639 		error = 0;
1640 out:
1641 	zfs_exit(zfsvfs, FTAG);
1642 
1643 	return (error);
1644 }
1645 
1646 /*
1647  * Get the basic file attributes and place them in the provided kstat
1648  * structure.  The inode is assumed to be the authoritative source
1649  * for most of the attributes.  However, the znode currently has the
1650  * authoritative atime, blksize, and block count.
1651  *
1652  *	IN:	ip	- inode of file.
1653  *
1654  *	OUT:	sp	- kstat values.
1655  *
1656  *	RETURN:	0 (always succeeds)
1657  */
1658 int
1659 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
1660 zfs_getattr_fast(zidmap_t *user_ns, u32 request_mask, struct inode *ip,
1661     struct kstat *sp)
1662 #else
1663 zfs_getattr_fast(zidmap_t *user_ns, struct inode *ip, struct kstat *sp)
1664 #endif
1665 {
1666 	znode_t *zp = ITOZ(ip);
1667 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1668 	uint32_t blksize;
1669 	u_longlong_t nblocks;
1670 	int error;
1671 
1672 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1673 		return (error);
1674 
1675 	mutex_enter(&zp->z_lock);
1676 
1677 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
1678 	zpl_generic_fillattr(user_ns, request_mask, ip, sp);
1679 #else
1680 	zpl_generic_fillattr(user_ns, ip, sp);
1681 #endif
1682 	/*
1683 	 * +1 link count for root inode with visible '.zfs' directory.
1684 	 */
1685 	if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1686 		if (sp->nlink < ZFS_LINK_MAX)
1687 			sp->nlink++;
1688 
1689 	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1690 	sp->blksize = blksize;
1691 	sp->blocks = nblocks;
1692 
1693 	if (unlikely(zp->z_blksz == 0)) {
1694 		/*
1695 		 * Block size hasn't been set; suggest maximal I/O transfers.
1696 		 */
1697 		sp->blksize = zfsvfs->z_max_blksz;
1698 	}
1699 
1700 	mutex_exit(&zp->z_lock);
1701 
1702 	/*
1703 	 * Required to prevent NFS client from detecting different inode
1704 	 * numbers of snapshot root dentry before and after snapshot mount.
1705 	 */
1706 	if (zfsvfs->z_issnap) {
1707 		if (ip->i_sb->s_root->d_inode == ip)
1708 			sp->ino = ZFSCTL_INO_SNAPDIRS -
1709 			    dmu_objset_id(zfsvfs->z_os);
1710 	}
1711 
1712 	zfs_exit(zfsvfs, FTAG);
1713 
1714 	return (0);
1715 }
1716 
1717 /*
1718  * For the operation of changing file's user/group/project, we need to
1719  * handle not only the main object that is assigned to the file directly,
1720  * but also the ones that are used by the file via hidden xattr directory.
1721  *
1722  * Because the xattr directory may contains many EA entries, as to it may
1723  * be impossible to change all of them via the transaction of changing the
1724  * main object's user/group/project attributes. Then we have to change them
1725  * via other multiple independent transactions one by one. It may be not good
1726  * solution, but we have no better idea yet.
1727  */
1728 static int
1729 zfs_setattr_dir(znode_t *dzp)
1730 {
1731 	struct inode	*dxip = ZTOI(dzp);
1732 	struct inode	*xip = NULL;
1733 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1734 	objset_t	*os = zfsvfs->z_os;
1735 	zap_cursor_t	zc;
1736 	zap_attribute_t	zap;
1737 	zfs_dirlock_t	*dl;
1738 	znode_t		*zp = NULL;
1739 	dmu_tx_t	*tx = NULL;
1740 	uint64_t	uid, gid;
1741 	sa_bulk_attr_t	bulk[4];
1742 	int		count;
1743 	int		err;
1744 
1745 	zap_cursor_init(&zc, os, dzp->z_id);
1746 	while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
1747 		count = 0;
1748 		if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
1749 			err = ENXIO;
1750 			break;
1751 		}
1752 
1753 		err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
1754 		    ZEXISTS, NULL, NULL);
1755 		if (err == ENOENT)
1756 			goto next;
1757 		if (err)
1758 			break;
1759 
1760 		xip = ZTOI(zp);
1761 		if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1762 		    KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1763 		    zp->z_projid == dzp->z_projid)
1764 			goto next;
1765 
1766 		tx = dmu_tx_create(os);
1767 		if (!(zp->z_pflags & ZFS_PROJID))
1768 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1769 		else
1770 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1771 
1772 		err = dmu_tx_assign(tx, TXG_WAIT);
1773 		if (err)
1774 			break;
1775 
1776 		mutex_enter(&dzp->z_lock);
1777 
1778 		if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1779 			xip->i_uid = dxip->i_uid;
1780 			uid = zfs_uid_read(dxip);
1781 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1782 			    &uid, sizeof (uid));
1783 		}
1784 
1785 		if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1786 			xip->i_gid = dxip->i_gid;
1787 			gid = zfs_gid_read(dxip);
1788 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1789 			    &gid, sizeof (gid));
1790 		}
1791 
1792 
1793 		uint64_t projid = dzp->z_projid;
1794 		if (zp->z_projid != projid) {
1795 			if (!(zp->z_pflags & ZFS_PROJID)) {
1796 				err = sa_add_projid(zp->z_sa_hdl, tx, projid);
1797 				if (unlikely(err == EEXIST)) {
1798 					err = 0;
1799 				} else if (err != 0) {
1800 					goto sa_add_projid_err;
1801 				} else {
1802 					projid = ZFS_INVALID_PROJID;
1803 				}
1804 			}
1805 
1806 			if (projid != ZFS_INVALID_PROJID) {
1807 				zp->z_projid = projid;
1808 				SA_ADD_BULK_ATTR(bulk, count,
1809 				    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
1810 				    sizeof (zp->z_projid));
1811 			}
1812 		}
1813 
1814 sa_add_projid_err:
1815 		mutex_exit(&dzp->z_lock);
1816 
1817 		if (likely(count > 0)) {
1818 			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1819 			dmu_tx_commit(tx);
1820 		} else if (projid == ZFS_INVALID_PROJID) {
1821 			dmu_tx_commit(tx);
1822 		} else {
1823 			dmu_tx_abort(tx);
1824 		}
1825 		tx = NULL;
1826 		if (err != 0 && err != ENOENT)
1827 			break;
1828 
1829 next:
1830 		if (zp) {
1831 			zrele(zp);
1832 			zp = NULL;
1833 			zfs_dirent_unlock(dl);
1834 		}
1835 		zap_cursor_advance(&zc);
1836 	}
1837 
1838 	if (tx)
1839 		dmu_tx_abort(tx);
1840 	if (zp) {
1841 		zrele(zp);
1842 		zfs_dirent_unlock(dl);
1843 	}
1844 	zap_cursor_fini(&zc);
1845 
1846 	return (err == ENOENT ? 0 : err);
1847 }
1848 
1849 /*
1850  * Set the file attributes to the values contained in the
1851  * vattr structure.
1852  *
1853  *	IN:	zp	- znode of file to be modified.
1854  *		vap	- new attribute values.
1855  *			  If ATTR_XVATTR set, then optional attrs are being set
1856  *		flags	- ATTR_UTIME set if non-default time values provided.
1857  *			- ATTR_NOACLCHECK (CIFS context only).
1858  *		cr	- credentials of caller.
1859  *		mnt_ns	- user namespace of the mount
1860  *
1861  *	RETURN:	0 if success
1862  *		error code if failure
1863  *
1864  * Timestamps:
1865  *	ip - ctime updated, mtime updated if size changed.
1866  */
1867 int
1868 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zidmap_t *mnt_ns)
1869 {
1870 	struct inode	*ip;
1871 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1872 	objset_t	*os;
1873 	zilog_t		*zilog;
1874 	dmu_tx_t	*tx;
1875 	vattr_t		oldva;
1876 	xvattr_t	*tmpxvattr;
1877 	uint_t		mask = vap->va_mask;
1878 	uint_t		saved_mask = 0;
1879 	int		trim_mask = 0;
1880 	uint64_t	new_mode;
1881 	uint64_t	new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1882 	uint64_t	xattr_obj;
1883 	uint64_t	mtime[2], ctime[2], atime[2];
1884 	uint64_t	projid = ZFS_INVALID_PROJID;
1885 	znode_t		*attrzp;
1886 	int		need_policy = FALSE;
1887 	int		err, err2 = 0;
1888 	zfs_fuid_info_t *fuidp = NULL;
1889 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
1890 	xoptattr_t	*xoap;
1891 	zfs_acl_t	*aclp;
1892 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1893 	boolean_t	fuid_dirtied = B_FALSE;
1894 	boolean_t	handle_eadir = B_FALSE;
1895 	sa_bulk_attr_t	*bulk, *xattr_bulk;
1896 	int		count = 0, xattr_count = 0, bulks = 8;
1897 
1898 	if (mask == 0)
1899 		return (0);
1900 
1901 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1902 		return (err);
1903 	ip = ZTOI(zp);
1904 	os = zfsvfs->z_os;
1905 
1906 	/*
1907 	 * If this is a xvattr_t, then get a pointer to the structure of
1908 	 * optional attributes.  If this is NULL, then we have a vattr_t.
1909 	 */
1910 	xoap = xva_getxoptattr(xvap);
1911 	if (xoap != NULL && (mask & ATTR_XVATTR)) {
1912 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1913 			if (!dmu_objset_projectquota_enabled(os) ||
1914 			    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1915 				zfs_exit(zfsvfs, FTAG);
1916 				return (SET_ERROR(ENOTSUP));
1917 			}
1918 
1919 			projid = xoap->xoa_projid;
1920 			if (unlikely(projid == ZFS_INVALID_PROJID)) {
1921 				zfs_exit(zfsvfs, FTAG);
1922 				return (SET_ERROR(EINVAL));
1923 			}
1924 
1925 			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1926 				projid = ZFS_INVALID_PROJID;
1927 			else
1928 				need_policy = TRUE;
1929 		}
1930 
1931 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1932 		    (xoap->xoa_projinherit !=
1933 		    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1934 		    (!dmu_objset_projectquota_enabled(os) ||
1935 		    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1936 			zfs_exit(zfsvfs, FTAG);
1937 			return (SET_ERROR(ENOTSUP));
1938 		}
1939 	}
1940 
1941 	zilog = zfsvfs->z_log;
1942 
1943 	/*
1944 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
1945 	 * that file system is at proper version level
1946 	 */
1947 
1948 	if (zfsvfs->z_use_fuids == B_FALSE &&
1949 	    (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
1950 	    ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
1951 	    (mask & ATTR_XVATTR))) {
1952 		zfs_exit(zfsvfs, FTAG);
1953 		return (SET_ERROR(EINVAL));
1954 	}
1955 
1956 	if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
1957 		zfs_exit(zfsvfs, FTAG);
1958 		return (SET_ERROR(EISDIR));
1959 	}
1960 
1961 	if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
1962 		zfs_exit(zfsvfs, FTAG);
1963 		return (SET_ERROR(EINVAL));
1964 	}
1965 
1966 	tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
1967 	xva_init(tmpxvattr);
1968 
1969 	bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1970 	xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1971 
1972 	/*
1973 	 * Immutable files can only alter immutable bit and atime
1974 	 */
1975 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
1976 	    ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
1977 	    ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
1978 		err = SET_ERROR(EPERM);
1979 		goto out3;
1980 	}
1981 
1982 	if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
1983 		err = SET_ERROR(EPERM);
1984 		goto out3;
1985 	}
1986 
1987 	/*
1988 	 * Verify timestamps doesn't overflow 32 bits.
1989 	 * ZFS can handle large timestamps, but 32bit syscalls can't
1990 	 * handle times greater than 2039.  This check should be removed
1991 	 * once large timestamps are fully supported.
1992 	 */
1993 	if (mask & (ATTR_ATIME | ATTR_MTIME)) {
1994 		if (((mask & ATTR_ATIME) &&
1995 		    TIMESPEC_OVERFLOW(&vap->va_atime)) ||
1996 		    ((mask & ATTR_MTIME) &&
1997 		    TIMESPEC_OVERFLOW(&vap->va_mtime))) {
1998 			err = SET_ERROR(EOVERFLOW);
1999 			goto out3;
2000 		}
2001 	}
2002 
2003 top:
2004 	attrzp = NULL;
2005 	aclp = NULL;
2006 
2007 	/* Can this be moved to before the top label? */
2008 	if (zfs_is_readonly(zfsvfs)) {
2009 		err = SET_ERROR(EROFS);
2010 		goto out3;
2011 	}
2012 
2013 	/*
2014 	 * First validate permissions
2015 	 */
2016 
2017 	if (mask & ATTR_SIZE) {
2018 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr,
2019 		    mnt_ns);
2020 		if (err)
2021 			goto out3;
2022 
2023 		/*
2024 		 * XXX - Note, we are not providing any open
2025 		 * mode flags here (like FNDELAY), so we may
2026 		 * block if there are locks present... this
2027 		 * should be addressed in openat().
2028 		 */
2029 		/* XXX - would it be OK to generate a log record here? */
2030 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2031 		if (err)
2032 			goto out3;
2033 	}
2034 
2035 	if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2036 	    ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2037 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2038 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2039 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2040 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2041 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2042 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2043 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2044 		    skipaclchk, cr, mnt_ns);
2045 	}
2046 
2047 	if (mask & (ATTR_UID|ATTR_GID)) {
2048 		int	idmask = (mask & (ATTR_UID|ATTR_GID));
2049 		int	take_owner;
2050 		int	take_group;
2051 		uid_t	uid;
2052 		gid_t	gid;
2053 
2054 		/*
2055 		 * NOTE: even if a new mode is being set,
2056 		 * we may clear S_ISUID/S_ISGID bits.
2057 		 */
2058 
2059 		if (!(mask & ATTR_MODE))
2060 			vap->va_mode = zp->z_mode;
2061 
2062 		/*
2063 		 * Take ownership or chgrp to group we are a member of
2064 		 */
2065 
2066 		uid = zfs_uid_to_vfsuid(mnt_ns, zfs_i_user_ns(ip),
2067 		    vap->va_uid);
2068 		gid = zfs_gid_to_vfsgid(mnt_ns, zfs_i_user_ns(ip),
2069 		    vap->va_gid);
2070 		take_owner = (mask & ATTR_UID) && (uid == crgetuid(cr));
2071 		take_group = (mask & ATTR_GID) &&
2072 		    zfs_groupmember(zfsvfs, gid, cr);
2073 
2074 		/*
2075 		 * If both ATTR_UID and ATTR_GID are set then take_owner and
2076 		 * take_group must both be set in order to allow taking
2077 		 * ownership.
2078 		 *
2079 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2080 		 *
2081 		 */
2082 
2083 		if (((idmask == (ATTR_UID|ATTR_GID)) &&
2084 		    take_owner && take_group) ||
2085 		    ((idmask == ATTR_UID) && take_owner) ||
2086 		    ((idmask == ATTR_GID) && take_group)) {
2087 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2088 			    skipaclchk, cr, mnt_ns) == 0) {
2089 				/*
2090 				 * Remove setuid/setgid for non-privileged users
2091 				 */
2092 				(void) secpolicy_setid_clear(vap, cr);
2093 				trim_mask = (mask & (ATTR_UID|ATTR_GID));
2094 			} else {
2095 				need_policy =  TRUE;
2096 			}
2097 		} else {
2098 			need_policy =  TRUE;
2099 		}
2100 	}
2101 
2102 	mutex_enter(&zp->z_lock);
2103 	oldva.va_mode = zp->z_mode;
2104 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2105 	if (mask & ATTR_XVATTR) {
2106 		/*
2107 		 * Update xvattr mask to include only those attributes
2108 		 * that are actually changing.
2109 		 *
2110 		 * the bits will be restored prior to actually setting
2111 		 * the attributes so the caller thinks they were set.
2112 		 */
2113 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2114 			if (xoap->xoa_appendonly !=
2115 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2116 				need_policy = TRUE;
2117 			} else {
2118 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2119 				XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2120 			}
2121 		}
2122 
2123 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2124 			if (xoap->xoa_projinherit !=
2125 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2126 				need_policy = TRUE;
2127 			} else {
2128 				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2129 				XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2130 			}
2131 		}
2132 
2133 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2134 			if (xoap->xoa_nounlink !=
2135 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2136 				need_policy = TRUE;
2137 			} else {
2138 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2139 				XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2140 			}
2141 		}
2142 
2143 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2144 			if (xoap->xoa_immutable !=
2145 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2146 				need_policy = TRUE;
2147 			} else {
2148 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2149 				XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2150 			}
2151 		}
2152 
2153 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2154 			if (xoap->xoa_nodump !=
2155 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2156 				need_policy = TRUE;
2157 			} else {
2158 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2159 				XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2160 			}
2161 		}
2162 
2163 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2164 			if (xoap->xoa_av_modified !=
2165 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2166 				need_policy = TRUE;
2167 			} else {
2168 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2169 				XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2170 			}
2171 		}
2172 
2173 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2174 			if ((!S_ISREG(ip->i_mode) &&
2175 			    xoap->xoa_av_quarantined) ||
2176 			    xoap->xoa_av_quarantined !=
2177 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2178 				need_policy = TRUE;
2179 			} else {
2180 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2181 				XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2182 			}
2183 		}
2184 
2185 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2186 			mutex_exit(&zp->z_lock);
2187 			err = SET_ERROR(EPERM);
2188 			goto out3;
2189 		}
2190 
2191 		if (need_policy == FALSE &&
2192 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2193 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2194 			need_policy = TRUE;
2195 		}
2196 	}
2197 
2198 	mutex_exit(&zp->z_lock);
2199 
2200 	if (mask & ATTR_MODE) {
2201 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr,
2202 		    mnt_ns) == 0) {
2203 			err = secpolicy_setid_setsticky_clear(ip, vap,
2204 			    &oldva, cr, mnt_ns, zfs_i_user_ns(ip));
2205 			if (err)
2206 				goto out3;
2207 			trim_mask |= ATTR_MODE;
2208 		} else {
2209 			need_policy = TRUE;
2210 		}
2211 	}
2212 
2213 	if (need_policy) {
2214 		/*
2215 		 * If trim_mask is set then take ownership
2216 		 * has been granted or write_acl is present and user
2217 		 * has the ability to modify mode.  In that case remove
2218 		 * UID|GID and or MODE from mask so that
2219 		 * secpolicy_vnode_setattr() doesn't revoke it.
2220 		 */
2221 
2222 		if (trim_mask) {
2223 			saved_mask = vap->va_mask;
2224 			vap->va_mask &= ~trim_mask;
2225 		}
2226 		err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2227 		    zfs_zaccess_unix, zp);
2228 		if (err)
2229 			goto out3;
2230 
2231 		if (trim_mask)
2232 			vap->va_mask |= saved_mask;
2233 	}
2234 
2235 	/*
2236 	 * secpolicy_vnode_setattr, or take ownership may have
2237 	 * changed va_mask
2238 	 */
2239 	mask = vap->va_mask;
2240 
2241 	if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2242 		handle_eadir = B_TRUE;
2243 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2244 		    &xattr_obj, sizeof (xattr_obj));
2245 
2246 		if (err == 0 && xattr_obj) {
2247 			err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2248 			if (err)
2249 				goto out2;
2250 		}
2251 		if (mask & ATTR_UID) {
2252 			new_kuid = zfs_fuid_create(zfsvfs,
2253 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2254 			if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2255 			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2256 			    new_kuid)) {
2257 				if (attrzp)
2258 					zrele(attrzp);
2259 				err = SET_ERROR(EDQUOT);
2260 				goto out2;
2261 			}
2262 		}
2263 
2264 		if (mask & ATTR_GID) {
2265 			new_kgid = zfs_fuid_create(zfsvfs,
2266 			    (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2267 			if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2268 			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2269 			    new_kgid)) {
2270 				if (attrzp)
2271 					zrele(attrzp);
2272 				err = SET_ERROR(EDQUOT);
2273 				goto out2;
2274 			}
2275 		}
2276 
2277 		if (projid != ZFS_INVALID_PROJID &&
2278 		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2279 			if (attrzp)
2280 				zrele(attrzp);
2281 			err = EDQUOT;
2282 			goto out2;
2283 		}
2284 	}
2285 	tx = dmu_tx_create(os);
2286 
2287 	if (mask & ATTR_MODE) {
2288 		uint64_t pmode = zp->z_mode;
2289 		uint64_t acl_obj;
2290 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2291 
2292 		if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2293 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2294 			err = EPERM;
2295 			goto out;
2296 		}
2297 
2298 		if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2299 			goto out;
2300 
2301 		mutex_enter(&zp->z_lock);
2302 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2303 			/*
2304 			 * Are we upgrading ACL from old V0 format
2305 			 * to V1 format?
2306 			 */
2307 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2308 			    zfs_znode_acl_version(zp) ==
2309 			    ZFS_ACL_VERSION_INITIAL) {
2310 				dmu_tx_hold_free(tx, acl_obj, 0,
2311 				    DMU_OBJECT_END);
2312 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2313 				    0, aclp->z_acl_bytes);
2314 			} else {
2315 				dmu_tx_hold_write(tx, acl_obj, 0,
2316 				    aclp->z_acl_bytes);
2317 			}
2318 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2319 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2320 			    0, aclp->z_acl_bytes);
2321 		}
2322 		mutex_exit(&zp->z_lock);
2323 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2324 	} else {
2325 		if (((mask & ATTR_XVATTR) &&
2326 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2327 		    (projid != ZFS_INVALID_PROJID &&
2328 		    !(zp->z_pflags & ZFS_PROJID)))
2329 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2330 		else
2331 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2332 	}
2333 
2334 	if (attrzp) {
2335 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2336 	}
2337 
2338 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2339 	if (fuid_dirtied)
2340 		zfs_fuid_txhold(zfsvfs, tx);
2341 
2342 	zfs_sa_upgrade_txholds(tx, zp);
2343 
2344 	err = dmu_tx_assign(tx, TXG_WAIT);
2345 	if (err)
2346 		goto out;
2347 
2348 	count = 0;
2349 	/*
2350 	 * Set each attribute requested.
2351 	 * We group settings according to the locks they need to acquire.
2352 	 *
2353 	 * Note: you cannot set ctime directly, although it will be
2354 	 * updated as a side-effect of calling this function.
2355 	 */
2356 
2357 	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2358 		/*
2359 		 * For the existed object that is upgraded from old system,
2360 		 * its on-disk layout has no slot for the project ID attribute.
2361 		 * But quota accounting logic needs to access related slots by
2362 		 * offset directly. So we need to adjust old objects' layout
2363 		 * to make the project ID to some unified and fixed offset.
2364 		 */
2365 		if (attrzp)
2366 			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2367 		if (err == 0)
2368 			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2369 
2370 		if (unlikely(err == EEXIST))
2371 			err = 0;
2372 		else if (err != 0)
2373 			goto out;
2374 		else
2375 			projid = ZFS_INVALID_PROJID;
2376 	}
2377 
2378 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2379 		mutex_enter(&zp->z_acl_lock);
2380 	mutex_enter(&zp->z_lock);
2381 
2382 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2383 	    &zp->z_pflags, sizeof (zp->z_pflags));
2384 
2385 	if (attrzp) {
2386 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2387 			mutex_enter(&attrzp->z_acl_lock);
2388 		mutex_enter(&attrzp->z_lock);
2389 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2390 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2391 		    sizeof (attrzp->z_pflags));
2392 		if (projid != ZFS_INVALID_PROJID) {
2393 			attrzp->z_projid = projid;
2394 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2395 			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2396 			    sizeof (attrzp->z_projid));
2397 		}
2398 	}
2399 
2400 	if (mask & (ATTR_UID|ATTR_GID)) {
2401 
2402 		if (mask & ATTR_UID) {
2403 			ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2404 			new_uid = zfs_uid_read(ZTOI(zp));
2405 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2406 			    &new_uid, sizeof (new_uid));
2407 			if (attrzp) {
2408 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2409 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2410 				    sizeof (new_uid));
2411 				ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2412 			}
2413 		}
2414 
2415 		if (mask & ATTR_GID) {
2416 			ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2417 			new_gid = zfs_gid_read(ZTOI(zp));
2418 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2419 			    NULL, &new_gid, sizeof (new_gid));
2420 			if (attrzp) {
2421 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2422 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2423 				    sizeof (new_gid));
2424 				ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2425 			}
2426 		}
2427 		if (!(mask & ATTR_MODE)) {
2428 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2429 			    NULL, &new_mode, sizeof (new_mode));
2430 			new_mode = zp->z_mode;
2431 		}
2432 		err = zfs_acl_chown_setattr(zp);
2433 		ASSERT(err == 0);
2434 		if (attrzp) {
2435 			err = zfs_acl_chown_setattr(attrzp);
2436 			ASSERT(err == 0);
2437 		}
2438 	}
2439 
2440 	if (mask & ATTR_MODE) {
2441 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2442 		    &new_mode, sizeof (new_mode));
2443 		zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2444 		ASSERT3P(aclp, !=, NULL);
2445 		err = zfs_aclset_common(zp, aclp, cr, tx);
2446 		ASSERT0(err);
2447 		if (zp->z_acl_cached)
2448 			zfs_acl_free(zp->z_acl_cached);
2449 		zp->z_acl_cached = aclp;
2450 		aclp = NULL;
2451 	}
2452 
2453 	if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2454 		zp->z_atime_dirty = B_FALSE;
2455 		inode_timespec_t tmp_atime = zpl_inode_get_atime(ip);
2456 		ZFS_TIME_ENCODE(&tmp_atime, atime);
2457 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2458 		    &atime, sizeof (atime));
2459 	}
2460 
2461 	if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2462 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2463 		zpl_inode_set_mtime_to_ts(ZTOI(zp),
2464 		    zpl_inode_timestamp_truncate(vap->va_mtime, ZTOI(zp)));
2465 
2466 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2467 		    mtime, sizeof (mtime));
2468 	}
2469 
2470 	if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2471 		ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2472 		zpl_inode_set_ctime_to_ts(ZTOI(zp),
2473 		    zpl_inode_timestamp_truncate(vap->va_ctime, ZTOI(zp)));
2474 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2475 		    ctime, sizeof (ctime));
2476 	}
2477 
2478 	if (projid != ZFS_INVALID_PROJID) {
2479 		zp->z_projid = projid;
2480 		SA_ADD_BULK_ATTR(bulk, count,
2481 		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2482 		    sizeof (zp->z_projid));
2483 	}
2484 
2485 	if (attrzp && mask) {
2486 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2487 		    SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2488 		    sizeof (ctime));
2489 	}
2490 
2491 	/*
2492 	 * Do this after setting timestamps to prevent timestamp
2493 	 * update from toggling bit
2494 	 */
2495 
2496 	if (xoap && (mask & ATTR_XVATTR)) {
2497 
2498 		/*
2499 		 * restore trimmed off masks
2500 		 * so that return masks can be set for caller.
2501 		 */
2502 
2503 		if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2504 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2505 		}
2506 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2507 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2508 		}
2509 		if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2510 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2511 		}
2512 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2513 			XVA_SET_REQ(xvap, XAT_NODUMP);
2514 		}
2515 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2516 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2517 		}
2518 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2519 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2520 		}
2521 		if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2522 			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2523 		}
2524 
2525 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2526 			ASSERT(S_ISREG(ip->i_mode));
2527 
2528 		zfs_xvattr_set(zp, xvap, tx);
2529 	}
2530 
2531 	if (fuid_dirtied)
2532 		zfs_fuid_sync(zfsvfs, tx);
2533 
2534 	if (mask != 0)
2535 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2536 
2537 	mutex_exit(&zp->z_lock);
2538 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2539 		mutex_exit(&zp->z_acl_lock);
2540 
2541 	if (attrzp) {
2542 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2543 			mutex_exit(&attrzp->z_acl_lock);
2544 		mutex_exit(&attrzp->z_lock);
2545 	}
2546 out:
2547 	if (err == 0 && xattr_count > 0) {
2548 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2549 		    xattr_count, tx);
2550 		ASSERT(err2 == 0);
2551 	}
2552 
2553 	if (aclp)
2554 		zfs_acl_free(aclp);
2555 
2556 	if (fuidp) {
2557 		zfs_fuid_info_free(fuidp);
2558 		fuidp = NULL;
2559 	}
2560 
2561 	if (err) {
2562 		dmu_tx_abort(tx);
2563 		if (attrzp)
2564 			zrele(attrzp);
2565 		if (err == ERESTART)
2566 			goto top;
2567 	} else {
2568 		if (count > 0)
2569 			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2570 		dmu_tx_commit(tx);
2571 		if (attrzp) {
2572 			if (err2 == 0 && handle_eadir)
2573 				err = zfs_setattr_dir(attrzp);
2574 			zrele(attrzp);
2575 		}
2576 		zfs_znode_update_vfs(zp);
2577 	}
2578 
2579 out2:
2580 	if (os->os_sync == ZFS_SYNC_ALWAYS)
2581 		zil_commit(zilog, 0);
2582 
2583 out3:
2584 	kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2585 	kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2586 	kmem_free(tmpxvattr, sizeof (xvattr_t));
2587 	zfs_exit(zfsvfs, FTAG);
2588 	return (err);
2589 }
2590 
2591 typedef struct zfs_zlock {
2592 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2593 	znode_t		*zl_znode;	/* znode we held */
2594 	struct zfs_zlock *zl_next;	/* next in list */
2595 } zfs_zlock_t;
2596 
2597 /*
2598  * Drop locks and release vnodes that were held by zfs_rename_lock().
2599  */
2600 static void
2601 zfs_rename_unlock(zfs_zlock_t **zlpp)
2602 {
2603 	zfs_zlock_t *zl;
2604 
2605 	while ((zl = *zlpp) != NULL) {
2606 		if (zl->zl_znode != NULL)
2607 			zfs_zrele_async(zl->zl_znode);
2608 		rw_exit(zl->zl_rwlock);
2609 		*zlpp = zl->zl_next;
2610 		kmem_free(zl, sizeof (*zl));
2611 	}
2612 }
2613 
2614 /*
2615  * Search back through the directory tree, using the ".." entries.
2616  * Lock each directory in the chain to prevent concurrent renames.
2617  * Fail any attempt to move a directory into one of its own descendants.
2618  * XXX - z_parent_lock can overlap with map or grow locks
2619  */
2620 static int
2621 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2622 {
2623 	zfs_zlock_t	*zl;
2624 	znode_t		*zp = tdzp;
2625 	uint64_t	rootid = ZTOZSB(zp)->z_root;
2626 	uint64_t	oidp = zp->z_id;
2627 	krwlock_t	*rwlp = &szp->z_parent_lock;
2628 	krw_t		rw = RW_WRITER;
2629 
2630 	/*
2631 	 * First pass write-locks szp and compares to zp->z_id.
2632 	 * Later passes read-lock zp and compare to zp->z_parent.
2633 	 */
2634 	do {
2635 		if (!rw_tryenter(rwlp, rw)) {
2636 			/*
2637 			 * Another thread is renaming in this path.
2638 			 * Note that if we are a WRITER, we don't have any
2639 			 * parent_locks held yet.
2640 			 */
2641 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2642 				/*
2643 				 * Drop our locks and restart
2644 				 */
2645 				zfs_rename_unlock(&zl);
2646 				*zlpp = NULL;
2647 				zp = tdzp;
2648 				oidp = zp->z_id;
2649 				rwlp = &szp->z_parent_lock;
2650 				rw = RW_WRITER;
2651 				continue;
2652 			} else {
2653 				/*
2654 				 * Wait for other thread to drop its locks
2655 				 */
2656 				rw_enter(rwlp, rw);
2657 			}
2658 		}
2659 
2660 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2661 		zl->zl_rwlock = rwlp;
2662 		zl->zl_znode = NULL;
2663 		zl->zl_next = *zlpp;
2664 		*zlpp = zl;
2665 
2666 		if (oidp == szp->z_id)		/* We're a descendant of szp */
2667 			return (SET_ERROR(EINVAL));
2668 
2669 		if (oidp == rootid)		/* We've hit the top */
2670 			return (0);
2671 
2672 		if (rw == RW_READER) {		/* i.e. not the first pass */
2673 			int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2674 			if (error)
2675 				return (error);
2676 			zl->zl_znode = zp;
2677 		}
2678 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2679 		    &oidp, sizeof (oidp));
2680 		rwlp = &zp->z_parent_lock;
2681 		rw = RW_READER;
2682 
2683 	} while (zp->z_id != sdzp->z_id);
2684 
2685 	return (0);
2686 }
2687 
2688 /*
2689  * Move an entry from the provided source directory to the target
2690  * directory.  Change the entry name as indicated.
2691  *
2692  *	IN:	sdzp	- Source directory containing the "old entry".
2693  *		snm	- Old entry name.
2694  *		tdzp	- Target directory to contain the "new entry".
2695  *		tnm	- New entry name.
2696  *		cr	- credentials of caller.
2697  *		flags	- case flags
2698  *		rflags  - RENAME_* flags
2699  *		wa_vap  - attributes for RENAME_WHITEOUT (must be a char 0:0).
2700  *		mnt_ns	- user namespace of the mount
2701  *
2702  *	RETURN:	0 on success, error code on failure.
2703  *
2704  * Timestamps:
2705  *	sdzp,tdzp - ctime|mtime updated
2706  */
2707 int
2708 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2709     cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zidmap_t *mnt_ns)
2710 {
2711 	znode_t		*szp, *tzp;
2712 	zfsvfs_t	*zfsvfs = ZTOZSB(sdzp);
2713 	zilog_t		*zilog;
2714 	zfs_dirlock_t	*sdl, *tdl;
2715 	dmu_tx_t	*tx;
2716 	zfs_zlock_t	*zl;
2717 	int		cmp, serr, terr;
2718 	int		error = 0;
2719 	int		zflg = 0;
2720 	boolean_t	waited = B_FALSE;
2721 	/* Needed for whiteout inode creation. */
2722 	boolean_t	fuid_dirtied;
2723 	zfs_acl_ids_t	acl_ids;
2724 	boolean_t	have_acl = B_FALSE;
2725 	znode_t		*wzp = NULL;
2726 
2727 
2728 	if (snm == NULL || tnm == NULL)
2729 		return (SET_ERROR(EINVAL));
2730 
2731 	if (rflags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2732 		return (SET_ERROR(EINVAL));
2733 
2734 	/* Already checked by Linux VFS, but just to make sure. */
2735 	if (rflags & RENAME_EXCHANGE &&
2736 	    (rflags & (RENAME_NOREPLACE | RENAME_WHITEOUT)))
2737 		return (SET_ERROR(EINVAL));
2738 
2739 	/*
2740 	 * Make sure we only get wo_vap iff. RENAME_WHITEOUT and that it's the
2741 	 * right kind of vattr_t for the whiteout file. These are set
2742 	 * internally by ZFS so should never be incorrect.
2743 	 */
2744 	VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL);
2745 	VERIFY_IMPLY(wo_vap, wo_vap->va_mode == S_IFCHR);
2746 	VERIFY_IMPLY(wo_vap, wo_vap->va_rdev == makedevice(0, 0));
2747 
2748 	if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
2749 		return (error);
2750 	zilog = zfsvfs->z_log;
2751 
2752 	if ((error = zfs_verify_zp(tdzp)) != 0) {
2753 		zfs_exit(zfsvfs, FTAG);
2754 		return (error);
2755 	}
2756 
2757 	/*
2758 	 * We check i_sb because snapshots and the ctldir must have different
2759 	 * super blocks.
2760 	 */
2761 	if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2762 	    zfsctl_is_node(ZTOI(tdzp))) {
2763 		zfs_exit(zfsvfs, FTAG);
2764 		return (SET_ERROR(EXDEV));
2765 	}
2766 
2767 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2768 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2769 		zfs_exit(zfsvfs, FTAG);
2770 		return (SET_ERROR(EILSEQ));
2771 	}
2772 
2773 	if (flags & FIGNORECASE)
2774 		zflg |= ZCILOOK;
2775 
2776 top:
2777 	szp = NULL;
2778 	tzp = NULL;
2779 	zl = NULL;
2780 
2781 	/*
2782 	 * This is to prevent the creation of links into attribute space
2783 	 * by renaming a linked file into/outof an attribute directory.
2784 	 * See the comment in zfs_link() for why this is considered bad.
2785 	 */
2786 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2787 		zfs_exit(zfsvfs, FTAG);
2788 		return (SET_ERROR(EINVAL));
2789 	}
2790 
2791 	/*
2792 	 * Lock source and target directory entries.  To prevent deadlock,
2793 	 * a lock ordering must be defined.  We lock the directory with
2794 	 * the smallest object id first, or if it's a tie, the one with
2795 	 * the lexically first name.
2796 	 */
2797 	if (sdzp->z_id < tdzp->z_id) {
2798 		cmp = -1;
2799 	} else if (sdzp->z_id > tdzp->z_id) {
2800 		cmp = 1;
2801 	} else {
2802 		/*
2803 		 * First compare the two name arguments without
2804 		 * considering any case folding.
2805 		 */
2806 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2807 
2808 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2809 		ASSERT(error == 0 || !zfsvfs->z_utf8);
2810 		if (cmp == 0) {
2811 			/*
2812 			 * POSIX: "If the old argument and the new argument
2813 			 * both refer to links to the same existing file,
2814 			 * the rename() function shall return successfully
2815 			 * and perform no other action."
2816 			 */
2817 			zfs_exit(zfsvfs, FTAG);
2818 			return (0);
2819 		}
2820 		/*
2821 		 * If the file system is case-folding, then we may
2822 		 * have some more checking to do.  A case-folding file
2823 		 * system is either supporting mixed case sensitivity
2824 		 * access or is completely case-insensitive.  Note
2825 		 * that the file system is always case preserving.
2826 		 *
2827 		 * In mixed sensitivity mode case sensitive behavior
2828 		 * is the default.  FIGNORECASE must be used to
2829 		 * explicitly request case insensitive behavior.
2830 		 *
2831 		 * If the source and target names provided differ only
2832 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
2833 		 * we will treat this as a special case in the
2834 		 * case-insensitive mode: as long as the source name
2835 		 * is an exact match, we will allow this to proceed as
2836 		 * a name-change request.
2837 		 */
2838 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2839 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
2840 		    flags & FIGNORECASE)) &&
2841 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2842 		    &error) == 0) {
2843 			/*
2844 			 * case preserving rename request, require exact
2845 			 * name matches
2846 			 */
2847 			zflg |= ZCIEXACT;
2848 			zflg &= ~ZCILOOK;
2849 		}
2850 	}
2851 
2852 	/*
2853 	 * If the source and destination directories are the same, we should
2854 	 * grab the z_name_lock of that directory only once.
2855 	 */
2856 	if (sdzp == tdzp) {
2857 		zflg |= ZHAVELOCK;
2858 		rw_enter(&sdzp->z_name_lock, RW_READER);
2859 	}
2860 
2861 	if (cmp < 0) {
2862 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2863 		    ZEXISTS | zflg, NULL, NULL);
2864 		terr = zfs_dirent_lock(&tdl,
2865 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2866 	} else {
2867 		terr = zfs_dirent_lock(&tdl,
2868 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
2869 		serr = zfs_dirent_lock(&sdl,
2870 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2871 		    NULL, NULL);
2872 	}
2873 
2874 	if (serr) {
2875 		/*
2876 		 * Source entry invalid or not there.
2877 		 */
2878 		if (!terr) {
2879 			zfs_dirent_unlock(tdl);
2880 			if (tzp)
2881 				zrele(tzp);
2882 		}
2883 
2884 		if (sdzp == tdzp)
2885 			rw_exit(&sdzp->z_name_lock);
2886 
2887 		if (strcmp(snm, "..") == 0)
2888 			serr = EINVAL;
2889 		zfs_exit(zfsvfs, FTAG);
2890 		return (serr);
2891 	}
2892 	if (terr) {
2893 		zfs_dirent_unlock(sdl);
2894 		zrele(szp);
2895 
2896 		if (sdzp == tdzp)
2897 			rw_exit(&sdzp->z_name_lock);
2898 
2899 		if (strcmp(tnm, "..") == 0)
2900 			terr = EINVAL;
2901 		zfs_exit(zfsvfs, FTAG);
2902 		return (terr);
2903 	}
2904 
2905 	/*
2906 	 * If we are using project inheritance, means if the directory has
2907 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2908 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2909 	 * such case, we only allow renames into our tree when the project
2910 	 * IDs are the same.
2911 	 */
2912 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2913 	    tdzp->z_projid != szp->z_projid) {
2914 		error = SET_ERROR(EXDEV);
2915 		goto out;
2916 	}
2917 
2918 	/*
2919 	 * Must have write access at the source to remove the old entry
2920 	 * and write access at the target to create the new entry.
2921 	 * Note that if target and source are the same, this can be
2922 	 * done in a single check.
2923 	 */
2924 	if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, mnt_ns)))
2925 		goto out;
2926 
2927 	if (S_ISDIR(ZTOI(szp)->i_mode)) {
2928 		/*
2929 		 * Check to make sure rename is valid.
2930 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2931 		 */
2932 		if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2933 			goto out;
2934 	}
2935 
2936 	/*
2937 	 * Does target exist?
2938 	 */
2939 	if (tzp) {
2940 		if (rflags & RENAME_NOREPLACE) {
2941 			error = SET_ERROR(EEXIST);
2942 			goto out;
2943 		}
2944 		/*
2945 		 * Source and target must be the same type (unless exchanging).
2946 		 */
2947 		if (!(rflags & RENAME_EXCHANGE)) {
2948 			boolean_t s_is_dir = S_ISDIR(ZTOI(szp)->i_mode) != 0;
2949 			boolean_t t_is_dir = S_ISDIR(ZTOI(tzp)->i_mode) != 0;
2950 
2951 			if (s_is_dir != t_is_dir) {
2952 				error = SET_ERROR(s_is_dir ? ENOTDIR : EISDIR);
2953 				goto out;
2954 			}
2955 		}
2956 		/*
2957 		 * POSIX dictates that when the source and target
2958 		 * entries refer to the same file object, rename
2959 		 * must do nothing and exit without error.
2960 		 */
2961 		if (szp->z_id == tzp->z_id) {
2962 			error = 0;
2963 			goto out;
2964 		}
2965 	} else if (rflags & RENAME_EXCHANGE) {
2966 		/* Target must exist for RENAME_EXCHANGE. */
2967 		error = SET_ERROR(ENOENT);
2968 		goto out;
2969 	}
2970 
2971 	/* Set up inode creation for RENAME_WHITEOUT. */
2972 	if (rflags & RENAME_WHITEOUT) {
2973 		/*
2974 		 * Whiteout files are not regular files or directories, so to
2975 		 * match zfs_create() we do not inherit the project id.
2976 		 */
2977 		uint64_t wo_projid = ZFS_DEFAULT_PROJID;
2978 
2979 		error = zfs_zaccess(sdzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns);
2980 		if (error)
2981 			goto out;
2982 
2983 		if (!have_acl) {
2984 			error = zfs_acl_ids_create(sdzp, 0, wo_vap, cr, NULL,
2985 			    &acl_ids, mnt_ns);
2986 			if (error)
2987 				goto out;
2988 			have_acl = B_TRUE;
2989 		}
2990 
2991 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, wo_projid)) {
2992 			error = SET_ERROR(EDQUOT);
2993 			goto out;
2994 		}
2995 	}
2996 
2997 	tx = dmu_tx_create(zfsvfs->z_os);
2998 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
2999 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3000 	dmu_tx_hold_zap(tx, sdzp->z_id,
3001 	    (rflags & RENAME_EXCHANGE) ? TRUE : FALSE, snm);
3002 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3003 	if (sdzp != tdzp) {
3004 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3005 		zfs_sa_upgrade_txholds(tx, tdzp);
3006 	}
3007 	if (tzp) {
3008 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3009 		zfs_sa_upgrade_txholds(tx, tzp);
3010 	}
3011 	if (rflags & RENAME_WHITEOUT) {
3012 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3013 		    ZFS_SA_BASE_ATTR_SIZE);
3014 
3015 		dmu_tx_hold_zap(tx, sdzp->z_id, TRUE, snm);
3016 		dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3017 		if (!zfsvfs->z_use_sa &&
3018 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3019 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3020 			    0, acl_ids.z_aclp->z_acl_bytes);
3021 		}
3022 	}
3023 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3024 	if (fuid_dirtied)
3025 		zfs_fuid_txhold(zfsvfs, tx);
3026 	zfs_sa_upgrade_txholds(tx, szp);
3027 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3028 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3029 	if (error) {
3030 		if (zl != NULL)
3031 			zfs_rename_unlock(&zl);
3032 		zfs_dirent_unlock(sdl);
3033 		zfs_dirent_unlock(tdl);
3034 
3035 		if (sdzp == tdzp)
3036 			rw_exit(&sdzp->z_name_lock);
3037 
3038 		if (error == ERESTART) {
3039 			waited = B_TRUE;
3040 			dmu_tx_wait(tx);
3041 			dmu_tx_abort(tx);
3042 			zrele(szp);
3043 			if (tzp)
3044 				zrele(tzp);
3045 			goto top;
3046 		}
3047 		dmu_tx_abort(tx);
3048 		zrele(szp);
3049 		if (tzp)
3050 			zrele(tzp);
3051 		zfs_exit(zfsvfs, FTAG);
3052 		return (error);
3053 	}
3054 
3055 	/*
3056 	 * Unlink the source.
3057 	 */
3058 	szp->z_pflags |= ZFS_AV_MODIFIED;
3059 	if (tdzp->z_pflags & ZFS_PROJINHERIT)
3060 		szp->z_pflags |= ZFS_PROJINHERIT;
3061 
3062 	error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3063 	    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3064 	VERIFY0(error);
3065 
3066 	error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3067 	if (error)
3068 		goto commit;
3069 
3070 	/*
3071 	 * Unlink the target.
3072 	 */
3073 	if (tzp) {
3074 		int tzflg = zflg;
3075 
3076 		if (rflags & RENAME_EXCHANGE) {
3077 			/* This inode will be re-linked soon. */
3078 			tzflg |= ZRENAMING;
3079 
3080 			tzp->z_pflags |= ZFS_AV_MODIFIED;
3081 			if (sdzp->z_pflags & ZFS_PROJINHERIT)
3082 				tzp->z_pflags |= ZFS_PROJINHERIT;
3083 
3084 			error = sa_update(tzp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3085 			    (void *)&tzp->z_pflags, sizeof (uint64_t), tx);
3086 			ASSERT0(error);
3087 		}
3088 		error = zfs_link_destroy(tdl, tzp, tx, tzflg, NULL);
3089 		if (error)
3090 			goto commit_link_szp;
3091 	}
3092 
3093 	/*
3094 	 * Create the new target links:
3095 	 *   * We always link the target.
3096 	 *   * RENAME_EXCHANGE: Link the old target to the source.
3097 	 *   * RENAME_WHITEOUT: Create a whiteout inode in-place of the source.
3098 	 */
3099 	error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3100 	if (error) {
3101 		/*
3102 		 * If we have removed the existing target, a subsequent call to
3103 		 * zfs_link_create() to add back the same entry, but with a new
3104 		 * dnode (szp), should not fail.
3105 		 */
3106 		ASSERT3P(tzp, ==, NULL);
3107 		goto commit_link_tzp;
3108 	}
3109 
3110 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3111 	case RENAME_EXCHANGE:
3112 		error = zfs_link_create(sdl, tzp, tx, ZRENAMING);
3113 		/*
3114 		 * The same argument as zfs_link_create() failing for
3115 		 * szp applies here, since the source directory must
3116 		 * have had an entry we are replacing.
3117 		 */
3118 		ASSERT0(error);
3119 		if (error)
3120 			goto commit_unlink_td_szp;
3121 		break;
3122 	case RENAME_WHITEOUT:
3123 		zfs_mknode(sdzp, wo_vap, tx, cr, 0, &wzp, &acl_ids);
3124 		error = zfs_link_create(sdl, wzp, tx, ZNEW);
3125 		if (error) {
3126 			zfs_znode_delete(wzp, tx);
3127 			remove_inode_hash(ZTOI(wzp));
3128 			goto commit_unlink_td_szp;
3129 		}
3130 		break;
3131 	}
3132 
3133 	if (fuid_dirtied)
3134 		zfs_fuid_sync(zfsvfs, tx);
3135 
3136 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3137 	case RENAME_EXCHANGE:
3138 		zfs_log_rename_exchange(zilog, tx,
3139 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3140 		    tdzp, tdl->dl_name, szp);
3141 		break;
3142 	case RENAME_WHITEOUT:
3143 		zfs_log_rename_whiteout(zilog, tx,
3144 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3145 		    tdzp, tdl->dl_name, szp, wzp);
3146 		break;
3147 	default:
3148 		ASSERT0(rflags & ~RENAME_NOREPLACE);
3149 		zfs_log_rename(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0),
3150 		    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3151 		break;
3152 	}
3153 
3154 commit:
3155 	dmu_tx_commit(tx);
3156 out:
3157 	if (have_acl)
3158 		zfs_acl_ids_free(&acl_ids);
3159 
3160 	zfs_znode_update_vfs(sdzp);
3161 	if (sdzp == tdzp)
3162 		rw_exit(&sdzp->z_name_lock);
3163 
3164 	if (sdzp != tdzp)
3165 		zfs_znode_update_vfs(tdzp);
3166 
3167 	zfs_znode_update_vfs(szp);
3168 	zrele(szp);
3169 	if (wzp) {
3170 		zfs_znode_update_vfs(wzp);
3171 		zrele(wzp);
3172 	}
3173 	if (tzp) {
3174 		zfs_znode_update_vfs(tzp);
3175 		zrele(tzp);
3176 	}
3177 
3178 	if (zl != NULL)
3179 		zfs_rename_unlock(&zl);
3180 
3181 	zfs_dirent_unlock(sdl);
3182 	zfs_dirent_unlock(tdl);
3183 
3184 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3185 		zil_commit(zilog, 0);
3186 
3187 	zfs_exit(zfsvfs, FTAG);
3188 	return (error);
3189 
3190 	/*
3191 	 * Clean-up path for broken link state.
3192 	 *
3193 	 * At this point we are in a (very) bad state, so we need to do our
3194 	 * best to correct the state. In particular, all of the nlinks are
3195 	 * wrong because we were destroying and creating links with ZRENAMING.
3196 	 *
3197 	 * In some form, all of these operations have to resolve the state:
3198 	 *
3199 	 *  * link_destroy() *must* succeed. Fortunately, this is very likely
3200 	 *    since we only just created it.
3201 	 *
3202 	 *  * link_create()s are allowed to fail (though they shouldn't because
3203 	 *    we only just unlinked them and are putting the entries back
3204 	 *    during clean-up). But if they fail, we can just forcefully drop
3205 	 *    the nlink value to (at the very least) avoid broken nlink values
3206 	 *    -- though in the case of non-empty directories we will have to
3207 	 *    panic (otherwise we'd have a leaked directory with a broken ..).
3208 	 */
3209 commit_unlink_td_szp:
3210 	VERIFY0(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL));
3211 commit_link_tzp:
3212 	if (tzp) {
3213 		if (zfs_link_create(tdl, tzp, tx, ZRENAMING))
3214 			VERIFY0(zfs_drop_nlink(tzp, tx, NULL));
3215 	}
3216 commit_link_szp:
3217 	if (zfs_link_create(sdl, szp, tx, ZRENAMING))
3218 		VERIFY0(zfs_drop_nlink(szp, tx, NULL));
3219 	goto commit;
3220 }
3221 
3222 /*
3223  * Insert the indicated symbolic reference entry into the directory.
3224  *
3225  *	IN:	dzp	- Directory to contain new symbolic link.
3226  *		name	- Name of directory entry in dip.
3227  *		vap	- Attributes of new entry.
3228  *		link	- Name for new symlink entry.
3229  *		cr	- credentials of caller.
3230  *		flags	- case flags
3231  *		mnt_ns	- user namespace of the mount
3232  *
3233  *	OUT:	zpp	- Znode for new symbolic link.
3234  *
3235  *	RETURN:	0 on success, error code on failure.
3236  *
3237  * Timestamps:
3238  *	dip - ctime|mtime updated
3239  */
3240 int
3241 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3242     znode_t **zpp, cred_t *cr, int flags, zidmap_t *mnt_ns)
3243 {
3244 	znode_t		*zp;
3245 	zfs_dirlock_t	*dl;
3246 	dmu_tx_t	*tx;
3247 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
3248 	zilog_t		*zilog;
3249 	uint64_t	len = strlen(link);
3250 	int		error;
3251 	int		zflg = ZNEW;
3252 	zfs_acl_ids_t	acl_ids;
3253 	boolean_t	fuid_dirtied;
3254 	uint64_t	txtype = TX_SYMLINK;
3255 	boolean_t	waited = B_FALSE;
3256 
3257 	ASSERT(S_ISLNK(vap->va_mode));
3258 
3259 	if (name == NULL)
3260 		return (SET_ERROR(EINVAL));
3261 
3262 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3263 		return (error);
3264 	zilog = zfsvfs->z_log;
3265 
3266 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3267 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3268 		zfs_exit(zfsvfs, FTAG);
3269 		return (SET_ERROR(EILSEQ));
3270 	}
3271 	if (flags & FIGNORECASE)
3272 		zflg |= ZCILOOK;
3273 
3274 	if (len > MAXPATHLEN) {
3275 		zfs_exit(zfsvfs, FTAG);
3276 		return (SET_ERROR(ENAMETOOLONG));
3277 	}
3278 
3279 	if ((error = zfs_acl_ids_create(dzp, 0,
3280 	    vap, cr, NULL, &acl_ids, mnt_ns)) != 0) {
3281 		zfs_exit(zfsvfs, FTAG);
3282 		return (error);
3283 	}
3284 top:
3285 	*zpp = NULL;
3286 
3287 	/*
3288 	 * Attempt to lock directory; fail if entry already exists.
3289 	 */
3290 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3291 	if (error) {
3292 		zfs_acl_ids_free(&acl_ids);
3293 		zfs_exit(zfsvfs, FTAG);
3294 		return (error);
3295 	}
3296 
3297 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
3298 		zfs_acl_ids_free(&acl_ids);
3299 		zfs_dirent_unlock(dl);
3300 		zfs_exit(zfsvfs, FTAG);
3301 		return (error);
3302 	}
3303 
3304 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3305 		zfs_acl_ids_free(&acl_ids);
3306 		zfs_dirent_unlock(dl);
3307 		zfs_exit(zfsvfs, FTAG);
3308 		return (SET_ERROR(EDQUOT));
3309 	}
3310 	tx = dmu_tx_create(zfsvfs->z_os);
3311 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3312 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3313 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3314 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3315 	    ZFS_SA_BASE_ATTR_SIZE + len);
3316 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3317 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3318 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3319 		    acl_ids.z_aclp->z_acl_bytes);
3320 	}
3321 	if (fuid_dirtied)
3322 		zfs_fuid_txhold(zfsvfs, tx);
3323 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3324 	if (error) {
3325 		zfs_dirent_unlock(dl);
3326 		if (error == ERESTART) {
3327 			waited = B_TRUE;
3328 			dmu_tx_wait(tx);
3329 			dmu_tx_abort(tx);
3330 			goto top;
3331 		}
3332 		zfs_acl_ids_free(&acl_ids);
3333 		dmu_tx_abort(tx);
3334 		zfs_exit(zfsvfs, FTAG);
3335 		return (error);
3336 	}
3337 
3338 	/*
3339 	 * Create a new object for the symlink.
3340 	 * for version 4 ZPL datasets the symlink will be an SA attribute
3341 	 */
3342 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3343 
3344 	if (fuid_dirtied)
3345 		zfs_fuid_sync(zfsvfs, tx);
3346 
3347 	mutex_enter(&zp->z_lock);
3348 	if (zp->z_is_sa)
3349 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3350 		    link, len, tx);
3351 	else
3352 		zfs_sa_symlink(zp, link, len, tx);
3353 	mutex_exit(&zp->z_lock);
3354 
3355 	zp->z_size = len;
3356 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3357 	    &zp->z_size, sizeof (zp->z_size), tx);
3358 	/*
3359 	 * Insert the new object into the directory.
3360 	 */
3361 	error = zfs_link_create(dl, zp, tx, ZNEW);
3362 	if (error != 0) {
3363 		zfs_znode_delete(zp, tx);
3364 		remove_inode_hash(ZTOI(zp));
3365 	} else {
3366 		if (flags & FIGNORECASE)
3367 			txtype |= TX_CI;
3368 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3369 
3370 		zfs_znode_update_vfs(dzp);
3371 		zfs_znode_update_vfs(zp);
3372 	}
3373 
3374 	zfs_acl_ids_free(&acl_ids);
3375 
3376 	dmu_tx_commit(tx);
3377 
3378 	zfs_dirent_unlock(dl);
3379 
3380 	if (error == 0) {
3381 		*zpp = zp;
3382 
3383 		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3384 			zil_commit(zilog, 0);
3385 	} else {
3386 		zrele(zp);
3387 	}
3388 
3389 	zfs_exit(zfsvfs, FTAG);
3390 	return (error);
3391 }
3392 
3393 /*
3394  * Return, in the buffer contained in the provided uio structure,
3395  * the symbolic path referred to by ip.
3396  *
3397  *	IN:	ip	- inode of symbolic link
3398  *		uio	- structure to contain the link path.
3399  *		cr	- credentials of caller.
3400  *
3401  *	RETURN:	0 if success
3402  *		error code if failure
3403  *
3404  * Timestamps:
3405  *	ip - atime updated
3406  */
3407 int
3408 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3409 {
3410 	(void) cr;
3411 	znode_t		*zp = ITOZ(ip);
3412 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3413 	int		error;
3414 
3415 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3416 		return (error);
3417 
3418 	mutex_enter(&zp->z_lock);
3419 	if (zp->z_is_sa)
3420 		error = sa_lookup_uio(zp->z_sa_hdl,
3421 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3422 	else
3423 		error = zfs_sa_readlink(zp, uio);
3424 	mutex_exit(&zp->z_lock);
3425 
3426 	zfs_exit(zfsvfs, FTAG);
3427 	return (error);
3428 }
3429 
3430 /*
3431  * Insert a new entry into directory tdzp referencing szp.
3432  *
3433  *	IN:	tdzp	- Directory to contain new entry.
3434  *		szp	- znode of new entry.
3435  *		name	- name of new entry.
3436  *		cr	- credentials of caller.
3437  *		flags	- case flags.
3438  *
3439  *	RETURN:	0 if success
3440  *		error code if failure
3441  *
3442  * Timestamps:
3443  *	tdzp - ctime|mtime updated
3444  *	 szp - ctime updated
3445  */
3446 int
3447 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3448     int flags)
3449 {
3450 	struct inode *sip = ZTOI(szp);
3451 	znode_t		*tzp;
3452 	zfsvfs_t	*zfsvfs = ZTOZSB(tdzp);
3453 	zilog_t		*zilog;
3454 	zfs_dirlock_t	*dl;
3455 	dmu_tx_t	*tx;
3456 	int		error;
3457 	int		zf = ZNEW;
3458 	uint64_t	parent;
3459 	uid_t		owner;
3460 	boolean_t	waited = B_FALSE;
3461 	boolean_t	is_tmpfile = 0;
3462 	uint64_t	txg;
3463 #ifdef HAVE_TMPFILE
3464 	is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3465 #endif
3466 	ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3467 
3468 	if (name == NULL)
3469 		return (SET_ERROR(EINVAL));
3470 
3471 	if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3472 		return (error);
3473 	zilog = zfsvfs->z_log;
3474 
3475 	/*
3476 	 * POSIX dictates that we return EPERM here.
3477 	 * Better choices include ENOTSUP or EISDIR.
3478 	 */
3479 	if (S_ISDIR(sip->i_mode)) {
3480 		zfs_exit(zfsvfs, FTAG);
3481 		return (SET_ERROR(EPERM));
3482 	}
3483 
3484 	if ((error = zfs_verify_zp(szp)) != 0) {
3485 		zfs_exit(zfsvfs, FTAG);
3486 		return (error);
3487 	}
3488 
3489 	/*
3490 	 * If we are using project inheritance, means if the directory has
3491 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3492 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3493 	 * such case, we only allow hard link creation in our tree when the
3494 	 * project IDs are the same.
3495 	 */
3496 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3497 	    tdzp->z_projid != szp->z_projid) {
3498 		zfs_exit(zfsvfs, FTAG);
3499 		return (SET_ERROR(EXDEV));
3500 	}
3501 
3502 	/*
3503 	 * We check i_sb because snapshots and the ctldir must have different
3504 	 * super blocks.
3505 	 */
3506 	if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3507 		zfs_exit(zfsvfs, FTAG);
3508 		return (SET_ERROR(EXDEV));
3509 	}
3510 
3511 	/* Prevent links to .zfs/shares files */
3512 
3513 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3514 	    &parent, sizeof (uint64_t))) != 0) {
3515 		zfs_exit(zfsvfs, FTAG);
3516 		return (error);
3517 	}
3518 	if (parent == zfsvfs->z_shares_dir) {
3519 		zfs_exit(zfsvfs, FTAG);
3520 		return (SET_ERROR(EPERM));
3521 	}
3522 
3523 	if (zfsvfs->z_utf8 && u8_validate(name,
3524 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3525 		zfs_exit(zfsvfs, FTAG);
3526 		return (SET_ERROR(EILSEQ));
3527 	}
3528 	if (flags & FIGNORECASE)
3529 		zf |= ZCILOOK;
3530 
3531 	/*
3532 	 * We do not support links between attributes and non-attributes
3533 	 * because of the potential security risk of creating links
3534 	 * into "normal" file space in order to circumvent restrictions
3535 	 * imposed in attribute space.
3536 	 */
3537 	if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3538 		zfs_exit(zfsvfs, FTAG);
3539 		return (SET_ERROR(EINVAL));
3540 	}
3541 
3542 	owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3543 	    cr, ZFS_OWNER);
3544 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3545 		zfs_exit(zfsvfs, FTAG);
3546 		return (SET_ERROR(EPERM));
3547 	}
3548 
3549 	if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr,
3550 	    zfs_init_idmap))) {
3551 		zfs_exit(zfsvfs, FTAG);
3552 		return (error);
3553 	}
3554 
3555 top:
3556 	/*
3557 	 * Attempt to lock directory; fail if entry already exists.
3558 	 */
3559 	error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3560 	if (error) {
3561 		zfs_exit(zfsvfs, FTAG);
3562 		return (error);
3563 	}
3564 
3565 	tx = dmu_tx_create(zfsvfs->z_os);
3566 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3567 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3568 	if (is_tmpfile)
3569 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3570 
3571 	zfs_sa_upgrade_txholds(tx, szp);
3572 	zfs_sa_upgrade_txholds(tx, tdzp);
3573 	error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3574 	if (error) {
3575 		zfs_dirent_unlock(dl);
3576 		if (error == ERESTART) {
3577 			waited = B_TRUE;
3578 			dmu_tx_wait(tx);
3579 			dmu_tx_abort(tx);
3580 			goto top;
3581 		}
3582 		dmu_tx_abort(tx);
3583 		zfs_exit(zfsvfs, FTAG);
3584 		return (error);
3585 	}
3586 	/* unmark z_unlinked so zfs_link_create will not reject */
3587 	if (is_tmpfile)
3588 		szp->z_unlinked = B_FALSE;
3589 	error = zfs_link_create(dl, szp, tx, 0);
3590 
3591 	if (error == 0) {
3592 		uint64_t txtype = TX_LINK;
3593 		/*
3594 		 * tmpfile is created to be in z_unlinkedobj, so remove it.
3595 		 * Also, we don't log in ZIL, because all previous file
3596 		 * operation on the tmpfile are ignored by ZIL. Instead we
3597 		 * always wait for txg to sync to make sure all previous
3598 		 * operation are sync safe.
3599 		 */
3600 		if (is_tmpfile) {
3601 			VERIFY(zap_remove_int(zfsvfs->z_os,
3602 			    zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3603 		} else {
3604 			if (flags & FIGNORECASE)
3605 				txtype |= TX_CI;
3606 			zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3607 		}
3608 	} else if (is_tmpfile) {
3609 		/* restore z_unlinked since when linking failed */
3610 		szp->z_unlinked = B_TRUE;
3611 	}
3612 	txg = dmu_tx_get_txg(tx);
3613 	dmu_tx_commit(tx);
3614 
3615 	zfs_dirent_unlock(dl);
3616 
3617 	if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3618 		zil_commit(zilog, 0);
3619 
3620 	if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
3621 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
3622 
3623 	zfs_znode_update_vfs(tdzp);
3624 	zfs_znode_update_vfs(szp);
3625 	zfs_exit(zfsvfs, FTAG);
3626 	return (error);
3627 }
3628 
3629 static void
3630 zfs_putpage_sync_commit_cb(void *arg)
3631 {
3632 	struct page *pp = arg;
3633 
3634 	ClearPageError(pp);
3635 	end_page_writeback(pp);
3636 }
3637 
3638 static void
3639 zfs_putpage_async_commit_cb(void *arg)
3640 {
3641 	struct page *pp = arg;
3642 	znode_t *zp = ITOZ(pp->mapping->host);
3643 
3644 	ClearPageError(pp);
3645 	end_page_writeback(pp);
3646 	atomic_dec_32(&zp->z_async_writes_cnt);
3647 }
3648 
3649 /*
3650  * Push a page out to disk, once the page is on stable storage the
3651  * registered commit callback will be run as notification of completion.
3652  *
3653  *	IN:	ip	 - page mapped for inode.
3654  *		pp	 - page to push (page is locked)
3655  *		wbc	 - writeback control data
3656  *		for_sync - does the caller intend to wait synchronously for the
3657  *			   page writeback to complete?
3658  *
3659  *	RETURN:	0 if success
3660  *		error code if failure
3661  *
3662  * Timestamps:
3663  *	ip - ctime|mtime updated
3664  */
3665 int
3666 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
3667     boolean_t for_sync)
3668 {
3669 	znode_t		*zp = ITOZ(ip);
3670 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3671 	loff_t		offset;
3672 	loff_t		pgoff;
3673 	unsigned int	pglen;
3674 	dmu_tx_t	*tx;
3675 	caddr_t		va;
3676 	int		err = 0;
3677 	uint64_t	mtime[2], ctime[2];
3678 	inode_timespec_t tmp_ts;
3679 	sa_bulk_attr_t	bulk[3];
3680 	int		cnt = 0;
3681 	struct address_space *mapping;
3682 
3683 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3684 		return (err);
3685 
3686 	ASSERT(PageLocked(pp));
3687 
3688 	pgoff = page_offset(pp);	/* Page byte-offset in file */
3689 	offset = i_size_read(ip);	/* File length in bytes */
3690 	pglen = MIN(PAGE_SIZE,		/* Page length in bytes */
3691 	    P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3692 
3693 	/* Page is beyond end of file */
3694 	if (pgoff >= offset) {
3695 		unlock_page(pp);
3696 		zfs_exit(zfsvfs, FTAG);
3697 		return (0);
3698 	}
3699 
3700 	/* Truncate page length to end of file */
3701 	if (pgoff + pglen > offset)
3702 		pglen = offset - pgoff;
3703 
3704 #if 0
3705 	/*
3706 	 * FIXME: Allow mmap writes past its quota.  The correct fix
3707 	 * is to register a page_mkwrite() handler to count the page
3708 	 * against its quota when it is about to be dirtied.
3709 	 */
3710 	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3711 	    KUID_TO_SUID(ip->i_uid)) ||
3712 	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3713 	    KGID_TO_SGID(ip->i_gid)) ||
3714 	    (zp->z_projid != ZFS_DEFAULT_PROJID &&
3715 	    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3716 	    zp->z_projid))) {
3717 		err = EDQUOT;
3718 	}
3719 #endif
3720 
3721 	/*
3722 	 * The ordering here is critical and must adhere to the following
3723 	 * rules in order to avoid deadlocking in either zfs_read() or
3724 	 * zfs_free_range() due to a lock inversion.
3725 	 *
3726 	 * 1) The page must be unlocked prior to acquiring the range lock.
3727 	 *    This is critical because zfs_read() calls find_lock_page()
3728 	 *    which may block on the page lock while holding the range lock.
3729 	 *
3730 	 * 2) Before setting or clearing write back on a page the range lock
3731 	 *    must be held in order to prevent a lock inversion with the
3732 	 *    zfs_free_range() function.
3733 	 *
3734 	 * This presents a problem because upon entering this function the
3735 	 * page lock is already held.  To safely acquire the range lock the
3736 	 * page lock must be dropped.  This creates a window where another
3737 	 * process could truncate, invalidate, dirty, or write out the page.
3738 	 *
3739 	 * Therefore, after successfully reacquiring the range and page locks
3740 	 * the current page state is checked.  In the common case everything
3741 	 * will be as is expected and it can be written out.  However, if
3742 	 * the page state has changed it must be handled accordingly.
3743 	 */
3744 	mapping = pp->mapping;
3745 	redirty_page_for_writepage(wbc, pp);
3746 	unlock_page(pp);
3747 
3748 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3749 	    pgoff, pglen, RL_WRITER);
3750 	lock_page(pp);
3751 
3752 	/* Page mapping changed or it was no longer dirty, we're done */
3753 	if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3754 		unlock_page(pp);
3755 		zfs_rangelock_exit(lr);
3756 		zfs_exit(zfsvfs, FTAG);
3757 		return (0);
3758 	}
3759 
3760 	/* Another process started write block if required */
3761 	if (PageWriteback(pp)) {
3762 		unlock_page(pp);
3763 		zfs_rangelock_exit(lr);
3764 
3765 		if (wbc->sync_mode != WB_SYNC_NONE) {
3766 			/*
3767 			 * Speed up any non-sync page writebacks since
3768 			 * they may take several seconds to complete.
3769 			 * Refer to the comment in zpl_fsync() (when
3770 			 * HAVE_FSYNC_RANGE is defined) for details.
3771 			 */
3772 			if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
3773 				zil_commit(zfsvfs->z_log, zp->z_id);
3774 			}
3775 
3776 			if (PageWriteback(pp))
3777 #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3778 				folio_wait_bit(page_folio(pp), PG_writeback);
3779 #else
3780 				wait_on_page_bit(pp, PG_writeback);
3781 #endif
3782 		}
3783 
3784 		zfs_exit(zfsvfs, FTAG);
3785 		return (0);
3786 	}
3787 
3788 	/* Clear the dirty flag the required locks are held */
3789 	if (!clear_page_dirty_for_io(pp)) {
3790 		unlock_page(pp);
3791 		zfs_rangelock_exit(lr);
3792 		zfs_exit(zfsvfs, FTAG);
3793 		return (0);
3794 	}
3795 
3796 	/*
3797 	 * Counterpart for redirty_page_for_writepage() above.  This page
3798 	 * was in fact not skipped and should not be counted as if it were.
3799 	 */
3800 	wbc->pages_skipped--;
3801 	if (!for_sync)
3802 		atomic_inc_32(&zp->z_async_writes_cnt);
3803 	set_page_writeback(pp);
3804 	unlock_page(pp);
3805 
3806 	tx = dmu_tx_create(zfsvfs->z_os);
3807 	dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3808 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3809 	zfs_sa_upgrade_txholds(tx, zp);
3810 
3811 	err = dmu_tx_assign(tx, TXG_WAIT);
3812 	if (err != 0) {
3813 		dmu_tx_abort(tx);
3814 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
3815 		filemap_dirty_folio(page_mapping(pp), page_folio(pp));
3816 #else
3817 		__set_page_dirty_nobuffers(pp);
3818 #endif
3819 		ClearPageError(pp);
3820 		end_page_writeback(pp);
3821 		if (!for_sync)
3822 			atomic_dec_32(&zp->z_async_writes_cnt);
3823 		zfs_rangelock_exit(lr);
3824 		zfs_exit(zfsvfs, FTAG);
3825 		return (err);
3826 	}
3827 
3828 	va = kmap(pp);
3829 	ASSERT3U(pglen, <=, PAGE_SIZE);
3830 	dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3831 	kunmap(pp);
3832 
3833 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3834 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3835 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3836 	    &zp->z_pflags, 8);
3837 
3838 	/* Preserve the mtime and ctime provided by the inode */
3839 	tmp_ts = zpl_inode_get_mtime(ip);
3840 	ZFS_TIME_ENCODE(&tmp_ts, mtime);
3841 	tmp_ts = zpl_inode_get_ctime(ip);
3842 	ZFS_TIME_ENCODE(&tmp_ts, ctime);
3843 	zp->z_atime_dirty = B_FALSE;
3844 	zp->z_seq++;
3845 
3846 	err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3847 
3848 	boolean_t commit = B_FALSE;
3849 	if (wbc->sync_mode != WB_SYNC_NONE) {
3850 		/*
3851 		 * Note that this is rarely called under writepages(), because
3852 		 * writepages() normally handles the entire commit for
3853 		 * performance reasons.
3854 		 */
3855 		commit = B_TRUE;
3856 	} else if (!for_sync && atomic_load_32(&zp->z_sync_writes_cnt) > 0) {
3857 		/*
3858 		 * If the caller does not intend to wait synchronously
3859 		 * for this page writeback to complete and there are active
3860 		 * synchronous calls on this file, do a commit so that
3861 		 * the latter don't accidentally end up waiting for
3862 		 * our writeback to complete. Refer to the comment in
3863 		 * zpl_fsync() (when HAVE_FSYNC_RANGE is defined) for details.
3864 		 */
3865 		commit = B_TRUE;
3866 	}
3867 
3868 	zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, commit,
3869 	    for_sync ? zfs_putpage_sync_commit_cb :
3870 	    zfs_putpage_async_commit_cb, pp);
3871 
3872 	dmu_tx_commit(tx);
3873 
3874 	zfs_rangelock_exit(lr);
3875 
3876 	if (commit)
3877 		zil_commit(zfsvfs->z_log, zp->z_id);
3878 
3879 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
3880 
3881 	zfs_exit(zfsvfs, FTAG);
3882 	return (err);
3883 }
3884 
3885 /*
3886  * Update the system attributes when the inode has been dirtied.  For the
3887  * moment we only update the mode, atime, mtime, and ctime.
3888  */
3889 int
3890 zfs_dirty_inode(struct inode *ip, int flags)
3891 {
3892 	znode_t		*zp = ITOZ(ip);
3893 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3894 	dmu_tx_t	*tx;
3895 	uint64_t	mode, atime[2], mtime[2], ctime[2];
3896 	inode_timespec_t tmp_ts;
3897 	sa_bulk_attr_t	bulk[4];
3898 	int		error = 0;
3899 	int		cnt = 0;
3900 
3901 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3902 		return (0);
3903 
3904 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3905 		return (error);
3906 
3907 #ifdef I_DIRTY_TIME
3908 	/*
3909 	 * This is the lazytime semantic introduced in Linux 4.0
3910 	 * This flag will only be called from update_time when lazytime is set.
3911 	 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3912 	 * Fortunately mtime and ctime are managed within ZFS itself, so we
3913 	 * only need to dirty atime.
3914 	 */
3915 	if (flags == I_DIRTY_TIME) {
3916 		zp->z_atime_dirty = B_TRUE;
3917 		goto out;
3918 	}
3919 #endif
3920 
3921 	tx = dmu_tx_create(zfsvfs->z_os);
3922 
3923 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3924 	zfs_sa_upgrade_txholds(tx, zp);
3925 
3926 	error = dmu_tx_assign(tx, TXG_WAIT);
3927 	if (error) {
3928 		dmu_tx_abort(tx);
3929 		goto out;
3930 	}
3931 
3932 	mutex_enter(&zp->z_lock);
3933 	zp->z_atime_dirty = B_FALSE;
3934 
3935 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3936 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
3937 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3938 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3939 
3940 	/* Preserve the mode, mtime and ctime provided by the inode */
3941 	tmp_ts = zpl_inode_get_atime(ip);
3942 	ZFS_TIME_ENCODE(&tmp_ts, atime);
3943 	tmp_ts = zpl_inode_get_mtime(ip);
3944 	ZFS_TIME_ENCODE(&tmp_ts, mtime);
3945 	tmp_ts = zpl_inode_get_ctime(ip);
3946 	ZFS_TIME_ENCODE(&tmp_ts, ctime);
3947 	mode = ip->i_mode;
3948 
3949 	zp->z_mode = mode;
3950 
3951 	error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3952 	mutex_exit(&zp->z_lock);
3953 
3954 	dmu_tx_commit(tx);
3955 out:
3956 	zfs_exit(zfsvfs, FTAG);
3957 	return (error);
3958 }
3959 
3960 void
3961 zfs_inactive(struct inode *ip)
3962 {
3963 	znode_t	*zp = ITOZ(ip);
3964 	zfsvfs_t *zfsvfs = ITOZSB(ip);
3965 	uint64_t atime[2];
3966 	int error;
3967 	int need_unlock = 0;
3968 
3969 	/* Only read lock if we haven't already write locked, e.g. rollback */
3970 	if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
3971 		need_unlock = 1;
3972 		rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3973 	}
3974 	if (zp->z_sa_hdl == NULL) {
3975 		if (need_unlock)
3976 			rw_exit(&zfsvfs->z_teardown_inactive_lock);
3977 		return;
3978 	}
3979 
3980 	if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
3981 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3982 
3983 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3984 		zfs_sa_upgrade_txholds(tx, zp);
3985 		error = dmu_tx_assign(tx, TXG_WAIT);
3986 		if (error) {
3987 			dmu_tx_abort(tx);
3988 		} else {
3989 			inode_timespec_t tmp_atime;
3990 			tmp_atime = zpl_inode_get_atime(ip);
3991 			ZFS_TIME_ENCODE(&tmp_atime, atime);
3992 			mutex_enter(&zp->z_lock);
3993 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
3994 			    (void *)&atime, sizeof (atime), tx);
3995 			zp->z_atime_dirty = B_FALSE;
3996 			mutex_exit(&zp->z_lock);
3997 			dmu_tx_commit(tx);
3998 		}
3999 	}
4000 
4001 	zfs_zinactive(zp);
4002 	if (need_unlock)
4003 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4004 }
4005 
4006 /*
4007  * Fill pages with data from the disk.
4008  */
4009 static int
4010 zfs_fillpage(struct inode *ip, struct page *pp)
4011 {
4012 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4013 	loff_t i_size = i_size_read(ip);
4014 	u_offset_t io_off = page_offset(pp);
4015 	size_t io_len = PAGE_SIZE;
4016 
4017 	ASSERT3U(io_off, <, i_size);
4018 
4019 	if (io_off + io_len > i_size)
4020 		io_len = i_size - io_off;
4021 
4022 	void *va = kmap(pp);
4023 	int error = dmu_read(zfsvfs->z_os, ITOZ(ip)->z_id, io_off,
4024 	    io_len, va, DMU_READ_PREFETCH);
4025 	if (io_len != PAGE_SIZE)
4026 		memset((char *)va + io_len, 0, PAGE_SIZE - io_len);
4027 	kunmap(pp);
4028 
4029 	if (error) {
4030 		/* convert checksum errors into IO errors */
4031 		if (error == ECKSUM)
4032 			error = SET_ERROR(EIO);
4033 
4034 		SetPageError(pp);
4035 		ClearPageUptodate(pp);
4036 	} else {
4037 		ClearPageError(pp);
4038 		SetPageUptodate(pp);
4039 	}
4040 
4041 	return (error);
4042 }
4043 
4044 /*
4045  * Uses zfs_fillpage to read data from the file and fill the page.
4046  *
4047  *	IN:	ip	 - inode of file to get data from.
4048  *		pp	 - page to read
4049  *
4050  *	RETURN:	0 on success, error code on failure.
4051  *
4052  * Timestamps:
4053  *	vp - atime updated
4054  */
4055 int
4056 zfs_getpage(struct inode *ip, struct page *pp)
4057 {
4058 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4059 	znode_t *zp = ITOZ(ip);
4060 	int error;
4061 
4062 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4063 		return (error);
4064 
4065 	error = zfs_fillpage(ip, pp);
4066 	if (error == 0)
4067 		dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, PAGE_SIZE);
4068 
4069 	zfs_exit(zfsvfs, FTAG);
4070 
4071 	return (error);
4072 }
4073 
4074 /*
4075  * Check ZFS specific permissions to memory map a section of a file.
4076  *
4077  *	IN:	ip	- inode of the file to mmap
4078  *		off	- file offset
4079  *		addrp	- start address in memory region
4080  *		len	- length of memory region
4081  *		vm_flags- address flags
4082  *
4083  *	RETURN:	0 if success
4084  *		error code if failure
4085  */
4086 int
4087 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4088     unsigned long vm_flags)
4089 {
4090 	(void) addrp;
4091 	znode_t  *zp = ITOZ(ip);
4092 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4093 	int error;
4094 
4095 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4096 		return (error);
4097 
4098 	if ((vm_flags & VM_WRITE) && (vm_flags & VM_SHARED) &&
4099 	    (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4100 		zfs_exit(zfsvfs, FTAG);
4101 		return (SET_ERROR(EPERM));
4102 	}
4103 
4104 	if ((vm_flags & (VM_READ | VM_EXEC)) &&
4105 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4106 		zfs_exit(zfsvfs, FTAG);
4107 		return (SET_ERROR(EACCES));
4108 	}
4109 
4110 	if (off < 0 || len > MAXOFFSET_T - off) {
4111 		zfs_exit(zfsvfs, FTAG);
4112 		return (SET_ERROR(ENXIO));
4113 	}
4114 
4115 	zfs_exit(zfsvfs, FTAG);
4116 	return (0);
4117 }
4118 
4119 /*
4120  * Free or allocate space in a file.  Currently, this function only
4121  * supports the `F_FREESP' command.  However, this command is somewhat
4122  * misnamed, as its functionality includes the ability to allocate as
4123  * well as free space.
4124  *
4125  *	IN:	zp	- znode of file to free data in.
4126  *		cmd	- action to take (only F_FREESP supported).
4127  *		bfp	- section of file to free/alloc.
4128  *		flag	- current file open mode flags.
4129  *		offset	- current file offset.
4130  *		cr	- credentials of caller.
4131  *
4132  *	RETURN:	0 on success, error code on failure.
4133  *
4134  * Timestamps:
4135  *	zp - ctime|mtime updated
4136  */
4137 int
4138 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
4139     offset_t offset, cred_t *cr)
4140 {
4141 	(void) offset;
4142 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
4143 	uint64_t	off, len;
4144 	int		error;
4145 
4146 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4147 		return (error);
4148 
4149 	if (cmd != F_FREESP) {
4150 		zfs_exit(zfsvfs, FTAG);
4151 		return (SET_ERROR(EINVAL));
4152 	}
4153 
4154 	/*
4155 	 * Callers might not be able to detect properly that we are read-only,
4156 	 * so check it explicitly here.
4157 	 */
4158 	if (zfs_is_readonly(zfsvfs)) {
4159 		zfs_exit(zfsvfs, FTAG);
4160 		return (SET_ERROR(EROFS));
4161 	}
4162 
4163 	if (bfp->l_len < 0) {
4164 		zfs_exit(zfsvfs, FTAG);
4165 		return (SET_ERROR(EINVAL));
4166 	}
4167 
4168 	/*
4169 	 * Permissions aren't checked on Solaris because on this OS
4170 	 * zfs_space() can only be called with an opened file handle.
4171 	 * On Linux we can get here through truncate_range() which
4172 	 * operates directly on inodes, so we need to check access rights.
4173 	 */
4174 	if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr,
4175 	    zfs_init_idmap))) {
4176 		zfs_exit(zfsvfs, FTAG);
4177 		return (error);
4178 	}
4179 
4180 	off = bfp->l_start;
4181 	len = bfp->l_len; /* 0 means from off to end of file */
4182 
4183 	error = zfs_freesp(zp, off, len, flag, TRUE);
4184 
4185 	zfs_exit(zfsvfs, FTAG);
4186 	return (error);
4187 }
4188 
4189 int
4190 zfs_fid(struct inode *ip, fid_t *fidp)
4191 {
4192 	znode_t		*zp = ITOZ(ip);
4193 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
4194 	uint32_t	gen;
4195 	uint64_t	gen64;
4196 	uint64_t	object = zp->z_id;
4197 	zfid_short_t	*zfid;
4198 	int		size, i, error;
4199 
4200 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
4201 		return (error);
4202 
4203 	if (fidp->fid_len < SHORT_FID_LEN) {
4204 		fidp->fid_len = SHORT_FID_LEN;
4205 		zfs_exit(zfsvfs, FTAG);
4206 		return (SET_ERROR(ENOSPC));
4207 	}
4208 
4209 	if ((error = zfs_verify_zp(zp)) != 0) {
4210 		zfs_exit(zfsvfs, FTAG);
4211 		return (error);
4212 	}
4213 
4214 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4215 	    &gen64, sizeof (uint64_t))) != 0) {
4216 		zfs_exit(zfsvfs, FTAG);
4217 		return (error);
4218 	}
4219 
4220 	gen = (uint32_t)gen64;
4221 
4222 	size = SHORT_FID_LEN;
4223 
4224 	zfid = (zfid_short_t *)fidp;
4225 
4226 	zfid->zf_len = size;
4227 
4228 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4229 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4230 
4231 	/* Must have a non-zero generation number to distinguish from .zfs */
4232 	if (gen == 0)
4233 		gen = 1;
4234 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4235 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4236 
4237 	zfs_exit(zfsvfs, FTAG);
4238 	return (0);
4239 }
4240 
4241 #if defined(_KERNEL)
4242 EXPORT_SYMBOL(zfs_open);
4243 EXPORT_SYMBOL(zfs_close);
4244 EXPORT_SYMBOL(zfs_lookup);
4245 EXPORT_SYMBOL(zfs_create);
4246 EXPORT_SYMBOL(zfs_tmpfile);
4247 EXPORT_SYMBOL(zfs_remove);
4248 EXPORT_SYMBOL(zfs_mkdir);
4249 EXPORT_SYMBOL(zfs_rmdir);
4250 EXPORT_SYMBOL(zfs_readdir);
4251 EXPORT_SYMBOL(zfs_getattr_fast);
4252 EXPORT_SYMBOL(zfs_setattr);
4253 EXPORT_SYMBOL(zfs_rename);
4254 EXPORT_SYMBOL(zfs_symlink);
4255 EXPORT_SYMBOL(zfs_readlink);
4256 EXPORT_SYMBOL(zfs_link);
4257 EXPORT_SYMBOL(zfs_inactive);
4258 EXPORT_SYMBOL(zfs_space);
4259 EXPORT_SYMBOL(zfs_fid);
4260 EXPORT_SYMBOL(zfs_getpage);
4261 EXPORT_SYMBOL(zfs_putpage);
4262 EXPORT_SYMBOL(zfs_dirty_inode);
4263 EXPORT_SYMBOL(zfs_map);
4264 
4265 /* CSTYLED */
4266 module_param(zfs_delete_blocks, ulong, 0644);
4267 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4268 #endif
4269