1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/kmem.h> 32 #include <sys/pathname.h> 33 #include <sys/vnode.h> 34 #include <sys/vfs.h> 35 #include <sys/mntent.h> 36 #include <sys/cmn_err.h> 37 #include <sys/zfs_znode.h> 38 #include <sys/zfs_vnops.h> 39 #include <sys/zfs_dir.h> 40 #include <sys/zil.h> 41 #include <sys/fs/zfs.h> 42 #include <sys/dmu.h> 43 #include <sys/dsl_prop.h> 44 #include <sys/dsl_dataset.h> 45 #include <sys/dsl_deleg.h> 46 #include <sys/spa.h> 47 #include <sys/zap.h> 48 #include <sys/sa.h> 49 #include <sys/sa_impl.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_ctldir.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/zfs_quota.h> 56 #include <sys/sunddi.h> 57 #include <sys/dmu_objset.h> 58 #include <sys/dsl_dir.h> 59 #include <sys/objlist.h> 60 #include <sys/zpl.h> 61 #include <linux/vfs_compat.h> 62 #include "zfs_comutil.h" 63 64 enum { 65 TOKEN_RO, 66 TOKEN_RW, 67 TOKEN_SETUID, 68 TOKEN_NOSETUID, 69 TOKEN_EXEC, 70 TOKEN_NOEXEC, 71 TOKEN_DEVICES, 72 TOKEN_NODEVICES, 73 TOKEN_DIRXATTR, 74 TOKEN_SAXATTR, 75 TOKEN_XATTR, 76 TOKEN_NOXATTR, 77 TOKEN_ATIME, 78 TOKEN_NOATIME, 79 TOKEN_RELATIME, 80 TOKEN_NORELATIME, 81 TOKEN_NBMAND, 82 TOKEN_NONBMAND, 83 TOKEN_MNTPOINT, 84 TOKEN_LAST, 85 }; 86 87 static const match_table_t zpl_tokens = { 88 { TOKEN_RO, MNTOPT_RO }, 89 { TOKEN_RW, MNTOPT_RW }, 90 { TOKEN_SETUID, MNTOPT_SETUID }, 91 { TOKEN_NOSETUID, MNTOPT_NOSETUID }, 92 { TOKEN_EXEC, MNTOPT_EXEC }, 93 { TOKEN_NOEXEC, MNTOPT_NOEXEC }, 94 { TOKEN_DEVICES, MNTOPT_DEVICES }, 95 { TOKEN_NODEVICES, MNTOPT_NODEVICES }, 96 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR }, 97 { TOKEN_SAXATTR, MNTOPT_SAXATTR }, 98 { TOKEN_XATTR, MNTOPT_XATTR }, 99 { TOKEN_NOXATTR, MNTOPT_NOXATTR }, 100 { TOKEN_ATIME, MNTOPT_ATIME }, 101 { TOKEN_NOATIME, MNTOPT_NOATIME }, 102 { TOKEN_RELATIME, MNTOPT_RELATIME }, 103 { TOKEN_NORELATIME, MNTOPT_NORELATIME }, 104 { TOKEN_NBMAND, MNTOPT_NBMAND }, 105 { TOKEN_NONBMAND, MNTOPT_NONBMAND }, 106 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" }, 107 { TOKEN_LAST, NULL }, 108 }; 109 110 static void 111 zfsvfs_vfs_free(vfs_t *vfsp) 112 { 113 if (vfsp != NULL) { 114 if (vfsp->vfs_mntpoint != NULL) 115 kmem_strfree(vfsp->vfs_mntpoint); 116 117 kmem_free(vfsp, sizeof (vfs_t)); 118 } 119 } 120 121 static int 122 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp) 123 { 124 switch (token) { 125 case TOKEN_RO: 126 vfsp->vfs_readonly = B_TRUE; 127 vfsp->vfs_do_readonly = B_TRUE; 128 break; 129 case TOKEN_RW: 130 vfsp->vfs_readonly = B_FALSE; 131 vfsp->vfs_do_readonly = B_TRUE; 132 break; 133 case TOKEN_SETUID: 134 vfsp->vfs_setuid = B_TRUE; 135 vfsp->vfs_do_setuid = B_TRUE; 136 break; 137 case TOKEN_NOSETUID: 138 vfsp->vfs_setuid = B_FALSE; 139 vfsp->vfs_do_setuid = B_TRUE; 140 break; 141 case TOKEN_EXEC: 142 vfsp->vfs_exec = B_TRUE; 143 vfsp->vfs_do_exec = B_TRUE; 144 break; 145 case TOKEN_NOEXEC: 146 vfsp->vfs_exec = B_FALSE; 147 vfsp->vfs_do_exec = B_TRUE; 148 break; 149 case TOKEN_DEVICES: 150 vfsp->vfs_devices = B_TRUE; 151 vfsp->vfs_do_devices = B_TRUE; 152 break; 153 case TOKEN_NODEVICES: 154 vfsp->vfs_devices = B_FALSE; 155 vfsp->vfs_do_devices = B_TRUE; 156 break; 157 case TOKEN_DIRXATTR: 158 vfsp->vfs_xattr = ZFS_XATTR_DIR; 159 vfsp->vfs_do_xattr = B_TRUE; 160 break; 161 case TOKEN_SAXATTR: 162 vfsp->vfs_xattr = ZFS_XATTR_SA; 163 vfsp->vfs_do_xattr = B_TRUE; 164 break; 165 case TOKEN_XATTR: 166 vfsp->vfs_xattr = ZFS_XATTR_DIR; 167 vfsp->vfs_do_xattr = B_TRUE; 168 break; 169 case TOKEN_NOXATTR: 170 vfsp->vfs_xattr = ZFS_XATTR_OFF; 171 vfsp->vfs_do_xattr = B_TRUE; 172 break; 173 case TOKEN_ATIME: 174 vfsp->vfs_atime = B_TRUE; 175 vfsp->vfs_do_atime = B_TRUE; 176 break; 177 case TOKEN_NOATIME: 178 vfsp->vfs_atime = B_FALSE; 179 vfsp->vfs_do_atime = B_TRUE; 180 break; 181 case TOKEN_RELATIME: 182 vfsp->vfs_relatime = B_TRUE; 183 vfsp->vfs_do_relatime = B_TRUE; 184 break; 185 case TOKEN_NORELATIME: 186 vfsp->vfs_relatime = B_FALSE; 187 vfsp->vfs_do_relatime = B_TRUE; 188 break; 189 case TOKEN_NBMAND: 190 vfsp->vfs_nbmand = B_TRUE; 191 vfsp->vfs_do_nbmand = B_TRUE; 192 break; 193 case TOKEN_NONBMAND: 194 vfsp->vfs_nbmand = B_FALSE; 195 vfsp->vfs_do_nbmand = B_TRUE; 196 break; 197 case TOKEN_MNTPOINT: 198 vfsp->vfs_mntpoint = match_strdup(&args[0]); 199 if (vfsp->vfs_mntpoint == NULL) 200 return (SET_ERROR(ENOMEM)); 201 202 break; 203 default: 204 break; 205 } 206 207 return (0); 208 } 209 210 /* 211 * Parse the raw mntopts and return a vfs_t describing the options. 212 */ 213 static int 214 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp) 215 { 216 vfs_t *tmp_vfsp; 217 int error; 218 219 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP); 220 221 if (mntopts != NULL) { 222 substring_t args[MAX_OPT_ARGS]; 223 char *tmp_mntopts, *p, *t; 224 int token; 225 226 tmp_mntopts = t = kmem_strdup(mntopts); 227 if (tmp_mntopts == NULL) 228 return (SET_ERROR(ENOMEM)); 229 230 while ((p = strsep(&t, ",")) != NULL) { 231 if (!*p) 232 continue; 233 234 args[0].to = args[0].from = NULL; 235 token = match_token(p, zpl_tokens, args); 236 error = zfsvfs_parse_option(p, token, args, tmp_vfsp); 237 if (error) { 238 kmem_strfree(tmp_mntopts); 239 zfsvfs_vfs_free(tmp_vfsp); 240 return (error); 241 } 242 } 243 244 kmem_strfree(tmp_mntopts); 245 } 246 247 *vfsp = tmp_vfsp; 248 249 return (0); 250 } 251 252 boolean_t 253 zfs_is_readonly(zfsvfs_t *zfsvfs) 254 { 255 return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY)); 256 } 257 258 int 259 zfs_sync(struct super_block *sb, int wait, cred_t *cr) 260 { 261 (void) cr; 262 zfsvfs_t *zfsvfs = sb->s_fs_info; 263 264 /* 265 * Semantically, the only requirement is that the sync be initiated. 266 * The DMU syncs out txgs frequently, so there's nothing to do. 267 */ 268 if (!wait) 269 return (0); 270 271 if (zfsvfs != NULL) { 272 /* 273 * Sync a specific filesystem. 274 */ 275 dsl_pool_t *dp; 276 int error; 277 278 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 279 return (error); 280 dp = dmu_objset_pool(zfsvfs->z_os); 281 282 /* 283 * If the system is shutting down, then skip any 284 * filesystems which may exist on a suspended pool. 285 */ 286 if (spa_suspended(dp->dp_spa)) { 287 zfs_exit(zfsvfs, FTAG); 288 return (0); 289 } 290 291 if (zfsvfs->z_log != NULL) 292 zil_commit(zfsvfs->z_log, 0); 293 294 zfs_exit(zfsvfs, FTAG); 295 } else { 296 /* 297 * Sync all ZFS filesystems. This is what happens when you 298 * run sync(1). Unlike other filesystems, ZFS honors the 299 * request by waiting for all pools to commit all dirty data. 300 */ 301 spa_sync_allpools(); 302 } 303 304 return (0); 305 } 306 307 static void 308 atime_changed_cb(void *arg, uint64_t newval) 309 { 310 zfsvfs_t *zfsvfs = arg; 311 struct super_block *sb = zfsvfs->z_sb; 312 313 if (sb == NULL) 314 return; 315 /* 316 * Update SB_NOATIME bit in VFS super block. Since atime update is 317 * determined by atime_needs_update(), atime_needs_update() needs to 318 * return false if atime is turned off, and not unconditionally return 319 * false if atime is turned on. 320 */ 321 if (newval) 322 sb->s_flags &= ~SB_NOATIME; 323 else 324 sb->s_flags |= SB_NOATIME; 325 } 326 327 static void 328 relatime_changed_cb(void *arg, uint64_t newval) 329 { 330 ((zfsvfs_t *)arg)->z_relatime = newval; 331 } 332 333 static void 334 xattr_changed_cb(void *arg, uint64_t newval) 335 { 336 zfsvfs_t *zfsvfs = arg; 337 338 if (newval == ZFS_XATTR_OFF) { 339 zfsvfs->z_flags &= ~ZSB_XATTR; 340 } else { 341 zfsvfs->z_flags |= ZSB_XATTR; 342 343 if (newval == ZFS_XATTR_SA) 344 zfsvfs->z_xattr_sa = B_TRUE; 345 else 346 zfsvfs->z_xattr_sa = B_FALSE; 347 } 348 } 349 350 static void 351 acltype_changed_cb(void *arg, uint64_t newval) 352 { 353 zfsvfs_t *zfsvfs = arg; 354 355 switch (newval) { 356 case ZFS_ACLTYPE_NFSV4: 357 case ZFS_ACLTYPE_OFF: 358 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; 359 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; 360 break; 361 case ZFS_ACLTYPE_POSIX: 362 #ifdef CONFIG_FS_POSIX_ACL 363 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX; 364 zfsvfs->z_sb->s_flags |= SB_POSIXACL; 365 #else 366 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; 367 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; 368 #endif /* CONFIG_FS_POSIX_ACL */ 369 break; 370 default: 371 break; 372 } 373 } 374 375 static void 376 blksz_changed_cb(void *arg, uint64_t newval) 377 { 378 zfsvfs_t *zfsvfs = arg; 379 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 380 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 381 ASSERT(ISP2(newval)); 382 383 zfsvfs->z_max_blksz = newval; 384 } 385 386 static void 387 readonly_changed_cb(void *arg, uint64_t newval) 388 { 389 zfsvfs_t *zfsvfs = arg; 390 struct super_block *sb = zfsvfs->z_sb; 391 392 if (sb == NULL) 393 return; 394 395 if (newval) 396 sb->s_flags |= SB_RDONLY; 397 else 398 sb->s_flags &= ~SB_RDONLY; 399 } 400 401 static void 402 devices_changed_cb(void *arg, uint64_t newval) 403 { 404 } 405 406 static void 407 setuid_changed_cb(void *arg, uint64_t newval) 408 { 409 } 410 411 static void 412 exec_changed_cb(void *arg, uint64_t newval) 413 { 414 } 415 416 static void 417 nbmand_changed_cb(void *arg, uint64_t newval) 418 { 419 zfsvfs_t *zfsvfs = arg; 420 struct super_block *sb = zfsvfs->z_sb; 421 422 if (sb == NULL) 423 return; 424 425 if (newval == TRUE) 426 sb->s_flags |= SB_MANDLOCK; 427 else 428 sb->s_flags &= ~SB_MANDLOCK; 429 } 430 431 static void 432 snapdir_changed_cb(void *arg, uint64_t newval) 433 { 434 ((zfsvfs_t *)arg)->z_show_ctldir = newval; 435 } 436 437 static void 438 acl_mode_changed_cb(void *arg, uint64_t newval) 439 { 440 zfsvfs_t *zfsvfs = arg; 441 442 zfsvfs->z_acl_mode = newval; 443 } 444 445 static void 446 acl_inherit_changed_cb(void *arg, uint64_t newval) 447 { 448 ((zfsvfs_t *)arg)->z_acl_inherit = newval; 449 } 450 451 static int 452 zfs_register_callbacks(vfs_t *vfsp) 453 { 454 struct dsl_dataset *ds = NULL; 455 objset_t *os = NULL; 456 zfsvfs_t *zfsvfs = NULL; 457 int error = 0; 458 459 ASSERT(vfsp); 460 zfsvfs = vfsp->vfs_data; 461 ASSERT(zfsvfs); 462 os = zfsvfs->z_os; 463 464 /* 465 * The act of registering our callbacks will destroy any mount 466 * options we may have. In order to enable temporary overrides 467 * of mount options, we stash away the current values and 468 * restore them after we register the callbacks. 469 */ 470 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) { 471 vfsp->vfs_do_readonly = B_TRUE; 472 vfsp->vfs_readonly = B_TRUE; 473 } 474 475 /* 476 * Register property callbacks. 477 * 478 * It would probably be fine to just check for i/o error from 479 * the first prop_register(), but I guess I like to go 480 * overboard... 481 */ 482 ds = dmu_objset_ds(os); 483 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 484 error = dsl_prop_register(ds, 485 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 486 error = error ? error : dsl_prop_register(ds, 487 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs); 488 error = error ? error : dsl_prop_register(ds, 489 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 490 error = error ? error : dsl_prop_register(ds, 491 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 492 error = error ? error : dsl_prop_register(ds, 493 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 494 error = error ? error : dsl_prop_register(ds, 495 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 496 error = error ? error : dsl_prop_register(ds, 497 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 498 error = error ? error : dsl_prop_register(ds, 499 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs); 504 error = error ? error : dsl_prop_register(ds, 505 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 508 zfsvfs); 509 error = error ? error : dsl_prop_register(ds, 510 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs); 511 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 512 if (error) 513 goto unregister; 514 515 /* 516 * Invoke our callbacks to restore temporary mount options. 517 */ 518 if (vfsp->vfs_do_readonly) 519 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly); 520 if (vfsp->vfs_do_setuid) 521 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid); 522 if (vfsp->vfs_do_exec) 523 exec_changed_cb(zfsvfs, vfsp->vfs_exec); 524 if (vfsp->vfs_do_devices) 525 devices_changed_cb(zfsvfs, vfsp->vfs_devices); 526 if (vfsp->vfs_do_xattr) 527 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr); 528 if (vfsp->vfs_do_atime) 529 atime_changed_cb(zfsvfs, vfsp->vfs_atime); 530 if (vfsp->vfs_do_relatime) 531 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime); 532 if (vfsp->vfs_do_nbmand) 533 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand); 534 535 return (0); 536 537 unregister: 538 dsl_prop_unregister_all(ds, zfsvfs); 539 return (error); 540 } 541 542 /* 543 * Takes a dataset, a property, a value and that value's setpoint as 544 * found in the ZAP. Checks if the property has been changed in the vfs. 545 * If so, val and setpoint will be overwritten with updated content. 546 * Otherwise, they are left unchanged. 547 */ 548 int 549 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val, 550 char *setpoint) 551 { 552 int error; 553 zfsvfs_t *zfvp; 554 vfs_t *vfsp; 555 objset_t *os; 556 uint64_t tmp = *val; 557 558 error = dmu_objset_from_ds(ds, &os); 559 if (error != 0) 560 return (error); 561 562 if (dmu_objset_type(os) != DMU_OST_ZFS) 563 return (EINVAL); 564 565 mutex_enter(&os->os_user_ptr_lock); 566 zfvp = dmu_objset_get_user(os); 567 mutex_exit(&os->os_user_ptr_lock); 568 if (zfvp == NULL) 569 return (ESRCH); 570 571 vfsp = zfvp->z_vfs; 572 573 switch (zfs_prop) { 574 case ZFS_PROP_ATIME: 575 if (vfsp->vfs_do_atime) 576 tmp = vfsp->vfs_atime; 577 break; 578 case ZFS_PROP_RELATIME: 579 if (vfsp->vfs_do_relatime) 580 tmp = vfsp->vfs_relatime; 581 break; 582 case ZFS_PROP_DEVICES: 583 if (vfsp->vfs_do_devices) 584 tmp = vfsp->vfs_devices; 585 break; 586 case ZFS_PROP_EXEC: 587 if (vfsp->vfs_do_exec) 588 tmp = vfsp->vfs_exec; 589 break; 590 case ZFS_PROP_SETUID: 591 if (vfsp->vfs_do_setuid) 592 tmp = vfsp->vfs_setuid; 593 break; 594 case ZFS_PROP_READONLY: 595 if (vfsp->vfs_do_readonly) 596 tmp = vfsp->vfs_readonly; 597 break; 598 case ZFS_PROP_XATTR: 599 if (vfsp->vfs_do_xattr) 600 tmp = vfsp->vfs_xattr; 601 break; 602 case ZFS_PROP_NBMAND: 603 if (vfsp->vfs_do_nbmand) 604 tmp = vfsp->vfs_nbmand; 605 break; 606 default: 607 return (ENOENT); 608 } 609 610 if (tmp != *val) { 611 (void) strcpy(setpoint, "temporary"); 612 *val = tmp; 613 } 614 return (0); 615 } 616 617 /* 618 * Associate this zfsvfs with the given objset, which must be owned. 619 * This will cache a bunch of on-disk state from the objset in the 620 * zfsvfs. 621 */ 622 static int 623 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os) 624 { 625 int error; 626 uint64_t val; 627 628 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 629 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 630 zfsvfs->z_os = os; 631 632 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 633 if (error != 0) 634 return (error); 635 if (zfsvfs->z_version > 636 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 637 (void) printk("Can't mount a version %lld file system " 638 "on a version %lld pool\n. Pool must be upgraded to mount " 639 "this file system.\n", (u_longlong_t)zfsvfs->z_version, 640 (u_longlong_t)spa_version(dmu_objset_spa(os))); 641 return (SET_ERROR(ENOTSUP)); 642 } 643 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val); 644 if (error != 0) 645 return (error); 646 zfsvfs->z_norm = (int)val; 647 648 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val); 649 if (error != 0) 650 return (error); 651 zfsvfs->z_utf8 = (val != 0); 652 653 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val); 654 if (error != 0) 655 return (error); 656 zfsvfs->z_case = (uint_t)val; 657 658 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0) 659 return (error); 660 zfsvfs->z_acl_type = (uint_t)val; 661 662 /* 663 * Fold case on file systems that are always or sometimes case 664 * insensitive. 665 */ 666 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 667 zfsvfs->z_case == ZFS_CASE_MIXED) 668 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 669 670 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 671 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 672 673 uint64_t sa_obj = 0; 674 if (zfsvfs->z_use_sa) { 675 /* should either have both of these objects or none */ 676 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 677 &sa_obj); 678 if (error != 0) 679 return (error); 680 681 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val); 682 if ((error == 0) && (val == ZFS_XATTR_SA)) 683 zfsvfs->z_xattr_sa = B_TRUE; 684 } 685 686 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 687 &zfsvfs->z_root); 688 if (error != 0) 689 return (error); 690 ASSERT(zfsvfs->z_root != 0); 691 692 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 693 &zfsvfs->z_unlinkedobj); 694 if (error != 0) 695 return (error); 696 697 error = zap_lookup(os, MASTER_NODE_OBJ, 698 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 699 8, 1, &zfsvfs->z_userquota_obj); 700 if (error == ENOENT) 701 zfsvfs->z_userquota_obj = 0; 702 else if (error != 0) 703 return (error); 704 705 error = zap_lookup(os, MASTER_NODE_OBJ, 706 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 707 8, 1, &zfsvfs->z_groupquota_obj); 708 if (error == ENOENT) 709 zfsvfs->z_groupquota_obj = 0; 710 else if (error != 0) 711 return (error); 712 713 error = zap_lookup(os, MASTER_NODE_OBJ, 714 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA], 715 8, 1, &zfsvfs->z_projectquota_obj); 716 if (error == ENOENT) 717 zfsvfs->z_projectquota_obj = 0; 718 else if (error != 0) 719 return (error); 720 721 error = zap_lookup(os, MASTER_NODE_OBJ, 722 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA], 723 8, 1, &zfsvfs->z_userobjquota_obj); 724 if (error == ENOENT) 725 zfsvfs->z_userobjquota_obj = 0; 726 else if (error != 0) 727 return (error); 728 729 error = zap_lookup(os, MASTER_NODE_OBJ, 730 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA], 731 8, 1, &zfsvfs->z_groupobjquota_obj); 732 if (error == ENOENT) 733 zfsvfs->z_groupobjquota_obj = 0; 734 else if (error != 0) 735 return (error); 736 737 error = zap_lookup(os, MASTER_NODE_OBJ, 738 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA], 739 8, 1, &zfsvfs->z_projectobjquota_obj); 740 if (error == ENOENT) 741 zfsvfs->z_projectobjquota_obj = 0; 742 else if (error != 0) 743 return (error); 744 745 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 746 &zfsvfs->z_fuid_obj); 747 if (error == ENOENT) 748 zfsvfs->z_fuid_obj = 0; 749 else if (error != 0) 750 return (error); 751 752 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 753 &zfsvfs->z_shares_dir); 754 if (error == ENOENT) 755 zfsvfs->z_shares_dir = 0; 756 else if (error != 0) 757 return (error); 758 759 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 760 &zfsvfs->z_attr_table); 761 if (error != 0) 762 return (error); 763 764 if (zfsvfs->z_version >= ZPL_VERSION_SA) 765 sa_register_update_callback(os, zfs_sa_upgrade); 766 767 return (0); 768 } 769 770 int 771 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp) 772 { 773 objset_t *os; 774 zfsvfs_t *zfsvfs; 775 int error; 776 boolean_t ro = (readonly || (strchr(osname, '@') != NULL)); 777 778 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 779 780 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os); 781 if (error != 0) { 782 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 783 return (error); 784 } 785 786 error = zfsvfs_create_impl(zfvp, zfsvfs, os); 787 788 return (error); 789 } 790 791 792 /* 793 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function 794 * on a failure. Do not pass in a statically allocated zfsvfs. 795 */ 796 int 797 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os) 798 { 799 int error; 800 801 zfsvfs->z_vfs = NULL; 802 zfsvfs->z_sb = NULL; 803 zfsvfs->z_parent = zfsvfs; 804 805 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 806 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 807 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 808 offsetof(znode_t, z_link_node)); 809 ZFS_TEARDOWN_INIT(zfsvfs); 810 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 811 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 812 813 int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1), 814 ZFS_OBJ_MTX_MAX); 815 zfsvfs->z_hold_size = size; 816 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size, 817 KM_SLEEP); 818 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP); 819 for (int i = 0; i != size; i++) { 820 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare, 821 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node)); 822 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL); 823 } 824 825 error = zfsvfs_init(zfsvfs, os); 826 if (error != 0) { 827 dmu_objset_disown(os, B_TRUE, zfsvfs); 828 *zfvp = NULL; 829 zfsvfs_free(zfsvfs); 830 return (error); 831 } 832 833 zfsvfs->z_drain_task = TASKQID_INVALID; 834 zfsvfs->z_draining = B_FALSE; 835 zfsvfs->z_drain_cancel = B_TRUE; 836 837 *zfvp = zfsvfs; 838 return (0); 839 } 840 841 static int 842 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 843 { 844 int error; 845 boolean_t readonly = zfs_is_readonly(zfsvfs); 846 847 error = zfs_register_callbacks(zfsvfs->z_vfs); 848 if (error) 849 return (error); 850 851 /* 852 * If we are not mounting (ie: online recv), then we don't 853 * have to worry about replaying the log as we blocked all 854 * operations out since we closed the ZIL. 855 */ 856 if (mounting) { 857 ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL); 858 error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os); 859 if (error) 860 return (error); 861 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data, 862 &zfsvfs->z_kstat.dk_zil_sums); 863 864 /* 865 * During replay we remove the read only flag to 866 * allow replays to succeed. 867 */ 868 if (readonly != 0) { 869 readonly_changed_cb(zfsvfs, B_FALSE); 870 } else { 871 zap_stats_t zs; 872 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj, 873 &zs) == 0) { 874 dataset_kstats_update_nunlinks_kstat( 875 &zfsvfs->z_kstat, zs.zs_num_entries); 876 dprintf_ds(zfsvfs->z_os->os_dsl_dataset, 877 "num_entries in unlinked set: %llu", 878 zs.zs_num_entries); 879 } 880 zfs_unlinked_drain(zfsvfs); 881 dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir; 882 dd->dd_activity_cancelled = B_FALSE; 883 } 884 885 /* 886 * Parse and replay the intent log. 887 * 888 * Because of ziltest, this must be done after 889 * zfs_unlinked_drain(). (Further note: ziltest 890 * doesn't use readonly mounts, where 891 * zfs_unlinked_drain() isn't called.) This is because 892 * ziltest causes spa_sync() to think it's committed, 893 * but actually it is not, so the intent log contains 894 * many txg's worth of changes. 895 * 896 * In particular, if object N is in the unlinked set in 897 * the last txg to actually sync, then it could be 898 * actually freed in a later txg and then reallocated 899 * in a yet later txg. This would write a "create 900 * object N" record to the intent log. Normally, this 901 * would be fine because the spa_sync() would have 902 * written out the fact that object N is free, before 903 * we could write the "create object N" intent log 904 * record. 905 * 906 * But when we are in ziltest mode, we advance the "open 907 * txg" without actually spa_sync()-ing the changes to 908 * disk. So we would see that object N is still 909 * allocated and in the unlinked set, and there is an 910 * intent log record saying to allocate it. 911 */ 912 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 913 if (zil_replay_disable) { 914 zil_destroy(zfsvfs->z_log, B_FALSE); 915 } else { 916 zfsvfs->z_replay = B_TRUE; 917 zil_replay(zfsvfs->z_os, zfsvfs, 918 zfs_replay_vector); 919 zfsvfs->z_replay = B_FALSE; 920 } 921 } 922 923 /* restore readonly bit */ 924 if (readonly != 0) 925 readonly_changed_cb(zfsvfs, B_TRUE); 926 } else { 927 ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL); 928 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data, 929 &zfsvfs->z_kstat.dk_zil_sums); 930 } 931 932 /* 933 * Set the objset user_ptr to track its zfsvfs. 934 */ 935 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 936 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 937 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 938 939 return (0); 940 } 941 942 void 943 zfsvfs_free(zfsvfs_t *zfsvfs) 944 { 945 int i, size = zfsvfs->z_hold_size; 946 947 zfs_fuid_destroy(zfsvfs); 948 949 mutex_destroy(&zfsvfs->z_znodes_lock); 950 mutex_destroy(&zfsvfs->z_lock); 951 list_destroy(&zfsvfs->z_all_znodes); 952 ZFS_TEARDOWN_DESTROY(zfsvfs); 953 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 954 rw_destroy(&zfsvfs->z_fuid_lock); 955 for (i = 0; i != size; i++) { 956 avl_destroy(&zfsvfs->z_hold_trees[i]); 957 mutex_destroy(&zfsvfs->z_hold_locks[i]); 958 } 959 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size); 960 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size); 961 zfsvfs_vfs_free(zfsvfs->z_vfs); 962 dataset_kstats_destroy(&zfsvfs->z_kstat); 963 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 964 } 965 966 static void 967 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 968 { 969 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 970 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 971 } 972 973 static void 974 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 975 { 976 objset_t *os = zfsvfs->z_os; 977 978 if (!dmu_objset_is_snapshot(os)) 979 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 980 } 981 982 #ifdef HAVE_MLSLABEL 983 /* 984 * Check that the hex label string is appropriate for the dataset being 985 * mounted into the global_zone proper. 986 * 987 * Return an error if the hex label string is not default or 988 * admin_low/admin_high. For admin_low labels, the corresponding 989 * dataset must be readonly. 990 */ 991 int 992 zfs_check_global_label(const char *dsname, const char *hexsl) 993 { 994 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 995 return (0); 996 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 997 return (0); 998 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 999 /* must be readonly */ 1000 uint64_t rdonly; 1001 1002 if (dsl_prop_get_integer(dsname, 1003 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1004 return (SET_ERROR(EACCES)); 1005 return (rdonly ? 0 : SET_ERROR(EACCES)); 1006 } 1007 return (SET_ERROR(EACCES)); 1008 } 1009 #endif /* HAVE_MLSLABEL */ 1010 1011 static int 1012 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp, 1013 uint32_t bshift) 1014 { 1015 char buf[20 + DMU_OBJACCT_PREFIX_LEN]; 1016 uint64_t offset = DMU_OBJACCT_PREFIX_LEN; 1017 uint64_t quota; 1018 uint64_t used; 1019 int err; 1020 1021 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1); 1022 err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset, 1023 sizeof (buf) - offset, B_FALSE); 1024 if (err) 1025 return (err); 1026 1027 if (zfsvfs->z_projectquota_obj == 0) 1028 goto objs; 1029 1030 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj, 1031 buf + offset, 8, 1, "a); 1032 if (err == ENOENT) 1033 goto objs; 1034 else if (err) 1035 return (err); 1036 1037 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1038 buf + offset, 8, 1, &used); 1039 if (unlikely(err == ENOENT)) { 1040 uint32_t blksize; 1041 u_longlong_t nblocks; 1042 1043 /* 1044 * Quota accounting is async, so it is possible race case. 1045 * There is at least one object with the given project ID. 1046 */ 1047 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); 1048 if (unlikely(zp->z_blksz == 0)) 1049 blksize = zfsvfs->z_max_blksz; 1050 1051 used = blksize * nblocks; 1052 } else if (err) { 1053 return (err); 1054 } 1055 1056 statp->f_blocks = quota >> bshift; 1057 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0; 1058 statp->f_bavail = statp->f_bfree; 1059 1060 objs: 1061 if (zfsvfs->z_projectobjquota_obj == 0) 1062 return (0); 1063 1064 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj, 1065 buf + offset, 8, 1, "a); 1066 if (err == ENOENT) 1067 return (0); 1068 else if (err) 1069 return (err); 1070 1071 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1072 buf, 8, 1, &used); 1073 if (unlikely(err == ENOENT)) { 1074 /* 1075 * Quota accounting is async, so it is possible race case. 1076 * There is at least one object with the given project ID. 1077 */ 1078 used = 1; 1079 } else if (err) { 1080 return (err); 1081 } 1082 1083 statp->f_files = quota; 1084 statp->f_ffree = (quota > used) ? (quota - used) : 0; 1085 1086 return (0); 1087 } 1088 1089 int 1090 zfs_statvfs(struct inode *ip, struct kstatfs *statp) 1091 { 1092 zfsvfs_t *zfsvfs = ITOZSB(ip); 1093 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1094 int err = 0; 1095 1096 if ((err = zfs_enter(zfsvfs, FTAG)) != 0) 1097 return (err); 1098 1099 dmu_objset_space(zfsvfs->z_os, 1100 &refdbytes, &availbytes, &usedobjs, &availobjs); 1101 1102 uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os); 1103 /* 1104 * The underlying storage pool actually uses multiple block 1105 * size. Under Solaris frsize (fragment size) is reported as 1106 * the smallest block size we support, and bsize (block size) 1107 * as the filesystem's maximum block size. Unfortunately, 1108 * under Linux the fragment size and block size are often used 1109 * interchangeably. Thus we are forced to report both of them 1110 * as the filesystem's maximum block size. 1111 */ 1112 statp->f_frsize = zfsvfs->z_max_blksz; 1113 statp->f_bsize = zfsvfs->z_max_blksz; 1114 uint32_t bshift = fls(statp->f_bsize) - 1; 1115 1116 /* 1117 * The following report "total" blocks of various kinds in 1118 * the file system, but reported in terms of f_bsize - the 1119 * "preferred" size. 1120 */ 1121 1122 /* Round up so we never have a filesystem using 0 blocks. */ 1123 refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize); 1124 statp->f_blocks = (refdbytes + availbytes) >> bshift; 1125 statp->f_bfree = availbytes >> bshift; 1126 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1127 1128 /* 1129 * statvfs() should really be called statufs(), because it assumes 1130 * static metadata. ZFS doesn't preallocate files, so the best 1131 * we can do is report the max that could possibly fit in f_files, 1132 * and that minus the number actually used in f_ffree. 1133 * For f_ffree, report the smaller of the number of objects available 1134 * and the number of blocks (each object will take at least a block). 1135 */ 1136 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT); 1137 statp->f_files = statp->f_ffree + usedobjs; 1138 statp->f_fsid.val[0] = (uint32_t)fsid; 1139 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32); 1140 statp->f_type = ZFS_SUPER_MAGIC; 1141 statp->f_namelen = MAXNAMELEN - 1; 1142 1143 /* 1144 * We have all of 40 characters to stuff a string here. 1145 * Is there anything useful we could/should provide? 1146 */ 1147 memset(statp->f_spare, 0, sizeof (statp->f_spare)); 1148 1149 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) && 1150 dmu_objset_projectquota_present(zfsvfs->z_os)) { 1151 znode_t *zp = ITOZ(ip); 1152 1153 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid && 1154 zpl_is_valid_projid(zp->z_projid)) 1155 err = zfs_statfs_project(zfsvfs, zp, statp, bshift); 1156 } 1157 1158 zfs_exit(zfsvfs, FTAG); 1159 return (err); 1160 } 1161 1162 static int 1163 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp) 1164 { 1165 znode_t *rootzp; 1166 int error; 1167 1168 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 1169 return (error); 1170 1171 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1172 if (error == 0) 1173 *ipp = ZTOI(rootzp); 1174 1175 zfs_exit(zfsvfs, FTAG); 1176 return (error); 1177 } 1178 1179 /* 1180 * Linux kernels older than 3.1 do not support a per-filesystem shrinker. 1181 * To accommodate this we must improvise and manually walk the list of znodes 1182 * attempting to prune dentries in order to be able to drop the inodes. 1183 * 1184 * To avoid scanning the same znodes multiple times they are always rotated 1185 * to the end of the z_all_znodes list. New znodes are inserted at the 1186 * end of the list so we're always scanning the oldest znodes first. 1187 */ 1188 static int 1189 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan) 1190 { 1191 znode_t **zp_array, *zp; 1192 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *)); 1193 int objects = 0; 1194 int i = 0, j = 0; 1195 1196 zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP); 1197 1198 mutex_enter(&zfsvfs->z_znodes_lock); 1199 while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) { 1200 1201 if ((i++ > nr_to_scan) || (j >= max_array)) 1202 break; 1203 1204 ASSERT(list_link_active(&zp->z_link_node)); 1205 list_remove(&zfsvfs->z_all_znodes, zp); 1206 list_insert_tail(&zfsvfs->z_all_znodes, zp); 1207 1208 /* Skip active znodes and .zfs entries */ 1209 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir) 1210 continue; 1211 1212 if (igrab(ZTOI(zp)) == NULL) 1213 continue; 1214 1215 zp_array[j] = zp; 1216 j++; 1217 } 1218 mutex_exit(&zfsvfs->z_znodes_lock); 1219 1220 for (i = 0; i < j; i++) { 1221 zp = zp_array[i]; 1222 1223 ASSERT3P(zp, !=, NULL); 1224 d_prune_aliases(ZTOI(zp)); 1225 1226 if (atomic_read(&ZTOI(zp)->i_count) == 1) 1227 objects++; 1228 1229 zrele(zp); 1230 } 1231 1232 kmem_free(zp_array, max_array * sizeof (znode_t *)); 1233 1234 return (objects); 1235 } 1236 1237 /* 1238 * The ARC has requested that the filesystem drop entries from the dentry 1239 * and inode caches. This can occur when the ARC needs to free meta data 1240 * blocks but can't because they are all pinned by entries in these caches. 1241 */ 1242 int 1243 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects) 1244 { 1245 zfsvfs_t *zfsvfs = sb->s_fs_info; 1246 int error = 0; 1247 struct shrinker *shrinker = &sb->s_shrink; 1248 struct shrink_control sc = { 1249 .nr_to_scan = nr_to_scan, 1250 .gfp_mask = GFP_KERNEL, 1251 }; 1252 1253 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) 1254 return (error); 1255 1256 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \ 1257 defined(SHRINK_CONTROL_HAS_NID) && \ 1258 defined(SHRINKER_NUMA_AWARE) 1259 if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) { 1260 *objects = 0; 1261 for_each_online_node(sc.nid) { 1262 *objects += (*shrinker->scan_objects)(shrinker, &sc); 1263 /* 1264 * reset sc.nr_to_scan, modified by 1265 * scan_objects == super_cache_scan 1266 */ 1267 sc.nr_to_scan = nr_to_scan; 1268 } 1269 } else { 1270 *objects = (*shrinker->scan_objects)(shrinker, &sc); 1271 } 1272 1273 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK) 1274 *objects = (*shrinker->scan_objects)(shrinker, &sc); 1275 #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK) 1276 *objects = (*shrinker->shrink)(shrinker, &sc); 1277 #elif defined(HAVE_D_PRUNE_ALIASES) 1278 #define D_PRUNE_ALIASES_IS_DEFAULT 1279 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan); 1280 #else 1281 #error "No available dentry and inode cache pruning mechanism." 1282 #endif 1283 1284 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT) 1285 #undef D_PRUNE_ALIASES_IS_DEFAULT 1286 /* 1287 * Fall back to zfs_prune_aliases if the kernel's per-superblock 1288 * shrinker couldn't free anything, possibly due to the inodes being 1289 * allocated in a different memcg. 1290 */ 1291 if (*objects == 0) 1292 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan); 1293 #endif 1294 1295 zfs_exit(zfsvfs, FTAG); 1296 1297 dprintf_ds(zfsvfs->z_os->os_dsl_dataset, 1298 "pruning, nr_to_scan=%lu objects=%d error=%d\n", 1299 nr_to_scan, *objects, error); 1300 1301 return (error); 1302 } 1303 1304 /* 1305 * Teardown the zfsvfs_t. 1306 * 1307 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock' 1308 * and 'z_teardown_inactive_lock' held. 1309 */ 1310 static int 1311 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1312 { 1313 znode_t *zp; 1314 1315 zfs_unlinked_drain_stop_wait(zfsvfs); 1316 1317 /* 1318 * If someone has not already unmounted this file system, 1319 * drain the zrele_taskq to ensure all active references to the 1320 * zfsvfs_t have been handled only then can it be safely destroyed. 1321 */ 1322 if (zfsvfs->z_os) { 1323 /* 1324 * If we're unmounting we have to wait for the list to 1325 * drain completely. 1326 * 1327 * If we're not unmounting there's no guarantee the list 1328 * will drain completely, but iputs run from the taskq 1329 * may add the parents of dir-based xattrs to the taskq 1330 * so we want to wait for these. 1331 * 1332 * We can safely read z_nr_znodes without locking because the 1333 * VFS has already blocked operations which add to the 1334 * z_all_znodes list and thus increment z_nr_znodes. 1335 */ 1336 int round = 0; 1337 while (zfsvfs->z_nr_znodes > 0) { 1338 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1339 dmu_objset_pool(zfsvfs->z_os)), 0); 1340 if (++round > 1 && !unmounting) 1341 break; 1342 } 1343 } 1344 1345 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG); 1346 1347 if (!unmounting) { 1348 /* 1349 * We purge the parent filesystem's super block as the 1350 * parent filesystem and all of its snapshots have their 1351 * inode's super block set to the parent's filesystem's 1352 * super block. Note, 'z_parent' is self referential 1353 * for non-snapshots. 1354 */ 1355 shrink_dcache_sb(zfsvfs->z_parent->z_sb); 1356 } 1357 1358 /* 1359 * Close the zil. NB: Can't close the zil while zfs_inactive 1360 * threads are blocked as zil_close can call zfs_inactive. 1361 */ 1362 if (zfsvfs->z_log) { 1363 zil_close(zfsvfs->z_log); 1364 zfsvfs->z_log = NULL; 1365 } 1366 1367 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1368 1369 /* 1370 * If we are not unmounting (ie: online recv) and someone already 1371 * unmounted this file system while we were doing the switcheroo, 1372 * or a reopen of z_os failed then just bail out now. 1373 */ 1374 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1375 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1376 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1377 return (SET_ERROR(EIO)); 1378 } 1379 1380 /* 1381 * At this point there are no VFS ops active, and any new VFS ops 1382 * will fail with EIO since we have z_teardown_lock for writer (only 1383 * relevant for forced unmount). 1384 * 1385 * Release all holds on dbufs. We also grab an extra reference to all 1386 * the remaining inodes so that the kernel does not attempt to free 1387 * any inodes of a suspended fs. This can cause deadlocks since the 1388 * zfs_resume_fs() process may involve starting threads, which might 1389 * attempt to free unreferenced inodes to free up memory for the new 1390 * thread. 1391 */ 1392 if (!unmounting) { 1393 mutex_enter(&zfsvfs->z_znodes_lock); 1394 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1395 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1396 if (zp->z_sa_hdl) 1397 zfs_znode_dmu_fini(zp); 1398 if (igrab(ZTOI(zp)) != NULL) 1399 zp->z_suspended = B_TRUE; 1400 1401 } 1402 mutex_exit(&zfsvfs->z_znodes_lock); 1403 } 1404 1405 /* 1406 * If we are unmounting, set the unmounted flag and let new VFS ops 1407 * unblock. zfs_inactive will have the unmounted behavior, and all 1408 * other VFS ops will fail with EIO. 1409 */ 1410 if (unmounting) { 1411 zfsvfs->z_unmounted = B_TRUE; 1412 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1413 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1414 } 1415 1416 /* 1417 * z_os will be NULL if there was an error in attempting to reopen 1418 * zfsvfs, so just return as the properties had already been 1419 * 1420 * unregistered and cached data had been evicted before. 1421 */ 1422 if (zfsvfs->z_os == NULL) 1423 return (0); 1424 1425 /* 1426 * Unregister properties. 1427 */ 1428 zfs_unregister_callbacks(zfsvfs); 1429 1430 /* 1431 * Evict cached data. We must write out any dirty data before 1432 * disowning the dataset. 1433 */ 1434 objset_t *os = zfsvfs->z_os; 1435 boolean_t os_dirty = B_FALSE; 1436 for (int t = 0; t < TXG_SIZE; t++) { 1437 if (dmu_objset_is_dirty(os, t)) { 1438 os_dirty = B_TRUE; 1439 break; 1440 } 1441 } 1442 if (!zfs_is_readonly(zfsvfs) && os_dirty) { 1443 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1444 } 1445 dmu_objset_evict_dbufs(zfsvfs->z_os); 1446 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 1447 dsl_dir_cancel_waiters(dd); 1448 1449 return (0); 1450 } 1451 1452 #if defined(HAVE_SUPER_SETUP_BDI_NAME) 1453 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0); 1454 #endif 1455 1456 int 1457 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent) 1458 { 1459 const char *osname = zm->mnt_osname; 1460 struct inode *root_inode = NULL; 1461 uint64_t recordsize; 1462 int error = 0; 1463 zfsvfs_t *zfsvfs = NULL; 1464 vfs_t *vfs = NULL; 1465 int canwrite; 1466 int dataset_visible_zone; 1467 1468 ASSERT(zm); 1469 ASSERT(osname); 1470 1471 dataset_visible_zone = zone_dataset_visible(osname, &canwrite); 1472 1473 /* 1474 * Refuse to mount a filesystem if we are in a namespace and the 1475 * dataset is not visible or writable in that namespace. 1476 */ 1477 if (!INGLOBALZONE(curproc) && 1478 (!dataset_visible_zone || !canwrite)) { 1479 return (SET_ERROR(EPERM)); 1480 } 1481 1482 error = zfsvfs_parse_options(zm->mnt_data, &vfs); 1483 if (error) 1484 return (error); 1485 1486 /* 1487 * If a non-writable filesystem is being mounted without the 1488 * read-only flag, pretend it was set, as done for snapshots. 1489 */ 1490 if (!canwrite) 1491 vfs->vfs_readonly = true; 1492 1493 error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs); 1494 if (error) { 1495 zfsvfs_vfs_free(vfs); 1496 goto out; 1497 } 1498 1499 if ((error = dsl_prop_get_integer(osname, "recordsize", 1500 &recordsize, NULL))) { 1501 zfsvfs_vfs_free(vfs); 1502 goto out; 1503 } 1504 1505 vfs->vfs_data = zfsvfs; 1506 zfsvfs->z_vfs = vfs; 1507 zfsvfs->z_sb = sb; 1508 sb->s_fs_info = zfsvfs; 1509 sb->s_magic = ZFS_SUPER_MAGIC; 1510 sb->s_maxbytes = MAX_LFS_FILESIZE; 1511 sb->s_time_gran = 1; 1512 sb->s_blocksize = recordsize; 1513 sb->s_blocksize_bits = ilog2(recordsize); 1514 1515 error = -zpl_bdi_setup(sb, "zfs"); 1516 if (error) 1517 goto out; 1518 1519 sb->s_bdi->ra_pages = 0; 1520 1521 /* Set callback operations for the file system. */ 1522 sb->s_op = &zpl_super_operations; 1523 sb->s_xattr = zpl_xattr_handlers; 1524 sb->s_export_op = &zpl_export_operations; 1525 sb->s_d_op = &zpl_dentry_operations; 1526 1527 /* Set features for file system. */ 1528 zfs_set_fuid_feature(zfsvfs); 1529 1530 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1531 uint64_t pval; 1532 1533 atime_changed_cb(zfsvfs, B_FALSE); 1534 readonly_changed_cb(zfsvfs, B_TRUE); 1535 if ((error = dsl_prop_get_integer(osname, 1536 "xattr", &pval, NULL))) 1537 goto out; 1538 xattr_changed_cb(zfsvfs, pval); 1539 if ((error = dsl_prop_get_integer(osname, 1540 "acltype", &pval, NULL))) 1541 goto out; 1542 acltype_changed_cb(zfsvfs, pval); 1543 zfsvfs->z_issnap = B_TRUE; 1544 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1545 zfsvfs->z_snap_defer_time = jiffies; 1546 1547 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1548 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1549 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1550 } else { 1551 if ((error = zfsvfs_setup(zfsvfs, B_TRUE))) 1552 goto out; 1553 } 1554 1555 /* Allocate a root inode for the filesystem. */ 1556 error = zfs_root(zfsvfs, &root_inode); 1557 if (error) { 1558 (void) zfs_umount(sb); 1559 goto out; 1560 } 1561 1562 /* Allocate a root dentry for the filesystem */ 1563 sb->s_root = d_make_root(root_inode); 1564 if (sb->s_root == NULL) { 1565 (void) zfs_umount(sb); 1566 error = SET_ERROR(ENOMEM); 1567 goto out; 1568 } 1569 1570 if (!zfsvfs->z_issnap) 1571 zfsctl_create(zfsvfs); 1572 1573 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb); 1574 out: 1575 if (error) { 1576 if (zfsvfs != NULL) { 1577 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); 1578 zfsvfs_free(zfsvfs); 1579 } 1580 /* 1581 * make sure we don't have dangling sb->s_fs_info which 1582 * zfs_preumount will use. 1583 */ 1584 sb->s_fs_info = NULL; 1585 } 1586 1587 return (error); 1588 } 1589 1590 /* 1591 * Called when an unmount is requested and certain sanity checks have 1592 * already passed. At this point no dentries or inodes have been reclaimed 1593 * from their respective caches. We drop the extra reference on the .zfs 1594 * control directory to allow everything to be reclaimed. All snapshots 1595 * must already have been unmounted to reach this point. 1596 */ 1597 void 1598 zfs_preumount(struct super_block *sb) 1599 { 1600 zfsvfs_t *zfsvfs = sb->s_fs_info; 1601 1602 /* zfsvfs is NULL when zfs_domount fails during mount */ 1603 if (zfsvfs) { 1604 zfs_unlinked_drain_stop_wait(zfsvfs); 1605 zfsctl_destroy(sb->s_fs_info); 1606 /* 1607 * Wait for zrele_async before entering evict_inodes in 1608 * generic_shutdown_super. The reason we must finish before 1609 * evict_inodes is when lazytime is on, or when zfs_purgedir 1610 * calls zfs_zget, zrele would bump i_count from 0 to 1. This 1611 * would race with the i_count check in evict_inodes. This means 1612 * it could destroy the inode while we are still using it. 1613 * 1614 * We wait for two passes. xattr directories in the first pass 1615 * may add xattr entries in zfs_purgedir, so in the second pass 1616 * we wait for them. We don't use taskq_wait here because it is 1617 * a pool wide taskq. Other mounted filesystems can constantly 1618 * do zrele_async and there's no guarantee when taskq will be 1619 * empty. 1620 */ 1621 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1622 dmu_objset_pool(zfsvfs->z_os)), 0); 1623 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1624 dmu_objset_pool(zfsvfs->z_os)), 0); 1625 } 1626 } 1627 1628 /* 1629 * Called once all other unmount released tear down has occurred. 1630 * It is our responsibility to release any remaining infrastructure. 1631 */ 1632 int 1633 zfs_umount(struct super_block *sb) 1634 { 1635 zfsvfs_t *zfsvfs = sb->s_fs_info; 1636 objset_t *os; 1637 1638 if (zfsvfs->z_arc_prune != NULL) 1639 arc_remove_prune_callback(zfsvfs->z_arc_prune); 1640 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1641 os = zfsvfs->z_os; 1642 zpl_bdi_destroy(sb); 1643 1644 /* 1645 * z_os will be NULL if there was an error in 1646 * attempting to reopen zfsvfs. 1647 */ 1648 if (os != NULL) { 1649 /* 1650 * Unset the objset user_ptr. 1651 */ 1652 mutex_enter(&os->os_user_ptr_lock); 1653 dmu_objset_set_user(os, NULL); 1654 mutex_exit(&os->os_user_ptr_lock); 1655 1656 /* 1657 * Finally release the objset 1658 */ 1659 dmu_objset_disown(os, B_TRUE, zfsvfs); 1660 } 1661 1662 zfsvfs_free(zfsvfs); 1663 return (0); 1664 } 1665 1666 int 1667 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm) 1668 { 1669 zfsvfs_t *zfsvfs = sb->s_fs_info; 1670 vfs_t *vfsp; 1671 boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os); 1672 int error; 1673 1674 if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) && 1675 !(*flags & SB_RDONLY)) { 1676 *flags |= SB_RDONLY; 1677 return (EROFS); 1678 } 1679 1680 error = zfsvfs_parse_options(zm->mnt_data, &vfsp); 1681 if (error) 1682 return (error); 1683 1684 if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY)) 1685 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1686 1687 zfs_unregister_callbacks(zfsvfs); 1688 zfsvfs_vfs_free(zfsvfs->z_vfs); 1689 1690 vfsp->vfs_data = zfsvfs; 1691 zfsvfs->z_vfs = vfsp; 1692 if (!issnap) 1693 (void) zfs_register_callbacks(vfsp); 1694 1695 return (error); 1696 } 1697 1698 int 1699 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp) 1700 { 1701 zfsvfs_t *zfsvfs = sb->s_fs_info; 1702 znode_t *zp; 1703 uint64_t object = 0; 1704 uint64_t fid_gen = 0; 1705 uint64_t gen_mask; 1706 uint64_t zp_gen; 1707 int i, err; 1708 1709 *ipp = NULL; 1710 1711 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1712 zfid_short_t *zfid = (zfid_short_t *)fidp; 1713 1714 for (i = 0; i < sizeof (zfid->zf_object); i++) 1715 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1716 1717 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1718 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1719 } else { 1720 return (SET_ERROR(EINVAL)); 1721 } 1722 1723 /* LONG_FID_LEN means snapdirs */ 1724 if (fidp->fid_len == LONG_FID_LEN) { 1725 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1726 uint64_t objsetid = 0; 1727 uint64_t setgen = 0; 1728 1729 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1730 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1731 1732 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1733 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1734 1735 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) { 1736 dprintf("snapdir fid: objsetid (%llu) != " 1737 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n", 1738 objsetid, ZFSCTL_INO_SNAPDIRS, object); 1739 1740 return (SET_ERROR(EINVAL)); 1741 } 1742 1743 if (fid_gen > 1 || setgen != 0) { 1744 dprintf("snapdir fid: fid_gen (%llu) and setgen " 1745 "(%llu)\n", fid_gen, setgen); 1746 return (SET_ERROR(EINVAL)); 1747 } 1748 1749 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp)); 1750 } 1751 1752 if ((err = zfs_enter(zfsvfs, FTAG)) != 0) 1753 return (err); 1754 /* A zero fid_gen means we are in the .zfs control directories */ 1755 if (fid_gen == 0 && 1756 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1757 *ipp = zfsvfs->z_ctldir; 1758 ASSERT(*ipp != NULL); 1759 if (object == ZFSCTL_INO_SNAPDIR) { 1760 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp, 1761 0, kcred, NULL, NULL) == 0); 1762 } else { 1763 /* 1764 * Must have an existing ref, so igrab() 1765 * cannot return NULL 1766 */ 1767 VERIFY3P(igrab(*ipp), !=, NULL); 1768 } 1769 zfs_exit(zfsvfs, FTAG); 1770 return (0); 1771 } 1772 1773 gen_mask = -1ULL >> (64 - 8 * i); 1774 1775 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask); 1776 if ((err = zfs_zget(zfsvfs, object, &zp))) { 1777 zfs_exit(zfsvfs, FTAG); 1778 return (err); 1779 } 1780 1781 /* Don't export xattr stuff */ 1782 if (zp->z_pflags & ZFS_XATTR) { 1783 zrele(zp); 1784 zfs_exit(zfsvfs, FTAG); 1785 return (SET_ERROR(ENOENT)); 1786 } 1787 1788 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1789 sizeof (uint64_t)); 1790 zp_gen = zp_gen & gen_mask; 1791 if (zp_gen == 0) 1792 zp_gen = 1; 1793 if ((fid_gen == 0) && (zfsvfs->z_root == object)) 1794 fid_gen = zp_gen; 1795 if (zp->z_unlinked || zp_gen != fid_gen) { 1796 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen, 1797 fid_gen); 1798 zrele(zp); 1799 zfs_exit(zfsvfs, FTAG); 1800 return (SET_ERROR(ENOENT)); 1801 } 1802 1803 *ipp = ZTOI(zp); 1804 if (*ipp) 1805 zfs_znode_update_vfs(ITOZ(*ipp)); 1806 1807 zfs_exit(zfsvfs, FTAG); 1808 return (0); 1809 } 1810 1811 /* 1812 * Block out VFS ops and close zfsvfs_t 1813 * 1814 * Note, if successful, then we return with the 'z_teardown_lock' and 1815 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 1816 * dataset and objset intact so that they can be atomically handed off during 1817 * a subsequent rollback or recv operation and the resume thereafter. 1818 */ 1819 int 1820 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1821 { 1822 int error; 1823 1824 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1825 return (error); 1826 1827 return (0); 1828 } 1829 1830 /* 1831 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 1832 * is an invariant across any of the operations that can be performed while the 1833 * filesystem was suspended. Whether it succeeded or failed, the preconditions 1834 * are the same: the relevant objset and associated dataset are owned by 1835 * zfsvfs, held, and long held on entry. 1836 */ 1837 int 1838 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 1839 { 1840 int err, err2; 1841 znode_t *zp; 1842 1843 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); 1844 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1845 1846 /* 1847 * We already own this, so just update the objset_t, as the one we 1848 * had before may have been evicted. 1849 */ 1850 objset_t *os; 1851 VERIFY3P(ds->ds_owner, ==, zfsvfs); 1852 VERIFY(dsl_dataset_long_held(ds)); 1853 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); 1854 dsl_pool_config_enter(dp, FTAG); 1855 VERIFY0(dmu_objset_from_ds(ds, &os)); 1856 dsl_pool_config_exit(dp, FTAG); 1857 1858 err = zfsvfs_init(zfsvfs, os); 1859 if (err != 0) 1860 goto bail; 1861 1862 ds->ds_dir->dd_activity_cancelled = B_FALSE; 1863 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1864 1865 zfs_set_fuid_feature(zfsvfs); 1866 zfsvfs->z_rollback_time = jiffies; 1867 1868 /* 1869 * Attempt to re-establish all the active inodes with their 1870 * dbufs. If a zfs_rezget() fails, then we unhash the inode 1871 * and mark it stale. This prevents a collision if a new 1872 * inode/object is created which must use the same inode 1873 * number. The stale inode will be be released when the 1874 * VFS prunes the dentry holding the remaining references 1875 * on the stale inode. 1876 */ 1877 mutex_enter(&zfsvfs->z_znodes_lock); 1878 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1879 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1880 err2 = zfs_rezget(zp); 1881 if (err2) { 1882 remove_inode_hash(ZTOI(zp)); 1883 zp->z_is_stale = B_TRUE; 1884 } 1885 1886 /* see comment in zfs_suspend_fs() */ 1887 if (zp->z_suspended) { 1888 zfs_zrele_async(zp); 1889 zp->z_suspended = B_FALSE; 1890 } 1891 } 1892 mutex_exit(&zfsvfs->z_znodes_lock); 1893 1894 if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) { 1895 /* 1896 * zfs_suspend_fs() could have interrupted freeing 1897 * of dnodes. We need to restart this freeing so 1898 * that we don't "leak" the space. 1899 */ 1900 zfs_unlinked_drain(zfsvfs); 1901 } 1902 1903 /* 1904 * Most of the time zfs_suspend_fs is used for changing the contents 1905 * of the underlying dataset. ZFS rollback and receive operations 1906 * might create files for which negative dentries are present in 1907 * the cache. Since walking the dcache would require a lot of GPL-only 1908 * code duplication, it's much easier on these rather rare occasions 1909 * just to flush the whole dcache for the given dataset/filesystem. 1910 */ 1911 shrink_dcache_sb(zfsvfs->z_sb); 1912 1913 bail: 1914 if (err != 0) 1915 zfsvfs->z_unmounted = B_TRUE; 1916 1917 /* release the VFS ops */ 1918 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1919 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1920 1921 if (err != 0) { 1922 /* 1923 * Since we couldn't setup the sa framework, try to force 1924 * unmount this file system. 1925 */ 1926 if (zfsvfs->z_os) 1927 (void) zfs_umount(zfsvfs->z_sb); 1928 } 1929 return (err); 1930 } 1931 1932 /* 1933 * Release VOPs and unmount a suspended filesystem. 1934 */ 1935 int 1936 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 1937 { 1938 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs)); 1939 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1940 1941 /* 1942 * We already own this, so just hold and rele it to update the 1943 * objset_t, as the one we had before may have been evicted. 1944 */ 1945 objset_t *os; 1946 VERIFY3P(ds->ds_owner, ==, zfsvfs); 1947 VERIFY(dsl_dataset_long_held(ds)); 1948 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); 1949 dsl_pool_config_enter(dp, FTAG); 1950 VERIFY0(dmu_objset_from_ds(ds, &os)); 1951 dsl_pool_config_exit(dp, FTAG); 1952 zfsvfs->z_os = os; 1953 1954 /* release the VOPs */ 1955 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1956 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG); 1957 1958 /* 1959 * Try to force unmount this file system. 1960 */ 1961 (void) zfs_umount(zfsvfs->z_sb); 1962 zfsvfs->z_unmounted = B_TRUE; 1963 return (0); 1964 } 1965 1966 /* 1967 * Automounted snapshots rely on periodic revalidation 1968 * to defer snapshots from being automatically unmounted. 1969 */ 1970 1971 inline void 1972 zfs_exit_fs(zfsvfs_t *zfsvfs) 1973 { 1974 if (!zfsvfs->z_issnap) 1975 return; 1976 1977 if (time_after(jiffies, zfsvfs->z_snap_defer_time + 1978 MAX(zfs_expire_snapshot * HZ / 2, HZ))) { 1979 zfsvfs->z_snap_defer_time = jiffies; 1980 zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa, 1981 dmu_objset_id(zfsvfs->z_os), 1982 zfs_expire_snapshot); 1983 } 1984 } 1985 1986 int 1987 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 1988 { 1989 int error; 1990 objset_t *os = zfsvfs->z_os; 1991 dmu_tx_t *tx; 1992 1993 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1994 return (SET_ERROR(EINVAL)); 1995 1996 if (newvers < zfsvfs->z_version) 1997 return (SET_ERROR(EINVAL)); 1998 1999 if (zfs_spa_version_map(newvers) > 2000 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2001 return (SET_ERROR(ENOTSUP)); 2002 2003 tx = dmu_tx_create(os); 2004 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2005 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2006 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2007 ZFS_SA_ATTRS); 2008 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2009 } 2010 error = dmu_tx_assign(tx, TXG_WAIT); 2011 if (error) { 2012 dmu_tx_abort(tx); 2013 return (error); 2014 } 2015 2016 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2017 8, 1, &newvers, tx); 2018 2019 if (error) { 2020 dmu_tx_commit(tx); 2021 return (error); 2022 } 2023 2024 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2025 uint64_t sa_obj; 2026 2027 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2028 SPA_VERSION_SA); 2029 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2030 DMU_OT_NONE, 0, tx); 2031 2032 error = zap_add(os, MASTER_NODE_OBJ, 2033 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2034 ASSERT0(error); 2035 2036 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2037 sa_register_update_callback(os, zfs_sa_upgrade); 2038 } 2039 2040 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2041 "from %llu to %llu", zfsvfs->z_version, newvers); 2042 2043 dmu_tx_commit(tx); 2044 2045 zfsvfs->z_version = newvers; 2046 os->os_version = newvers; 2047 2048 zfs_set_fuid_feature(zfsvfs); 2049 2050 return (0); 2051 } 2052 2053 /* 2054 * Read a property stored within the master node. 2055 */ 2056 int 2057 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2058 { 2059 uint64_t *cached_copy = NULL; 2060 2061 /* 2062 * Figure out where in the objset_t the cached copy would live, if it 2063 * is available for the requested property. 2064 */ 2065 if (os != NULL) { 2066 switch (prop) { 2067 case ZFS_PROP_VERSION: 2068 cached_copy = &os->os_version; 2069 break; 2070 case ZFS_PROP_NORMALIZE: 2071 cached_copy = &os->os_normalization; 2072 break; 2073 case ZFS_PROP_UTF8ONLY: 2074 cached_copy = &os->os_utf8only; 2075 break; 2076 case ZFS_PROP_CASE: 2077 cached_copy = &os->os_casesensitivity; 2078 break; 2079 default: 2080 break; 2081 } 2082 } 2083 if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) { 2084 *value = *cached_copy; 2085 return (0); 2086 } 2087 2088 /* 2089 * If the property wasn't cached, look up the file system's value for 2090 * the property. For the version property, we look up a slightly 2091 * different string. 2092 */ 2093 const char *pname; 2094 int error = ENOENT; 2095 if (prop == ZFS_PROP_VERSION) 2096 pname = ZPL_VERSION_STR; 2097 else 2098 pname = zfs_prop_to_name(prop); 2099 2100 if (os != NULL) { 2101 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS); 2102 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2103 } 2104 2105 if (error == ENOENT) { 2106 /* No value set, use the default value */ 2107 switch (prop) { 2108 case ZFS_PROP_VERSION: 2109 *value = ZPL_VERSION; 2110 break; 2111 case ZFS_PROP_NORMALIZE: 2112 case ZFS_PROP_UTF8ONLY: 2113 *value = 0; 2114 break; 2115 case ZFS_PROP_CASE: 2116 *value = ZFS_CASE_SENSITIVE; 2117 break; 2118 case ZFS_PROP_ACLTYPE: 2119 *value = ZFS_ACLTYPE_OFF; 2120 break; 2121 default: 2122 return (error); 2123 } 2124 error = 0; 2125 } 2126 2127 /* 2128 * If one of the methods for getting the property value above worked, 2129 * copy it into the objset_t's cache. 2130 */ 2131 if (error == 0 && cached_copy != NULL) { 2132 *cached_copy = *value; 2133 } 2134 2135 return (error); 2136 } 2137 2138 /* 2139 * Return true if the corresponding vfs's unmounted flag is set. 2140 * Otherwise return false. 2141 * If this function returns true we know VFS unmount has been initiated. 2142 */ 2143 boolean_t 2144 zfs_get_vfs_flag_unmounted(objset_t *os) 2145 { 2146 zfsvfs_t *zfvp; 2147 boolean_t unmounted = B_FALSE; 2148 2149 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS); 2150 2151 mutex_enter(&os->os_user_ptr_lock); 2152 zfvp = dmu_objset_get_user(os); 2153 if (zfvp != NULL && zfvp->z_unmounted) 2154 unmounted = B_TRUE; 2155 mutex_exit(&os->os_user_ptr_lock); 2156 2157 return (unmounted); 2158 } 2159 2160 void 2161 zfsvfs_update_fromname(const char *oldname, const char *newname) 2162 { 2163 /* 2164 * We don't need to do anything here, the devname is always current by 2165 * virtue of zfsvfs->z_sb->s_op->show_devname. 2166 */ 2167 (void) oldname, (void) newname; 2168 } 2169 2170 void 2171 zfs_init(void) 2172 { 2173 zfsctl_init(); 2174 zfs_znode_init(); 2175 dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info); 2176 register_filesystem(&zpl_fs_type); 2177 } 2178 2179 void 2180 zfs_fini(void) 2181 { 2182 /* 2183 * we don't use outstanding because zpl_posix_acl_free might add more. 2184 */ 2185 taskq_wait(system_delay_taskq); 2186 taskq_wait(system_taskq); 2187 unregister_filesystem(&zpl_fs_type); 2188 zfs_znode_fini(); 2189 zfsctl_fini(); 2190 } 2191 2192 #if defined(_KERNEL) 2193 EXPORT_SYMBOL(zfs_suspend_fs); 2194 EXPORT_SYMBOL(zfs_resume_fs); 2195 EXPORT_SYMBOL(zfs_set_version); 2196 EXPORT_SYMBOL(zfsvfs_create); 2197 EXPORT_SYMBOL(zfsvfs_free); 2198 EXPORT_SYMBOL(zfs_is_readonly); 2199 EXPORT_SYMBOL(zfs_domount); 2200 EXPORT_SYMBOL(zfs_preumount); 2201 EXPORT_SYMBOL(zfs_umount); 2202 EXPORT_SYMBOL(zfs_remount); 2203 EXPORT_SYMBOL(zfs_statvfs); 2204 EXPORT_SYMBOL(zfs_vget); 2205 EXPORT_SYMBOL(zfs_prune); 2206 #endif 2207