1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/sysmacros.h> 31 #include <sys/kmem.h> 32 #include <sys/pathname.h> 33 #include <sys/vnode.h> 34 #include <sys/vfs.h> 35 #include <sys/mntent.h> 36 #include <sys/cmn_err.h> 37 #include <sys/zfs_znode.h> 38 #include <sys/zfs_vnops.h> 39 #include <sys/zfs_dir.h> 40 #include <sys/zil.h> 41 #include <sys/fs/zfs.h> 42 #include <sys/dmu.h> 43 #include <sys/dsl_prop.h> 44 #include <sys/dsl_dataset.h> 45 #include <sys/dsl_deleg.h> 46 #include <sys/spa.h> 47 #include <sys/zap.h> 48 #include <sys/sa.h> 49 #include <sys/sa_impl.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_ctldir.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/zfs_quota.h> 56 #include <sys/sunddi.h> 57 #include <sys/dmu_objset.h> 58 #include <sys/dsl_dir.h> 59 #include <sys/spa_boot.h> 60 #include <sys/objlist.h> 61 #include <sys/zpl.h> 62 #include <linux/vfs_compat.h> 63 #include "zfs_comutil.h" 64 65 enum { 66 TOKEN_RO, 67 TOKEN_RW, 68 TOKEN_SETUID, 69 TOKEN_NOSETUID, 70 TOKEN_EXEC, 71 TOKEN_NOEXEC, 72 TOKEN_DEVICES, 73 TOKEN_NODEVICES, 74 TOKEN_DIRXATTR, 75 TOKEN_SAXATTR, 76 TOKEN_XATTR, 77 TOKEN_NOXATTR, 78 TOKEN_ATIME, 79 TOKEN_NOATIME, 80 TOKEN_RELATIME, 81 TOKEN_NORELATIME, 82 TOKEN_NBMAND, 83 TOKEN_NONBMAND, 84 TOKEN_MNTPOINT, 85 TOKEN_LAST, 86 }; 87 88 static const match_table_t zpl_tokens = { 89 { TOKEN_RO, MNTOPT_RO }, 90 { TOKEN_RW, MNTOPT_RW }, 91 { TOKEN_SETUID, MNTOPT_SETUID }, 92 { TOKEN_NOSETUID, MNTOPT_NOSETUID }, 93 { TOKEN_EXEC, MNTOPT_EXEC }, 94 { TOKEN_NOEXEC, MNTOPT_NOEXEC }, 95 { TOKEN_DEVICES, MNTOPT_DEVICES }, 96 { TOKEN_NODEVICES, MNTOPT_NODEVICES }, 97 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR }, 98 { TOKEN_SAXATTR, MNTOPT_SAXATTR }, 99 { TOKEN_XATTR, MNTOPT_XATTR }, 100 { TOKEN_NOXATTR, MNTOPT_NOXATTR }, 101 { TOKEN_ATIME, MNTOPT_ATIME }, 102 { TOKEN_NOATIME, MNTOPT_NOATIME }, 103 { TOKEN_RELATIME, MNTOPT_RELATIME }, 104 { TOKEN_NORELATIME, MNTOPT_NORELATIME }, 105 { TOKEN_NBMAND, MNTOPT_NBMAND }, 106 { TOKEN_NONBMAND, MNTOPT_NONBMAND }, 107 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" }, 108 { TOKEN_LAST, NULL }, 109 }; 110 111 static void 112 zfsvfs_vfs_free(vfs_t *vfsp) 113 { 114 if (vfsp != NULL) { 115 if (vfsp->vfs_mntpoint != NULL) 116 kmem_strfree(vfsp->vfs_mntpoint); 117 118 kmem_free(vfsp, sizeof (vfs_t)); 119 } 120 } 121 122 static int 123 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp) 124 { 125 switch (token) { 126 case TOKEN_RO: 127 vfsp->vfs_readonly = B_TRUE; 128 vfsp->vfs_do_readonly = B_TRUE; 129 break; 130 case TOKEN_RW: 131 vfsp->vfs_readonly = B_FALSE; 132 vfsp->vfs_do_readonly = B_TRUE; 133 break; 134 case TOKEN_SETUID: 135 vfsp->vfs_setuid = B_TRUE; 136 vfsp->vfs_do_setuid = B_TRUE; 137 break; 138 case TOKEN_NOSETUID: 139 vfsp->vfs_setuid = B_FALSE; 140 vfsp->vfs_do_setuid = B_TRUE; 141 break; 142 case TOKEN_EXEC: 143 vfsp->vfs_exec = B_TRUE; 144 vfsp->vfs_do_exec = B_TRUE; 145 break; 146 case TOKEN_NOEXEC: 147 vfsp->vfs_exec = B_FALSE; 148 vfsp->vfs_do_exec = B_TRUE; 149 break; 150 case TOKEN_DEVICES: 151 vfsp->vfs_devices = B_TRUE; 152 vfsp->vfs_do_devices = B_TRUE; 153 break; 154 case TOKEN_NODEVICES: 155 vfsp->vfs_devices = B_FALSE; 156 vfsp->vfs_do_devices = B_TRUE; 157 break; 158 case TOKEN_DIRXATTR: 159 vfsp->vfs_xattr = ZFS_XATTR_DIR; 160 vfsp->vfs_do_xattr = B_TRUE; 161 break; 162 case TOKEN_SAXATTR: 163 vfsp->vfs_xattr = ZFS_XATTR_SA; 164 vfsp->vfs_do_xattr = B_TRUE; 165 break; 166 case TOKEN_XATTR: 167 vfsp->vfs_xattr = ZFS_XATTR_DIR; 168 vfsp->vfs_do_xattr = B_TRUE; 169 break; 170 case TOKEN_NOXATTR: 171 vfsp->vfs_xattr = ZFS_XATTR_OFF; 172 vfsp->vfs_do_xattr = B_TRUE; 173 break; 174 case TOKEN_ATIME: 175 vfsp->vfs_atime = B_TRUE; 176 vfsp->vfs_do_atime = B_TRUE; 177 break; 178 case TOKEN_NOATIME: 179 vfsp->vfs_atime = B_FALSE; 180 vfsp->vfs_do_atime = B_TRUE; 181 break; 182 case TOKEN_RELATIME: 183 vfsp->vfs_relatime = B_TRUE; 184 vfsp->vfs_do_relatime = B_TRUE; 185 break; 186 case TOKEN_NORELATIME: 187 vfsp->vfs_relatime = B_FALSE; 188 vfsp->vfs_do_relatime = B_TRUE; 189 break; 190 case TOKEN_NBMAND: 191 vfsp->vfs_nbmand = B_TRUE; 192 vfsp->vfs_do_nbmand = B_TRUE; 193 break; 194 case TOKEN_NONBMAND: 195 vfsp->vfs_nbmand = B_FALSE; 196 vfsp->vfs_do_nbmand = B_TRUE; 197 break; 198 case TOKEN_MNTPOINT: 199 vfsp->vfs_mntpoint = match_strdup(&args[0]); 200 if (vfsp->vfs_mntpoint == NULL) 201 return (SET_ERROR(ENOMEM)); 202 203 break; 204 default: 205 break; 206 } 207 208 return (0); 209 } 210 211 /* 212 * Parse the raw mntopts and return a vfs_t describing the options. 213 */ 214 static int 215 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp) 216 { 217 vfs_t *tmp_vfsp; 218 int error; 219 220 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP); 221 222 if (mntopts != NULL) { 223 substring_t args[MAX_OPT_ARGS]; 224 char *tmp_mntopts, *p, *t; 225 int token; 226 227 tmp_mntopts = t = kmem_strdup(mntopts); 228 if (tmp_mntopts == NULL) 229 return (SET_ERROR(ENOMEM)); 230 231 while ((p = strsep(&t, ",")) != NULL) { 232 if (!*p) 233 continue; 234 235 args[0].to = args[0].from = NULL; 236 token = match_token(p, zpl_tokens, args); 237 error = zfsvfs_parse_option(p, token, args, tmp_vfsp); 238 if (error) { 239 kmem_strfree(tmp_mntopts); 240 zfsvfs_vfs_free(tmp_vfsp); 241 return (error); 242 } 243 } 244 245 kmem_strfree(tmp_mntopts); 246 } 247 248 *vfsp = tmp_vfsp; 249 250 return (0); 251 } 252 253 boolean_t 254 zfs_is_readonly(zfsvfs_t *zfsvfs) 255 { 256 return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY)); 257 } 258 259 /*ARGSUSED*/ 260 int 261 zfs_sync(struct super_block *sb, int wait, cred_t *cr) 262 { 263 zfsvfs_t *zfsvfs = sb->s_fs_info; 264 265 /* 266 * Semantically, the only requirement is that the sync be initiated. 267 * The DMU syncs out txgs frequently, so there's nothing to do. 268 */ 269 if (!wait) 270 return (0); 271 272 if (zfsvfs != NULL) { 273 /* 274 * Sync a specific filesystem. 275 */ 276 dsl_pool_t *dp; 277 278 ZFS_ENTER(zfsvfs); 279 dp = dmu_objset_pool(zfsvfs->z_os); 280 281 /* 282 * If the system is shutting down, then skip any 283 * filesystems which may exist on a suspended pool. 284 */ 285 if (spa_suspended(dp->dp_spa)) { 286 ZFS_EXIT(zfsvfs); 287 return (0); 288 } 289 290 if (zfsvfs->z_log != NULL) 291 zil_commit(zfsvfs->z_log, 0); 292 293 ZFS_EXIT(zfsvfs); 294 } else { 295 /* 296 * Sync all ZFS filesystems. This is what happens when you 297 * run sync(1M). Unlike other filesystems, ZFS honors the 298 * request by waiting for all pools to commit all dirty data. 299 */ 300 spa_sync_allpools(); 301 } 302 303 return (0); 304 } 305 306 static void 307 atime_changed_cb(void *arg, uint64_t newval) 308 { 309 zfsvfs_t *zfsvfs = arg; 310 struct super_block *sb = zfsvfs->z_sb; 311 312 if (sb == NULL) 313 return; 314 /* 315 * Update SB_NOATIME bit in VFS super block. Since atime update is 316 * determined by atime_needs_update(), atime_needs_update() needs to 317 * return false if atime is turned off, and not unconditionally return 318 * false if atime is turned on. 319 */ 320 if (newval) 321 sb->s_flags &= ~SB_NOATIME; 322 else 323 sb->s_flags |= SB_NOATIME; 324 } 325 326 static void 327 relatime_changed_cb(void *arg, uint64_t newval) 328 { 329 ((zfsvfs_t *)arg)->z_relatime = newval; 330 } 331 332 static void 333 xattr_changed_cb(void *arg, uint64_t newval) 334 { 335 zfsvfs_t *zfsvfs = arg; 336 337 if (newval == ZFS_XATTR_OFF) { 338 zfsvfs->z_flags &= ~ZSB_XATTR; 339 } else { 340 zfsvfs->z_flags |= ZSB_XATTR; 341 342 if (newval == ZFS_XATTR_SA) 343 zfsvfs->z_xattr_sa = B_TRUE; 344 else 345 zfsvfs->z_xattr_sa = B_FALSE; 346 } 347 } 348 349 static void 350 acltype_changed_cb(void *arg, uint64_t newval) 351 { 352 zfsvfs_t *zfsvfs = arg; 353 354 switch (newval) { 355 case ZFS_ACLTYPE_OFF: 356 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; 357 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; 358 break; 359 case ZFS_ACLTYPE_POSIXACL: 360 #ifdef CONFIG_FS_POSIX_ACL 361 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIXACL; 362 zfsvfs->z_sb->s_flags |= SB_POSIXACL; 363 #else 364 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF; 365 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL; 366 #endif /* CONFIG_FS_POSIX_ACL */ 367 break; 368 default: 369 break; 370 } 371 } 372 373 static void 374 blksz_changed_cb(void *arg, uint64_t newval) 375 { 376 zfsvfs_t *zfsvfs = arg; 377 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os))); 378 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE); 379 ASSERT(ISP2(newval)); 380 381 zfsvfs->z_max_blksz = newval; 382 } 383 384 static void 385 readonly_changed_cb(void *arg, uint64_t newval) 386 { 387 zfsvfs_t *zfsvfs = arg; 388 struct super_block *sb = zfsvfs->z_sb; 389 390 if (sb == NULL) 391 return; 392 393 if (newval) 394 sb->s_flags |= SB_RDONLY; 395 else 396 sb->s_flags &= ~SB_RDONLY; 397 } 398 399 static void 400 devices_changed_cb(void *arg, uint64_t newval) 401 { 402 } 403 404 static void 405 setuid_changed_cb(void *arg, uint64_t newval) 406 { 407 } 408 409 static void 410 exec_changed_cb(void *arg, uint64_t newval) 411 { 412 } 413 414 static void 415 nbmand_changed_cb(void *arg, uint64_t newval) 416 { 417 zfsvfs_t *zfsvfs = arg; 418 struct super_block *sb = zfsvfs->z_sb; 419 420 if (sb == NULL) 421 return; 422 423 if (newval == TRUE) 424 sb->s_flags |= SB_MANDLOCK; 425 else 426 sb->s_flags &= ~SB_MANDLOCK; 427 } 428 429 static void 430 snapdir_changed_cb(void *arg, uint64_t newval) 431 { 432 ((zfsvfs_t *)arg)->z_show_ctldir = newval; 433 } 434 435 static void 436 vscan_changed_cb(void *arg, uint64_t newval) 437 { 438 ((zfsvfs_t *)arg)->z_vscan = newval; 439 } 440 441 static void 442 acl_mode_changed_cb(void *arg, uint64_t newval) 443 { 444 zfsvfs_t *zfsvfs = arg; 445 446 zfsvfs->z_acl_mode = newval; 447 } 448 449 static void 450 acl_inherit_changed_cb(void *arg, uint64_t newval) 451 { 452 ((zfsvfs_t *)arg)->z_acl_inherit = newval; 453 } 454 455 static int 456 zfs_register_callbacks(vfs_t *vfsp) 457 { 458 struct dsl_dataset *ds = NULL; 459 objset_t *os = NULL; 460 zfsvfs_t *zfsvfs = NULL; 461 int error = 0; 462 463 ASSERT(vfsp); 464 zfsvfs = vfsp->vfs_data; 465 ASSERT(zfsvfs); 466 os = zfsvfs->z_os; 467 468 /* 469 * The act of registering our callbacks will destroy any mount 470 * options we may have. In order to enable temporary overrides 471 * of mount options, we stash away the current values and 472 * restore them after we register the callbacks. 473 */ 474 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) { 475 vfsp->vfs_do_readonly = B_TRUE; 476 vfsp->vfs_readonly = B_TRUE; 477 } 478 479 /* 480 * Register property callbacks. 481 * 482 * It would probably be fine to just check for i/o error from 483 * the first prop_register(), but I guess I like to go 484 * overboard... 485 */ 486 ds = dmu_objset_ds(os); 487 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 488 error = dsl_prop_register(ds, 489 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs); 490 error = error ? error : dsl_prop_register(ds, 491 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs); 492 error = error ? error : dsl_prop_register(ds, 493 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs); 494 error = error ? error : dsl_prop_register(ds, 495 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs); 496 error = error ? error : dsl_prop_register(ds, 497 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs); 498 error = error ? error : dsl_prop_register(ds, 499 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs); 504 error = error ? error : dsl_prop_register(ds, 505 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, 512 zfsvfs); 513 error = error ? error : dsl_prop_register(ds, 514 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs); 515 error = error ? error : dsl_prop_register(ds, 516 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs); 517 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 518 if (error) 519 goto unregister; 520 521 /* 522 * Invoke our callbacks to restore temporary mount options. 523 */ 524 if (vfsp->vfs_do_readonly) 525 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly); 526 if (vfsp->vfs_do_setuid) 527 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid); 528 if (vfsp->vfs_do_exec) 529 exec_changed_cb(zfsvfs, vfsp->vfs_exec); 530 if (vfsp->vfs_do_devices) 531 devices_changed_cb(zfsvfs, vfsp->vfs_devices); 532 if (vfsp->vfs_do_xattr) 533 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr); 534 if (vfsp->vfs_do_atime) 535 atime_changed_cb(zfsvfs, vfsp->vfs_atime); 536 if (vfsp->vfs_do_relatime) 537 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime); 538 if (vfsp->vfs_do_nbmand) 539 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand); 540 541 return (0); 542 543 unregister: 544 dsl_prop_unregister_all(ds, zfsvfs); 545 return (error); 546 } 547 548 /* 549 * Takes a dataset, a property, a value and that value's setpoint as 550 * found in the ZAP. Checks if the property has been changed in the vfs. 551 * If so, val and setpoint will be overwritten with updated content. 552 * Otherwise, they are left unchanged. 553 */ 554 int 555 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val, 556 char *setpoint) 557 { 558 int error; 559 zfsvfs_t *zfvp; 560 vfs_t *vfsp; 561 objset_t *os; 562 uint64_t tmp = *val; 563 564 error = dmu_objset_from_ds(ds, &os); 565 if (error != 0) 566 return (error); 567 568 if (dmu_objset_type(os) != DMU_OST_ZFS) 569 return (EINVAL); 570 571 mutex_enter(&os->os_user_ptr_lock); 572 zfvp = dmu_objset_get_user(os); 573 mutex_exit(&os->os_user_ptr_lock); 574 if (zfvp == NULL) 575 return (ESRCH); 576 577 vfsp = zfvp->z_vfs; 578 579 switch (zfs_prop) { 580 case ZFS_PROP_ATIME: 581 if (vfsp->vfs_do_atime) 582 tmp = vfsp->vfs_atime; 583 break; 584 case ZFS_PROP_RELATIME: 585 if (vfsp->vfs_do_relatime) 586 tmp = vfsp->vfs_relatime; 587 break; 588 case ZFS_PROP_DEVICES: 589 if (vfsp->vfs_do_devices) 590 tmp = vfsp->vfs_devices; 591 break; 592 case ZFS_PROP_EXEC: 593 if (vfsp->vfs_do_exec) 594 tmp = vfsp->vfs_exec; 595 break; 596 case ZFS_PROP_SETUID: 597 if (vfsp->vfs_do_setuid) 598 tmp = vfsp->vfs_setuid; 599 break; 600 case ZFS_PROP_READONLY: 601 if (vfsp->vfs_do_readonly) 602 tmp = vfsp->vfs_readonly; 603 break; 604 case ZFS_PROP_XATTR: 605 if (vfsp->vfs_do_xattr) 606 tmp = vfsp->vfs_xattr; 607 break; 608 case ZFS_PROP_NBMAND: 609 if (vfsp->vfs_do_nbmand) 610 tmp = vfsp->vfs_nbmand; 611 break; 612 default: 613 return (ENOENT); 614 } 615 616 if (tmp != *val) { 617 (void) strcpy(setpoint, "temporary"); 618 *val = tmp; 619 } 620 return (0); 621 } 622 623 /* 624 * Associate this zfsvfs with the given objset, which must be owned. 625 * This will cache a bunch of on-disk state from the objset in the 626 * zfsvfs. 627 */ 628 static int 629 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os) 630 { 631 int error; 632 uint64_t val; 633 634 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE; 635 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 636 zfsvfs->z_os = os; 637 638 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 639 if (error != 0) 640 return (error); 641 if (zfsvfs->z_version > 642 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 643 (void) printk("Can't mount a version %lld file system " 644 "on a version %lld pool\n. Pool must be upgraded to mount " 645 "this file system.\n", (u_longlong_t)zfsvfs->z_version, 646 (u_longlong_t)spa_version(dmu_objset_spa(os))); 647 return (SET_ERROR(ENOTSUP)); 648 } 649 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val); 650 if (error != 0) 651 return (error); 652 zfsvfs->z_norm = (int)val; 653 654 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val); 655 if (error != 0) 656 return (error); 657 zfsvfs->z_utf8 = (val != 0); 658 659 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val); 660 if (error != 0) 661 return (error); 662 zfsvfs->z_case = (uint_t)val; 663 664 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0) 665 return (error); 666 zfsvfs->z_acl_type = (uint_t)val; 667 668 /* 669 * Fold case on file systems that are always or sometimes case 670 * insensitive. 671 */ 672 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 673 zfsvfs->z_case == ZFS_CASE_MIXED) 674 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 675 676 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 677 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 678 679 uint64_t sa_obj = 0; 680 if (zfsvfs->z_use_sa) { 681 /* should either have both of these objects or none */ 682 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 683 &sa_obj); 684 if (error != 0) 685 return (error); 686 687 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val); 688 if ((error == 0) && (val == ZFS_XATTR_SA)) 689 zfsvfs->z_xattr_sa = B_TRUE; 690 } 691 692 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 693 &zfsvfs->z_root); 694 if (error != 0) 695 return (error); 696 ASSERT(zfsvfs->z_root != 0); 697 698 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 699 &zfsvfs->z_unlinkedobj); 700 if (error != 0) 701 return (error); 702 703 error = zap_lookup(os, MASTER_NODE_OBJ, 704 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 705 8, 1, &zfsvfs->z_userquota_obj); 706 if (error == ENOENT) 707 zfsvfs->z_userquota_obj = 0; 708 else if (error != 0) 709 return (error); 710 711 error = zap_lookup(os, MASTER_NODE_OBJ, 712 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 713 8, 1, &zfsvfs->z_groupquota_obj); 714 if (error == ENOENT) 715 zfsvfs->z_groupquota_obj = 0; 716 else if (error != 0) 717 return (error); 718 719 error = zap_lookup(os, MASTER_NODE_OBJ, 720 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA], 721 8, 1, &zfsvfs->z_projectquota_obj); 722 if (error == ENOENT) 723 zfsvfs->z_projectquota_obj = 0; 724 else if (error != 0) 725 return (error); 726 727 error = zap_lookup(os, MASTER_NODE_OBJ, 728 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA], 729 8, 1, &zfsvfs->z_userobjquota_obj); 730 if (error == ENOENT) 731 zfsvfs->z_userobjquota_obj = 0; 732 else if (error != 0) 733 return (error); 734 735 error = zap_lookup(os, MASTER_NODE_OBJ, 736 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA], 737 8, 1, &zfsvfs->z_groupobjquota_obj); 738 if (error == ENOENT) 739 zfsvfs->z_groupobjquota_obj = 0; 740 else if (error != 0) 741 return (error); 742 743 error = zap_lookup(os, MASTER_NODE_OBJ, 744 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA], 745 8, 1, &zfsvfs->z_projectobjquota_obj); 746 if (error == ENOENT) 747 zfsvfs->z_projectobjquota_obj = 0; 748 else if (error != 0) 749 return (error); 750 751 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 752 &zfsvfs->z_fuid_obj); 753 if (error == ENOENT) 754 zfsvfs->z_fuid_obj = 0; 755 else if (error != 0) 756 return (error); 757 758 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 759 &zfsvfs->z_shares_dir); 760 if (error == ENOENT) 761 zfsvfs->z_shares_dir = 0; 762 else if (error != 0) 763 return (error); 764 765 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 766 &zfsvfs->z_attr_table); 767 if (error != 0) 768 return (error); 769 770 if (zfsvfs->z_version >= ZPL_VERSION_SA) 771 sa_register_update_callback(os, zfs_sa_upgrade); 772 773 return (0); 774 } 775 776 int 777 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp) 778 { 779 objset_t *os; 780 zfsvfs_t *zfsvfs; 781 int error; 782 boolean_t ro = (readonly || (strchr(osname, '@') != NULL)); 783 784 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 785 786 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os); 787 if (error != 0) { 788 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 789 return (error); 790 } 791 792 error = zfsvfs_create_impl(zfvp, zfsvfs, os); 793 if (error != 0) { 794 dmu_objset_disown(os, B_TRUE, zfsvfs); 795 } 796 return (error); 797 } 798 799 800 /* 801 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function 802 * on a failure. Do not pass in a statically allocated zfsvfs. 803 */ 804 int 805 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os) 806 { 807 int error; 808 809 zfsvfs->z_vfs = NULL; 810 zfsvfs->z_sb = NULL; 811 zfsvfs->z_parent = zfsvfs; 812 813 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 814 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 815 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 816 offsetof(znode_t, z_link_node)); 817 rrm_init(&zfsvfs->z_teardown_lock, B_FALSE); 818 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 819 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 820 821 int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1), 822 ZFS_OBJ_MTX_MAX); 823 zfsvfs->z_hold_size = size; 824 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size, 825 KM_SLEEP); 826 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP); 827 for (int i = 0; i != size; i++) { 828 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare, 829 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node)); 830 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL); 831 } 832 833 error = zfsvfs_init(zfsvfs, os); 834 if (error != 0) { 835 *zfvp = NULL; 836 zfsvfs_free(zfsvfs); 837 return (error); 838 } 839 840 zfsvfs->z_drain_task = TASKQID_INVALID; 841 zfsvfs->z_draining = B_FALSE; 842 zfsvfs->z_drain_cancel = B_TRUE; 843 844 *zfvp = zfsvfs; 845 return (0); 846 } 847 848 static int 849 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 850 { 851 int error; 852 boolean_t readonly = zfs_is_readonly(zfsvfs); 853 854 error = zfs_register_callbacks(zfsvfs->z_vfs); 855 if (error) 856 return (error); 857 858 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 859 860 /* 861 * If we are not mounting (ie: online recv), then we don't 862 * have to worry about replaying the log as we blocked all 863 * operations out since we closed the ZIL. 864 */ 865 if (mounting) { 866 ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL); 867 dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os); 868 869 /* 870 * During replay we remove the read only flag to 871 * allow replays to succeed. 872 */ 873 if (readonly != 0) { 874 readonly_changed_cb(zfsvfs, B_FALSE); 875 } else { 876 zap_stats_t zs; 877 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj, 878 &zs) == 0) { 879 dataset_kstats_update_nunlinks_kstat( 880 &zfsvfs->z_kstat, zs.zs_num_entries); 881 dprintf_ds(zfsvfs->z_os->os_dsl_dataset, 882 "num_entries in unlinked set: %llu", 883 zs.zs_num_entries); 884 } 885 zfs_unlinked_drain(zfsvfs); 886 dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir; 887 dd->dd_activity_cancelled = B_FALSE; 888 } 889 890 /* 891 * Parse and replay the intent log. 892 * 893 * Because of ziltest, this must be done after 894 * zfs_unlinked_drain(). (Further note: ziltest 895 * doesn't use readonly mounts, where 896 * zfs_unlinked_drain() isn't called.) This is because 897 * ziltest causes spa_sync() to think it's committed, 898 * but actually it is not, so the intent log contains 899 * many txg's worth of changes. 900 * 901 * In particular, if object N is in the unlinked set in 902 * the last txg to actually sync, then it could be 903 * actually freed in a later txg and then reallocated 904 * in a yet later txg. This would write a "create 905 * object N" record to the intent log. Normally, this 906 * would be fine because the spa_sync() would have 907 * written out the fact that object N is free, before 908 * we could write the "create object N" intent log 909 * record. 910 * 911 * But when we are in ziltest mode, we advance the "open 912 * txg" without actually spa_sync()-ing the changes to 913 * disk. So we would see that object N is still 914 * allocated and in the unlinked set, and there is an 915 * intent log record saying to allocate it. 916 */ 917 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) { 918 if (zil_replay_disable) { 919 zil_destroy(zfsvfs->z_log, B_FALSE); 920 } else { 921 zfsvfs->z_replay = B_TRUE; 922 zil_replay(zfsvfs->z_os, zfsvfs, 923 zfs_replay_vector); 924 zfsvfs->z_replay = B_FALSE; 925 } 926 } 927 928 /* restore readonly bit */ 929 if (readonly != 0) 930 readonly_changed_cb(zfsvfs, B_TRUE); 931 } 932 933 /* 934 * Set the objset user_ptr to track its zfsvfs. 935 */ 936 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 937 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 938 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 939 940 return (0); 941 } 942 943 void 944 zfsvfs_free(zfsvfs_t *zfsvfs) 945 { 946 int i, size = zfsvfs->z_hold_size; 947 948 zfs_fuid_destroy(zfsvfs); 949 950 mutex_destroy(&zfsvfs->z_znodes_lock); 951 mutex_destroy(&zfsvfs->z_lock); 952 list_destroy(&zfsvfs->z_all_znodes); 953 rrm_destroy(&zfsvfs->z_teardown_lock); 954 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 955 rw_destroy(&zfsvfs->z_fuid_lock); 956 for (i = 0; i != size; i++) { 957 avl_destroy(&zfsvfs->z_hold_trees[i]); 958 mutex_destroy(&zfsvfs->z_hold_locks[i]); 959 } 960 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size); 961 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size); 962 zfsvfs_vfs_free(zfsvfs->z_vfs); 963 dataset_kstats_destroy(&zfsvfs->z_kstat); 964 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 965 } 966 967 static void 968 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 969 { 970 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 971 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 972 } 973 974 static void 975 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 976 { 977 objset_t *os = zfsvfs->z_os; 978 979 if (!dmu_objset_is_snapshot(os)) 980 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs); 981 } 982 983 #ifdef HAVE_MLSLABEL 984 /* 985 * Check that the hex label string is appropriate for the dataset being 986 * mounted into the global_zone proper. 987 * 988 * Return an error if the hex label string is not default or 989 * admin_low/admin_high. For admin_low labels, the corresponding 990 * dataset must be readonly. 991 */ 992 int 993 zfs_check_global_label(const char *dsname, const char *hexsl) 994 { 995 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 996 return (0); 997 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 998 return (0); 999 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1000 /* must be readonly */ 1001 uint64_t rdonly; 1002 1003 if (dsl_prop_get_integer(dsname, 1004 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1005 return (SET_ERROR(EACCES)); 1006 return (rdonly ? 0 : SET_ERROR(EACCES)); 1007 } 1008 return (SET_ERROR(EACCES)); 1009 } 1010 #endif /* HAVE_MLSLABEL */ 1011 1012 static int 1013 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp, 1014 uint32_t bshift) 1015 { 1016 char buf[20 + DMU_OBJACCT_PREFIX_LEN]; 1017 uint64_t offset = DMU_OBJACCT_PREFIX_LEN; 1018 uint64_t quota; 1019 uint64_t used; 1020 int err; 1021 1022 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1); 1023 err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset, 1024 sizeof (buf) - offset, B_FALSE); 1025 if (err) 1026 return (err); 1027 1028 if (zfsvfs->z_projectquota_obj == 0) 1029 goto objs; 1030 1031 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj, 1032 buf + offset, 8, 1, "a); 1033 if (err == ENOENT) 1034 goto objs; 1035 else if (err) 1036 return (err); 1037 1038 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1039 buf + offset, 8, 1, &used); 1040 if (unlikely(err == ENOENT)) { 1041 uint32_t blksize; 1042 u_longlong_t nblocks; 1043 1044 /* 1045 * Quota accounting is async, so it is possible race case. 1046 * There is at least one object with the given project ID. 1047 */ 1048 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); 1049 if (unlikely(zp->z_blksz == 0)) 1050 blksize = zfsvfs->z_max_blksz; 1051 1052 used = blksize * nblocks; 1053 } else if (err) { 1054 return (err); 1055 } 1056 1057 statp->f_blocks = quota >> bshift; 1058 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0; 1059 statp->f_bavail = statp->f_bfree; 1060 1061 objs: 1062 if (zfsvfs->z_projectobjquota_obj == 0) 1063 return (0); 1064 1065 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj, 1066 buf + offset, 8, 1, "a); 1067 if (err == ENOENT) 1068 return (0); 1069 else if (err) 1070 return (err); 1071 1072 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT, 1073 buf, 8, 1, &used); 1074 if (unlikely(err == ENOENT)) { 1075 /* 1076 * Quota accounting is async, so it is possible race case. 1077 * There is at least one object with the given project ID. 1078 */ 1079 used = 1; 1080 } else if (err) { 1081 return (err); 1082 } 1083 1084 statp->f_files = quota; 1085 statp->f_ffree = (quota > used) ? (quota - used) : 0; 1086 1087 return (0); 1088 } 1089 1090 int 1091 zfs_statvfs(struct inode *ip, struct kstatfs *statp) 1092 { 1093 zfsvfs_t *zfsvfs = ITOZSB(ip); 1094 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1095 int err = 0; 1096 1097 ZFS_ENTER(zfsvfs); 1098 1099 dmu_objset_space(zfsvfs->z_os, 1100 &refdbytes, &availbytes, &usedobjs, &availobjs); 1101 1102 uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os); 1103 /* 1104 * The underlying storage pool actually uses multiple block 1105 * size. Under Solaris frsize (fragment size) is reported as 1106 * the smallest block size we support, and bsize (block size) 1107 * as the filesystem's maximum block size. Unfortunately, 1108 * under Linux the fragment size and block size are often used 1109 * interchangeably. Thus we are forced to report both of them 1110 * as the filesystem's maximum block size. 1111 */ 1112 statp->f_frsize = zfsvfs->z_max_blksz; 1113 statp->f_bsize = zfsvfs->z_max_blksz; 1114 uint32_t bshift = fls(statp->f_bsize) - 1; 1115 1116 /* 1117 * The following report "total" blocks of various kinds in 1118 * the file system, but reported in terms of f_bsize - the 1119 * "preferred" size. 1120 */ 1121 1122 /* Round up so we never have a filesystem using 0 blocks. */ 1123 refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize); 1124 statp->f_blocks = (refdbytes + availbytes) >> bshift; 1125 statp->f_bfree = availbytes >> bshift; 1126 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1127 1128 /* 1129 * statvfs() should really be called statufs(), because it assumes 1130 * static metadata. ZFS doesn't preallocate files, so the best 1131 * we can do is report the max that could possibly fit in f_files, 1132 * and that minus the number actually used in f_ffree. 1133 * For f_ffree, report the smaller of the number of objects available 1134 * and the number of blocks (each object will take at least a block). 1135 */ 1136 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT); 1137 statp->f_files = statp->f_ffree + usedobjs; 1138 statp->f_fsid.val[0] = (uint32_t)fsid; 1139 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32); 1140 statp->f_type = ZFS_SUPER_MAGIC; 1141 statp->f_namelen = MAXNAMELEN - 1; 1142 1143 /* 1144 * We have all of 40 characters to stuff a string here. 1145 * Is there anything useful we could/should provide? 1146 */ 1147 bzero(statp->f_spare, sizeof (statp->f_spare)); 1148 1149 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) && 1150 dmu_objset_projectquota_present(zfsvfs->z_os)) { 1151 znode_t *zp = ITOZ(ip); 1152 1153 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid && 1154 zpl_is_valid_projid(zp->z_projid)) 1155 err = zfs_statfs_project(zfsvfs, zp, statp, bshift); 1156 } 1157 1158 ZFS_EXIT(zfsvfs); 1159 return (err); 1160 } 1161 1162 static int 1163 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp) 1164 { 1165 znode_t *rootzp; 1166 int error; 1167 1168 ZFS_ENTER(zfsvfs); 1169 1170 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1171 if (error == 0) 1172 *ipp = ZTOI(rootzp); 1173 1174 ZFS_EXIT(zfsvfs); 1175 return (error); 1176 } 1177 1178 /* 1179 * Linux kernels older than 3.1 do not support a per-filesystem shrinker. 1180 * To accommodate this we must improvise and manually walk the list of znodes 1181 * attempting to prune dentries in order to be able to drop the inodes. 1182 * 1183 * To avoid scanning the same znodes multiple times they are always rotated 1184 * to the end of the z_all_znodes list. New znodes are inserted at the 1185 * end of the list so we're always scanning the oldest znodes first. 1186 */ 1187 static int 1188 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan) 1189 { 1190 znode_t **zp_array, *zp; 1191 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *)); 1192 int objects = 0; 1193 int i = 0, j = 0; 1194 1195 zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP); 1196 1197 mutex_enter(&zfsvfs->z_znodes_lock); 1198 while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) { 1199 1200 if ((i++ > nr_to_scan) || (j >= max_array)) 1201 break; 1202 1203 ASSERT(list_link_active(&zp->z_link_node)); 1204 list_remove(&zfsvfs->z_all_znodes, zp); 1205 list_insert_tail(&zfsvfs->z_all_znodes, zp); 1206 1207 /* Skip active znodes and .zfs entries */ 1208 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir) 1209 continue; 1210 1211 if (igrab(ZTOI(zp)) == NULL) 1212 continue; 1213 1214 zp_array[j] = zp; 1215 j++; 1216 } 1217 mutex_exit(&zfsvfs->z_znodes_lock); 1218 1219 for (i = 0; i < j; i++) { 1220 zp = zp_array[i]; 1221 1222 ASSERT3P(zp, !=, NULL); 1223 d_prune_aliases(ZTOI(zp)); 1224 1225 if (atomic_read(&ZTOI(zp)->i_count) == 1) 1226 objects++; 1227 1228 zrele(zp); 1229 } 1230 1231 kmem_free(zp_array, max_array * sizeof (znode_t *)); 1232 1233 return (objects); 1234 } 1235 1236 /* 1237 * The ARC has requested that the filesystem drop entries from the dentry 1238 * and inode caches. This can occur when the ARC needs to free meta data 1239 * blocks but can't because they are all pinned by entries in these caches. 1240 */ 1241 int 1242 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects) 1243 { 1244 zfsvfs_t *zfsvfs = sb->s_fs_info; 1245 int error = 0; 1246 struct shrinker *shrinker = &sb->s_shrink; 1247 struct shrink_control sc = { 1248 .nr_to_scan = nr_to_scan, 1249 .gfp_mask = GFP_KERNEL, 1250 }; 1251 1252 ZFS_ENTER(zfsvfs); 1253 1254 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \ 1255 defined(SHRINK_CONTROL_HAS_NID) && \ 1256 defined(SHRINKER_NUMA_AWARE) 1257 if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) { 1258 *objects = 0; 1259 for_each_online_node(sc.nid) { 1260 *objects += (*shrinker->scan_objects)(shrinker, &sc); 1261 } 1262 } else { 1263 *objects = (*shrinker->scan_objects)(shrinker, &sc); 1264 } 1265 1266 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK) 1267 *objects = (*shrinker->scan_objects)(shrinker, &sc); 1268 #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK) 1269 *objects = (*shrinker->shrink)(shrinker, &sc); 1270 #elif defined(HAVE_D_PRUNE_ALIASES) 1271 #define D_PRUNE_ALIASES_IS_DEFAULT 1272 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan); 1273 #else 1274 #error "No available dentry and inode cache pruning mechanism." 1275 #endif 1276 1277 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT) 1278 #undef D_PRUNE_ALIASES_IS_DEFAULT 1279 /* 1280 * Fall back to zfs_prune_aliases if the kernel's per-superblock 1281 * shrinker couldn't free anything, possibly due to the inodes being 1282 * allocated in a different memcg. 1283 */ 1284 if (*objects == 0) 1285 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan); 1286 #endif 1287 1288 ZFS_EXIT(zfsvfs); 1289 1290 dprintf_ds(zfsvfs->z_os->os_dsl_dataset, 1291 "pruning, nr_to_scan=%lu objects=%d error=%d\n", 1292 nr_to_scan, *objects, error); 1293 1294 return (error); 1295 } 1296 1297 /* 1298 * Teardown the zfsvfs_t. 1299 * 1300 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock' 1301 * and 'z_teardown_inactive_lock' held. 1302 */ 1303 static int 1304 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1305 { 1306 znode_t *zp; 1307 1308 zfs_unlinked_drain_stop_wait(zfsvfs); 1309 1310 /* 1311 * If someone has not already unmounted this file system, 1312 * drain the zrele_taskq to ensure all active references to the 1313 * zfsvfs_t have been handled only then can it be safely destroyed. 1314 */ 1315 if (zfsvfs->z_os) { 1316 /* 1317 * If we're unmounting we have to wait for the list to 1318 * drain completely. 1319 * 1320 * If we're not unmounting there's no guarantee the list 1321 * will drain completely, but iputs run from the taskq 1322 * may add the parents of dir-based xattrs to the taskq 1323 * so we want to wait for these. 1324 * 1325 * We can safely read z_nr_znodes without locking because the 1326 * VFS has already blocked operations which add to the 1327 * z_all_znodes list and thus increment z_nr_znodes. 1328 */ 1329 int round = 0; 1330 while (zfsvfs->z_nr_znodes > 0) { 1331 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1332 dmu_objset_pool(zfsvfs->z_os)), 0); 1333 if (++round > 1 && !unmounting) 1334 break; 1335 } 1336 } 1337 1338 rrm_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1339 1340 if (!unmounting) { 1341 /* 1342 * We purge the parent filesystem's super block as the 1343 * parent filesystem and all of its snapshots have their 1344 * inode's super block set to the parent's filesystem's 1345 * super block. Note, 'z_parent' is self referential 1346 * for non-snapshots. 1347 */ 1348 shrink_dcache_sb(zfsvfs->z_parent->z_sb); 1349 } 1350 1351 /* 1352 * Close the zil. NB: Can't close the zil while zfs_inactive 1353 * threads are blocked as zil_close can call zfs_inactive. 1354 */ 1355 if (zfsvfs->z_log) { 1356 zil_close(zfsvfs->z_log); 1357 zfsvfs->z_log = NULL; 1358 } 1359 1360 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1361 1362 /* 1363 * If we are not unmounting (ie: online recv) and someone already 1364 * unmounted this file system while we were doing the switcheroo, 1365 * or a reopen of z_os failed then just bail out now. 1366 */ 1367 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1368 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1369 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1370 return (SET_ERROR(EIO)); 1371 } 1372 1373 /* 1374 * At this point there are no VFS ops active, and any new VFS ops 1375 * will fail with EIO since we have z_teardown_lock for writer (only 1376 * relevant for forced unmount). 1377 * 1378 * Release all holds on dbufs. We also grab an extra reference to all 1379 * the remaining inodes so that the kernel does not attempt to free 1380 * any inodes of a suspended fs. This can cause deadlocks since the 1381 * zfs_resume_fs() process may involve starting threads, which might 1382 * attempt to free unreferenced inodes to free up memory for the new 1383 * thread. 1384 */ 1385 if (!unmounting) { 1386 mutex_enter(&zfsvfs->z_znodes_lock); 1387 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1388 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1389 if (zp->z_sa_hdl) 1390 zfs_znode_dmu_fini(zp); 1391 if (igrab(ZTOI(zp)) != NULL) 1392 zp->z_suspended = B_TRUE; 1393 1394 } 1395 mutex_exit(&zfsvfs->z_znodes_lock); 1396 } 1397 1398 /* 1399 * If we are unmounting, set the unmounted flag and let new VFS ops 1400 * unblock. zfs_inactive will have the unmounted behavior, and all 1401 * other VFS ops will fail with EIO. 1402 */ 1403 if (unmounting) { 1404 zfsvfs->z_unmounted = B_TRUE; 1405 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1406 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1407 } 1408 1409 /* 1410 * z_os will be NULL if there was an error in attempting to reopen 1411 * zfsvfs, so just return as the properties had already been 1412 * 1413 * unregistered and cached data had been evicted before. 1414 */ 1415 if (zfsvfs->z_os == NULL) 1416 return (0); 1417 1418 /* 1419 * Unregister properties. 1420 */ 1421 zfs_unregister_callbacks(zfsvfs); 1422 1423 /* 1424 * Evict cached data. We must write out any dirty data before 1425 * disowning the dataset. 1426 */ 1427 objset_t *os = zfsvfs->z_os; 1428 boolean_t os_dirty = B_FALSE; 1429 for (int t = 0; t < TXG_SIZE; t++) { 1430 if (dmu_objset_is_dirty(os, t)) { 1431 os_dirty = B_TRUE; 1432 break; 1433 } 1434 } 1435 if (!zfs_is_readonly(zfsvfs) && os_dirty) { 1436 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1437 } 1438 dmu_objset_evict_dbufs(zfsvfs->z_os); 1439 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 1440 dsl_dir_cancel_waiters(dd); 1441 1442 return (0); 1443 } 1444 1445 #if defined(HAVE_SUPER_SETUP_BDI_NAME) 1446 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0); 1447 #endif 1448 1449 int 1450 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent) 1451 { 1452 const char *osname = zm->mnt_osname; 1453 struct inode *root_inode; 1454 uint64_t recordsize; 1455 int error = 0; 1456 zfsvfs_t *zfsvfs = NULL; 1457 vfs_t *vfs = NULL; 1458 1459 ASSERT(zm); 1460 ASSERT(osname); 1461 1462 error = zfsvfs_parse_options(zm->mnt_data, &vfs); 1463 if (error) 1464 return (error); 1465 1466 error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs); 1467 if (error) { 1468 zfsvfs_vfs_free(vfs); 1469 goto out; 1470 } 1471 1472 if ((error = dsl_prop_get_integer(osname, "recordsize", 1473 &recordsize, NULL))) { 1474 zfsvfs_vfs_free(vfs); 1475 goto out; 1476 } 1477 1478 vfs->vfs_data = zfsvfs; 1479 zfsvfs->z_vfs = vfs; 1480 zfsvfs->z_sb = sb; 1481 sb->s_fs_info = zfsvfs; 1482 sb->s_magic = ZFS_SUPER_MAGIC; 1483 sb->s_maxbytes = MAX_LFS_FILESIZE; 1484 sb->s_time_gran = 1; 1485 sb->s_blocksize = recordsize; 1486 sb->s_blocksize_bits = ilog2(recordsize); 1487 1488 error = -zpl_bdi_setup(sb, "zfs"); 1489 if (error) 1490 goto out; 1491 1492 sb->s_bdi->ra_pages = 0; 1493 1494 /* Set callback operations for the file system. */ 1495 sb->s_op = &zpl_super_operations; 1496 sb->s_xattr = zpl_xattr_handlers; 1497 sb->s_export_op = &zpl_export_operations; 1498 sb->s_d_op = &zpl_dentry_operations; 1499 1500 /* Set features for file system. */ 1501 zfs_set_fuid_feature(zfsvfs); 1502 1503 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1504 uint64_t pval; 1505 1506 atime_changed_cb(zfsvfs, B_FALSE); 1507 readonly_changed_cb(zfsvfs, B_TRUE); 1508 if ((error = dsl_prop_get_integer(osname, 1509 "xattr", &pval, NULL))) 1510 goto out; 1511 xattr_changed_cb(zfsvfs, pval); 1512 if ((error = dsl_prop_get_integer(osname, 1513 "acltype", &pval, NULL))) 1514 goto out; 1515 acltype_changed_cb(zfsvfs, pval); 1516 zfsvfs->z_issnap = B_TRUE; 1517 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED; 1518 zfsvfs->z_snap_defer_time = jiffies; 1519 1520 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1521 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1522 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1523 } else { 1524 if ((error = zfsvfs_setup(zfsvfs, B_TRUE))) 1525 goto out; 1526 } 1527 1528 /* Allocate a root inode for the filesystem. */ 1529 error = zfs_root(zfsvfs, &root_inode); 1530 if (error) { 1531 (void) zfs_umount(sb); 1532 goto out; 1533 } 1534 1535 /* Allocate a root dentry for the filesystem */ 1536 sb->s_root = d_make_root(root_inode); 1537 if (sb->s_root == NULL) { 1538 (void) zfs_umount(sb); 1539 error = SET_ERROR(ENOMEM); 1540 goto out; 1541 } 1542 1543 if (!zfsvfs->z_issnap) 1544 zfsctl_create(zfsvfs); 1545 1546 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb); 1547 out: 1548 if (error) { 1549 if (zfsvfs != NULL) { 1550 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs); 1551 zfsvfs_free(zfsvfs); 1552 } 1553 /* 1554 * make sure we don't have dangling sb->s_fs_info which 1555 * zfs_preumount will use. 1556 */ 1557 sb->s_fs_info = NULL; 1558 } 1559 1560 return (error); 1561 } 1562 1563 /* 1564 * Called when an unmount is requested and certain sanity checks have 1565 * already passed. At this point no dentries or inodes have been reclaimed 1566 * from their respective caches. We drop the extra reference on the .zfs 1567 * control directory to allow everything to be reclaimed. All snapshots 1568 * must already have been unmounted to reach this point. 1569 */ 1570 void 1571 zfs_preumount(struct super_block *sb) 1572 { 1573 zfsvfs_t *zfsvfs = sb->s_fs_info; 1574 1575 /* zfsvfs is NULL when zfs_domount fails during mount */ 1576 if (zfsvfs) { 1577 zfs_unlinked_drain_stop_wait(zfsvfs); 1578 zfsctl_destroy(sb->s_fs_info); 1579 /* 1580 * Wait for zrele_async before entering evict_inodes in 1581 * generic_shutdown_super. The reason we must finish before 1582 * evict_inodes is when lazytime is on, or when zfs_purgedir 1583 * calls zfs_zget, zrele would bump i_count from 0 to 1. This 1584 * would race with the i_count check in evict_inodes. This means 1585 * it could destroy the inode while we are still using it. 1586 * 1587 * We wait for two passes. xattr directories in the first pass 1588 * may add xattr entries in zfs_purgedir, so in the second pass 1589 * we wait for them. We don't use taskq_wait here because it is 1590 * a pool wide taskq. Other mounted filesystems can constantly 1591 * do zrele_async and there's no guarantee when taskq will be 1592 * empty. 1593 */ 1594 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1595 dmu_objset_pool(zfsvfs->z_os)), 0); 1596 taskq_wait_outstanding(dsl_pool_zrele_taskq( 1597 dmu_objset_pool(zfsvfs->z_os)), 0); 1598 } 1599 } 1600 1601 /* 1602 * Called once all other unmount released tear down has occurred. 1603 * It is our responsibility to release any remaining infrastructure. 1604 */ 1605 /*ARGSUSED*/ 1606 int 1607 zfs_umount(struct super_block *sb) 1608 { 1609 zfsvfs_t *zfsvfs = sb->s_fs_info; 1610 objset_t *os; 1611 1612 if (zfsvfs->z_arc_prune != NULL) 1613 arc_remove_prune_callback(zfsvfs->z_arc_prune); 1614 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1615 os = zfsvfs->z_os; 1616 zpl_bdi_destroy(sb); 1617 1618 /* 1619 * z_os will be NULL if there was an error in 1620 * attempting to reopen zfsvfs. 1621 */ 1622 if (os != NULL) { 1623 /* 1624 * Unset the objset user_ptr. 1625 */ 1626 mutex_enter(&os->os_user_ptr_lock); 1627 dmu_objset_set_user(os, NULL); 1628 mutex_exit(&os->os_user_ptr_lock); 1629 1630 /* 1631 * Finally release the objset 1632 */ 1633 dmu_objset_disown(os, B_TRUE, zfsvfs); 1634 } 1635 1636 zfsvfs_free(zfsvfs); 1637 return (0); 1638 } 1639 1640 int 1641 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm) 1642 { 1643 zfsvfs_t *zfsvfs = sb->s_fs_info; 1644 vfs_t *vfsp; 1645 boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os); 1646 int error; 1647 1648 if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) && 1649 !(*flags & SB_RDONLY)) { 1650 *flags |= SB_RDONLY; 1651 return (EROFS); 1652 } 1653 1654 error = zfsvfs_parse_options(zm->mnt_data, &vfsp); 1655 if (error) 1656 return (error); 1657 1658 if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY)) 1659 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1660 1661 zfs_unregister_callbacks(zfsvfs); 1662 zfsvfs_vfs_free(zfsvfs->z_vfs); 1663 1664 vfsp->vfs_data = zfsvfs; 1665 zfsvfs->z_vfs = vfsp; 1666 if (!issnap) 1667 (void) zfs_register_callbacks(vfsp); 1668 1669 return (error); 1670 } 1671 1672 int 1673 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp) 1674 { 1675 zfsvfs_t *zfsvfs = sb->s_fs_info; 1676 znode_t *zp; 1677 uint64_t object = 0; 1678 uint64_t fid_gen = 0; 1679 uint64_t gen_mask; 1680 uint64_t zp_gen; 1681 int i, err; 1682 1683 *ipp = NULL; 1684 1685 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1686 zfid_short_t *zfid = (zfid_short_t *)fidp; 1687 1688 for (i = 0; i < sizeof (zfid->zf_object); i++) 1689 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1690 1691 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1692 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1693 } else { 1694 return (SET_ERROR(EINVAL)); 1695 } 1696 1697 /* LONG_FID_LEN means snapdirs */ 1698 if (fidp->fid_len == LONG_FID_LEN) { 1699 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1700 uint64_t objsetid = 0; 1701 uint64_t setgen = 0; 1702 1703 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1704 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1705 1706 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1707 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1708 1709 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) { 1710 dprintf("snapdir fid: objsetid (%llu) != " 1711 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n", 1712 objsetid, ZFSCTL_INO_SNAPDIRS, object); 1713 1714 return (SET_ERROR(EINVAL)); 1715 } 1716 1717 if (fid_gen > 1 || setgen != 0) { 1718 dprintf("snapdir fid: fid_gen (%llu) and setgen " 1719 "(%llu)\n", fid_gen, setgen); 1720 return (SET_ERROR(EINVAL)); 1721 } 1722 1723 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp)); 1724 } 1725 1726 ZFS_ENTER(zfsvfs); 1727 /* A zero fid_gen means we are in the .zfs control directories */ 1728 if (fid_gen == 0 && 1729 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1730 *ipp = zfsvfs->z_ctldir; 1731 ASSERT(*ipp != NULL); 1732 if (object == ZFSCTL_INO_SNAPDIR) { 1733 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp, 1734 0, kcred, NULL, NULL) == 0); 1735 } else { 1736 igrab(*ipp); 1737 } 1738 ZFS_EXIT(zfsvfs); 1739 return (0); 1740 } 1741 1742 gen_mask = -1ULL >> (64 - 8 * i); 1743 1744 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask); 1745 if ((err = zfs_zget(zfsvfs, object, &zp))) { 1746 ZFS_EXIT(zfsvfs); 1747 return (err); 1748 } 1749 1750 /* Don't export xattr stuff */ 1751 if (zp->z_pflags & ZFS_XATTR) { 1752 zrele(zp); 1753 ZFS_EXIT(zfsvfs); 1754 return (SET_ERROR(ENOENT)); 1755 } 1756 1757 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1758 sizeof (uint64_t)); 1759 zp_gen = zp_gen & gen_mask; 1760 if (zp_gen == 0) 1761 zp_gen = 1; 1762 if ((fid_gen == 0) && (zfsvfs->z_root == object)) 1763 fid_gen = zp_gen; 1764 if (zp->z_unlinked || zp_gen != fid_gen) { 1765 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen, 1766 fid_gen); 1767 zrele(zp); 1768 ZFS_EXIT(zfsvfs); 1769 return (SET_ERROR(ENOENT)); 1770 } 1771 1772 *ipp = ZTOI(zp); 1773 if (*ipp) 1774 zfs_inode_update(ITOZ(*ipp)); 1775 1776 ZFS_EXIT(zfsvfs); 1777 return (0); 1778 } 1779 1780 /* 1781 * Block out VFS ops and close zfsvfs_t 1782 * 1783 * Note, if successful, then we return with the 'z_teardown_lock' and 1784 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying 1785 * dataset and objset intact so that they can be atomically handed off during 1786 * a subsequent rollback or recv operation and the resume thereafter. 1787 */ 1788 int 1789 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1790 { 1791 int error; 1792 1793 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1794 return (error); 1795 1796 return (0); 1797 } 1798 1799 /* 1800 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset 1801 * is an invariant across any of the operations that can be performed while the 1802 * filesystem was suspended. Whether it succeeded or failed, the preconditions 1803 * are the same: the relevant objset and associated dataset are owned by 1804 * zfsvfs, held, and long held on entry. 1805 */ 1806 int 1807 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 1808 { 1809 int err, err2; 1810 znode_t *zp; 1811 1812 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1813 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1814 1815 /* 1816 * We already own this, so just update the objset_t, as the one we 1817 * had before may have been evicted. 1818 */ 1819 objset_t *os; 1820 VERIFY3P(ds->ds_owner, ==, zfsvfs); 1821 VERIFY(dsl_dataset_long_held(ds)); 1822 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); 1823 dsl_pool_config_enter(dp, FTAG); 1824 VERIFY0(dmu_objset_from_ds(ds, &os)); 1825 dsl_pool_config_exit(dp, FTAG); 1826 1827 err = zfsvfs_init(zfsvfs, os); 1828 if (err != 0) 1829 goto bail; 1830 1831 ds->ds_dir->dd_activity_cancelled = B_FALSE; 1832 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1833 1834 zfs_set_fuid_feature(zfsvfs); 1835 zfsvfs->z_rollback_time = jiffies; 1836 1837 /* 1838 * Attempt to re-establish all the active inodes with their 1839 * dbufs. If a zfs_rezget() fails, then we unhash the inode 1840 * and mark it stale. This prevents a collision if a new 1841 * inode/object is created which must use the same inode 1842 * number. The stale inode will be be released when the 1843 * VFS prunes the dentry holding the remaining references 1844 * on the stale inode. 1845 */ 1846 mutex_enter(&zfsvfs->z_znodes_lock); 1847 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1848 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1849 err2 = zfs_rezget(zp); 1850 if (err2) { 1851 remove_inode_hash(ZTOI(zp)); 1852 zp->z_is_stale = B_TRUE; 1853 } 1854 1855 /* see comment in zfs_suspend_fs() */ 1856 if (zp->z_suspended) { 1857 zfs_zrele_async(zp); 1858 zp->z_suspended = B_FALSE; 1859 } 1860 } 1861 mutex_exit(&zfsvfs->z_znodes_lock); 1862 1863 if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) { 1864 /* 1865 * zfs_suspend_fs() could have interrupted freeing 1866 * of dnodes. We need to restart this freeing so 1867 * that we don't "leak" the space. 1868 */ 1869 zfs_unlinked_drain(zfsvfs); 1870 } 1871 1872 /* 1873 * Most of the time zfs_suspend_fs is used for changing the contents 1874 * of the underlying dataset. ZFS rollback and receive operations 1875 * might create files for which negative dentries are present in 1876 * the cache. Since walking the dcache would require a lot of GPL-only 1877 * code duplication, it's much easier on these rather rare occasions 1878 * just to flush the whole dcache for the given dataset/filesystem. 1879 */ 1880 shrink_dcache_sb(zfsvfs->z_sb); 1881 1882 bail: 1883 if (err != 0) 1884 zfsvfs->z_unmounted = B_TRUE; 1885 1886 /* release the VFS ops */ 1887 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1888 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1889 1890 if (err != 0) { 1891 /* 1892 * Since we couldn't setup the sa framework, try to force 1893 * unmount this file system. 1894 */ 1895 if (zfsvfs->z_os) 1896 (void) zfs_umount(zfsvfs->z_sb); 1897 } 1898 return (err); 1899 } 1900 1901 /* 1902 * Release VOPs and unmount a suspended filesystem. 1903 */ 1904 int 1905 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds) 1906 { 1907 ASSERT(RRM_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1908 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1909 1910 /* 1911 * We already own this, so just hold and rele it to update the 1912 * objset_t, as the one we had before may have been evicted. 1913 */ 1914 objset_t *os; 1915 VERIFY3P(ds->ds_owner, ==, zfsvfs); 1916 VERIFY(dsl_dataset_long_held(ds)); 1917 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds)); 1918 dsl_pool_config_enter(dp, FTAG); 1919 VERIFY0(dmu_objset_from_ds(ds, &os)); 1920 dsl_pool_config_exit(dp, FTAG); 1921 zfsvfs->z_os = os; 1922 1923 /* release the VOPs */ 1924 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1925 rrm_exit(&zfsvfs->z_teardown_lock, FTAG); 1926 1927 /* 1928 * Try to force unmount this file system. 1929 */ 1930 (void) zfs_umount(zfsvfs->z_sb); 1931 zfsvfs->z_unmounted = B_TRUE; 1932 return (0); 1933 } 1934 1935 /* 1936 * Automounted snapshots rely on periodic revalidation 1937 * to defer snapshots from being automatically unmounted. 1938 */ 1939 1940 inline void 1941 zfs_exit_fs(zfsvfs_t *zfsvfs) 1942 { 1943 if (!zfsvfs->z_issnap) 1944 return; 1945 1946 if (time_after(jiffies, zfsvfs->z_snap_defer_time + 1947 MAX(zfs_expire_snapshot * HZ / 2, HZ))) { 1948 zfsvfs->z_snap_defer_time = jiffies; 1949 zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa, 1950 dmu_objset_id(zfsvfs->z_os), 1951 zfs_expire_snapshot); 1952 } 1953 } 1954 1955 int 1956 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 1957 { 1958 int error; 1959 objset_t *os = zfsvfs->z_os; 1960 dmu_tx_t *tx; 1961 1962 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1963 return (SET_ERROR(EINVAL)); 1964 1965 if (newvers < zfsvfs->z_version) 1966 return (SET_ERROR(EINVAL)); 1967 1968 if (zfs_spa_version_map(newvers) > 1969 spa_version(dmu_objset_spa(zfsvfs->z_os))) 1970 return (SET_ERROR(ENOTSUP)); 1971 1972 tx = dmu_tx_create(os); 1973 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 1974 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 1975 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 1976 ZFS_SA_ATTRS); 1977 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1978 } 1979 error = dmu_tx_assign(tx, TXG_WAIT); 1980 if (error) { 1981 dmu_tx_abort(tx); 1982 return (error); 1983 } 1984 1985 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1986 8, 1, &newvers, tx); 1987 1988 if (error) { 1989 dmu_tx_commit(tx); 1990 return (error); 1991 } 1992 1993 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 1994 uint64_t sa_obj; 1995 1996 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 1997 SPA_VERSION_SA); 1998 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1999 DMU_OT_NONE, 0, tx); 2000 2001 error = zap_add(os, MASTER_NODE_OBJ, 2002 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2003 ASSERT0(error); 2004 2005 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2006 sa_register_update_callback(os, zfs_sa_upgrade); 2007 } 2008 2009 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx, 2010 "from %llu to %llu", zfsvfs->z_version, newvers); 2011 2012 dmu_tx_commit(tx); 2013 2014 zfsvfs->z_version = newvers; 2015 os->os_version = newvers; 2016 2017 zfs_set_fuid_feature(zfsvfs); 2018 2019 return (0); 2020 } 2021 2022 /* 2023 * Read a property stored within the master node. 2024 */ 2025 int 2026 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2027 { 2028 uint64_t *cached_copy = NULL; 2029 2030 /* 2031 * Figure out where in the objset_t the cached copy would live, if it 2032 * is available for the requested property. 2033 */ 2034 if (os != NULL) { 2035 switch (prop) { 2036 case ZFS_PROP_VERSION: 2037 cached_copy = &os->os_version; 2038 break; 2039 case ZFS_PROP_NORMALIZE: 2040 cached_copy = &os->os_normalization; 2041 break; 2042 case ZFS_PROP_UTF8ONLY: 2043 cached_copy = &os->os_utf8only; 2044 break; 2045 case ZFS_PROP_CASE: 2046 cached_copy = &os->os_casesensitivity; 2047 break; 2048 default: 2049 break; 2050 } 2051 } 2052 if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) { 2053 *value = *cached_copy; 2054 return (0); 2055 } 2056 2057 /* 2058 * If the property wasn't cached, look up the file system's value for 2059 * the property. For the version property, we look up a slightly 2060 * different string. 2061 */ 2062 const char *pname; 2063 int error = ENOENT; 2064 if (prop == ZFS_PROP_VERSION) 2065 pname = ZPL_VERSION_STR; 2066 else 2067 pname = zfs_prop_to_name(prop); 2068 2069 if (os != NULL) { 2070 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS); 2071 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2072 } 2073 2074 if (error == ENOENT) { 2075 /* No value set, use the default value */ 2076 switch (prop) { 2077 case ZFS_PROP_VERSION: 2078 *value = ZPL_VERSION; 2079 break; 2080 case ZFS_PROP_NORMALIZE: 2081 case ZFS_PROP_UTF8ONLY: 2082 *value = 0; 2083 break; 2084 case ZFS_PROP_CASE: 2085 *value = ZFS_CASE_SENSITIVE; 2086 break; 2087 case ZFS_PROP_ACLTYPE: 2088 *value = ZFS_ACLTYPE_OFF; 2089 break; 2090 default: 2091 return (error); 2092 } 2093 error = 0; 2094 } 2095 2096 /* 2097 * If one of the methods for getting the property value above worked, 2098 * copy it into the objset_t's cache. 2099 */ 2100 if (error == 0 && cached_copy != NULL) { 2101 *cached_copy = *value; 2102 } 2103 2104 return (error); 2105 } 2106 2107 /* 2108 * Return true if the corresponding vfs's unmounted flag is set. 2109 * Otherwise return false. 2110 * If this function returns true we know VFS unmount has been initiated. 2111 */ 2112 boolean_t 2113 zfs_get_vfs_flag_unmounted(objset_t *os) 2114 { 2115 zfsvfs_t *zfvp; 2116 boolean_t unmounted = B_FALSE; 2117 2118 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS); 2119 2120 mutex_enter(&os->os_user_ptr_lock); 2121 zfvp = dmu_objset_get_user(os); 2122 if (zfvp != NULL && zfvp->z_unmounted) 2123 unmounted = B_TRUE; 2124 mutex_exit(&os->os_user_ptr_lock); 2125 2126 return (unmounted); 2127 } 2128 2129 /*ARGSUSED*/ 2130 void 2131 zfsvfs_update_fromname(const char *oldname, const char *newname) 2132 { 2133 /* 2134 * We don't need to do anything here, the devname is always current by 2135 * virtue of zfsvfs->z_sb->s_op->show_devname. 2136 */ 2137 } 2138 2139 void 2140 zfs_init(void) 2141 { 2142 zfsctl_init(); 2143 zfs_znode_init(); 2144 dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info); 2145 register_filesystem(&zpl_fs_type); 2146 } 2147 2148 void 2149 zfs_fini(void) 2150 { 2151 /* 2152 * we don't use outstanding because zpl_posix_acl_free might add more. 2153 */ 2154 taskq_wait(system_delay_taskq); 2155 taskq_wait(system_taskq); 2156 unregister_filesystem(&zpl_fs_type); 2157 zfs_znode_fini(); 2158 zfsctl_fini(); 2159 } 2160 2161 #if defined(_KERNEL) 2162 EXPORT_SYMBOL(zfs_suspend_fs); 2163 EXPORT_SYMBOL(zfs_resume_fs); 2164 EXPORT_SYMBOL(zfs_set_version); 2165 EXPORT_SYMBOL(zfsvfs_create); 2166 EXPORT_SYMBOL(zfsvfs_free); 2167 EXPORT_SYMBOL(zfs_is_readonly); 2168 EXPORT_SYMBOL(zfs_domount); 2169 EXPORT_SYMBOL(zfs_preumount); 2170 EXPORT_SYMBOL(zfs_umount); 2171 EXPORT_SYMBOL(zfs_remount); 2172 EXPORT_SYMBOL(zfs_statvfs); 2173 EXPORT_SYMBOL(zfs_vget); 2174 EXPORT_SYMBOL(zfs_prune); 2175 #endif 2176