1eda14cbcSMatt Macy /* 2eda14cbcSMatt Macy * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3eda14cbcSMatt Macy * Copyright (C) 2007 The Regents of the University of California. 4eda14cbcSMatt Macy * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5eda14cbcSMatt Macy * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6eda14cbcSMatt Macy * UCRL-CODE-235197 7eda14cbcSMatt Macy * 8eda14cbcSMatt Macy * This file is part of the SPL, Solaris Porting Layer. 9eda14cbcSMatt Macy * 10eda14cbcSMatt Macy * The SPL is free software; you can redistribute it and/or modify it 11eda14cbcSMatt Macy * under the terms of the GNU General Public License as published by the 12eda14cbcSMatt Macy * Free Software Foundation; either version 2 of the License, or (at your 13eda14cbcSMatt Macy * option) any later version. 14eda14cbcSMatt Macy * 15eda14cbcSMatt Macy * The SPL is distributed in the hope that it will be useful, but WITHOUT 16eda14cbcSMatt Macy * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17eda14cbcSMatt Macy * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18eda14cbcSMatt Macy * for more details. 19eda14cbcSMatt Macy * 20eda14cbcSMatt Macy * You should have received a copy of the GNU General Public License along 21eda14cbcSMatt Macy * with the SPL. If not, see <http://www.gnu.org/licenses/>. 22eda14cbcSMatt Macy */ 23eda14cbcSMatt Macy 2475e1fea6SMartin Matuska #define SPL_KMEM_CACHE_IMPLEMENTING 2575e1fea6SMartin Matuska 26eda14cbcSMatt Macy #include <linux/percpu_compat.h> 27eda14cbcSMatt Macy #include <sys/kmem.h> 28eda14cbcSMatt Macy #include <sys/kmem_cache.h> 29eda14cbcSMatt Macy #include <sys/taskq.h> 30eda14cbcSMatt Macy #include <sys/timer.h> 31eda14cbcSMatt Macy #include <sys/vmem.h> 32eda14cbcSMatt Macy #include <sys/wait.h> 33fd45b686SMartin Matuska #include <sys/string.h> 34eda14cbcSMatt Macy #include <linux/slab.h> 35eda14cbcSMatt Macy #include <linux/swap.h> 36eda14cbcSMatt Macy #include <linux/prefetch.h> 37eda14cbcSMatt Macy 38eda14cbcSMatt Macy /* 39eda14cbcSMatt Macy * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}() 40eda14cbcSMatt Macy * with smp_mb__{before,after}_atomic() because they were redundant. This is 41eda14cbcSMatt Macy * only used inside our SLAB allocator, so we implement an internal wrapper 42eda14cbcSMatt Macy * here to give us smp_mb__{before,after}_atomic() on older kernels. 43eda14cbcSMatt Macy */ 44eda14cbcSMatt Macy #ifndef smp_mb__before_atomic 45eda14cbcSMatt Macy #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x) 46eda14cbcSMatt Macy #endif 47eda14cbcSMatt Macy 48eda14cbcSMatt Macy #ifndef smp_mb__after_atomic 49eda14cbcSMatt Macy #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x) 50eda14cbcSMatt Macy #endif 51eda14cbcSMatt Macy 52eda14cbcSMatt Macy /* BEGIN CSTYLED */ 53eda14cbcSMatt Macy /* 54eda14cbcSMatt Macy * Cache magazines are an optimization designed to minimize the cost of 55eda14cbcSMatt Macy * allocating memory. They do this by keeping a per-cpu cache of recently 56eda14cbcSMatt Macy * freed objects, which can then be reallocated without taking a lock. This 57eda14cbcSMatt Macy * can improve performance on highly contended caches. However, because 58eda14cbcSMatt Macy * objects in magazines will prevent otherwise empty slabs from being 59eda14cbcSMatt Macy * immediately released this may not be ideal for low memory machines. 60eda14cbcSMatt Macy * 61eda14cbcSMatt Macy * For this reason spl_kmem_cache_magazine_size can be used to set a maximum 62eda14cbcSMatt Macy * magazine size. When this value is set to 0 the magazine size will be 63eda14cbcSMatt Macy * automatically determined based on the object size. Otherwise magazines 64eda14cbcSMatt Macy * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines 65eda14cbcSMatt Macy * may never be entirely disabled in this implementation. 66eda14cbcSMatt Macy */ 67e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_magazine_size = 0; 68eda14cbcSMatt Macy module_param(spl_kmem_cache_magazine_size, uint, 0444); 69eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_magazine_size, 70eda14cbcSMatt Macy "Default magazine size (2-256), set automatically (0)"); 71eda14cbcSMatt Macy 72e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB; 73eda14cbcSMatt Macy module_param(spl_kmem_cache_obj_per_slab, uint, 0644); 74eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab"); 75eda14cbcSMatt Macy 76e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE; 77eda14cbcSMatt Macy module_param(spl_kmem_cache_max_size, uint, 0644); 78eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB"); 79eda14cbcSMatt Macy 80eda14cbcSMatt Macy /* 81eda14cbcSMatt Macy * For small objects the Linux slab allocator should be used to make the most 82eda14cbcSMatt Macy * efficient use of the memory. However, large objects are not supported by 83eda14cbcSMatt Macy * the Linux slab and therefore the SPL implementation is preferred. A cutoff 8416038816SMartin Matuska * of 16K was determined to be optimal for architectures using 4K pages and 8516038816SMartin Matuska * to also work well on architecutres using larger 64K page sizes. 86eda14cbcSMatt Macy */ 8778ae60b4SMartin Matuska static unsigned int spl_kmem_cache_slab_limit = 8878ae60b4SMartin Matuska SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE; 89eda14cbcSMatt Macy module_param(spl_kmem_cache_slab_limit, uint, 0644); 90eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_slab_limit, 91eda14cbcSMatt Macy "Objects less than N bytes use the Linux slab"); 92eda14cbcSMatt Macy 93eda14cbcSMatt Macy /* 94eda14cbcSMatt Macy * The number of threads available to allocate new slabs for caches. This 95eda14cbcSMatt Macy * should not need to be tuned but it is available for performance analysis. 96eda14cbcSMatt Macy */ 97e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_kmem_threads = 4; 98eda14cbcSMatt Macy module_param(spl_kmem_cache_kmem_threads, uint, 0444); 99eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_kmem_threads, 100eda14cbcSMatt Macy "Number of spl_kmem_cache threads"); 101eda14cbcSMatt Macy /* END CSTYLED */ 102eda14cbcSMatt Macy 103eda14cbcSMatt Macy /* 104eda14cbcSMatt Macy * Slab allocation interfaces 105eda14cbcSMatt Macy * 106eda14cbcSMatt Macy * While the Linux slab implementation was inspired by the Solaris 107eda14cbcSMatt Macy * implementation I cannot use it to emulate the Solaris APIs. I 108eda14cbcSMatt Macy * require two features which are not provided by the Linux slab. 109eda14cbcSMatt Macy * 110eda14cbcSMatt Macy * 1) Constructors AND destructors. Recent versions of the Linux 111eda14cbcSMatt Macy * kernel have removed support for destructors. This is a deal 112eda14cbcSMatt Macy * breaker for the SPL which contains particularly expensive 113eda14cbcSMatt Macy * initializers for mutex's, condition variables, etc. We also 114eda14cbcSMatt Macy * require a minimal level of cleanup for these data types unlike 115eda14cbcSMatt Macy * many Linux data types which do need to be explicitly destroyed. 116eda14cbcSMatt Macy * 117eda14cbcSMatt Macy * 2) Virtual address space backed slab. Callers of the Solaris slab 118eda14cbcSMatt Macy * expect it to work well for both small are very large allocations. 119eda14cbcSMatt Macy * Because of memory fragmentation the Linux slab which is backed 120eda14cbcSMatt Macy * by kmalloc'ed memory performs very badly when confronted with 121eda14cbcSMatt Macy * large numbers of large allocations. Basing the slab on the 122eda14cbcSMatt Macy * virtual address space removes the need for contiguous pages 123eda14cbcSMatt Macy * and greatly improve performance for large allocations. 124eda14cbcSMatt Macy * 125eda14cbcSMatt Macy * For these reasons, the SPL has its own slab implementation with 126eda14cbcSMatt Macy * the needed features. It is not as highly optimized as either the 127eda14cbcSMatt Macy * Solaris or Linux slabs, but it should get me most of what is 128eda14cbcSMatt Macy * needed until it can be optimized or obsoleted by another approach. 129eda14cbcSMatt Macy * 130eda14cbcSMatt Macy * One serious concern I do have about this method is the relatively 131eda14cbcSMatt Macy * small virtual address space on 32bit arches. This will seriously 132eda14cbcSMatt Macy * constrain the size of the slab caches and their performance. 133eda14cbcSMatt Macy */ 134eda14cbcSMatt Macy 135eda14cbcSMatt Macy struct list_head spl_kmem_cache_list; /* List of caches */ 136eda14cbcSMatt Macy struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */ 137dbd5678dSMartin Matuska static taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */ 138eda14cbcSMatt Macy 139eda14cbcSMatt Macy static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj); 140eda14cbcSMatt Macy 141eda14cbcSMatt Macy static void * 142eda14cbcSMatt Macy kv_alloc(spl_kmem_cache_t *skc, int size, int flags) 143eda14cbcSMatt Macy { 144eda14cbcSMatt Macy gfp_t lflags = kmem_flags_convert(flags); 145eda14cbcSMatt Macy void *ptr; 146eda14cbcSMatt Macy 147*ce4dcb97SMartin Matuska if (skc->skc_flags & KMC_RECLAIMABLE) 148*ce4dcb97SMartin Matuska lflags |= __GFP_RECLAIMABLE; 149eda14cbcSMatt Macy ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM); 150eda14cbcSMatt Macy 151eda14cbcSMatt Macy /* Resulting allocated memory will be page aligned */ 152eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 153eda14cbcSMatt Macy 154eda14cbcSMatt Macy return (ptr); 155eda14cbcSMatt Macy } 156eda14cbcSMatt Macy 157eda14cbcSMatt Macy static void 158eda14cbcSMatt Macy kv_free(spl_kmem_cache_t *skc, void *ptr, int size) 159eda14cbcSMatt Macy { 160eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 161eda14cbcSMatt Macy 162eda14cbcSMatt Macy /* 163eda14cbcSMatt Macy * The Linux direct reclaim path uses this out of band value to 164eda14cbcSMatt Macy * determine if forward progress is being made. Normally this is 165eda14cbcSMatt Macy * incremented by kmem_freepages() which is part of the various 166eda14cbcSMatt Macy * Linux slab implementations. However, since we are using none 167eda14cbcSMatt Macy * of that infrastructure we are responsible for incrementing it. 168eda14cbcSMatt Macy */ 169eda14cbcSMatt Macy if (current->reclaim_state) 1704e8d558cSMartin Matuska #ifdef HAVE_RECLAIM_STATE_RECLAIMED 1714e8d558cSMartin Matuska current->reclaim_state->reclaimed += size >> PAGE_SHIFT; 1724e8d558cSMartin Matuska #else 173eda14cbcSMatt Macy current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT; 1744e8d558cSMartin Matuska #endif 175eda14cbcSMatt Macy vfree(ptr); 176eda14cbcSMatt Macy } 177eda14cbcSMatt Macy 178eda14cbcSMatt Macy /* 179eda14cbcSMatt Macy * Required space for each aligned sks. 180eda14cbcSMatt Macy */ 181eda14cbcSMatt Macy static inline uint32_t 182eda14cbcSMatt Macy spl_sks_size(spl_kmem_cache_t *skc) 183eda14cbcSMatt Macy { 184eda14cbcSMatt Macy return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t), 185eda14cbcSMatt Macy skc->skc_obj_align, uint32_t)); 186eda14cbcSMatt Macy } 187eda14cbcSMatt Macy 188eda14cbcSMatt Macy /* 189eda14cbcSMatt Macy * Required space for each aligned object. 190eda14cbcSMatt Macy */ 191eda14cbcSMatt Macy static inline uint32_t 192eda14cbcSMatt Macy spl_obj_size(spl_kmem_cache_t *skc) 193eda14cbcSMatt Macy { 194eda14cbcSMatt Macy uint32_t align = skc->skc_obj_align; 195eda14cbcSMatt Macy 196eda14cbcSMatt Macy return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) + 197eda14cbcSMatt Macy P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t)); 198eda14cbcSMatt Macy } 199eda14cbcSMatt Macy 200eda14cbcSMatt Macy uint64_t 201eda14cbcSMatt Macy spl_kmem_cache_inuse(kmem_cache_t *cache) 202eda14cbcSMatt Macy { 203eda14cbcSMatt Macy return (cache->skc_obj_total); 204eda14cbcSMatt Macy } 205eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_inuse); 206eda14cbcSMatt Macy 207eda14cbcSMatt Macy uint64_t 208eda14cbcSMatt Macy spl_kmem_cache_entry_size(kmem_cache_t *cache) 209eda14cbcSMatt Macy { 210eda14cbcSMatt Macy return (cache->skc_obj_size); 211eda14cbcSMatt Macy } 212eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_entry_size); 213eda14cbcSMatt Macy 214eda14cbcSMatt Macy /* 215eda14cbcSMatt Macy * Lookup the spl_kmem_object_t for an object given that object. 216eda14cbcSMatt Macy */ 217eda14cbcSMatt Macy static inline spl_kmem_obj_t * 218eda14cbcSMatt Macy spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj) 219eda14cbcSMatt Macy { 220eda14cbcSMatt Macy return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size, 221eda14cbcSMatt Macy skc->skc_obj_align, uint32_t)); 222eda14cbcSMatt Macy } 223eda14cbcSMatt Macy 224eda14cbcSMatt Macy /* 225eda14cbcSMatt Macy * It's important that we pack the spl_kmem_obj_t structure and the 226eda14cbcSMatt Macy * actual objects in to one large address space to minimize the number 227eda14cbcSMatt Macy * of calls to the allocator. It is far better to do a few large 228eda14cbcSMatt Macy * allocations and then subdivide it ourselves. Now which allocator 229eda14cbcSMatt Macy * we use requires balancing a few trade offs. 230eda14cbcSMatt Macy * 231eda14cbcSMatt Macy * For small objects we use kmem_alloc() because as long as you are 232eda14cbcSMatt Macy * only requesting a small number of pages (ideally just one) its cheap. 233eda14cbcSMatt Macy * However, when you start requesting multiple pages with kmem_alloc() 234eda14cbcSMatt Macy * it gets increasingly expensive since it requires contiguous pages. 235eda14cbcSMatt Macy * For this reason we shift to vmem_alloc() for slabs of large objects 236eda14cbcSMatt Macy * which removes the need for contiguous pages. We do not use 237eda14cbcSMatt Macy * vmem_alloc() in all cases because there is significant locking 238eda14cbcSMatt Macy * overhead in __get_vm_area_node(). This function takes a single 239eda14cbcSMatt Macy * global lock when acquiring an available virtual address range which 240eda14cbcSMatt Macy * serializes all vmem_alloc()'s for all slab caches. Using slightly 241eda14cbcSMatt Macy * different allocation functions for small and large objects should 242eda14cbcSMatt Macy * give us the best of both worlds. 243eda14cbcSMatt Macy * 244eda14cbcSMatt Macy * +------------------------+ 245eda14cbcSMatt Macy * | spl_kmem_slab_t --+-+ | 246eda14cbcSMatt Macy * | skc_obj_size <-+ | | 247eda14cbcSMatt Macy * | spl_kmem_obj_t | | 248eda14cbcSMatt Macy * | skc_obj_size <---+ | 249eda14cbcSMatt Macy * | spl_kmem_obj_t | | 250eda14cbcSMatt Macy * | ... v | 251eda14cbcSMatt Macy * +------------------------+ 252eda14cbcSMatt Macy */ 253eda14cbcSMatt Macy static spl_kmem_slab_t * 254eda14cbcSMatt Macy spl_slab_alloc(spl_kmem_cache_t *skc, int flags) 255eda14cbcSMatt Macy { 256eda14cbcSMatt Macy spl_kmem_slab_t *sks; 257eda14cbcSMatt Macy void *base; 258eda14cbcSMatt Macy uint32_t obj_size; 259eda14cbcSMatt Macy 260eda14cbcSMatt Macy base = kv_alloc(skc, skc->skc_slab_size, flags); 261eda14cbcSMatt Macy if (base == NULL) 262eda14cbcSMatt Macy return (NULL); 263eda14cbcSMatt Macy 264eda14cbcSMatt Macy sks = (spl_kmem_slab_t *)base; 265eda14cbcSMatt Macy sks->sks_magic = SKS_MAGIC; 266eda14cbcSMatt Macy sks->sks_objs = skc->skc_slab_objs; 267eda14cbcSMatt Macy sks->sks_age = jiffies; 268eda14cbcSMatt Macy sks->sks_cache = skc; 269eda14cbcSMatt Macy INIT_LIST_HEAD(&sks->sks_list); 270eda14cbcSMatt Macy INIT_LIST_HEAD(&sks->sks_free_list); 271eda14cbcSMatt Macy sks->sks_ref = 0; 272eda14cbcSMatt Macy obj_size = spl_obj_size(skc); 273eda14cbcSMatt Macy 274eda14cbcSMatt Macy for (int i = 0; i < sks->sks_objs; i++) { 275eda14cbcSMatt Macy void *obj = base + spl_sks_size(skc) + (i * obj_size); 276eda14cbcSMatt Macy 277eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 278eda14cbcSMatt Macy spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj); 279eda14cbcSMatt Macy sko->sko_addr = obj; 280eda14cbcSMatt Macy sko->sko_magic = SKO_MAGIC; 281eda14cbcSMatt Macy sko->sko_slab = sks; 282eda14cbcSMatt Macy INIT_LIST_HEAD(&sko->sko_list); 283eda14cbcSMatt Macy list_add_tail(&sko->sko_list, &sks->sks_free_list); 284eda14cbcSMatt Macy } 285eda14cbcSMatt Macy 286eda14cbcSMatt Macy return (sks); 287eda14cbcSMatt Macy } 288eda14cbcSMatt Macy 289eda14cbcSMatt Macy /* 290eda14cbcSMatt Macy * Remove a slab from complete or partial list, it must be called with 291eda14cbcSMatt Macy * the 'skc->skc_lock' held but the actual free must be performed 292eda14cbcSMatt Macy * outside the lock to prevent deadlocking on vmem addresses. 293eda14cbcSMatt Macy */ 294eda14cbcSMatt Macy static void 295eda14cbcSMatt Macy spl_slab_free(spl_kmem_slab_t *sks, 296eda14cbcSMatt Macy struct list_head *sks_list, struct list_head *sko_list) 297eda14cbcSMatt Macy { 298eda14cbcSMatt Macy spl_kmem_cache_t *skc; 299eda14cbcSMatt Macy 300eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 301eda14cbcSMatt Macy ASSERT(sks->sks_ref == 0); 302eda14cbcSMatt Macy 303eda14cbcSMatt Macy skc = sks->sks_cache; 304eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 305eda14cbcSMatt Macy 306eda14cbcSMatt Macy /* 307eda14cbcSMatt Macy * Update slab/objects counters in the cache, then remove the 308eda14cbcSMatt Macy * slab from the skc->skc_partial_list. Finally add the slab 309eda14cbcSMatt Macy * and all its objects in to the private work lists where the 310eda14cbcSMatt Macy * destructors will be called and the memory freed to the system. 311eda14cbcSMatt Macy */ 312eda14cbcSMatt Macy skc->skc_obj_total -= sks->sks_objs; 313eda14cbcSMatt Macy skc->skc_slab_total--; 314eda14cbcSMatt Macy list_del(&sks->sks_list); 315eda14cbcSMatt Macy list_add(&sks->sks_list, sks_list); 316eda14cbcSMatt Macy list_splice_init(&sks->sks_free_list, sko_list); 317eda14cbcSMatt Macy } 318eda14cbcSMatt Macy 319eda14cbcSMatt Macy /* 320eda14cbcSMatt Macy * Reclaim empty slabs at the end of the partial list. 321eda14cbcSMatt Macy */ 322eda14cbcSMatt Macy static void 323eda14cbcSMatt Macy spl_slab_reclaim(spl_kmem_cache_t *skc) 324eda14cbcSMatt Macy { 325eda14cbcSMatt Macy spl_kmem_slab_t *sks = NULL, *m = NULL; 326eda14cbcSMatt Macy spl_kmem_obj_t *sko = NULL, *n = NULL; 327eda14cbcSMatt Macy LIST_HEAD(sks_list); 328eda14cbcSMatt Macy LIST_HEAD(sko_list); 329eda14cbcSMatt Macy 330eda14cbcSMatt Macy /* 331eda14cbcSMatt Macy * Empty slabs and objects must be moved to a private list so they 332eda14cbcSMatt Macy * can be safely freed outside the spin lock. All empty slabs are 333eda14cbcSMatt Macy * at the end of skc->skc_partial_list, therefore once a non-empty 334eda14cbcSMatt Macy * slab is found we can stop scanning. 335eda14cbcSMatt Macy */ 336eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 337eda14cbcSMatt Macy list_for_each_entry_safe_reverse(sks, m, 338eda14cbcSMatt Macy &skc->skc_partial_list, sks_list) { 339eda14cbcSMatt Macy 340eda14cbcSMatt Macy if (sks->sks_ref > 0) 341eda14cbcSMatt Macy break; 342eda14cbcSMatt Macy 343eda14cbcSMatt Macy spl_slab_free(sks, &sks_list, &sko_list); 344eda14cbcSMatt Macy } 345eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 346eda14cbcSMatt Macy 347eda14cbcSMatt Macy /* 348eda14cbcSMatt Macy * The following two loops ensure all the object destructors are run, 349eda14cbcSMatt Macy * and the slabs themselves are freed. This is all done outside the 350eda14cbcSMatt Macy * skc->skc_lock since this allows the destructor to sleep, and 351eda14cbcSMatt Macy * allows us to perform a conditional reschedule when a freeing a 352eda14cbcSMatt Macy * large number of objects and slabs back to the system. 353eda14cbcSMatt Macy */ 354eda14cbcSMatt Macy 355eda14cbcSMatt Macy list_for_each_entry_safe(sko, n, &sko_list, sko_list) { 356eda14cbcSMatt Macy ASSERT(sko->sko_magic == SKO_MAGIC); 357eda14cbcSMatt Macy } 358eda14cbcSMatt Macy 359eda14cbcSMatt Macy list_for_each_entry_safe(sks, m, &sks_list, sks_list) { 360eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 361eda14cbcSMatt Macy kv_free(skc, sks, skc->skc_slab_size); 362eda14cbcSMatt Macy } 363eda14cbcSMatt Macy } 364eda14cbcSMatt Macy 365eda14cbcSMatt Macy static spl_kmem_emergency_t * 366eda14cbcSMatt Macy spl_emergency_search(struct rb_root *root, void *obj) 367eda14cbcSMatt Macy { 368eda14cbcSMatt Macy struct rb_node *node = root->rb_node; 369eda14cbcSMatt Macy spl_kmem_emergency_t *ske; 370eda14cbcSMatt Macy unsigned long address = (unsigned long)obj; 371eda14cbcSMatt Macy 372eda14cbcSMatt Macy while (node) { 373eda14cbcSMatt Macy ske = container_of(node, spl_kmem_emergency_t, ske_node); 374eda14cbcSMatt Macy 375eda14cbcSMatt Macy if (address < ske->ske_obj) 376eda14cbcSMatt Macy node = node->rb_left; 377eda14cbcSMatt Macy else if (address > ske->ske_obj) 378eda14cbcSMatt Macy node = node->rb_right; 379eda14cbcSMatt Macy else 380eda14cbcSMatt Macy return (ske); 381eda14cbcSMatt Macy } 382eda14cbcSMatt Macy 383eda14cbcSMatt Macy return (NULL); 384eda14cbcSMatt Macy } 385eda14cbcSMatt Macy 386eda14cbcSMatt Macy static int 387eda14cbcSMatt Macy spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske) 388eda14cbcSMatt Macy { 389eda14cbcSMatt Macy struct rb_node **new = &(root->rb_node), *parent = NULL; 390eda14cbcSMatt Macy spl_kmem_emergency_t *ske_tmp; 391eda14cbcSMatt Macy unsigned long address = ske->ske_obj; 392eda14cbcSMatt Macy 393eda14cbcSMatt Macy while (*new) { 394eda14cbcSMatt Macy ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node); 395eda14cbcSMatt Macy 396eda14cbcSMatt Macy parent = *new; 397eda14cbcSMatt Macy if (address < ske_tmp->ske_obj) 398eda14cbcSMatt Macy new = &((*new)->rb_left); 399eda14cbcSMatt Macy else if (address > ske_tmp->ske_obj) 400eda14cbcSMatt Macy new = &((*new)->rb_right); 401eda14cbcSMatt Macy else 402eda14cbcSMatt Macy return (0); 403eda14cbcSMatt Macy } 404eda14cbcSMatt Macy 405eda14cbcSMatt Macy rb_link_node(&ske->ske_node, parent, new); 406eda14cbcSMatt Macy rb_insert_color(&ske->ske_node, root); 407eda14cbcSMatt Macy 408eda14cbcSMatt Macy return (1); 409eda14cbcSMatt Macy } 410eda14cbcSMatt Macy 411eda14cbcSMatt Macy /* 412eda14cbcSMatt Macy * Allocate a single emergency object and track it in a red black tree. 413eda14cbcSMatt Macy */ 414eda14cbcSMatt Macy static int 415eda14cbcSMatt Macy spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj) 416eda14cbcSMatt Macy { 417eda14cbcSMatt Macy gfp_t lflags = kmem_flags_convert(flags); 418eda14cbcSMatt Macy spl_kmem_emergency_t *ske; 419eda14cbcSMatt Macy int order = get_order(skc->skc_obj_size); 420eda14cbcSMatt Macy int empty; 421eda14cbcSMatt Macy 422eda14cbcSMatt Macy /* Last chance use a partial slab if one now exists */ 423eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 424eda14cbcSMatt Macy empty = list_empty(&skc->skc_partial_list); 425eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 426eda14cbcSMatt Macy if (!empty) 427eda14cbcSMatt Macy return (-EEXIST); 428eda14cbcSMatt Macy 429*ce4dcb97SMartin Matuska if (skc->skc_flags & KMC_RECLAIMABLE) 430*ce4dcb97SMartin Matuska lflags |= __GFP_RECLAIMABLE; 431eda14cbcSMatt Macy ske = kmalloc(sizeof (*ske), lflags); 432eda14cbcSMatt Macy if (ske == NULL) 433eda14cbcSMatt Macy return (-ENOMEM); 434eda14cbcSMatt Macy 435eda14cbcSMatt Macy ske->ske_obj = __get_free_pages(lflags, order); 436eda14cbcSMatt Macy if (ske->ske_obj == 0) { 437eda14cbcSMatt Macy kfree(ske); 438eda14cbcSMatt Macy return (-ENOMEM); 439eda14cbcSMatt Macy } 440eda14cbcSMatt Macy 441eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 442eda14cbcSMatt Macy empty = spl_emergency_insert(&skc->skc_emergency_tree, ske); 443eda14cbcSMatt Macy if (likely(empty)) { 444eda14cbcSMatt Macy skc->skc_obj_total++; 445eda14cbcSMatt Macy skc->skc_obj_emergency++; 446eda14cbcSMatt Macy if (skc->skc_obj_emergency > skc->skc_obj_emergency_max) 447eda14cbcSMatt Macy skc->skc_obj_emergency_max = skc->skc_obj_emergency; 448eda14cbcSMatt Macy } 449eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 450eda14cbcSMatt Macy 451eda14cbcSMatt Macy if (unlikely(!empty)) { 452eda14cbcSMatt Macy free_pages(ske->ske_obj, order); 453eda14cbcSMatt Macy kfree(ske); 454eda14cbcSMatt Macy return (-EINVAL); 455eda14cbcSMatt Macy } 456eda14cbcSMatt Macy 457eda14cbcSMatt Macy *obj = (void *)ske->ske_obj; 458eda14cbcSMatt Macy 459eda14cbcSMatt Macy return (0); 460eda14cbcSMatt Macy } 461eda14cbcSMatt Macy 462eda14cbcSMatt Macy /* 463eda14cbcSMatt Macy * Locate the passed object in the red black tree and free it. 464eda14cbcSMatt Macy */ 465eda14cbcSMatt Macy static int 466eda14cbcSMatt Macy spl_emergency_free(spl_kmem_cache_t *skc, void *obj) 467eda14cbcSMatt Macy { 468eda14cbcSMatt Macy spl_kmem_emergency_t *ske; 469eda14cbcSMatt Macy int order = get_order(skc->skc_obj_size); 470eda14cbcSMatt Macy 471eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 472eda14cbcSMatt Macy ske = spl_emergency_search(&skc->skc_emergency_tree, obj); 473eda14cbcSMatt Macy if (ske) { 474eda14cbcSMatt Macy rb_erase(&ske->ske_node, &skc->skc_emergency_tree); 475eda14cbcSMatt Macy skc->skc_obj_emergency--; 476eda14cbcSMatt Macy skc->skc_obj_total--; 477eda14cbcSMatt Macy } 478eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 479eda14cbcSMatt Macy 480eda14cbcSMatt Macy if (ske == NULL) 481eda14cbcSMatt Macy return (-ENOENT); 482eda14cbcSMatt Macy 483eda14cbcSMatt Macy free_pages(ske->ske_obj, order); 484eda14cbcSMatt Macy kfree(ske); 485eda14cbcSMatt Macy 486eda14cbcSMatt Macy return (0); 487eda14cbcSMatt Macy } 488eda14cbcSMatt Macy 489eda14cbcSMatt Macy /* 490eda14cbcSMatt Macy * Release objects from the per-cpu magazine back to their slab. The flush 491eda14cbcSMatt Macy * argument contains the max number of entries to remove from the magazine. 492eda14cbcSMatt Macy */ 493eda14cbcSMatt Macy static void 494eda14cbcSMatt Macy spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush) 495eda14cbcSMatt Macy { 496eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 497eda14cbcSMatt Macy 498eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 499eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 500eda14cbcSMatt Macy 501eda14cbcSMatt Macy int count = MIN(flush, skm->skm_avail); 502eda14cbcSMatt Macy for (int i = 0; i < count; i++) 503eda14cbcSMatt Macy spl_cache_shrink(skc, skm->skm_objs[i]); 504eda14cbcSMatt Macy 505eda14cbcSMatt Macy skm->skm_avail -= count; 506eda14cbcSMatt Macy memmove(skm->skm_objs, &(skm->skm_objs[count]), 507eda14cbcSMatt Macy sizeof (void *) * skm->skm_avail); 508eda14cbcSMatt Macy 509eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 510eda14cbcSMatt Macy } 511eda14cbcSMatt Macy 512eda14cbcSMatt Macy /* 513eda14cbcSMatt Macy * Size a slab based on the size of each aligned object plus spl_kmem_obj_t. 514eda14cbcSMatt Macy * When on-slab we want to target spl_kmem_cache_obj_per_slab. However, 515eda14cbcSMatt Macy * for very small objects we may end up with more than this so as not 51616038816SMartin Matuska * to waste space in the minimal allocation of a single page. 517eda14cbcSMatt Macy */ 518eda14cbcSMatt Macy static int 519eda14cbcSMatt Macy spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size) 520eda14cbcSMatt Macy { 521eda14cbcSMatt Macy uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs; 522eda14cbcSMatt Macy 523eda14cbcSMatt Macy sks_size = spl_sks_size(skc); 524eda14cbcSMatt Macy obj_size = spl_obj_size(skc); 525eda14cbcSMatt Macy max_size = (spl_kmem_cache_max_size * 1024 * 1024); 526eda14cbcSMatt Macy tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size); 527eda14cbcSMatt Macy 528eda14cbcSMatt Macy if (tgt_size <= max_size) { 529eda14cbcSMatt Macy tgt_objs = (tgt_size - sks_size) / obj_size; 530eda14cbcSMatt Macy } else { 531eda14cbcSMatt Macy tgt_objs = (max_size - sks_size) / obj_size; 532eda14cbcSMatt Macy tgt_size = (tgt_objs * obj_size) + sks_size; 533eda14cbcSMatt Macy } 534eda14cbcSMatt Macy 535eda14cbcSMatt Macy if (tgt_objs == 0) 536eda14cbcSMatt Macy return (-ENOSPC); 537eda14cbcSMatt Macy 538eda14cbcSMatt Macy *objs = tgt_objs; 539eda14cbcSMatt Macy *size = tgt_size; 540eda14cbcSMatt Macy 541eda14cbcSMatt Macy return (0); 542eda14cbcSMatt Macy } 543eda14cbcSMatt Macy 544eda14cbcSMatt Macy /* 545eda14cbcSMatt Macy * Make a guess at reasonable per-cpu magazine size based on the size of 546eda14cbcSMatt Macy * each object and the cost of caching N of them in each magazine. Long 547eda14cbcSMatt Macy * term this should really adapt based on an observed usage heuristic. 548eda14cbcSMatt Macy */ 549eda14cbcSMatt Macy static int 550eda14cbcSMatt Macy spl_magazine_size(spl_kmem_cache_t *skc) 551eda14cbcSMatt Macy { 552eda14cbcSMatt Macy uint32_t obj_size = spl_obj_size(skc); 553eda14cbcSMatt Macy int size; 554eda14cbcSMatt Macy 555eda14cbcSMatt Macy if (spl_kmem_cache_magazine_size > 0) 556eda14cbcSMatt Macy return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2)); 557eda14cbcSMatt Macy 558eda14cbcSMatt Macy /* Per-magazine sizes below assume a 4Kib page size */ 559eda14cbcSMatt Macy if (obj_size > (PAGE_SIZE * 256)) 560eda14cbcSMatt Macy size = 4; /* Minimum 4Mib per-magazine */ 561eda14cbcSMatt Macy else if (obj_size > (PAGE_SIZE * 32)) 562eda14cbcSMatt Macy size = 16; /* Minimum 2Mib per-magazine */ 563eda14cbcSMatt Macy else if (obj_size > (PAGE_SIZE)) 564eda14cbcSMatt Macy size = 64; /* Minimum 256Kib per-magazine */ 565eda14cbcSMatt Macy else if (obj_size > (PAGE_SIZE / 4)) 566eda14cbcSMatt Macy size = 128; /* Minimum 128Kib per-magazine */ 567eda14cbcSMatt Macy else 568eda14cbcSMatt Macy size = 256; 569eda14cbcSMatt Macy 570eda14cbcSMatt Macy return (size); 571eda14cbcSMatt Macy } 572eda14cbcSMatt Macy 573eda14cbcSMatt Macy /* 574eda14cbcSMatt Macy * Allocate a per-cpu magazine to associate with a specific core. 575eda14cbcSMatt Macy */ 576eda14cbcSMatt Macy static spl_kmem_magazine_t * 577eda14cbcSMatt Macy spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu) 578eda14cbcSMatt Macy { 579eda14cbcSMatt Macy spl_kmem_magazine_t *skm; 580eda14cbcSMatt Macy int size = sizeof (spl_kmem_magazine_t) + 581eda14cbcSMatt Macy sizeof (void *) * skc->skc_mag_size; 582eda14cbcSMatt Macy 583eda14cbcSMatt Macy skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu)); 584eda14cbcSMatt Macy if (skm) { 585eda14cbcSMatt Macy skm->skm_magic = SKM_MAGIC; 586eda14cbcSMatt Macy skm->skm_avail = 0; 587eda14cbcSMatt Macy skm->skm_size = skc->skc_mag_size; 588eda14cbcSMatt Macy skm->skm_refill = skc->skc_mag_refill; 589eda14cbcSMatt Macy skm->skm_cache = skc; 590eda14cbcSMatt Macy skm->skm_cpu = cpu; 591eda14cbcSMatt Macy } 592eda14cbcSMatt Macy 593eda14cbcSMatt Macy return (skm); 594eda14cbcSMatt Macy } 595eda14cbcSMatt Macy 596eda14cbcSMatt Macy /* 597eda14cbcSMatt Macy * Free a per-cpu magazine associated with a specific core. 598eda14cbcSMatt Macy */ 599eda14cbcSMatt Macy static void 600eda14cbcSMatt Macy spl_magazine_free(spl_kmem_magazine_t *skm) 601eda14cbcSMatt Macy { 602eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 603eda14cbcSMatt Macy ASSERT(skm->skm_avail == 0); 604eda14cbcSMatt Macy kfree(skm); 605eda14cbcSMatt Macy } 606eda14cbcSMatt Macy 607eda14cbcSMatt Macy /* 608eda14cbcSMatt Macy * Create all pre-cpu magazines of reasonable sizes. 609eda14cbcSMatt Macy */ 610eda14cbcSMatt Macy static int 611eda14cbcSMatt Macy spl_magazine_create(spl_kmem_cache_t *skc) 612eda14cbcSMatt Macy { 613eda14cbcSMatt Macy int i = 0; 614eda14cbcSMatt Macy 615eda14cbcSMatt Macy ASSERT((skc->skc_flags & KMC_SLAB) == 0); 616eda14cbcSMatt Macy 617eda14cbcSMatt Macy skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) * 618eda14cbcSMatt Macy num_possible_cpus(), kmem_flags_convert(KM_SLEEP)); 619eda14cbcSMatt Macy skc->skc_mag_size = spl_magazine_size(skc); 620eda14cbcSMatt Macy skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2; 621eda14cbcSMatt Macy 622eda14cbcSMatt Macy for_each_possible_cpu(i) { 623eda14cbcSMatt Macy skc->skc_mag[i] = spl_magazine_alloc(skc, i); 624eda14cbcSMatt Macy if (!skc->skc_mag[i]) { 625eda14cbcSMatt Macy for (i--; i >= 0; i--) 626eda14cbcSMatt Macy spl_magazine_free(skc->skc_mag[i]); 627eda14cbcSMatt Macy 628eda14cbcSMatt Macy kfree(skc->skc_mag); 629eda14cbcSMatt Macy return (-ENOMEM); 630eda14cbcSMatt Macy } 631eda14cbcSMatt Macy } 632eda14cbcSMatt Macy 633eda14cbcSMatt Macy return (0); 634eda14cbcSMatt Macy } 635eda14cbcSMatt Macy 636eda14cbcSMatt Macy /* 637eda14cbcSMatt Macy * Destroy all pre-cpu magazines. 638eda14cbcSMatt Macy */ 639eda14cbcSMatt Macy static void 640eda14cbcSMatt Macy spl_magazine_destroy(spl_kmem_cache_t *skc) 641eda14cbcSMatt Macy { 642eda14cbcSMatt Macy spl_kmem_magazine_t *skm; 643eda14cbcSMatt Macy int i = 0; 644eda14cbcSMatt Macy 645eda14cbcSMatt Macy ASSERT((skc->skc_flags & KMC_SLAB) == 0); 646eda14cbcSMatt Macy 647eda14cbcSMatt Macy for_each_possible_cpu(i) { 648eda14cbcSMatt Macy skm = skc->skc_mag[i]; 649eda14cbcSMatt Macy spl_cache_flush(skc, skm, skm->skm_avail); 650eda14cbcSMatt Macy spl_magazine_free(skm); 651eda14cbcSMatt Macy } 652eda14cbcSMatt Macy 653eda14cbcSMatt Macy kfree(skc->skc_mag); 654eda14cbcSMatt Macy } 655eda14cbcSMatt Macy 656eda14cbcSMatt Macy /* 657eda14cbcSMatt Macy * Create a object cache based on the following arguments: 658eda14cbcSMatt Macy * name cache name 659eda14cbcSMatt Macy * size cache object size 660eda14cbcSMatt Macy * align cache object alignment 661eda14cbcSMatt Macy * ctor cache object constructor 662eda14cbcSMatt Macy * dtor cache object destructor 663eda14cbcSMatt Macy * reclaim cache object reclaim 664eda14cbcSMatt Macy * priv cache private data for ctor/dtor/reclaim 665eda14cbcSMatt Macy * vmp unused must be NULL 666eda14cbcSMatt Macy * flags 667eda14cbcSMatt Macy * KMC_KVMEM Force kvmem backed SPL cache 668eda14cbcSMatt Macy * KMC_SLAB Force Linux slab backed cache 669eda14cbcSMatt Macy * KMC_NODEBUG Disable debugging (unsupported) 670*ce4dcb97SMartin Matuska * KMC_RECLAIMABLE Memory can be freed under pressure 671eda14cbcSMatt Macy */ 672eda14cbcSMatt Macy spl_kmem_cache_t * 673a0b956f5SMartin Matuska spl_kmem_cache_create(const char *name, size_t size, size_t align, 674eda14cbcSMatt Macy spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim, 675eda14cbcSMatt Macy void *priv, void *vmp, int flags) 676eda14cbcSMatt Macy { 677eda14cbcSMatt Macy gfp_t lflags = kmem_flags_convert(KM_SLEEP); 678eda14cbcSMatt Macy spl_kmem_cache_t *skc; 679eda14cbcSMatt Macy int rc; 680eda14cbcSMatt Macy 681eda14cbcSMatt Macy /* 682eda14cbcSMatt Macy * Unsupported flags 683eda14cbcSMatt Macy */ 684eda14cbcSMatt Macy ASSERT(vmp == NULL); 685eda14cbcSMatt Macy ASSERT(reclaim == NULL); 686eda14cbcSMatt Macy 687eda14cbcSMatt Macy might_sleep(); 688eda14cbcSMatt Macy 689eda14cbcSMatt Macy skc = kzalloc(sizeof (*skc), lflags); 690eda14cbcSMatt Macy if (skc == NULL) 691eda14cbcSMatt Macy return (NULL); 692eda14cbcSMatt Macy 693eda14cbcSMatt Macy skc->skc_magic = SKC_MAGIC; 694eda14cbcSMatt Macy skc->skc_name_size = strlen(name) + 1; 69515f0b8c3SMartin Matuska skc->skc_name = kmalloc(skc->skc_name_size, lflags); 696eda14cbcSMatt Macy if (skc->skc_name == NULL) { 697eda14cbcSMatt Macy kfree(skc); 698eda14cbcSMatt Macy return (NULL); 699eda14cbcSMatt Macy } 700be181ee2SMartin Matuska strlcpy(skc->skc_name, name, skc->skc_name_size); 701eda14cbcSMatt Macy 702eda14cbcSMatt Macy skc->skc_ctor = ctor; 703eda14cbcSMatt Macy skc->skc_dtor = dtor; 704eda14cbcSMatt Macy skc->skc_private = priv; 705eda14cbcSMatt Macy skc->skc_vmp = vmp; 706eda14cbcSMatt Macy skc->skc_linux_cache = NULL; 707eda14cbcSMatt Macy skc->skc_flags = flags; 708eda14cbcSMatt Macy skc->skc_obj_size = size; 709eda14cbcSMatt Macy skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN; 710eda14cbcSMatt Macy atomic_set(&skc->skc_ref, 0); 711eda14cbcSMatt Macy 712eda14cbcSMatt Macy INIT_LIST_HEAD(&skc->skc_list); 713eda14cbcSMatt Macy INIT_LIST_HEAD(&skc->skc_complete_list); 714eda14cbcSMatt Macy INIT_LIST_HEAD(&skc->skc_partial_list); 715eda14cbcSMatt Macy skc->skc_emergency_tree = RB_ROOT; 716eda14cbcSMatt Macy spin_lock_init(&skc->skc_lock); 717eda14cbcSMatt Macy init_waitqueue_head(&skc->skc_waitq); 718eda14cbcSMatt Macy skc->skc_slab_fail = 0; 719eda14cbcSMatt Macy skc->skc_slab_create = 0; 720eda14cbcSMatt Macy skc->skc_slab_destroy = 0; 721eda14cbcSMatt Macy skc->skc_slab_total = 0; 722eda14cbcSMatt Macy skc->skc_slab_alloc = 0; 723eda14cbcSMatt Macy skc->skc_slab_max = 0; 724eda14cbcSMatt Macy skc->skc_obj_total = 0; 725eda14cbcSMatt Macy skc->skc_obj_alloc = 0; 726eda14cbcSMatt Macy skc->skc_obj_max = 0; 727eda14cbcSMatt Macy skc->skc_obj_deadlock = 0; 728eda14cbcSMatt Macy skc->skc_obj_emergency = 0; 729eda14cbcSMatt Macy skc->skc_obj_emergency_max = 0; 730eda14cbcSMatt Macy 731eda14cbcSMatt Macy rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0, 732eda14cbcSMatt Macy GFP_KERNEL); 733eda14cbcSMatt Macy if (rc != 0) { 734eda14cbcSMatt Macy kfree(skc); 735eda14cbcSMatt Macy return (NULL); 736eda14cbcSMatt Macy } 737eda14cbcSMatt Macy 738eda14cbcSMatt Macy /* 739eda14cbcSMatt Macy * Verify the requested alignment restriction is sane. 740eda14cbcSMatt Macy */ 741eda14cbcSMatt Macy if (align) { 742eda14cbcSMatt Macy VERIFY(ISP2(align)); 743eda14cbcSMatt Macy VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); 744eda14cbcSMatt Macy VERIFY3U(align, <=, PAGE_SIZE); 745eda14cbcSMatt Macy skc->skc_obj_align = align; 746eda14cbcSMatt Macy } 747eda14cbcSMatt Macy 748eda14cbcSMatt Macy /* 749eda14cbcSMatt Macy * When no specific type of slab is requested (kmem, vmem, or 750eda14cbcSMatt Macy * linuxslab) then select a cache type based on the object size 751eda14cbcSMatt Macy * and default tunables. 752eda14cbcSMatt Macy */ 753eda14cbcSMatt Macy if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) { 754eda14cbcSMatt Macy if (spl_kmem_cache_slab_limit && 755eda14cbcSMatt Macy size <= (size_t)spl_kmem_cache_slab_limit) { 756eda14cbcSMatt Macy /* 757eda14cbcSMatt Macy * Objects smaller than spl_kmem_cache_slab_limit can 758eda14cbcSMatt Macy * use the Linux slab for better space-efficiency. 759eda14cbcSMatt Macy */ 760eda14cbcSMatt Macy skc->skc_flags |= KMC_SLAB; 761eda14cbcSMatt Macy } else { 762eda14cbcSMatt Macy /* 763eda14cbcSMatt Macy * All other objects are considered large and are 764eda14cbcSMatt Macy * placed on kvmem backed slabs. 765eda14cbcSMatt Macy */ 766eda14cbcSMatt Macy skc->skc_flags |= KMC_KVMEM; 767eda14cbcSMatt Macy } 768eda14cbcSMatt Macy } 769eda14cbcSMatt Macy 770eda14cbcSMatt Macy /* 771eda14cbcSMatt Macy * Given the type of slab allocate the required resources. 772eda14cbcSMatt Macy */ 773eda14cbcSMatt Macy if (skc->skc_flags & KMC_KVMEM) { 774eda14cbcSMatt Macy rc = spl_slab_size(skc, 775eda14cbcSMatt Macy &skc->skc_slab_objs, &skc->skc_slab_size); 776eda14cbcSMatt Macy if (rc) 777eda14cbcSMatt Macy goto out; 778eda14cbcSMatt Macy 779eda14cbcSMatt Macy rc = spl_magazine_create(skc); 780eda14cbcSMatt Macy if (rc) 781eda14cbcSMatt Macy goto out; 782eda14cbcSMatt Macy } else { 783eda14cbcSMatt Macy unsigned long slabflags = 0; 784eda14cbcSMatt Macy 78578ae60b4SMartin Matuska if (size > spl_kmem_cache_slab_limit) 786eda14cbcSMatt Macy goto out; 787eda14cbcSMatt Macy 788*ce4dcb97SMartin Matuska if (skc->skc_flags & KMC_RECLAIMABLE) 789*ce4dcb97SMartin Matuska slabflags |= SLAB_RECLAIM_ACCOUNT; 790*ce4dcb97SMartin Matuska 791eda14cbcSMatt Macy #if defined(SLAB_USERCOPY) 792eda14cbcSMatt Macy /* 793eda14cbcSMatt Macy * Required for PAX-enabled kernels if the slab is to be 794eda14cbcSMatt Macy * used for copying between user and kernel space. 795eda14cbcSMatt Macy */ 796eda14cbcSMatt Macy slabflags |= SLAB_USERCOPY; 797eda14cbcSMatt Macy #endif 798eda14cbcSMatt Macy 799eda14cbcSMatt Macy #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY) 800eda14cbcSMatt Macy /* 801eda14cbcSMatt Macy * Newer grsec patchset uses kmem_cache_create_usercopy() 802eda14cbcSMatt Macy * instead of SLAB_USERCOPY flag 803eda14cbcSMatt Macy */ 804eda14cbcSMatt Macy skc->skc_linux_cache = kmem_cache_create_usercopy( 805eda14cbcSMatt Macy skc->skc_name, size, align, slabflags, 0, size, NULL); 806eda14cbcSMatt Macy #else 807eda14cbcSMatt Macy skc->skc_linux_cache = kmem_cache_create( 808eda14cbcSMatt Macy skc->skc_name, size, align, slabflags, NULL); 809eda14cbcSMatt Macy #endif 81015f0b8c3SMartin Matuska if (skc->skc_linux_cache == NULL) 811eda14cbcSMatt Macy goto out; 812eda14cbcSMatt Macy } 813eda14cbcSMatt Macy 814eda14cbcSMatt Macy down_write(&spl_kmem_cache_sem); 815eda14cbcSMatt Macy list_add_tail(&skc->skc_list, &spl_kmem_cache_list); 816eda14cbcSMatt Macy up_write(&spl_kmem_cache_sem); 817eda14cbcSMatt Macy 818eda14cbcSMatt Macy return (skc); 819eda14cbcSMatt Macy out: 820eda14cbcSMatt Macy kfree(skc->skc_name); 821eda14cbcSMatt Macy percpu_counter_destroy(&skc->skc_linux_alloc); 822eda14cbcSMatt Macy kfree(skc); 823eda14cbcSMatt Macy return (NULL); 824eda14cbcSMatt Macy } 825eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_create); 826eda14cbcSMatt Macy 827eda14cbcSMatt Macy /* 828eda14cbcSMatt Macy * Register a move callback for cache defragmentation. 829eda14cbcSMatt Macy * XXX: Unimplemented but harmless to stub out for now. 830eda14cbcSMatt Macy */ 831eda14cbcSMatt Macy void 832eda14cbcSMatt Macy spl_kmem_cache_set_move(spl_kmem_cache_t *skc, 833eda14cbcSMatt Macy kmem_cbrc_t (move)(void *, void *, size_t, void *)) 834eda14cbcSMatt Macy { 835eda14cbcSMatt Macy ASSERT(move != NULL); 836eda14cbcSMatt Macy } 837eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_set_move); 838eda14cbcSMatt Macy 839eda14cbcSMatt Macy /* 840eda14cbcSMatt Macy * Destroy a cache and all objects associated with the cache. 841eda14cbcSMatt Macy */ 842eda14cbcSMatt Macy void 843eda14cbcSMatt Macy spl_kmem_cache_destroy(spl_kmem_cache_t *skc) 844eda14cbcSMatt Macy { 845eda14cbcSMatt Macy DECLARE_WAIT_QUEUE_HEAD(wq); 846eda14cbcSMatt Macy taskqid_t id; 847eda14cbcSMatt Macy 848eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 849eda14cbcSMatt Macy ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB)); 850eda14cbcSMatt Macy 851eda14cbcSMatt Macy down_write(&spl_kmem_cache_sem); 852eda14cbcSMatt Macy list_del_init(&skc->skc_list); 853eda14cbcSMatt Macy up_write(&spl_kmem_cache_sem); 854eda14cbcSMatt Macy 855eda14cbcSMatt Macy /* Cancel any and wait for any pending delayed tasks */ 856eda14cbcSMatt Macy VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 857eda14cbcSMatt Macy 858eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 859eda14cbcSMatt Macy id = skc->skc_taskqid; 860eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 861eda14cbcSMatt Macy 862eda14cbcSMatt Macy taskq_cancel_id(spl_kmem_cache_taskq, id); 863eda14cbcSMatt Macy 864eda14cbcSMatt Macy /* 865eda14cbcSMatt Macy * Wait until all current callers complete, this is mainly 866eda14cbcSMatt Macy * to catch the case where a low memory situation triggers a 867eda14cbcSMatt Macy * cache reaping action which races with this destroy. 868eda14cbcSMatt Macy */ 869eda14cbcSMatt Macy wait_event(wq, atomic_read(&skc->skc_ref) == 0); 870eda14cbcSMatt Macy 871eda14cbcSMatt Macy if (skc->skc_flags & KMC_KVMEM) { 872eda14cbcSMatt Macy spl_magazine_destroy(skc); 873eda14cbcSMatt Macy spl_slab_reclaim(skc); 874eda14cbcSMatt Macy } else { 875eda14cbcSMatt Macy ASSERT(skc->skc_flags & KMC_SLAB); 876eda14cbcSMatt Macy kmem_cache_destroy(skc->skc_linux_cache); 877eda14cbcSMatt Macy } 878eda14cbcSMatt Macy 879eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 880eda14cbcSMatt Macy 881eda14cbcSMatt Macy /* 882eda14cbcSMatt Macy * Validate there are no objects in use and free all the 883eda14cbcSMatt Macy * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. 884eda14cbcSMatt Macy */ 885eda14cbcSMatt Macy ASSERT3U(skc->skc_slab_alloc, ==, 0); 886eda14cbcSMatt Macy ASSERT3U(skc->skc_obj_alloc, ==, 0); 887eda14cbcSMatt Macy ASSERT3U(skc->skc_slab_total, ==, 0); 888eda14cbcSMatt Macy ASSERT3U(skc->skc_obj_total, ==, 0); 889eda14cbcSMatt Macy ASSERT3U(skc->skc_obj_emergency, ==, 0); 890eda14cbcSMatt Macy ASSERT(list_empty(&skc->skc_complete_list)); 891eda14cbcSMatt Macy 892eda14cbcSMatt Macy ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0); 893eda14cbcSMatt Macy percpu_counter_destroy(&skc->skc_linux_alloc); 894eda14cbcSMatt Macy 895eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 896eda14cbcSMatt Macy 897eda14cbcSMatt Macy kfree(skc->skc_name); 898eda14cbcSMatt Macy kfree(skc); 899eda14cbcSMatt Macy } 900eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_destroy); 901eda14cbcSMatt Macy 902eda14cbcSMatt Macy /* 903eda14cbcSMatt Macy * Allocate an object from a slab attached to the cache. This is used to 904eda14cbcSMatt Macy * repopulate the per-cpu magazine caches in batches when they run low. 905eda14cbcSMatt Macy */ 906eda14cbcSMatt Macy static void * 907eda14cbcSMatt Macy spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks) 908eda14cbcSMatt Macy { 909eda14cbcSMatt Macy spl_kmem_obj_t *sko; 910eda14cbcSMatt Macy 911eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 912eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 913eda14cbcSMatt Macy 914eda14cbcSMatt Macy sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list); 915eda14cbcSMatt Macy ASSERT(sko->sko_magic == SKO_MAGIC); 916eda14cbcSMatt Macy ASSERT(sko->sko_addr != NULL); 917eda14cbcSMatt Macy 918eda14cbcSMatt Macy /* Remove from sks_free_list */ 919eda14cbcSMatt Macy list_del_init(&sko->sko_list); 920eda14cbcSMatt Macy 921eda14cbcSMatt Macy sks->sks_age = jiffies; 922eda14cbcSMatt Macy sks->sks_ref++; 923eda14cbcSMatt Macy skc->skc_obj_alloc++; 924eda14cbcSMatt Macy 925eda14cbcSMatt Macy /* Track max obj usage statistics */ 926eda14cbcSMatt Macy if (skc->skc_obj_alloc > skc->skc_obj_max) 927eda14cbcSMatt Macy skc->skc_obj_max = skc->skc_obj_alloc; 928eda14cbcSMatt Macy 929eda14cbcSMatt Macy /* Track max slab usage statistics */ 930eda14cbcSMatt Macy if (sks->sks_ref == 1) { 931eda14cbcSMatt Macy skc->skc_slab_alloc++; 932eda14cbcSMatt Macy 933eda14cbcSMatt Macy if (skc->skc_slab_alloc > skc->skc_slab_max) 934eda14cbcSMatt Macy skc->skc_slab_max = skc->skc_slab_alloc; 935eda14cbcSMatt Macy } 936eda14cbcSMatt Macy 937eda14cbcSMatt Macy return (sko->sko_addr); 938eda14cbcSMatt Macy } 939eda14cbcSMatt Macy 940eda14cbcSMatt Macy /* 941eda14cbcSMatt Macy * Generic slab allocation function to run by the global work queues. 942eda14cbcSMatt Macy * It is responsible for allocating a new slab, linking it in to the list 943eda14cbcSMatt Macy * of partial slabs, and then waking any waiters. 944eda14cbcSMatt Macy */ 945eda14cbcSMatt Macy static int 946eda14cbcSMatt Macy __spl_cache_grow(spl_kmem_cache_t *skc, int flags) 947eda14cbcSMatt Macy { 948eda14cbcSMatt Macy spl_kmem_slab_t *sks; 949eda14cbcSMatt Macy 950eda14cbcSMatt Macy fstrans_cookie_t cookie = spl_fstrans_mark(); 951eda14cbcSMatt Macy sks = spl_slab_alloc(skc, flags); 952eda14cbcSMatt Macy spl_fstrans_unmark(cookie); 953eda14cbcSMatt Macy 954eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 955eda14cbcSMatt Macy if (sks) { 956eda14cbcSMatt Macy skc->skc_slab_total++; 957eda14cbcSMatt Macy skc->skc_obj_total += sks->sks_objs; 958eda14cbcSMatt Macy list_add_tail(&sks->sks_list, &skc->skc_partial_list); 959eda14cbcSMatt Macy 960eda14cbcSMatt Macy smp_mb__before_atomic(); 961eda14cbcSMatt Macy clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 962eda14cbcSMatt Macy smp_mb__after_atomic(); 963eda14cbcSMatt Macy } 964eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 965eda14cbcSMatt Macy 966eda14cbcSMatt Macy return (sks == NULL ? -ENOMEM : 0); 967eda14cbcSMatt Macy } 968eda14cbcSMatt Macy 969eda14cbcSMatt Macy static void 970eda14cbcSMatt Macy spl_cache_grow_work(void *data) 971eda14cbcSMatt Macy { 972eda14cbcSMatt Macy spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data; 973eda14cbcSMatt Macy spl_kmem_cache_t *skc = ska->ska_cache; 974eda14cbcSMatt Macy 975eda14cbcSMatt Macy int error = __spl_cache_grow(skc, ska->ska_flags); 976eda14cbcSMatt Macy 977eda14cbcSMatt Macy atomic_dec(&skc->skc_ref); 978eda14cbcSMatt Macy smp_mb__before_atomic(); 979eda14cbcSMatt Macy clear_bit(KMC_BIT_GROWING, &skc->skc_flags); 980eda14cbcSMatt Macy smp_mb__after_atomic(); 981eda14cbcSMatt Macy if (error == 0) 982eda14cbcSMatt Macy wake_up_all(&skc->skc_waitq); 983eda14cbcSMatt Macy 984eda14cbcSMatt Macy kfree(ska); 985eda14cbcSMatt Macy } 986eda14cbcSMatt Macy 987eda14cbcSMatt Macy /* 988eda14cbcSMatt Macy * Returns non-zero when a new slab should be available. 989eda14cbcSMatt Macy */ 990eda14cbcSMatt Macy static int 991eda14cbcSMatt Macy spl_cache_grow_wait(spl_kmem_cache_t *skc) 992eda14cbcSMatt Macy { 993eda14cbcSMatt Macy return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags)); 994eda14cbcSMatt Macy } 995eda14cbcSMatt Macy 996eda14cbcSMatt Macy /* 997eda14cbcSMatt Macy * No available objects on any slabs, create a new slab. Note that this 998eda14cbcSMatt Macy * functionality is disabled for KMC_SLAB caches which are backed by the 999eda14cbcSMatt Macy * Linux slab. 1000eda14cbcSMatt Macy */ 1001eda14cbcSMatt Macy static int 1002eda14cbcSMatt Macy spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj) 1003eda14cbcSMatt Macy { 1004eda14cbcSMatt Macy int remaining, rc = 0; 1005eda14cbcSMatt Macy 1006eda14cbcSMatt Macy ASSERT0(flags & ~KM_PUBLIC_MASK); 1007eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1008eda14cbcSMatt Macy ASSERT((skc->skc_flags & KMC_SLAB) == 0); 10094e8d558cSMartin Matuska 1010eda14cbcSMatt Macy *obj = NULL; 1011eda14cbcSMatt Macy 1012eda14cbcSMatt Macy /* 10134e8d558cSMartin Matuska * Since we can't sleep attempt an emergency allocation to satisfy 10144e8d558cSMartin Matuska * the request. The only alterative is to fail the allocation but 10154e8d558cSMartin Matuska * it's preferable try. The use of KM_NOSLEEP is expected to be rare. 10164e8d558cSMartin Matuska */ 10174e8d558cSMartin Matuska if (flags & KM_NOSLEEP) 10184e8d558cSMartin Matuska return (spl_emergency_alloc(skc, flags, obj)); 10194e8d558cSMartin Matuska 10204e8d558cSMartin Matuska might_sleep(); 10214e8d558cSMartin Matuska 10224e8d558cSMartin Matuska /* 1023eda14cbcSMatt Macy * Before allocating a new slab wait for any reaping to complete and 1024eda14cbcSMatt Macy * then return so the local magazine can be rechecked for new objects. 1025eda14cbcSMatt Macy */ 1026eda14cbcSMatt Macy if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) { 1027eda14cbcSMatt Macy rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING, 1028eda14cbcSMatt Macy TASK_UNINTERRUPTIBLE); 1029eda14cbcSMatt Macy return (rc ? rc : -EAGAIN); 1030eda14cbcSMatt Macy } 1031eda14cbcSMatt Macy 1032eda14cbcSMatt Macy /* 1033eda14cbcSMatt Macy * Note: It would be nice to reduce the overhead of context switch 1034eda14cbcSMatt Macy * and improve NUMA locality, by trying to allocate a new slab in the 1035eda14cbcSMatt Macy * current process context with KM_NOSLEEP flag. 1036eda14cbcSMatt Macy * 1037eda14cbcSMatt Macy * However, this can't be applied to vmem/kvmem due to a bug that 1038eda14cbcSMatt Macy * spl_vmalloc() doesn't honor gfp flags in page table allocation. 1039eda14cbcSMatt Macy */ 1040eda14cbcSMatt Macy 1041eda14cbcSMatt Macy /* 1042eda14cbcSMatt Macy * This is handled by dispatching a work request to the global work 1043eda14cbcSMatt Macy * queue. This allows us to asynchronously allocate a new slab while 1044eda14cbcSMatt Macy * retaining the ability to safely fall back to a smaller synchronous 1045eda14cbcSMatt Macy * allocations to ensure forward progress is always maintained. 1046eda14cbcSMatt Macy */ 1047eda14cbcSMatt Macy if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) { 1048eda14cbcSMatt Macy spl_kmem_alloc_t *ska; 1049eda14cbcSMatt Macy 1050eda14cbcSMatt Macy ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags)); 1051eda14cbcSMatt Macy if (ska == NULL) { 1052eda14cbcSMatt Macy clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags); 1053eda14cbcSMatt Macy smp_mb__after_atomic(); 1054eda14cbcSMatt Macy wake_up_all(&skc->skc_waitq); 1055eda14cbcSMatt Macy return (-ENOMEM); 1056eda14cbcSMatt Macy } 1057eda14cbcSMatt Macy 1058eda14cbcSMatt Macy atomic_inc(&skc->skc_ref); 1059eda14cbcSMatt Macy ska->ska_cache = skc; 1060eda14cbcSMatt Macy ska->ska_flags = flags; 1061eda14cbcSMatt Macy taskq_init_ent(&ska->ska_tqe); 1062eda14cbcSMatt Macy taskq_dispatch_ent(spl_kmem_cache_taskq, 1063eda14cbcSMatt Macy spl_cache_grow_work, ska, 0, &ska->ska_tqe); 1064eda14cbcSMatt Macy } 1065eda14cbcSMatt Macy 1066eda14cbcSMatt Macy /* 1067eda14cbcSMatt Macy * The goal here is to only detect the rare case where a virtual slab 1068eda14cbcSMatt Macy * allocation has deadlocked. We must be careful to minimize the use 1069eda14cbcSMatt Macy * of emergency objects which are more expensive to track. Therefore, 1070eda14cbcSMatt Macy * we set a very long timeout for the asynchronous allocation and if 1071eda14cbcSMatt Macy * the timeout is reached the cache is flagged as deadlocked. From 1072eda14cbcSMatt Macy * this point only new emergency objects will be allocated until the 1073eda14cbcSMatt Macy * asynchronous allocation completes and clears the deadlocked flag. 1074eda14cbcSMatt Macy */ 1075eda14cbcSMatt Macy if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) { 1076eda14cbcSMatt Macy rc = spl_emergency_alloc(skc, flags, obj); 1077eda14cbcSMatt Macy } else { 1078eda14cbcSMatt Macy remaining = wait_event_timeout(skc->skc_waitq, 1079eda14cbcSMatt Macy spl_cache_grow_wait(skc), HZ / 10); 1080eda14cbcSMatt Macy 1081eda14cbcSMatt Macy if (!remaining) { 1082eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 1083eda14cbcSMatt Macy if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) { 1084eda14cbcSMatt Macy set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 1085eda14cbcSMatt Macy skc->skc_obj_deadlock++; 1086eda14cbcSMatt Macy } 1087eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 1088eda14cbcSMatt Macy } 1089eda14cbcSMatt Macy 1090eda14cbcSMatt Macy rc = -ENOMEM; 1091eda14cbcSMatt Macy } 1092eda14cbcSMatt Macy 1093eda14cbcSMatt Macy return (rc); 1094eda14cbcSMatt Macy } 1095eda14cbcSMatt Macy 1096eda14cbcSMatt Macy /* 1097eda14cbcSMatt Macy * Refill a per-cpu magazine with objects from the slabs for this cache. 1098eda14cbcSMatt Macy * Ideally the magazine can be repopulated using existing objects which have 1099eda14cbcSMatt Macy * been released, however if we are unable to locate enough free objects new 1100eda14cbcSMatt Macy * slabs of objects will be created. On success NULL is returned, otherwise 1101eda14cbcSMatt Macy * the address of a single emergency object is returned for use by the caller. 1102eda14cbcSMatt Macy */ 1103eda14cbcSMatt Macy static void * 1104eda14cbcSMatt Macy spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags) 1105eda14cbcSMatt Macy { 1106eda14cbcSMatt Macy spl_kmem_slab_t *sks; 1107eda14cbcSMatt Macy int count = 0, rc, refill; 1108eda14cbcSMatt Macy void *obj = NULL; 1109eda14cbcSMatt Macy 1110eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1111eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 1112eda14cbcSMatt Macy 1113eda14cbcSMatt Macy refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail); 1114eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 1115eda14cbcSMatt Macy 1116eda14cbcSMatt Macy while (refill > 0) { 1117eda14cbcSMatt Macy /* No slabs available we may need to grow the cache */ 1118eda14cbcSMatt Macy if (list_empty(&skc->skc_partial_list)) { 1119eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 1120eda14cbcSMatt Macy 1121eda14cbcSMatt Macy local_irq_enable(); 1122eda14cbcSMatt Macy rc = spl_cache_grow(skc, flags, &obj); 1123eda14cbcSMatt Macy local_irq_disable(); 1124eda14cbcSMatt Macy 1125eda14cbcSMatt Macy /* Emergency object for immediate use by caller */ 1126eda14cbcSMatt Macy if (rc == 0 && obj != NULL) 1127eda14cbcSMatt Macy return (obj); 1128eda14cbcSMatt Macy 1129eda14cbcSMatt Macy if (rc) 1130eda14cbcSMatt Macy goto out; 1131eda14cbcSMatt Macy 1132eda14cbcSMatt Macy /* Rescheduled to different CPU skm is not local */ 1133eda14cbcSMatt Macy if (skm != skc->skc_mag[smp_processor_id()]) 1134eda14cbcSMatt Macy goto out; 1135eda14cbcSMatt Macy 1136eda14cbcSMatt Macy /* 1137eda14cbcSMatt Macy * Potentially rescheduled to the same CPU but 1138eda14cbcSMatt Macy * allocations may have occurred from this CPU while 1139eda14cbcSMatt Macy * we were sleeping so recalculate max refill. 1140eda14cbcSMatt Macy */ 1141eda14cbcSMatt Macy refill = MIN(refill, skm->skm_size - skm->skm_avail); 1142eda14cbcSMatt Macy 1143eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 1144eda14cbcSMatt Macy continue; 1145eda14cbcSMatt Macy } 1146eda14cbcSMatt Macy 1147eda14cbcSMatt Macy /* Grab the next available slab */ 1148eda14cbcSMatt Macy sks = list_entry((&skc->skc_partial_list)->next, 1149eda14cbcSMatt Macy spl_kmem_slab_t, sks_list); 1150eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 1151eda14cbcSMatt Macy ASSERT(sks->sks_ref < sks->sks_objs); 1152eda14cbcSMatt Macy ASSERT(!list_empty(&sks->sks_free_list)); 1153eda14cbcSMatt Macy 1154eda14cbcSMatt Macy /* 1155eda14cbcSMatt Macy * Consume as many objects as needed to refill the requested 1156eda14cbcSMatt Macy * cache. We must also be careful not to overfill it. 1157eda14cbcSMatt Macy */ 1158eda14cbcSMatt Macy while (sks->sks_ref < sks->sks_objs && refill-- > 0 && 1159eda14cbcSMatt Macy ++count) { 1160eda14cbcSMatt Macy ASSERT(skm->skm_avail < skm->skm_size); 1161eda14cbcSMatt Macy ASSERT(count < skm->skm_size); 1162eda14cbcSMatt Macy skm->skm_objs[skm->skm_avail++] = 1163eda14cbcSMatt Macy spl_cache_obj(skc, sks); 1164eda14cbcSMatt Macy } 1165eda14cbcSMatt Macy 1166eda14cbcSMatt Macy /* Move slab to skc_complete_list when full */ 1167eda14cbcSMatt Macy if (sks->sks_ref == sks->sks_objs) { 1168eda14cbcSMatt Macy list_del(&sks->sks_list); 1169eda14cbcSMatt Macy list_add(&sks->sks_list, &skc->skc_complete_list); 1170eda14cbcSMatt Macy } 1171eda14cbcSMatt Macy } 1172eda14cbcSMatt Macy 1173eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 1174eda14cbcSMatt Macy out: 1175eda14cbcSMatt Macy return (NULL); 1176eda14cbcSMatt Macy } 1177eda14cbcSMatt Macy 1178eda14cbcSMatt Macy /* 1179eda14cbcSMatt Macy * Release an object back to the slab from which it came. 1180eda14cbcSMatt Macy */ 1181eda14cbcSMatt Macy static void 1182eda14cbcSMatt Macy spl_cache_shrink(spl_kmem_cache_t *skc, void *obj) 1183eda14cbcSMatt Macy { 1184eda14cbcSMatt Macy spl_kmem_slab_t *sks = NULL; 1185eda14cbcSMatt Macy spl_kmem_obj_t *sko = NULL; 1186eda14cbcSMatt Macy 1187eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1188eda14cbcSMatt Macy 1189eda14cbcSMatt Macy sko = spl_sko_from_obj(skc, obj); 1190eda14cbcSMatt Macy ASSERT(sko->sko_magic == SKO_MAGIC); 1191eda14cbcSMatt Macy sks = sko->sko_slab; 1192eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 1193eda14cbcSMatt Macy ASSERT(sks->sks_cache == skc); 1194eda14cbcSMatt Macy list_add(&sko->sko_list, &sks->sks_free_list); 1195eda14cbcSMatt Macy 1196eda14cbcSMatt Macy sks->sks_age = jiffies; 1197eda14cbcSMatt Macy sks->sks_ref--; 1198eda14cbcSMatt Macy skc->skc_obj_alloc--; 1199eda14cbcSMatt Macy 1200eda14cbcSMatt Macy /* 1201eda14cbcSMatt Macy * Move slab to skc_partial_list when no longer full. Slabs 1202eda14cbcSMatt Macy * are added to the head to keep the partial list is quasi-full 1203eda14cbcSMatt Macy * sorted order. Fuller at the head, emptier at the tail. 1204eda14cbcSMatt Macy */ 1205eda14cbcSMatt Macy if (sks->sks_ref == (sks->sks_objs - 1)) { 1206eda14cbcSMatt Macy list_del(&sks->sks_list); 1207eda14cbcSMatt Macy list_add(&sks->sks_list, &skc->skc_partial_list); 1208eda14cbcSMatt Macy } 1209eda14cbcSMatt Macy 1210eda14cbcSMatt Macy /* 1211eda14cbcSMatt Macy * Move empty slabs to the end of the partial list so 1212eda14cbcSMatt Macy * they can be easily found and freed during reclamation. 1213eda14cbcSMatt Macy */ 1214eda14cbcSMatt Macy if (sks->sks_ref == 0) { 1215eda14cbcSMatt Macy list_del(&sks->sks_list); 1216eda14cbcSMatt Macy list_add_tail(&sks->sks_list, &skc->skc_partial_list); 1217eda14cbcSMatt Macy skc->skc_slab_alloc--; 1218eda14cbcSMatt Macy } 1219eda14cbcSMatt Macy } 1220eda14cbcSMatt Macy 1221eda14cbcSMatt Macy /* 1222eda14cbcSMatt Macy * Allocate an object from the per-cpu magazine, or if the magazine 1223eda14cbcSMatt Macy * is empty directly allocate from a slab and repopulate the magazine. 1224eda14cbcSMatt Macy */ 1225eda14cbcSMatt Macy void * 1226eda14cbcSMatt Macy spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags) 1227eda14cbcSMatt Macy { 1228eda14cbcSMatt Macy spl_kmem_magazine_t *skm; 1229eda14cbcSMatt Macy void *obj = NULL; 1230eda14cbcSMatt Macy 1231eda14cbcSMatt Macy ASSERT0(flags & ~KM_PUBLIC_MASK); 1232eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1233eda14cbcSMatt Macy ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1234eda14cbcSMatt Macy 1235eda14cbcSMatt Macy /* 1236eda14cbcSMatt Macy * Allocate directly from a Linux slab. All optimizations are left 1237eda14cbcSMatt Macy * to the underlying cache we only need to guarantee that KM_SLEEP 1238eda14cbcSMatt Macy * callers will never fail. 1239eda14cbcSMatt Macy */ 1240eda14cbcSMatt Macy if (skc->skc_flags & KMC_SLAB) { 1241eda14cbcSMatt Macy struct kmem_cache *slc = skc->skc_linux_cache; 1242eda14cbcSMatt Macy do { 1243eda14cbcSMatt Macy obj = kmem_cache_alloc(slc, kmem_flags_convert(flags)); 1244eda14cbcSMatt Macy } while ((obj == NULL) && !(flags & KM_NOSLEEP)); 1245eda14cbcSMatt Macy 1246eda14cbcSMatt Macy if (obj != NULL) { 1247eda14cbcSMatt Macy /* 1248eda14cbcSMatt Macy * Even though we leave everything up to the 1249eda14cbcSMatt Macy * underlying cache we still keep track of 1250eda14cbcSMatt Macy * how many objects we've allocated in it for 1251eda14cbcSMatt Macy * better debuggability. 1252eda14cbcSMatt Macy */ 1253eda14cbcSMatt Macy percpu_counter_inc(&skc->skc_linux_alloc); 1254eda14cbcSMatt Macy } 1255eda14cbcSMatt Macy goto ret; 1256eda14cbcSMatt Macy } 1257eda14cbcSMatt Macy 1258eda14cbcSMatt Macy local_irq_disable(); 1259eda14cbcSMatt Macy 1260eda14cbcSMatt Macy restart: 1261eda14cbcSMatt Macy /* 1262eda14cbcSMatt Macy * Safe to update per-cpu structure without lock, but 1263eda14cbcSMatt Macy * in the restart case we must be careful to reacquire 1264eda14cbcSMatt Macy * the local magazine since this may have changed 1265eda14cbcSMatt Macy * when we need to grow the cache. 1266eda14cbcSMatt Macy */ 1267eda14cbcSMatt Macy skm = skc->skc_mag[smp_processor_id()]; 1268eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 1269eda14cbcSMatt Macy 1270eda14cbcSMatt Macy if (likely(skm->skm_avail)) { 1271eda14cbcSMatt Macy /* Object available in CPU cache, use it */ 1272eda14cbcSMatt Macy obj = skm->skm_objs[--skm->skm_avail]; 1273eda14cbcSMatt Macy } else { 1274eda14cbcSMatt Macy obj = spl_cache_refill(skc, skm, flags); 1275eda14cbcSMatt Macy if ((obj == NULL) && !(flags & KM_NOSLEEP)) 1276eda14cbcSMatt Macy goto restart; 1277eda14cbcSMatt Macy 1278eda14cbcSMatt Macy local_irq_enable(); 1279eda14cbcSMatt Macy goto ret; 1280eda14cbcSMatt Macy } 1281eda14cbcSMatt Macy 1282eda14cbcSMatt Macy local_irq_enable(); 1283eda14cbcSMatt Macy ASSERT(obj); 1284eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 1285eda14cbcSMatt Macy 1286eda14cbcSMatt Macy ret: 1287eda14cbcSMatt Macy /* Pre-emptively migrate object to CPU L1 cache */ 1288eda14cbcSMatt Macy if (obj) { 1289eda14cbcSMatt Macy if (obj && skc->skc_ctor) 1290eda14cbcSMatt Macy skc->skc_ctor(obj, skc->skc_private, flags); 1291eda14cbcSMatt Macy else 1292eda14cbcSMatt Macy prefetchw(obj); 1293eda14cbcSMatt Macy } 1294eda14cbcSMatt Macy 1295eda14cbcSMatt Macy return (obj); 1296eda14cbcSMatt Macy } 1297eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_alloc); 1298eda14cbcSMatt Macy 1299eda14cbcSMatt Macy /* 1300eda14cbcSMatt Macy * Free an object back to the local per-cpu magazine, there is no 1301eda14cbcSMatt Macy * guarantee that this is the same magazine the object was originally 1302eda14cbcSMatt Macy * allocated from. We may need to flush entire from the magazine 1303eda14cbcSMatt Macy * back to the slabs to make space. 1304eda14cbcSMatt Macy */ 1305eda14cbcSMatt Macy void 1306eda14cbcSMatt Macy spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj) 1307eda14cbcSMatt Macy { 1308eda14cbcSMatt Macy spl_kmem_magazine_t *skm; 1309eda14cbcSMatt Macy unsigned long flags; 1310eda14cbcSMatt Macy int do_reclaim = 0; 1311eda14cbcSMatt Macy int do_emergency = 0; 1312eda14cbcSMatt Macy 1313eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1314eda14cbcSMatt Macy ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1315eda14cbcSMatt Macy 1316eda14cbcSMatt Macy /* 1317eda14cbcSMatt Macy * Run the destructor 1318eda14cbcSMatt Macy */ 1319eda14cbcSMatt Macy if (skc->skc_dtor) 1320eda14cbcSMatt Macy skc->skc_dtor(obj, skc->skc_private); 1321eda14cbcSMatt Macy 1322eda14cbcSMatt Macy /* 1323eda14cbcSMatt Macy * Free the object from the Linux underlying Linux slab. 1324eda14cbcSMatt Macy */ 1325eda14cbcSMatt Macy if (skc->skc_flags & KMC_SLAB) { 1326eda14cbcSMatt Macy kmem_cache_free(skc->skc_linux_cache, obj); 1327eda14cbcSMatt Macy percpu_counter_dec(&skc->skc_linux_alloc); 1328eda14cbcSMatt Macy return; 1329eda14cbcSMatt Macy } 1330eda14cbcSMatt Macy 1331eda14cbcSMatt Macy /* 1332eda14cbcSMatt Macy * While a cache has outstanding emergency objects all freed objects 1333eda14cbcSMatt Macy * must be checked. However, since emergency objects will never use 1334eda14cbcSMatt Macy * a virtual address these objects can be safely excluded as an 1335eda14cbcSMatt Macy * optimization. 1336eda14cbcSMatt Macy */ 1337eda14cbcSMatt Macy if (!is_vmalloc_addr(obj)) { 1338eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 1339eda14cbcSMatt Macy do_emergency = (skc->skc_obj_emergency > 0); 1340eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 1341eda14cbcSMatt Macy 1342eda14cbcSMatt Macy if (do_emergency && (spl_emergency_free(skc, obj) == 0)) 1343eda14cbcSMatt Macy return; 1344eda14cbcSMatt Macy } 1345eda14cbcSMatt Macy 1346eda14cbcSMatt Macy local_irq_save(flags); 1347eda14cbcSMatt Macy 1348eda14cbcSMatt Macy /* 1349eda14cbcSMatt Macy * Safe to update per-cpu structure without lock, but 1350eda14cbcSMatt Macy * no remote memory allocation tracking is being performed 1351eda14cbcSMatt Macy * it is entirely possible to allocate an object from one 1352eda14cbcSMatt Macy * CPU cache and return it to another. 1353eda14cbcSMatt Macy */ 1354eda14cbcSMatt Macy skm = skc->skc_mag[smp_processor_id()]; 1355eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 1356eda14cbcSMatt Macy 1357eda14cbcSMatt Macy /* 1358eda14cbcSMatt Macy * Per-CPU cache full, flush it to make space for this object, 1359eda14cbcSMatt Macy * this may result in an empty slab which can be reclaimed once 1360eda14cbcSMatt Macy * interrupts are re-enabled. 1361eda14cbcSMatt Macy */ 1362eda14cbcSMatt Macy if (unlikely(skm->skm_avail >= skm->skm_size)) { 1363eda14cbcSMatt Macy spl_cache_flush(skc, skm, skm->skm_refill); 1364eda14cbcSMatt Macy do_reclaim = 1; 1365eda14cbcSMatt Macy } 1366eda14cbcSMatt Macy 1367eda14cbcSMatt Macy /* Available space in cache, use it */ 1368eda14cbcSMatt Macy skm->skm_objs[skm->skm_avail++] = obj; 1369eda14cbcSMatt Macy 1370eda14cbcSMatt Macy local_irq_restore(flags); 1371eda14cbcSMatt Macy 1372eda14cbcSMatt Macy if (do_reclaim) 1373eda14cbcSMatt Macy spl_slab_reclaim(skc); 1374eda14cbcSMatt Macy } 1375eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_free); 1376eda14cbcSMatt Macy 1377eda14cbcSMatt Macy /* 1378eda14cbcSMatt Macy * Depending on how many and which objects are released it may simply 1379eda14cbcSMatt Macy * repopulate the local magazine which will then need to age-out. Objects 1380eda14cbcSMatt Macy * which cannot fit in the magazine will be released back to their slabs 1381eda14cbcSMatt Macy * which will also need to age out before being released. This is all just 1382eda14cbcSMatt Macy * best effort and we do not want to thrash creating and destroying slabs. 1383eda14cbcSMatt Macy */ 1384eda14cbcSMatt Macy void 1385eda14cbcSMatt Macy spl_kmem_cache_reap_now(spl_kmem_cache_t *skc) 1386eda14cbcSMatt Macy { 1387eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1388eda14cbcSMatt Macy ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1389eda14cbcSMatt Macy 1390eda14cbcSMatt Macy if (skc->skc_flags & KMC_SLAB) 1391eda14cbcSMatt Macy return; 1392eda14cbcSMatt Macy 1393eda14cbcSMatt Macy atomic_inc(&skc->skc_ref); 1394eda14cbcSMatt Macy 1395eda14cbcSMatt Macy /* 1396eda14cbcSMatt Macy * Prevent concurrent cache reaping when contended. 1397eda14cbcSMatt Macy */ 1398eda14cbcSMatt Macy if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) 1399eda14cbcSMatt Macy goto out; 1400eda14cbcSMatt Macy 1401eda14cbcSMatt Macy /* Reclaim from the magazine and free all now empty slabs. */ 1402eda14cbcSMatt Macy unsigned long irq_flags; 1403eda14cbcSMatt Macy local_irq_save(irq_flags); 1404eda14cbcSMatt Macy spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()]; 1405eda14cbcSMatt Macy spl_cache_flush(skc, skm, skm->skm_avail); 1406eda14cbcSMatt Macy local_irq_restore(irq_flags); 1407eda14cbcSMatt Macy 1408eda14cbcSMatt Macy spl_slab_reclaim(skc); 1409eda14cbcSMatt Macy clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags); 1410eda14cbcSMatt Macy smp_mb__after_atomic(); 1411eda14cbcSMatt Macy wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING); 1412eda14cbcSMatt Macy out: 1413eda14cbcSMatt Macy atomic_dec(&skc->skc_ref); 1414eda14cbcSMatt Macy } 1415eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_reap_now); 1416eda14cbcSMatt Macy 1417eda14cbcSMatt Macy /* 1418eda14cbcSMatt Macy * This is stubbed out for code consistency with other platforms. There 1419eda14cbcSMatt Macy * is existing logic to prevent concurrent reaping so while this is ugly 1420eda14cbcSMatt Macy * it should do no harm. 1421eda14cbcSMatt Macy */ 1422eda14cbcSMatt Macy int 1423716fd348SMartin Matuska spl_kmem_cache_reap_active(void) 1424eda14cbcSMatt Macy { 1425eda14cbcSMatt Macy return (0); 1426eda14cbcSMatt Macy } 1427eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_reap_active); 1428eda14cbcSMatt Macy 1429eda14cbcSMatt Macy /* 1430eda14cbcSMatt Macy * Reap all free slabs from all registered caches. 1431eda14cbcSMatt Macy */ 1432eda14cbcSMatt Macy void 1433eda14cbcSMatt Macy spl_kmem_reap(void) 1434eda14cbcSMatt Macy { 1435eda14cbcSMatt Macy spl_kmem_cache_t *skc = NULL; 1436eda14cbcSMatt Macy 1437eda14cbcSMatt Macy down_read(&spl_kmem_cache_sem); 1438eda14cbcSMatt Macy list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) { 1439eda14cbcSMatt Macy spl_kmem_cache_reap_now(skc); 1440eda14cbcSMatt Macy } 1441eda14cbcSMatt Macy up_read(&spl_kmem_cache_sem); 1442eda14cbcSMatt Macy } 1443eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_reap); 1444eda14cbcSMatt Macy 1445eda14cbcSMatt Macy int 1446eda14cbcSMatt Macy spl_kmem_cache_init(void) 1447eda14cbcSMatt Macy { 1448eda14cbcSMatt Macy init_rwsem(&spl_kmem_cache_sem); 1449eda14cbcSMatt Macy INIT_LIST_HEAD(&spl_kmem_cache_list); 1450eda14cbcSMatt Macy spl_kmem_cache_taskq = taskq_create("spl_kmem_cache", 1451eda14cbcSMatt Macy spl_kmem_cache_kmem_threads, maxclsyspri, 1452eda14cbcSMatt Macy spl_kmem_cache_kmem_threads * 8, INT_MAX, 1453eda14cbcSMatt Macy TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 1454eda14cbcSMatt Macy 1455c7046f76SMartin Matuska if (spl_kmem_cache_taskq == NULL) 1456c7046f76SMartin Matuska return (-ENOMEM); 1457c7046f76SMartin Matuska 1458eda14cbcSMatt Macy return (0); 1459eda14cbcSMatt Macy } 1460eda14cbcSMatt Macy 1461eda14cbcSMatt Macy void 1462eda14cbcSMatt Macy spl_kmem_cache_fini(void) 1463eda14cbcSMatt Macy { 1464eda14cbcSMatt Macy taskq_destroy(spl_kmem_cache_taskq); 1465eda14cbcSMatt Macy } 1466