1eda14cbcSMatt Macy /* 2eda14cbcSMatt Macy * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3eda14cbcSMatt Macy * Copyright (C) 2007 The Regents of the University of California. 4eda14cbcSMatt Macy * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5eda14cbcSMatt Macy * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6eda14cbcSMatt Macy * UCRL-CODE-235197 7eda14cbcSMatt Macy * 8eda14cbcSMatt Macy * This file is part of the SPL, Solaris Porting Layer. 9eda14cbcSMatt Macy * 10eda14cbcSMatt Macy * The SPL is free software; you can redistribute it and/or modify it 11eda14cbcSMatt Macy * under the terms of the GNU General Public License as published by the 12eda14cbcSMatt Macy * Free Software Foundation; either version 2 of the License, or (at your 13eda14cbcSMatt Macy * option) any later version. 14eda14cbcSMatt Macy * 15eda14cbcSMatt Macy * The SPL is distributed in the hope that it will be useful, but WITHOUT 16eda14cbcSMatt Macy * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17eda14cbcSMatt Macy * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18eda14cbcSMatt Macy * for more details. 19eda14cbcSMatt Macy * 20eda14cbcSMatt Macy * You should have received a copy of the GNU General Public License along 21eda14cbcSMatt Macy * with the SPL. If not, see <http://www.gnu.org/licenses/>. 22eda14cbcSMatt Macy */ 23eda14cbcSMatt Macy 24eda14cbcSMatt Macy #include <linux/percpu_compat.h> 25eda14cbcSMatt Macy #include <sys/kmem.h> 26eda14cbcSMatt Macy #include <sys/kmem_cache.h> 27eda14cbcSMatt Macy #include <sys/taskq.h> 28eda14cbcSMatt Macy #include <sys/timer.h> 29eda14cbcSMatt Macy #include <sys/vmem.h> 30eda14cbcSMatt Macy #include <sys/wait.h> 31eda14cbcSMatt Macy #include <linux/slab.h> 32eda14cbcSMatt Macy #include <linux/swap.h> 33eda14cbcSMatt Macy #include <linux/prefetch.h> 34eda14cbcSMatt Macy 35eda14cbcSMatt Macy /* 36eda14cbcSMatt Macy * Within the scope of spl-kmem.c file the kmem_cache_* definitions 37eda14cbcSMatt Macy * are removed to allow access to the real Linux slab allocator. 38eda14cbcSMatt Macy */ 39eda14cbcSMatt Macy #undef kmem_cache_destroy 40eda14cbcSMatt Macy #undef kmem_cache_create 41eda14cbcSMatt Macy #undef kmem_cache_alloc 42eda14cbcSMatt Macy #undef kmem_cache_free 43eda14cbcSMatt Macy 44eda14cbcSMatt Macy 45eda14cbcSMatt Macy /* 46eda14cbcSMatt Macy * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}() 47eda14cbcSMatt Macy * with smp_mb__{before,after}_atomic() because they were redundant. This is 48eda14cbcSMatt Macy * only used inside our SLAB allocator, so we implement an internal wrapper 49eda14cbcSMatt Macy * here to give us smp_mb__{before,after}_atomic() on older kernels. 50eda14cbcSMatt Macy */ 51eda14cbcSMatt Macy #ifndef smp_mb__before_atomic 52eda14cbcSMatt Macy #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x) 53eda14cbcSMatt Macy #endif 54eda14cbcSMatt Macy 55eda14cbcSMatt Macy #ifndef smp_mb__after_atomic 56eda14cbcSMatt Macy #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x) 57eda14cbcSMatt Macy #endif 58eda14cbcSMatt Macy 59eda14cbcSMatt Macy /* BEGIN CSTYLED */ 60eda14cbcSMatt Macy /* 61eda14cbcSMatt Macy * Cache magazines are an optimization designed to minimize the cost of 62eda14cbcSMatt Macy * allocating memory. They do this by keeping a per-cpu cache of recently 63eda14cbcSMatt Macy * freed objects, which can then be reallocated without taking a lock. This 64eda14cbcSMatt Macy * can improve performance on highly contended caches. However, because 65eda14cbcSMatt Macy * objects in magazines will prevent otherwise empty slabs from being 66eda14cbcSMatt Macy * immediately released this may not be ideal for low memory machines. 67eda14cbcSMatt Macy * 68eda14cbcSMatt Macy * For this reason spl_kmem_cache_magazine_size can be used to set a maximum 69eda14cbcSMatt Macy * magazine size. When this value is set to 0 the magazine size will be 70eda14cbcSMatt Macy * automatically determined based on the object size. Otherwise magazines 71eda14cbcSMatt Macy * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines 72eda14cbcSMatt Macy * may never be entirely disabled in this implementation. 73eda14cbcSMatt Macy */ 74e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_magazine_size = 0; 75eda14cbcSMatt Macy module_param(spl_kmem_cache_magazine_size, uint, 0444); 76eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_magazine_size, 77eda14cbcSMatt Macy "Default magazine size (2-256), set automatically (0)"); 78eda14cbcSMatt Macy 79eda14cbcSMatt Macy /* 80eda14cbcSMatt Macy * The default behavior is to report the number of objects remaining in the 81eda14cbcSMatt Macy * cache. This allows the Linux VM to repeatedly reclaim objects from the 82eda14cbcSMatt Macy * cache when memory is low satisfy other memory allocations. Alternately, 83eda14cbcSMatt Macy * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache 84eda14cbcSMatt Macy * is reclaimed. This may increase the likelihood of out of memory events. 85eda14cbcSMatt Macy */ 86e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */; 87eda14cbcSMatt Macy module_param(spl_kmem_cache_reclaim, uint, 0644); 88eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)"); 89eda14cbcSMatt Macy 90e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB; 91eda14cbcSMatt Macy module_param(spl_kmem_cache_obj_per_slab, uint, 0644); 92eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab"); 93eda14cbcSMatt Macy 94e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE; 95eda14cbcSMatt Macy module_param(spl_kmem_cache_max_size, uint, 0644); 96eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB"); 97eda14cbcSMatt Macy 98eda14cbcSMatt Macy /* 99eda14cbcSMatt Macy * For small objects the Linux slab allocator should be used to make the most 100eda14cbcSMatt Macy * efficient use of the memory. However, large objects are not supported by 101eda14cbcSMatt Macy * the Linux slab and therefore the SPL implementation is preferred. A cutoff 10216038816SMartin Matuska * of 16K was determined to be optimal for architectures using 4K pages and 10316038816SMartin Matuska * to also work well on architecutres using larger 64K page sizes. 104eda14cbcSMatt Macy */ 105e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_slab_limit = 16384; 106eda14cbcSMatt Macy module_param(spl_kmem_cache_slab_limit, uint, 0644); 107eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_slab_limit, 108eda14cbcSMatt Macy "Objects less than N bytes use the Linux slab"); 109eda14cbcSMatt Macy 110eda14cbcSMatt Macy /* 111eda14cbcSMatt Macy * The number of threads available to allocate new slabs for caches. This 112eda14cbcSMatt Macy * should not need to be tuned but it is available for performance analysis. 113eda14cbcSMatt Macy */ 114e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_kmem_threads = 4; 115eda14cbcSMatt Macy module_param(spl_kmem_cache_kmem_threads, uint, 0444); 116eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_kmem_threads, 117eda14cbcSMatt Macy "Number of spl_kmem_cache threads"); 118eda14cbcSMatt Macy /* END CSTYLED */ 119eda14cbcSMatt Macy 120eda14cbcSMatt Macy /* 121eda14cbcSMatt Macy * Slab allocation interfaces 122eda14cbcSMatt Macy * 123eda14cbcSMatt Macy * While the Linux slab implementation was inspired by the Solaris 124eda14cbcSMatt Macy * implementation I cannot use it to emulate the Solaris APIs. I 125eda14cbcSMatt Macy * require two features which are not provided by the Linux slab. 126eda14cbcSMatt Macy * 127eda14cbcSMatt Macy * 1) Constructors AND destructors. Recent versions of the Linux 128eda14cbcSMatt Macy * kernel have removed support for destructors. This is a deal 129eda14cbcSMatt Macy * breaker for the SPL which contains particularly expensive 130eda14cbcSMatt Macy * initializers for mutex's, condition variables, etc. We also 131eda14cbcSMatt Macy * require a minimal level of cleanup for these data types unlike 132eda14cbcSMatt Macy * many Linux data types which do need to be explicitly destroyed. 133eda14cbcSMatt Macy * 134eda14cbcSMatt Macy * 2) Virtual address space backed slab. Callers of the Solaris slab 135eda14cbcSMatt Macy * expect it to work well for both small are very large allocations. 136eda14cbcSMatt Macy * Because of memory fragmentation the Linux slab which is backed 137eda14cbcSMatt Macy * by kmalloc'ed memory performs very badly when confronted with 138eda14cbcSMatt Macy * large numbers of large allocations. Basing the slab on the 139eda14cbcSMatt Macy * virtual address space removes the need for contiguous pages 140eda14cbcSMatt Macy * and greatly improve performance for large allocations. 141eda14cbcSMatt Macy * 142eda14cbcSMatt Macy * For these reasons, the SPL has its own slab implementation with 143eda14cbcSMatt Macy * the needed features. It is not as highly optimized as either the 144eda14cbcSMatt Macy * Solaris or Linux slabs, but it should get me most of what is 145eda14cbcSMatt Macy * needed until it can be optimized or obsoleted by another approach. 146eda14cbcSMatt Macy * 147eda14cbcSMatt Macy * One serious concern I do have about this method is the relatively 148eda14cbcSMatt Macy * small virtual address space on 32bit arches. This will seriously 149eda14cbcSMatt Macy * constrain the size of the slab caches and their performance. 150eda14cbcSMatt Macy */ 151eda14cbcSMatt Macy 152eda14cbcSMatt Macy struct list_head spl_kmem_cache_list; /* List of caches */ 153eda14cbcSMatt Macy struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */ 154dbd5678dSMartin Matuska static taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */ 155eda14cbcSMatt Macy 156eda14cbcSMatt Macy static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj); 157eda14cbcSMatt Macy 158eda14cbcSMatt Macy static void * 159eda14cbcSMatt Macy kv_alloc(spl_kmem_cache_t *skc, int size, int flags) 160eda14cbcSMatt Macy { 161eda14cbcSMatt Macy gfp_t lflags = kmem_flags_convert(flags); 162eda14cbcSMatt Macy void *ptr; 163eda14cbcSMatt Macy 164eda14cbcSMatt Macy ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM); 165eda14cbcSMatt Macy 166eda14cbcSMatt Macy /* Resulting allocated memory will be page aligned */ 167eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 168eda14cbcSMatt Macy 169eda14cbcSMatt Macy return (ptr); 170eda14cbcSMatt Macy } 171eda14cbcSMatt Macy 172eda14cbcSMatt Macy static void 173eda14cbcSMatt Macy kv_free(spl_kmem_cache_t *skc, void *ptr, int size) 174eda14cbcSMatt Macy { 175eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 176eda14cbcSMatt Macy 177eda14cbcSMatt Macy /* 178eda14cbcSMatt Macy * The Linux direct reclaim path uses this out of band value to 179eda14cbcSMatt Macy * determine if forward progress is being made. Normally this is 180eda14cbcSMatt Macy * incremented by kmem_freepages() which is part of the various 181eda14cbcSMatt Macy * Linux slab implementations. However, since we are using none 182eda14cbcSMatt Macy * of that infrastructure we are responsible for incrementing it. 183eda14cbcSMatt Macy */ 184eda14cbcSMatt Macy if (current->reclaim_state) 185eda14cbcSMatt Macy current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT; 186eda14cbcSMatt Macy 187eda14cbcSMatt Macy vfree(ptr); 188eda14cbcSMatt Macy } 189eda14cbcSMatt Macy 190eda14cbcSMatt Macy /* 191eda14cbcSMatt Macy * Required space for each aligned sks. 192eda14cbcSMatt Macy */ 193eda14cbcSMatt Macy static inline uint32_t 194eda14cbcSMatt Macy spl_sks_size(spl_kmem_cache_t *skc) 195eda14cbcSMatt Macy { 196eda14cbcSMatt Macy return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t), 197eda14cbcSMatt Macy skc->skc_obj_align, uint32_t)); 198eda14cbcSMatt Macy } 199eda14cbcSMatt Macy 200eda14cbcSMatt Macy /* 201eda14cbcSMatt Macy * Required space for each aligned object. 202eda14cbcSMatt Macy */ 203eda14cbcSMatt Macy static inline uint32_t 204eda14cbcSMatt Macy spl_obj_size(spl_kmem_cache_t *skc) 205eda14cbcSMatt Macy { 206eda14cbcSMatt Macy uint32_t align = skc->skc_obj_align; 207eda14cbcSMatt Macy 208eda14cbcSMatt Macy return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) + 209eda14cbcSMatt Macy P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t)); 210eda14cbcSMatt Macy } 211eda14cbcSMatt Macy 212eda14cbcSMatt Macy uint64_t 213eda14cbcSMatt Macy spl_kmem_cache_inuse(kmem_cache_t *cache) 214eda14cbcSMatt Macy { 215eda14cbcSMatt Macy return (cache->skc_obj_total); 216eda14cbcSMatt Macy } 217eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_inuse); 218eda14cbcSMatt Macy 219eda14cbcSMatt Macy uint64_t 220eda14cbcSMatt Macy spl_kmem_cache_entry_size(kmem_cache_t *cache) 221eda14cbcSMatt Macy { 222eda14cbcSMatt Macy return (cache->skc_obj_size); 223eda14cbcSMatt Macy } 224eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_entry_size); 225eda14cbcSMatt Macy 226eda14cbcSMatt Macy /* 227eda14cbcSMatt Macy * Lookup the spl_kmem_object_t for an object given that object. 228eda14cbcSMatt Macy */ 229eda14cbcSMatt Macy static inline spl_kmem_obj_t * 230eda14cbcSMatt Macy spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj) 231eda14cbcSMatt Macy { 232eda14cbcSMatt Macy return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size, 233eda14cbcSMatt Macy skc->skc_obj_align, uint32_t)); 234eda14cbcSMatt Macy } 235eda14cbcSMatt Macy 236eda14cbcSMatt Macy /* 237eda14cbcSMatt Macy * It's important that we pack the spl_kmem_obj_t structure and the 238eda14cbcSMatt Macy * actual objects in to one large address space to minimize the number 239eda14cbcSMatt Macy * of calls to the allocator. It is far better to do a few large 240eda14cbcSMatt Macy * allocations and then subdivide it ourselves. Now which allocator 241eda14cbcSMatt Macy * we use requires balancing a few trade offs. 242eda14cbcSMatt Macy * 243eda14cbcSMatt Macy * For small objects we use kmem_alloc() because as long as you are 244eda14cbcSMatt Macy * only requesting a small number of pages (ideally just one) its cheap. 245eda14cbcSMatt Macy * However, when you start requesting multiple pages with kmem_alloc() 246eda14cbcSMatt Macy * it gets increasingly expensive since it requires contiguous pages. 247eda14cbcSMatt Macy * For this reason we shift to vmem_alloc() for slabs of large objects 248eda14cbcSMatt Macy * which removes the need for contiguous pages. We do not use 249eda14cbcSMatt Macy * vmem_alloc() in all cases because there is significant locking 250eda14cbcSMatt Macy * overhead in __get_vm_area_node(). This function takes a single 251eda14cbcSMatt Macy * global lock when acquiring an available virtual address range which 252eda14cbcSMatt Macy * serializes all vmem_alloc()'s for all slab caches. Using slightly 253eda14cbcSMatt Macy * different allocation functions for small and large objects should 254eda14cbcSMatt Macy * give us the best of both worlds. 255eda14cbcSMatt Macy * 256eda14cbcSMatt Macy * +------------------------+ 257eda14cbcSMatt Macy * | spl_kmem_slab_t --+-+ | 258eda14cbcSMatt Macy * | skc_obj_size <-+ | | 259eda14cbcSMatt Macy * | spl_kmem_obj_t | | 260eda14cbcSMatt Macy * | skc_obj_size <---+ | 261eda14cbcSMatt Macy * | spl_kmem_obj_t | | 262eda14cbcSMatt Macy * | ... v | 263eda14cbcSMatt Macy * +------------------------+ 264eda14cbcSMatt Macy */ 265eda14cbcSMatt Macy static spl_kmem_slab_t * 266eda14cbcSMatt Macy spl_slab_alloc(spl_kmem_cache_t *skc, int flags) 267eda14cbcSMatt Macy { 268eda14cbcSMatt Macy spl_kmem_slab_t *sks; 269eda14cbcSMatt Macy void *base; 270eda14cbcSMatt Macy uint32_t obj_size; 271eda14cbcSMatt Macy 272eda14cbcSMatt Macy base = kv_alloc(skc, skc->skc_slab_size, flags); 273eda14cbcSMatt Macy if (base == NULL) 274eda14cbcSMatt Macy return (NULL); 275eda14cbcSMatt Macy 276eda14cbcSMatt Macy sks = (spl_kmem_slab_t *)base; 277eda14cbcSMatt Macy sks->sks_magic = SKS_MAGIC; 278eda14cbcSMatt Macy sks->sks_objs = skc->skc_slab_objs; 279eda14cbcSMatt Macy sks->sks_age = jiffies; 280eda14cbcSMatt Macy sks->sks_cache = skc; 281eda14cbcSMatt Macy INIT_LIST_HEAD(&sks->sks_list); 282eda14cbcSMatt Macy INIT_LIST_HEAD(&sks->sks_free_list); 283eda14cbcSMatt Macy sks->sks_ref = 0; 284eda14cbcSMatt Macy obj_size = spl_obj_size(skc); 285eda14cbcSMatt Macy 286eda14cbcSMatt Macy for (int i = 0; i < sks->sks_objs; i++) { 287eda14cbcSMatt Macy void *obj = base + spl_sks_size(skc) + (i * obj_size); 288eda14cbcSMatt Macy 289eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 290eda14cbcSMatt Macy spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj); 291eda14cbcSMatt Macy sko->sko_addr = obj; 292eda14cbcSMatt Macy sko->sko_magic = SKO_MAGIC; 293eda14cbcSMatt Macy sko->sko_slab = sks; 294eda14cbcSMatt Macy INIT_LIST_HEAD(&sko->sko_list); 295eda14cbcSMatt Macy list_add_tail(&sko->sko_list, &sks->sks_free_list); 296eda14cbcSMatt Macy } 297eda14cbcSMatt Macy 298eda14cbcSMatt Macy return (sks); 299eda14cbcSMatt Macy } 300eda14cbcSMatt Macy 301eda14cbcSMatt Macy /* 302eda14cbcSMatt Macy * Remove a slab from complete or partial list, it must be called with 303eda14cbcSMatt Macy * the 'skc->skc_lock' held but the actual free must be performed 304eda14cbcSMatt Macy * outside the lock to prevent deadlocking on vmem addresses. 305eda14cbcSMatt Macy */ 306eda14cbcSMatt Macy static void 307eda14cbcSMatt Macy spl_slab_free(spl_kmem_slab_t *sks, 308eda14cbcSMatt Macy struct list_head *sks_list, struct list_head *sko_list) 309eda14cbcSMatt Macy { 310eda14cbcSMatt Macy spl_kmem_cache_t *skc; 311eda14cbcSMatt Macy 312eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 313eda14cbcSMatt Macy ASSERT(sks->sks_ref == 0); 314eda14cbcSMatt Macy 315eda14cbcSMatt Macy skc = sks->sks_cache; 316eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 317eda14cbcSMatt Macy 318eda14cbcSMatt Macy /* 319eda14cbcSMatt Macy * Update slab/objects counters in the cache, then remove the 320eda14cbcSMatt Macy * slab from the skc->skc_partial_list. Finally add the slab 321eda14cbcSMatt Macy * and all its objects in to the private work lists where the 322eda14cbcSMatt Macy * destructors will be called and the memory freed to the system. 323eda14cbcSMatt Macy */ 324eda14cbcSMatt Macy skc->skc_obj_total -= sks->sks_objs; 325eda14cbcSMatt Macy skc->skc_slab_total--; 326eda14cbcSMatt Macy list_del(&sks->sks_list); 327eda14cbcSMatt Macy list_add(&sks->sks_list, sks_list); 328eda14cbcSMatt Macy list_splice_init(&sks->sks_free_list, sko_list); 329eda14cbcSMatt Macy } 330eda14cbcSMatt Macy 331eda14cbcSMatt Macy /* 332eda14cbcSMatt Macy * Reclaim empty slabs at the end of the partial list. 333eda14cbcSMatt Macy */ 334eda14cbcSMatt Macy static void 335eda14cbcSMatt Macy spl_slab_reclaim(spl_kmem_cache_t *skc) 336eda14cbcSMatt Macy { 337eda14cbcSMatt Macy spl_kmem_slab_t *sks = NULL, *m = NULL; 338eda14cbcSMatt Macy spl_kmem_obj_t *sko = NULL, *n = NULL; 339eda14cbcSMatt Macy LIST_HEAD(sks_list); 340eda14cbcSMatt Macy LIST_HEAD(sko_list); 341eda14cbcSMatt Macy 342eda14cbcSMatt Macy /* 343eda14cbcSMatt Macy * Empty slabs and objects must be moved to a private list so they 344eda14cbcSMatt Macy * can be safely freed outside the spin lock. All empty slabs are 345eda14cbcSMatt Macy * at the end of skc->skc_partial_list, therefore once a non-empty 346eda14cbcSMatt Macy * slab is found we can stop scanning. 347eda14cbcSMatt Macy */ 348eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 349eda14cbcSMatt Macy list_for_each_entry_safe_reverse(sks, m, 350eda14cbcSMatt Macy &skc->skc_partial_list, sks_list) { 351eda14cbcSMatt Macy 352eda14cbcSMatt Macy if (sks->sks_ref > 0) 353eda14cbcSMatt Macy break; 354eda14cbcSMatt Macy 355eda14cbcSMatt Macy spl_slab_free(sks, &sks_list, &sko_list); 356eda14cbcSMatt Macy } 357eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 358eda14cbcSMatt Macy 359eda14cbcSMatt Macy /* 360eda14cbcSMatt Macy * The following two loops ensure all the object destructors are run, 361eda14cbcSMatt Macy * and the slabs themselves are freed. This is all done outside the 362eda14cbcSMatt Macy * skc->skc_lock since this allows the destructor to sleep, and 363eda14cbcSMatt Macy * allows us to perform a conditional reschedule when a freeing a 364eda14cbcSMatt Macy * large number of objects and slabs back to the system. 365eda14cbcSMatt Macy */ 366eda14cbcSMatt Macy 367eda14cbcSMatt Macy list_for_each_entry_safe(sko, n, &sko_list, sko_list) { 368eda14cbcSMatt Macy ASSERT(sko->sko_magic == SKO_MAGIC); 369eda14cbcSMatt Macy } 370eda14cbcSMatt Macy 371eda14cbcSMatt Macy list_for_each_entry_safe(sks, m, &sks_list, sks_list) { 372eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 373eda14cbcSMatt Macy kv_free(skc, sks, skc->skc_slab_size); 374eda14cbcSMatt Macy } 375eda14cbcSMatt Macy } 376eda14cbcSMatt Macy 377eda14cbcSMatt Macy static spl_kmem_emergency_t * 378eda14cbcSMatt Macy spl_emergency_search(struct rb_root *root, void *obj) 379eda14cbcSMatt Macy { 380eda14cbcSMatt Macy struct rb_node *node = root->rb_node; 381eda14cbcSMatt Macy spl_kmem_emergency_t *ske; 382eda14cbcSMatt Macy unsigned long address = (unsigned long)obj; 383eda14cbcSMatt Macy 384eda14cbcSMatt Macy while (node) { 385eda14cbcSMatt Macy ske = container_of(node, spl_kmem_emergency_t, ske_node); 386eda14cbcSMatt Macy 387eda14cbcSMatt Macy if (address < ske->ske_obj) 388eda14cbcSMatt Macy node = node->rb_left; 389eda14cbcSMatt Macy else if (address > ske->ske_obj) 390eda14cbcSMatt Macy node = node->rb_right; 391eda14cbcSMatt Macy else 392eda14cbcSMatt Macy return (ske); 393eda14cbcSMatt Macy } 394eda14cbcSMatt Macy 395eda14cbcSMatt Macy return (NULL); 396eda14cbcSMatt Macy } 397eda14cbcSMatt Macy 398eda14cbcSMatt Macy static int 399eda14cbcSMatt Macy spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske) 400eda14cbcSMatt Macy { 401eda14cbcSMatt Macy struct rb_node **new = &(root->rb_node), *parent = NULL; 402eda14cbcSMatt Macy spl_kmem_emergency_t *ske_tmp; 403eda14cbcSMatt Macy unsigned long address = ske->ske_obj; 404eda14cbcSMatt Macy 405eda14cbcSMatt Macy while (*new) { 406eda14cbcSMatt Macy ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node); 407eda14cbcSMatt Macy 408eda14cbcSMatt Macy parent = *new; 409eda14cbcSMatt Macy if (address < ske_tmp->ske_obj) 410eda14cbcSMatt Macy new = &((*new)->rb_left); 411eda14cbcSMatt Macy else if (address > ske_tmp->ske_obj) 412eda14cbcSMatt Macy new = &((*new)->rb_right); 413eda14cbcSMatt Macy else 414eda14cbcSMatt Macy return (0); 415eda14cbcSMatt Macy } 416eda14cbcSMatt Macy 417eda14cbcSMatt Macy rb_link_node(&ske->ske_node, parent, new); 418eda14cbcSMatt Macy rb_insert_color(&ske->ske_node, root); 419eda14cbcSMatt Macy 420eda14cbcSMatt Macy return (1); 421eda14cbcSMatt Macy } 422eda14cbcSMatt Macy 423eda14cbcSMatt Macy /* 424eda14cbcSMatt Macy * Allocate a single emergency object and track it in a red black tree. 425eda14cbcSMatt Macy */ 426eda14cbcSMatt Macy static int 427eda14cbcSMatt Macy spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj) 428eda14cbcSMatt Macy { 429eda14cbcSMatt Macy gfp_t lflags = kmem_flags_convert(flags); 430eda14cbcSMatt Macy spl_kmem_emergency_t *ske; 431eda14cbcSMatt Macy int order = get_order(skc->skc_obj_size); 432eda14cbcSMatt Macy int empty; 433eda14cbcSMatt Macy 434eda14cbcSMatt Macy /* Last chance use a partial slab if one now exists */ 435eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 436eda14cbcSMatt Macy empty = list_empty(&skc->skc_partial_list); 437eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 438eda14cbcSMatt Macy if (!empty) 439eda14cbcSMatt Macy return (-EEXIST); 440eda14cbcSMatt Macy 441eda14cbcSMatt Macy ske = kmalloc(sizeof (*ske), lflags); 442eda14cbcSMatt Macy if (ske == NULL) 443eda14cbcSMatt Macy return (-ENOMEM); 444eda14cbcSMatt Macy 445eda14cbcSMatt Macy ske->ske_obj = __get_free_pages(lflags, order); 446eda14cbcSMatt Macy if (ske->ske_obj == 0) { 447eda14cbcSMatt Macy kfree(ske); 448eda14cbcSMatt Macy return (-ENOMEM); 449eda14cbcSMatt Macy } 450eda14cbcSMatt Macy 451eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 452eda14cbcSMatt Macy empty = spl_emergency_insert(&skc->skc_emergency_tree, ske); 453eda14cbcSMatt Macy if (likely(empty)) { 454eda14cbcSMatt Macy skc->skc_obj_total++; 455eda14cbcSMatt Macy skc->skc_obj_emergency++; 456eda14cbcSMatt Macy if (skc->skc_obj_emergency > skc->skc_obj_emergency_max) 457eda14cbcSMatt Macy skc->skc_obj_emergency_max = skc->skc_obj_emergency; 458eda14cbcSMatt Macy } 459eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 460eda14cbcSMatt Macy 461eda14cbcSMatt Macy if (unlikely(!empty)) { 462eda14cbcSMatt Macy free_pages(ske->ske_obj, order); 463eda14cbcSMatt Macy kfree(ske); 464eda14cbcSMatt Macy return (-EINVAL); 465eda14cbcSMatt Macy } 466eda14cbcSMatt Macy 467eda14cbcSMatt Macy *obj = (void *)ske->ske_obj; 468eda14cbcSMatt Macy 469eda14cbcSMatt Macy return (0); 470eda14cbcSMatt Macy } 471eda14cbcSMatt Macy 472eda14cbcSMatt Macy /* 473eda14cbcSMatt Macy * Locate the passed object in the red black tree and free it. 474eda14cbcSMatt Macy */ 475eda14cbcSMatt Macy static int 476eda14cbcSMatt Macy spl_emergency_free(spl_kmem_cache_t *skc, void *obj) 477eda14cbcSMatt Macy { 478eda14cbcSMatt Macy spl_kmem_emergency_t *ske; 479eda14cbcSMatt Macy int order = get_order(skc->skc_obj_size); 480eda14cbcSMatt Macy 481eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 482eda14cbcSMatt Macy ske = spl_emergency_search(&skc->skc_emergency_tree, obj); 483eda14cbcSMatt Macy if (ske) { 484eda14cbcSMatt Macy rb_erase(&ske->ske_node, &skc->skc_emergency_tree); 485eda14cbcSMatt Macy skc->skc_obj_emergency--; 486eda14cbcSMatt Macy skc->skc_obj_total--; 487eda14cbcSMatt Macy } 488eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 489eda14cbcSMatt Macy 490eda14cbcSMatt Macy if (ske == NULL) 491eda14cbcSMatt Macy return (-ENOENT); 492eda14cbcSMatt Macy 493eda14cbcSMatt Macy free_pages(ske->ske_obj, order); 494eda14cbcSMatt Macy kfree(ske); 495eda14cbcSMatt Macy 496eda14cbcSMatt Macy return (0); 497eda14cbcSMatt Macy } 498eda14cbcSMatt Macy 499eda14cbcSMatt Macy /* 500eda14cbcSMatt Macy * Release objects from the per-cpu magazine back to their slab. The flush 501eda14cbcSMatt Macy * argument contains the max number of entries to remove from the magazine. 502eda14cbcSMatt Macy */ 503eda14cbcSMatt Macy static void 504eda14cbcSMatt Macy spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush) 505eda14cbcSMatt Macy { 506eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 507eda14cbcSMatt Macy 508eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 509eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 510eda14cbcSMatt Macy 511eda14cbcSMatt Macy int count = MIN(flush, skm->skm_avail); 512eda14cbcSMatt Macy for (int i = 0; i < count; i++) 513eda14cbcSMatt Macy spl_cache_shrink(skc, skm->skm_objs[i]); 514eda14cbcSMatt Macy 515eda14cbcSMatt Macy skm->skm_avail -= count; 516eda14cbcSMatt Macy memmove(skm->skm_objs, &(skm->skm_objs[count]), 517eda14cbcSMatt Macy sizeof (void *) * skm->skm_avail); 518eda14cbcSMatt Macy 519eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 520eda14cbcSMatt Macy } 521eda14cbcSMatt Macy 522eda14cbcSMatt Macy /* 523eda14cbcSMatt Macy * Size a slab based on the size of each aligned object plus spl_kmem_obj_t. 524eda14cbcSMatt Macy * When on-slab we want to target spl_kmem_cache_obj_per_slab. However, 525eda14cbcSMatt Macy * for very small objects we may end up with more than this so as not 52616038816SMartin Matuska * to waste space in the minimal allocation of a single page. 527eda14cbcSMatt Macy */ 528eda14cbcSMatt Macy static int 529eda14cbcSMatt Macy spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size) 530eda14cbcSMatt Macy { 531eda14cbcSMatt Macy uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs; 532eda14cbcSMatt Macy 533eda14cbcSMatt Macy sks_size = spl_sks_size(skc); 534eda14cbcSMatt Macy obj_size = spl_obj_size(skc); 535eda14cbcSMatt Macy max_size = (spl_kmem_cache_max_size * 1024 * 1024); 536eda14cbcSMatt Macy tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size); 537eda14cbcSMatt Macy 538eda14cbcSMatt Macy if (tgt_size <= max_size) { 539eda14cbcSMatt Macy tgt_objs = (tgt_size - sks_size) / obj_size; 540eda14cbcSMatt Macy } else { 541eda14cbcSMatt Macy tgt_objs = (max_size - sks_size) / obj_size; 542eda14cbcSMatt Macy tgt_size = (tgt_objs * obj_size) + sks_size; 543eda14cbcSMatt Macy } 544eda14cbcSMatt Macy 545eda14cbcSMatt Macy if (tgt_objs == 0) 546eda14cbcSMatt Macy return (-ENOSPC); 547eda14cbcSMatt Macy 548eda14cbcSMatt Macy *objs = tgt_objs; 549eda14cbcSMatt Macy *size = tgt_size; 550eda14cbcSMatt Macy 551eda14cbcSMatt Macy return (0); 552eda14cbcSMatt Macy } 553eda14cbcSMatt Macy 554eda14cbcSMatt Macy /* 555eda14cbcSMatt Macy * Make a guess at reasonable per-cpu magazine size based on the size of 556eda14cbcSMatt Macy * each object and the cost of caching N of them in each magazine. Long 557eda14cbcSMatt Macy * term this should really adapt based on an observed usage heuristic. 558eda14cbcSMatt Macy */ 559eda14cbcSMatt Macy static int 560eda14cbcSMatt Macy spl_magazine_size(spl_kmem_cache_t *skc) 561eda14cbcSMatt Macy { 562eda14cbcSMatt Macy uint32_t obj_size = spl_obj_size(skc); 563eda14cbcSMatt Macy int size; 564eda14cbcSMatt Macy 565eda14cbcSMatt Macy if (spl_kmem_cache_magazine_size > 0) 566eda14cbcSMatt Macy return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2)); 567eda14cbcSMatt Macy 568eda14cbcSMatt Macy /* Per-magazine sizes below assume a 4Kib page size */ 569eda14cbcSMatt Macy if (obj_size > (PAGE_SIZE * 256)) 570eda14cbcSMatt Macy size = 4; /* Minimum 4Mib per-magazine */ 571eda14cbcSMatt Macy else if (obj_size > (PAGE_SIZE * 32)) 572eda14cbcSMatt Macy size = 16; /* Minimum 2Mib per-magazine */ 573eda14cbcSMatt Macy else if (obj_size > (PAGE_SIZE)) 574eda14cbcSMatt Macy size = 64; /* Minimum 256Kib per-magazine */ 575eda14cbcSMatt Macy else if (obj_size > (PAGE_SIZE / 4)) 576eda14cbcSMatt Macy size = 128; /* Minimum 128Kib per-magazine */ 577eda14cbcSMatt Macy else 578eda14cbcSMatt Macy size = 256; 579eda14cbcSMatt Macy 580eda14cbcSMatt Macy return (size); 581eda14cbcSMatt Macy } 582eda14cbcSMatt Macy 583eda14cbcSMatt Macy /* 584eda14cbcSMatt Macy * Allocate a per-cpu magazine to associate with a specific core. 585eda14cbcSMatt Macy */ 586eda14cbcSMatt Macy static spl_kmem_magazine_t * 587eda14cbcSMatt Macy spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu) 588eda14cbcSMatt Macy { 589eda14cbcSMatt Macy spl_kmem_magazine_t *skm; 590eda14cbcSMatt Macy int size = sizeof (spl_kmem_magazine_t) + 591eda14cbcSMatt Macy sizeof (void *) * skc->skc_mag_size; 592eda14cbcSMatt Macy 593eda14cbcSMatt Macy skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu)); 594eda14cbcSMatt Macy if (skm) { 595eda14cbcSMatt Macy skm->skm_magic = SKM_MAGIC; 596eda14cbcSMatt Macy skm->skm_avail = 0; 597eda14cbcSMatt Macy skm->skm_size = skc->skc_mag_size; 598eda14cbcSMatt Macy skm->skm_refill = skc->skc_mag_refill; 599eda14cbcSMatt Macy skm->skm_cache = skc; 600eda14cbcSMatt Macy skm->skm_cpu = cpu; 601eda14cbcSMatt Macy } 602eda14cbcSMatt Macy 603eda14cbcSMatt Macy return (skm); 604eda14cbcSMatt Macy } 605eda14cbcSMatt Macy 606eda14cbcSMatt Macy /* 607eda14cbcSMatt Macy * Free a per-cpu magazine associated with a specific core. 608eda14cbcSMatt Macy */ 609eda14cbcSMatt Macy static void 610eda14cbcSMatt Macy spl_magazine_free(spl_kmem_magazine_t *skm) 611eda14cbcSMatt Macy { 612eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 613eda14cbcSMatt Macy ASSERT(skm->skm_avail == 0); 614eda14cbcSMatt Macy kfree(skm); 615eda14cbcSMatt Macy } 616eda14cbcSMatt Macy 617eda14cbcSMatt Macy /* 618eda14cbcSMatt Macy * Create all pre-cpu magazines of reasonable sizes. 619eda14cbcSMatt Macy */ 620eda14cbcSMatt Macy static int 621eda14cbcSMatt Macy spl_magazine_create(spl_kmem_cache_t *skc) 622eda14cbcSMatt Macy { 623eda14cbcSMatt Macy int i = 0; 624eda14cbcSMatt Macy 625eda14cbcSMatt Macy ASSERT((skc->skc_flags & KMC_SLAB) == 0); 626eda14cbcSMatt Macy 627eda14cbcSMatt Macy skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) * 628eda14cbcSMatt Macy num_possible_cpus(), kmem_flags_convert(KM_SLEEP)); 629eda14cbcSMatt Macy skc->skc_mag_size = spl_magazine_size(skc); 630eda14cbcSMatt Macy skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2; 631eda14cbcSMatt Macy 632eda14cbcSMatt Macy for_each_possible_cpu(i) { 633eda14cbcSMatt Macy skc->skc_mag[i] = spl_magazine_alloc(skc, i); 634eda14cbcSMatt Macy if (!skc->skc_mag[i]) { 635eda14cbcSMatt Macy for (i--; i >= 0; i--) 636eda14cbcSMatt Macy spl_magazine_free(skc->skc_mag[i]); 637eda14cbcSMatt Macy 638eda14cbcSMatt Macy kfree(skc->skc_mag); 639eda14cbcSMatt Macy return (-ENOMEM); 640eda14cbcSMatt Macy } 641eda14cbcSMatt Macy } 642eda14cbcSMatt Macy 643eda14cbcSMatt Macy return (0); 644eda14cbcSMatt Macy } 645eda14cbcSMatt Macy 646eda14cbcSMatt Macy /* 647eda14cbcSMatt Macy * Destroy all pre-cpu magazines. 648eda14cbcSMatt Macy */ 649eda14cbcSMatt Macy static void 650eda14cbcSMatt Macy spl_magazine_destroy(spl_kmem_cache_t *skc) 651eda14cbcSMatt Macy { 652eda14cbcSMatt Macy spl_kmem_magazine_t *skm; 653eda14cbcSMatt Macy int i = 0; 654eda14cbcSMatt Macy 655eda14cbcSMatt Macy ASSERT((skc->skc_flags & KMC_SLAB) == 0); 656eda14cbcSMatt Macy 657eda14cbcSMatt Macy for_each_possible_cpu(i) { 658eda14cbcSMatt Macy skm = skc->skc_mag[i]; 659eda14cbcSMatt Macy spl_cache_flush(skc, skm, skm->skm_avail); 660eda14cbcSMatt Macy spl_magazine_free(skm); 661eda14cbcSMatt Macy } 662eda14cbcSMatt Macy 663eda14cbcSMatt Macy kfree(skc->skc_mag); 664eda14cbcSMatt Macy } 665eda14cbcSMatt Macy 666eda14cbcSMatt Macy /* 667eda14cbcSMatt Macy * Create a object cache based on the following arguments: 668eda14cbcSMatt Macy * name cache name 669eda14cbcSMatt Macy * size cache object size 670eda14cbcSMatt Macy * align cache object alignment 671eda14cbcSMatt Macy * ctor cache object constructor 672eda14cbcSMatt Macy * dtor cache object destructor 673eda14cbcSMatt Macy * reclaim cache object reclaim 674eda14cbcSMatt Macy * priv cache private data for ctor/dtor/reclaim 675eda14cbcSMatt Macy * vmp unused must be NULL 676eda14cbcSMatt Macy * flags 677eda14cbcSMatt Macy * KMC_KVMEM Force kvmem backed SPL cache 678eda14cbcSMatt Macy * KMC_SLAB Force Linux slab backed cache 679eda14cbcSMatt Macy * KMC_NODEBUG Disable debugging (unsupported) 680eda14cbcSMatt Macy */ 681eda14cbcSMatt Macy spl_kmem_cache_t * 682a0b956f5SMartin Matuska spl_kmem_cache_create(const char *name, size_t size, size_t align, 683eda14cbcSMatt Macy spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim, 684eda14cbcSMatt Macy void *priv, void *vmp, int flags) 685eda14cbcSMatt Macy { 686eda14cbcSMatt Macy gfp_t lflags = kmem_flags_convert(KM_SLEEP); 687eda14cbcSMatt Macy spl_kmem_cache_t *skc; 688eda14cbcSMatt Macy int rc; 689eda14cbcSMatt Macy 690eda14cbcSMatt Macy /* 691eda14cbcSMatt Macy * Unsupported flags 692eda14cbcSMatt Macy */ 693eda14cbcSMatt Macy ASSERT(vmp == NULL); 694eda14cbcSMatt Macy ASSERT(reclaim == NULL); 695eda14cbcSMatt Macy 696eda14cbcSMatt Macy might_sleep(); 697eda14cbcSMatt Macy 698eda14cbcSMatt Macy skc = kzalloc(sizeof (*skc), lflags); 699eda14cbcSMatt Macy if (skc == NULL) 700eda14cbcSMatt Macy return (NULL); 701eda14cbcSMatt Macy 702eda14cbcSMatt Macy skc->skc_magic = SKC_MAGIC; 703eda14cbcSMatt Macy skc->skc_name_size = strlen(name) + 1; 704*15f0b8c3SMartin Matuska skc->skc_name = kmalloc(skc->skc_name_size, lflags); 705eda14cbcSMatt Macy if (skc->skc_name == NULL) { 706eda14cbcSMatt Macy kfree(skc); 707eda14cbcSMatt Macy return (NULL); 708eda14cbcSMatt Macy } 709be181ee2SMartin Matuska strlcpy(skc->skc_name, name, skc->skc_name_size); 710eda14cbcSMatt Macy 711eda14cbcSMatt Macy skc->skc_ctor = ctor; 712eda14cbcSMatt Macy skc->skc_dtor = dtor; 713eda14cbcSMatt Macy skc->skc_private = priv; 714eda14cbcSMatt Macy skc->skc_vmp = vmp; 715eda14cbcSMatt Macy skc->skc_linux_cache = NULL; 716eda14cbcSMatt Macy skc->skc_flags = flags; 717eda14cbcSMatt Macy skc->skc_obj_size = size; 718eda14cbcSMatt Macy skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN; 719eda14cbcSMatt Macy atomic_set(&skc->skc_ref, 0); 720eda14cbcSMatt Macy 721eda14cbcSMatt Macy INIT_LIST_HEAD(&skc->skc_list); 722eda14cbcSMatt Macy INIT_LIST_HEAD(&skc->skc_complete_list); 723eda14cbcSMatt Macy INIT_LIST_HEAD(&skc->skc_partial_list); 724eda14cbcSMatt Macy skc->skc_emergency_tree = RB_ROOT; 725eda14cbcSMatt Macy spin_lock_init(&skc->skc_lock); 726eda14cbcSMatt Macy init_waitqueue_head(&skc->skc_waitq); 727eda14cbcSMatt Macy skc->skc_slab_fail = 0; 728eda14cbcSMatt Macy skc->skc_slab_create = 0; 729eda14cbcSMatt Macy skc->skc_slab_destroy = 0; 730eda14cbcSMatt Macy skc->skc_slab_total = 0; 731eda14cbcSMatt Macy skc->skc_slab_alloc = 0; 732eda14cbcSMatt Macy skc->skc_slab_max = 0; 733eda14cbcSMatt Macy skc->skc_obj_total = 0; 734eda14cbcSMatt Macy skc->skc_obj_alloc = 0; 735eda14cbcSMatt Macy skc->skc_obj_max = 0; 736eda14cbcSMatt Macy skc->skc_obj_deadlock = 0; 737eda14cbcSMatt Macy skc->skc_obj_emergency = 0; 738eda14cbcSMatt Macy skc->skc_obj_emergency_max = 0; 739eda14cbcSMatt Macy 740eda14cbcSMatt Macy rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0, 741eda14cbcSMatt Macy GFP_KERNEL); 742eda14cbcSMatt Macy if (rc != 0) { 743eda14cbcSMatt Macy kfree(skc); 744eda14cbcSMatt Macy return (NULL); 745eda14cbcSMatt Macy } 746eda14cbcSMatt Macy 747eda14cbcSMatt Macy /* 748eda14cbcSMatt Macy * Verify the requested alignment restriction is sane. 749eda14cbcSMatt Macy */ 750eda14cbcSMatt Macy if (align) { 751eda14cbcSMatt Macy VERIFY(ISP2(align)); 752eda14cbcSMatt Macy VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); 753eda14cbcSMatt Macy VERIFY3U(align, <=, PAGE_SIZE); 754eda14cbcSMatt Macy skc->skc_obj_align = align; 755eda14cbcSMatt Macy } 756eda14cbcSMatt Macy 757eda14cbcSMatt Macy /* 758eda14cbcSMatt Macy * When no specific type of slab is requested (kmem, vmem, or 759eda14cbcSMatt Macy * linuxslab) then select a cache type based on the object size 760eda14cbcSMatt Macy * and default tunables. 761eda14cbcSMatt Macy */ 762eda14cbcSMatt Macy if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) { 763eda14cbcSMatt Macy if (spl_kmem_cache_slab_limit && 764eda14cbcSMatt Macy size <= (size_t)spl_kmem_cache_slab_limit) { 765eda14cbcSMatt Macy /* 766eda14cbcSMatt Macy * Objects smaller than spl_kmem_cache_slab_limit can 767eda14cbcSMatt Macy * use the Linux slab for better space-efficiency. 768eda14cbcSMatt Macy */ 769eda14cbcSMatt Macy skc->skc_flags |= KMC_SLAB; 770eda14cbcSMatt Macy } else { 771eda14cbcSMatt Macy /* 772eda14cbcSMatt Macy * All other objects are considered large and are 773eda14cbcSMatt Macy * placed on kvmem backed slabs. 774eda14cbcSMatt Macy */ 775eda14cbcSMatt Macy skc->skc_flags |= KMC_KVMEM; 776eda14cbcSMatt Macy } 777eda14cbcSMatt Macy } 778eda14cbcSMatt Macy 779eda14cbcSMatt Macy /* 780eda14cbcSMatt Macy * Given the type of slab allocate the required resources. 781eda14cbcSMatt Macy */ 782eda14cbcSMatt Macy if (skc->skc_flags & KMC_KVMEM) { 783eda14cbcSMatt Macy rc = spl_slab_size(skc, 784eda14cbcSMatt Macy &skc->skc_slab_objs, &skc->skc_slab_size); 785eda14cbcSMatt Macy if (rc) 786eda14cbcSMatt Macy goto out; 787eda14cbcSMatt Macy 788eda14cbcSMatt Macy rc = spl_magazine_create(skc); 789eda14cbcSMatt Macy if (rc) 790eda14cbcSMatt Macy goto out; 791eda14cbcSMatt Macy } else { 792eda14cbcSMatt Macy unsigned long slabflags = 0; 793eda14cbcSMatt Macy 794*15f0b8c3SMartin Matuska if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE)) 795eda14cbcSMatt Macy goto out; 796eda14cbcSMatt Macy 797eda14cbcSMatt Macy #if defined(SLAB_USERCOPY) 798eda14cbcSMatt Macy /* 799eda14cbcSMatt Macy * Required for PAX-enabled kernels if the slab is to be 800eda14cbcSMatt Macy * used for copying between user and kernel space. 801eda14cbcSMatt Macy */ 802eda14cbcSMatt Macy slabflags |= SLAB_USERCOPY; 803eda14cbcSMatt Macy #endif 804eda14cbcSMatt Macy 805eda14cbcSMatt Macy #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY) 806eda14cbcSMatt Macy /* 807eda14cbcSMatt Macy * Newer grsec patchset uses kmem_cache_create_usercopy() 808eda14cbcSMatt Macy * instead of SLAB_USERCOPY flag 809eda14cbcSMatt Macy */ 810eda14cbcSMatt Macy skc->skc_linux_cache = kmem_cache_create_usercopy( 811eda14cbcSMatt Macy skc->skc_name, size, align, slabflags, 0, size, NULL); 812eda14cbcSMatt Macy #else 813eda14cbcSMatt Macy skc->skc_linux_cache = kmem_cache_create( 814eda14cbcSMatt Macy skc->skc_name, size, align, slabflags, NULL); 815eda14cbcSMatt Macy #endif 816*15f0b8c3SMartin Matuska if (skc->skc_linux_cache == NULL) 817eda14cbcSMatt Macy goto out; 818eda14cbcSMatt Macy } 819eda14cbcSMatt Macy 820eda14cbcSMatt Macy down_write(&spl_kmem_cache_sem); 821eda14cbcSMatt Macy list_add_tail(&skc->skc_list, &spl_kmem_cache_list); 822eda14cbcSMatt Macy up_write(&spl_kmem_cache_sem); 823eda14cbcSMatt Macy 824eda14cbcSMatt Macy return (skc); 825eda14cbcSMatt Macy out: 826eda14cbcSMatt Macy kfree(skc->skc_name); 827eda14cbcSMatt Macy percpu_counter_destroy(&skc->skc_linux_alloc); 828eda14cbcSMatt Macy kfree(skc); 829eda14cbcSMatt Macy return (NULL); 830eda14cbcSMatt Macy } 831eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_create); 832eda14cbcSMatt Macy 833eda14cbcSMatt Macy /* 834eda14cbcSMatt Macy * Register a move callback for cache defragmentation. 835eda14cbcSMatt Macy * XXX: Unimplemented but harmless to stub out for now. 836eda14cbcSMatt Macy */ 837eda14cbcSMatt Macy void 838eda14cbcSMatt Macy spl_kmem_cache_set_move(spl_kmem_cache_t *skc, 839eda14cbcSMatt Macy kmem_cbrc_t (move)(void *, void *, size_t, void *)) 840eda14cbcSMatt Macy { 841eda14cbcSMatt Macy ASSERT(move != NULL); 842eda14cbcSMatt Macy } 843eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_set_move); 844eda14cbcSMatt Macy 845eda14cbcSMatt Macy /* 846eda14cbcSMatt Macy * Destroy a cache and all objects associated with the cache. 847eda14cbcSMatt Macy */ 848eda14cbcSMatt Macy void 849eda14cbcSMatt Macy spl_kmem_cache_destroy(spl_kmem_cache_t *skc) 850eda14cbcSMatt Macy { 851eda14cbcSMatt Macy DECLARE_WAIT_QUEUE_HEAD(wq); 852eda14cbcSMatt Macy taskqid_t id; 853eda14cbcSMatt Macy 854eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 855eda14cbcSMatt Macy ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB)); 856eda14cbcSMatt Macy 857eda14cbcSMatt Macy down_write(&spl_kmem_cache_sem); 858eda14cbcSMatt Macy list_del_init(&skc->skc_list); 859eda14cbcSMatt Macy up_write(&spl_kmem_cache_sem); 860eda14cbcSMatt Macy 861eda14cbcSMatt Macy /* Cancel any and wait for any pending delayed tasks */ 862eda14cbcSMatt Macy VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 863eda14cbcSMatt Macy 864eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 865eda14cbcSMatt Macy id = skc->skc_taskqid; 866eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 867eda14cbcSMatt Macy 868eda14cbcSMatt Macy taskq_cancel_id(spl_kmem_cache_taskq, id); 869eda14cbcSMatt Macy 870eda14cbcSMatt Macy /* 871eda14cbcSMatt Macy * Wait until all current callers complete, this is mainly 872eda14cbcSMatt Macy * to catch the case where a low memory situation triggers a 873eda14cbcSMatt Macy * cache reaping action which races with this destroy. 874eda14cbcSMatt Macy */ 875eda14cbcSMatt Macy wait_event(wq, atomic_read(&skc->skc_ref) == 0); 876eda14cbcSMatt Macy 877eda14cbcSMatt Macy if (skc->skc_flags & KMC_KVMEM) { 878eda14cbcSMatt Macy spl_magazine_destroy(skc); 879eda14cbcSMatt Macy spl_slab_reclaim(skc); 880eda14cbcSMatt Macy } else { 881eda14cbcSMatt Macy ASSERT(skc->skc_flags & KMC_SLAB); 882eda14cbcSMatt Macy kmem_cache_destroy(skc->skc_linux_cache); 883eda14cbcSMatt Macy } 884eda14cbcSMatt Macy 885eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 886eda14cbcSMatt Macy 887eda14cbcSMatt Macy /* 888eda14cbcSMatt Macy * Validate there are no objects in use and free all the 889eda14cbcSMatt Macy * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. 890eda14cbcSMatt Macy */ 891eda14cbcSMatt Macy ASSERT3U(skc->skc_slab_alloc, ==, 0); 892eda14cbcSMatt Macy ASSERT3U(skc->skc_obj_alloc, ==, 0); 893eda14cbcSMatt Macy ASSERT3U(skc->skc_slab_total, ==, 0); 894eda14cbcSMatt Macy ASSERT3U(skc->skc_obj_total, ==, 0); 895eda14cbcSMatt Macy ASSERT3U(skc->skc_obj_emergency, ==, 0); 896eda14cbcSMatt Macy ASSERT(list_empty(&skc->skc_complete_list)); 897eda14cbcSMatt Macy 898eda14cbcSMatt Macy ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0); 899eda14cbcSMatt Macy percpu_counter_destroy(&skc->skc_linux_alloc); 900eda14cbcSMatt Macy 901eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 902eda14cbcSMatt Macy 903eda14cbcSMatt Macy kfree(skc->skc_name); 904eda14cbcSMatt Macy kfree(skc); 905eda14cbcSMatt Macy } 906eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_destroy); 907eda14cbcSMatt Macy 908eda14cbcSMatt Macy /* 909eda14cbcSMatt Macy * Allocate an object from a slab attached to the cache. This is used to 910eda14cbcSMatt Macy * repopulate the per-cpu magazine caches in batches when they run low. 911eda14cbcSMatt Macy */ 912eda14cbcSMatt Macy static void * 913eda14cbcSMatt Macy spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks) 914eda14cbcSMatt Macy { 915eda14cbcSMatt Macy spl_kmem_obj_t *sko; 916eda14cbcSMatt Macy 917eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 918eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 919eda14cbcSMatt Macy 920eda14cbcSMatt Macy sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list); 921eda14cbcSMatt Macy ASSERT(sko->sko_magic == SKO_MAGIC); 922eda14cbcSMatt Macy ASSERT(sko->sko_addr != NULL); 923eda14cbcSMatt Macy 924eda14cbcSMatt Macy /* Remove from sks_free_list */ 925eda14cbcSMatt Macy list_del_init(&sko->sko_list); 926eda14cbcSMatt Macy 927eda14cbcSMatt Macy sks->sks_age = jiffies; 928eda14cbcSMatt Macy sks->sks_ref++; 929eda14cbcSMatt Macy skc->skc_obj_alloc++; 930eda14cbcSMatt Macy 931eda14cbcSMatt Macy /* Track max obj usage statistics */ 932eda14cbcSMatt Macy if (skc->skc_obj_alloc > skc->skc_obj_max) 933eda14cbcSMatt Macy skc->skc_obj_max = skc->skc_obj_alloc; 934eda14cbcSMatt Macy 935eda14cbcSMatt Macy /* Track max slab usage statistics */ 936eda14cbcSMatt Macy if (sks->sks_ref == 1) { 937eda14cbcSMatt Macy skc->skc_slab_alloc++; 938eda14cbcSMatt Macy 939eda14cbcSMatt Macy if (skc->skc_slab_alloc > skc->skc_slab_max) 940eda14cbcSMatt Macy skc->skc_slab_max = skc->skc_slab_alloc; 941eda14cbcSMatt Macy } 942eda14cbcSMatt Macy 943eda14cbcSMatt Macy return (sko->sko_addr); 944eda14cbcSMatt Macy } 945eda14cbcSMatt Macy 946eda14cbcSMatt Macy /* 947eda14cbcSMatt Macy * Generic slab allocation function to run by the global work queues. 948eda14cbcSMatt Macy * It is responsible for allocating a new slab, linking it in to the list 949eda14cbcSMatt Macy * of partial slabs, and then waking any waiters. 950eda14cbcSMatt Macy */ 951eda14cbcSMatt Macy static int 952eda14cbcSMatt Macy __spl_cache_grow(spl_kmem_cache_t *skc, int flags) 953eda14cbcSMatt Macy { 954eda14cbcSMatt Macy spl_kmem_slab_t *sks; 955eda14cbcSMatt Macy 956eda14cbcSMatt Macy fstrans_cookie_t cookie = spl_fstrans_mark(); 957eda14cbcSMatt Macy sks = spl_slab_alloc(skc, flags); 958eda14cbcSMatt Macy spl_fstrans_unmark(cookie); 959eda14cbcSMatt Macy 960eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 961eda14cbcSMatt Macy if (sks) { 962eda14cbcSMatt Macy skc->skc_slab_total++; 963eda14cbcSMatt Macy skc->skc_obj_total += sks->sks_objs; 964eda14cbcSMatt Macy list_add_tail(&sks->sks_list, &skc->skc_partial_list); 965eda14cbcSMatt Macy 966eda14cbcSMatt Macy smp_mb__before_atomic(); 967eda14cbcSMatt Macy clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 968eda14cbcSMatt Macy smp_mb__after_atomic(); 969eda14cbcSMatt Macy } 970eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 971eda14cbcSMatt Macy 972eda14cbcSMatt Macy return (sks == NULL ? -ENOMEM : 0); 973eda14cbcSMatt Macy } 974eda14cbcSMatt Macy 975eda14cbcSMatt Macy static void 976eda14cbcSMatt Macy spl_cache_grow_work(void *data) 977eda14cbcSMatt Macy { 978eda14cbcSMatt Macy spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data; 979eda14cbcSMatt Macy spl_kmem_cache_t *skc = ska->ska_cache; 980eda14cbcSMatt Macy 981eda14cbcSMatt Macy int error = __spl_cache_grow(skc, ska->ska_flags); 982eda14cbcSMatt Macy 983eda14cbcSMatt Macy atomic_dec(&skc->skc_ref); 984eda14cbcSMatt Macy smp_mb__before_atomic(); 985eda14cbcSMatt Macy clear_bit(KMC_BIT_GROWING, &skc->skc_flags); 986eda14cbcSMatt Macy smp_mb__after_atomic(); 987eda14cbcSMatt Macy if (error == 0) 988eda14cbcSMatt Macy wake_up_all(&skc->skc_waitq); 989eda14cbcSMatt Macy 990eda14cbcSMatt Macy kfree(ska); 991eda14cbcSMatt Macy } 992eda14cbcSMatt Macy 993eda14cbcSMatt Macy /* 994eda14cbcSMatt Macy * Returns non-zero when a new slab should be available. 995eda14cbcSMatt Macy */ 996eda14cbcSMatt Macy static int 997eda14cbcSMatt Macy spl_cache_grow_wait(spl_kmem_cache_t *skc) 998eda14cbcSMatt Macy { 999eda14cbcSMatt Macy return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags)); 1000eda14cbcSMatt Macy } 1001eda14cbcSMatt Macy 1002eda14cbcSMatt Macy /* 1003eda14cbcSMatt Macy * No available objects on any slabs, create a new slab. Note that this 1004eda14cbcSMatt Macy * functionality is disabled for KMC_SLAB caches which are backed by the 1005eda14cbcSMatt Macy * Linux slab. 1006eda14cbcSMatt Macy */ 1007eda14cbcSMatt Macy static int 1008eda14cbcSMatt Macy spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj) 1009eda14cbcSMatt Macy { 1010eda14cbcSMatt Macy int remaining, rc = 0; 1011eda14cbcSMatt Macy 1012eda14cbcSMatt Macy ASSERT0(flags & ~KM_PUBLIC_MASK); 1013eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1014eda14cbcSMatt Macy ASSERT((skc->skc_flags & KMC_SLAB) == 0); 1015eda14cbcSMatt Macy might_sleep(); 1016eda14cbcSMatt Macy *obj = NULL; 1017eda14cbcSMatt Macy 1018eda14cbcSMatt Macy /* 1019eda14cbcSMatt Macy * Before allocating a new slab wait for any reaping to complete and 1020eda14cbcSMatt Macy * then return so the local magazine can be rechecked for new objects. 1021eda14cbcSMatt Macy */ 1022eda14cbcSMatt Macy if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) { 1023eda14cbcSMatt Macy rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING, 1024eda14cbcSMatt Macy TASK_UNINTERRUPTIBLE); 1025eda14cbcSMatt Macy return (rc ? rc : -EAGAIN); 1026eda14cbcSMatt Macy } 1027eda14cbcSMatt Macy 1028eda14cbcSMatt Macy /* 1029eda14cbcSMatt Macy * Note: It would be nice to reduce the overhead of context switch 1030eda14cbcSMatt Macy * and improve NUMA locality, by trying to allocate a new slab in the 1031eda14cbcSMatt Macy * current process context with KM_NOSLEEP flag. 1032eda14cbcSMatt Macy * 1033eda14cbcSMatt Macy * However, this can't be applied to vmem/kvmem due to a bug that 1034eda14cbcSMatt Macy * spl_vmalloc() doesn't honor gfp flags in page table allocation. 1035eda14cbcSMatt Macy */ 1036eda14cbcSMatt Macy 1037eda14cbcSMatt Macy /* 1038eda14cbcSMatt Macy * This is handled by dispatching a work request to the global work 1039eda14cbcSMatt Macy * queue. This allows us to asynchronously allocate a new slab while 1040eda14cbcSMatt Macy * retaining the ability to safely fall back to a smaller synchronous 1041eda14cbcSMatt Macy * allocations to ensure forward progress is always maintained. 1042eda14cbcSMatt Macy */ 1043eda14cbcSMatt Macy if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) { 1044eda14cbcSMatt Macy spl_kmem_alloc_t *ska; 1045eda14cbcSMatt Macy 1046eda14cbcSMatt Macy ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags)); 1047eda14cbcSMatt Macy if (ska == NULL) { 1048eda14cbcSMatt Macy clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags); 1049eda14cbcSMatt Macy smp_mb__after_atomic(); 1050eda14cbcSMatt Macy wake_up_all(&skc->skc_waitq); 1051eda14cbcSMatt Macy return (-ENOMEM); 1052eda14cbcSMatt Macy } 1053eda14cbcSMatt Macy 1054eda14cbcSMatt Macy atomic_inc(&skc->skc_ref); 1055eda14cbcSMatt Macy ska->ska_cache = skc; 1056eda14cbcSMatt Macy ska->ska_flags = flags; 1057eda14cbcSMatt Macy taskq_init_ent(&ska->ska_tqe); 1058eda14cbcSMatt Macy taskq_dispatch_ent(spl_kmem_cache_taskq, 1059eda14cbcSMatt Macy spl_cache_grow_work, ska, 0, &ska->ska_tqe); 1060eda14cbcSMatt Macy } 1061eda14cbcSMatt Macy 1062eda14cbcSMatt Macy /* 1063eda14cbcSMatt Macy * The goal here is to only detect the rare case where a virtual slab 1064eda14cbcSMatt Macy * allocation has deadlocked. We must be careful to minimize the use 1065eda14cbcSMatt Macy * of emergency objects which are more expensive to track. Therefore, 1066eda14cbcSMatt Macy * we set a very long timeout for the asynchronous allocation and if 1067eda14cbcSMatt Macy * the timeout is reached the cache is flagged as deadlocked. From 1068eda14cbcSMatt Macy * this point only new emergency objects will be allocated until the 1069eda14cbcSMatt Macy * asynchronous allocation completes and clears the deadlocked flag. 1070eda14cbcSMatt Macy */ 1071eda14cbcSMatt Macy if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) { 1072eda14cbcSMatt Macy rc = spl_emergency_alloc(skc, flags, obj); 1073eda14cbcSMatt Macy } else { 1074eda14cbcSMatt Macy remaining = wait_event_timeout(skc->skc_waitq, 1075eda14cbcSMatt Macy spl_cache_grow_wait(skc), HZ / 10); 1076eda14cbcSMatt Macy 1077eda14cbcSMatt Macy if (!remaining) { 1078eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 1079eda14cbcSMatt Macy if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) { 1080eda14cbcSMatt Macy set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 1081eda14cbcSMatt Macy skc->skc_obj_deadlock++; 1082eda14cbcSMatt Macy } 1083eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 1084eda14cbcSMatt Macy } 1085eda14cbcSMatt Macy 1086eda14cbcSMatt Macy rc = -ENOMEM; 1087eda14cbcSMatt Macy } 1088eda14cbcSMatt Macy 1089eda14cbcSMatt Macy return (rc); 1090eda14cbcSMatt Macy } 1091eda14cbcSMatt Macy 1092eda14cbcSMatt Macy /* 1093eda14cbcSMatt Macy * Refill a per-cpu magazine with objects from the slabs for this cache. 1094eda14cbcSMatt Macy * Ideally the magazine can be repopulated using existing objects which have 1095eda14cbcSMatt Macy * been released, however if we are unable to locate enough free objects new 1096eda14cbcSMatt Macy * slabs of objects will be created. On success NULL is returned, otherwise 1097eda14cbcSMatt Macy * the address of a single emergency object is returned for use by the caller. 1098eda14cbcSMatt Macy */ 1099eda14cbcSMatt Macy static void * 1100eda14cbcSMatt Macy spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags) 1101eda14cbcSMatt Macy { 1102eda14cbcSMatt Macy spl_kmem_slab_t *sks; 1103eda14cbcSMatt Macy int count = 0, rc, refill; 1104eda14cbcSMatt Macy void *obj = NULL; 1105eda14cbcSMatt Macy 1106eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1107eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 1108eda14cbcSMatt Macy 1109eda14cbcSMatt Macy refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail); 1110eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 1111eda14cbcSMatt Macy 1112eda14cbcSMatt Macy while (refill > 0) { 1113eda14cbcSMatt Macy /* No slabs available we may need to grow the cache */ 1114eda14cbcSMatt Macy if (list_empty(&skc->skc_partial_list)) { 1115eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 1116eda14cbcSMatt Macy 1117eda14cbcSMatt Macy local_irq_enable(); 1118eda14cbcSMatt Macy rc = spl_cache_grow(skc, flags, &obj); 1119eda14cbcSMatt Macy local_irq_disable(); 1120eda14cbcSMatt Macy 1121eda14cbcSMatt Macy /* Emergency object for immediate use by caller */ 1122eda14cbcSMatt Macy if (rc == 0 && obj != NULL) 1123eda14cbcSMatt Macy return (obj); 1124eda14cbcSMatt Macy 1125eda14cbcSMatt Macy if (rc) 1126eda14cbcSMatt Macy goto out; 1127eda14cbcSMatt Macy 1128eda14cbcSMatt Macy /* Rescheduled to different CPU skm is not local */ 1129eda14cbcSMatt Macy if (skm != skc->skc_mag[smp_processor_id()]) 1130eda14cbcSMatt Macy goto out; 1131eda14cbcSMatt Macy 1132eda14cbcSMatt Macy /* 1133eda14cbcSMatt Macy * Potentially rescheduled to the same CPU but 1134eda14cbcSMatt Macy * allocations may have occurred from this CPU while 1135eda14cbcSMatt Macy * we were sleeping so recalculate max refill. 1136eda14cbcSMatt Macy */ 1137eda14cbcSMatt Macy refill = MIN(refill, skm->skm_size - skm->skm_avail); 1138eda14cbcSMatt Macy 1139eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 1140eda14cbcSMatt Macy continue; 1141eda14cbcSMatt Macy } 1142eda14cbcSMatt Macy 1143eda14cbcSMatt Macy /* Grab the next available slab */ 1144eda14cbcSMatt Macy sks = list_entry((&skc->skc_partial_list)->next, 1145eda14cbcSMatt Macy spl_kmem_slab_t, sks_list); 1146eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 1147eda14cbcSMatt Macy ASSERT(sks->sks_ref < sks->sks_objs); 1148eda14cbcSMatt Macy ASSERT(!list_empty(&sks->sks_free_list)); 1149eda14cbcSMatt Macy 1150eda14cbcSMatt Macy /* 1151eda14cbcSMatt Macy * Consume as many objects as needed to refill the requested 1152eda14cbcSMatt Macy * cache. We must also be careful not to overfill it. 1153eda14cbcSMatt Macy */ 1154eda14cbcSMatt Macy while (sks->sks_ref < sks->sks_objs && refill-- > 0 && 1155eda14cbcSMatt Macy ++count) { 1156eda14cbcSMatt Macy ASSERT(skm->skm_avail < skm->skm_size); 1157eda14cbcSMatt Macy ASSERT(count < skm->skm_size); 1158eda14cbcSMatt Macy skm->skm_objs[skm->skm_avail++] = 1159eda14cbcSMatt Macy spl_cache_obj(skc, sks); 1160eda14cbcSMatt Macy } 1161eda14cbcSMatt Macy 1162eda14cbcSMatt Macy /* Move slab to skc_complete_list when full */ 1163eda14cbcSMatt Macy if (sks->sks_ref == sks->sks_objs) { 1164eda14cbcSMatt Macy list_del(&sks->sks_list); 1165eda14cbcSMatt Macy list_add(&sks->sks_list, &skc->skc_complete_list); 1166eda14cbcSMatt Macy } 1167eda14cbcSMatt Macy } 1168eda14cbcSMatt Macy 1169eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 1170eda14cbcSMatt Macy out: 1171eda14cbcSMatt Macy return (NULL); 1172eda14cbcSMatt Macy } 1173eda14cbcSMatt Macy 1174eda14cbcSMatt Macy /* 1175eda14cbcSMatt Macy * Release an object back to the slab from which it came. 1176eda14cbcSMatt Macy */ 1177eda14cbcSMatt Macy static void 1178eda14cbcSMatt Macy spl_cache_shrink(spl_kmem_cache_t *skc, void *obj) 1179eda14cbcSMatt Macy { 1180eda14cbcSMatt Macy spl_kmem_slab_t *sks = NULL; 1181eda14cbcSMatt Macy spl_kmem_obj_t *sko = NULL; 1182eda14cbcSMatt Macy 1183eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1184eda14cbcSMatt Macy 1185eda14cbcSMatt Macy sko = spl_sko_from_obj(skc, obj); 1186eda14cbcSMatt Macy ASSERT(sko->sko_magic == SKO_MAGIC); 1187eda14cbcSMatt Macy sks = sko->sko_slab; 1188eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 1189eda14cbcSMatt Macy ASSERT(sks->sks_cache == skc); 1190eda14cbcSMatt Macy list_add(&sko->sko_list, &sks->sks_free_list); 1191eda14cbcSMatt Macy 1192eda14cbcSMatt Macy sks->sks_age = jiffies; 1193eda14cbcSMatt Macy sks->sks_ref--; 1194eda14cbcSMatt Macy skc->skc_obj_alloc--; 1195eda14cbcSMatt Macy 1196eda14cbcSMatt Macy /* 1197eda14cbcSMatt Macy * Move slab to skc_partial_list when no longer full. Slabs 1198eda14cbcSMatt Macy * are added to the head to keep the partial list is quasi-full 1199eda14cbcSMatt Macy * sorted order. Fuller at the head, emptier at the tail. 1200eda14cbcSMatt Macy */ 1201eda14cbcSMatt Macy if (sks->sks_ref == (sks->sks_objs - 1)) { 1202eda14cbcSMatt Macy list_del(&sks->sks_list); 1203eda14cbcSMatt Macy list_add(&sks->sks_list, &skc->skc_partial_list); 1204eda14cbcSMatt Macy } 1205eda14cbcSMatt Macy 1206eda14cbcSMatt Macy /* 1207eda14cbcSMatt Macy * Move empty slabs to the end of the partial list so 1208eda14cbcSMatt Macy * they can be easily found and freed during reclamation. 1209eda14cbcSMatt Macy */ 1210eda14cbcSMatt Macy if (sks->sks_ref == 0) { 1211eda14cbcSMatt Macy list_del(&sks->sks_list); 1212eda14cbcSMatt Macy list_add_tail(&sks->sks_list, &skc->skc_partial_list); 1213eda14cbcSMatt Macy skc->skc_slab_alloc--; 1214eda14cbcSMatt Macy } 1215eda14cbcSMatt Macy } 1216eda14cbcSMatt Macy 1217eda14cbcSMatt Macy /* 1218eda14cbcSMatt Macy * Allocate an object from the per-cpu magazine, or if the magazine 1219eda14cbcSMatt Macy * is empty directly allocate from a slab and repopulate the magazine. 1220eda14cbcSMatt Macy */ 1221eda14cbcSMatt Macy void * 1222eda14cbcSMatt Macy spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags) 1223eda14cbcSMatt Macy { 1224eda14cbcSMatt Macy spl_kmem_magazine_t *skm; 1225eda14cbcSMatt Macy void *obj = NULL; 1226eda14cbcSMatt Macy 1227eda14cbcSMatt Macy ASSERT0(flags & ~KM_PUBLIC_MASK); 1228eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1229eda14cbcSMatt Macy ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1230eda14cbcSMatt Macy 1231eda14cbcSMatt Macy /* 1232eda14cbcSMatt Macy * Allocate directly from a Linux slab. All optimizations are left 1233eda14cbcSMatt Macy * to the underlying cache we only need to guarantee that KM_SLEEP 1234eda14cbcSMatt Macy * callers will never fail. 1235eda14cbcSMatt Macy */ 1236eda14cbcSMatt Macy if (skc->skc_flags & KMC_SLAB) { 1237eda14cbcSMatt Macy struct kmem_cache *slc = skc->skc_linux_cache; 1238eda14cbcSMatt Macy do { 1239eda14cbcSMatt Macy obj = kmem_cache_alloc(slc, kmem_flags_convert(flags)); 1240eda14cbcSMatt Macy } while ((obj == NULL) && !(flags & KM_NOSLEEP)); 1241eda14cbcSMatt Macy 1242eda14cbcSMatt Macy if (obj != NULL) { 1243eda14cbcSMatt Macy /* 1244eda14cbcSMatt Macy * Even though we leave everything up to the 1245eda14cbcSMatt Macy * underlying cache we still keep track of 1246eda14cbcSMatt Macy * how many objects we've allocated in it for 1247eda14cbcSMatt Macy * better debuggability. 1248eda14cbcSMatt Macy */ 1249eda14cbcSMatt Macy percpu_counter_inc(&skc->skc_linux_alloc); 1250eda14cbcSMatt Macy } 1251eda14cbcSMatt Macy goto ret; 1252eda14cbcSMatt Macy } 1253eda14cbcSMatt Macy 1254eda14cbcSMatt Macy local_irq_disable(); 1255eda14cbcSMatt Macy 1256eda14cbcSMatt Macy restart: 1257eda14cbcSMatt Macy /* 1258eda14cbcSMatt Macy * Safe to update per-cpu structure without lock, but 1259eda14cbcSMatt Macy * in the restart case we must be careful to reacquire 1260eda14cbcSMatt Macy * the local magazine since this may have changed 1261eda14cbcSMatt Macy * when we need to grow the cache. 1262eda14cbcSMatt Macy */ 1263eda14cbcSMatt Macy skm = skc->skc_mag[smp_processor_id()]; 1264eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 1265eda14cbcSMatt Macy 1266eda14cbcSMatt Macy if (likely(skm->skm_avail)) { 1267eda14cbcSMatt Macy /* Object available in CPU cache, use it */ 1268eda14cbcSMatt Macy obj = skm->skm_objs[--skm->skm_avail]; 1269eda14cbcSMatt Macy } else { 1270eda14cbcSMatt Macy obj = spl_cache_refill(skc, skm, flags); 1271eda14cbcSMatt Macy if ((obj == NULL) && !(flags & KM_NOSLEEP)) 1272eda14cbcSMatt Macy goto restart; 1273eda14cbcSMatt Macy 1274eda14cbcSMatt Macy local_irq_enable(); 1275eda14cbcSMatt Macy goto ret; 1276eda14cbcSMatt Macy } 1277eda14cbcSMatt Macy 1278eda14cbcSMatt Macy local_irq_enable(); 1279eda14cbcSMatt Macy ASSERT(obj); 1280eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 1281eda14cbcSMatt Macy 1282eda14cbcSMatt Macy ret: 1283eda14cbcSMatt Macy /* Pre-emptively migrate object to CPU L1 cache */ 1284eda14cbcSMatt Macy if (obj) { 1285eda14cbcSMatt Macy if (obj && skc->skc_ctor) 1286eda14cbcSMatt Macy skc->skc_ctor(obj, skc->skc_private, flags); 1287eda14cbcSMatt Macy else 1288eda14cbcSMatt Macy prefetchw(obj); 1289eda14cbcSMatt Macy } 1290eda14cbcSMatt Macy 1291eda14cbcSMatt Macy return (obj); 1292eda14cbcSMatt Macy } 1293eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_alloc); 1294eda14cbcSMatt Macy 1295eda14cbcSMatt Macy /* 1296eda14cbcSMatt Macy * Free an object back to the local per-cpu magazine, there is no 1297eda14cbcSMatt Macy * guarantee that this is the same magazine the object was originally 1298eda14cbcSMatt Macy * allocated from. We may need to flush entire from the magazine 1299eda14cbcSMatt Macy * back to the slabs to make space. 1300eda14cbcSMatt Macy */ 1301eda14cbcSMatt Macy void 1302eda14cbcSMatt Macy spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj) 1303eda14cbcSMatt Macy { 1304eda14cbcSMatt Macy spl_kmem_magazine_t *skm; 1305eda14cbcSMatt Macy unsigned long flags; 1306eda14cbcSMatt Macy int do_reclaim = 0; 1307eda14cbcSMatt Macy int do_emergency = 0; 1308eda14cbcSMatt Macy 1309eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1310eda14cbcSMatt Macy ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1311eda14cbcSMatt Macy 1312eda14cbcSMatt Macy /* 1313eda14cbcSMatt Macy * Run the destructor 1314eda14cbcSMatt Macy */ 1315eda14cbcSMatt Macy if (skc->skc_dtor) 1316eda14cbcSMatt Macy skc->skc_dtor(obj, skc->skc_private); 1317eda14cbcSMatt Macy 1318eda14cbcSMatt Macy /* 1319eda14cbcSMatt Macy * Free the object from the Linux underlying Linux slab. 1320eda14cbcSMatt Macy */ 1321eda14cbcSMatt Macy if (skc->skc_flags & KMC_SLAB) { 1322eda14cbcSMatt Macy kmem_cache_free(skc->skc_linux_cache, obj); 1323eda14cbcSMatt Macy percpu_counter_dec(&skc->skc_linux_alloc); 1324eda14cbcSMatt Macy return; 1325eda14cbcSMatt Macy } 1326eda14cbcSMatt Macy 1327eda14cbcSMatt Macy /* 1328eda14cbcSMatt Macy * While a cache has outstanding emergency objects all freed objects 1329eda14cbcSMatt Macy * must be checked. However, since emergency objects will never use 1330eda14cbcSMatt Macy * a virtual address these objects can be safely excluded as an 1331eda14cbcSMatt Macy * optimization. 1332eda14cbcSMatt Macy */ 1333eda14cbcSMatt Macy if (!is_vmalloc_addr(obj)) { 1334eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 1335eda14cbcSMatt Macy do_emergency = (skc->skc_obj_emergency > 0); 1336eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 1337eda14cbcSMatt Macy 1338eda14cbcSMatt Macy if (do_emergency && (spl_emergency_free(skc, obj) == 0)) 1339eda14cbcSMatt Macy return; 1340eda14cbcSMatt Macy } 1341eda14cbcSMatt Macy 1342eda14cbcSMatt Macy local_irq_save(flags); 1343eda14cbcSMatt Macy 1344eda14cbcSMatt Macy /* 1345eda14cbcSMatt Macy * Safe to update per-cpu structure without lock, but 1346eda14cbcSMatt Macy * no remote memory allocation tracking is being performed 1347eda14cbcSMatt Macy * it is entirely possible to allocate an object from one 1348eda14cbcSMatt Macy * CPU cache and return it to another. 1349eda14cbcSMatt Macy */ 1350eda14cbcSMatt Macy skm = skc->skc_mag[smp_processor_id()]; 1351eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 1352eda14cbcSMatt Macy 1353eda14cbcSMatt Macy /* 1354eda14cbcSMatt Macy * Per-CPU cache full, flush it to make space for this object, 1355eda14cbcSMatt Macy * this may result in an empty slab which can be reclaimed once 1356eda14cbcSMatt Macy * interrupts are re-enabled. 1357eda14cbcSMatt Macy */ 1358eda14cbcSMatt Macy if (unlikely(skm->skm_avail >= skm->skm_size)) { 1359eda14cbcSMatt Macy spl_cache_flush(skc, skm, skm->skm_refill); 1360eda14cbcSMatt Macy do_reclaim = 1; 1361eda14cbcSMatt Macy } 1362eda14cbcSMatt Macy 1363eda14cbcSMatt Macy /* Available space in cache, use it */ 1364eda14cbcSMatt Macy skm->skm_objs[skm->skm_avail++] = obj; 1365eda14cbcSMatt Macy 1366eda14cbcSMatt Macy local_irq_restore(flags); 1367eda14cbcSMatt Macy 1368eda14cbcSMatt Macy if (do_reclaim) 1369eda14cbcSMatt Macy spl_slab_reclaim(skc); 1370eda14cbcSMatt Macy } 1371eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_free); 1372eda14cbcSMatt Macy 1373eda14cbcSMatt Macy /* 1374eda14cbcSMatt Macy * Depending on how many and which objects are released it may simply 1375eda14cbcSMatt Macy * repopulate the local magazine which will then need to age-out. Objects 1376eda14cbcSMatt Macy * which cannot fit in the magazine will be released back to their slabs 1377eda14cbcSMatt Macy * which will also need to age out before being released. This is all just 1378eda14cbcSMatt Macy * best effort and we do not want to thrash creating and destroying slabs. 1379eda14cbcSMatt Macy */ 1380eda14cbcSMatt Macy void 1381eda14cbcSMatt Macy spl_kmem_cache_reap_now(spl_kmem_cache_t *skc) 1382eda14cbcSMatt Macy { 1383eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1384eda14cbcSMatt Macy ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1385eda14cbcSMatt Macy 1386eda14cbcSMatt Macy if (skc->skc_flags & KMC_SLAB) 1387eda14cbcSMatt Macy return; 1388eda14cbcSMatt Macy 1389eda14cbcSMatt Macy atomic_inc(&skc->skc_ref); 1390eda14cbcSMatt Macy 1391eda14cbcSMatt Macy /* 1392eda14cbcSMatt Macy * Prevent concurrent cache reaping when contended. 1393eda14cbcSMatt Macy */ 1394eda14cbcSMatt Macy if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) 1395eda14cbcSMatt Macy goto out; 1396eda14cbcSMatt Macy 1397eda14cbcSMatt Macy /* Reclaim from the magazine and free all now empty slabs. */ 1398eda14cbcSMatt Macy unsigned long irq_flags; 1399eda14cbcSMatt Macy local_irq_save(irq_flags); 1400eda14cbcSMatt Macy spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()]; 1401eda14cbcSMatt Macy spl_cache_flush(skc, skm, skm->skm_avail); 1402eda14cbcSMatt Macy local_irq_restore(irq_flags); 1403eda14cbcSMatt Macy 1404eda14cbcSMatt Macy spl_slab_reclaim(skc); 1405eda14cbcSMatt Macy clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags); 1406eda14cbcSMatt Macy smp_mb__after_atomic(); 1407eda14cbcSMatt Macy wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING); 1408eda14cbcSMatt Macy out: 1409eda14cbcSMatt Macy atomic_dec(&skc->skc_ref); 1410eda14cbcSMatt Macy } 1411eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_reap_now); 1412eda14cbcSMatt Macy 1413eda14cbcSMatt Macy /* 1414eda14cbcSMatt Macy * This is stubbed out for code consistency with other platforms. There 1415eda14cbcSMatt Macy * is existing logic to prevent concurrent reaping so while this is ugly 1416eda14cbcSMatt Macy * it should do no harm. 1417eda14cbcSMatt Macy */ 1418eda14cbcSMatt Macy int 1419716fd348SMartin Matuska spl_kmem_cache_reap_active(void) 1420eda14cbcSMatt Macy { 1421eda14cbcSMatt Macy return (0); 1422eda14cbcSMatt Macy } 1423eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_reap_active); 1424eda14cbcSMatt Macy 1425eda14cbcSMatt Macy /* 1426eda14cbcSMatt Macy * Reap all free slabs from all registered caches. 1427eda14cbcSMatt Macy */ 1428eda14cbcSMatt Macy void 1429eda14cbcSMatt Macy spl_kmem_reap(void) 1430eda14cbcSMatt Macy { 1431eda14cbcSMatt Macy spl_kmem_cache_t *skc = NULL; 1432eda14cbcSMatt Macy 1433eda14cbcSMatt Macy down_read(&spl_kmem_cache_sem); 1434eda14cbcSMatt Macy list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) { 1435eda14cbcSMatt Macy spl_kmem_cache_reap_now(skc); 1436eda14cbcSMatt Macy } 1437eda14cbcSMatt Macy up_read(&spl_kmem_cache_sem); 1438eda14cbcSMatt Macy } 1439eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_reap); 1440eda14cbcSMatt Macy 1441eda14cbcSMatt Macy int 1442eda14cbcSMatt Macy spl_kmem_cache_init(void) 1443eda14cbcSMatt Macy { 1444eda14cbcSMatt Macy init_rwsem(&spl_kmem_cache_sem); 1445eda14cbcSMatt Macy INIT_LIST_HEAD(&spl_kmem_cache_list); 1446eda14cbcSMatt Macy spl_kmem_cache_taskq = taskq_create("spl_kmem_cache", 1447eda14cbcSMatt Macy spl_kmem_cache_kmem_threads, maxclsyspri, 1448eda14cbcSMatt Macy spl_kmem_cache_kmem_threads * 8, INT_MAX, 1449eda14cbcSMatt Macy TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 1450eda14cbcSMatt Macy 1451c7046f76SMartin Matuska if (spl_kmem_cache_taskq == NULL) 1452c7046f76SMartin Matuska return (-ENOMEM); 1453c7046f76SMartin Matuska 1454eda14cbcSMatt Macy return (0); 1455eda14cbcSMatt Macy } 1456eda14cbcSMatt Macy 1457eda14cbcSMatt Macy void 1458eda14cbcSMatt Macy spl_kmem_cache_fini(void) 1459eda14cbcSMatt Macy { 1460eda14cbcSMatt Macy taskq_destroy(spl_kmem_cache_taskq); 1461eda14cbcSMatt Macy } 1462