xref: /freebsd-src/sys/contrib/openzfs/module/os/linux/spl/spl-kmem-cache.c (revision 15f0b8c309dea1dcb14d3e374686576ff68ac43f)
1eda14cbcSMatt Macy /*
2eda14cbcSMatt Macy  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3eda14cbcSMatt Macy  *  Copyright (C) 2007 The Regents of the University of California.
4eda14cbcSMatt Macy  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5eda14cbcSMatt Macy  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6eda14cbcSMatt Macy  *  UCRL-CODE-235197
7eda14cbcSMatt Macy  *
8eda14cbcSMatt Macy  *  This file is part of the SPL, Solaris Porting Layer.
9eda14cbcSMatt Macy  *
10eda14cbcSMatt Macy  *  The SPL is free software; you can redistribute it and/or modify it
11eda14cbcSMatt Macy  *  under the terms of the GNU General Public License as published by the
12eda14cbcSMatt Macy  *  Free Software Foundation; either version 2 of the License, or (at your
13eda14cbcSMatt Macy  *  option) any later version.
14eda14cbcSMatt Macy  *
15eda14cbcSMatt Macy  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16eda14cbcSMatt Macy  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17eda14cbcSMatt Macy  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18eda14cbcSMatt Macy  *  for more details.
19eda14cbcSMatt Macy  *
20eda14cbcSMatt Macy  *  You should have received a copy of the GNU General Public License along
21eda14cbcSMatt Macy  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22eda14cbcSMatt Macy  */
23eda14cbcSMatt Macy 
24eda14cbcSMatt Macy #include <linux/percpu_compat.h>
25eda14cbcSMatt Macy #include <sys/kmem.h>
26eda14cbcSMatt Macy #include <sys/kmem_cache.h>
27eda14cbcSMatt Macy #include <sys/taskq.h>
28eda14cbcSMatt Macy #include <sys/timer.h>
29eda14cbcSMatt Macy #include <sys/vmem.h>
30eda14cbcSMatt Macy #include <sys/wait.h>
31eda14cbcSMatt Macy #include <linux/slab.h>
32eda14cbcSMatt Macy #include <linux/swap.h>
33eda14cbcSMatt Macy #include <linux/prefetch.h>
34eda14cbcSMatt Macy 
35eda14cbcSMatt Macy /*
36eda14cbcSMatt Macy  * Within the scope of spl-kmem.c file the kmem_cache_* definitions
37eda14cbcSMatt Macy  * are removed to allow access to the real Linux slab allocator.
38eda14cbcSMatt Macy  */
39eda14cbcSMatt Macy #undef kmem_cache_destroy
40eda14cbcSMatt Macy #undef kmem_cache_create
41eda14cbcSMatt Macy #undef kmem_cache_alloc
42eda14cbcSMatt Macy #undef kmem_cache_free
43eda14cbcSMatt Macy 
44eda14cbcSMatt Macy 
45eda14cbcSMatt Macy /*
46eda14cbcSMatt Macy  * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
47eda14cbcSMatt Macy  * with smp_mb__{before,after}_atomic() because they were redundant. This is
48eda14cbcSMatt Macy  * only used inside our SLAB allocator, so we implement an internal wrapper
49eda14cbcSMatt Macy  * here to give us smp_mb__{before,after}_atomic() on older kernels.
50eda14cbcSMatt Macy  */
51eda14cbcSMatt Macy #ifndef smp_mb__before_atomic
52eda14cbcSMatt Macy #define	smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
53eda14cbcSMatt Macy #endif
54eda14cbcSMatt Macy 
55eda14cbcSMatt Macy #ifndef smp_mb__after_atomic
56eda14cbcSMatt Macy #define	smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
57eda14cbcSMatt Macy #endif
58eda14cbcSMatt Macy 
59eda14cbcSMatt Macy /* BEGIN CSTYLED */
60eda14cbcSMatt Macy /*
61eda14cbcSMatt Macy  * Cache magazines are an optimization designed to minimize the cost of
62eda14cbcSMatt Macy  * allocating memory.  They do this by keeping a per-cpu cache of recently
63eda14cbcSMatt Macy  * freed objects, which can then be reallocated without taking a lock. This
64eda14cbcSMatt Macy  * can improve performance on highly contended caches.  However, because
65eda14cbcSMatt Macy  * objects in magazines will prevent otherwise empty slabs from being
66eda14cbcSMatt Macy  * immediately released this may not be ideal for low memory machines.
67eda14cbcSMatt Macy  *
68eda14cbcSMatt Macy  * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
69eda14cbcSMatt Macy  * magazine size.  When this value is set to 0 the magazine size will be
70eda14cbcSMatt Macy  * automatically determined based on the object size.  Otherwise magazines
71eda14cbcSMatt Macy  * will be limited to 2-256 objects per magazine (i.e per cpu).  Magazines
72eda14cbcSMatt Macy  * may never be entirely disabled in this implementation.
73eda14cbcSMatt Macy  */
74e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_magazine_size = 0;
75eda14cbcSMatt Macy module_param(spl_kmem_cache_magazine_size, uint, 0444);
76eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
77eda14cbcSMatt Macy 	"Default magazine size (2-256), set automatically (0)");
78eda14cbcSMatt Macy 
79eda14cbcSMatt Macy /*
80eda14cbcSMatt Macy  * The default behavior is to report the number of objects remaining in the
81eda14cbcSMatt Macy  * cache.  This allows the Linux VM to repeatedly reclaim objects from the
82eda14cbcSMatt Macy  * cache when memory is low satisfy other memory allocations.  Alternately,
83eda14cbcSMatt Macy  * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
84eda14cbcSMatt Macy  * is reclaimed.  This may increase the likelihood of out of memory events.
85eda14cbcSMatt Macy  */
86e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_reclaim = 0 /* KMC_RECLAIM_ONCE */;
87eda14cbcSMatt Macy module_param(spl_kmem_cache_reclaim, uint, 0644);
88eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_reclaim, "Single reclaim pass (0x1)");
89eda14cbcSMatt Macy 
90e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
91eda14cbcSMatt Macy module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
92eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
93eda14cbcSMatt Macy 
94e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
95eda14cbcSMatt Macy module_param(spl_kmem_cache_max_size, uint, 0644);
96eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
97eda14cbcSMatt Macy 
98eda14cbcSMatt Macy /*
99eda14cbcSMatt Macy  * For small objects the Linux slab allocator should be used to make the most
100eda14cbcSMatt Macy  * efficient use of the memory.  However, large objects are not supported by
101eda14cbcSMatt Macy  * the Linux slab and therefore the SPL implementation is preferred.  A cutoff
10216038816SMartin Matuska  * of 16K was determined to be optimal for architectures using 4K pages and
10316038816SMartin Matuska  * to also work well on architecutres using larger 64K page sizes.
104eda14cbcSMatt Macy  */
105e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_slab_limit = 16384;
106eda14cbcSMatt Macy module_param(spl_kmem_cache_slab_limit, uint, 0644);
107eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
108eda14cbcSMatt Macy 	"Objects less than N bytes use the Linux slab");
109eda14cbcSMatt Macy 
110eda14cbcSMatt Macy /*
111eda14cbcSMatt Macy  * The number of threads available to allocate new slabs for caches.  This
112eda14cbcSMatt Macy  * should not need to be tuned but it is available for performance analysis.
113eda14cbcSMatt Macy  */
114e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_kmem_threads = 4;
115eda14cbcSMatt Macy module_param(spl_kmem_cache_kmem_threads, uint, 0444);
116eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
117eda14cbcSMatt Macy 	"Number of spl_kmem_cache threads");
118eda14cbcSMatt Macy /* END CSTYLED */
119eda14cbcSMatt Macy 
120eda14cbcSMatt Macy /*
121eda14cbcSMatt Macy  * Slab allocation interfaces
122eda14cbcSMatt Macy  *
123eda14cbcSMatt Macy  * While the Linux slab implementation was inspired by the Solaris
124eda14cbcSMatt Macy  * implementation I cannot use it to emulate the Solaris APIs.  I
125eda14cbcSMatt Macy  * require two features which are not provided by the Linux slab.
126eda14cbcSMatt Macy  *
127eda14cbcSMatt Macy  * 1) Constructors AND destructors.  Recent versions of the Linux
128eda14cbcSMatt Macy  *    kernel have removed support for destructors.  This is a deal
129eda14cbcSMatt Macy  *    breaker for the SPL which contains particularly expensive
130eda14cbcSMatt Macy  *    initializers for mutex's, condition variables, etc.  We also
131eda14cbcSMatt Macy  *    require a minimal level of cleanup for these data types unlike
132eda14cbcSMatt Macy  *    many Linux data types which do need to be explicitly destroyed.
133eda14cbcSMatt Macy  *
134eda14cbcSMatt Macy  * 2) Virtual address space backed slab.  Callers of the Solaris slab
135eda14cbcSMatt Macy  *    expect it to work well for both small are very large allocations.
136eda14cbcSMatt Macy  *    Because of memory fragmentation the Linux slab which is backed
137eda14cbcSMatt Macy  *    by kmalloc'ed memory performs very badly when confronted with
138eda14cbcSMatt Macy  *    large numbers of large allocations.  Basing the slab on the
139eda14cbcSMatt Macy  *    virtual address space removes the need for contiguous pages
140eda14cbcSMatt Macy  *    and greatly improve performance for large allocations.
141eda14cbcSMatt Macy  *
142eda14cbcSMatt Macy  * For these reasons, the SPL has its own slab implementation with
143eda14cbcSMatt Macy  * the needed features.  It is not as highly optimized as either the
144eda14cbcSMatt Macy  * Solaris or Linux slabs, but it should get me most of what is
145eda14cbcSMatt Macy  * needed until it can be optimized or obsoleted by another approach.
146eda14cbcSMatt Macy  *
147eda14cbcSMatt Macy  * One serious concern I do have about this method is the relatively
148eda14cbcSMatt Macy  * small virtual address space on 32bit arches.  This will seriously
149eda14cbcSMatt Macy  * constrain the size of the slab caches and their performance.
150eda14cbcSMatt Macy  */
151eda14cbcSMatt Macy 
152eda14cbcSMatt Macy struct list_head spl_kmem_cache_list;   /* List of caches */
153eda14cbcSMatt Macy struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
154dbd5678dSMartin Matuska static taskq_t *spl_kmem_cache_taskq;   /* Task queue for aging / reclaim */
155eda14cbcSMatt Macy 
156eda14cbcSMatt Macy static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
157eda14cbcSMatt Macy 
158eda14cbcSMatt Macy static void *
159eda14cbcSMatt Macy kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
160eda14cbcSMatt Macy {
161eda14cbcSMatt Macy 	gfp_t lflags = kmem_flags_convert(flags);
162eda14cbcSMatt Macy 	void *ptr;
163eda14cbcSMatt Macy 
164eda14cbcSMatt Macy 	ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
165eda14cbcSMatt Macy 
166eda14cbcSMatt Macy 	/* Resulting allocated memory will be page aligned */
167eda14cbcSMatt Macy 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
168eda14cbcSMatt Macy 
169eda14cbcSMatt Macy 	return (ptr);
170eda14cbcSMatt Macy }
171eda14cbcSMatt Macy 
172eda14cbcSMatt Macy static void
173eda14cbcSMatt Macy kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
174eda14cbcSMatt Macy {
175eda14cbcSMatt Macy 	ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
176eda14cbcSMatt Macy 
177eda14cbcSMatt Macy 	/*
178eda14cbcSMatt Macy 	 * The Linux direct reclaim path uses this out of band value to
179eda14cbcSMatt Macy 	 * determine if forward progress is being made.  Normally this is
180eda14cbcSMatt Macy 	 * incremented by kmem_freepages() which is part of the various
181eda14cbcSMatt Macy 	 * Linux slab implementations.  However, since we are using none
182eda14cbcSMatt Macy 	 * of that infrastructure we are responsible for incrementing it.
183eda14cbcSMatt Macy 	 */
184eda14cbcSMatt Macy 	if (current->reclaim_state)
185eda14cbcSMatt Macy 		current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
186eda14cbcSMatt Macy 
187eda14cbcSMatt Macy 	vfree(ptr);
188eda14cbcSMatt Macy }
189eda14cbcSMatt Macy 
190eda14cbcSMatt Macy /*
191eda14cbcSMatt Macy  * Required space for each aligned sks.
192eda14cbcSMatt Macy  */
193eda14cbcSMatt Macy static inline uint32_t
194eda14cbcSMatt Macy spl_sks_size(spl_kmem_cache_t *skc)
195eda14cbcSMatt Macy {
196eda14cbcSMatt Macy 	return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
197eda14cbcSMatt Macy 	    skc->skc_obj_align, uint32_t));
198eda14cbcSMatt Macy }
199eda14cbcSMatt Macy 
200eda14cbcSMatt Macy /*
201eda14cbcSMatt Macy  * Required space for each aligned object.
202eda14cbcSMatt Macy  */
203eda14cbcSMatt Macy static inline uint32_t
204eda14cbcSMatt Macy spl_obj_size(spl_kmem_cache_t *skc)
205eda14cbcSMatt Macy {
206eda14cbcSMatt Macy 	uint32_t align = skc->skc_obj_align;
207eda14cbcSMatt Macy 
208eda14cbcSMatt Macy 	return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
209eda14cbcSMatt Macy 	    P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
210eda14cbcSMatt Macy }
211eda14cbcSMatt Macy 
212eda14cbcSMatt Macy uint64_t
213eda14cbcSMatt Macy spl_kmem_cache_inuse(kmem_cache_t *cache)
214eda14cbcSMatt Macy {
215eda14cbcSMatt Macy 	return (cache->skc_obj_total);
216eda14cbcSMatt Macy }
217eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_inuse);
218eda14cbcSMatt Macy 
219eda14cbcSMatt Macy uint64_t
220eda14cbcSMatt Macy spl_kmem_cache_entry_size(kmem_cache_t *cache)
221eda14cbcSMatt Macy {
222eda14cbcSMatt Macy 	return (cache->skc_obj_size);
223eda14cbcSMatt Macy }
224eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_entry_size);
225eda14cbcSMatt Macy 
226eda14cbcSMatt Macy /*
227eda14cbcSMatt Macy  * Lookup the spl_kmem_object_t for an object given that object.
228eda14cbcSMatt Macy  */
229eda14cbcSMatt Macy static inline spl_kmem_obj_t *
230eda14cbcSMatt Macy spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
231eda14cbcSMatt Macy {
232eda14cbcSMatt Macy 	return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
233eda14cbcSMatt Macy 	    skc->skc_obj_align, uint32_t));
234eda14cbcSMatt Macy }
235eda14cbcSMatt Macy 
236eda14cbcSMatt Macy /*
237eda14cbcSMatt Macy  * It's important that we pack the spl_kmem_obj_t structure and the
238eda14cbcSMatt Macy  * actual objects in to one large address space to minimize the number
239eda14cbcSMatt Macy  * of calls to the allocator.  It is far better to do a few large
240eda14cbcSMatt Macy  * allocations and then subdivide it ourselves.  Now which allocator
241eda14cbcSMatt Macy  * we use requires balancing a few trade offs.
242eda14cbcSMatt Macy  *
243eda14cbcSMatt Macy  * For small objects we use kmem_alloc() because as long as you are
244eda14cbcSMatt Macy  * only requesting a small number of pages (ideally just one) its cheap.
245eda14cbcSMatt Macy  * However, when you start requesting multiple pages with kmem_alloc()
246eda14cbcSMatt Macy  * it gets increasingly expensive since it requires contiguous pages.
247eda14cbcSMatt Macy  * For this reason we shift to vmem_alloc() for slabs of large objects
248eda14cbcSMatt Macy  * which removes the need for contiguous pages.  We do not use
249eda14cbcSMatt Macy  * vmem_alloc() in all cases because there is significant locking
250eda14cbcSMatt Macy  * overhead in __get_vm_area_node().  This function takes a single
251eda14cbcSMatt Macy  * global lock when acquiring an available virtual address range which
252eda14cbcSMatt Macy  * serializes all vmem_alloc()'s for all slab caches.  Using slightly
253eda14cbcSMatt Macy  * different allocation functions for small and large objects should
254eda14cbcSMatt Macy  * give us the best of both worlds.
255eda14cbcSMatt Macy  *
256eda14cbcSMatt Macy  * +------------------------+
257eda14cbcSMatt Macy  * | spl_kmem_slab_t --+-+  |
258eda14cbcSMatt Macy  * | skc_obj_size    <-+ |  |
259eda14cbcSMatt Macy  * | spl_kmem_obj_t      |  |
260eda14cbcSMatt Macy  * | skc_obj_size    <---+  |
261eda14cbcSMatt Macy  * | spl_kmem_obj_t      |  |
262eda14cbcSMatt Macy  * | ...                 v  |
263eda14cbcSMatt Macy  * +------------------------+
264eda14cbcSMatt Macy  */
265eda14cbcSMatt Macy static spl_kmem_slab_t *
266eda14cbcSMatt Macy spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
267eda14cbcSMatt Macy {
268eda14cbcSMatt Macy 	spl_kmem_slab_t *sks;
269eda14cbcSMatt Macy 	void *base;
270eda14cbcSMatt Macy 	uint32_t obj_size;
271eda14cbcSMatt Macy 
272eda14cbcSMatt Macy 	base = kv_alloc(skc, skc->skc_slab_size, flags);
273eda14cbcSMatt Macy 	if (base == NULL)
274eda14cbcSMatt Macy 		return (NULL);
275eda14cbcSMatt Macy 
276eda14cbcSMatt Macy 	sks = (spl_kmem_slab_t *)base;
277eda14cbcSMatt Macy 	sks->sks_magic = SKS_MAGIC;
278eda14cbcSMatt Macy 	sks->sks_objs = skc->skc_slab_objs;
279eda14cbcSMatt Macy 	sks->sks_age = jiffies;
280eda14cbcSMatt Macy 	sks->sks_cache = skc;
281eda14cbcSMatt Macy 	INIT_LIST_HEAD(&sks->sks_list);
282eda14cbcSMatt Macy 	INIT_LIST_HEAD(&sks->sks_free_list);
283eda14cbcSMatt Macy 	sks->sks_ref = 0;
284eda14cbcSMatt Macy 	obj_size = spl_obj_size(skc);
285eda14cbcSMatt Macy 
286eda14cbcSMatt Macy 	for (int i = 0; i < sks->sks_objs; i++) {
287eda14cbcSMatt Macy 		void *obj = base + spl_sks_size(skc) + (i * obj_size);
288eda14cbcSMatt Macy 
289eda14cbcSMatt Macy 		ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
290eda14cbcSMatt Macy 		spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
291eda14cbcSMatt Macy 		sko->sko_addr = obj;
292eda14cbcSMatt Macy 		sko->sko_magic = SKO_MAGIC;
293eda14cbcSMatt Macy 		sko->sko_slab = sks;
294eda14cbcSMatt Macy 		INIT_LIST_HEAD(&sko->sko_list);
295eda14cbcSMatt Macy 		list_add_tail(&sko->sko_list, &sks->sks_free_list);
296eda14cbcSMatt Macy 	}
297eda14cbcSMatt Macy 
298eda14cbcSMatt Macy 	return (sks);
299eda14cbcSMatt Macy }
300eda14cbcSMatt Macy 
301eda14cbcSMatt Macy /*
302eda14cbcSMatt Macy  * Remove a slab from complete or partial list, it must be called with
303eda14cbcSMatt Macy  * the 'skc->skc_lock' held but the actual free must be performed
304eda14cbcSMatt Macy  * outside the lock to prevent deadlocking on vmem addresses.
305eda14cbcSMatt Macy  */
306eda14cbcSMatt Macy static void
307eda14cbcSMatt Macy spl_slab_free(spl_kmem_slab_t *sks,
308eda14cbcSMatt Macy     struct list_head *sks_list, struct list_head *sko_list)
309eda14cbcSMatt Macy {
310eda14cbcSMatt Macy 	spl_kmem_cache_t *skc;
311eda14cbcSMatt Macy 
312eda14cbcSMatt Macy 	ASSERT(sks->sks_magic == SKS_MAGIC);
313eda14cbcSMatt Macy 	ASSERT(sks->sks_ref == 0);
314eda14cbcSMatt Macy 
315eda14cbcSMatt Macy 	skc = sks->sks_cache;
316eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
317eda14cbcSMatt Macy 
318eda14cbcSMatt Macy 	/*
319eda14cbcSMatt Macy 	 * Update slab/objects counters in the cache, then remove the
320eda14cbcSMatt Macy 	 * slab from the skc->skc_partial_list.  Finally add the slab
321eda14cbcSMatt Macy 	 * and all its objects in to the private work lists where the
322eda14cbcSMatt Macy 	 * destructors will be called and the memory freed to the system.
323eda14cbcSMatt Macy 	 */
324eda14cbcSMatt Macy 	skc->skc_obj_total -= sks->sks_objs;
325eda14cbcSMatt Macy 	skc->skc_slab_total--;
326eda14cbcSMatt Macy 	list_del(&sks->sks_list);
327eda14cbcSMatt Macy 	list_add(&sks->sks_list, sks_list);
328eda14cbcSMatt Macy 	list_splice_init(&sks->sks_free_list, sko_list);
329eda14cbcSMatt Macy }
330eda14cbcSMatt Macy 
331eda14cbcSMatt Macy /*
332eda14cbcSMatt Macy  * Reclaim empty slabs at the end of the partial list.
333eda14cbcSMatt Macy  */
334eda14cbcSMatt Macy static void
335eda14cbcSMatt Macy spl_slab_reclaim(spl_kmem_cache_t *skc)
336eda14cbcSMatt Macy {
337eda14cbcSMatt Macy 	spl_kmem_slab_t *sks = NULL, *m = NULL;
338eda14cbcSMatt Macy 	spl_kmem_obj_t *sko = NULL, *n = NULL;
339eda14cbcSMatt Macy 	LIST_HEAD(sks_list);
340eda14cbcSMatt Macy 	LIST_HEAD(sko_list);
341eda14cbcSMatt Macy 
342eda14cbcSMatt Macy 	/*
343eda14cbcSMatt Macy 	 * Empty slabs and objects must be moved to a private list so they
344eda14cbcSMatt Macy 	 * can be safely freed outside the spin lock.  All empty slabs are
345eda14cbcSMatt Macy 	 * at the end of skc->skc_partial_list, therefore once a non-empty
346eda14cbcSMatt Macy 	 * slab is found we can stop scanning.
347eda14cbcSMatt Macy 	 */
348eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
349eda14cbcSMatt Macy 	list_for_each_entry_safe_reverse(sks, m,
350eda14cbcSMatt Macy 	    &skc->skc_partial_list, sks_list) {
351eda14cbcSMatt Macy 
352eda14cbcSMatt Macy 		if (sks->sks_ref > 0)
353eda14cbcSMatt Macy 			break;
354eda14cbcSMatt Macy 
355eda14cbcSMatt Macy 		spl_slab_free(sks, &sks_list, &sko_list);
356eda14cbcSMatt Macy 	}
357eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
358eda14cbcSMatt Macy 
359eda14cbcSMatt Macy 	/*
360eda14cbcSMatt Macy 	 * The following two loops ensure all the object destructors are run,
361eda14cbcSMatt Macy 	 * and the slabs themselves are freed.  This is all done outside the
362eda14cbcSMatt Macy 	 * skc->skc_lock since this allows the destructor to sleep, and
363eda14cbcSMatt Macy 	 * allows us to perform a conditional reschedule when a freeing a
364eda14cbcSMatt Macy 	 * large number of objects and slabs back to the system.
365eda14cbcSMatt Macy 	 */
366eda14cbcSMatt Macy 
367eda14cbcSMatt Macy 	list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
368eda14cbcSMatt Macy 		ASSERT(sko->sko_magic == SKO_MAGIC);
369eda14cbcSMatt Macy 	}
370eda14cbcSMatt Macy 
371eda14cbcSMatt Macy 	list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
372eda14cbcSMatt Macy 		ASSERT(sks->sks_magic == SKS_MAGIC);
373eda14cbcSMatt Macy 		kv_free(skc, sks, skc->skc_slab_size);
374eda14cbcSMatt Macy 	}
375eda14cbcSMatt Macy }
376eda14cbcSMatt Macy 
377eda14cbcSMatt Macy static spl_kmem_emergency_t *
378eda14cbcSMatt Macy spl_emergency_search(struct rb_root *root, void *obj)
379eda14cbcSMatt Macy {
380eda14cbcSMatt Macy 	struct rb_node *node = root->rb_node;
381eda14cbcSMatt Macy 	spl_kmem_emergency_t *ske;
382eda14cbcSMatt Macy 	unsigned long address = (unsigned long)obj;
383eda14cbcSMatt Macy 
384eda14cbcSMatt Macy 	while (node) {
385eda14cbcSMatt Macy 		ske = container_of(node, spl_kmem_emergency_t, ske_node);
386eda14cbcSMatt Macy 
387eda14cbcSMatt Macy 		if (address < ske->ske_obj)
388eda14cbcSMatt Macy 			node = node->rb_left;
389eda14cbcSMatt Macy 		else if (address > ske->ske_obj)
390eda14cbcSMatt Macy 			node = node->rb_right;
391eda14cbcSMatt Macy 		else
392eda14cbcSMatt Macy 			return (ske);
393eda14cbcSMatt Macy 	}
394eda14cbcSMatt Macy 
395eda14cbcSMatt Macy 	return (NULL);
396eda14cbcSMatt Macy }
397eda14cbcSMatt Macy 
398eda14cbcSMatt Macy static int
399eda14cbcSMatt Macy spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
400eda14cbcSMatt Macy {
401eda14cbcSMatt Macy 	struct rb_node **new = &(root->rb_node), *parent = NULL;
402eda14cbcSMatt Macy 	spl_kmem_emergency_t *ske_tmp;
403eda14cbcSMatt Macy 	unsigned long address = ske->ske_obj;
404eda14cbcSMatt Macy 
405eda14cbcSMatt Macy 	while (*new) {
406eda14cbcSMatt Macy 		ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
407eda14cbcSMatt Macy 
408eda14cbcSMatt Macy 		parent = *new;
409eda14cbcSMatt Macy 		if (address < ske_tmp->ske_obj)
410eda14cbcSMatt Macy 			new = &((*new)->rb_left);
411eda14cbcSMatt Macy 		else if (address > ske_tmp->ske_obj)
412eda14cbcSMatt Macy 			new = &((*new)->rb_right);
413eda14cbcSMatt Macy 		else
414eda14cbcSMatt Macy 			return (0);
415eda14cbcSMatt Macy 	}
416eda14cbcSMatt Macy 
417eda14cbcSMatt Macy 	rb_link_node(&ske->ske_node, parent, new);
418eda14cbcSMatt Macy 	rb_insert_color(&ske->ske_node, root);
419eda14cbcSMatt Macy 
420eda14cbcSMatt Macy 	return (1);
421eda14cbcSMatt Macy }
422eda14cbcSMatt Macy 
423eda14cbcSMatt Macy /*
424eda14cbcSMatt Macy  * Allocate a single emergency object and track it in a red black tree.
425eda14cbcSMatt Macy  */
426eda14cbcSMatt Macy static int
427eda14cbcSMatt Macy spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
428eda14cbcSMatt Macy {
429eda14cbcSMatt Macy 	gfp_t lflags = kmem_flags_convert(flags);
430eda14cbcSMatt Macy 	spl_kmem_emergency_t *ske;
431eda14cbcSMatt Macy 	int order = get_order(skc->skc_obj_size);
432eda14cbcSMatt Macy 	int empty;
433eda14cbcSMatt Macy 
434eda14cbcSMatt Macy 	/* Last chance use a partial slab if one now exists */
435eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
436eda14cbcSMatt Macy 	empty = list_empty(&skc->skc_partial_list);
437eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
438eda14cbcSMatt Macy 	if (!empty)
439eda14cbcSMatt Macy 		return (-EEXIST);
440eda14cbcSMatt Macy 
441eda14cbcSMatt Macy 	ske = kmalloc(sizeof (*ske), lflags);
442eda14cbcSMatt Macy 	if (ske == NULL)
443eda14cbcSMatt Macy 		return (-ENOMEM);
444eda14cbcSMatt Macy 
445eda14cbcSMatt Macy 	ske->ske_obj = __get_free_pages(lflags, order);
446eda14cbcSMatt Macy 	if (ske->ske_obj == 0) {
447eda14cbcSMatt Macy 		kfree(ske);
448eda14cbcSMatt Macy 		return (-ENOMEM);
449eda14cbcSMatt Macy 	}
450eda14cbcSMatt Macy 
451eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
452eda14cbcSMatt Macy 	empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
453eda14cbcSMatt Macy 	if (likely(empty)) {
454eda14cbcSMatt Macy 		skc->skc_obj_total++;
455eda14cbcSMatt Macy 		skc->skc_obj_emergency++;
456eda14cbcSMatt Macy 		if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
457eda14cbcSMatt Macy 			skc->skc_obj_emergency_max = skc->skc_obj_emergency;
458eda14cbcSMatt Macy 	}
459eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
460eda14cbcSMatt Macy 
461eda14cbcSMatt Macy 	if (unlikely(!empty)) {
462eda14cbcSMatt Macy 		free_pages(ske->ske_obj, order);
463eda14cbcSMatt Macy 		kfree(ske);
464eda14cbcSMatt Macy 		return (-EINVAL);
465eda14cbcSMatt Macy 	}
466eda14cbcSMatt Macy 
467eda14cbcSMatt Macy 	*obj = (void *)ske->ske_obj;
468eda14cbcSMatt Macy 
469eda14cbcSMatt Macy 	return (0);
470eda14cbcSMatt Macy }
471eda14cbcSMatt Macy 
472eda14cbcSMatt Macy /*
473eda14cbcSMatt Macy  * Locate the passed object in the red black tree and free it.
474eda14cbcSMatt Macy  */
475eda14cbcSMatt Macy static int
476eda14cbcSMatt Macy spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
477eda14cbcSMatt Macy {
478eda14cbcSMatt Macy 	spl_kmem_emergency_t *ske;
479eda14cbcSMatt Macy 	int order = get_order(skc->skc_obj_size);
480eda14cbcSMatt Macy 
481eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
482eda14cbcSMatt Macy 	ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
483eda14cbcSMatt Macy 	if (ske) {
484eda14cbcSMatt Macy 		rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
485eda14cbcSMatt Macy 		skc->skc_obj_emergency--;
486eda14cbcSMatt Macy 		skc->skc_obj_total--;
487eda14cbcSMatt Macy 	}
488eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
489eda14cbcSMatt Macy 
490eda14cbcSMatt Macy 	if (ske == NULL)
491eda14cbcSMatt Macy 		return (-ENOENT);
492eda14cbcSMatt Macy 
493eda14cbcSMatt Macy 	free_pages(ske->ske_obj, order);
494eda14cbcSMatt Macy 	kfree(ske);
495eda14cbcSMatt Macy 
496eda14cbcSMatt Macy 	return (0);
497eda14cbcSMatt Macy }
498eda14cbcSMatt Macy 
499eda14cbcSMatt Macy /*
500eda14cbcSMatt Macy  * Release objects from the per-cpu magazine back to their slab.  The flush
501eda14cbcSMatt Macy  * argument contains the max number of entries to remove from the magazine.
502eda14cbcSMatt Macy  */
503eda14cbcSMatt Macy static void
504eda14cbcSMatt Macy spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
505eda14cbcSMatt Macy {
506eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
507eda14cbcSMatt Macy 
508eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
509eda14cbcSMatt Macy 	ASSERT(skm->skm_magic == SKM_MAGIC);
510eda14cbcSMatt Macy 
511eda14cbcSMatt Macy 	int count = MIN(flush, skm->skm_avail);
512eda14cbcSMatt Macy 	for (int i = 0; i < count; i++)
513eda14cbcSMatt Macy 		spl_cache_shrink(skc, skm->skm_objs[i]);
514eda14cbcSMatt Macy 
515eda14cbcSMatt Macy 	skm->skm_avail -= count;
516eda14cbcSMatt Macy 	memmove(skm->skm_objs, &(skm->skm_objs[count]),
517eda14cbcSMatt Macy 	    sizeof (void *) * skm->skm_avail);
518eda14cbcSMatt Macy 
519eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
520eda14cbcSMatt Macy }
521eda14cbcSMatt Macy 
522eda14cbcSMatt Macy /*
523eda14cbcSMatt Macy  * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
524eda14cbcSMatt Macy  * When on-slab we want to target spl_kmem_cache_obj_per_slab.  However,
525eda14cbcSMatt Macy  * for very small objects we may end up with more than this so as not
52616038816SMartin Matuska  * to waste space in the minimal allocation of a single page.
527eda14cbcSMatt Macy  */
528eda14cbcSMatt Macy static int
529eda14cbcSMatt Macy spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
530eda14cbcSMatt Macy {
531eda14cbcSMatt Macy 	uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
532eda14cbcSMatt Macy 
533eda14cbcSMatt Macy 	sks_size = spl_sks_size(skc);
534eda14cbcSMatt Macy 	obj_size = spl_obj_size(skc);
535eda14cbcSMatt Macy 	max_size = (spl_kmem_cache_max_size * 1024 * 1024);
536eda14cbcSMatt Macy 	tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
537eda14cbcSMatt Macy 
538eda14cbcSMatt Macy 	if (tgt_size <= max_size) {
539eda14cbcSMatt Macy 		tgt_objs = (tgt_size - sks_size) / obj_size;
540eda14cbcSMatt Macy 	} else {
541eda14cbcSMatt Macy 		tgt_objs = (max_size - sks_size) / obj_size;
542eda14cbcSMatt Macy 		tgt_size = (tgt_objs * obj_size) + sks_size;
543eda14cbcSMatt Macy 	}
544eda14cbcSMatt Macy 
545eda14cbcSMatt Macy 	if (tgt_objs == 0)
546eda14cbcSMatt Macy 		return (-ENOSPC);
547eda14cbcSMatt Macy 
548eda14cbcSMatt Macy 	*objs = tgt_objs;
549eda14cbcSMatt Macy 	*size = tgt_size;
550eda14cbcSMatt Macy 
551eda14cbcSMatt Macy 	return (0);
552eda14cbcSMatt Macy }
553eda14cbcSMatt Macy 
554eda14cbcSMatt Macy /*
555eda14cbcSMatt Macy  * Make a guess at reasonable per-cpu magazine size based on the size of
556eda14cbcSMatt Macy  * each object and the cost of caching N of them in each magazine.  Long
557eda14cbcSMatt Macy  * term this should really adapt based on an observed usage heuristic.
558eda14cbcSMatt Macy  */
559eda14cbcSMatt Macy static int
560eda14cbcSMatt Macy spl_magazine_size(spl_kmem_cache_t *skc)
561eda14cbcSMatt Macy {
562eda14cbcSMatt Macy 	uint32_t obj_size = spl_obj_size(skc);
563eda14cbcSMatt Macy 	int size;
564eda14cbcSMatt Macy 
565eda14cbcSMatt Macy 	if (spl_kmem_cache_magazine_size > 0)
566eda14cbcSMatt Macy 		return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
567eda14cbcSMatt Macy 
568eda14cbcSMatt Macy 	/* Per-magazine sizes below assume a 4Kib page size */
569eda14cbcSMatt Macy 	if (obj_size > (PAGE_SIZE * 256))
570eda14cbcSMatt Macy 		size = 4;  /* Minimum 4Mib per-magazine */
571eda14cbcSMatt Macy 	else if (obj_size > (PAGE_SIZE * 32))
572eda14cbcSMatt Macy 		size = 16; /* Minimum 2Mib per-magazine */
573eda14cbcSMatt Macy 	else if (obj_size > (PAGE_SIZE))
574eda14cbcSMatt Macy 		size = 64; /* Minimum 256Kib per-magazine */
575eda14cbcSMatt Macy 	else if (obj_size > (PAGE_SIZE / 4))
576eda14cbcSMatt Macy 		size = 128; /* Minimum 128Kib per-magazine */
577eda14cbcSMatt Macy 	else
578eda14cbcSMatt Macy 		size = 256;
579eda14cbcSMatt Macy 
580eda14cbcSMatt Macy 	return (size);
581eda14cbcSMatt Macy }
582eda14cbcSMatt Macy 
583eda14cbcSMatt Macy /*
584eda14cbcSMatt Macy  * Allocate a per-cpu magazine to associate with a specific core.
585eda14cbcSMatt Macy  */
586eda14cbcSMatt Macy static spl_kmem_magazine_t *
587eda14cbcSMatt Macy spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
588eda14cbcSMatt Macy {
589eda14cbcSMatt Macy 	spl_kmem_magazine_t *skm;
590eda14cbcSMatt Macy 	int size = sizeof (spl_kmem_magazine_t) +
591eda14cbcSMatt Macy 	    sizeof (void *) * skc->skc_mag_size;
592eda14cbcSMatt Macy 
593eda14cbcSMatt Macy 	skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
594eda14cbcSMatt Macy 	if (skm) {
595eda14cbcSMatt Macy 		skm->skm_magic = SKM_MAGIC;
596eda14cbcSMatt Macy 		skm->skm_avail = 0;
597eda14cbcSMatt Macy 		skm->skm_size = skc->skc_mag_size;
598eda14cbcSMatt Macy 		skm->skm_refill = skc->skc_mag_refill;
599eda14cbcSMatt Macy 		skm->skm_cache = skc;
600eda14cbcSMatt Macy 		skm->skm_cpu = cpu;
601eda14cbcSMatt Macy 	}
602eda14cbcSMatt Macy 
603eda14cbcSMatt Macy 	return (skm);
604eda14cbcSMatt Macy }
605eda14cbcSMatt Macy 
606eda14cbcSMatt Macy /*
607eda14cbcSMatt Macy  * Free a per-cpu magazine associated with a specific core.
608eda14cbcSMatt Macy  */
609eda14cbcSMatt Macy static void
610eda14cbcSMatt Macy spl_magazine_free(spl_kmem_magazine_t *skm)
611eda14cbcSMatt Macy {
612eda14cbcSMatt Macy 	ASSERT(skm->skm_magic == SKM_MAGIC);
613eda14cbcSMatt Macy 	ASSERT(skm->skm_avail == 0);
614eda14cbcSMatt Macy 	kfree(skm);
615eda14cbcSMatt Macy }
616eda14cbcSMatt Macy 
617eda14cbcSMatt Macy /*
618eda14cbcSMatt Macy  * Create all pre-cpu magazines of reasonable sizes.
619eda14cbcSMatt Macy  */
620eda14cbcSMatt Macy static int
621eda14cbcSMatt Macy spl_magazine_create(spl_kmem_cache_t *skc)
622eda14cbcSMatt Macy {
623eda14cbcSMatt Macy 	int i = 0;
624eda14cbcSMatt Macy 
625eda14cbcSMatt Macy 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
626eda14cbcSMatt Macy 
627eda14cbcSMatt Macy 	skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
628eda14cbcSMatt Macy 	    num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
629eda14cbcSMatt Macy 	skc->skc_mag_size = spl_magazine_size(skc);
630eda14cbcSMatt Macy 	skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
631eda14cbcSMatt Macy 
632eda14cbcSMatt Macy 	for_each_possible_cpu(i) {
633eda14cbcSMatt Macy 		skc->skc_mag[i] = spl_magazine_alloc(skc, i);
634eda14cbcSMatt Macy 		if (!skc->skc_mag[i]) {
635eda14cbcSMatt Macy 			for (i--; i >= 0; i--)
636eda14cbcSMatt Macy 				spl_magazine_free(skc->skc_mag[i]);
637eda14cbcSMatt Macy 
638eda14cbcSMatt Macy 			kfree(skc->skc_mag);
639eda14cbcSMatt Macy 			return (-ENOMEM);
640eda14cbcSMatt Macy 		}
641eda14cbcSMatt Macy 	}
642eda14cbcSMatt Macy 
643eda14cbcSMatt Macy 	return (0);
644eda14cbcSMatt Macy }
645eda14cbcSMatt Macy 
646eda14cbcSMatt Macy /*
647eda14cbcSMatt Macy  * Destroy all pre-cpu magazines.
648eda14cbcSMatt Macy  */
649eda14cbcSMatt Macy static void
650eda14cbcSMatt Macy spl_magazine_destroy(spl_kmem_cache_t *skc)
651eda14cbcSMatt Macy {
652eda14cbcSMatt Macy 	spl_kmem_magazine_t *skm;
653eda14cbcSMatt Macy 	int i = 0;
654eda14cbcSMatt Macy 
655eda14cbcSMatt Macy 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
656eda14cbcSMatt Macy 
657eda14cbcSMatt Macy 	for_each_possible_cpu(i) {
658eda14cbcSMatt Macy 		skm = skc->skc_mag[i];
659eda14cbcSMatt Macy 		spl_cache_flush(skc, skm, skm->skm_avail);
660eda14cbcSMatt Macy 		spl_magazine_free(skm);
661eda14cbcSMatt Macy 	}
662eda14cbcSMatt Macy 
663eda14cbcSMatt Macy 	kfree(skc->skc_mag);
664eda14cbcSMatt Macy }
665eda14cbcSMatt Macy 
666eda14cbcSMatt Macy /*
667eda14cbcSMatt Macy  * Create a object cache based on the following arguments:
668eda14cbcSMatt Macy  * name		cache name
669eda14cbcSMatt Macy  * size		cache object size
670eda14cbcSMatt Macy  * align	cache object alignment
671eda14cbcSMatt Macy  * ctor		cache object constructor
672eda14cbcSMatt Macy  * dtor		cache object destructor
673eda14cbcSMatt Macy  * reclaim	cache object reclaim
674eda14cbcSMatt Macy  * priv		cache private data for ctor/dtor/reclaim
675eda14cbcSMatt Macy  * vmp		unused must be NULL
676eda14cbcSMatt Macy  * flags
677eda14cbcSMatt Macy  *	KMC_KVMEM       Force kvmem backed SPL cache
678eda14cbcSMatt Macy  *	KMC_SLAB        Force Linux slab backed cache
679eda14cbcSMatt Macy  *	KMC_NODEBUG	Disable debugging (unsupported)
680eda14cbcSMatt Macy  */
681eda14cbcSMatt Macy spl_kmem_cache_t *
682a0b956f5SMartin Matuska spl_kmem_cache_create(const char *name, size_t size, size_t align,
683eda14cbcSMatt Macy     spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
684eda14cbcSMatt Macy     void *priv, void *vmp, int flags)
685eda14cbcSMatt Macy {
686eda14cbcSMatt Macy 	gfp_t lflags = kmem_flags_convert(KM_SLEEP);
687eda14cbcSMatt Macy 	spl_kmem_cache_t *skc;
688eda14cbcSMatt Macy 	int rc;
689eda14cbcSMatt Macy 
690eda14cbcSMatt Macy 	/*
691eda14cbcSMatt Macy 	 * Unsupported flags
692eda14cbcSMatt Macy 	 */
693eda14cbcSMatt Macy 	ASSERT(vmp == NULL);
694eda14cbcSMatt Macy 	ASSERT(reclaim == NULL);
695eda14cbcSMatt Macy 
696eda14cbcSMatt Macy 	might_sleep();
697eda14cbcSMatt Macy 
698eda14cbcSMatt Macy 	skc = kzalloc(sizeof (*skc), lflags);
699eda14cbcSMatt Macy 	if (skc == NULL)
700eda14cbcSMatt Macy 		return (NULL);
701eda14cbcSMatt Macy 
702eda14cbcSMatt Macy 	skc->skc_magic = SKC_MAGIC;
703eda14cbcSMatt Macy 	skc->skc_name_size = strlen(name) + 1;
704*15f0b8c3SMartin Matuska 	skc->skc_name = kmalloc(skc->skc_name_size, lflags);
705eda14cbcSMatt Macy 	if (skc->skc_name == NULL) {
706eda14cbcSMatt Macy 		kfree(skc);
707eda14cbcSMatt Macy 		return (NULL);
708eda14cbcSMatt Macy 	}
709be181ee2SMartin Matuska 	strlcpy(skc->skc_name, name, skc->skc_name_size);
710eda14cbcSMatt Macy 
711eda14cbcSMatt Macy 	skc->skc_ctor = ctor;
712eda14cbcSMatt Macy 	skc->skc_dtor = dtor;
713eda14cbcSMatt Macy 	skc->skc_private = priv;
714eda14cbcSMatt Macy 	skc->skc_vmp = vmp;
715eda14cbcSMatt Macy 	skc->skc_linux_cache = NULL;
716eda14cbcSMatt Macy 	skc->skc_flags = flags;
717eda14cbcSMatt Macy 	skc->skc_obj_size = size;
718eda14cbcSMatt Macy 	skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
719eda14cbcSMatt Macy 	atomic_set(&skc->skc_ref, 0);
720eda14cbcSMatt Macy 
721eda14cbcSMatt Macy 	INIT_LIST_HEAD(&skc->skc_list);
722eda14cbcSMatt Macy 	INIT_LIST_HEAD(&skc->skc_complete_list);
723eda14cbcSMatt Macy 	INIT_LIST_HEAD(&skc->skc_partial_list);
724eda14cbcSMatt Macy 	skc->skc_emergency_tree = RB_ROOT;
725eda14cbcSMatt Macy 	spin_lock_init(&skc->skc_lock);
726eda14cbcSMatt Macy 	init_waitqueue_head(&skc->skc_waitq);
727eda14cbcSMatt Macy 	skc->skc_slab_fail = 0;
728eda14cbcSMatt Macy 	skc->skc_slab_create = 0;
729eda14cbcSMatt Macy 	skc->skc_slab_destroy = 0;
730eda14cbcSMatt Macy 	skc->skc_slab_total = 0;
731eda14cbcSMatt Macy 	skc->skc_slab_alloc = 0;
732eda14cbcSMatt Macy 	skc->skc_slab_max = 0;
733eda14cbcSMatt Macy 	skc->skc_obj_total = 0;
734eda14cbcSMatt Macy 	skc->skc_obj_alloc = 0;
735eda14cbcSMatt Macy 	skc->skc_obj_max = 0;
736eda14cbcSMatt Macy 	skc->skc_obj_deadlock = 0;
737eda14cbcSMatt Macy 	skc->skc_obj_emergency = 0;
738eda14cbcSMatt Macy 	skc->skc_obj_emergency_max = 0;
739eda14cbcSMatt Macy 
740eda14cbcSMatt Macy 	rc = percpu_counter_init_common(&skc->skc_linux_alloc, 0,
741eda14cbcSMatt Macy 	    GFP_KERNEL);
742eda14cbcSMatt Macy 	if (rc != 0) {
743eda14cbcSMatt Macy 		kfree(skc);
744eda14cbcSMatt Macy 		return (NULL);
745eda14cbcSMatt Macy 	}
746eda14cbcSMatt Macy 
747eda14cbcSMatt Macy 	/*
748eda14cbcSMatt Macy 	 * Verify the requested alignment restriction is sane.
749eda14cbcSMatt Macy 	 */
750eda14cbcSMatt Macy 	if (align) {
751eda14cbcSMatt Macy 		VERIFY(ISP2(align));
752eda14cbcSMatt Macy 		VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
753eda14cbcSMatt Macy 		VERIFY3U(align, <=, PAGE_SIZE);
754eda14cbcSMatt Macy 		skc->skc_obj_align = align;
755eda14cbcSMatt Macy 	}
756eda14cbcSMatt Macy 
757eda14cbcSMatt Macy 	/*
758eda14cbcSMatt Macy 	 * When no specific type of slab is requested (kmem, vmem, or
759eda14cbcSMatt Macy 	 * linuxslab) then select a cache type based on the object size
760eda14cbcSMatt Macy 	 * and default tunables.
761eda14cbcSMatt Macy 	 */
762eda14cbcSMatt Macy 	if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
763eda14cbcSMatt Macy 		if (spl_kmem_cache_slab_limit &&
764eda14cbcSMatt Macy 		    size <= (size_t)spl_kmem_cache_slab_limit) {
765eda14cbcSMatt Macy 			/*
766eda14cbcSMatt Macy 			 * Objects smaller than spl_kmem_cache_slab_limit can
767eda14cbcSMatt Macy 			 * use the Linux slab for better space-efficiency.
768eda14cbcSMatt Macy 			 */
769eda14cbcSMatt Macy 			skc->skc_flags |= KMC_SLAB;
770eda14cbcSMatt Macy 		} else {
771eda14cbcSMatt Macy 			/*
772eda14cbcSMatt Macy 			 * All other objects are considered large and are
773eda14cbcSMatt Macy 			 * placed on kvmem backed slabs.
774eda14cbcSMatt Macy 			 */
775eda14cbcSMatt Macy 			skc->skc_flags |= KMC_KVMEM;
776eda14cbcSMatt Macy 		}
777eda14cbcSMatt Macy 	}
778eda14cbcSMatt Macy 
779eda14cbcSMatt Macy 	/*
780eda14cbcSMatt Macy 	 * Given the type of slab allocate the required resources.
781eda14cbcSMatt Macy 	 */
782eda14cbcSMatt Macy 	if (skc->skc_flags & KMC_KVMEM) {
783eda14cbcSMatt Macy 		rc = spl_slab_size(skc,
784eda14cbcSMatt Macy 		    &skc->skc_slab_objs, &skc->skc_slab_size);
785eda14cbcSMatt Macy 		if (rc)
786eda14cbcSMatt Macy 			goto out;
787eda14cbcSMatt Macy 
788eda14cbcSMatt Macy 		rc = spl_magazine_create(skc);
789eda14cbcSMatt Macy 		if (rc)
790eda14cbcSMatt Macy 			goto out;
791eda14cbcSMatt Macy 	} else {
792eda14cbcSMatt Macy 		unsigned long slabflags = 0;
793eda14cbcSMatt Macy 
794*15f0b8c3SMartin Matuska 		if (size > (SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE))
795eda14cbcSMatt Macy 			goto out;
796eda14cbcSMatt Macy 
797eda14cbcSMatt Macy #if defined(SLAB_USERCOPY)
798eda14cbcSMatt Macy 		/*
799eda14cbcSMatt Macy 		 * Required for PAX-enabled kernels if the slab is to be
800eda14cbcSMatt Macy 		 * used for copying between user and kernel space.
801eda14cbcSMatt Macy 		 */
802eda14cbcSMatt Macy 		slabflags |= SLAB_USERCOPY;
803eda14cbcSMatt Macy #endif
804eda14cbcSMatt Macy 
805eda14cbcSMatt Macy #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
806eda14cbcSMatt Macy 		/*
807eda14cbcSMatt Macy 		 * Newer grsec patchset uses kmem_cache_create_usercopy()
808eda14cbcSMatt Macy 		 * instead of SLAB_USERCOPY flag
809eda14cbcSMatt Macy 		 */
810eda14cbcSMatt Macy 		skc->skc_linux_cache = kmem_cache_create_usercopy(
811eda14cbcSMatt Macy 		    skc->skc_name, size, align, slabflags, 0, size, NULL);
812eda14cbcSMatt Macy #else
813eda14cbcSMatt Macy 		skc->skc_linux_cache = kmem_cache_create(
814eda14cbcSMatt Macy 		    skc->skc_name, size, align, slabflags, NULL);
815eda14cbcSMatt Macy #endif
816*15f0b8c3SMartin Matuska 		if (skc->skc_linux_cache == NULL)
817eda14cbcSMatt Macy 			goto out;
818eda14cbcSMatt Macy 	}
819eda14cbcSMatt Macy 
820eda14cbcSMatt Macy 	down_write(&spl_kmem_cache_sem);
821eda14cbcSMatt Macy 	list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
822eda14cbcSMatt Macy 	up_write(&spl_kmem_cache_sem);
823eda14cbcSMatt Macy 
824eda14cbcSMatt Macy 	return (skc);
825eda14cbcSMatt Macy out:
826eda14cbcSMatt Macy 	kfree(skc->skc_name);
827eda14cbcSMatt Macy 	percpu_counter_destroy(&skc->skc_linux_alloc);
828eda14cbcSMatt Macy 	kfree(skc);
829eda14cbcSMatt Macy 	return (NULL);
830eda14cbcSMatt Macy }
831eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_create);
832eda14cbcSMatt Macy 
833eda14cbcSMatt Macy /*
834eda14cbcSMatt Macy  * Register a move callback for cache defragmentation.
835eda14cbcSMatt Macy  * XXX: Unimplemented but harmless to stub out for now.
836eda14cbcSMatt Macy  */
837eda14cbcSMatt Macy void
838eda14cbcSMatt Macy spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
839eda14cbcSMatt Macy     kmem_cbrc_t (move)(void *, void *, size_t, void *))
840eda14cbcSMatt Macy {
841eda14cbcSMatt Macy 	ASSERT(move != NULL);
842eda14cbcSMatt Macy }
843eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_set_move);
844eda14cbcSMatt Macy 
845eda14cbcSMatt Macy /*
846eda14cbcSMatt Macy  * Destroy a cache and all objects associated with the cache.
847eda14cbcSMatt Macy  */
848eda14cbcSMatt Macy void
849eda14cbcSMatt Macy spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
850eda14cbcSMatt Macy {
851eda14cbcSMatt Macy 	DECLARE_WAIT_QUEUE_HEAD(wq);
852eda14cbcSMatt Macy 	taskqid_t id;
853eda14cbcSMatt Macy 
854eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
855eda14cbcSMatt Macy 	ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
856eda14cbcSMatt Macy 
857eda14cbcSMatt Macy 	down_write(&spl_kmem_cache_sem);
858eda14cbcSMatt Macy 	list_del_init(&skc->skc_list);
859eda14cbcSMatt Macy 	up_write(&spl_kmem_cache_sem);
860eda14cbcSMatt Macy 
861eda14cbcSMatt Macy 	/* Cancel any and wait for any pending delayed tasks */
862eda14cbcSMatt Macy 	VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
863eda14cbcSMatt Macy 
864eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
865eda14cbcSMatt Macy 	id = skc->skc_taskqid;
866eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
867eda14cbcSMatt Macy 
868eda14cbcSMatt Macy 	taskq_cancel_id(spl_kmem_cache_taskq, id);
869eda14cbcSMatt Macy 
870eda14cbcSMatt Macy 	/*
871eda14cbcSMatt Macy 	 * Wait until all current callers complete, this is mainly
872eda14cbcSMatt Macy 	 * to catch the case where a low memory situation triggers a
873eda14cbcSMatt Macy 	 * cache reaping action which races with this destroy.
874eda14cbcSMatt Macy 	 */
875eda14cbcSMatt Macy 	wait_event(wq, atomic_read(&skc->skc_ref) == 0);
876eda14cbcSMatt Macy 
877eda14cbcSMatt Macy 	if (skc->skc_flags & KMC_KVMEM) {
878eda14cbcSMatt Macy 		spl_magazine_destroy(skc);
879eda14cbcSMatt Macy 		spl_slab_reclaim(skc);
880eda14cbcSMatt Macy 	} else {
881eda14cbcSMatt Macy 		ASSERT(skc->skc_flags & KMC_SLAB);
882eda14cbcSMatt Macy 		kmem_cache_destroy(skc->skc_linux_cache);
883eda14cbcSMatt Macy 	}
884eda14cbcSMatt Macy 
885eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
886eda14cbcSMatt Macy 
887eda14cbcSMatt Macy 	/*
888eda14cbcSMatt Macy 	 * Validate there are no objects in use and free all the
889eda14cbcSMatt Macy 	 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
890eda14cbcSMatt Macy 	 */
891eda14cbcSMatt Macy 	ASSERT3U(skc->skc_slab_alloc, ==, 0);
892eda14cbcSMatt Macy 	ASSERT3U(skc->skc_obj_alloc, ==, 0);
893eda14cbcSMatt Macy 	ASSERT3U(skc->skc_slab_total, ==, 0);
894eda14cbcSMatt Macy 	ASSERT3U(skc->skc_obj_total, ==, 0);
895eda14cbcSMatt Macy 	ASSERT3U(skc->skc_obj_emergency, ==, 0);
896eda14cbcSMatt Macy 	ASSERT(list_empty(&skc->skc_complete_list));
897eda14cbcSMatt Macy 
898eda14cbcSMatt Macy 	ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
899eda14cbcSMatt Macy 	percpu_counter_destroy(&skc->skc_linux_alloc);
900eda14cbcSMatt Macy 
901eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
902eda14cbcSMatt Macy 
903eda14cbcSMatt Macy 	kfree(skc->skc_name);
904eda14cbcSMatt Macy 	kfree(skc);
905eda14cbcSMatt Macy }
906eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_destroy);
907eda14cbcSMatt Macy 
908eda14cbcSMatt Macy /*
909eda14cbcSMatt Macy  * Allocate an object from a slab attached to the cache.  This is used to
910eda14cbcSMatt Macy  * repopulate the per-cpu magazine caches in batches when they run low.
911eda14cbcSMatt Macy  */
912eda14cbcSMatt Macy static void *
913eda14cbcSMatt Macy spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
914eda14cbcSMatt Macy {
915eda14cbcSMatt Macy 	spl_kmem_obj_t *sko;
916eda14cbcSMatt Macy 
917eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
918eda14cbcSMatt Macy 	ASSERT(sks->sks_magic == SKS_MAGIC);
919eda14cbcSMatt Macy 
920eda14cbcSMatt Macy 	sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
921eda14cbcSMatt Macy 	ASSERT(sko->sko_magic == SKO_MAGIC);
922eda14cbcSMatt Macy 	ASSERT(sko->sko_addr != NULL);
923eda14cbcSMatt Macy 
924eda14cbcSMatt Macy 	/* Remove from sks_free_list */
925eda14cbcSMatt Macy 	list_del_init(&sko->sko_list);
926eda14cbcSMatt Macy 
927eda14cbcSMatt Macy 	sks->sks_age = jiffies;
928eda14cbcSMatt Macy 	sks->sks_ref++;
929eda14cbcSMatt Macy 	skc->skc_obj_alloc++;
930eda14cbcSMatt Macy 
931eda14cbcSMatt Macy 	/* Track max obj usage statistics */
932eda14cbcSMatt Macy 	if (skc->skc_obj_alloc > skc->skc_obj_max)
933eda14cbcSMatt Macy 		skc->skc_obj_max = skc->skc_obj_alloc;
934eda14cbcSMatt Macy 
935eda14cbcSMatt Macy 	/* Track max slab usage statistics */
936eda14cbcSMatt Macy 	if (sks->sks_ref == 1) {
937eda14cbcSMatt Macy 		skc->skc_slab_alloc++;
938eda14cbcSMatt Macy 
939eda14cbcSMatt Macy 		if (skc->skc_slab_alloc > skc->skc_slab_max)
940eda14cbcSMatt Macy 			skc->skc_slab_max = skc->skc_slab_alloc;
941eda14cbcSMatt Macy 	}
942eda14cbcSMatt Macy 
943eda14cbcSMatt Macy 	return (sko->sko_addr);
944eda14cbcSMatt Macy }
945eda14cbcSMatt Macy 
946eda14cbcSMatt Macy /*
947eda14cbcSMatt Macy  * Generic slab allocation function to run by the global work queues.
948eda14cbcSMatt Macy  * It is responsible for allocating a new slab, linking it in to the list
949eda14cbcSMatt Macy  * of partial slabs, and then waking any waiters.
950eda14cbcSMatt Macy  */
951eda14cbcSMatt Macy static int
952eda14cbcSMatt Macy __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
953eda14cbcSMatt Macy {
954eda14cbcSMatt Macy 	spl_kmem_slab_t *sks;
955eda14cbcSMatt Macy 
956eda14cbcSMatt Macy 	fstrans_cookie_t cookie = spl_fstrans_mark();
957eda14cbcSMatt Macy 	sks = spl_slab_alloc(skc, flags);
958eda14cbcSMatt Macy 	spl_fstrans_unmark(cookie);
959eda14cbcSMatt Macy 
960eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
961eda14cbcSMatt Macy 	if (sks) {
962eda14cbcSMatt Macy 		skc->skc_slab_total++;
963eda14cbcSMatt Macy 		skc->skc_obj_total += sks->sks_objs;
964eda14cbcSMatt Macy 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
965eda14cbcSMatt Macy 
966eda14cbcSMatt Macy 		smp_mb__before_atomic();
967eda14cbcSMatt Macy 		clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
968eda14cbcSMatt Macy 		smp_mb__after_atomic();
969eda14cbcSMatt Macy 	}
970eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
971eda14cbcSMatt Macy 
972eda14cbcSMatt Macy 	return (sks == NULL ? -ENOMEM : 0);
973eda14cbcSMatt Macy }
974eda14cbcSMatt Macy 
975eda14cbcSMatt Macy static void
976eda14cbcSMatt Macy spl_cache_grow_work(void *data)
977eda14cbcSMatt Macy {
978eda14cbcSMatt Macy 	spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
979eda14cbcSMatt Macy 	spl_kmem_cache_t *skc = ska->ska_cache;
980eda14cbcSMatt Macy 
981eda14cbcSMatt Macy 	int error = __spl_cache_grow(skc, ska->ska_flags);
982eda14cbcSMatt Macy 
983eda14cbcSMatt Macy 	atomic_dec(&skc->skc_ref);
984eda14cbcSMatt Macy 	smp_mb__before_atomic();
985eda14cbcSMatt Macy 	clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
986eda14cbcSMatt Macy 	smp_mb__after_atomic();
987eda14cbcSMatt Macy 	if (error == 0)
988eda14cbcSMatt Macy 		wake_up_all(&skc->skc_waitq);
989eda14cbcSMatt Macy 
990eda14cbcSMatt Macy 	kfree(ska);
991eda14cbcSMatt Macy }
992eda14cbcSMatt Macy 
993eda14cbcSMatt Macy /*
994eda14cbcSMatt Macy  * Returns non-zero when a new slab should be available.
995eda14cbcSMatt Macy  */
996eda14cbcSMatt Macy static int
997eda14cbcSMatt Macy spl_cache_grow_wait(spl_kmem_cache_t *skc)
998eda14cbcSMatt Macy {
999eda14cbcSMatt Macy 	return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
1000eda14cbcSMatt Macy }
1001eda14cbcSMatt Macy 
1002eda14cbcSMatt Macy /*
1003eda14cbcSMatt Macy  * No available objects on any slabs, create a new slab.  Note that this
1004eda14cbcSMatt Macy  * functionality is disabled for KMC_SLAB caches which are backed by the
1005eda14cbcSMatt Macy  * Linux slab.
1006eda14cbcSMatt Macy  */
1007eda14cbcSMatt Macy static int
1008eda14cbcSMatt Macy spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
1009eda14cbcSMatt Macy {
1010eda14cbcSMatt Macy 	int remaining, rc = 0;
1011eda14cbcSMatt Macy 
1012eda14cbcSMatt Macy 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1013eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
1014eda14cbcSMatt Macy 	ASSERT((skc->skc_flags & KMC_SLAB) == 0);
1015eda14cbcSMatt Macy 	might_sleep();
1016eda14cbcSMatt Macy 	*obj = NULL;
1017eda14cbcSMatt Macy 
1018eda14cbcSMatt Macy 	/*
1019eda14cbcSMatt Macy 	 * Before allocating a new slab wait for any reaping to complete and
1020eda14cbcSMatt Macy 	 * then return so the local magazine can be rechecked for new objects.
1021eda14cbcSMatt Macy 	 */
1022eda14cbcSMatt Macy 	if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1023eda14cbcSMatt Macy 		rc = spl_wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1024eda14cbcSMatt Macy 		    TASK_UNINTERRUPTIBLE);
1025eda14cbcSMatt Macy 		return (rc ? rc : -EAGAIN);
1026eda14cbcSMatt Macy 	}
1027eda14cbcSMatt Macy 
1028eda14cbcSMatt Macy 	/*
1029eda14cbcSMatt Macy 	 * Note: It would be nice to reduce the overhead of context switch
1030eda14cbcSMatt Macy 	 * and improve NUMA locality, by trying to allocate a new slab in the
1031eda14cbcSMatt Macy 	 * current process context with KM_NOSLEEP flag.
1032eda14cbcSMatt Macy 	 *
1033eda14cbcSMatt Macy 	 * However, this can't be applied to vmem/kvmem due to a bug that
1034eda14cbcSMatt Macy 	 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1035eda14cbcSMatt Macy 	 */
1036eda14cbcSMatt Macy 
1037eda14cbcSMatt Macy 	/*
1038eda14cbcSMatt Macy 	 * This is handled by dispatching a work request to the global work
1039eda14cbcSMatt Macy 	 * queue.  This allows us to asynchronously allocate a new slab while
1040eda14cbcSMatt Macy 	 * retaining the ability to safely fall back to a smaller synchronous
1041eda14cbcSMatt Macy 	 * allocations to ensure forward progress is always maintained.
1042eda14cbcSMatt Macy 	 */
1043eda14cbcSMatt Macy 	if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1044eda14cbcSMatt Macy 		spl_kmem_alloc_t *ska;
1045eda14cbcSMatt Macy 
1046eda14cbcSMatt Macy 		ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1047eda14cbcSMatt Macy 		if (ska == NULL) {
1048eda14cbcSMatt Macy 			clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1049eda14cbcSMatt Macy 			smp_mb__after_atomic();
1050eda14cbcSMatt Macy 			wake_up_all(&skc->skc_waitq);
1051eda14cbcSMatt Macy 			return (-ENOMEM);
1052eda14cbcSMatt Macy 		}
1053eda14cbcSMatt Macy 
1054eda14cbcSMatt Macy 		atomic_inc(&skc->skc_ref);
1055eda14cbcSMatt Macy 		ska->ska_cache = skc;
1056eda14cbcSMatt Macy 		ska->ska_flags = flags;
1057eda14cbcSMatt Macy 		taskq_init_ent(&ska->ska_tqe);
1058eda14cbcSMatt Macy 		taskq_dispatch_ent(spl_kmem_cache_taskq,
1059eda14cbcSMatt Macy 		    spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1060eda14cbcSMatt Macy 	}
1061eda14cbcSMatt Macy 
1062eda14cbcSMatt Macy 	/*
1063eda14cbcSMatt Macy 	 * The goal here is to only detect the rare case where a virtual slab
1064eda14cbcSMatt Macy 	 * allocation has deadlocked.  We must be careful to minimize the use
1065eda14cbcSMatt Macy 	 * of emergency objects which are more expensive to track.  Therefore,
1066eda14cbcSMatt Macy 	 * we set a very long timeout for the asynchronous allocation and if
1067eda14cbcSMatt Macy 	 * the timeout is reached the cache is flagged as deadlocked.  From
1068eda14cbcSMatt Macy 	 * this point only new emergency objects will be allocated until the
1069eda14cbcSMatt Macy 	 * asynchronous allocation completes and clears the deadlocked flag.
1070eda14cbcSMatt Macy 	 */
1071eda14cbcSMatt Macy 	if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1072eda14cbcSMatt Macy 		rc = spl_emergency_alloc(skc, flags, obj);
1073eda14cbcSMatt Macy 	} else {
1074eda14cbcSMatt Macy 		remaining = wait_event_timeout(skc->skc_waitq,
1075eda14cbcSMatt Macy 		    spl_cache_grow_wait(skc), HZ / 10);
1076eda14cbcSMatt Macy 
1077eda14cbcSMatt Macy 		if (!remaining) {
1078eda14cbcSMatt Macy 			spin_lock(&skc->skc_lock);
1079eda14cbcSMatt Macy 			if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1080eda14cbcSMatt Macy 				set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1081eda14cbcSMatt Macy 				skc->skc_obj_deadlock++;
1082eda14cbcSMatt Macy 			}
1083eda14cbcSMatt Macy 			spin_unlock(&skc->skc_lock);
1084eda14cbcSMatt Macy 		}
1085eda14cbcSMatt Macy 
1086eda14cbcSMatt Macy 		rc = -ENOMEM;
1087eda14cbcSMatt Macy 	}
1088eda14cbcSMatt Macy 
1089eda14cbcSMatt Macy 	return (rc);
1090eda14cbcSMatt Macy }
1091eda14cbcSMatt Macy 
1092eda14cbcSMatt Macy /*
1093eda14cbcSMatt Macy  * Refill a per-cpu magazine with objects from the slabs for this cache.
1094eda14cbcSMatt Macy  * Ideally the magazine can be repopulated using existing objects which have
1095eda14cbcSMatt Macy  * been released, however if we are unable to locate enough free objects new
1096eda14cbcSMatt Macy  * slabs of objects will be created.  On success NULL is returned, otherwise
1097eda14cbcSMatt Macy  * the address of a single emergency object is returned for use by the caller.
1098eda14cbcSMatt Macy  */
1099eda14cbcSMatt Macy static void *
1100eda14cbcSMatt Macy spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1101eda14cbcSMatt Macy {
1102eda14cbcSMatt Macy 	spl_kmem_slab_t *sks;
1103eda14cbcSMatt Macy 	int count = 0, rc, refill;
1104eda14cbcSMatt Macy 	void *obj = NULL;
1105eda14cbcSMatt Macy 
1106eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
1107eda14cbcSMatt Macy 	ASSERT(skm->skm_magic == SKM_MAGIC);
1108eda14cbcSMatt Macy 
1109eda14cbcSMatt Macy 	refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1110eda14cbcSMatt Macy 	spin_lock(&skc->skc_lock);
1111eda14cbcSMatt Macy 
1112eda14cbcSMatt Macy 	while (refill > 0) {
1113eda14cbcSMatt Macy 		/* No slabs available we may need to grow the cache */
1114eda14cbcSMatt Macy 		if (list_empty(&skc->skc_partial_list)) {
1115eda14cbcSMatt Macy 			spin_unlock(&skc->skc_lock);
1116eda14cbcSMatt Macy 
1117eda14cbcSMatt Macy 			local_irq_enable();
1118eda14cbcSMatt Macy 			rc = spl_cache_grow(skc, flags, &obj);
1119eda14cbcSMatt Macy 			local_irq_disable();
1120eda14cbcSMatt Macy 
1121eda14cbcSMatt Macy 			/* Emergency object for immediate use by caller */
1122eda14cbcSMatt Macy 			if (rc == 0 && obj != NULL)
1123eda14cbcSMatt Macy 				return (obj);
1124eda14cbcSMatt Macy 
1125eda14cbcSMatt Macy 			if (rc)
1126eda14cbcSMatt Macy 				goto out;
1127eda14cbcSMatt Macy 
1128eda14cbcSMatt Macy 			/* Rescheduled to different CPU skm is not local */
1129eda14cbcSMatt Macy 			if (skm != skc->skc_mag[smp_processor_id()])
1130eda14cbcSMatt Macy 				goto out;
1131eda14cbcSMatt Macy 
1132eda14cbcSMatt Macy 			/*
1133eda14cbcSMatt Macy 			 * Potentially rescheduled to the same CPU but
1134eda14cbcSMatt Macy 			 * allocations may have occurred from this CPU while
1135eda14cbcSMatt Macy 			 * we were sleeping so recalculate max refill.
1136eda14cbcSMatt Macy 			 */
1137eda14cbcSMatt Macy 			refill = MIN(refill, skm->skm_size - skm->skm_avail);
1138eda14cbcSMatt Macy 
1139eda14cbcSMatt Macy 			spin_lock(&skc->skc_lock);
1140eda14cbcSMatt Macy 			continue;
1141eda14cbcSMatt Macy 		}
1142eda14cbcSMatt Macy 
1143eda14cbcSMatt Macy 		/* Grab the next available slab */
1144eda14cbcSMatt Macy 		sks = list_entry((&skc->skc_partial_list)->next,
1145eda14cbcSMatt Macy 		    spl_kmem_slab_t, sks_list);
1146eda14cbcSMatt Macy 		ASSERT(sks->sks_magic == SKS_MAGIC);
1147eda14cbcSMatt Macy 		ASSERT(sks->sks_ref < sks->sks_objs);
1148eda14cbcSMatt Macy 		ASSERT(!list_empty(&sks->sks_free_list));
1149eda14cbcSMatt Macy 
1150eda14cbcSMatt Macy 		/*
1151eda14cbcSMatt Macy 		 * Consume as many objects as needed to refill the requested
1152eda14cbcSMatt Macy 		 * cache.  We must also be careful not to overfill it.
1153eda14cbcSMatt Macy 		 */
1154eda14cbcSMatt Macy 		while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1155eda14cbcSMatt Macy 		    ++count) {
1156eda14cbcSMatt Macy 			ASSERT(skm->skm_avail < skm->skm_size);
1157eda14cbcSMatt Macy 			ASSERT(count < skm->skm_size);
1158eda14cbcSMatt Macy 			skm->skm_objs[skm->skm_avail++] =
1159eda14cbcSMatt Macy 			    spl_cache_obj(skc, sks);
1160eda14cbcSMatt Macy 		}
1161eda14cbcSMatt Macy 
1162eda14cbcSMatt Macy 		/* Move slab to skc_complete_list when full */
1163eda14cbcSMatt Macy 		if (sks->sks_ref == sks->sks_objs) {
1164eda14cbcSMatt Macy 			list_del(&sks->sks_list);
1165eda14cbcSMatt Macy 			list_add(&sks->sks_list, &skc->skc_complete_list);
1166eda14cbcSMatt Macy 		}
1167eda14cbcSMatt Macy 	}
1168eda14cbcSMatt Macy 
1169eda14cbcSMatt Macy 	spin_unlock(&skc->skc_lock);
1170eda14cbcSMatt Macy out:
1171eda14cbcSMatt Macy 	return (NULL);
1172eda14cbcSMatt Macy }
1173eda14cbcSMatt Macy 
1174eda14cbcSMatt Macy /*
1175eda14cbcSMatt Macy  * Release an object back to the slab from which it came.
1176eda14cbcSMatt Macy  */
1177eda14cbcSMatt Macy static void
1178eda14cbcSMatt Macy spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1179eda14cbcSMatt Macy {
1180eda14cbcSMatt Macy 	spl_kmem_slab_t *sks = NULL;
1181eda14cbcSMatt Macy 	spl_kmem_obj_t *sko = NULL;
1182eda14cbcSMatt Macy 
1183eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
1184eda14cbcSMatt Macy 
1185eda14cbcSMatt Macy 	sko = spl_sko_from_obj(skc, obj);
1186eda14cbcSMatt Macy 	ASSERT(sko->sko_magic == SKO_MAGIC);
1187eda14cbcSMatt Macy 	sks = sko->sko_slab;
1188eda14cbcSMatt Macy 	ASSERT(sks->sks_magic == SKS_MAGIC);
1189eda14cbcSMatt Macy 	ASSERT(sks->sks_cache == skc);
1190eda14cbcSMatt Macy 	list_add(&sko->sko_list, &sks->sks_free_list);
1191eda14cbcSMatt Macy 
1192eda14cbcSMatt Macy 	sks->sks_age = jiffies;
1193eda14cbcSMatt Macy 	sks->sks_ref--;
1194eda14cbcSMatt Macy 	skc->skc_obj_alloc--;
1195eda14cbcSMatt Macy 
1196eda14cbcSMatt Macy 	/*
1197eda14cbcSMatt Macy 	 * Move slab to skc_partial_list when no longer full.  Slabs
1198eda14cbcSMatt Macy 	 * are added to the head to keep the partial list is quasi-full
1199eda14cbcSMatt Macy 	 * sorted order.  Fuller at the head, emptier at the tail.
1200eda14cbcSMatt Macy 	 */
1201eda14cbcSMatt Macy 	if (sks->sks_ref == (sks->sks_objs - 1)) {
1202eda14cbcSMatt Macy 		list_del(&sks->sks_list);
1203eda14cbcSMatt Macy 		list_add(&sks->sks_list, &skc->skc_partial_list);
1204eda14cbcSMatt Macy 	}
1205eda14cbcSMatt Macy 
1206eda14cbcSMatt Macy 	/*
1207eda14cbcSMatt Macy 	 * Move empty slabs to the end of the partial list so
1208eda14cbcSMatt Macy 	 * they can be easily found and freed during reclamation.
1209eda14cbcSMatt Macy 	 */
1210eda14cbcSMatt Macy 	if (sks->sks_ref == 0) {
1211eda14cbcSMatt Macy 		list_del(&sks->sks_list);
1212eda14cbcSMatt Macy 		list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1213eda14cbcSMatt Macy 		skc->skc_slab_alloc--;
1214eda14cbcSMatt Macy 	}
1215eda14cbcSMatt Macy }
1216eda14cbcSMatt Macy 
1217eda14cbcSMatt Macy /*
1218eda14cbcSMatt Macy  * Allocate an object from the per-cpu magazine, or if the magazine
1219eda14cbcSMatt Macy  * is empty directly allocate from a slab and repopulate the magazine.
1220eda14cbcSMatt Macy  */
1221eda14cbcSMatt Macy void *
1222eda14cbcSMatt Macy spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1223eda14cbcSMatt Macy {
1224eda14cbcSMatt Macy 	spl_kmem_magazine_t *skm;
1225eda14cbcSMatt Macy 	void *obj = NULL;
1226eda14cbcSMatt Macy 
1227eda14cbcSMatt Macy 	ASSERT0(flags & ~KM_PUBLIC_MASK);
1228eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
1229eda14cbcSMatt Macy 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1230eda14cbcSMatt Macy 
1231eda14cbcSMatt Macy 	/*
1232eda14cbcSMatt Macy 	 * Allocate directly from a Linux slab.  All optimizations are left
1233eda14cbcSMatt Macy 	 * to the underlying cache we only need to guarantee that KM_SLEEP
1234eda14cbcSMatt Macy 	 * callers will never fail.
1235eda14cbcSMatt Macy 	 */
1236eda14cbcSMatt Macy 	if (skc->skc_flags & KMC_SLAB) {
1237eda14cbcSMatt Macy 		struct kmem_cache *slc = skc->skc_linux_cache;
1238eda14cbcSMatt Macy 		do {
1239eda14cbcSMatt Macy 			obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1240eda14cbcSMatt Macy 		} while ((obj == NULL) && !(flags & KM_NOSLEEP));
1241eda14cbcSMatt Macy 
1242eda14cbcSMatt Macy 		if (obj != NULL) {
1243eda14cbcSMatt Macy 			/*
1244eda14cbcSMatt Macy 			 * Even though we leave everything up to the
1245eda14cbcSMatt Macy 			 * underlying cache we still keep track of
1246eda14cbcSMatt Macy 			 * how many objects we've allocated in it for
1247eda14cbcSMatt Macy 			 * better debuggability.
1248eda14cbcSMatt Macy 			 */
1249eda14cbcSMatt Macy 			percpu_counter_inc(&skc->skc_linux_alloc);
1250eda14cbcSMatt Macy 		}
1251eda14cbcSMatt Macy 		goto ret;
1252eda14cbcSMatt Macy 	}
1253eda14cbcSMatt Macy 
1254eda14cbcSMatt Macy 	local_irq_disable();
1255eda14cbcSMatt Macy 
1256eda14cbcSMatt Macy restart:
1257eda14cbcSMatt Macy 	/*
1258eda14cbcSMatt Macy 	 * Safe to update per-cpu structure without lock, but
1259eda14cbcSMatt Macy 	 * in the restart case we must be careful to reacquire
1260eda14cbcSMatt Macy 	 * the local magazine since this may have changed
1261eda14cbcSMatt Macy 	 * when we need to grow the cache.
1262eda14cbcSMatt Macy 	 */
1263eda14cbcSMatt Macy 	skm = skc->skc_mag[smp_processor_id()];
1264eda14cbcSMatt Macy 	ASSERT(skm->skm_magic == SKM_MAGIC);
1265eda14cbcSMatt Macy 
1266eda14cbcSMatt Macy 	if (likely(skm->skm_avail)) {
1267eda14cbcSMatt Macy 		/* Object available in CPU cache, use it */
1268eda14cbcSMatt Macy 		obj = skm->skm_objs[--skm->skm_avail];
1269eda14cbcSMatt Macy 	} else {
1270eda14cbcSMatt Macy 		obj = spl_cache_refill(skc, skm, flags);
1271eda14cbcSMatt Macy 		if ((obj == NULL) && !(flags & KM_NOSLEEP))
1272eda14cbcSMatt Macy 			goto restart;
1273eda14cbcSMatt Macy 
1274eda14cbcSMatt Macy 		local_irq_enable();
1275eda14cbcSMatt Macy 		goto ret;
1276eda14cbcSMatt Macy 	}
1277eda14cbcSMatt Macy 
1278eda14cbcSMatt Macy 	local_irq_enable();
1279eda14cbcSMatt Macy 	ASSERT(obj);
1280eda14cbcSMatt Macy 	ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1281eda14cbcSMatt Macy 
1282eda14cbcSMatt Macy ret:
1283eda14cbcSMatt Macy 	/* Pre-emptively migrate object to CPU L1 cache */
1284eda14cbcSMatt Macy 	if (obj) {
1285eda14cbcSMatt Macy 		if (obj && skc->skc_ctor)
1286eda14cbcSMatt Macy 			skc->skc_ctor(obj, skc->skc_private, flags);
1287eda14cbcSMatt Macy 		else
1288eda14cbcSMatt Macy 			prefetchw(obj);
1289eda14cbcSMatt Macy 	}
1290eda14cbcSMatt Macy 
1291eda14cbcSMatt Macy 	return (obj);
1292eda14cbcSMatt Macy }
1293eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_alloc);
1294eda14cbcSMatt Macy 
1295eda14cbcSMatt Macy /*
1296eda14cbcSMatt Macy  * Free an object back to the local per-cpu magazine, there is no
1297eda14cbcSMatt Macy  * guarantee that this is the same magazine the object was originally
1298eda14cbcSMatt Macy  * allocated from.  We may need to flush entire from the magazine
1299eda14cbcSMatt Macy  * back to the slabs to make space.
1300eda14cbcSMatt Macy  */
1301eda14cbcSMatt Macy void
1302eda14cbcSMatt Macy spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1303eda14cbcSMatt Macy {
1304eda14cbcSMatt Macy 	spl_kmem_magazine_t *skm;
1305eda14cbcSMatt Macy 	unsigned long flags;
1306eda14cbcSMatt Macy 	int do_reclaim = 0;
1307eda14cbcSMatt Macy 	int do_emergency = 0;
1308eda14cbcSMatt Macy 
1309eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
1310eda14cbcSMatt Macy 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1311eda14cbcSMatt Macy 
1312eda14cbcSMatt Macy 	/*
1313eda14cbcSMatt Macy 	 * Run the destructor
1314eda14cbcSMatt Macy 	 */
1315eda14cbcSMatt Macy 	if (skc->skc_dtor)
1316eda14cbcSMatt Macy 		skc->skc_dtor(obj, skc->skc_private);
1317eda14cbcSMatt Macy 
1318eda14cbcSMatt Macy 	/*
1319eda14cbcSMatt Macy 	 * Free the object from the Linux underlying Linux slab.
1320eda14cbcSMatt Macy 	 */
1321eda14cbcSMatt Macy 	if (skc->skc_flags & KMC_SLAB) {
1322eda14cbcSMatt Macy 		kmem_cache_free(skc->skc_linux_cache, obj);
1323eda14cbcSMatt Macy 		percpu_counter_dec(&skc->skc_linux_alloc);
1324eda14cbcSMatt Macy 		return;
1325eda14cbcSMatt Macy 	}
1326eda14cbcSMatt Macy 
1327eda14cbcSMatt Macy 	/*
1328eda14cbcSMatt Macy 	 * While a cache has outstanding emergency objects all freed objects
1329eda14cbcSMatt Macy 	 * must be checked.  However, since emergency objects will never use
1330eda14cbcSMatt Macy 	 * a virtual address these objects can be safely excluded as an
1331eda14cbcSMatt Macy 	 * optimization.
1332eda14cbcSMatt Macy 	 */
1333eda14cbcSMatt Macy 	if (!is_vmalloc_addr(obj)) {
1334eda14cbcSMatt Macy 		spin_lock(&skc->skc_lock);
1335eda14cbcSMatt Macy 		do_emergency = (skc->skc_obj_emergency > 0);
1336eda14cbcSMatt Macy 		spin_unlock(&skc->skc_lock);
1337eda14cbcSMatt Macy 
1338eda14cbcSMatt Macy 		if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1339eda14cbcSMatt Macy 			return;
1340eda14cbcSMatt Macy 	}
1341eda14cbcSMatt Macy 
1342eda14cbcSMatt Macy 	local_irq_save(flags);
1343eda14cbcSMatt Macy 
1344eda14cbcSMatt Macy 	/*
1345eda14cbcSMatt Macy 	 * Safe to update per-cpu structure without lock, but
1346eda14cbcSMatt Macy 	 * no remote memory allocation tracking is being performed
1347eda14cbcSMatt Macy 	 * it is entirely possible to allocate an object from one
1348eda14cbcSMatt Macy 	 * CPU cache and return it to another.
1349eda14cbcSMatt Macy 	 */
1350eda14cbcSMatt Macy 	skm = skc->skc_mag[smp_processor_id()];
1351eda14cbcSMatt Macy 	ASSERT(skm->skm_magic == SKM_MAGIC);
1352eda14cbcSMatt Macy 
1353eda14cbcSMatt Macy 	/*
1354eda14cbcSMatt Macy 	 * Per-CPU cache full, flush it to make space for this object,
1355eda14cbcSMatt Macy 	 * this may result in an empty slab which can be reclaimed once
1356eda14cbcSMatt Macy 	 * interrupts are re-enabled.
1357eda14cbcSMatt Macy 	 */
1358eda14cbcSMatt Macy 	if (unlikely(skm->skm_avail >= skm->skm_size)) {
1359eda14cbcSMatt Macy 		spl_cache_flush(skc, skm, skm->skm_refill);
1360eda14cbcSMatt Macy 		do_reclaim = 1;
1361eda14cbcSMatt Macy 	}
1362eda14cbcSMatt Macy 
1363eda14cbcSMatt Macy 	/* Available space in cache, use it */
1364eda14cbcSMatt Macy 	skm->skm_objs[skm->skm_avail++] = obj;
1365eda14cbcSMatt Macy 
1366eda14cbcSMatt Macy 	local_irq_restore(flags);
1367eda14cbcSMatt Macy 
1368eda14cbcSMatt Macy 	if (do_reclaim)
1369eda14cbcSMatt Macy 		spl_slab_reclaim(skc);
1370eda14cbcSMatt Macy }
1371eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_free);
1372eda14cbcSMatt Macy 
1373eda14cbcSMatt Macy /*
1374eda14cbcSMatt Macy  * Depending on how many and which objects are released it may simply
1375eda14cbcSMatt Macy  * repopulate the local magazine which will then need to age-out.  Objects
1376eda14cbcSMatt Macy  * which cannot fit in the magazine will be released back to their slabs
1377eda14cbcSMatt Macy  * which will also need to age out before being released.  This is all just
1378eda14cbcSMatt Macy  * best effort and we do not want to thrash creating and destroying slabs.
1379eda14cbcSMatt Macy  */
1380eda14cbcSMatt Macy void
1381eda14cbcSMatt Macy spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1382eda14cbcSMatt Macy {
1383eda14cbcSMatt Macy 	ASSERT(skc->skc_magic == SKC_MAGIC);
1384eda14cbcSMatt Macy 	ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1385eda14cbcSMatt Macy 
1386eda14cbcSMatt Macy 	if (skc->skc_flags & KMC_SLAB)
1387eda14cbcSMatt Macy 		return;
1388eda14cbcSMatt Macy 
1389eda14cbcSMatt Macy 	atomic_inc(&skc->skc_ref);
1390eda14cbcSMatt Macy 
1391eda14cbcSMatt Macy 	/*
1392eda14cbcSMatt Macy 	 * Prevent concurrent cache reaping when contended.
1393eda14cbcSMatt Macy 	 */
1394eda14cbcSMatt Macy 	if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1395eda14cbcSMatt Macy 		goto out;
1396eda14cbcSMatt Macy 
1397eda14cbcSMatt Macy 	/* Reclaim from the magazine and free all now empty slabs. */
1398eda14cbcSMatt Macy 	unsigned long irq_flags;
1399eda14cbcSMatt Macy 	local_irq_save(irq_flags);
1400eda14cbcSMatt Macy 	spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1401eda14cbcSMatt Macy 	spl_cache_flush(skc, skm, skm->skm_avail);
1402eda14cbcSMatt Macy 	local_irq_restore(irq_flags);
1403eda14cbcSMatt Macy 
1404eda14cbcSMatt Macy 	spl_slab_reclaim(skc);
1405eda14cbcSMatt Macy 	clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1406eda14cbcSMatt Macy 	smp_mb__after_atomic();
1407eda14cbcSMatt Macy 	wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1408eda14cbcSMatt Macy out:
1409eda14cbcSMatt Macy 	atomic_dec(&skc->skc_ref);
1410eda14cbcSMatt Macy }
1411eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1412eda14cbcSMatt Macy 
1413eda14cbcSMatt Macy /*
1414eda14cbcSMatt Macy  * This is stubbed out for code consistency with other platforms.  There
1415eda14cbcSMatt Macy  * is existing logic to prevent concurrent reaping so while this is ugly
1416eda14cbcSMatt Macy  * it should do no harm.
1417eda14cbcSMatt Macy  */
1418eda14cbcSMatt Macy int
1419716fd348SMartin Matuska spl_kmem_cache_reap_active(void)
1420eda14cbcSMatt Macy {
1421eda14cbcSMatt Macy 	return (0);
1422eda14cbcSMatt Macy }
1423eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1424eda14cbcSMatt Macy 
1425eda14cbcSMatt Macy /*
1426eda14cbcSMatt Macy  * Reap all free slabs from all registered caches.
1427eda14cbcSMatt Macy  */
1428eda14cbcSMatt Macy void
1429eda14cbcSMatt Macy spl_kmem_reap(void)
1430eda14cbcSMatt Macy {
1431eda14cbcSMatt Macy 	spl_kmem_cache_t *skc = NULL;
1432eda14cbcSMatt Macy 
1433eda14cbcSMatt Macy 	down_read(&spl_kmem_cache_sem);
1434eda14cbcSMatt Macy 	list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1435eda14cbcSMatt Macy 		spl_kmem_cache_reap_now(skc);
1436eda14cbcSMatt Macy 	}
1437eda14cbcSMatt Macy 	up_read(&spl_kmem_cache_sem);
1438eda14cbcSMatt Macy }
1439eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_reap);
1440eda14cbcSMatt Macy 
1441eda14cbcSMatt Macy int
1442eda14cbcSMatt Macy spl_kmem_cache_init(void)
1443eda14cbcSMatt Macy {
1444eda14cbcSMatt Macy 	init_rwsem(&spl_kmem_cache_sem);
1445eda14cbcSMatt Macy 	INIT_LIST_HEAD(&spl_kmem_cache_list);
1446eda14cbcSMatt Macy 	spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1447eda14cbcSMatt Macy 	    spl_kmem_cache_kmem_threads, maxclsyspri,
1448eda14cbcSMatt Macy 	    spl_kmem_cache_kmem_threads * 8, INT_MAX,
1449eda14cbcSMatt Macy 	    TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1450eda14cbcSMatt Macy 
1451c7046f76SMartin Matuska 	if (spl_kmem_cache_taskq == NULL)
1452c7046f76SMartin Matuska 		return (-ENOMEM);
1453c7046f76SMartin Matuska 
1454eda14cbcSMatt Macy 	return (0);
1455eda14cbcSMatt Macy }
1456eda14cbcSMatt Macy 
1457eda14cbcSMatt Macy void
1458eda14cbcSMatt Macy spl_kmem_cache_fini(void)
1459eda14cbcSMatt Macy {
1460eda14cbcSMatt Macy 	taskq_destroy(spl_kmem_cache_taskq);
1461eda14cbcSMatt Macy }
1462