1eda14cbcSMatt Macy /* 2eda14cbcSMatt Macy * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3eda14cbcSMatt Macy * Copyright (C) 2007 The Regents of the University of California. 4eda14cbcSMatt Macy * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5eda14cbcSMatt Macy * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6eda14cbcSMatt Macy * UCRL-CODE-235197 7eda14cbcSMatt Macy * 8eda14cbcSMatt Macy * This file is part of the SPL, Solaris Porting Layer. 9eda14cbcSMatt Macy * 10eda14cbcSMatt Macy * The SPL is free software; you can redistribute it and/or modify it 11eda14cbcSMatt Macy * under the terms of the GNU General Public License as published by the 12eda14cbcSMatt Macy * Free Software Foundation; either version 2 of the License, or (at your 13eda14cbcSMatt Macy * option) any later version. 14eda14cbcSMatt Macy * 15eda14cbcSMatt Macy * The SPL is distributed in the hope that it will be useful, but WITHOUT 16eda14cbcSMatt Macy * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17eda14cbcSMatt Macy * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18eda14cbcSMatt Macy * for more details. 19eda14cbcSMatt Macy * 20eda14cbcSMatt Macy * You should have received a copy of the GNU General Public License along 21eda14cbcSMatt Macy * with the SPL. If not, see <http://www.gnu.org/licenses/>. 22eda14cbcSMatt Macy */ 23eda14cbcSMatt Macy 2475e1fea6SMartin Matuska #define SPL_KMEM_CACHE_IMPLEMENTING 2575e1fea6SMartin Matuska 26eda14cbcSMatt Macy #include <sys/kmem.h> 27eda14cbcSMatt Macy #include <sys/kmem_cache.h> 28eda14cbcSMatt Macy #include <sys/taskq.h> 29eda14cbcSMatt Macy #include <sys/timer.h> 30eda14cbcSMatt Macy #include <sys/vmem.h> 31eda14cbcSMatt Macy #include <sys/wait.h> 32fd45b686SMartin Matuska #include <sys/string.h> 33eda14cbcSMatt Macy #include <linux/slab.h> 34eda14cbcSMatt Macy #include <linux/swap.h> 35eda14cbcSMatt Macy #include <linux/prefetch.h> 36eda14cbcSMatt Macy 37eda14cbcSMatt Macy /* 38eda14cbcSMatt Macy * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}() 39eda14cbcSMatt Macy * with smp_mb__{before,after}_atomic() because they were redundant. This is 40eda14cbcSMatt Macy * only used inside our SLAB allocator, so we implement an internal wrapper 41eda14cbcSMatt Macy * here to give us smp_mb__{before,after}_atomic() on older kernels. 42eda14cbcSMatt Macy */ 43eda14cbcSMatt Macy #ifndef smp_mb__before_atomic 44eda14cbcSMatt Macy #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x) 45eda14cbcSMatt Macy #endif 46eda14cbcSMatt Macy 47eda14cbcSMatt Macy #ifndef smp_mb__after_atomic 48eda14cbcSMatt Macy #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x) 49eda14cbcSMatt Macy #endif 50eda14cbcSMatt Macy 51eda14cbcSMatt Macy /* 52eda14cbcSMatt Macy * Cache magazines are an optimization designed to minimize the cost of 53eda14cbcSMatt Macy * allocating memory. They do this by keeping a per-cpu cache of recently 54eda14cbcSMatt Macy * freed objects, which can then be reallocated without taking a lock. This 55eda14cbcSMatt Macy * can improve performance on highly contended caches. However, because 56eda14cbcSMatt Macy * objects in magazines will prevent otherwise empty slabs from being 57eda14cbcSMatt Macy * immediately released this may not be ideal for low memory machines. 58eda14cbcSMatt Macy * 59eda14cbcSMatt Macy * For this reason spl_kmem_cache_magazine_size can be used to set a maximum 60eda14cbcSMatt Macy * magazine size. When this value is set to 0 the magazine size will be 61eda14cbcSMatt Macy * automatically determined based on the object size. Otherwise magazines 62eda14cbcSMatt Macy * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines 63eda14cbcSMatt Macy * may never be entirely disabled in this implementation. 64eda14cbcSMatt Macy */ 65e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_magazine_size = 0; 66eda14cbcSMatt Macy module_param(spl_kmem_cache_magazine_size, uint, 0444); 67eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_magazine_size, 68eda14cbcSMatt Macy "Default magazine size (2-256), set automatically (0)"); 69eda14cbcSMatt Macy 70e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB; 71eda14cbcSMatt Macy module_param(spl_kmem_cache_obj_per_slab, uint, 0644); 72eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab"); 73eda14cbcSMatt Macy 74e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE; 75eda14cbcSMatt Macy module_param(spl_kmem_cache_max_size, uint, 0644); 76eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB"); 77eda14cbcSMatt Macy 78eda14cbcSMatt Macy /* 79eda14cbcSMatt Macy * For small objects the Linux slab allocator should be used to make the most 80eda14cbcSMatt Macy * efficient use of the memory. However, large objects are not supported by 81eda14cbcSMatt Macy * the Linux slab and therefore the SPL implementation is preferred. A cutoff 8216038816SMartin Matuska * of 16K was determined to be optimal for architectures using 4K pages and 8316038816SMartin Matuska * to also work well on architecutres using larger 64K page sizes. 84eda14cbcSMatt Macy */ 8578ae60b4SMartin Matuska static unsigned int spl_kmem_cache_slab_limit = 8678ae60b4SMartin Matuska SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE; 87eda14cbcSMatt Macy module_param(spl_kmem_cache_slab_limit, uint, 0644); 88eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_slab_limit, 89eda14cbcSMatt Macy "Objects less than N bytes use the Linux slab"); 90eda14cbcSMatt Macy 91eda14cbcSMatt Macy /* 92eda14cbcSMatt Macy * The number of threads available to allocate new slabs for caches. This 93eda14cbcSMatt Macy * should not need to be tuned but it is available for performance analysis. 94eda14cbcSMatt Macy */ 95e92ffd9bSMartin Matuska static unsigned int spl_kmem_cache_kmem_threads = 4; 96eda14cbcSMatt Macy module_param(spl_kmem_cache_kmem_threads, uint, 0444); 97eda14cbcSMatt Macy MODULE_PARM_DESC(spl_kmem_cache_kmem_threads, 98eda14cbcSMatt Macy "Number of spl_kmem_cache threads"); 99eda14cbcSMatt Macy 100eda14cbcSMatt Macy /* 101eda14cbcSMatt Macy * Slab allocation interfaces 102eda14cbcSMatt Macy * 103eda14cbcSMatt Macy * While the Linux slab implementation was inspired by the Solaris 104eda14cbcSMatt Macy * implementation I cannot use it to emulate the Solaris APIs. I 105eda14cbcSMatt Macy * require two features which are not provided by the Linux slab. 106eda14cbcSMatt Macy * 107eda14cbcSMatt Macy * 1) Constructors AND destructors. Recent versions of the Linux 108eda14cbcSMatt Macy * kernel have removed support for destructors. This is a deal 109eda14cbcSMatt Macy * breaker for the SPL which contains particularly expensive 110eda14cbcSMatt Macy * initializers for mutex's, condition variables, etc. We also 111eda14cbcSMatt Macy * require a minimal level of cleanup for these data types unlike 112eda14cbcSMatt Macy * many Linux data types which do need to be explicitly destroyed. 113eda14cbcSMatt Macy * 114eda14cbcSMatt Macy * 2) Virtual address space backed slab. Callers of the Solaris slab 115eda14cbcSMatt Macy * expect it to work well for both small are very large allocations. 116eda14cbcSMatt Macy * Because of memory fragmentation the Linux slab which is backed 117eda14cbcSMatt Macy * by kmalloc'ed memory performs very badly when confronted with 118eda14cbcSMatt Macy * large numbers of large allocations. Basing the slab on the 119eda14cbcSMatt Macy * virtual address space removes the need for contiguous pages 120eda14cbcSMatt Macy * and greatly improve performance for large allocations. 121eda14cbcSMatt Macy * 122eda14cbcSMatt Macy * For these reasons, the SPL has its own slab implementation with 123eda14cbcSMatt Macy * the needed features. It is not as highly optimized as either the 124eda14cbcSMatt Macy * Solaris or Linux slabs, but it should get me most of what is 125eda14cbcSMatt Macy * needed until it can be optimized or obsoleted by another approach. 126eda14cbcSMatt Macy * 127eda14cbcSMatt Macy * One serious concern I do have about this method is the relatively 128eda14cbcSMatt Macy * small virtual address space on 32bit arches. This will seriously 129eda14cbcSMatt Macy * constrain the size of the slab caches and their performance. 130eda14cbcSMatt Macy */ 131eda14cbcSMatt Macy 132eda14cbcSMatt Macy struct list_head spl_kmem_cache_list; /* List of caches */ 133eda14cbcSMatt Macy struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */ 134dbd5678dSMartin Matuska static taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */ 135eda14cbcSMatt Macy 136eda14cbcSMatt Macy static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj); 137eda14cbcSMatt Macy 138eda14cbcSMatt Macy static void * 139eda14cbcSMatt Macy kv_alloc(spl_kmem_cache_t *skc, int size, int flags) 140eda14cbcSMatt Macy { 141eda14cbcSMatt Macy gfp_t lflags = kmem_flags_convert(flags); 142eda14cbcSMatt Macy void *ptr; 143eda14cbcSMatt Macy 144ce4dcb97SMartin Matuska if (skc->skc_flags & KMC_RECLAIMABLE) 145ce4dcb97SMartin Matuska lflags |= __GFP_RECLAIMABLE; 146eda14cbcSMatt Macy ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM); 147eda14cbcSMatt Macy 148eda14cbcSMatt Macy /* Resulting allocated memory will be page aligned */ 149eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 150eda14cbcSMatt Macy 151eda14cbcSMatt Macy return (ptr); 152eda14cbcSMatt Macy } 153eda14cbcSMatt Macy 154eda14cbcSMatt Macy static void 155eda14cbcSMatt Macy kv_free(spl_kmem_cache_t *skc, void *ptr, int size) 156eda14cbcSMatt Macy { 157eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE)); 158eda14cbcSMatt Macy 159eda14cbcSMatt Macy /* 160eda14cbcSMatt Macy * The Linux direct reclaim path uses this out of band value to 161eda14cbcSMatt Macy * determine if forward progress is being made. Normally this is 162eda14cbcSMatt Macy * incremented by kmem_freepages() which is part of the various 163eda14cbcSMatt Macy * Linux slab implementations. However, since we are using none 164eda14cbcSMatt Macy * of that infrastructure we are responsible for incrementing it. 165eda14cbcSMatt Macy */ 166eda14cbcSMatt Macy if (current->reclaim_state) 1674e8d558cSMartin Matuska #ifdef HAVE_RECLAIM_STATE_RECLAIMED 1684e8d558cSMartin Matuska current->reclaim_state->reclaimed += size >> PAGE_SHIFT; 1694e8d558cSMartin Matuska #else 170eda14cbcSMatt Macy current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT; 1714e8d558cSMartin Matuska #endif 172eda14cbcSMatt Macy vfree(ptr); 173eda14cbcSMatt Macy } 174eda14cbcSMatt Macy 175eda14cbcSMatt Macy /* 176eda14cbcSMatt Macy * Required space for each aligned sks. 177eda14cbcSMatt Macy */ 178eda14cbcSMatt Macy static inline uint32_t 179eda14cbcSMatt Macy spl_sks_size(spl_kmem_cache_t *skc) 180eda14cbcSMatt Macy { 181eda14cbcSMatt Macy return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t), 182eda14cbcSMatt Macy skc->skc_obj_align, uint32_t)); 183eda14cbcSMatt Macy } 184eda14cbcSMatt Macy 185eda14cbcSMatt Macy /* 186eda14cbcSMatt Macy * Required space for each aligned object. 187eda14cbcSMatt Macy */ 188eda14cbcSMatt Macy static inline uint32_t 189eda14cbcSMatt Macy spl_obj_size(spl_kmem_cache_t *skc) 190eda14cbcSMatt Macy { 191eda14cbcSMatt Macy uint32_t align = skc->skc_obj_align; 192eda14cbcSMatt Macy 193eda14cbcSMatt Macy return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) + 194eda14cbcSMatt Macy P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t)); 195eda14cbcSMatt Macy } 196eda14cbcSMatt Macy 197eda14cbcSMatt Macy uint64_t 198eda14cbcSMatt Macy spl_kmem_cache_inuse(kmem_cache_t *cache) 199eda14cbcSMatt Macy { 200eda14cbcSMatt Macy return (cache->skc_obj_total); 201eda14cbcSMatt Macy } 202eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_inuse); 203eda14cbcSMatt Macy 204eda14cbcSMatt Macy uint64_t 205eda14cbcSMatt Macy spl_kmem_cache_entry_size(kmem_cache_t *cache) 206eda14cbcSMatt Macy { 207eda14cbcSMatt Macy return (cache->skc_obj_size); 208eda14cbcSMatt Macy } 209eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_entry_size); 210eda14cbcSMatt Macy 211eda14cbcSMatt Macy /* 212eda14cbcSMatt Macy * Lookup the spl_kmem_object_t for an object given that object. 213eda14cbcSMatt Macy */ 214eda14cbcSMatt Macy static inline spl_kmem_obj_t * 215eda14cbcSMatt Macy spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj) 216eda14cbcSMatt Macy { 217eda14cbcSMatt Macy return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size, 218eda14cbcSMatt Macy skc->skc_obj_align, uint32_t)); 219eda14cbcSMatt Macy } 220eda14cbcSMatt Macy 221eda14cbcSMatt Macy /* 222eda14cbcSMatt Macy * It's important that we pack the spl_kmem_obj_t structure and the 223eda14cbcSMatt Macy * actual objects in to one large address space to minimize the number 224eda14cbcSMatt Macy * of calls to the allocator. It is far better to do a few large 225eda14cbcSMatt Macy * allocations and then subdivide it ourselves. Now which allocator 226eda14cbcSMatt Macy * we use requires balancing a few trade offs. 227eda14cbcSMatt Macy * 228eda14cbcSMatt Macy * For small objects we use kmem_alloc() because as long as you are 229eda14cbcSMatt Macy * only requesting a small number of pages (ideally just one) its cheap. 230eda14cbcSMatt Macy * However, when you start requesting multiple pages with kmem_alloc() 231eda14cbcSMatt Macy * it gets increasingly expensive since it requires contiguous pages. 232eda14cbcSMatt Macy * For this reason we shift to vmem_alloc() for slabs of large objects 233eda14cbcSMatt Macy * which removes the need for contiguous pages. We do not use 234eda14cbcSMatt Macy * vmem_alloc() in all cases because there is significant locking 235eda14cbcSMatt Macy * overhead in __get_vm_area_node(). This function takes a single 236eda14cbcSMatt Macy * global lock when acquiring an available virtual address range which 237eda14cbcSMatt Macy * serializes all vmem_alloc()'s for all slab caches. Using slightly 238eda14cbcSMatt Macy * different allocation functions for small and large objects should 239eda14cbcSMatt Macy * give us the best of both worlds. 240eda14cbcSMatt Macy * 241eda14cbcSMatt Macy * +------------------------+ 242eda14cbcSMatt Macy * | spl_kmem_slab_t --+-+ | 243eda14cbcSMatt Macy * | skc_obj_size <-+ | | 244eda14cbcSMatt Macy * | spl_kmem_obj_t | | 245eda14cbcSMatt Macy * | skc_obj_size <---+ | 246eda14cbcSMatt Macy * | spl_kmem_obj_t | | 247eda14cbcSMatt Macy * | ... v | 248eda14cbcSMatt Macy * +------------------------+ 249eda14cbcSMatt Macy */ 250eda14cbcSMatt Macy static spl_kmem_slab_t * 251eda14cbcSMatt Macy spl_slab_alloc(spl_kmem_cache_t *skc, int flags) 252eda14cbcSMatt Macy { 253eda14cbcSMatt Macy spl_kmem_slab_t *sks; 254eda14cbcSMatt Macy void *base; 255eda14cbcSMatt Macy uint32_t obj_size; 256eda14cbcSMatt Macy 257eda14cbcSMatt Macy base = kv_alloc(skc, skc->skc_slab_size, flags); 258eda14cbcSMatt Macy if (base == NULL) 259eda14cbcSMatt Macy return (NULL); 260eda14cbcSMatt Macy 261eda14cbcSMatt Macy sks = (spl_kmem_slab_t *)base; 262eda14cbcSMatt Macy sks->sks_magic = SKS_MAGIC; 263eda14cbcSMatt Macy sks->sks_objs = skc->skc_slab_objs; 264eda14cbcSMatt Macy sks->sks_age = jiffies; 265eda14cbcSMatt Macy sks->sks_cache = skc; 266eda14cbcSMatt Macy INIT_LIST_HEAD(&sks->sks_list); 267eda14cbcSMatt Macy INIT_LIST_HEAD(&sks->sks_free_list); 268eda14cbcSMatt Macy sks->sks_ref = 0; 269eda14cbcSMatt Macy obj_size = spl_obj_size(skc); 270eda14cbcSMatt Macy 271eda14cbcSMatt Macy for (int i = 0; i < sks->sks_objs; i++) { 272eda14cbcSMatt Macy void *obj = base + spl_sks_size(skc) + (i * obj_size); 273eda14cbcSMatt Macy 274eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 275eda14cbcSMatt Macy spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj); 276eda14cbcSMatt Macy sko->sko_addr = obj; 277eda14cbcSMatt Macy sko->sko_magic = SKO_MAGIC; 278eda14cbcSMatt Macy sko->sko_slab = sks; 279eda14cbcSMatt Macy INIT_LIST_HEAD(&sko->sko_list); 280eda14cbcSMatt Macy list_add_tail(&sko->sko_list, &sks->sks_free_list); 281eda14cbcSMatt Macy } 282eda14cbcSMatt Macy 283eda14cbcSMatt Macy return (sks); 284eda14cbcSMatt Macy } 285eda14cbcSMatt Macy 286eda14cbcSMatt Macy /* 287eda14cbcSMatt Macy * Remove a slab from complete or partial list, it must be called with 288eda14cbcSMatt Macy * the 'skc->skc_lock' held but the actual free must be performed 289eda14cbcSMatt Macy * outside the lock to prevent deadlocking on vmem addresses. 290eda14cbcSMatt Macy */ 291eda14cbcSMatt Macy static void 292eda14cbcSMatt Macy spl_slab_free(spl_kmem_slab_t *sks, 293eda14cbcSMatt Macy struct list_head *sks_list, struct list_head *sko_list) 294eda14cbcSMatt Macy { 295eda14cbcSMatt Macy spl_kmem_cache_t *skc; 296eda14cbcSMatt Macy 297eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 298eda14cbcSMatt Macy ASSERT(sks->sks_ref == 0); 299eda14cbcSMatt Macy 300eda14cbcSMatt Macy skc = sks->sks_cache; 301eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 302eda14cbcSMatt Macy 303eda14cbcSMatt Macy /* 304eda14cbcSMatt Macy * Update slab/objects counters in the cache, then remove the 305eda14cbcSMatt Macy * slab from the skc->skc_partial_list. Finally add the slab 306eda14cbcSMatt Macy * and all its objects in to the private work lists where the 307eda14cbcSMatt Macy * destructors will be called and the memory freed to the system. 308eda14cbcSMatt Macy */ 309eda14cbcSMatt Macy skc->skc_obj_total -= sks->sks_objs; 310eda14cbcSMatt Macy skc->skc_slab_total--; 311eda14cbcSMatt Macy list_del(&sks->sks_list); 312eda14cbcSMatt Macy list_add(&sks->sks_list, sks_list); 313eda14cbcSMatt Macy list_splice_init(&sks->sks_free_list, sko_list); 314eda14cbcSMatt Macy } 315eda14cbcSMatt Macy 316eda14cbcSMatt Macy /* 317eda14cbcSMatt Macy * Reclaim empty slabs at the end of the partial list. 318eda14cbcSMatt Macy */ 319eda14cbcSMatt Macy static void 320eda14cbcSMatt Macy spl_slab_reclaim(spl_kmem_cache_t *skc) 321eda14cbcSMatt Macy { 322eda14cbcSMatt Macy spl_kmem_slab_t *sks = NULL, *m = NULL; 323eda14cbcSMatt Macy spl_kmem_obj_t *sko = NULL, *n = NULL; 324eda14cbcSMatt Macy LIST_HEAD(sks_list); 325eda14cbcSMatt Macy LIST_HEAD(sko_list); 326eda14cbcSMatt Macy 327eda14cbcSMatt Macy /* 328eda14cbcSMatt Macy * Empty slabs and objects must be moved to a private list so they 329eda14cbcSMatt Macy * can be safely freed outside the spin lock. All empty slabs are 330eda14cbcSMatt Macy * at the end of skc->skc_partial_list, therefore once a non-empty 331eda14cbcSMatt Macy * slab is found we can stop scanning. 332eda14cbcSMatt Macy */ 333eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 334eda14cbcSMatt Macy list_for_each_entry_safe_reverse(sks, m, 335eda14cbcSMatt Macy &skc->skc_partial_list, sks_list) { 336eda14cbcSMatt Macy 337eda14cbcSMatt Macy if (sks->sks_ref > 0) 338eda14cbcSMatt Macy break; 339eda14cbcSMatt Macy 340eda14cbcSMatt Macy spl_slab_free(sks, &sks_list, &sko_list); 341eda14cbcSMatt Macy } 342eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 343eda14cbcSMatt Macy 344eda14cbcSMatt Macy /* 345eda14cbcSMatt Macy * The following two loops ensure all the object destructors are run, 346eda14cbcSMatt Macy * and the slabs themselves are freed. This is all done outside the 347eda14cbcSMatt Macy * skc->skc_lock since this allows the destructor to sleep, and 348eda14cbcSMatt Macy * allows us to perform a conditional reschedule when a freeing a 349eda14cbcSMatt Macy * large number of objects and slabs back to the system. 350eda14cbcSMatt Macy */ 351eda14cbcSMatt Macy 352eda14cbcSMatt Macy list_for_each_entry_safe(sko, n, &sko_list, sko_list) { 353eda14cbcSMatt Macy ASSERT(sko->sko_magic == SKO_MAGIC); 354eda14cbcSMatt Macy } 355eda14cbcSMatt Macy 356eda14cbcSMatt Macy list_for_each_entry_safe(sks, m, &sks_list, sks_list) { 357eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 358eda14cbcSMatt Macy kv_free(skc, sks, skc->skc_slab_size); 359eda14cbcSMatt Macy } 360eda14cbcSMatt Macy } 361eda14cbcSMatt Macy 362eda14cbcSMatt Macy static spl_kmem_emergency_t * 363eda14cbcSMatt Macy spl_emergency_search(struct rb_root *root, void *obj) 364eda14cbcSMatt Macy { 365eda14cbcSMatt Macy struct rb_node *node = root->rb_node; 366eda14cbcSMatt Macy spl_kmem_emergency_t *ske; 367eda14cbcSMatt Macy unsigned long address = (unsigned long)obj; 368eda14cbcSMatt Macy 369eda14cbcSMatt Macy while (node) { 370eda14cbcSMatt Macy ske = container_of(node, spl_kmem_emergency_t, ske_node); 371eda14cbcSMatt Macy 372eda14cbcSMatt Macy if (address < ske->ske_obj) 373eda14cbcSMatt Macy node = node->rb_left; 374eda14cbcSMatt Macy else if (address > ske->ske_obj) 375eda14cbcSMatt Macy node = node->rb_right; 376eda14cbcSMatt Macy else 377eda14cbcSMatt Macy return (ske); 378eda14cbcSMatt Macy } 379eda14cbcSMatt Macy 380eda14cbcSMatt Macy return (NULL); 381eda14cbcSMatt Macy } 382eda14cbcSMatt Macy 383eda14cbcSMatt Macy static int 384eda14cbcSMatt Macy spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske) 385eda14cbcSMatt Macy { 386eda14cbcSMatt Macy struct rb_node **new = &(root->rb_node), *parent = NULL; 387eda14cbcSMatt Macy spl_kmem_emergency_t *ske_tmp; 388eda14cbcSMatt Macy unsigned long address = ske->ske_obj; 389eda14cbcSMatt Macy 390eda14cbcSMatt Macy while (*new) { 391eda14cbcSMatt Macy ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node); 392eda14cbcSMatt Macy 393eda14cbcSMatt Macy parent = *new; 394eda14cbcSMatt Macy if (address < ske_tmp->ske_obj) 395eda14cbcSMatt Macy new = &((*new)->rb_left); 396eda14cbcSMatt Macy else if (address > ske_tmp->ske_obj) 397eda14cbcSMatt Macy new = &((*new)->rb_right); 398eda14cbcSMatt Macy else 399eda14cbcSMatt Macy return (0); 400eda14cbcSMatt Macy } 401eda14cbcSMatt Macy 402eda14cbcSMatt Macy rb_link_node(&ske->ske_node, parent, new); 403eda14cbcSMatt Macy rb_insert_color(&ske->ske_node, root); 404eda14cbcSMatt Macy 405eda14cbcSMatt Macy return (1); 406eda14cbcSMatt Macy } 407eda14cbcSMatt Macy 408eda14cbcSMatt Macy /* 409eda14cbcSMatt Macy * Allocate a single emergency object and track it in a red black tree. 410eda14cbcSMatt Macy */ 411eda14cbcSMatt Macy static int 412eda14cbcSMatt Macy spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj) 413eda14cbcSMatt Macy { 414eda14cbcSMatt Macy gfp_t lflags = kmem_flags_convert(flags); 415eda14cbcSMatt Macy spl_kmem_emergency_t *ske; 416eda14cbcSMatt Macy int order = get_order(skc->skc_obj_size); 417eda14cbcSMatt Macy int empty; 418eda14cbcSMatt Macy 419eda14cbcSMatt Macy /* Last chance use a partial slab if one now exists */ 420eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 421eda14cbcSMatt Macy empty = list_empty(&skc->skc_partial_list); 422eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 423eda14cbcSMatt Macy if (!empty) 424eda14cbcSMatt Macy return (-EEXIST); 425eda14cbcSMatt Macy 426ce4dcb97SMartin Matuska if (skc->skc_flags & KMC_RECLAIMABLE) 427ce4dcb97SMartin Matuska lflags |= __GFP_RECLAIMABLE; 428eda14cbcSMatt Macy ske = kmalloc(sizeof (*ske), lflags); 429eda14cbcSMatt Macy if (ske == NULL) 430eda14cbcSMatt Macy return (-ENOMEM); 431eda14cbcSMatt Macy 432eda14cbcSMatt Macy ske->ske_obj = __get_free_pages(lflags, order); 433eda14cbcSMatt Macy if (ske->ske_obj == 0) { 434eda14cbcSMatt Macy kfree(ske); 435eda14cbcSMatt Macy return (-ENOMEM); 436eda14cbcSMatt Macy } 437eda14cbcSMatt Macy 438eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 439eda14cbcSMatt Macy empty = spl_emergency_insert(&skc->skc_emergency_tree, ske); 440eda14cbcSMatt Macy if (likely(empty)) { 441eda14cbcSMatt Macy skc->skc_obj_total++; 442eda14cbcSMatt Macy skc->skc_obj_emergency++; 443eda14cbcSMatt Macy if (skc->skc_obj_emergency > skc->skc_obj_emergency_max) 444eda14cbcSMatt Macy skc->skc_obj_emergency_max = skc->skc_obj_emergency; 445eda14cbcSMatt Macy } 446eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 447eda14cbcSMatt Macy 448eda14cbcSMatt Macy if (unlikely(!empty)) { 449eda14cbcSMatt Macy free_pages(ske->ske_obj, order); 450eda14cbcSMatt Macy kfree(ske); 451eda14cbcSMatt Macy return (-EINVAL); 452eda14cbcSMatt Macy } 453eda14cbcSMatt Macy 454eda14cbcSMatt Macy *obj = (void *)ske->ske_obj; 455eda14cbcSMatt Macy 456eda14cbcSMatt Macy return (0); 457eda14cbcSMatt Macy } 458eda14cbcSMatt Macy 459eda14cbcSMatt Macy /* 460eda14cbcSMatt Macy * Locate the passed object in the red black tree and free it. 461eda14cbcSMatt Macy */ 462eda14cbcSMatt Macy static int 463eda14cbcSMatt Macy spl_emergency_free(spl_kmem_cache_t *skc, void *obj) 464eda14cbcSMatt Macy { 465eda14cbcSMatt Macy spl_kmem_emergency_t *ske; 466eda14cbcSMatt Macy int order = get_order(skc->skc_obj_size); 467eda14cbcSMatt Macy 468eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 469eda14cbcSMatt Macy ske = spl_emergency_search(&skc->skc_emergency_tree, obj); 470eda14cbcSMatt Macy if (ske) { 471eda14cbcSMatt Macy rb_erase(&ske->ske_node, &skc->skc_emergency_tree); 472eda14cbcSMatt Macy skc->skc_obj_emergency--; 473eda14cbcSMatt Macy skc->skc_obj_total--; 474eda14cbcSMatt Macy } 475eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 476eda14cbcSMatt Macy 477eda14cbcSMatt Macy if (ske == NULL) 478eda14cbcSMatt Macy return (-ENOENT); 479eda14cbcSMatt Macy 480eda14cbcSMatt Macy free_pages(ske->ske_obj, order); 481eda14cbcSMatt Macy kfree(ske); 482eda14cbcSMatt Macy 483eda14cbcSMatt Macy return (0); 484eda14cbcSMatt Macy } 485eda14cbcSMatt Macy 486eda14cbcSMatt Macy /* 487eda14cbcSMatt Macy * Release objects from the per-cpu magazine back to their slab. The flush 488eda14cbcSMatt Macy * argument contains the max number of entries to remove from the magazine. 489eda14cbcSMatt Macy */ 490eda14cbcSMatt Macy static void 491eda14cbcSMatt Macy spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush) 492eda14cbcSMatt Macy { 493eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 494eda14cbcSMatt Macy 495eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 496eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 497eda14cbcSMatt Macy 498eda14cbcSMatt Macy int count = MIN(flush, skm->skm_avail); 499eda14cbcSMatt Macy for (int i = 0; i < count; i++) 500eda14cbcSMatt Macy spl_cache_shrink(skc, skm->skm_objs[i]); 501eda14cbcSMatt Macy 502eda14cbcSMatt Macy skm->skm_avail -= count; 503eda14cbcSMatt Macy memmove(skm->skm_objs, &(skm->skm_objs[count]), 504eda14cbcSMatt Macy sizeof (void *) * skm->skm_avail); 505eda14cbcSMatt Macy 506eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 507eda14cbcSMatt Macy } 508eda14cbcSMatt Macy 509eda14cbcSMatt Macy /* 510eda14cbcSMatt Macy * Size a slab based on the size of each aligned object plus spl_kmem_obj_t. 511eda14cbcSMatt Macy * When on-slab we want to target spl_kmem_cache_obj_per_slab. However, 512eda14cbcSMatt Macy * for very small objects we may end up with more than this so as not 51316038816SMartin Matuska * to waste space in the minimal allocation of a single page. 514eda14cbcSMatt Macy */ 515eda14cbcSMatt Macy static int 516eda14cbcSMatt Macy spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size) 517eda14cbcSMatt Macy { 518eda14cbcSMatt Macy uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs; 519eda14cbcSMatt Macy 520eda14cbcSMatt Macy sks_size = spl_sks_size(skc); 521eda14cbcSMatt Macy obj_size = spl_obj_size(skc); 522eda14cbcSMatt Macy max_size = (spl_kmem_cache_max_size * 1024 * 1024); 523eda14cbcSMatt Macy tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size); 524eda14cbcSMatt Macy 525eda14cbcSMatt Macy if (tgt_size <= max_size) { 526eda14cbcSMatt Macy tgt_objs = (tgt_size - sks_size) / obj_size; 527eda14cbcSMatt Macy } else { 528eda14cbcSMatt Macy tgt_objs = (max_size - sks_size) / obj_size; 529eda14cbcSMatt Macy tgt_size = (tgt_objs * obj_size) + sks_size; 530eda14cbcSMatt Macy } 531eda14cbcSMatt Macy 532eda14cbcSMatt Macy if (tgt_objs == 0) 533eda14cbcSMatt Macy return (-ENOSPC); 534eda14cbcSMatt Macy 535eda14cbcSMatt Macy *objs = tgt_objs; 536eda14cbcSMatt Macy *size = tgt_size; 537eda14cbcSMatt Macy 538eda14cbcSMatt Macy return (0); 539eda14cbcSMatt Macy } 540eda14cbcSMatt Macy 541eda14cbcSMatt Macy /* 542eda14cbcSMatt Macy * Make a guess at reasonable per-cpu magazine size based on the size of 543eda14cbcSMatt Macy * each object and the cost of caching N of them in each magazine. Long 544eda14cbcSMatt Macy * term this should really adapt based on an observed usage heuristic. 545eda14cbcSMatt Macy */ 546eda14cbcSMatt Macy static int 547eda14cbcSMatt Macy spl_magazine_size(spl_kmem_cache_t *skc) 548eda14cbcSMatt Macy { 549eda14cbcSMatt Macy uint32_t obj_size = spl_obj_size(skc); 550eda14cbcSMatt Macy int size; 551eda14cbcSMatt Macy 552eda14cbcSMatt Macy if (spl_kmem_cache_magazine_size > 0) 553eda14cbcSMatt Macy return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2)); 554eda14cbcSMatt Macy 555eda14cbcSMatt Macy /* Per-magazine sizes below assume a 4Kib page size */ 556eda14cbcSMatt Macy if (obj_size > (PAGE_SIZE * 256)) 557eda14cbcSMatt Macy size = 4; /* Minimum 4Mib per-magazine */ 558eda14cbcSMatt Macy else if (obj_size > (PAGE_SIZE * 32)) 559eda14cbcSMatt Macy size = 16; /* Minimum 2Mib per-magazine */ 560eda14cbcSMatt Macy else if (obj_size > (PAGE_SIZE)) 561eda14cbcSMatt Macy size = 64; /* Minimum 256Kib per-magazine */ 562eda14cbcSMatt Macy else if (obj_size > (PAGE_SIZE / 4)) 563eda14cbcSMatt Macy size = 128; /* Minimum 128Kib per-magazine */ 564eda14cbcSMatt Macy else 565eda14cbcSMatt Macy size = 256; 566eda14cbcSMatt Macy 567eda14cbcSMatt Macy return (size); 568eda14cbcSMatt Macy } 569eda14cbcSMatt Macy 570eda14cbcSMatt Macy /* 571eda14cbcSMatt Macy * Allocate a per-cpu magazine to associate with a specific core. 572eda14cbcSMatt Macy */ 573eda14cbcSMatt Macy static spl_kmem_magazine_t * 574eda14cbcSMatt Macy spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu) 575eda14cbcSMatt Macy { 576eda14cbcSMatt Macy spl_kmem_magazine_t *skm; 577eda14cbcSMatt Macy int size = sizeof (spl_kmem_magazine_t) + 578eda14cbcSMatt Macy sizeof (void *) * skc->skc_mag_size; 579eda14cbcSMatt Macy 580eda14cbcSMatt Macy skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu)); 581eda14cbcSMatt Macy if (skm) { 582eda14cbcSMatt Macy skm->skm_magic = SKM_MAGIC; 583eda14cbcSMatt Macy skm->skm_avail = 0; 584eda14cbcSMatt Macy skm->skm_size = skc->skc_mag_size; 585eda14cbcSMatt Macy skm->skm_refill = skc->skc_mag_refill; 586eda14cbcSMatt Macy skm->skm_cache = skc; 587eda14cbcSMatt Macy skm->skm_cpu = cpu; 588eda14cbcSMatt Macy } 589eda14cbcSMatt Macy 590eda14cbcSMatt Macy return (skm); 591eda14cbcSMatt Macy } 592eda14cbcSMatt Macy 593eda14cbcSMatt Macy /* 594eda14cbcSMatt Macy * Free a per-cpu magazine associated with a specific core. 595eda14cbcSMatt Macy */ 596eda14cbcSMatt Macy static void 597eda14cbcSMatt Macy spl_magazine_free(spl_kmem_magazine_t *skm) 598eda14cbcSMatt Macy { 599eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 600eda14cbcSMatt Macy ASSERT(skm->skm_avail == 0); 601eda14cbcSMatt Macy kfree(skm); 602eda14cbcSMatt Macy } 603eda14cbcSMatt Macy 604eda14cbcSMatt Macy /* 605eda14cbcSMatt Macy * Create all pre-cpu magazines of reasonable sizes. 606eda14cbcSMatt Macy */ 607eda14cbcSMatt Macy static int 608eda14cbcSMatt Macy spl_magazine_create(spl_kmem_cache_t *skc) 609eda14cbcSMatt Macy { 610eda14cbcSMatt Macy int i = 0; 611eda14cbcSMatt Macy 612eda14cbcSMatt Macy ASSERT((skc->skc_flags & KMC_SLAB) == 0); 613eda14cbcSMatt Macy 614eda14cbcSMatt Macy skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) * 615eda14cbcSMatt Macy num_possible_cpus(), kmem_flags_convert(KM_SLEEP)); 616eda14cbcSMatt Macy skc->skc_mag_size = spl_magazine_size(skc); 617eda14cbcSMatt Macy skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2; 618eda14cbcSMatt Macy 619eda14cbcSMatt Macy for_each_possible_cpu(i) { 620eda14cbcSMatt Macy skc->skc_mag[i] = spl_magazine_alloc(skc, i); 621eda14cbcSMatt Macy if (!skc->skc_mag[i]) { 622eda14cbcSMatt Macy for (i--; i >= 0; i--) 623eda14cbcSMatt Macy spl_magazine_free(skc->skc_mag[i]); 624eda14cbcSMatt Macy 625eda14cbcSMatt Macy kfree(skc->skc_mag); 626eda14cbcSMatt Macy return (-ENOMEM); 627eda14cbcSMatt Macy } 628eda14cbcSMatt Macy } 629eda14cbcSMatt Macy 630eda14cbcSMatt Macy return (0); 631eda14cbcSMatt Macy } 632eda14cbcSMatt Macy 633eda14cbcSMatt Macy /* 634eda14cbcSMatt Macy * Destroy all pre-cpu magazines. 635eda14cbcSMatt Macy */ 636eda14cbcSMatt Macy static void 637eda14cbcSMatt Macy spl_magazine_destroy(spl_kmem_cache_t *skc) 638eda14cbcSMatt Macy { 639eda14cbcSMatt Macy spl_kmem_magazine_t *skm; 640eda14cbcSMatt Macy int i = 0; 641eda14cbcSMatt Macy 642eda14cbcSMatt Macy ASSERT((skc->skc_flags & KMC_SLAB) == 0); 643eda14cbcSMatt Macy 644eda14cbcSMatt Macy for_each_possible_cpu(i) { 645eda14cbcSMatt Macy skm = skc->skc_mag[i]; 646eda14cbcSMatt Macy spl_cache_flush(skc, skm, skm->skm_avail); 647eda14cbcSMatt Macy spl_magazine_free(skm); 648eda14cbcSMatt Macy } 649eda14cbcSMatt Macy 650eda14cbcSMatt Macy kfree(skc->skc_mag); 651eda14cbcSMatt Macy } 652eda14cbcSMatt Macy 653eda14cbcSMatt Macy /* 654eda14cbcSMatt Macy * Create a object cache based on the following arguments: 655eda14cbcSMatt Macy * name cache name 656eda14cbcSMatt Macy * size cache object size 657eda14cbcSMatt Macy * align cache object alignment 658eda14cbcSMatt Macy * ctor cache object constructor 659eda14cbcSMatt Macy * dtor cache object destructor 660eda14cbcSMatt Macy * reclaim cache object reclaim 661eda14cbcSMatt Macy * priv cache private data for ctor/dtor/reclaim 662eda14cbcSMatt Macy * vmp unused must be NULL 663eda14cbcSMatt Macy * flags 664eda14cbcSMatt Macy * KMC_KVMEM Force kvmem backed SPL cache 665eda14cbcSMatt Macy * KMC_SLAB Force Linux slab backed cache 666eda14cbcSMatt Macy * KMC_NODEBUG Disable debugging (unsupported) 667ce4dcb97SMartin Matuska * KMC_RECLAIMABLE Memory can be freed under pressure 668eda14cbcSMatt Macy */ 669eda14cbcSMatt Macy spl_kmem_cache_t * 670a0b956f5SMartin Matuska spl_kmem_cache_create(const char *name, size_t size, size_t align, 671eda14cbcSMatt Macy spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim, 672eda14cbcSMatt Macy void *priv, void *vmp, int flags) 673eda14cbcSMatt Macy { 674eda14cbcSMatt Macy gfp_t lflags = kmem_flags_convert(KM_SLEEP); 675eda14cbcSMatt Macy spl_kmem_cache_t *skc; 676eda14cbcSMatt Macy int rc; 677eda14cbcSMatt Macy 678eda14cbcSMatt Macy /* 679eda14cbcSMatt Macy * Unsupported flags 680eda14cbcSMatt Macy */ 681eda14cbcSMatt Macy ASSERT(vmp == NULL); 682eda14cbcSMatt Macy ASSERT(reclaim == NULL); 683eda14cbcSMatt Macy 684eda14cbcSMatt Macy might_sleep(); 685eda14cbcSMatt Macy 686eda14cbcSMatt Macy skc = kzalloc(sizeof (*skc), lflags); 687eda14cbcSMatt Macy if (skc == NULL) 688eda14cbcSMatt Macy return (NULL); 689eda14cbcSMatt Macy 690eda14cbcSMatt Macy skc->skc_magic = SKC_MAGIC; 691eda14cbcSMatt Macy skc->skc_name_size = strlen(name) + 1; 69215f0b8c3SMartin Matuska skc->skc_name = kmalloc(skc->skc_name_size, lflags); 693eda14cbcSMatt Macy if (skc->skc_name == NULL) { 694eda14cbcSMatt Macy kfree(skc); 695eda14cbcSMatt Macy return (NULL); 696eda14cbcSMatt Macy } 697be181ee2SMartin Matuska strlcpy(skc->skc_name, name, skc->skc_name_size); 698eda14cbcSMatt Macy 699eda14cbcSMatt Macy skc->skc_ctor = ctor; 700eda14cbcSMatt Macy skc->skc_dtor = dtor; 701eda14cbcSMatt Macy skc->skc_private = priv; 702eda14cbcSMatt Macy skc->skc_vmp = vmp; 703eda14cbcSMatt Macy skc->skc_linux_cache = NULL; 704eda14cbcSMatt Macy skc->skc_flags = flags; 705eda14cbcSMatt Macy skc->skc_obj_size = size; 706eda14cbcSMatt Macy skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN; 707eda14cbcSMatt Macy atomic_set(&skc->skc_ref, 0); 708eda14cbcSMatt Macy 709eda14cbcSMatt Macy INIT_LIST_HEAD(&skc->skc_list); 710eda14cbcSMatt Macy INIT_LIST_HEAD(&skc->skc_complete_list); 711eda14cbcSMatt Macy INIT_LIST_HEAD(&skc->skc_partial_list); 712eda14cbcSMatt Macy skc->skc_emergency_tree = RB_ROOT; 713eda14cbcSMatt Macy spin_lock_init(&skc->skc_lock); 714eda14cbcSMatt Macy init_waitqueue_head(&skc->skc_waitq); 715eda14cbcSMatt Macy skc->skc_slab_fail = 0; 716eda14cbcSMatt Macy skc->skc_slab_create = 0; 717eda14cbcSMatt Macy skc->skc_slab_destroy = 0; 718eda14cbcSMatt Macy skc->skc_slab_total = 0; 719eda14cbcSMatt Macy skc->skc_slab_alloc = 0; 720eda14cbcSMatt Macy skc->skc_slab_max = 0; 721eda14cbcSMatt Macy skc->skc_obj_total = 0; 722eda14cbcSMatt Macy skc->skc_obj_alloc = 0; 723eda14cbcSMatt Macy skc->skc_obj_max = 0; 724eda14cbcSMatt Macy skc->skc_obj_deadlock = 0; 725eda14cbcSMatt Macy skc->skc_obj_emergency = 0; 726eda14cbcSMatt Macy skc->skc_obj_emergency_max = 0; 727eda14cbcSMatt Macy 728*7a7741afSMartin Matuska rc = percpu_counter_init(&skc->skc_linux_alloc, 0, GFP_KERNEL); 729eda14cbcSMatt Macy if (rc != 0) { 730eda14cbcSMatt Macy kfree(skc); 731eda14cbcSMatt Macy return (NULL); 732eda14cbcSMatt Macy } 733eda14cbcSMatt Macy 734eda14cbcSMatt Macy /* 735eda14cbcSMatt Macy * Verify the requested alignment restriction is sane. 736eda14cbcSMatt Macy */ 737eda14cbcSMatt Macy if (align) { 738eda14cbcSMatt Macy VERIFY(ISP2(align)); 739eda14cbcSMatt Macy VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN); 740eda14cbcSMatt Macy VERIFY3U(align, <=, PAGE_SIZE); 741eda14cbcSMatt Macy skc->skc_obj_align = align; 742eda14cbcSMatt Macy } 743eda14cbcSMatt Macy 744eda14cbcSMatt Macy /* 745eda14cbcSMatt Macy * When no specific type of slab is requested (kmem, vmem, or 746eda14cbcSMatt Macy * linuxslab) then select a cache type based on the object size 747eda14cbcSMatt Macy * and default tunables. 748eda14cbcSMatt Macy */ 749eda14cbcSMatt Macy if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) { 750eda14cbcSMatt Macy if (spl_kmem_cache_slab_limit && 751eda14cbcSMatt Macy size <= (size_t)spl_kmem_cache_slab_limit) { 752eda14cbcSMatt Macy /* 753eda14cbcSMatt Macy * Objects smaller than spl_kmem_cache_slab_limit can 754eda14cbcSMatt Macy * use the Linux slab for better space-efficiency. 755eda14cbcSMatt Macy */ 756eda14cbcSMatt Macy skc->skc_flags |= KMC_SLAB; 757eda14cbcSMatt Macy } else { 758eda14cbcSMatt Macy /* 759eda14cbcSMatt Macy * All other objects are considered large and are 760eda14cbcSMatt Macy * placed on kvmem backed slabs. 761eda14cbcSMatt Macy */ 762eda14cbcSMatt Macy skc->skc_flags |= KMC_KVMEM; 763eda14cbcSMatt Macy } 764eda14cbcSMatt Macy } 765eda14cbcSMatt Macy 766eda14cbcSMatt Macy /* 767eda14cbcSMatt Macy * Given the type of slab allocate the required resources. 768eda14cbcSMatt Macy */ 769eda14cbcSMatt Macy if (skc->skc_flags & KMC_KVMEM) { 770eda14cbcSMatt Macy rc = spl_slab_size(skc, 771eda14cbcSMatt Macy &skc->skc_slab_objs, &skc->skc_slab_size); 772eda14cbcSMatt Macy if (rc) 773eda14cbcSMatt Macy goto out; 774eda14cbcSMatt Macy 775eda14cbcSMatt Macy rc = spl_magazine_create(skc); 776eda14cbcSMatt Macy if (rc) 777eda14cbcSMatt Macy goto out; 778eda14cbcSMatt Macy } else { 779eda14cbcSMatt Macy unsigned long slabflags = 0; 780eda14cbcSMatt Macy 78178ae60b4SMartin Matuska if (size > spl_kmem_cache_slab_limit) 782eda14cbcSMatt Macy goto out; 783eda14cbcSMatt Macy 784ce4dcb97SMartin Matuska if (skc->skc_flags & KMC_RECLAIMABLE) 785ce4dcb97SMartin Matuska slabflags |= SLAB_RECLAIM_ACCOUNT; 786ce4dcb97SMartin Matuska 787eda14cbcSMatt Macy skc->skc_linux_cache = kmem_cache_create_usercopy( 788eda14cbcSMatt Macy skc->skc_name, size, align, slabflags, 0, size, NULL); 78915f0b8c3SMartin Matuska if (skc->skc_linux_cache == NULL) 790eda14cbcSMatt Macy goto out; 791eda14cbcSMatt Macy } 792eda14cbcSMatt Macy 793eda14cbcSMatt Macy down_write(&spl_kmem_cache_sem); 794eda14cbcSMatt Macy list_add_tail(&skc->skc_list, &spl_kmem_cache_list); 795eda14cbcSMatt Macy up_write(&spl_kmem_cache_sem); 796eda14cbcSMatt Macy 797eda14cbcSMatt Macy return (skc); 798eda14cbcSMatt Macy out: 799eda14cbcSMatt Macy kfree(skc->skc_name); 800eda14cbcSMatt Macy percpu_counter_destroy(&skc->skc_linux_alloc); 801eda14cbcSMatt Macy kfree(skc); 802eda14cbcSMatt Macy return (NULL); 803eda14cbcSMatt Macy } 804eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_create); 805eda14cbcSMatt Macy 806eda14cbcSMatt Macy /* 807eda14cbcSMatt Macy * Register a move callback for cache defragmentation. 808eda14cbcSMatt Macy * XXX: Unimplemented but harmless to stub out for now. 809eda14cbcSMatt Macy */ 810eda14cbcSMatt Macy void 811eda14cbcSMatt Macy spl_kmem_cache_set_move(spl_kmem_cache_t *skc, 812eda14cbcSMatt Macy kmem_cbrc_t (move)(void *, void *, size_t, void *)) 813eda14cbcSMatt Macy { 814eda14cbcSMatt Macy ASSERT(move != NULL); 815eda14cbcSMatt Macy } 816eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_set_move); 817eda14cbcSMatt Macy 818eda14cbcSMatt Macy /* 819eda14cbcSMatt Macy * Destroy a cache and all objects associated with the cache. 820eda14cbcSMatt Macy */ 821eda14cbcSMatt Macy void 822eda14cbcSMatt Macy spl_kmem_cache_destroy(spl_kmem_cache_t *skc) 823eda14cbcSMatt Macy { 824eda14cbcSMatt Macy DECLARE_WAIT_QUEUE_HEAD(wq); 825eda14cbcSMatt Macy taskqid_t id; 826eda14cbcSMatt Macy 827eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 828eda14cbcSMatt Macy ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB)); 829eda14cbcSMatt Macy 830eda14cbcSMatt Macy down_write(&spl_kmem_cache_sem); 831eda14cbcSMatt Macy list_del_init(&skc->skc_list); 832eda14cbcSMatt Macy up_write(&spl_kmem_cache_sem); 833eda14cbcSMatt Macy 834eda14cbcSMatt Macy /* Cancel any and wait for any pending delayed tasks */ 835eda14cbcSMatt Macy VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 836eda14cbcSMatt Macy 837eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 838eda14cbcSMatt Macy id = skc->skc_taskqid; 839eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 840eda14cbcSMatt Macy 841eda14cbcSMatt Macy taskq_cancel_id(spl_kmem_cache_taskq, id); 842eda14cbcSMatt Macy 843eda14cbcSMatt Macy /* 844eda14cbcSMatt Macy * Wait until all current callers complete, this is mainly 845eda14cbcSMatt Macy * to catch the case where a low memory situation triggers a 846eda14cbcSMatt Macy * cache reaping action which races with this destroy. 847eda14cbcSMatt Macy */ 848eda14cbcSMatt Macy wait_event(wq, atomic_read(&skc->skc_ref) == 0); 849eda14cbcSMatt Macy 850eda14cbcSMatt Macy if (skc->skc_flags & KMC_KVMEM) { 851eda14cbcSMatt Macy spl_magazine_destroy(skc); 852eda14cbcSMatt Macy spl_slab_reclaim(skc); 853eda14cbcSMatt Macy } else { 854eda14cbcSMatt Macy ASSERT(skc->skc_flags & KMC_SLAB); 855eda14cbcSMatt Macy kmem_cache_destroy(skc->skc_linux_cache); 856eda14cbcSMatt Macy } 857eda14cbcSMatt Macy 858eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 859eda14cbcSMatt Macy 860eda14cbcSMatt Macy /* 861eda14cbcSMatt Macy * Validate there are no objects in use and free all the 862eda14cbcSMatt Macy * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers. 863eda14cbcSMatt Macy */ 864eda14cbcSMatt Macy ASSERT3U(skc->skc_slab_alloc, ==, 0); 865eda14cbcSMatt Macy ASSERT3U(skc->skc_obj_alloc, ==, 0); 866eda14cbcSMatt Macy ASSERT3U(skc->skc_slab_total, ==, 0); 867eda14cbcSMatt Macy ASSERT3U(skc->skc_obj_total, ==, 0); 868eda14cbcSMatt Macy ASSERT3U(skc->skc_obj_emergency, ==, 0); 869eda14cbcSMatt Macy ASSERT(list_empty(&skc->skc_complete_list)); 870eda14cbcSMatt Macy 871eda14cbcSMatt Macy ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0); 872eda14cbcSMatt Macy percpu_counter_destroy(&skc->skc_linux_alloc); 873eda14cbcSMatt Macy 874eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 875eda14cbcSMatt Macy 876eda14cbcSMatt Macy kfree(skc->skc_name); 877eda14cbcSMatt Macy kfree(skc); 878eda14cbcSMatt Macy } 879eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_destroy); 880eda14cbcSMatt Macy 881eda14cbcSMatt Macy /* 882eda14cbcSMatt Macy * Allocate an object from a slab attached to the cache. This is used to 883eda14cbcSMatt Macy * repopulate the per-cpu magazine caches in batches when they run low. 884eda14cbcSMatt Macy */ 885eda14cbcSMatt Macy static void * 886eda14cbcSMatt Macy spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks) 887eda14cbcSMatt Macy { 888eda14cbcSMatt Macy spl_kmem_obj_t *sko; 889eda14cbcSMatt Macy 890eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 891eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 892eda14cbcSMatt Macy 893eda14cbcSMatt Macy sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list); 894eda14cbcSMatt Macy ASSERT(sko->sko_magic == SKO_MAGIC); 895eda14cbcSMatt Macy ASSERT(sko->sko_addr != NULL); 896eda14cbcSMatt Macy 897eda14cbcSMatt Macy /* Remove from sks_free_list */ 898eda14cbcSMatt Macy list_del_init(&sko->sko_list); 899eda14cbcSMatt Macy 900eda14cbcSMatt Macy sks->sks_age = jiffies; 901eda14cbcSMatt Macy sks->sks_ref++; 902eda14cbcSMatt Macy skc->skc_obj_alloc++; 903eda14cbcSMatt Macy 904eda14cbcSMatt Macy /* Track max obj usage statistics */ 905eda14cbcSMatt Macy if (skc->skc_obj_alloc > skc->skc_obj_max) 906eda14cbcSMatt Macy skc->skc_obj_max = skc->skc_obj_alloc; 907eda14cbcSMatt Macy 908eda14cbcSMatt Macy /* Track max slab usage statistics */ 909eda14cbcSMatt Macy if (sks->sks_ref == 1) { 910eda14cbcSMatt Macy skc->skc_slab_alloc++; 911eda14cbcSMatt Macy 912eda14cbcSMatt Macy if (skc->skc_slab_alloc > skc->skc_slab_max) 913eda14cbcSMatt Macy skc->skc_slab_max = skc->skc_slab_alloc; 914eda14cbcSMatt Macy } 915eda14cbcSMatt Macy 916eda14cbcSMatt Macy return (sko->sko_addr); 917eda14cbcSMatt Macy } 918eda14cbcSMatt Macy 919eda14cbcSMatt Macy /* 920eda14cbcSMatt Macy * Generic slab allocation function to run by the global work queues. 921eda14cbcSMatt Macy * It is responsible for allocating a new slab, linking it in to the list 922eda14cbcSMatt Macy * of partial slabs, and then waking any waiters. 923eda14cbcSMatt Macy */ 924eda14cbcSMatt Macy static int 925eda14cbcSMatt Macy __spl_cache_grow(spl_kmem_cache_t *skc, int flags) 926eda14cbcSMatt Macy { 927eda14cbcSMatt Macy spl_kmem_slab_t *sks; 928eda14cbcSMatt Macy 929eda14cbcSMatt Macy fstrans_cookie_t cookie = spl_fstrans_mark(); 930eda14cbcSMatt Macy sks = spl_slab_alloc(skc, flags); 931eda14cbcSMatt Macy spl_fstrans_unmark(cookie); 932eda14cbcSMatt Macy 933eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 934eda14cbcSMatt Macy if (sks) { 935eda14cbcSMatt Macy skc->skc_slab_total++; 936eda14cbcSMatt Macy skc->skc_obj_total += sks->sks_objs; 937eda14cbcSMatt Macy list_add_tail(&sks->sks_list, &skc->skc_partial_list); 938eda14cbcSMatt Macy 939eda14cbcSMatt Macy smp_mb__before_atomic(); 940eda14cbcSMatt Macy clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 941eda14cbcSMatt Macy smp_mb__after_atomic(); 942eda14cbcSMatt Macy } 943eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 944eda14cbcSMatt Macy 945eda14cbcSMatt Macy return (sks == NULL ? -ENOMEM : 0); 946eda14cbcSMatt Macy } 947eda14cbcSMatt Macy 948eda14cbcSMatt Macy static void 949eda14cbcSMatt Macy spl_cache_grow_work(void *data) 950eda14cbcSMatt Macy { 951eda14cbcSMatt Macy spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data; 952eda14cbcSMatt Macy spl_kmem_cache_t *skc = ska->ska_cache; 953eda14cbcSMatt Macy 954eda14cbcSMatt Macy int error = __spl_cache_grow(skc, ska->ska_flags); 955eda14cbcSMatt Macy 956eda14cbcSMatt Macy atomic_dec(&skc->skc_ref); 957eda14cbcSMatt Macy smp_mb__before_atomic(); 958eda14cbcSMatt Macy clear_bit(KMC_BIT_GROWING, &skc->skc_flags); 959eda14cbcSMatt Macy smp_mb__after_atomic(); 960eda14cbcSMatt Macy if (error == 0) 961eda14cbcSMatt Macy wake_up_all(&skc->skc_waitq); 962eda14cbcSMatt Macy 963eda14cbcSMatt Macy kfree(ska); 964eda14cbcSMatt Macy } 965eda14cbcSMatt Macy 966eda14cbcSMatt Macy /* 967eda14cbcSMatt Macy * Returns non-zero when a new slab should be available. 968eda14cbcSMatt Macy */ 969eda14cbcSMatt Macy static int 970eda14cbcSMatt Macy spl_cache_grow_wait(spl_kmem_cache_t *skc) 971eda14cbcSMatt Macy { 972eda14cbcSMatt Macy return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags)); 973eda14cbcSMatt Macy } 974eda14cbcSMatt Macy 975eda14cbcSMatt Macy /* 976eda14cbcSMatt Macy * No available objects on any slabs, create a new slab. Note that this 977eda14cbcSMatt Macy * functionality is disabled for KMC_SLAB caches which are backed by the 978eda14cbcSMatt Macy * Linux slab. 979eda14cbcSMatt Macy */ 980eda14cbcSMatt Macy static int 981eda14cbcSMatt Macy spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj) 982eda14cbcSMatt Macy { 983eda14cbcSMatt Macy int remaining, rc = 0; 984eda14cbcSMatt Macy 985eda14cbcSMatt Macy ASSERT0(flags & ~KM_PUBLIC_MASK); 986eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 987eda14cbcSMatt Macy ASSERT((skc->skc_flags & KMC_SLAB) == 0); 9884e8d558cSMartin Matuska 989eda14cbcSMatt Macy *obj = NULL; 990eda14cbcSMatt Macy 991eda14cbcSMatt Macy /* 9924e8d558cSMartin Matuska * Since we can't sleep attempt an emergency allocation to satisfy 9934e8d558cSMartin Matuska * the request. The only alterative is to fail the allocation but 9944e8d558cSMartin Matuska * it's preferable try. The use of KM_NOSLEEP is expected to be rare. 9954e8d558cSMartin Matuska */ 9964e8d558cSMartin Matuska if (flags & KM_NOSLEEP) 9974e8d558cSMartin Matuska return (spl_emergency_alloc(skc, flags, obj)); 9984e8d558cSMartin Matuska 9994e8d558cSMartin Matuska might_sleep(); 10004e8d558cSMartin Matuska 10014e8d558cSMartin Matuska /* 1002eda14cbcSMatt Macy * Before allocating a new slab wait for any reaping to complete and 1003eda14cbcSMatt Macy * then return so the local magazine can be rechecked for new objects. 1004eda14cbcSMatt Macy */ 1005eda14cbcSMatt Macy if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) { 1006*7a7741afSMartin Matuska rc = wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING, 1007eda14cbcSMatt Macy TASK_UNINTERRUPTIBLE); 1008eda14cbcSMatt Macy return (rc ? rc : -EAGAIN); 1009eda14cbcSMatt Macy } 1010eda14cbcSMatt Macy 1011eda14cbcSMatt Macy /* 1012eda14cbcSMatt Macy * Note: It would be nice to reduce the overhead of context switch 1013eda14cbcSMatt Macy * and improve NUMA locality, by trying to allocate a new slab in the 1014eda14cbcSMatt Macy * current process context with KM_NOSLEEP flag. 1015eda14cbcSMatt Macy * 1016eda14cbcSMatt Macy * However, this can't be applied to vmem/kvmem due to a bug that 1017eda14cbcSMatt Macy * spl_vmalloc() doesn't honor gfp flags in page table allocation. 1018eda14cbcSMatt Macy */ 1019eda14cbcSMatt Macy 1020eda14cbcSMatt Macy /* 1021eda14cbcSMatt Macy * This is handled by dispatching a work request to the global work 1022eda14cbcSMatt Macy * queue. This allows us to asynchronously allocate a new slab while 1023eda14cbcSMatt Macy * retaining the ability to safely fall back to a smaller synchronous 1024eda14cbcSMatt Macy * allocations to ensure forward progress is always maintained. 1025eda14cbcSMatt Macy */ 1026eda14cbcSMatt Macy if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) { 1027eda14cbcSMatt Macy spl_kmem_alloc_t *ska; 1028eda14cbcSMatt Macy 1029eda14cbcSMatt Macy ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags)); 1030eda14cbcSMatt Macy if (ska == NULL) { 1031eda14cbcSMatt Macy clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags); 1032eda14cbcSMatt Macy smp_mb__after_atomic(); 1033eda14cbcSMatt Macy wake_up_all(&skc->skc_waitq); 1034eda14cbcSMatt Macy return (-ENOMEM); 1035eda14cbcSMatt Macy } 1036eda14cbcSMatt Macy 1037eda14cbcSMatt Macy atomic_inc(&skc->skc_ref); 1038eda14cbcSMatt Macy ska->ska_cache = skc; 1039eda14cbcSMatt Macy ska->ska_flags = flags; 1040eda14cbcSMatt Macy taskq_init_ent(&ska->ska_tqe); 1041eda14cbcSMatt Macy taskq_dispatch_ent(spl_kmem_cache_taskq, 1042eda14cbcSMatt Macy spl_cache_grow_work, ska, 0, &ska->ska_tqe); 1043eda14cbcSMatt Macy } 1044eda14cbcSMatt Macy 1045eda14cbcSMatt Macy /* 1046eda14cbcSMatt Macy * The goal here is to only detect the rare case where a virtual slab 1047eda14cbcSMatt Macy * allocation has deadlocked. We must be careful to minimize the use 1048eda14cbcSMatt Macy * of emergency objects which are more expensive to track. Therefore, 1049eda14cbcSMatt Macy * we set a very long timeout for the asynchronous allocation and if 1050eda14cbcSMatt Macy * the timeout is reached the cache is flagged as deadlocked. From 1051eda14cbcSMatt Macy * this point only new emergency objects will be allocated until the 1052eda14cbcSMatt Macy * asynchronous allocation completes and clears the deadlocked flag. 1053eda14cbcSMatt Macy */ 1054eda14cbcSMatt Macy if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) { 1055eda14cbcSMatt Macy rc = spl_emergency_alloc(skc, flags, obj); 1056eda14cbcSMatt Macy } else { 1057eda14cbcSMatt Macy remaining = wait_event_timeout(skc->skc_waitq, 1058eda14cbcSMatt Macy spl_cache_grow_wait(skc), HZ / 10); 1059eda14cbcSMatt Macy 1060eda14cbcSMatt Macy if (!remaining) { 1061eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 1062eda14cbcSMatt Macy if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) { 1063eda14cbcSMatt Macy set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags); 1064eda14cbcSMatt Macy skc->skc_obj_deadlock++; 1065eda14cbcSMatt Macy } 1066eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 1067eda14cbcSMatt Macy } 1068eda14cbcSMatt Macy 1069eda14cbcSMatt Macy rc = -ENOMEM; 1070eda14cbcSMatt Macy } 1071eda14cbcSMatt Macy 1072eda14cbcSMatt Macy return (rc); 1073eda14cbcSMatt Macy } 1074eda14cbcSMatt Macy 1075eda14cbcSMatt Macy /* 1076eda14cbcSMatt Macy * Refill a per-cpu magazine with objects from the slabs for this cache. 1077eda14cbcSMatt Macy * Ideally the magazine can be repopulated using existing objects which have 1078eda14cbcSMatt Macy * been released, however if we are unable to locate enough free objects new 1079eda14cbcSMatt Macy * slabs of objects will be created. On success NULL is returned, otherwise 1080eda14cbcSMatt Macy * the address of a single emergency object is returned for use by the caller. 1081eda14cbcSMatt Macy */ 1082eda14cbcSMatt Macy static void * 1083eda14cbcSMatt Macy spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags) 1084eda14cbcSMatt Macy { 1085eda14cbcSMatt Macy spl_kmem_slab_t *sks; 1086eda14cbcSMatt Macy int count = 0, rc, refill; 1087eda14cbcSMatt Macy void *obj = NULL; 1088eda14cbcSMatt Macy 1089eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1090eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 1091eda14cbcSMatt Macy 1092eda14cbcSMatt Macy refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail); 1093eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 1094eda14cbcSMatt Macy 1095eda14cbcSMatt Macy while (refill > 0) { 1096eda14cbcSMatt Macy /* No slabs available we may need to grow the cache */ 1097eda14cbcSMatt Macy if (list_empty(&skc->skc_partial_list)) { 1098eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 1099eda14cbcSMatt Macy 1100eda14cbcSMatt Macy local_irq_enable(); 1101eda14cbcSMatt Macy rc = spl_cache_grow(skc, flags, &obj); 1102eda14cbcSMatt Macy local_irq_disable(); 1103eda14cbcSMatt Macy 1104eda14cbcSMatt Macy /* Emergency object for immediate use by caller */ 1105eda14cbcSMatt Macy if (rc == 0 && obj != NULL) 1106eda14cbcSMatt Macy return (obj); 1107eda14cbcSMatt Macy 1108eda14cbcSMatt Macy if (rc) 1109eda14cbcSMatt Macy goto out; 1110eda14cbcSMatt Macy 1111eda14cbcSMatt Macy /* Rescheduled to different CPU skm is not local */ 1112eda14cbcSMatt Macy if (skm != skc->skc_mag[smp_processor_id()]) 1113eda14cbcSMatt Macy goto out; 1114eda14cbcSMatt Macy 1115eda14cbcSMatt Macy /* 1116eda14cbcSMatt Macy * Potentially rescheduled to the same CPU but 1117eda14cbcSMatt Macy * allocations may have occurred from this CPU while 1118eda14cbcSMatt Macy * we were sleeping so recalculate max refill. 1119eda14cbcSMatt Macy */ 1120eda14cbcSMatt Macy refill = MIN(refill, skm->skm_size - skm->skm_avail); 1121eda14cbcSMatt Macy 1122eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 1123eda14cbcSMatt Macy continue; 1124eda14cbcSMatt Macy } 1125eda14cbcSMatt Macy 1126eda14cbcSMatt Macy /* Grab the next available slab */ 1127eda14cbcSMatt Macy sks = list_entry((&skc->skc_partial_list)->next, 1128eda14cbcSMatt Macy spl_kmem_slab_t, sks_list); 1129eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 1130eda14cbcSMatt Macy ASSERT(sks->sks_ref < sks->sks_objs); 1131eda14cbcSMatt Macy ASSERT(!list_empty(&sks->sks_free_list)); 1132eda14cbcSMatt Macy 1133eda14cbcSMatt Macy /* 1134eda14cbcSMatt Macy * Consume as many objects as needed to refill the requested 1135eda14cbcSMatt Macy * cache. We must also be careful not to overfill it. 1136eda14cbcSMatt Macy */ 1137eda14cbcSMatt Macy while (sks->sks_ref < sks->sks_objs && refill-- > 0 && 1138eda14cbcSMatt Macy ++count) { 1139eda14cbcSMatt Macy ASSERT(skm->skm_avail < skm->skm_size); 1140eda14cbcSMatt Macy ASSERT(count < skm->skm_size); 1141eda14cbcSMatt Macy skm->skm_objs[skm->skm_avail++] = 1142eda14cbcSMatt Macy spl_cache_obj(skc, sks); 1143eda14cbcSMatt Macy } 1144eda14cbcSMatt Macy 1145eda14cbcSMatt Macy /* Move slab to skc_complete_list when full */ 1146eda14cbcSMatt Macy if (sks->sks_ref == sks->sks_objs) { 1147eda14cbcSMatt Macy list_del(&sks->sks_list); 1148eda14cbcSMatt Macy list_add(&sks->sks_list, &skc->skc_complete_list); 1149eda14cbcSMatt Macy } 1150eda14cbcSMatt Macy } 1151eda14cbcSMatt Macy 1152eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 1153eda14cbcSMatt Macy out: 1154eda14cbcSMatt Macy return (NULL); 1155eda14cbcSMatt Macy } 1156eda14cbcSMatt Macy 1157eda14cbcSMatt Macy /* 1158eda14cbcSMatt Macy * Release an object back to the slab from which it came. 1159eda14cbcSMatt Macy */ 1160eda14cbcSMatt Macy static void 1161eda14cbcSMatt Macy spl_cache_shrink(spl_kmem_cache_t *skc, void *obj) 1162eda14cbcSMatt Macy { 1163eda14cbcSMatt Macy spl_kmem_slab_t *sks = NULL; 1164eda14cbcSMatt Macy spl_kmem_obj_t *sko = NULL; 1165eda14cbcSMatt Macy 1166eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1167eda14cbcSMatt Macy 1168eda14cbcSMatt Macy sko = spl_sko_from_obj(skc, obj); 1169eda14cbcSMatt Macy ASSERT(sko->sko_magic == SKO_MAGIC); 1170eda14cbcSMatt Macy sks = sko->sko_slab; 1171eda14cbcSMatt Macy ASSERT(sks->sks_magic == SKS_MAGIC); 1172eda14cbcSMatt Macy ASSERT(sks->sks_cache == skc); 1173eda14cbcSMatt Macy list_add(&sko->sko_list, &sks->sks_free_list); 1174eda14cbcSMatt Macy 1175eda14cbcSMatt Macy sks->sks_age = jiffies; 1176eda14cbcSMatt Macy sks->sks_ref--; 1177eda14cbcSMatt Macy skc->skc_obj_alloc--; 1178eda14cbcSMatt Macy 1179eda14cbcSMatt Macy /* 1180eda14cbcSMatt Macy * Move slab to skc_partial_list when no longer full. Slabs 1181eda14cbcSMatt Macy * are added to the head to keep the partial list is quasi-full 1182eda14cbcSMatt Macy * sorted order. Fuller at the head, emptier at the tail. 1183eda14cbcSMatt Macy */ 1184eda14cbcSMatt Macy if (sks->sks_ref == (sks->sks_objs - 1)) { 1185eda14cbcSMatt Macy list_del(&sks->sks_list); 1186eda14cbcSMatt Macy list_add(&sks->sks_list, &skc->skc_partial_list); 1187eda14cbcSMatt Macy } 1188eda14cbcSMatt Macy 1189eda14cbcSMatt Macy /* 1190eda14cbcSMatt Macy * Move empty slabs to the end of the partial list so 1191eda14cbcSMatt Macy * they can be easily found and freed during reclamation. 1192eda14cbcSMatt Macy */ 1193eda14cbcSMatt Macy if (sks->sks_ref == 0) { 1194eda14cbcSMatt Macy list_del(&sks->sks_list); 1195eda14cbcSMatt Macy list_add_tail(&sks->sks_list, &skc->skc_partial_list); 1196eda14cbcSMatt Macy skc->skc_slab_alloc--; 1197eda14cbcSMatt Macy } 1198eda14cbcSMatt Macy } 1199eda14cbcSMatt Macy 1200eda14cbcSMatt Macy /* 1201eda14cbcSMatt Macy * Allocate an object from the per-cpu magazine, or if the magazine 1202eda14cbcSMatt Macy * is empty directly allocate from a slab and repopulate the magazine. 1203eda14cbcSMatt Macy */ 1204eda14cbcSMatt Macy void * 1205eda14cbcSMatt Macy spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags) 1206eda14cbcSMatt Macy { 1207eda14cbcSMatt Macy spl_kmem_magazine_t *skm; 1208eda14cbcSMatt Macy void *obj = NULL; 1209eda14cbcSMatt Macy 1210eda14cbcSMatt Macy ASSERT0(flags & ~KM_PUBLIC_MASK); 1211eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1212eda14cbcSMatt Macy ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1213eda14cbcSMatt Macy 1214eda14cbcSMatt Macy /* 1215eda14cbcSMatt Macy * Allocate directly from a Linux slab. All optimizations are left 1216eda14cbcSMatt Macy * to the underlying cache we only need to guarantee that KM_SLEEP 1217eda14cbcSMatt Macy * callers will never fail. 1218eda14cbcSMatt Macy */ 1219eda14cbcSMatt Macy if (skc->skc_flags & KMC_SLAB) { 1220eda14cbcSMatt Macy struct kmem_cache *slc = skc->skc_linux_cache; 1221eda14cbcSMatt Macy do { 1222eda14cbcSMatt Macy obj = kmem_cache_alloc(slc, kmem_flags_convert(flags)); 1223eda14cbcSMatt Macy } while ((obj == NULL) && !(flags & KM_NOSLEEP)); 1224eda14cbcSMatt Macy 1225eda14cbcSMatt Macy if (obj != NULL) { 1226eda14cbcSMatt Macy /* 1227eda14cbcSMatt Macy * Even though we leave everything up to the 1228eda14cbcSMatt Macy * underlying cache we still keep track of 1229eda14cbcSMatt Macy * how many objects we've allocated in it for 1230eda14cbcSMatt Macy * better debuggability. 1231eda14cbcSMatt Macy */ 1232eda14cbcSMatt Macy percpu_counter_inc(&skc->skc_linux_alloc); 1233eda14cbcSMatt Macy } 1234eda14cbcSMatt Macy goto ret; 1235eda14cbcSMatt Macy } 1236eda14cbcSMatt Macy 1237eda14cbcSMatt Macy local_irq_disable(); 1238eda14cbcSMatt Macy 1239eda14cbcSMatt Macy restart: 1240eda14cbcSMatt Macy /* 1241eda14cbcSMatt Macy * Safe to update per-cpu structure without lock, but 1242eda14cbcSMatt Macy * in the restart case we must be careful to reacquire 1243eda14cbcSMatt Macy * the local magazine since this may have changed 1244eda14cbcSMatt Macy * when we need to grow the cache. 1245eda14cbcSMatt Macy */ 1246eda14cbcSMatt Macy skm = skc->skc_mag[smp_processor_id()]; 1247eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 1248eda14cbcSMatt Macy 1249eda14cbcSMatt Macy if (likely(skm->skm_avail)) { 1250eda14cbcSMatt Macy /* Object available in CPU cache, use it */ 1251eda14cbcSMatt Macy obj = skm->skm_objs[--skm->skm_avail]; 1252eda14cbcSMatt Macy } else { 1253eda14cbcSMatt Macy obj = spl_cache_refill(skc, skm, flags); 1254eda14cbcSMatt Macy if ((obj == NULL) && !(flags & KM_NOSLEEP)) 1255eda14cbcSMatt Macy goto restart; 1256eda14cbcSMatt Macy 1257eda14cbcSMatt Macy local_irq_enable(); 1258eda14cbcSMatt Macy goto ret; 1259eda14cbcSMatt Macy } 1260eda14cbcSMatt Macy 1261eda14cbcSMatt Macy local_irq_enable(); 1262eda14cbcSMatt Macy ASSERT(obj); 1263eda14cbcSMatt Macy ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align)); 1264eda14cbcSMatt Macy 1265eda14cbcSMatt Macy ret: 1266eda14cbcSMatt Macy /* Pre-emptively migrate object to CPU L1 cache */ 1267eda14cbcSMatt Macy if (obj) { 1268eda14cbcSMatt Macy if (obj && skc->skc_ctor) 1269eda14cbcSMatt Macy skc->skc_ctor(obj, skc->skc_private, flags); 1270eda14cbcSMatt Macy else 1271eda14cbcSMatt Macy prefetchw(obj); 1272eda14cbcSMatt Macy } 1273eda14cbcSMatt Macy 1274eda14cbcSMatt Macy return (obj); 1275eda14cbcSMatt Macy } 1276eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_alloc); 1277eda14cbcSMatt Macy 1278eda14cbcSMatt Macy /* 1279eda14cbcSMatt Macy * Free an object back to the local per-cpu magazine, there is no 1280eda14cbcSMatt Macy * guarantee that this is the same magazine the object was originally 1281eda14cbcSMatt Macy * allocated from. We may need to flush entire from the magazine 1282eda14cbcSMatt Macy * back to the slabs to make space. 1283eda14cbcSMatt Macy */ 1284eda14cbcSMatt Macy void 1285eda14cbcSMatt Macy spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj) 1286eda14cbcSMatt Macy { 1287eda14cbcSMatt Macy spl_kmem_magazine_t *skm; 1288eda14cbcSMatt Macy unsigned long flags; 1289eda14cbcSMatt Macy int do_reclaim = 0; 1290eda14cbcSMatt Macy int do_emergency = 0; 1291eda14cbcSMatt Macy 1292eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1293eda14cbcSMatt Macy ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1294eda14cbcSMatt Macy 1295eda14cbcSMatt Macy /* 1296eda14cbcSMatt Macy * Run the destructor 1297eda14cbcSMatt Macy */ 1298eda14cbcSMatt Macy if (skc->skc_dtor) 1299eda14cbcSMatt Macy skc->skc_dtor(obj, skc->skc_private); 1300eda14cbcSMatt Macy 1301eda14cbcSMatt Macy /* 1302eda14cbcSMatt Macy * Free the object from the Linux underlying Linux slab. 1303eda14cbcSMatt Macy */ 1304eda14cbcSMatt Macy if (skc->skc_flags & KMC_SLAB) { 1305eda14cbcSMatt Macy kmem_cache_free(skc->skc_linux_cache, obj); 1306eda14cbcSMatt Macy percpu_counter_dec(&skc->skc_linux_alloc); 1307eda14cbcSMatt Macy return; 1308eda14cbcSMatt Macy } 1309eda14cbcSMatt Macy 1310eda14cbcSMatt Macy /* 1311eda14cbcSMatt Macy * While a cache has outstanding emergency objects all freed objects 1312eda14cbcSMatt Macy * must be checked. However, since emergency objects will never use 1313eda14cbcSMatt Macy * a virtual address these objects can be safely excluded as an 1314eda14cbcSMatt Macy * optimization. 1315eda14cbcSMatt Macy */ 1316eda14cbcSMatt Macy if (!is_vmalloc_addr(obj)) { 1317eda14cbcSMatt Macy spin_lock(&skc->skc_lock); 1318eda14cbcSMatt Macy do_emergency = (skc->skc_obj_emergency > 0); 1319eda14cbcSMatt Macy spin_unlock(&skc->skc_lock); 1320eda14cbcSMatt Macy 1321eda14cbcSMatt Macy if (do_emergency && (spl_emergency_free(skc, obj) == 0)) 1322eda14cbcSMatt Macy return; 1323eda14cbcSMatt Macy } 1324eda14cbcSMatt Macy 1325eda14cbcSMatt Macy local_irq_save(flags); 1326eda14cbcSMatt Macy 1327eda14cbcSMatt Macy /* 1328eda14cbcSMatt Macy * Safe to update per-cpu structure without lock, but 1329eda14cbcSMatt Macy * no remote memory allocation tracking is being performed 1330eda14cbcSMatt Macy * it is entirely possible to allocate an object from one 1331eda14cbcSMatt Macy * CPU cache and return it to another. 1332eda14cbcSMatt Macy */ 1333eda14cbcSMatt Macy skm = skc->skc_mag[smp_processor_id()]; 1334eda14cbcSMatt Macy ASSERT(skm->skm_magic == SKM_MAGIC); 1335eda14cbcSMatt Macy 1336eda14cbcSMatt Macy /* 1337eda14cbcSMatt Macy * Per-CPU cache full, flush it to make space for this object, 1338eda14cbcSMatt Macy * this may result in an empty slab which can be reclaimed once 1339eda14cbcSMatt Macy * interrupts are re-enabled. 1340eda14cbcSMatt Macy */ 1341eda14cbcSMatt Macy if (unlikely(skm->skm_avail >= skm->skm_size)) { 1342eda14cbcSMatt Macy spl_cache_flush(skc, skm, skm->skm_refill); 1343eda14cbcSMatt Macy do_reclaim = 1; 1344eda14cbcSMatt Macy } 1345eda14cbcSMatt Macy 1346eda14cbcSMatt Macy /* Available space in cache, use it */ 1347eda14cbcSMatt Macy skm->skm_objs[skm->skm_avail++] = obj; 1348eda14cbcSMatt Macy 1349eda14cbcSMatt Macy local_irq_restore(flags); 1350eda14cbcSMatt Macy 1351eda14cbcSMatt Macy if (do_reclaim) 1352eda14cbcSMatt Macy spl_slab_reclaim(skc); 1353eda14cbcSMatt Macy } 1354eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_free); 1355eda14cbcSMatt Macy 1356eda14cbcSMatt Macy /* 1357eda14cbcSMatt Macy * Depending on how many and which objects are released it may simply 1358eda14cbcSMatt Macy * repopulate the local magazine which will then need to age-out. Objects 1359eda14cbcSMatt Macy * which cannot fit in the magazine will be released back to their slabs 1360eda14cbcSMatt Macy * which will also need to age out before being released. This is all just 1361eda14cbcSMatt Macy * best effort and we do not want to thrash creating and destroying slabs. 1362eda14cbcSMatt Macy */ 1363eda14cbcSMatt Macy void 1364eda14cbcSMatt Macy spl_kmem_cache_reap_now(spl_kmem_cache_t *skc) 1365eda14cbcSMatt Macy { 1366eda14cbcSMatt Macy ASSERT(skc->skc_magic == SKC_MAGIC); 1367eda14cbcSMatt Macy ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags)); 1368eda14cbcSMatt Macy 1369eda14cbcSMatt Macy if (skc->skc_flags & KMC_SLAB) 1370eda14cbcSMatt Macy return; 1371eda14cbcSMatt Macy 1372eda14cbcSMatt Macy atomic_inc(&skc->skc_ref); 1373eda14cbcSMatt Macy 1374eda14cbcSMatt Macy /* 1375eda14cbcSMatt Macy * Prevent concurrent cache reaping when contended. 1376eda14cbcSMatt Macy */ 1377eda14cbcSMatt Macy if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags)) 1378eda14cbcSMatt Macy goto out; 1379eda14cbcSMatt Macy 1380eda14cbcSMatt Macy /* Reclaim from the magazine and free all now empty slabs. */ 1381eda14cbcSMatt Macy unsigned long irq_flags; 1382eda14cbcSMatt Macy local_irq_save(irq_flags); 1383eda14cbcSMatt Macy spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()]; 1384eda14cbcSMatt Macy spl_cache_flush(skc, skm, skm->skm_avail); 1385eda14cbcSMatt Macy local_irq_restore(irq_flags); 1386eda14cbcSMatt Macy 1387eda14cbcSMatt Macy spl_slab_reclaim(skc); 1388eda14cbcSMatt Macy clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags); 1389eda14cbcSMatt Macy smp_mb__after_atomic(); 1390eda14cbcSMatt Macy wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING); 1391eda14cbcSMatt Macy out: 1392eda14cbcSMatt Macy atomic_dec(&skc->skc_ref); 1393eda14cbcSMatt Macy } 1394eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_reap_now); 1395eda14cbcSMatt Macy 1396eda14cbcSMatt Macy /* 1397eda14cbcSMatt Macy * This is stubbed out for code consistency with other platforms. There 1398eda14cbcSMatt Macy * is existing logic to prevent concurrent reaping so while this is ugly 1399eda14cbcSMatt Macy * it should do no harm. 1400eda14cbcSMatt Macy */ 1401eda14cbcSMatt Macy int 1402716fd348SMartin Matuska spl_kmem_cache_reap_active(void) 1403eda14cbcSMatt Macy { 1404eda14cbcSMatt Macy return (0); 1405eda14cbcSMatt Macy } 1406eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_cache_reap_active); 1407eda14cbcSMatt Macy 1408eda14cbcSMatt Macy /* 1409eda14cbcSMatt Macy * Reap all free slabs from all registered caches. 1410eda14cbcSMatt Macy */ 1411eda14cbcSMatt Macy void 1412eda14cbcSMatt Macy spl_kmem_reap(void) 1413eda14cbcSMatt Macy { 1414eda14cbcSMatt Macy spl_kmem_cache_t *skc = NULL; 1415eda14cbcSMatt Macy 1416eda14cbcSMatt Macy down_read(&spl_kmem_cache_sem); 1417eda14cbcSMatt Macy list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) { 1418eda14cbcSMatt Macy spl_kmem_cache_reap_now(skc); 1419eda14cbcSMatt Macy } 1420eda14cbcSMatt Macy up_read(&spl_kmem_cache_sem); 1421eda14cbcSMatt Macy } 1422eda14cbcSMatt Macy EXPORT_SYMBOL(spl_kmem_reap); 1423eda14cbcSMatt Macy 1424eda14cbcSMatt Macy int 1425eda14cbcSMatt Macy spl_kmem_cache_init(void) 1426eda14cbcSMatt Macy { 1427eda14cbcSMatt Macy init_rwsem(&spl_kmem_cache_sem); 1428eda14cbcSMatt Macy INIT_LIST_HEAD(&spl_kmem_cache_list); 1429eda14cbcSMatt Macy spl_kmem_cache_taskq = taskq_create("spl_kmem_cache", 1430eda14cbcSMatt Macy spl_kmem_cache_kmem_threads, maxclsyspri, 1431eda14cbcSMatt Macy spl_kmem_cache_kmem_threads * 8, INT_MAX, 1432eda14cbcSMatt Macy TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 1433eda14cbcSMatt Macy 1434c7046f76SMartin Matuska if (spl_kmem_cache_taskq == NULL) 1435c7046f76SMartin Matuska return (-ENOMEM); 1436c7046f76SMartin Matuska 1437eda14cbcSMatt Macy return (0); 1438eda14cbcSMatt Macy } 1439eda14cbcSMatt Macy 1440eda14cbcSMatt Macy void 1441eda14cbcSMatt Macy spl_kmem_cache_fini(void) 1442eda14cbcSMatt Macy { 1443eda14cbcSMatt Macy taskq_destroy(spl_kmem_cache_taskq); 1444eda14cbcSMatt Macy } 1445