1*eda14cbcSMatt Macy /* 2*eda14cbcSMatt Macy * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3*eda14cbcSMatt Macy * Copyright (C) 2007 The Regents of the University of California. 4*eda14cbcSMatt Macy * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5*eda14cbcSMatt Macy * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6*eda14cbcSMatt Macy * UCRL-CODE-235197 7*eda14cbcSMatt Macy * 8*eda14cbcSMatt Macy * This file is part of the SPL, Solaris Porting Layer. 9*eda14cbcSMatt Macy * For details, see <http://zfsonlinux.org/>. 10*eda14cbcSMatt Macy * 11*eda14cbcSMatt Macy * The SPL is free software; you can redistribute it and/or modify it 12*eda14cbcSMatt Macy * under the terms of the GNU General Public License as published by the 13*eda14cbcSMatt Macy * Free Software Foundation; either version 2 of the License, or (at your 14*eda14cbcSMatt Macy * option) any later version. 15*eda14cbcSMatt Macy * 16*eda14cbcSMatt Macy * The SPL is distributed in the hope that it will be useful, but WITHOUT 17*eda14cbcSMatt Macy * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 18*eda14cbcSMatt Macy * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 19*eda14cbcSMatt Macy * for more details. 20*eda14cbcSMatt Macy * 21*eda14cbcSMatt Macy * You should have received a copy of the GNU General Public License along 22*eda14cbcSMatt Macy * with the SPL. If not, see <http://www.gnu.org/licenses/>. 23*eda14cbcSMatt Macy * 24*eda14cbcSMatt Macy * Solaris Porting Layer (SPL) Generic Implementation. 25*eda14cbcSMatt Macy */ 26*eda14cbcSMatt Macy 27*eda14cbcSMatt Macy #include <sys/sysmacros.h> 28*eda14cbcSMatt Macy #include <sys/systeminfo.h> 29*eda14cbcSMatt Macy #include <sys/vmsystm.h> 30*eda14cbcSMatt Macy #include <sys/kmem.h> 31*eda14cbcSMatt Macy #include <sys/kmem_cache.h> 32*eda14cbcSMatt Macy #include <sys/vmem.h> 33*eda14cbcSMatt Macy #include <sys/mutex.h> 34*eda14cbcSMatt Macy #include <sys/rwlock.h> 35*eda14cbcSMatt Macy #include <sys/taskq.h> 36*eda14cbcSMatt Macy #include <sys/tsd.h> 37*eda14cbcSMatt Macy #include <sys/zmod.h> 38*eda14cbcSMatt Macy #include <sys/debug.h> 39*eda14cbcSMatt Macy #include <sys/proc.h> 40*eda14cbcSMatt Macy #include <sys/kstat.h> 41*eda14cbcSMatt Macy #include <sys/file.h> 42*eda14cbcSMatt Macy #include <sys/sunddi.h> 43*eda14cbcSMatt Macy #include <linux/ctype.h> 44*eda14cbcSMatt Macy #include <sys/disp.h> 45*eda14cbcSMatt Macy #include <sys/random.h> 46*eda14cbcSMatt Macy #include <sys/strings.h> 47*eda14cbcSMatt Macy #include <linux/kmod.h> 48*eda14cbcSMatt Macy #include "zfs_gitrev.h" 49*eda14cbcSMatt Macy #include <linux/mod_compat.h> 50*eda14cbcSMatt Macy #include <sys/cred.h> 51*eda14cbcSMatt Macy #include <sys/vnode.h> 52*eda14cbcSMatt Macy 53*eda14cbcSMatt Macy char spl_gitrev[64] = ZFS_META_GITREV; 54*eda14cbcSMatt Macy 55*eda14cbcSMatt Macy /* BEGIN CSTYLED */ 56*eda14cbcSMatt Macy unsigned long spl_hostid = 0; 57*eda14cbcSMatt Macy EXPORT_SYMBOL(spl_hostid); 58*eda14cbcSMatt Macy /* BEGIN CSTYLED */ 59*eda14cbcSMatt Macy module_param(spl_hostid, ulong, 0644); 60*eda14cbcSMatt Macy MODULE_PARM_DESC(spl_hostid, "The system hostid."); 61*eda14cbcSMatt Macy /* END CSTYLED */ 62*eda14cbcSMatt Macy 63*eda14cbcSMatt Macy proc_t p0; 64*eda14cbcSMatt Macy EXPORT_SYMBOL(p0); 65*eda14cbcSMatt Macy 66*eda14cbcSMatt Macy /* 67*eda14cbcSMatt Macy * Xorshift Pseudo Random Number Generator based on work by Sebastiano Vigna 68*eda14cbcSMatt Macy * 69*eda14cbcSMatt Macy * "Further scramblings of Marsaglia's xorshift generators" 70*eda14cbcSMatt Macy * http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf 71*eda14cbcSMatt Macy * 72*eda14cbcSMatt Macy * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose 73*eda14cbcSMatt Macy * is to provide bytes containing random numbers. It is mapped to /dev/urandom 74*eda14cbcSMatt Macy * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's 75*eda14cbcSMatt Macy * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so 76*eda14cbcSMatt Macy * we can implement it using a fast PRNG that we seed using Linux' actual 77*eda14cbcSMatt Macy * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU 78*eda14cbcSMatt Macy * with an independent seed so that all calls to random_get_pseudo_bytes() are 79*eda14cbcSMatt Macy * free of atomic instructions. 80*eda14cbcSMatt Macy * 81*eda14cbcSMatt Macy * A consequence of using a fast PRNG is that using random_get_pseudo_bytes() 82*eda14cbcSMatt Macy * to generate words larger than 128 bits will paradoxically be limited to 83*eda14cbcSMatt Macy * `2^128 - 1` possibilities. This is because we have a sequence of `2^128 - 1` 84*eda14cbcSMatt Macy * 128-bit words and selecting the first will implicitly select the second. If 85*eda14cbcSMatt Macy * a caller finds this behavior undesirable, random_get_bytes() should be used 86*eda14cbcSMatt Macy * instead. 87*eda14cbcSMatt Macy * 88*eda14cbcSMatt Macy * XXX: Linux interrupt handlers that trigger within the critical section 89*eda14cbcSMatt Macy * formed by `s[1] = xp[1];` and `xp[0] = s[0];` and call this function will 90*eda14cbcSMatt Macy * see the same numbers. Nothing in the code currently calls this in an 91*eda14cbcSMatt Macy * interrupt handler, so this is considered to be okay. If that becomes a 92*eda14cbcSMatt Macy * problem, we could create a set of per-cpu variables for interrupt handlers 93*eda14cbcSMatt Macy * and use them when in_interrupt() from linux/preempt_mask.h evaluates to 94*eda14cbcSMatt Macy * true. 95*eda14cbcSMatt Macy */ 96*eda14cbcSMatt Macy void __percpu *spl_pseudo_entropy; 97*eda14cbcSMatt Macy 98*eda14cbcSMatt Macy /* 99*eda14cbcSMatt Macy * spl_rand_next()/spl_rand_jump() are copied from the following CC-0 licensed 100*eda14cbcSMatt Macy * file: 101*eda14cbcSMatt Macy * 102*eda14cbcSMatt Macy * http://xorshift.di.unimi.it/xorshift128plus.c 103*eda14cbcSMatt Macy */ 104*eda14cbcSMatt Macy 105*eda14cbcSMatt Macy static inline uint64_t 106*eda14cbcSMatt Macy spl_rand_next(uint64_t *s) 107*eda14cbcSMatt Macy { 108*eda14cbcSMatt Macy uint64_t s1 = s[0]; 109*eda14cbcSMatt Macy const uint64_t s0 = s[1]; 110*eda14cbcSMatt Macy s[0] = s0; 111*eda14cbcSMatt Macy s1 ^= s1 << 23; // a 112*eda14cbcSMatt Macy s[1] = s1 ^ s0 ^ (s1 >> 18) ^ (s0 >> 5); // b, c 113*eda14cbcSMatt Macy return (s[1] + s0); 114*eda14cbcSMatt Macy } 115*eda14cbcSMatt Macy 116*eda14cbcSMatt Macy static inline void 117*eda14cbcSMatt Macy spl_rand_jump(uint64_t *s) 118*eda14cbcSMatt Macy { 119*eda14cbcSMatt Macy static const uint64_t JUMP[] = 120*eda14cbcSMatt Macy { 0x8a5cd789635d2dff, 0x121fd2155c472f96 }; 121*eda14cbcSMatt Macy 122*eda14cbcSMatt Macy uint64_t s0 = 0; 123*eda14cbcSMatt Macy uint64_t s1 = 0; 124*eda14cbcSMatt Macy int i, b; 125*eda14cbcSMatt Macy for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++) 126*eda14cbcSMatt Macy for (b = 0; b < 64; b++) { 127*eda14cbcSMatt Macy if (JUMP[i] & 1ULL << b) { 128*eda14cbcSMatt Macy s0 ^= s[0]; 129*eda14cbcSMatt Macy s1 ^= s[1]; 130*eda14cbcSMatt Macy } 131*eda14cbcSMatt Macy (void) spl_rand_next(s); 132*eda14cbcSMatt Macy } 133*eda14cbcSMatt Macy 134*eda14cbcSMatt Macy s[0] = s0; 135*eda14cbcSMatt Macy s[1] = s1; 136*eda14cbcSMatt Macy } 137*eda14cbcSMatt Macy 138*eda14cbcSMatt Macy int 139*eda14cbcSMatt Macy random_get_pseudo_bytes(uint8_t *ptr, size_t len) 140*eda14cbcSMatt Macy { 141*eda14cbcSMatt Macy uint64_t *xp, s[2]; 142*eda14cbcSMatt Macy 143*eda14cbcSMatt Macy ASSERT(ptr); 144*eda14cbcSMatt Macy 145*eda14cbcSMatt Macy xp = get_cpu_ptr(spl_pseudo_entropy); 146*eda14cbcSMatt Macy 147*eda14cbcSMatt Macy s[0] = xp[0]; 148*eda14cbcSMatt Macy s[1] = xp[1]; 149*eda14cbcSMatt Macy 150*eda14cbcSMatt Macy while (len) { 151*eda14cbcSMatt Macy union { 152*eda14cbcSMatt Macy uint64_t ui64; 153*eda14cbcSMatt Macy uint8_t byte[sizeof (uint64_t)]; 154*eda14cbcSMatt Macy }entropy; 155*eda14cbcSMatt Macy int i = MIN(len, sizeof (uint64_t)); 156*eda14cbcSMatt Macy 157*eda14cbcSMatt Macy len -= i; 158*eda14cbcSMatt Macy entropy.ui64 = spl_rand_next(s); 159*eda14cbcSMatt Macy 160*eda14cbcSMatt Macy while (i--) 161*eda14cbcSMatt Macy *ptr++ = entropy.byte[i]; 162*eda14cbcSMatt Macy } 163*eda14cbcSMatt Macy 164*eda14cbcSMatt Macy xp[0] = s[0]; 165*eda14cbcSMatt Macy xp[1] = s[1]; 166*eda14cbcSMatt Macy 167*eda14cbcSMatt Macy put_cpu_ptr(spl_pseudo_entropy); 168*eda14cbcSMatt Macy 169*eda14cbcSMatt Macy return (0); 170*eda14cbcSMatt Macy } 171*eda14cbcSMatt Macy 172*eda14cbcSMatt Macy 173*eda14cbcSMatt Macy EXPORT_SYMBOL(random_get_pseudo_bytes); 174*eda14cbcSMatt Macy 175*eda14cbcSMatt Macy #if BITS_PER_LONG == 32 176*eda14cbcSMatt Macy 177*eda14cbcSMatt Macy /* 178*eda14cbcSMatt Macy * Support 64/64 => 64 division on a 32-bit platform. While the kernel 179*eda14cbcSMatt Macy * provides a div64_u64() function for this we do not use it because the 180*eda14cbcSMatt Macy * implementation is flawed. There are cases which return incorrect 181*eda14cbcSMatt Macy * results as late as linux-2.6.35. Until this is fixed upstream the 182*eda14cbcSMatt Macy * spl must provide its own implementation. 183*eda14cbcSMatt Macy * 184*eda14cbcSMatt Macy * This implementation is a slightly modified version of the algorithm 185*eda14cbcSMatt Macy * proposed by the book 'Hacker's Delight'. The original source can be 186*eda14cbcSMatt Macy * found here and is available for use without restriction. 187*eda14cbcSMatt Macy * 188*eda14cbcSMatt Macy * http://www.hackersdelight.org/HDcode/newCode/divDouble.c 189*eda14cbcSMatt Macy */ 190*eda14cbcSMatt Macy 191*eda14cbcSMatt Macy /* 192*eda14cbcSMatt Macy * Calculate number of leading of zeros for a 64-bit value. 193*eda14cbcSMatt Macy */ 194*eda14cbcSMatt Macy static int 195*eda14cbcSMatt Macy nlz64(uint64_t x) 196*eda14cbcSMatt Macy { 197*eda14cbcSMatt Macy register int n = 0; 198*eda14cbcSMatt Macy 199*eda14cbcSMatt Macy if (x == 0) 200*eda14cbcSMatt Macy return (64); 201*eda14cbcSMatt Macy 202*eda14cbcSMatt Macy if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; } 203*eda14cbcSMatt Macy if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; } 204*eda14cbcSMatt Macy if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n + 8; x = x << 8; } 205*eda14cbcSMatt Macy if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n + 4; x = x << 4; } 206*eda14cbcSMatt Macy if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n + 2; x = x << 2; } 207*eda14cbcSMatt Macy if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n + 1; } 208*eda14cbcSMatt Macy 209*eda14cbcSMatt Macy return (n); 210*eda14cbcSMatt Macy } 211*eda14cbcSMatt Macy 212*eda14cbcSMatt Macy /* 213*eda14cbcSMatt Macy * Newer kernels have a div_u64() function but we define our own 214*eda14cbcSMatt Macy * to simplify portability between kernel versions. 215*eda14cbcSMatt Macy */ 216*eda14cbcSMatt Macy static inline uint64_t 217*eda14cbcSMatt Macy __div_u64(uint64_t u, uint32_t v) 218*eda14cbcSMatt Macy { 219*eda14cbcSMatt Macy (void) do_div(u, v); 220*eda14cbcSMatt Macy return (u); 221*eda14cbcSMatt Macy } 222*eda14cbcSMatt Macy 223*eda14cbcSMatt Macy /* 224*eda14cbcSMatt Macy * Turn off missing prototypes warning for these functions. They are 225*eda14cbcSMatt Macy * replacements for libgcc-provided functions and will never be called 226*eda14cbcSMatt Macy * directly. 227*eda14cbcSMatt Macy */ 228*eda14cbcSMatt Macy #pragma GCC diagnostic push 229*eda14cbcSMatt Macy #pragma GCC diagnostic ignored "-Wmissing-prototypes" 230*eda14cbcSMatt Macy 231*eda14cbcSMatt Macy /* 232*eda14cbcSMatt Macy * Implementation of 64-bit unsigned division for 32-bit machines. 233*eda14cbcSMatt Macy * 234*eda14cbcSMatt Macy * First the procedure takes care of the case in which the divisor is a 235*eda14cbcSMatt Macy * 32-bit quantity. There are two subcases: (1) If the left half of the 236*eda14cbcSMatt Macy * dividend is less than the divisor, one execution of do_div() is all that 237*eda14cbcSMatt Macy * is required (overflow is not possible). (2) Otherwise it does two 238*eda14cbcSMatt Macy * divisions, using the grade school method. 239*eda14cbcSMatt Macy */ 240*eda14cbcSMatt Macy uint64_t 241*eda14cbcSMatt Macy __udivdi3(uint64_t u, uint64_t v) 242*eda14cbcSMatt Macy { 243*eda14cbcSMatt Macy uint64_t u0, u1, v1, q0, q1, k; 244*eda14cbcSMatt Macy int n; 245*eda14cbcSMatt Macy 246*eda14cbcSMatt Macy if (v >> 32 == 0) { // If v < 2**32: 247*eda14cbcSMatt Macy if (u >> 32 < v) { // If u/v cannot overflow, 248*eda14cbcSMatt Macy return (__div_u64(u, v)); // just do one division. 249*eda14cbcSMatt Macy } else { // If u/v would overflow: 250*eda14cbcSMatt Macy u1 = u >> 32; // Break u into two halves. 251*eda14cbcSMatt Macy u0 = u & 0xFFFFFFFF; 252*eda14cbcSMatt Macy q1 = __div_u64(u1, v); // First quotient digit. 253*eda14cbcSMatt Macy k = u1 - q1 * v; // First remainder, < v. 254*eda14cbcSMatt Macy u0 += (k << 32); 255*eda14cbcSMatt Macy q0 = __div_u64(u0, v); // Seconds quotient digit. 256*eda14cbcSMatt Macy return ((q1 << 32) + q0); 257*eda14cbcSMatt Macy } 258*eda14cbcSMatt Macy } else { // If v >= 2**32: 259*eda14cbcSMatt Macy n = nlz64(v); // 0 <= n <= 31. 260*eda14cbcSMatt Macy v1 = (v << n) >> 32; // Normalize divisor, MSB is 1. 261*eda14cbcSMatt Macy u1 = u >> 1; // To ensure no overflow. 262*eda14cbcSMatt Macy q1 = __div_u64(u1, v1); // Get quotient from 263*eda14cbcSMatt Macy q0 = (q1 << n) >> 31; // Undo normalization and 264*eda14cbcSMatt Macy // division of u by 2. 265*eda14cbcSMatt Macy if (q0 != 0) // Make q0 correct or 266*eda14cbcSMatt Macy q0 = q0 - 1; // too small by 1. 267*eda14cbcSMatt Macy if ((u - q0 * v) >= v) 268*eda14cbcSMatt Macy q0 = q0 + 1; // Now q0 is correct. 269*eda14cbcSMatt Macy 270*eda14cbcSMatt Macy return (q0); 271*eda14cbcSMatt Macy } 272*eda14cbcSMatt Macy } 273*eda14cbcSMatt Macy EXPORT_SYMBOL(__udivdi3); 274*eda14cbcSMatt Macy 275*eda14cbcSMatt Macy /* BEGIN CSTYLED */ 276*eda14cbcSMatt Macy #ifndef abs64 277*eda14cbcSMatt Macy #define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; }) 278*eda14cbcSMatt Macy #endif 279*eda14cbcSMatt Macy /* END CSTYLED */ 280*eda14cbcSMatt Macy 281*eda14cbcSMatt Macy /* 282*eda14cbcSMatt Macy * Implementation of 64-bit signed division for 32-bit machines. 283*eda14cbcSMatt Macy */ 284*eda14cbcSMatt Macy int64_t 285*eda14cbcSMatt Macy __divdi3(int64_t u, int64_t v) 286*eda14cbcSMatt Macy { 287*eda14cbcSMatt Macy int64_t q, t; 288*eda14cbcSMatt Macy // cppcheck-suppress shiftTooManyBitsSigned 289*eda14cbcSMatt Macy q = __udivdi3(abs64(u), abs64(v)); 290*eda14cbcSMatt Macy // cppcheck-suppress shiftTooManyBitsSigned 291*eda14cbcSMatt Macy t = (u ^ v) >> 63; // If u, v have different 292*eda14cbcSMatt Macy return ((q ^ t) - t); // signs, negate q. 293*eda14cbcSMatt Macy } 294*eda14cbcSMatt Macy EXPORT_SYMBOL(__divdi3); 295*eda14cbcSMatt Macy 296*eda14cbcSMatt Macy /* 297*eda14cbcSMatt Macy * Implementation of 64-bit unsigned modulo for 32-bit machines. 298*eda14cbcSMatt Macy */ 299*eda14cbcSMatt Macy uint64_t 300*eda14cbcSMatt Macy __umoddi3(uint64_t dividend, uint64_t divisor) 301*eda14cbcSMatt Macy { 302*eda14cbcSMatt Macy return (dividend - (divisor * __udivdi3(dividend, divisor))); 303*eda14cbcSMatt Macy } 304*eda14cbcSMatt Macy EXPORT_SYMBOL(__umoddi3); 305*eda14cbcSMatt Macy 306*eda14cbcSMatt Macy /* 64-bit signed modulo for 32-bit machines. */ 307*eda14cbcSMatt Macy int64_t 308*eda14cbcSMatt Macy __moddi3(int64_t n, int64_t d) 309*eda14cbcSMatt Macy { 310*eda14cbcSMatt Macy int64_t q; 311*eda14cbcSMatt Macy boolean_t nn = B_FALSE; 312*eda14cbcSMatt Macy 313*eda14cbcSMatt Macy if (n < 0) { 314*eda14cbcSMatt Macy nn = B_TRUE; 315*eda14cbcSMatt Macy n = -n; 316*eda14cbcSMatt Macy } 317*eda14cbcSMatt Macy if (d < 0) 318*eda14cbcSMatt Macy d = -d; 319*eda14cbcSMatt Macy 320*eda14cbcSMatt Macy q = __umoddi3(n, d); 321*eda14cbcSMatt Macy 322*eda14cbcSMatt Macy return (nn ? -q : q); 323*eda14cbcSMatt Macy } 324*eda14cbcSMatt Macy EXPORT_SYMBOL(__moddi3); 325*eda14cbcSMatt Macy 326*eda14cbcSMatt Macy /* 327*eda14cbcSMatt Macy * Implementation of 64-bit unsigned division/modulo for 32-bit machines. 328*eda14cbcSMatt Macy */ 329*eda14cbcSMatt Macy uint64_t 330*eda14cbcSMatt Macy __udivmoddi4(uint64_t n, uint64_t d, uint64_t *r) 331*eda14cbcSMatt Macy { 332*eda14cbcSMatt Macy uint64_t q = __udivdi3(n, d); 333*eda14cbcSMatt Macy if (r) 334*eda14cbcSMatt Macy *r = n - d * q; 335*eda14cbcSMatt Macy return (q); 336*eda14cbcSMatt Macy } 337*eda14cbcSMatt Macy EXPORT_SYMBOL(__udivmoddi4); 338*eda14cbcSMatt Macy 339*eda14cbcSMatt Macy /* 340*eda14cbcSMatt Macy * Implementation of 64-bit signed division/modulo for 32-bit machines. 341*eda14cbcSMatt Macy */ 342*eda14cbcSMatt Macy int64_t 343*eda14cbcSMatt Macy __divmoddi4(int64_t n, int64_t d, int64_t *r) 344*eda14cbcSMatt Macy { 345*eda14cbcSMatt Macy int64_t q, rr; 346*eda14cbcSMatt Macy boolean_t nn = B_FALSE; 347*eda14cbcSMatt Macy boolean_t nd = B_FALSE; 348*eda14cbcSMatt Macy if (n < 0) { 349*eda14cbcSMatt Macy nn = B_TRUE; 350*eda14cbcSMatt Macy n = -n; 351*eda14cbcSMatt Macy } 352*eda14cbcSMatt Macy if (d < 0) { 353*eda14cbcSMatt Macy nd = B_TRUE; 354*eda14cbcSMatt Macy d = -d; 355*eda14cbcSMatt Macy } 356*eda14cbcSMatt Macy 357*eda14cbcSMatt Macy q = __udivmoddi4(n, d, (uint64_t *)&rr); 358*eda14cbcSMatt Macy 359*eda14cbcSMatt Macy if (nn != nd) 360*eda14cbcSMatt Macy q = -q; 361*eda14cbcSMatt Macy if (nn) 362*eda14cbcSMatt Macy rr = -rr; 363*eda14cbcSMatt Macy if (r) 364*eda14cbcSMatt Macy *r = rr; 365*eda14cbcSMatt Macy return (q); 366*eda14cbcSMatt Macy } 367*eda14cbcSMatt Macy EXPORT_SYMBOL(__divmoddi4); 368*eda14cbcSMatt Macy 369*eda14cbcSMatt Macy #if defined(__arm) || defined(__arm__) 370*eda14cbcSMatt Macy /* 371*eda14cbcSMatt Macy * Implementation of 64-bit (un)signed division for 32-bit arm machines. 372*eda14cbcSMatt Macy * 373*eda14cbcSMatt Macy * Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned) 374*eda14cbcSMatt Macy * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1}, 375*eda14cbcSMatt Macy * and the remainder in {r2, r3}. The return type is specifically left 376*eda14cbcSMatt Macy * set to 'void' to ensure the compiler does not overwrite these registers 377*eda14cbcSMatt Macy * during the return. All results are in registers as per ABI 378*eda14cbcSMatt Macy */ 379*eda14cbcSMatt Macy void 380*eda14cbcSMatt Macy __aeabi_uldivmod(uint64_t u, uint64_t v) 381*eda14cbcSMatt Macy { 382*eda14cbcSMatt Macy uint64_t res; 383*eda14cbcSMatt Macy uint64_t mod; 384*eda14cbcSMatt Macy 385*eda14cbcSMatt Macy res = __udivdi3(u, v); 386*eda14cbcSMatt Macy mod = __umoddi3(u, v); 387*eda14cbcSMatt Macy { 388*eda14cbcSMatt Macy register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); 389*eda14cbcSMatt Macy register uint32_t r1 asm("r1") = (res >> 32); 390*eda14cbcSMatt Macy register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); 391*eda14cbcSMatt Macy register uint32_t r3 asm("r3") = (mod >> 32); 392*eda14cbcSMatt Macy 393*eda14cbcSMatt Macy /* BEGIN CSTYLED */ 394*eda14cbcSMatt Macy asm volatile("" 395*eda14cbcSMatt Macy : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */ 396*eda14cbcSMatt Macy : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ 397*eda14cbcSMatt Macy /* END CSTYLED */ 398*eda14cbcSMatt Macy 399*eda14cbcSMatt Macy return; /* r0; */ 400*eda14cbcSMatt Macy } 401*eda14cbcSMatt Macy } 402*eda14cbcSMatt Macy EXPORT_SYMBOL(__aeabi_uldivmod); 403*eda14cbcSMatt Macy 404*eda14cbcSMatt Macy void 405*eda14cbcSMatt Macy __aeabi_ldivmod(int64_t u, int64_t v) 406*eda14cbcSMatt Macy { 407*eda14cbcSMatt Macy int64_t res; 408*eda14cbcSMatt Macy uint64_t mod; 409*eda14cbcSMatt Macy 410*eda14cbcSMatt Macy res = __divdi3(u, v); 411*eda14cbcSMatt Macy mod = __umoddi3(u, v); 412*eda14cbcSMatt Macy { 413*eda14cbcSMatt Macy register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); 414*eda14cbcSMatt Macy register uint32_t r1 asm("r1") = (res >> 32); 415*eda14cbcSMatt Macy register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); 416*eda14cbcSMatt Macy register uint32_t r3 asm("r3") = (mod >> 32); 417*eda14cbcSMatt Macy 418*eda14cbcSMatt Macy /* BEGIN CSTYLED */ 419*eda14cbcSMatt Macy asm volatile("" 420*eda14cbcSMatt Macy : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */ 421*eda14cbcSMatt Macy : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ 422*eda14cbcSMatt Macy /* END CSTYLED */ 423*eda14cbcSMatt Macy 424*eda14cbcSMatt Macy return; /* r0; */ 425*eda14cbcSMatt Macy } 426*eda14cbcSMatt Macy } 427*eda14cbcSMatt Macy EXPORT_SYMBOL(__aeabi_ldivmod); 428*eda14cbcSMatt Macy #endif /* __arm || __arm__ */ 429*eda14cbcSMatt Macy 430*eda14cbcSMatt Macy #pragma GCC diagnostic pop 431*eda14cbcSMatt Macy 432*eda14cbcSMatt Macy #endif /* BITS_PER_LONG */ 433*eda14cbcSMatt Macy 434*eda14cbcSMatt Macy /* 435*eda14cbcSMatt Macy * NOTE: The strtoxx behavior is solely based on my reading of the Solaris 436*eda14cbcSMatt Macy * ddi_strtol(9F) man page. I have not verified the behavior of these 437*eda14cbcSMatt Macy * functions against their Solaris counterparts. It is possible that I 438*eda14cbcSMatt Macy * may have misinterpreted the man page or the man page is incorrect. 439*eda14cbcSMatt Macy */ 440*eda14cbcSMatt Macy int ddi_strtoul(const char *, char **, int, unsigned long *); 441*eda14cbcSMatt Macy int ddi_strtol(const char *, char **, int, long *); 442*eda14cbcSMatt Macy int ddi_strtoull(const char *, char **, int, unsigned long long *); 443*eda14cbcSMatt Macy int ddi_strtoll(const char *, char **, int, long long *); 444*eda14cbcSMatt Macy 445*eda14cbcSMatt Macy #define define_ddi_strtoux(type, valtype) \ 446*eda14cbcSMatt Macy int ddi_strtou##type(const char *str, char **endptr, \ 447*eda14cbcSMatt Macy int base, valtype *result) \ 448*eda14cbcSMatt Macy { \ 449*eda14cbcSMatt Macy valtype last_value, value = 0; \ 450*eda14cbcSMatt Macy char *ptr = (char *)str; \ 451*eda14cbcSMatt Macy int flag = 1, digit; \ 452*eda14cbcSMatt Macy \ 453*eda14cbcSMatt Macy if (strlen(ptr) == 0) \ 454*eda14cbcSMatt Macy return (EINVAL); \ 455*eda14cbcSMatt Macy \ 456*eda14cbcSMatt Macy /* Auto-detect base based on prefix */ \ 457*eda14cbcSMatt Macy if (!base) { \ 458*eda14cbcSMatt Macy if (str[0] == '0') { \ 459*eda14cbcSMatt Macy if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \ 460*eda14cbcSMatt Macy base = 16; /* hex */ \ 461*eda14cbcSMatt Macy ptr += 2; \ 462*eda14cbcSMatt Macy } else if (str[1] >= '0' && str[1] < 8) { \ 463*eda14cbcSMatt Macy base = 8; /* octal */ \ 464*eda14cbcSMatt Macy ptr += 1; \ 465*eda14cbcSMatt Macy } else { \ 466*eda14cbcSMatt Macy return (EINVAL); \ 467*eda14cbcSMatt Macy } \ 468*eda14cbcSMatt Macy } else { \ 469*eda14cbcSMatt Macy base = 10; /* decimal */ \ 470*eda14cbcSMatt Macy } \ 471*eda14cbcSMatt Macy } \ 472*eda14cbcSMatt Macy \ 473*eda14cbcSMatt Macy while (1) { \ 474*eda14cbcSMatt Macy if (isdigit(*ptr)) \ 475*eda14cbcSMatt Macy digit = *ptr - '0'; \ 476*eda14cbcSMatt Macy else if (isalpha(*ptr)) \ 477*eda14cbcSMatt Macy digit = tolower(*ptr) - 'a' + 10; \ 478*eda14cbcSMatt Macy else \ 479*eda14cbcSMatt Macy break; \ 480*eda14cbcSMatt Macy \ 481*eda14cbcSMatt Macy if (digit >= base) \ 482*eda14cbcSMatt Macy break; \ 483*eda14cbcSMatt Macy \ 484*eda14cbcSMatt Macy last_value = value; \ 485*eda14cbcSMatt Macy value = value * base + digit; \ 486*eda14cbcSMatt Macy if (last_value > value) /* Overflow */ \ 487*eda14cbcSMatt Macy return (ERANGE); \ 488*eda14cbcSMatt Macy \ 489*eda14cbcSMatt Macy flag = 1; \ 490*eda14cbcSMatt Macy ptr++; \ 491*eda14cbcSMatt Macy } \ 492*eda14cbcSMatt Macy \ 493*eda14cbcSMatt Macy if (flag) \ 494*eda14cbcSMatt Macy *result = value; \ 495*eda14cbcSMatt Macy \ 496*eda14cbcSMatt Macy if (endptr) \ 497*eda14cbcSMatt Macy *endptr = (char *)(flag ? ptr : str); \ 498*eda14cbcSMatt Macy \ 499*eda14cbcSMatt Macy return (0); \ 500*eda14cbcSMatt Macy } \ 501*eda14cbcSMatt Macy 502*eda14cbcSMatt Macy #define define_ddi_strtox(type, valtype) \ 503*eda14cbcSMatt Macy int ddi_strto##type(const char *str, char **endptr, \ 504*eda14cbcSMatt Macy int base, valtype *result) \ 505*eda14cbcSMatt Macy { \ 506*eda14cbcSMatt Macy int rc; \ 507*eda14cbcSMatt Macy \ 508*eda14cbcSMatt Macy if (*str == '-') { \ 509*eda14cbcSMatt Macy rc = ddi_strtou##type(str + 1, endptr, base, result); \ 510*eda14cbcSMatt Macy if (!rc) { \ 511*eda14cbcSMatt Macy if (*endptr == str + 1) \ 512*eda14cbcSMatt Macy *endptr = (char *)str; \ 513*eda14cbcSMatt Macy else \ 514*eda14cbcSMatt Macy *result = -*result; \ 515*eda14cbcSMatt Macy } \ 516*eda14cbcSMatt Macy } else { \ 517*eda14cbcSMatt Macy rc = ddi_strtou##type(str, endptr, base, result); \ 518*eda14cbcSMatt Macy } \ 519*eda14cbcSMatt Macy \ 520*eda14cbcSMatt Macy return (rc); \ 521*eda14cbcSMatt Macy } 522*eda14cbcSMatt Macy 523*eda14cbcSMatt Macy define_ddi_strtoux(l, unsigned long) 524*eda14cbcSMatt Macy define_ddi_strtox(l, long) 525*eda14cbcSMatt Macy define_ddi_strtoux(ll, unsigned long long) 526*eda14cbcSMatt Macy define_ddi_strtox(ll, long long) 527*eda14cbcSMatt Macy 528*eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtoul); 529*eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtol); 530*eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtoll); 531*eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtoull); 532*eda14cbcSMatt Macy 533*eda14cbcSMatt Macy int 534*eda14cbcSMatt Macy ddi_copyin(const void *from, void *to, size_t len, int flags) 535*eda14cbcSMatt Macy { 536*eda14cbcSMatt Macy /* Fake ioctl() issued by kernel, 'from' is a kernel address */ 537*eda14cbcSMatt Macy if (flags & FKIOCTL) { 538*eda14cbcSMatt Macy memcpy(to, from, len); 539*eda14cbcSMatt Macy return (0); 540*eda14cbcSMatt Macy } 541*eda14cbcSMatt Macy 542*eda14cbcSMatt Macy return (copyin(from, to, len)); 543*eda14cbcSMatt Macy } 544*eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_copyin); 545*eda14cbcSMatt Macy 546*eda14cbcSMatt Macy int 547*eda14cbcSMatt Macy ddi_copyout(const void *from, void *to, size_t len, int flags) 548*eda14cbcSMatt Macy { 549*eda14cbcSMatt Macy /* Fake ioctl() issued by kernel, 'from' is a kernel address */ 550*eda14cbcSMatt Macy if (flags & FKIOCTL) { 551*eda14cbcSMatt Macy memcpy(to, from, len); 552*eda14cbcSMatt Macy return (0); 553*eda14cbcSMatt Macy } 554*eda14cbcSMatt Macy 555*eda14cbcSMatt Macy return (copyout(from, to, len)); 556*eda14cbcSMatt Macy } 557*eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_copyout); 558*eda14cbcSMatt Macy 559*eda14cbcSMatt Macy static ssize_t 560*eda14cbcSMatt Macy spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos) 561*eda14cbcSMatt Macy { 562*eda14cbcSMatt Macy #if defined(HAVE_KERNEL_READ_PPOS) 563*eda14cbcSMatt Macy return (kernel_read(file, buf, count, pos)); 564*eda14cbcSMatt Macy #else 565*eda14cbcSMatt Macy mm_segment_t saved_fs; 566*eda14cbcSMatt Macy ssize_t ret; 567*eda14cbcSMatt Macy 568*eda14cbcSMatt Macy saved_fs = get_fs(); 569*eda14cbcSMatt Macy set_fs(KERNEL_DS); 570*eda14cbcSMatt Macy 571*eda14cbcSMatt Macy ret = vfs_read(file, (void __user *)buf, count, pos); 572*eda14cbcSMatt Macy 573*eda14cbcSMatt Macy set_fs(saved_fs); 574*eda14cbcSMatt Macy 575*eda14cbcSMatt Macy return (ret); 576*eda14cbcSMatt Macy #endif 577*eda14cbcSMatt Macy } 578*eda14cbcSMatt Macy 579*eda14cbcSMatt Macy static int 580*eda14cbcSMatt Macy spl_getattr(struct file *filp, struct kstat *stat) 581*eda14cbcSMatt Macy { 582*eda14cbcSMatt Macy int rc; 583*eda14cbcSMatt Macy 584*eda14cbcSMatt Macy ASSERT(filp); 585*eda14cbcSMatt Macy ASSERT(stat); 586*eda14cbcSMatt Macy 587*eda14cbcSMatt Macy #if defined(HAVE_4ARGS_VFS_GETATTR) 588*eda14cbcSMatt Macy rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS, 589*eda14cbcSMatt Macy AT_STATX_SYNC_AS_STAT); 590*eda14cbcSMatt Macy #elif defined(HAVE_2ARGS_VFS_GETATTR) 591*eda14cbcSMatt Macy rc = vfs_getattr(&filp->f_path, stat); 592*eda14cbcSMatt Macy #else 593*eda14cbcSMatt Macy rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat); 594*eda14cbcSMatt Macy #endif 595*eda14cbcSMatt Macy if (rc) 596*eda14cbcSMatt Macy return (-rc); 597*eda14cbcSMatt Macy 598*eda14cbcSMatt Macy return (0); 599*eda14cbcSMatt Macy } 600*eda14cbcSMatt Macy 601*eda14cbcSMatt Macy /* 602*eda14cbcSMatt Macy * Read the unique system identifier from the /etc/hostid file. 603*eda14cbcSMatt Macy * 604*eda14cbcSMatt Macy * The behavior of /usr/bin/hostid on Linux systems with the 605*eda14cbcSMatt Macy * regular eglibc and coreutils is: 606*eda14cbcSMatt Macy * 607*eda14cbcSMatt Macy * 1. Generate the value if the /etc/hostid file does not exist 608*eda14cbcSMatt Macy * or if the /etc/hostid file is less than four bytes in size. 609*eda14cbcSMatt Macy * 610*eda14cbcSMatt Macy * 2. If the /etc/hostid file is at least 4 bytes, then return 611*eda14cbcSMatt Macy * the first four bytes [0..3] in native endian order. 612*eda14cbcSMatt Macy * 613*eda14cbcSMatt Macy * 3. Always ignore bytes [4..] if they exist in the file. 614*eda14cbcSMatt Macy * 615*eda14cbcSMatt Macy * Only the first four bytes are significant, even on systems that 616*eda14cbcSMatt Macy * have a 64-bit word size. 617*eda14cbcSMatt Macy * 618*eda14cbcSMatt Macy * See: 619*eda14cbcSMatt Macy * 620*eda14cbcSMatt Macy * eglibc: sysdeps/unix/sysv/linux/gethostid.c 621*eda14cbcSMatt Macy * coreutils: src/hostid.c 622*eda14cbcSMatt Macy * 623*eda14cbcSMatt Macy * Notes: 624*eda14cbcSMatt Macy * 625*eda14cbcSMatt Macy * The /etc/hostid file on Solaris is a text file that often reads: 626*eda14cbcSMatt Macy * 627*eda14cbcSMatt Macy * # DO NOT EDIT 628*eda14cbcSMatt Macy * "0123456789" 629*eda14cbcSMatt Macy * 630*eda14cbcSMatt Macy * Directly copying this file to Linux results in a constant 631*eda14cbcSMatt Macy * hostid of 4f442023 because the default comment constitutes 632*eda14cbcSMatt Macy * the first four bytes of the file. 633*eda14cbcSMatt Macy * 634*eda14cbcSMatt Macy */ 635*eda14cbcSMatt Macy 636*eda14cbcSMatt Macy char *spl_hostid_path = HW_HOSTID_PATH; 637*eda14cbcSMatt Macy module_param(spl_hostid_path, charp, 0444); 638*eda14cbcSMatt Macy MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)"); 639*eda14cbcSMatt Macy 640*eda14cbcSMatt Macy static int 641*eda14cbcSMatt Macy hostid_read(uint32_t *hostid) 642*eda14cbcSMatt Macy { 643*eda14cbcSMatt Macy uint64_t size; 644*eda14cbcSMatt Macy uint32_t value = 0; 645*eda14cbcSMatt Macy int error; 646*eda14cbcSMatt Macy loff_t off; 647*eda14cbcSMatt Macy struct file *filp; 648*eda14cbcSMatt Macy struct kstat stat; 649*eda14cbcSMatt Macy 650*eda14cbcSMatt Macy filp = filp_open(spl_hostid_path, 0, 0); 651*eda14cbcSMatt Macy 652*eda14cbcSMatt Macy if (IS_ERR(filp)) 653*eda14cbcSMatt Macy return (ENOENT); 654*eda14cbcSMatt Macy 655*eda14cbcSMatt Macy error = spl_getattr(filp, &stat); 656*eda14cbcSMatt Macy if (error) { 657*eda14cbcSMatt Macy filp_close(filp, 0); 658*eda14cbcSMatt Macy return (error); 659*eda14cbcSMatt Macy } 660*eda14cbcSMatt Macy size = stat.size; 661*eda14cbcSMatt Macy if (size < sizeof (HW_HOSTID_MASK)) { 662*eda14cbcSMatt Macy filp_close(filp, 0); 663*eda14cbcSMatt Macy return (EINVAL); 664*eda14cbcSMatt Macy } 665*eda14cbcSMatt Macy 666*eda14cbcSMatt Macy off = 0; 667*eda14cbcSMatt Macy /* 668*eda14cbcSMatt Macy * Read directly into the variable like eglibc does. 669*eda14cbcSMatt Macy * Short reads are okay; native behavior is preserved. 670*eda14cbcSMatt Macy */ 671*eda14cbcSMatt Macy error = spl_kernel_read(filp, &value, sizeof (value), &off); 672*eda14cbcSMatt Macy if (error < 0) { 673*eda14cbcSMatt Macy filp_close(filp, 0); 674*eda14cbcSMatt Macy return (EIO); 675*eda14cbcSMatt Macy } 676*eda14cbcSMatt Macy 677*eda14cbcSMatt Macy /* Mask down to 32 bits like coreutils does. */ 678*eda14cbcSMatt Macy *hostid = (value & HW_HOSTID_MASK); 679*eda14cbcSMatt Macy filp_close(filp, 0); 680*eda14cbcSMatt Macy 681*eda14cbcSMatt Macy return (0); 682*eda14cbcSMatt Macy } 683*eda14cbcSMatt Macy 684*eda14cbcSMatt Macy /* 685*eda14cbcSMatt Macy * Return the system hostid. Preferentially use the spl_hostid module option 686*eda14cbcSMatt Macy * when set, otherwise use the value in the /etc/hostid file. 687*eda14cbcSMatt Macy */ 688*eda14cbcSMatt Macy uint32_t 689*eda14cbcSMatt Macy zone_get_hostid(void *zone) 690*eda14cbcSMatt Macy { 691*eda14cbcSMatt Macy uint32_t hostid; 692*eda14cbcSMatt Macy 693*eda14cbcSMatt Macy ASSERT3P(zone, ==, NULL); 694*eda14cbcSMatt Macy 695*eda14cbcSMatt Macy if (spl_hostid != 0) 696*eda14cbcSMatt Macy return ((uint32_t)(spl_hostid & HW_HOSTID_MASK)); 697*eda14cbcSMatt Macy 698*eda14cbcSMatt Macy if (hostid_read(&hostid) == 0) 699*eda14cbcSMatt Macy return (hostid); 700*eda14cbcSMatt Macy 701*eda14cbcSMatt Macy return (0); 702*eda14cbcSMatt Macy } 703*eda14cbcSMatt Macy EXPORT_SYMBOL(zone_get_hostid); 704*eda14cbcSMatt Macy 705*eda14cbcSMatt Macy static int 706*eda14cbcSMatt Macy spl_kvmem_init(void) 707*eda14cbcSMatt Macy { 708*eda14cbcSMatt Macy int rc = 0; 709*eda14cbcSMatt Macy 710*eda14cbcSMatt Macy rc = spl_kmem_init(); 711*eda14cbcSMatt Macy if (rc) 712*eda14cbcSMatt Macy return (rc); 713*eda14cbcSMatt Macy 714*eda14cbcSMatt Macy rc = spl_vmem_init(); 715*eda14cbcSMatt Macy if (rc) { 716*eda14cbcSMatt Macy spl_kmem_fini(); 717*eda14cbcSMatt Macy return (rc); 718*eda14cbcSMatt Macy } 719*eda14cbcSMatt Macy 720*eda14cbcSMatt Macy return (rc); 721*eda14cbcSMatt Macy } 722*eda14cbcSMatt Macy 723*eda14cbcSMatt Macy /* 724*eda14cbcSMatt Macy * We initialize the random number generator with 128 bits of entropy from the 725*eda14cbcSMatt Macy * system random number generator. In the improbable case that we have a zero 726*eda14cbcSMatt Macy * seed, we fallback to the system jiffies, unless it is also zero, in which 727*eda14cbcSMatt Macy * situation we use a preprogrammed seed. We step forward by 2^64 iterations to 728*eda14cbcSMatt Macy * initialize each of the per-cpu seeds so that the sequences generated on each 729*eda14cbcSMatt Macy * CPU are guaranteed to never overlap in practice. 730*eda14cbcSMatt Macy */ 731*eda14cbcSMatt Macy static void __init 732*eda14cbcSMatt Macy spl_random_init(void) 733*eda14cbcSMatt Macy { 734*eda14cbcSMatt Macy uint64_t s[2]; 735*eda14cbcSMatt Macy int i = 0; 736*eda14cbcSMatt Macy 737*eda14cbcSMatt Macy spl_pseudo_entropy = __alloc_percpu(2 * sizeof (uint64_t), 738*eda14cbcSMatt Macy sizeof (uint64_t)); 739*eda14cbcSMatt Macy 740*eda14cbcSMatt Macy get_random_bytes(s, sizeof (s)); 741*eda14cbcSMatt Macy 742*eda14cbcSMatt Macy if (s[0] == 0 && s[1] == 0) { 743*eda14cbcSMatt Macy if (jiffies != 0) { 744*eda14cbcSMatt Macy s[0] = jiffies; 745*eda14cbcSMatt Macy s[1] = ~0 - jiffies; 746*eda14cbcSMatt Macy } else { 747*eda14cbcSMatt Macy (void) memcpy(s, "improbable seed", sizeof (s)); 748*eda14cbcSMatt Macy } 749*eda14cbcSMatt Macy printk("SPL: get_random_bytes() returned 0 " 750*eda14cbcSMatt Macy "when generating random seed. Setting initial seed to " 751*eda14cbcSMatt Macy "0x%016llx%016llx.\n", cpu_to_be64(s[0]), 752*eda14cbcSMatt Macy cpu_to_be64(s[1])); 753*eda14cbcSMatt Macy } 754*eda14cbcSMatt Macy 755*eda14cbcSMatt Macy for_each_possible_cpu(i) { 756*eda14cbcSMatt Macy uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i); 757*eda14cbcSMatt Macy 758*eda14cbcSMatt Macy spl_rand_jump(s); 759*eda14cbcSMatt Macy 760*eda14cbcSMatt Macy wordp[0] = s[0]; 761*eda14cbcSMatt Macy wordp[1] = s[1]; 762*eda14cbcSMatt Macy } 763*eda14cbcSMatt Macy } 764*eda14cbcSMatt Macy 765*eda14cbcSMatt Macy static void 766*eda14cbcSMatt Macy spl_random_fini(void) 767*eda14cbcSMatt Macy { 768*eda14cbcSMatt Macy free_percpu(spl_pseudo_entropy); 769*eda14cbcSMatt Macy } 770*eda14cbcSMatt Macy 771*eda14cbcSMatt Macy static void 772*eda14cbcSMatt Macy spl_kvmem_fini(void) 773*eda14cbcSMatt Macy { 774*eda14cbcSMatt Macy spl_vmem_fini(); 775*eda14cbcSMatt Macy spl_kmem_fini(); 776*eda14cbcSMatt Macy } 777*eda14cbcSMatt Macy 778*eda14cbcSMatt Macy static int __init 779*eda14cbcSMatt Macy spl_init(void) 780*eda14cbcSMatt Macy { 781*eda14cbcSMatt Macy int rc = 0; 782*eda14cbcSMatt Macy 783*eda14cbcSMatt Macy bzero(&p0, sizeof (proc_t)); 784*eda14cbcSMatt Macy spl_random_init(); 785*eda14cbcSMatt Macy 786*eda14cbcSMatt Macy if ((rc = spl_kvmem_init())) 787*eda14cbcSMatt Macy goto out1; 788*eda14cbcSMatt Macy 789*eda14cbcSMatt Macy if ((rc = spl_tsd_init())) 790*eda14cbcSMatt Macy goto out2; 791*eda14cbcSMatt Macy 792*eda14cbcSMatt Macy if ((rc = spl_taskq_init())) 793*eda14cbcSMatt Macy goto out3; 794*eda14cbcSMatt Macy 795*eda14cbcSMatt Macy if ((rc = spl_kmem_cache_init())) 796*eda14cbcSMatt Macy goto out4; 797*eda14cbcSMatt Macy 798*eda14cbcSMatt Macy if ((rc = spl_proc_init())) 799*eda14cbcSMatt Macy goto out5; 800*eda14cbcSMatt Macy 801*eda14cbcSMatt Macy if ((rc = spl_kstat_init())) 802*eda14cbcSMatt Macy goto out6; 803*eda14cbcSMatt Macy 804*eda14cbcSMatt Macy if ((rc = spl_zlib_init())) 805*eda14cbcSMatt Macy goto out7; 806*eda14cbcSMatt Macy 807*eda14cbcSMatt Macy return (rc); 808*eda14cbcSMatt Macy 809*eda14cbcSMatt Macy out7: 810*eda14cbcSMatt Macy spl_kstat_fini(); 811*eda14cbcSMatt Macy out6: 812*eda14cbcSMatt Macy spl_proc_fini(); 813*eda14cbcSMatt Macy out5: 814*eda14cbcSMatt Macy spl_kmem_cache_fini(); 815*eda14cbcSMatt Macy out4: 816*eda14cbcSMatt Macy spl_taskq_fini(); 817*eda14cbcSMatt Macy out3: 818*eda14cbcSMatt Macy spl_tsd_fini(); 819*eda14cbcSMatt Macy out2: 820*eda14cbcSMatt Macy spl_kvmem_fini(); 821*eda14cbcSMatt Macy out1: 822*eda14cbcSMatt Macy return (rc); 823*eda14cbcSMatt Macy } 824*eda14cbcSMatt Macy 825*eda14cbcSMatt Macy static void __exit 826*eda14cbcSMatt Macy spl_fini(void) 827*eda14cbcSMatt Macy { 828*eda14cbcSMatt Macy spl_zlib_fini(); 829*eda14cbcSMatt Macy spl_kstat_fini(); 830*eda14cbcSMatt Macy spl_proc_fini(); 831*eda14cbcSMatt Macy spl_kmem_cache_fini(); 832*eda14cbcSMatt Macy spl_taskq_fini(); 833*eda14cbcSMatt Macy spl_tsd_fini(); 834*eda14cbcSMatt Macy spl_kvmem_fini(); 835*eda14cbcSMatt Macy spl_random_fini(); 836*eda14cbcSMatt Macy } 837*eda14cbcSMatt Macy 838*eda14cbcSMatt Macy module_init(spl_init); 839*eda14cbcSMatt Macy module_exit(spl_fini); 840*eda14cbcSMatt Macy 841*eda14cbcSMatt Macy ZFS_MODULE_DESCRIPTION("Solaris Porting Layer"); 842*eda14cbcSMatt Macy ZFS_MODULE_AUTHOR(ZFS_META_AUTHOR); 843*eda14cbcSMatt Macy ZFS_MODULE_LICENSE("GPL"); 844*eda14cbcSMatt Macy ZFS_MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE); 845