1eda14cbcSMatt Macy /* 2eda14cbcSMatt Macy * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3eda14cbcSMatt Macy * Copyright (C) 2007 The Regents of the University of California. 4eda14cbcSMatt Macy * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5eda14cbcSMatt Macy * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6eda14cbcSMatt Macy * UCRL-CODE-235197 7eda14cbcSMatt Macy * 8eda14cbcSMatt Macy * This file is part of the SPL, Solaris Porting Layer. 9eda14cbcSMatt Macy * 10eda14cbcSMatt Macy * The SPL is free software; you can redistribute it and/or modify it 11eda14cbcSMatt Macy * under the terms of the GNU General Public License as published by the 12eda14cbcSMatt Macy * Free Software Foundation; either version 2 of the License, or (at your 13eda14cbcSMatt Macy * option) any later version. 14eda14cbcSMatt Macy * 15eda14cbcSMatt Macy * The SPL is distributed in the hope that it will be useful, but WITHOUT 16eda14cbcSMatt Macy * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17eda14cbcSMatt Macy * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18eda14cbcSMatt Macy * for more details. 19eda14cbcSMatt Macy * 20eda14cbcSMatt Macy * You should have received a copy of the GNU General Public License along 21eda14cbcSMatt Macy * with the SPL. If not, see <http://www.gnu.org/licenses/>. 22eda14cbcSMatt Macy * 23eda14cbcSMatt Macy * Solaris Porting Layer (SPL) Generic Implementation. 24eda14cbcSMatt Macy */ 25eda14cbcSMatt Macy 26eda14cbcSMatt Macy #include <sys/sysmacros.h> 27eda14cbcSMatt Macy #include <sys/systeminfo.h> 28eda14cbcSMatt Macy #include <sys/vmsystm.h> 29eda14cbcSMatt Macy #include <sys/kmem.h> 30eda14cbcSMatt Macy #include <sys/kmem_cache.h> 31eda14cbcSMatt Macy #include <sys/vmem.h> 32eda14cbcSMatt Macy #include <sys/mutex.h> 33eda14cbcSMatt Macy #include <sys/rwlock.h> 34eda14cbcSMatt Macy #include <sys/taskq.h> 35eda14cbcSMatt Macy #include <sys/tsd.h> 36eda14cbcSMatt Macy #include <sys/zmod.h> 37eda14cbcSMatt Macy #include <sys/debug.h> 38eda14cbcSMatt Macy #include <sys/proc.h> 39eda14cbcSMatt Macy #include <sys/kstat.h> 40eda14cbcSMatt Macy #include <sys/file.h> 41eda14cbcSMatt Macy #include <sys/sunddi.h> 42eda14cbcSMatt Macy #include <linux/ctype.h> 43eda14cbcSMatt Macy #include <sys/disp.h> 44eda14cbcSMatt Macy #include <sys/random.h> 45eda14cbcSMatt Macy #include <sys/strings.h> 46eda14cbcSMatt Macy #include <linux/kmod.h> 47eda14cbcSMatt Macy #include <linux/mod_compat.h> 48eda14cbcSMatt Macy #include <sys/cred.h> 49eda14cbcSMatt Macy #include <sys/vnode.h> 50eda14cbcSMatt Macy 51eda14cbcSMatt Macy /* BEGIN CSTYLED */ 52eda14cbcSMatt Macy unsigned long spl_hostid = 0; 53eda14cbcSMatt Macy EXPORT_SYMBOL(spl_hostid); 54*e92ffd9bSMartin Matuska 55eda14cbcSMatt Macy module_param(spl_hostid, ulong, 0644); 56eda14cbcSMatt Macy MODULE_PARM_DESC(spl_hostid, "The system hostid."); 57eda14cbcSMatt Macy /* END CSTYLED */ 58eda14cbcSMatt Macy 59eda14cbcSMatt Macy proc_t p0; 60eda14cbcSMatt Macy EXPORT_SYMBOL(p0); 61eda14cbcSMatt Macy 62eda14cbcSMatt Macy /* 63eda14cbcSMatt Macy * Xorshift Pseudo Random Number Generator based on work by Sebastiano Vigna 64eda14cbcSMatt Macy * 65eda14cbcSMatt Macy * "Further scramblings of Marsaglia's xorshift generators" 66eda14cbcSMatt Macy * http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf 67eda14cbcSMatt Macy * 68eda14cbcSMatt Macy * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose 69eda14cbcSMatt Macy * is to provide bytes containing random numbers. It is mapped to /dev/urandom 70eda14cbcSMatt Macy * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's 71eda14cbcSMatt Macy * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so 72eda14cbcSMatt Macy * we can implement it using a fast PRNG that we seed using Linux' actual 73eda14cbcSMatt Macy * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU 74eda14cbcSMatt Macy * with an independent seed so that all calls to random_get_pseudo_bytes() are 75eda14cbcSMatt Macy * free of atomic instructions. 76eda14cbcSMatt Macy * 77eda14cbcSMatt Macy * A consequence of using a fast PRNG is that using random_get_pseudo_bytes() 78eda14cbcSMatt Macy * to generate words larger than 128 bits will paradoxically be limited to 79eda14cbcSMatt Macy * `2^128 - 1` possibilities. This is because we have a sequence of `2^128 - 1` 80eda14cbcSMatt Macy * 128-bit words and selecting the first will implicitly select the second. If 81eda14cbcSMatt Macy * a caller finds this behavior undesirable, random_get_bytes() should be used 82eda14cbcSMatt Macy * instead. 83eda14cbcSMatt Macy * 84eda14cbcSMatt Macy * XXX: Linux interrupt handlers that trigger within the critical section 85eda14cbcSMatt Macy * formed by `s[1] = xp[1];` and `xp[0] = s[0];` and call this function will 86eda14cbcSMatt Macy * see the same numbers. Nothing in the code currently calls this in an 87eda14cbcSMatt Macy * interrupt handler, so this is considered to be okay. If that becomes a 88eda14cbcSMatt Macy * problem, we could create a set of per-cpu variables for interrupt handlers 89eda14cbcSMatt Macy * and use them when in_interrupt() from linux/preempt_mask.h evaluates to 90eda14cbcSMatt Macy * true. 91eda14cbcSMatt Macy */ 92eda14cbcSMatt Macy void __percpu *spl_pseudo_entropy; 93eda14cbcSMatt Macy 94eda14cbcSMatt Macy /* 95eda14cbcSMatt Macy * spl_rand_next()/spl_rand_jump() are copied from the following CC-0 licensed 96eda14cbcSMatt Macy * file: 97eda14cbcSMatt Macy * 98eda14cbcSMatt Macy * http://xorshift.di.unimi.it/xorshift128plus.c 99eda14cbcSMatt Macy */ 100eda14cbcSMatt Macy 101eda14cbcSMatt Macy static inline uint64_t 102eda14cbcSMatt Macy spl_rand_next(uint64_t *s) 103eda14cbcSMatt Macy { 104eda14cbcSMatt Macy uint64_t s1 = s[0]; 105eda14cbcSMatt Macy const uint64_t s0 = s[1]; 106eda14cbcSMatt Macy s[0] = s0; 107eda14cbcSMatt Macy s1 ^= s1 << 23; // a 108eda14cbcSMatt Macy s[1] = s1 ^ s0 ^ (s1 >> 18) ^ (s0 >> 5); // b, c 109eda14cbcSMatt Macy return (s[1] + s0); 110eda14cbcSMatt Macy } 111eda14cbcSMatt Macy 112eda14cbcSMatt Macy static inline void 113eda14cbcSMatt Macy spl_rand_jump(uint64_t *s) 114eda14cbcSMatt Macy { 115eda14cbcSMatt Macy static const uint64_t JUMP[] = 116eda14cbcSMatt Macy { 0x8a5cd789635d2dff, 0x121fd2155c472f96 }; 117eda14cbcSMatt Macy 118eda14cbcSMatt Macy uint64_t s0 = 0; 119eda14cbcSMatt Macy uint64_t s1 = 0; 120eda14cbcSMatt Macy int i, b; 121eda14cbcSMatt Macy for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++) 122eda14cbcSMatt Macy for (b = 0; b < 64; b++) { 123eda14cbcSMatt Macy if (JUMP[i] & 1ULL << b) { 124eda14cbcSMatt Macy s0 ^= s[0]; 125eda14cbcSMatt Macy s1 ^= s[1]; 126eda14cbcSMatt Macy } 127eda14cbcSMatt Macy (void) spl_rand_next(s); 128eda14cbcSMatt Macy } 129eda14cbcSMatt Macy 130eda14cbcSMatt Macy s[0] = s0; 131eda14cbcSMatt Macy s[1] = s1; 132eda14cbcSMatt Macy } 133eda14cbcSMatt Macy 134eda14cbcSMatt Macy int 135eda14cbcSMatt Macy random_get_pseudo_bytes(uint8_t *ptr, size_t len) 136eda14cbcSMatt Macy { 137eda14cbcSMatt Macy uint64_t *xp, s[2]; 138eda14cbcSMatt Macy 139eda14cbcSMatt Macy ASSERT(ptr); 140eda14cbcSMatt Macy 141eda14cbcSMatt Macy xp = get_cpu_ptr(spl_pseudo_entropy); 142eda14cbcSMatt Macy 143eda14cbcSMatt Macy s[0] = xp[0]; 144eda14cbcSMatt Macy s[1] = xp[1]; 145eda14cbcSMatt Macy 146eda14cbcSMatt Macy while (len) { 147eda14cbcSMatt Macy union { 148eda14cbcSMatt Macy uint64_t ui64; 149eda14cbcSMatt Macy uint8_t byte[sizeof (uint64_t)]; 150eda14cbcSMatt Macy }entropy; 151eda14cbcSMatt Macy int i = MIN(len, sizeof (uint64_t)); 152eda14cbcSMatt Macy 153eda14cbcSMatt Macy len -= i; 154eda14cbcSMatt Macy entropy.ui64 = spl_rand_next(s); 155eda14cbcSMatt Macy 156eda14cbcSMatt Macy while (i--) 157eda14cbcSMatt Macy *ptr++ = entropy.byte[i]; 158eda14cbcSMatt Macy } 159eda14cbcSMatt Macy 160eda14cbcSMatt Macy xp[0] = s[0]; 161eda14cbcSMatt Macy xp[1] = s[1]; 162eda14cbcSMatt Macy 163eda14cbcSMatt Macy put_cpu_ptr(spl_pseudo_entropy); 164eda14cbcSMatt Macy 165eda14cbcSMatt Macy return (0); 166eda14cbcSMatt Macy } 167eda14cbcSMatt Macy 168eda14cbcSMatt Macy 169eda14cbcSMatt Macy EXPORT_SYMBOL(random_get_pseudo_bytes); 170eda14cbcSMatt Macy 171eda14cbcSMatt Macy #if BITS_PER_LONG == 32 172eda14cbcSMatt Macy 173eda14cbcSMatt Macy /* 174eda14cbcSMatt Macy * Support 64/64 => 64 division on a 32-bit platform. While the kernel 175eda14cbcSMatt Macy * provides a div64_u64() function for this we do not use it because the 176eda14cbcSMatt Macy * implementation is flawed. There are cases which return incorrect 177eda14cbcSMatt Macy * results as late as linux-2.6.35. Until this is fixed upstream the 178eda14cbcSMatt Macy * spl must provide its own implementation. 179eda14cbcSMatt Macy * 180eda14cbcSMatt Macy * This implementation is a slightly modified version of the algorithm 181eda14cbcSMatt Macy * proposed by the book 'Hacker's Delight'. The original source can be 182eda14cbcSMatt Macy * found here and is available for use without restriction. 183eda14cbcSMatt Macy * 184eda14cbcSMatt Macy * http://www.hackersdelight.org/HDcode/newCode/divDouble.c 185eda14cbcSMatt Macy */ 186eda14cbcSMatt Macy 187eda14cbcSMatt Macy /* 188eda14cbcSMatt Macy * Calculate number of leading of zeros for a 64-bit value. 189eda14cbcSMatt Macy */ 190eda14cbcSMatt Macy static int 191eda14cbcSMatt Macy nlz64(uint64_t x) 192eda14cbcSMatt Macy { 193eda14cbcSMatt Macy register int n = 0; 194eda14cbcSMatt Macy 195eda14cbcSMatt Macy if (x == 0) 196eda14cbcSMatt Macy return (64); 197eda14cbcSMatt Macy 198eda14cbcSMatt Macy if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; } 199eda14cbcSMatt Macy if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; } 200eda14cbcSMatt Macy if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n + 8; x = x << 8; } 201eda14cbcSMatt Macy if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n + 4; x = x << 4; } 202eda14cbcSMatt Macy if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n + 2; x = x << 2; } 203eda14cbcSMatt Macy if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n + 1; } 204eda14cbcSMatt Macy 205eda14cbcSMatt Macy return (n); 206eda14cbcSMatt Macy } 207eda14cbcSMatt Macy 208eda14cbcSMatt Macy /* 209eda14cbcSMatt Macy * Newer kernels have a div_u64() function but we define our own 210eda14cbcSMatt Macy * to simplify portability between kernel versions. 211eda14cbcSMatt Macy */ 212eda14cbcSMatt Macy static inline uint64_t 213eda14cbcSMatt Macy __div_u64(uint64_t u, uint32_t v) 214eda14cbcSMatt Macy { 215eda14cbcSMatt Macy (void) do_div(u, v); 216eda14cbcSMatt Macy return (u); 217eda14cbcSMatt Macy } 218eda14cbcSMatt Macy 219eda14cbcSMatt Macy /* 220eda14cbcSMatt Macy * Turn off missing prototypes warning for these functions. They are 221eda14cbcSMatt Macy * replacements for libgcc-provided functions and will never be called 222eda14cbcSMatt Macy * directly. 223eda14cbcSMatt Macy */ 224eda14cbcSMatt Macy #pragma GCC diagnostic push 225eda14cbcSMatt Macy #pragma GCC diagnostic ignored "-Wmissing-prototypes" 226eda14cbcSMatt Macy 227eda14cbcSMatt Macy /* 228eda14cbcSMatt Macy * Implementation of 64-bit unsigned division for 32-bit machines. 229eda14cbcSMatt Macy * 230eda14cbcSMatt Macy * First the procedure takes care of the case in which the divisor is a 231eda14cbcSMatt Macy * 32-bit quantity. There are two subcases: (1) If the left half of the 232eda14cbcSMatt Macy * dividend is less than the divisor, one execution of do_div() is all that 233eda14cbcSMatt Macy * is required (overflow is not possible). (2) Otherwise it does two 234eda14cbcSMatt Macy * divisions, using the grade school method. 235eda14cbcSMatt Macy */ 236eda14cbcSMatt Macy uint64_t 237eda14cbcSMatt Macy __udivdi3(uint64_t u, uint64_t v) 238eda14cbcSMatt Macy { 239eda14cbcSMatt Macy uint64_t u0, u1, v1, q0, q1, k; 240eda14cbcSMatt Macy int n; 241eda14cbcSMatt Macy 242eda14cbcSMatt Macy if (v >> 32 == 0) { // If v < 2**32: 243eda14cbcSMatt Macy if (u >> 32 < v) { // If u/v cannot overflow, 244eda14cbcSMatt Macy return (__div_u64(u, v)); // just do one division. 245eda14cbcSMatt Macy } else { // If u/v would overflow: 246eda14cbcSMatt Macy u1 = u >> 32; // Break u into two halves. 247eda14cbcSMatt Macy u0 = u & 0xFFFFFFFF; 248eda14cbcSMatt Macy q1 = __div_u64(u1, v); // First quotient digit. 249eda14cbcSMatt Macy k = u1 - q1 * v; // First remainder, < v. 250eda14cbcSMatt Macy u0 += (k << 32); 251eda14cbcSMatt Macy q0 = __div_u64(u0, v); // Seconds quotient digit. 252eda14cbcSMatt Macy return ((q1 << 32) + q0); 253eda14cbcSMatt Macy } 254eda14cbcSMatt Macy } else { // If v >= 2**32: 255eda14cbcSMatt Macy n = nlz64(v); // 0 <= n <= 31. 256eda14cbcSMatt Macy v1 = (v << n) >> 32; // Normalize divisor, MSB is 1. 257eda14cbcSMatt Macy u1 = u >> 1; // To ensure no overflow. 258eda14cbcSMatt Macy q1 = __div_u64(u1, v1); // Get quotient from 259eda14cbcSMatt Macy q0 = (q1 << n) >> 31; // Undo normalization and 260eda14cbcSMatt Macy // division of u by 2. 261eda14cbcSMatt Macy if (q0 != 0) // Make q0 correct or 262eda14cbcSMatt Macy q0 = q0 - 1; // too small by 1. 263eda14cbcSMatt Macy if ((u - q0 * v) >= v) 264eda14cbcSMatt Macy q0 = q0 + 1; // Now q0 is correct. 265eda14cbcSMatt Macy 266eda14cbcSMatt Macy return (q0); 267eda14cbcSMatt Macy } 268eda14cbcSMatt Macy } 269eda14cbcSMatt Macy EXPORT_SYMBOL(__udivdi3); 270eda14cbcSMatt Macy 271eda14cbcSMatt Macy /* BEGIN CSTYLED */ 272eda14cbcSMatt Macy #ifndef abs64 273eda14cbcSMatt Macy #define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; }) 274eda14cbcSMatt Macy #endif 275eda14cbcSMatt Macy /* END CSTYLED */ 276eda14cbcSMatt Macy 277eda14cbcSMatt Macy /* 278eda14cbcSMatt Macy * Implementation of 64-bit signed division for 32-bit machines. 279eda14cbcSMatt Macy */ 280eda14cbcSMatt Macy int64_t 281eda14cbcSMatt Macy __divdi3(int64_t u, int64_t v) 282eda14cbcSMatt Macy { 283eda14cbcSMatt Macy int64_t q, t; 284eda14cbcSMatt Macy q = __udivdi3(abs64(u), abs64(v)); 285eda14cbcSMatt Macy t = (u ^ v) >> 63; // If u, v have different 286eda14cbcSMatt Macy return ((q ^ t) - t); // signs, negate q. 287eda14cbcSMatt Macy } 288eda14cbcSMatt Macy EXPORT_SYMBOL(__divdi3); 289eda14cbcSMatt Macy 290eda14cbcSMatt Macy /* 291eda14cbcSMatt Macy * Implementation of 64-bit unsigned modulo for 32-bit machines. 292eda14cbcSMatt Macy */ 293eda14cbcSMatt Macy uint64_t 294eda14cbcSMatt Macy __umoddi3(uint64_t dividend, uint64_t divisor) 295eda14cbcSMatt Macy { 296eda14cbcSMatt Macy return (dividend - (divisor * __udivdi3(dividend, divisor))); 297eda14cbcSMatt Macy } 298eda14cbcSMatt Macy EXPORT_SYMBOL(__umoddi3); 299eda14cbcSMatt Macy 300eda14cbcSMatt Macy /* 64-bit signed modulo for 32-bit machines. */ 301eda14cbcSMatt Macy int64_t 302eda14cbcSMatt Macy __moddi3(int64_t n, int64_t d) 303eda14cbcSMatt Macy { 304eda14cbcSMatt Macy int64_t q; 305eda14cbcSMatt Macy boolean_t nn = B_FALSE; 306eda14cbcSMatt Macy 307eda14cbcSMatt Macy if (n < 0) { 308eda14cbcSMatt Macy nn = B_TRUE; 309eda14cbcSMatt Macy n = -n; 310eda14cbcSMatt Macy } 311eda14cbcSMatt Macy if (d < 0) 312eda14cbcSMatt Macy d = -d; 313eda14cbcSMatt Macy 314eda14cbcSMatt Macy q = __umoddi3(n, d); 315eda14cbcSMatt Macy 316eda14cbcSMatt Macy return (nn ? -q : q); 317eda14cbcSMatt Macy } 318eda14cbcSMatt Macy EXPORT_SYMBOL(__moddi3); 319eda14cbcSMatt Macy 320eda14cbcSMatt Macy /* 321eda14cbcSMatt Macy * Implementation of 64-bit unsigned division/modulo for 32-bit machines. 322eda14cbcSMatt Macy */ 323eda14cbcSMatt Macy uint64_t 324eda14cbcSMatt Macy __udivmoddi4(uint64_t n, uint64_t d, uint64_t *r) 325eda14cbcSMatt Macy { 326eda14cbcSMatt Macy uint64_t q = __udivdi3(n, d); 327eda14cbcSMatt Macy if (r) 328eda14cbcSMatt Macy *r = n - d * q; 329eda14cbcSMatt Macy return (q); 330eda14cbcSMatt Macy } 331eda14cbcSMatt Macy EXPORT_SYMBOL(__udivmoddi4); 332eda14cbcSMatt Macy 333eda14cbcSMatt Macy /* 334eda14cbcSMatt Macy * Implementation of 64-bit signed division/modulo for 32-bit machines. 335eda14cbcSMatt Macy */ 336eda14cbcSMatt Macy int64_t 337eda14cbcSMatt Macy __divmoddi4(int64_t n, int64_t d, int64_t *r) 338eda14cbcSMatt Macy { 339eda14cbcSMatt Macy int64_t q, rr; 340eda14cbcSMatt Macy boolean_t nn = B_FALSE; 341eda14cbcSMatt Macy boolean_t nd = B_FALSE; 342eda14cbcSMatt Macy if (n < 0) { 343eda14cbcSMatt Macy nn = B_TRUE; 344eda14cbcSMatt Macy n = -n; 345eda14cbcSMatt Macy } 346eda14cbcSMatt Macy if (d < 0) { 347eda14cbcSMatt Macy nd = B_TRUE; 348eda14cbcSMatt Macy d = -d; 349eda14cbcSMatt Macy } 350eda14cbcSMatt Macy 351eda14cbcSMatt Macy q = __udivmoddi4(n, d, (uint64_t *)&rr); 352eda14cbcSMatt Macy 353eda14cbcSMatt Macy if (nn != nd) 354eda14cbcSMatt Macy q = -q; 355eda14cbcSMatt Macy if (nn) 356eda14cbcSMatt Macy rr = -rr; 357eda14cbcSMatt Macy if (r) 358eda14cbcSMatt Macy *r = rr; 359eda14cbcSMatt Macy return (q); 360eda14cbcSMatt Macy } 361eda14cbcSMatt Macy EXPORT_SYMBOL(__divmoddi4); 362eda14cbcSMatt Macy 363eda14cbcSMatt Macy #if defined(__arm) || defined(__arm__) 364eda14cbcSMatt Macy /* 365eda14cbcSMatt Macy * Implementation of 64-bit (un)signed division for 32-bit arm machines. 366eda14cbcSMatt Macy * 367eda14cbcSMatt Macy * Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned) 368eda14cbcSMatt Macy * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1}, 369eda14cbcSMatt Macy * and the remainder in {r2, r3}. The return type is specifically left 370eda14cbcSMatt Macy * set to 'void' to ensure the compiler does not overwrite these registers 371eda14cbcSMatt Macy * during the return. All results are in registers as per ABI 372eda14cbcSMatt Macy */ 373eda14cbcSMatt Macy void 374eda14cbcSMatt Macy __aeabi_uldivmod(uint64_t u, uint64_t v) 375eda14cbcSMatt Macy { 376eda14cbcSMatt Macy uint64_t res; 377eda14cbcSMatt Macy uint64_t mod; 378eda14cbcSMatt Macy 379eda14cbcSMatt Macy res = __udivdi3(u, v); 380eda14cbcSMatt Macy mod = __umoddi3(u, v); 381eda14cbcSMatt Macy { 382eda14cbcSMatt Macy register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); 383eda14cbcSMatt Macy register uint32_t r1 asm("r1") = (res >> 32); 384eda14cbcSMatt Macy register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); 385eda14cbcSMatt Macy register uint32_t r3 asm("r3") = (mod >> 32); 386eda14cbcSMatt Macy 387eda14cbcSMatt Macy /* BEGIN CSTYLED */ 388eda14cbcSMatt Macy asm volatile("" 389eda14cbcSMatt Macy : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */ 390eda14cbcSMatt Macy : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ 391eda14cbcSMatt Macy /* END CSTYLED */ 392eda14cbcSMatt Macy 393eda14cbcSMatt Macy return; /* r0; */ 394eda14cbcSMatt Macy } 395eda14cbcSMatt Macy } 396eda14cbcSMatt Macy EXPORT_SYMBOL(__aeabi_uldivmod); 397eda14cbcSMatt Macy 398eda14cbcSMatt Macy void 399eda14cbcSMatt Macy __aeabi_ldivmod(int64_t u, int64_t v) 400eda14cbcSMatt Macy { 401eda14cbcSMatt Macy int64_t res; 402eda14cbcSMatt Macy uint64_t mod; 403eda14cbcSMatt Macy 404eda14cbcSMatt Macy res = __divdi3(u, v); 405eda14cbcSMatt Macy mod = __umoddi3(u, v); 406eda14cbcSMatt Macy { 407eda14cbcSMatt Macy register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); 408eda14cbcSMatt Macy register uint32_t r1 asm("r1") = (res >> 32); 409eda14cbcSMatt Macy register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); 410eda14cbcSMatt Macy register uint32_t r3 asm("r3") = (mod >> 32); 411eda14cbcSMatt Macy 412eda14cbcSMatt Macy /* BEGIN CSTYLED */ 413eda14cbcSMatt Macy asm volatile("" 414eda14cbcSMatt Macy : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */ 415eda14cbcSMatt Macy : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ 416eda14cbcSMatt Macy /* END CSTYLED */ 417eda14cbcSMatt Macy 418eda14cbcSMatt Macy return; /* r0; */ 419eda14cbcSMatt Macy } 420eda14cbcSMatt Macy } 421eda14cbcSMatt Macy EXPORT_SYMBOL(__aeabi_ldivmod); 422eda14cbcSMatt Macy #endif /* __arm || __arm__ */ 423eda14cbcSMatt Macy 424eda14cbcSMatt Macy #pragma GCC diagnostic pop 425eda14cbcSMatt Macy 426eda14cbcSMatt Macy #endif /* BITS_PER_LONG */ 427eda14cbcSMatt Macy 428eda14cbcSMatt Macy /* 429eda14cbcSMatt Macy * NOTE: The strtoxx behavior is solely based on my reading of the Solaris 430eda14cbcSMatt Macy * ddi_strtol(9F) man page. I have not verified the behavior of these 431eda14cbcSMatt Macy * functions against their Solaris counterparts. It is possible that I 432eda14cbcSMatt Macy * may have misinterpreted the man page or the man page is incorrect. 433eda14cbcSMatt Macy */ 434eda14cbcSMatt Macy int ddi_strtoul(const char *, char **, int, unsigned long *); 435eda14cbcSMatt Macy int ddi_strtol(const char *, char **, int, long *); 436eda14cbcSMatt Macy int ddi_strtoull(const char *, char **, int, unsigned long long *); 437eda14cbcSMatt Macy int ddi_strtoll(const char *, char **, int, long long *); 438eda14cbcSMatt Macy 439eda14cbcSMatt Macy #define define_ddi_strtoux(type, valtype) \ 440eda14cbcSMatt Macy int ddi_strtou##type(const char *str, char **endptr, \ 441eda14cbcSMatt Macy int base, valtype *result) \ 442eda14cbcSMatt Macy { \ 443eda14cbcSMatt Macy valtype last_value, value = 0; \ 444eda14cbcSMatt Macy char *ptr = (char *)str; \ 445eda14cbcSMatt Macy int flag = 1, digit; \ 446eda14cbcSMatt Macy \ 447eda14cbcSMatt Macy if (strlen(ptr) == 0) \ 448eda14cbcSMatt Macy return (EINVAL); \ 449eda14cbcSMatt Macy \ 450eda14cbcSMatt Macy /* Auto-detect base based on prefix */ \ 451eda14cbcSMatt Macy if (!base) { \ 452eda14cbcSMatt Macy if (str[0] == '0') { \ 453eda14cbcSMatt Macy if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \ 454eda14cbcSMatt Macy base = 16; /* hex */ \ 455eda14cbcSMatt Macy ptr += 2; \ 456eda14cbcSMatt Macy } else if (str[1] >= '0' && str[1] < 8) { \ 457eda14cbcSMatt Macy base = 8; /* octal */ \ 458eda14cbcSMatt Macy ptr += 1; \ 459eda14cbcSMatt Macy } else { \ 460eda14cbcSMatt Macy return (EINVAL); \ 461eda14cbcSMatt Macy } \ 462eda14cbcSMatt Macy } else { \ 463eda14cbcSMatt Macy base = 10; /* decimal */ \ 464eda14cbcSMatt Macy } \ 465eda14cbcSMatt Macy } \ 466eda14cbcSMatt Macy \ 467eda14cbcSMatt Macy while (1) { \ 468eda14cbcSMatt Macy if (isdigit(*ptr)) \ 469eda14cbcSMatt Macy digit = *ptr - '0'; \ 470eda14cbcSMatt Macy else if (isalpha(*ptr)) \ 471eda14cbcSMatt Macy digit = tolower(*ptr) - 'a' + 10; \ 472eda14cbcSMatt Macy else \ 473eda14cbcSMatt Macy break; \ 474eda14cbcSMatt Macy \ 475eda14cbcSMatt Macy if (digit >= base) \ 476eda14cbcSMatt Macy break; \ 477eda14cbcSMatt Macy \ 478eda14cbcSMatt Macy last_value = value; \ 479eda14cbcSMatt Macy value = value * base + digit; \ 480eda14cbcSMatt Macy if (last_value > value) /* Overflow */ \ 481eda14cbcSMatt Macy return (ERANGE); \ 482eda14cbcSMatt Macy \ 483eda14cbcSMatt Macy flag = 1; \ 484eda14cbcSMatt Macy ptr++; \ 485eda14cbcSMatt Macy } \ 486eda14cbcSMatt Macy \ 487eda14cbcSMatt Macy if (flag) \ 488eda14cbcSMatt Macy *result = value; \ 489eda14cbcSMatt Macy \ 490eda14cbcSMatt Macy if (endptr) \ 491eda14cbcSMatt Macy *endptr = (char *)(flag ? ptr : str); \ 492eda14cbcSMatt Macy \ 493eda14cbcSMatt Macy return (0); \ 494eda14cbcSMatt Macy } \ 495eda14cbcSMatt Macy 496eda14cbcSMatt Macy #define define_ddi_strtox(type, valtype) \ 497eda14cbcSMatt Macy int ddi_strto##type(const char *str, char **endptr, \ 498eda14cbcSMatt Macy int base, valtype *result) \ 499eda14cbcSMatt Macy { \ 500eda14cbcSMatt Macy int rc; \ 501eda14cbcSMatt Macy \ 502eda14cbcSMatt Macy if (*str == '-') { \ 503eda14cbcSMatt Macy rc = ddi_strtou##type(str + 1, endptr, base, result); \ 504eda14cbcSMatt Macy if (!rc) { \ 505eda14cbcSMatt Macy if (*endptr == str + 1) \ 506eda14cbcSMatt Macy *endptr = (char *)str; \ 507eda14cbcSMatt Macy else \ 508eda14cbcSMatt Macy *result = -*result; \ 509eda14cbcSMatt Macy } \ 510eda14cbcSMatt Macy } else { \ 511eda14cbcSMatt Macy rc = ddi_strtou##type(str, endptr, base, result); \ 512eda14cbcSMatt Macy } \ 513eda14cbcSMatt Macy \ 514eda14cbcSMatt Macy return (rc); \ 515eda14cbcSMatt Macy } 516eda14cbcSMatt Macy 517eda14cbcSMatt Macy define_ddi_strtoux(l, unsigned long) 518eda14cbcSMatt Macy define_ddi_strtox(l, long) 519eda14cbcSMatt Macy define_ddi_strtoux(ll, unsigned long long) 520eda14cbcSMatt Macy define_ddi_strtox(ll, long long) 521eda14cbcSMatt Macy 522eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtoul); 523eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtol); 524eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtoll); 525eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtoull); 526eda14cbcSMatt Macy 527eda14cbcSMatt Macy int 528eda14cbcSMatt Macy ddi_copyin(const void *from, void *to, size_t len, int flags) 529eda14cbcSMatt Macy { 530eda14cbcSMatt Macy /* Fake ioctl() issued by kernel, 'from' is a kernel address */ 531eda14cbcSMatt Macy if (flags & FKIOCTL) { 532eda14cbcSMatt Macy memcpy(to, from, len); 533eda14cbcSMatt Macy return (0); 534eda14cbcSMatt Macy } 535eda14cbcSMatt Macy 536eda14cbcSMatt Macy return (copyin(from, to, len)); 537eda14cbcSMatt Macy } 538eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_copyin); 539eda14cbcSMatt Macy 540eda14cbcSMatt Macy int 541eda14cbcSMatt Macy ddi_copyout(const void *from, void *to, size_t len, int flags) 542eda14cbcSMatt Macy { 543eda14cbcSMatt Macy /* Fake ioctl() issued by kernel, 'from' is a kernel address */ 544eda14cbcSMatt Macy if (flags & FKIOCTL) { 545eda14cbcSMatt Macy memcpy(to, from, len); 546eda14cbcSMatt Macy return (0); 547eda14cbcSMatt Macy } 548eda14cbcSMatt Macy 549eda14cbcSMatt Macy return (copyout(from, to, len)); 550eda14cbcSMatt Macy } 551eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_copyout); 552eda14cbcSMatt Macy 553eda14cbcSMatt Macy static ssize_t 554eda14cbcSMatt Macy spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos) 555eda14cbcSMatt Macy { 556eda14cbcSMatt Macy #if defined(HAVE_KERNEL_READ_PPOS) 557eda14cbcSMatt Macy return (kernel_read(file, buf, count, pos)); 558eda14cbcSMatt Macy #else 559eda14cbcSMatt Macy mm_segment_t saved_fs; 560eda14cbcSMatt Macy ssize_t ret; 561eda14cbcSMatt Macy 562eda14cbcSMatt Macy saved_fs = get_fs(); 563eda14cbcSMatt Macy set_fs(KERNEL_DS); 564eda14cbcSMatt Macy 565eda14cbcSMatt Macy ret = vfs_read(file, (void __user *)buf, count, pos); 566eda14cbcSMatt Macy 567eda14cbcSMatt Macy set_fs(saved_fs); 568eda14cbcSMatt Macy 569eda14cbcSMatt Macy return (ret); 570eda14cbcSMatt Macy #endif 571eda14cbcSMatt Macy } 572eda14cbcSMatt Macy 573eda14cbcSMatt Macy static int 574eda14cbcSMatt Macy spl_getattr(struct file *filp, struct kstat *stat) 575eda14cbcSMatt Macy { 576eda14cbcSMatt Macy int rc; 577eda14cbcSMatt Macy 578eda14cbcSMatt Macy ASSERT(filp); 579eda14cbcSMatt Macy ASSERT(stat); 580eda14cbcSMatt Macy 581eda14cbcSMatt Macy #if defined(HAVE_4ARGS_VFS_GETATTR) 582eda14cbcSMatt Macy rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS, 583eda14cbcSMatt Macy AT_STATX_SYNC_AS_STAT); 584eda14cbcSMatt Macy #elif defined(HAVE_2ARGS_VFS_GETATTR) 585eda14cbcSMatt Macy rc = vfs_getattr(&filp->f_path, stat); 58616038816SMartin Matuska #elif defined(HAVE_3ARGS_VFS_GETATTR) 587eda14cbcSMatt Macy rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat); 58816038816SMartin Matuska #else 58916038816SMartin Matuska #error "No available vfs_getattr()" 590eda14cbcSMatt Macy #endif 591eda14cbcSMatt Macy if (rc) 592eda14cbcSMatt Macy return (-rc); 593eda14cbcSMatt Macy 594eda14cbcSMatt Macy return (0); 595eda14cbcSMatt Macy } 596eda14cbcSMatt Macy 597eda14cbcSMatt Macy /* 598eda14cbcSMatt Macy * Read the unique system identifier from the /etc/hostid file. 599eda14cbcSMatt Macy * 600eda14cbcSMatt Macy * The behavior of /usr/bin/hostid on Linux systems with the 601eda14cbcSMatt Macy * regular eglibc and coreutils is: 602eda14cbcSMatt Macy * 603eda14cbcSMatt Macy * 1. Generate the value if the /etc/hostid file does not exist 604eda14cbcSMatt Macy * or if the /etc/hostid file is less than four bytes in size. 605eda14cbcSMatt Macy * 606eda14cbcSMatt Macy * 2. If the /etc/hostid file is at least 4 bytes, then return 607eda14cbcSMatt Macy * the first four bytes [0..3] in native endian order. 608eda14cbcSMatt Macy * 609eda14cbcSMatt Macy * 3. Always ignore bytes [4..] if they exist in the file. 610eda14cbcSMatt Macy * 611eda14cbcSMatt Macy * Only the first four bytes are significant, even on systems that 612eda14cbcSMatt Macy * have a 64-bit word size. 613eda14cbcSMatt Macy * 614eda14cbcSMatt Macy * See: 615eda14cbcSMatt Macy * 616eda14cbcSMatt Macy * eglibc: sysdeps/unix/sysv/linux/gethostid.c 617eda14cbcSMatt Macy * coreutils: src/hostid.c 618eda14cbcSMatt Macy * 619eda14cbcSMatt Macy * Notes: 620eda14cbcSMatt Macy * 621eda14cbcSMatt Macy * The /etc/hostid file on Solaris is a text file that often reads: 622eda14cbcSMatt Macy * 623eda14cbcSMatt Macy * # DO NOT EDIT 624eda14cbcSMatt Macy * "0123456789" 625eda14cbcSMatt Macy * 626eda14cbcSMatt Macy * Directly copying this file to Linux results in a constant 627eda14cbcSMatt Macy * hostid of 4f442023 because the default comment constitutes 628eda14cbcSMatt Macy * the first four bytes of the file. 629eda14cbcSMatt Macy * 630eda14cbcSMatt Macy */ 631eda14cbcSMatt Macy 632*e92ffd9bSMartin Matuska static char *spl_hostid_path = HW_HOSTID_PATH; 633eda14cbcSMatt Macy module_param(spl_hostid_path, charp, 0444); 634eda14cbcSMatt Macy MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)"); 635eda14cbcSMatt Macy 636eda14cbcSMatt Macy static int 637eda14cbcSMatt Macy hostid_read(uint32_t *hostid) 638eda14cbcSMatt Macy { 639eda14cbcSMatt Macy uint64_t size; 640eda14cbcSMatt Macy uint32_t value = 0; 641eda14cbcSMatt Macy int error; 642eda14cbcSMatt Macy loff_t off; 643eda14cbcSMatt Macy struct file *filp; 644eda14cbcSMatt Macy struct kstat stat; 645eda14cbcSMatt Macy 646eda14cbcSMatt Macy filp = filp_open(spl_hostid_path, 0, 0); 647eda14cbcSMatt Macy 648eda14cbcSMatt Macy if (IS_ERR(filp)) 649eda14cbcSMatt Macy return (ENOENT); 650eda14cbcSMatt Macy 651eda14cbcSMatt Macy error = spl_getattr(filp, &stat); 652eda14cbcSMatt Macy if (error) { 653eda14cbcSMatt Macy filp_close(filp, 0); 654eda14cbcSMatt Macy return (error); 655eda14cbcSMatt Macy } 656eda14cbcSMatt Macy size = stat.size; 65781b22a98SMartin Matuska // cppcheck-suppress sizeofwithnumericparameter 658eda14cbcSMatt Macy if (size < sizeof (HW_HOSTID_MASK)) { 659eda14cbcSMatt Macy filp_close(filp, 0); 660eda14cbcSMatt Macy return (EINVAL); 661eda14cbcSMatt Macy } 662eda14cbcSMatt Macy 663eda14cbcSMatt Macy off = 0; 664eda14cbcSMatt Macy /* 665eda14cbcSMatt Macy * Read directly into the variable like eglibc does. 666eda14cbcSMatt Macy * Short reads are okay; native behavior is preserved. 667eda14cbcSMatt Macy */ 668eda14cbcSMatt Macy error = spl_kernel_read(filp, &value, sizeof (value), &off); 669eda14cbcSMatt Macy if (error < 0) { 670eda14cbcSMatt Macy filp_close(filp, 0); 671eda14cbcSMatt Macy return (EIO); 672eda14cbcSMatt Macy } 673eda14cbcSMatt Macy 674eda14cbcSMatt Macy /* Mask down to 32 bits like coreutils does. */ 675eda14cbcSMatt Macy *hostid = (value & HW_HOSTID_MASK); 676eda14cbcSMatt Macy filp_close(filp, 0); 677eda14cbcSMatt Macy 678eda14cbcSMatt Macy return (0); 679eda14cbcSMatt Macy } 680eda14cbcSMatt Macy 681eda14cbcSMatt Macy /* 682eda14cbcSMatt Macy * Return the system hostid. Preferentially use the spl_hostid module option 683eda14cbcSMatt Macy * when set, otherwise use the value in the /etc/hostid file. 684eda14cbcSMatt Macy */ 685eda14cbcSMatt Macy uint32_t 686eda14cbcSMatt Macy zone_get_hostid(void *zone) 687eda14cbcSMatt Macy { 688eda14cbcSMatt Macy uint32_t hostid; 689eda14cbcSMatt Macy 690eda14cbcSMatt Macy ASSERT3P(zone, ==, NULL); 691eda14cbcSMatt Macy 692eda14cbcSMatt Macy if (spl_hostid != 0) 693eda14cbcSMatt Macy return ((uint32_t)(spl_hostid & HW_HOSTID_MASK)); 694eda14cbcSMatt Macy 695eda14cbcSMatt Macy if (hostid_read(&hostid) == 0) 696eda14cbcSMatt Macy return (hostid); 697eda14cbcSMatt Macy 698eda14cbcSMatt Macy return (0); 699eda14cbcSMatt Macy } 700eda14cbcSMatt Macy EXPORT_SYMBOL(zone_get_hostid); 701eda14cbcSMatt Macy 702eda14cbcSMatt Macy static int 703eda14cbcSMatt Macy spl_kvmem_init(void) 704eda14cbcSMatt Macy { 705eda14cbcSMatt Macy int rc = 0; 706eda14cbcSMatt Macy 707eda14cbcSMatt Macy rc = spl_kmem_init(); 708eda14cbcSMatt Macy if (rc) 709eda14cbcSMatt Macy return (rc); 710eda14cbcSMatt Macy 711eda14cbcSMatt Macy rc = spl_vmem_init(); 712eda14cbcSMatt Macy if (rc) { 713eda14cbcSMatt Macy spl_kmem_fini(); 714eda14cbcSMatt Macy return (rc); 715eda14cbcSMatt Macy } 716eda14cbcSMatt Macy 717eda14cbcSMatt Macy return (rc); 718eda14cbcSMatt Macy } 719eda14cbcSMatt Macy 720eda14cbcSMatt Macy /* 721eda14cbcSMatt Macy * We initialize the random number generator with 128 bits of entropy from the 722eda14cbcSMatt Macy * system random number generator. In the improbable case that we have a zero 723eda14cbcSMatt Macy * seed, we fallback to the system jiffies, unless it is also zero, in which 724eda14cbcSMatt Macy * situation we use a preprogrammed seed. We step forward by 2^64 iterations to 725eda14cbcSMatt Macy * initialize each of the per-cpu seeds so that the sequences generated on each 726eda14cbcSMatt Macy * CPU are guaranteed to never overlap in practice. 727eda14cbcSMatt Macy */ 728eda14cbcSMatt Macy static void __init 729eda14cbcSMatt Macy spl_random_init(void) 730eda14cbcSMatt Macy { 731eda14cbcSMatt Macy uint64_t s[2]; 732eda14cbcSMatt Macy int i = 0; 733eda14cbcSMatt Macy 734eda14cbcSMatt Macy spl_pseudo_entropy = __alloc_percpu(2 * sizeof (uint64_t), 735eda14cbcSMatt Macy sizeof (uint64_t)); 736eda14cbcSMatt Macy 737eda14cbcSMatt Macy get_random_bytes(s, sizeof (s)); 738eda14cbcSMatt Macy 739eda14cbcSMatt Macy if (s[0] == 0 && s[1] == 0) { 740eda14cbcSMatt Macy if (jiffies != 0) { 741eda14cbcSMatt Macy s[0] = jiffies; 742eda14cbcSMatt Macy s[1] = ~0 - jiffies; 743eda14cbcSMatt Macy } else { 744eda14cbcSMatt Macy (void) memcpy(s, "improbable seed", sizeof (s)); 745eda14cbcSMatt Macy } 746eda14cbcSMatt Macy printk("SPL: get_random_bytes() returned 0 " 747eda14cbcSMatt Macy "when generating random seed. Setting initial seed to " 748eda14cbcSMatt Macy "0x%016llx%016llx.\n", cpu_to_be64(s[0]), 749eda14cbcSMatt Macy cpu_to_be64(s[1])); 750eda14cbcSMatt Macy } 751eda14cbcSMatt Macy 752eda14cbcSMatt Macy for_each_possible_cpu(i) { 753eda14cbcSMatt Macy uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i); 754eda14cbcSMatt Macy 755eda14cbcSMatt Macy spl_rand_jump(s); 756eda14cbcSMatt Macy 757eda14cbcSMatt Macy wordp[0] = s[0]; 758eda14cbcSMatt Macy wordp[1] = s[1]; 759eda14cbcSMatt Macy } 760eda14cbcSMatt Macy } 761eda14cbcSMatt Macy 762eda14cbcSMatt Macy static void 763eda14cbcSMatt Macy spl_random_fini(void) 764eda14cbcSMatt Macy { 765eda14cbcSMatt Macy free_percpu(spl_pseudo_entropy); 766eda14cbcSMatt Macy } 767eda14cbcSMatt Macy 768eda14cbcSMatt Macy static void 769eda14cbcSMatt Macy spl_kvmem_fini(void) 770eda14cbcSMatt Macy { 771eda14cbcSMatt Macy spl_vmem_fini(); 772eda14cbcSMatt Macy spl_kmem_fini(); 773eda14cbcSMatt Macy } 774eda14cbcSMatt Macy 775eda14cbcSMatt Macy static int __init 776eda14cbcSMatt Macy spl_init(void) 777eda14cbcSMatt Macy { 778eda14cbcSMatt Macy int rc = 0; 779eda14cbcSMatt Macy 780eda14cbcSMatt Macy bzero(&p0, sizeof (proc_t)); 781eda14cbcSMatt Macy spl_random_init(); 782eda14cbcSMatt Macy 783eda14cbcSMatt Macy if ((rc = spl_kvmem_init())) 784eda14cbcSMatt Macy goto out1; 785eda14cbcSMatt Macy 786eda14cbcSMatt Macy if ((rc = spl_tsd_init())) 787eda14cbcSMatt Macy goto out2; 788eda14cbcSMatt Macy 789eda14cbcSMatt Macy if ((rc = spl_taskq_init())) 790eda14cbcSMatt Macy goto out3; 791eda14cbcSMatt Macy 792eda14cbcSMatt Macy if ((rc = spl_kmem_cache_init())) 793eda14cbcSMatt Macy goto out4; 794eda14cbcSMatt Macy 795eda14cbcSMatt Macy if ((rc = spl_proc_init())) 796eda14cbcSMatt Macy goto out5; 797eda14cbcSMatt Macy 798eda14cbcSMatt Macy if ((rc = spl_kstat_init())) 799eda14cbcSMatt Macy goto out6; 800eda14cbcSMatt Macy 801eda14cbcSMatt Macy if ((rc = spl_zlib_init())) 802eda14cbcSMatt Macy goto out7; 803eda14cbcSMatt Macy 804eda14cbcSMatt Macy return (rc); 805eda14cbcSMatt Macy 806eda14cbcSMatt Macy out7: 807eda14cbcSMatt Macy spl_kstat_fini(); 808eda14cbcSMatt Macy out6: 809eda14cbcSMatt Macy spl_proc_fini(); 810eda14cbcSMatt Macy out5: 811eda14cbcSMatt Macy spl_kmem_cache_fini(); 812eda14cbcSMatt Macy out4: 813eda14cbcSMatt Macy spl_taskq_fini(); 814eda14cbcSMatt Macy out3: 815eda14cbcSMatt Macy spl_tsd_fini(); 816eda14cbcSMatt Macy out2: 817eda14cbcSMatt Macy spl_kvmem_fini(); 818eda14cbcSMatt Macy out1: 819eda14cbcSMatt Macy return (rc); 820eda14cbcSMatt Macy } 821eda14cbcSMatt Macy 822eda14cbcSMatt Macy static void __exit 823eda14cbcSMatt Macy spl_fini(void) 824eda14cbcSMatt Macy { 825eda14cbcSMatt Macy spl_zlib_fini(); 826eda14cbcSMatt Macy spl_kstat_fini(); 827eda14cbcSMatt Macy spl_proc_fini(); 828eda14cbcSMatt Macy spl_kmem_cache_fini(); 829eda14cbcSMatt Macy spl_taskq_fini(); 830eda14cbcSMatt Macy spl_tsd_fini(); 831eda14cbcSMatt Macy spl_kvmem_fini(); 832eda14cbcSMatt Macy spl_random_fini(); 833eda14cbcSMatt Macy } 834eda14cbcSMatt Macy 835eda14cbcSMatt Macy module_init(spl_init); 836eda14cbcSMatt Macy module_exit(spl_fini); 837eda14cbcSMatt Macy 838eda14cbcSMatt Macy ZFS_MODULE_DESCRIPTION("Solaris Porting Layer"); 839eda14cbcSMatt Macy ZFS_MODULE_AUTHOR(ZFS_META_AUTHOR); 840eda14cbcSMatt Macy ZFS_MODULE_LICENSE("GPL"); 841eda14cbcSMatt Macy ZFS_MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE); 842