1eda14cbcSMatt Macy /* 2eda14cbcSMatt Macy * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3eda14cbcSMatt Macy * Copyright (C) 2007 The Regents of the University of California. 4eda14cbcSMatt Macy * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5eda14cbcSMatt Macy * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6eda14cbcSMatt Macy * UCRL-CODE-235197 7eda14cbcSMatt Macy * 8eda14cbcSMatt Macy * This file is part of the SPL, Solaris Porting Layer. 9eda14cbcSMatt Macy * 10eda14cbcSMatt Macy * The SPL is free software; you can redistribute it and/or modify it 11eda14cbcSMatt Macy * under the terms of the GNU General Public License as published by the 12eda14cbcSMatt Macy * Free Software Foundation; either version 2 of the License, or (at your 13eda14cbcSMatt Macy * option) any later version. 14eda14cbcSMatt Macy * 15eda14cbcSMatt Macy * The SPL is distributed in the hope that it will be useful, but WITHOUT 16eda14cbcSMatt Macy * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17eda14cbcSMatt Macy * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18eda14cbcSMatt Macy * for more details. 19eda14cbcSMatt Macy * 20eda14cbcSMatt Macy * You should have received a copy of the GNU General Public License along 21eda14cbcSMatt Macy * with the SPL. If not, see <http://www.gnu.org/licenses/>. 22eda14cbcSMatt Macy * 23eda14cbcSMatt Macy * Solaris Porting Layer (SPL) Generic Implementation. 24eda14cbcSMatt Macy */ 25eda14cbcSMatt Macy 26dbd5678dSMartin Matuska #include <sys/isa_defs.h> 27eda14cbcSMatt Macy #include <sys/sysmacros.h> 28eda14cbcSMatt Macy #include <sys/systeminfo.h> 29eda14cbcSMatt Macy #include <sys/vmsystm.h> 30eda14cbcSMatt Macy #include <sys/kmem.h> 31eda14cbcSMatt Macy #include <sys/kmem_cache.h> 32eda14cbcSMatt Macy #include <sys/vmem.h> 33eda14cbcSMatt Macy #include <sys/mutex.h> 34eda14cbcSMatt Macy #include <sys/rwlock.h> 35eda14cbcSMatt Macy #include <sys/taskq.h> 36eda14cbcSMatt Macy #include <sys/tsd.h> 37eda14cbcSMatt Macy #include <sys/zmod.h> 38eda14cbcSMatt Macy #include <sys/debug.h> 39eda14cbcSMatt Macy #include <sys/proc.h> 40eda14cbcSMatt Macy #include <sys/kstat.h> 41eda14cbcSMatt Macy #include <sys/file.h> 42eda14cbcSMatt Macy #include <sys/sunddi.h> 43eda14cbcSMatt Macy #include <linux/ctype.h> 44eda14cbcSMatt Macy #include <sys/disp.h> 45eda14cbcSMatt Macy #include <sys/random.h> 46da5137abSMartin Matuska #include <sys/string.h> 47eda14cbcSMatt Macy #include <linux/kmod.h> 48eda14cbcSMatt Macy #include <linux/mod_compat.h> 49eda14cbcSMatt Macy #include <sys/cred.h> 50eda14cbcSMatt Macy #include <sys/vnode.h> 51be181ee2SMartin Matuska #include <sys/misc.h> 52dbd5678dSMartin Matuska #include <linux/mod_compat.h> 53eda14cbcSMatt Macy 54eda14cbcSMatt Macy unsigned long spl_hostid = 0; 55eda14cbcSMatt Macy EXPORT_SYMBOL(spl_hostid); 56e92ffd9bSMartin Matuska 57c03c5b1cSMartin Matuska /* CSTYLED */ 58eda14cbcSMatt Macy module_param(spl_hostid, ulong, 0644); 59eda14cbcSMatt Macy MODULE_PARM_DESC(spl_hostid, "The system hostid."); 60eda14cbcSMatt Macy 61eda14cbcSMatt Macy proc_t p0; 62eda14cbcSMatt Macy EXPORT_SYMBOL(p0); 63eda14cbcSMatt Macy 64eda14cbcSMatt Macy /* 65dbd5678dSMartin Matuska * xoshiro256++ 1.0 PRNG by David Blackman and Sebastiano Vigna 66eda14cbcSMatt Macy * 67dbd5678dSMartin Matuska * "Scrambled Linear Pseudorandom Number Generators∗" 68dbd5678dSMartin Matuska * https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf 69eda14cbcSMatt Macy * 70eda14cbcSMatt Macy * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose 71eda14cbcSMatt Macy * is to provide bytes containing random numbers. It is mapped to /dev/urandom 72eda14cbcSMatt Macy * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's 73eda14cbcSMatt Macy * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so 74eda14cbcSMatt Macy * we can implement it using a fast PRNG that we seed using Linux' actual 75eda14cbcSMatt Macy * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU 76eda14cbcSMatt Macy * with an independent seed so that all calls to random_get_pseudo_bytes() are 77eda14cbcSMatt Macy * free of atomic instructions. 78eda14cbcSMatt Macy * 79eda14cbcSMatt Macy * A consequence of using a fast PRNG is that using random_get_pseudo_bytes() 80dbd5678dSMartin Matuska * to generate words larger than 256 bits will paradoxically be limited to 81dbd5678dSMartin Matuska * `2^256 - 1` possibilities. This is because we have a sequence of `2^256 - 1` 82dbd5678dSMartin Matuska * 256-bit words and selecting the first will implicitly select the second. If 83eda14cbcSMatt Macy * a caller finds this behavior undesirable, random_get_bytes() should be used 84eda14cbcSMatt Macy * instead. 85eda14cbcSMatt Macy * 86eda14cbcSMatt Macy * XXX: Linux interrupt handlers that trigger within the critical section 87dbd5678dSMartin Matuska * formed by `s[3] = xp[3];` and `xp[0] = s[0];` and call this function will 88eda14cbcSMatt Macy * see the same numbers. Nothing in the code currently calls this in an 89eda14cbcSMatt Macy * interrupt handler, so this is considered to be okay. If that becomes a 90eda14cbcSMatt Macy * problem, we could create a set of per-cpu variables for interrupt handlers 91eda14cbcSMatt Macy * and use them when in_interrupt() from linux/preempt_mask.h evaluates to 92eda14cbcSMatt Macy * true. 93eda14cbcSMatt Macy */ 94dbd5678dSMartin Matuska static void __percpu *spl_pseudo_entropy; 95eda14cbcSMatt Macy 96eda14cbcSMatt Macy /* 97dbd5678dSMartin Matuska * rotl()/spl_rand_next()/spl_rand_jump() are copied from the following CC-0 98dbd5678dSMartin Matuska * licensed file: 99eda14cbcSMatt Macy * 100dbd5678dSMartin Matuska * https://prng.di.unimi.it/xoshiro256plusplus.c 101eda14cbcSMatt Macy */ 102eda14cbcSMatt Macy 103dbd5678dSMartin Matuska static inline uint64_t rotl(const uint64_t x, int k) 104dbd5678dSMartin Matuska { 105dbd5678dSMartin Matuska return ((x << k) | (x >> (64 - k))); 106dbd5678dSMartin Matuska } 107dbd5678dSMartin Matuska 108eda14cbcSMatt Macy static inline uint64_t 109eda14cbcSMatt Macy spl_rand_next(uint64_t *s) 110eda14cbcSMatt Macy { 111dbd5678dSMartin Matuska const uint64_t result = rotl(s[0] + s[3], 23) + s[0]; 112dbd5678dSMartin Matuska 113dbd5678dSMartin Matuska const uint64_t t = s[1] << 17; 114dbd5678dSMartin Matuska 115dbd5678dSMartin Matuska s[2] ^= s[0]; 116dbd5678dSMartin Matuska s[3] ^= s[1]; 117dbd5678dSMartin Matuska s[1] ^= s[2]; 118dbd5678dSMartin Matuska s[0] ^= s[3]; 119dbd5678dSMartin Matuska 120dbd5678dSMartin Matuska s[2] ^= t; 121dbd5678dSMartin Matuska 122dbd5678dSMartin Matuska s[3] = rotl(s[3], 45); 123dbd5678dSMartin Matuska 124dbd5678dSMartin Matuska return (result); 125eda14cbcSMatt Macy } 126eda14cbcSMatt Macy 127eda14cbcSMatt Macy static inline void 128eda14cbcSMatt Macy spl_rand_jump(uint64_t *s) 129eda14cbcSMatt Macy { 130dbd5678dSMartin Matuska static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba, 131dbd5678dSMartin Matuska 0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c }; 132eda14cbcSMatt Macy 133eda14cbcSMatt Macy uint64_t s0 = 0; 134eda14cbcSMatt Macy uint64_t s1 = 0; 135dbd5678dSMartin Matuska uint64_t s2 = 0; 136dbd5678dSMartin Matuska uint64_t s3 = 0; 137eda14cbcSMatt Macy int i, b; 138eda14cbcSMatt Macy for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++) 139eda14cbcSMatt Macy for (b = 0; b < 64; b++) { 140eda14cbcSMatt Macy if (JUMP[i] & 1ULL << b) { 141eda14cbcSMatt Macy s0 ^= s[0]; 142eda14cbcSMatt Macy s1 ^= s[1]; 143dbd5678dSMartin Matuska s2 ^= s[2]; 144dbd5678dSMartin Matuska s3 ^= s[3]; 145eda14cbcSMatt Macy } 146eda14cbcSMatt Macy (void) spl_rand_next(s); 147eda14cbcSMatt Macy } 148eda14cbcSMatt Macy 149eda14cbcSMatt Macy s[0] = s0; 150eda14cbcSMatt Macy s[1] = s1; 151dbd5678dSMartin Matuska s[2] = s2; 152dbd5678dSMartin Matuska s[3] = s3; 153eda14cbcSMatt Macy } 154eda14cbcSMatt Macy 155eda14cbcSMatt Macy int 156eda14cbcSMatt Macy random_get_pseudo_bytes(uint8_t *ptr, size_t len) 157eda14cbcSMatt Macy { 158dbd5678dSMartin Matuska uint64_t *xp, s[4]; 159eda14cbcSMatt Macy 160eda14cbcSMatt Macy ASSERT(ptr); 161eda14cbcSMatt Macy 162eda14cbcSMatt Macy xp = get_cpu_ptr(spl_pseudo_entropy); 163eda14cbcSMatt Macy 164eda14cbcSMatt Macy s[0] = xp[0]; 165eda14cbcSMatt Macy s[1] = xp[1]; 166dbd5678dSMartin Matuska s[2] = xp[2]; 167dbd5678dSMartin Matuska s[3] = xp[3]; 168eda14cbcSMatt Macy 169eda14cbcSMatt Macy while (len) { 170eda14cbcSMatt Macy union { 171eda14cbcSMatt Macy uint64_t ui64; 172eda14cbcSMatt Macy uint8_t byte[sizeof (uint64_t)]; 173eda14cbcSMatt Macy }entropy; 174eda14cbcSMatt Macy int i = MIN(len, sizeof (uint64_t)); 175eda14cbcSMatt Macy 176eda14cbcSMatt Macy len -= i; 177eda14cbcSMatt Macy entropy.ui64 = spl_rand_next(s); 178eda14cbcSMatt Macy 179dbd5678dSMartin Matuska /* 180dbd5678dSMartin Matuska * xoshiro256++ has low entropy lower bytes, so we copy the 181dbd5678dSMartin Matuska * higher order bytes first. 182dbd5678dSMartin Matuska */ 183eda14cbcSMatt Macy while (i--) 184dbd5678dSMartin Matuska #ifdef _ZFS_BIG_ENDIAN 185eda14cbcSMatt Macy *ptr++ = entropy.byte[i]; 186dbd5678dSMartin Matuska #else 187dbd5678dSMartin Matuska *ptr++ = entropy.byte[7 - i]; 188dbd5678dSMartin Matuska #endif 189eda14cbcSMatt Macy } 190eda14cbcSMatt Macy 191eda14cbcSMatt Macy xp[0] = s[0]; 192eda14cbcSMatt Macy xp[1] = s[1]; 193dbd5678dSMartin Matuska xp[2] = s[2]; 194dbd5678dSMartin Matuska xp[3] = s[3]; 195eda14cbcSMatt Macy 196eda14cbcSMatt Macy put_cpu_ptr(spl_pseudo_entropy); 197eda14cbcSMatt Macy 198eda14cbcSMatt Macy return (0); 199eda14cbcSMatt Macy } 200eda14cbcSMatt Macy 201eda14cbcSMatt Macy 202eda14cbcSMatt Macy EXPORT_SYMBOL(random_get_pseudo_bytes); 203eda14cbcSMatt Macy 204eda14cbcSMatt Macy #if BITS_PER_LONG == 32 205eda14cbcSMatt Macy 206eda14cbcSMatt Macy /* 207eda14cbcSMatt Macy * Support 64/64 => 64 division on a 32-bit platform. While the kernel 208eda14cbcSMatt Macy * provides a div64_u64() function for this we do not use it because the 209eda14cbcSMatt Macy * implementation is flawed. There are cases which return incorrect 210eda14cbcSMatt Macy * results as late as linux-2.6.35. Until this is fixed upstream the 211eda14cbcSMatt Macy * spl must provide its own implementation. 212eda14cbcSMatt Macy * 213eda14cbcSMatt Macy * This implementation is a slightly modified version of the algorithm 214eda14cbcSMatt Macy * proposed by the book 'Hacker's Delight'. The original source can be 215eda14cbcSMatt Macy * found here and is available for use without restriction. 216eda14cbcSMatt Macy * 217eda14cbcSMatt Macy * http://www.hackersdelight.org/HDcode/newCode/divDouble.c 218eda14cbcSMatt Macy */ 219eda14cbcSMatt Macy 220eda14cbcSMatt Macy /* 221eda14cbcSMatt Macy * Calculate number of leading of zeros for a 64-bit value. 222eda14cbcSMatt Macy */ 223eda14cbcSMatt Macy static int 224eda14cbcSMatt Macy nlz64(uint64_t x) 225eda14cbcSMatt Macy { 226eda14cbcSMatt Macy register int n = 0; 227eda14cbcSMatt Macy 228eda14cbcSMatt Macy if (x == 0) 229eda14cbcSMatt Macy return (64); 230eda14cbcSMatt Macy 231eda14cbcSMatt Macy if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; } 232eda14cbcSMatt Macy if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; } 233eda14cbcSMatt Macy if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n + 8; x = x << 8; } 234eda14cbcSMatt Macy if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n + 4; x = x << 4; } 235eda14cbcSMatt Macy if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n + 2; x = x << 2; } 236eda14cbcSMatt Macy if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n + 1; } 237eda14cbcSMatt Macy 238eda14cbcSMatt Macy return (n); 239eda14cbcSMatt Macy } 240eda14cbcSMatt Macy 241eda14cbcSMatt Macy /* 242eda14cbcSMatt Macy * Newer kernels have a div_u64() function but we define our own 243eda14cbcSMatt Macy * to simplify portability between kernel versions. 244eda14cbcSMatt Macy */ 245eda14cbcSMatt Macy static inline uint64_t 246eda14cbcSMatt Macy __div_u64(uint64_t u, uint32_t v) 247eda14cbcSMatt Macy { 248eda14cbcSMatt Macy (void) do_div(u, v); 249eda14cbcSMatt Macy return (u); 250eda14cbcSMatt Macy } 251eda14cbcSMatt Macy 252eda14cbcSMatt Macy /* 253eda14cbcSMatt Macy * Turn off missing prototypes warning for these functions. They are 254eda14cbcSMatt Macy * replacements for libgcc-provided functions and will never be called 255eda14cbcSMatt Macy * directly. 256eda14cbcSMatt Macy */ 257*bb2d13b6SMartin Matuska #if defined(__GNUC__) && !defined(__clang__) 258eda14cbcSMatt Macy #pragma GCC diagnostic push 259eda14cbcSMatt Macy #pragma GCC diagnostic ignored "-Wmissing-prototypes" 260*bb2d13b6SMartin Matuska #endif 261eda14cbcSMatt Macy 262eda14cbcSMatt Macy /* 263eda14cbcSMatt Macy * Implementation of 64-bit unsigned division for 32-bit machines. 264eda14cbcSMatt Macy * 265eda14cbcSMatt Macy * First the procedure takes care of the case in which the divisor is a 266eda14cbcSMatt Macy * 32-bit quantity. There are two subcases: (1) If the left half of the 267eda14cbcSMatt Macy * dividend is less than the divisor, one execution of do_div() is all that 268eda14cbcSMatt Macy * is required (overflow is not possible). (2) Otherwise it does two 269eda14cbcSMatt Macy * divisions, using the grade school method. 270eda14cbcSMatt Macy */ 271eda14cbcSMatt Macy uint64_t 272eda14cbcSMatt Macy __udivdi3(uint64_t u, uint64_t v) 273eda14cbcSMatt Macy { 274eda14cbcSMatt Macy uint64_t u0, u1, v1, q0, q1, k; 275eda14cbcSMatt Macy int n; 276eda14cbcSMatt Macy 277eda14cbcSMatt Macy if (v >> 32 == 0) { // If v < 2**32: 278eda14cbcSMatt Macy if (u >> 32 < v) { // If u/v cannot overflow, 279eda14cbcSMatt Macy return (__div_u64(u, v)); // just do one division. 280eda14cbcSMatt Macy } else { // If u/v would overflow: 281eda14cbcSMatt Macy u1 = u >> 32; // Break u into two halves. 282eda14cbcSMatt Macy u0 = u & 0xFFFFFFFF; 283eda14cbcSMatt Macy q1 = __div_u64(u1, v); // First quotient digit. 284eda14cbcSMatt Macy k = u1 - q1 * v; // First remainder, < v. 285eda14cbcSMatt Macy u0 += (k << 32); 286eda14cbcSMatt Macy q0 = __div_u64(u0, v); // Seconds quotient digit. 287eda14cbcSMatt Macy return ((q1 << 32) + q0); 288eda14cbcSMatt Macy } 289eda14cbcSMatt Macy } else { // If v >= 2**32: 290eda14cbcSMatt Macy n = nlz64(v); // 0 <= n <= 31. 291eda14cbcSMatt Macy v1 = (v << n) >> 32; // Normalize divisor, MSB is 1. 292eda14cbcSMatt Macy u1 = u >> 1; // To ensure no overflow. 293eda14cbcSMatt Macy q1 = __div_u64(u1, v1); // Get quotient from 294eda14cbcSMatt Macy q0 = (q1 << n) >> 31; // Undo normalization and 295eda14cbcSMatt Macy // division of u by 2. 296eda14cbcSMatt Macy if (q0 != 0) // Make q0 correct or 297eda14cbcSMatt Macy q0 = q0 - 1; // too small by 1. 298eda14cbcSMatt Macy if ((u - q0 * v) >= v) 299eda14cbcSMatt Macy q0 = q0 + 1; // Now q0 is correct. 300eda14cbcSMatt Macy 301eda14cbcSMatt Macy return (q0); 302eda14cbcSMatt Macy } 303eda14cbcSMatt Macy } 304eda14cbcSMatt Macy EXPORT_SYMBOL(__udivdi3); 305eda14cbcSMatt Macy 306eda14cbcSMatt Macy #ifndef abs64 307c03c5b1cSMartin Matuska /* CSTYLED */ 308eda14cbcSMatt Macy #define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; }) 309eda14cbcSMatt Macy #endif 310eda14cbcSMatt Macy 311eda14cbcSMatt Macy /* 312eda14cbcSMatt Macy * Implementation of 64-bit signed division for 32-bit machines. 313eda14cbcSMatt Macy */ 314eda14cbcSMatt Macy int64_t 315eda14cbcSMatt Macy __divdi3(int64_t u, int64_t v) 316eda14cbcSMatt Macy { 317eda14cbcSMatt Macy int64_t q, t; 318eda14cbcSMatt Macy q = __udivdi3(abs64(u), abs64(v)); 319eda14cbcSMatt Macy t = (u ^ v) >> 63; // If u, v have different 320eda14cbcSMatt Macy return ((q ^ t) - t); // signs, negate q. 321eda14cbcSMatt Macy } 322eda14cbcSMatt Macy EXPORT_SYMBOL(__divdi3); 323eda14cbcSMatt Macy 324eda14cbcSMatt Macy /* 325eda14cbcSMatt Macy * Implementation of 64-bit unsigned modulo for 32-bit machines. 326eda14cbcSMatt Macy */ 327eda14cbcSMatt Macy uint64_t 328eda14cbcSMatt Macy __umoddi3(uint64_t dividend, uint64_t divisor) 329eda14cbcSMatt Macy { 330eda14cbcSMatt Macy return (dividend - (divisor * __udivdi3(dividend, divisor))); 331eda14cbcSMatt Macy } 332eda14cbcSMatt Macy EXPORT_SYMBOL(__umoddi3); 333eda14cbcSMatt Macy 334eda14cbcSMatt Macy /* 64-bit signed modulo for 32-bit machines. */ 335eda14cbcSMatt Macy int64_t 336eda14cbcSMatt Macy __moddi3(int64_t n, int64_t d) 337eda14cbcSMatt Macy { 338eda14cbcSMatt Macy int64_t q; 339eda14cbcSMatt Macy boolean_t nn = B_FALSE; 340eda14cbcSMatt Macy 341eda14cbcSMatt Macy if (n < 0) { 342eda14cbcSMatt Macy nn = B_TRUE; 343eda14cbcSMatt Macy n = -n; 344eda14cbcSMatt Macy } 345eda14cbcSMatt Macy if (d < 0) 346eda14cbcSMatt Macy d = -d; 347eda14cbcSMatt Macy 348eda14cbcSMatt Macy q = __umoddi3(n, d); 349eda14cbcSMatt Macy 350eda14cbcSMatt Macy return (nn ? -q : q); 351eda14cbcSMatt Macy } 352eda14cbcSMatt Macy EXPORT_SYMBOL(__moddi3); 353eda14cbcSMatt Macy 354eda14cbcSMatt Macy /* 355eda14cbcSMatt Macy * Implementation of 64-bit unsigned division/modulo for 32-bit machines. 356eda14cbcSMatt Macy */ 357eda14cbcSMatt Macy uint64_t 358eda14cbcSMatt Macy __udivmoddi4(uint64_t n, uint64_t d, uint64_t *r) 359eda14cbcSMatt Macy { 360eda14cbcSMatt Macy uint64_t q = __udivdi3(n, d); 361eda14cbcSMatt Macy if (r) 362eda14cbcSMatt Macy *r = n - d * q; 363eda14cbcSMatt Macy return (q); 364eda14cbcSMatt Macy } 365eda14cbcSMatt Macy EXPORT_SYMBOL(__udivmoddi4); 366eda14cbcSMatt Macy 367eda14cbcSMatt Macy /* 368eda14cbcSMatt Macy * Implementation of 64-bit signed division/modulo for 32-bit machines. 369eda14cbcSMatt Macy */ 370eda14cbcSMatt Macy int64_t 371eda14cbcSMatt Macy __divmoddi4(int64_t n, int64_t d, int64_t *r) 372eda14cbcSMatt Macy { 373eda14cbcSMatt Macy int64_t q, rr; 374eda14cbcSMatt Macy boolean_t nn = B_FALSE; 375eda14cbcSMatt Macy boolean_t nd = B_FALSE; 376eda14cbcSMatt Macy if (n < 0) { 377eda14cbcSMatt Macy nn = B_TRUE; 378eda14cbcSMatt Macy n = -n; 379eda14cbcSMatt Macy } 380eda14cbcSMatt Macy if (d < 0) { 381eda14cbcSMatt Macy nd = B_TRUE; 382eda14cbcSMatt Macy d = -d; 383eda14cbcSMatt Macy } 384eda14cbcSMatt Macy 385eda14cbcSMatt Macy q = __udivmoddi4(n, d, (uint64_t *)&rr); 386eda14cbcSMatt Macy 387eda14cbcSMatt Macy if (nn != nd) 388eda14cbcSMatt Macy q = -q; 389eda14cbcSMatt Macy if (nn) 390eda14cbcSMatt Macy rr = -rr; 391eda14cbcSMatt Macy if (r) 392eda14cbcSMatt Macy *r = rr; 393eda14cbcSMatt Macy return (q); 394eda14cbcSMatt Macy } 395eda14cbcSMatt Macy EXPORT_SYMBOL(__divmoddi4); 396eda14cbcSMatt Macy 397eda14cbcSMatt Macy #if defined(__arm) || defined(__arm__) 398eda14cbcSMatt Macy /* 399eda14cbcSMatt Macy * Implementation of 64-bit (un)signed division for 32-bit arm machines. 400eda14cbcSMatt Macy * 401eda14cbcSMatt Macy * Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned) 402eda14cbcSMatt Macy * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1}, 403eda14cbcSMatt Macy * and the remainder in {r2, r3}. The return type is specifically left 404eda14cbcSMatt Macy * set to 'void' to ensure the compiler does not overwrite these registers 405eda14cbcSMatt Macy * during the return. All results are in registers as per ABI 406eda14cbcSMatt Macy */ 407eda14cbcSMatt Macy void 408eda14cbcSMatt Macy __aeabi_uldivmod(uint64_t u, uint64_t v) 409eda14cbcSMatt Macy { 410eda14cbcSMatt Macy uint64_t res; 411eda14cbcSMatt Macy uint64_t mod; 412eda14cbcSMatt Macy 413eda14cbcSMatt Macy res = __udivdi3(u, v); 414eda14cbcSMatt Macy mod = __umoddi3(u, v); 415eda14cbcSMatt Macy { 416eda14cbcSMatt Macy register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); 417eda14cbcSMatt Macy register uint32_t r1 asm("r1") = (res >> 32); 418eda14cbcSMatt Macy register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); 419eda14cbcSMatt Macy register uint32_t r3 asm("r3") = (mod >> 32); 420eda14cbcSMatt Macy 421eda14cbcSMatt Macy asm volatile("" 422eda14cbcSMatt Macy : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */ 423eda14cbcSMatt Macy : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ 424eda14cbcSMatt Macy 425eda14cbcSMatt Macy return; /* r0; */ 426eda14cbcSMatt Macy } 427eda14cbcSMatt Macy } 428eda14cbcSMatt Macy EXPORT_SYMBOL(__aeabi_uldivmod); 429eda14cbcSMatt Macy 430eda14cbcSMatt Macy void 431eda14cbcSMatt Macy __aeabi_ldivmod(int64_t u, int64_t v) 432eda14cbcSMatt Macy { 433eda14cbcSMatt Macy int64_t res; 434eda14cbcSMatt Macy uint64_t mod; 435eda14cbcSMatt Macy 436eda14cbcSMatt Macy res = __divdi3(u, v); 437eda14cbcSMatt Macy mod = __umoddi3(u, v); 438eda14cbcSMatt Macy { 439eda14cbcSMatt Macy register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); 440eda14cbcSMatt Macy register uint32_t r1 asm("r1") = (res >> 32); 441eda14cbcSMatt Macy register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); 442eda14cbcSMatt Macy register uint32_t r3 asm("r3") = (mod >> 32); 443eda14cbcSMatt Macy 444eda14cbcSMatt Macy asm volatile("" 445eda14cbcSMatt Macy : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */ 446eda14cbcSMatt Macy : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ 447eda14cbcSMatt Macy 448eda14cbcSMatt Macy return; /* r0; */ 449eda14cbcSMatt Macy } 450eda14cbcSMatt Macy } 451eda14cbcSMatt Macy EXPORT_SYMBOL(__aeabi_ldivmod); 452eda14cbcSMatt Macy #endif /* __arm || __arm__ */ 453eda14cbcSMatt Macy 454*bb2d13b6SMartin Matuska #if defined(__GNUC__) && !defined(__clang__) 455eda14cbcSMatt Macy #pragma GCC diagnostic pop 456*bb2d13b6SMartin Matuska #endif 457eda14cbcSMatt Macy 458eda14cbcSMatt Macy #endif /* BITS_PER_LONG */ 459eda14cbcSMatt Macy 460eda14cbcSMatt Macy /* 461eda14cbcSMatt Macy * NOTE: The strtoxx behavior is solely based on my reading of the Solaris 462eda14cbcSMatt Macy * ddi_strtol(9F) man page. I have not verified the behavior of these 463eda14cbcSMatt Macy * functions against their Solaris counterparts. It is possible that I 464eda14cbcSMatt Macy * may have misinterpreted the man page or the man page is incorrect. 465eda14cbcSMatt Macy */ 466eda14cbcSMatt Macy int ddi_strtol(const char *, char **, int, long *); 467eda14cbcSMatt Macy int ddi_strtoull(const char *, char **, int, unsigned long long *); 468eda14cbcSMatt Macy int ddi_strtoll(const char *, char **, int, long long *); 469eda14cbcSMatt Macy 470716fd348SMartin Matuska #define define_ddi_strtox(type, valtype) \ 471716fd348SMartin Matuska int ddi_strto##type(const char *str, char **endptr, \ 472eda14cbcSMatt Macy int base, valtype *result) \ 473eda14cbcSMatt Macy { \ 474eda14cbcSMatt Macy valtype last_value, value = 0; \ 475eda14cbcSMatt Macy char *ptr = (char *)str; \ 476716fd348SMartin Matuska int digit, minus = 0; \ 477716fd348SMartin Matuska \ 478716fd348SMartin Matuska while (strchr(" \t\n\r\f", *ptr)) \ 479716fd348SMartin Matuska ++ptr; \ 480eda14cbcSMatt Macy \ 481eda14cbcSMatt Macy if (strlen(ptr) == 0) \ 482eda14cbcSMatt Macy return (EINVAL); \ 483eda14cbcSMatt Macy \ 484716fd348SMartin Matuska switch (*ptr) { \ 485716fd348SMartin Matuska case '-': \ 486716fd348SMartin Matuska minus = 1; \ 487716fd348SMartin Matuska zfs_fallthrough; \ 488716fd348SMartin Matuska case '+': \ 489716fd348SMartin Matuska ++ptr; \ 490716fd348SMartin Matuska break; \ 491716fd348SMartin Matuska } \ 492716fd348SMartin Matuska \ 493eda14cbcSMatt Macy /* Auto-detect base based on prefix */ \ 494eda14cbcSMatt Macy if (!base) { \ 495eda14cbcSMatt Macy if (str[0] == '0') { \ 496eda14cbcSMatt Macy if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \ 497eda14cbcSMatt Macy base = 16; /* hex */ \ 498eda14cbcSMatt Macy ptr += 2; \ 499eda14cbcSMatt Macy } else if (str[1] >= '0' && str[1] < 8) { \ 500eda14cbcSMatt Macy base = 8; /* octal */ \ 501eda14cbcSMatt Macy ptr += 1; \ 502eda14cbcSMatt Macy } else { \ 503eda14cbcSMatt Macy return (EINVAL); \ 504eda14cbcSMatt Macy } \ 505eda14cbcSMatt Macy } else { \ 506eda14cbcSMatt Macy base = 10; /* decimal */ \ 507eda14cbcSMatt Macy } \ 508eda14cbcSMatt Macy } \ 509eda14cbcSMatt Macy \ 510eda14cbcSMatt Macy while (1) { \ 511eda14cbcSMatt Macy if (isdigit(*ptr)) \ 512eda14cbcSMatt Macy digit = *ptr - '0'; \ 513eda14cbcSMatt Macy else if (isalpha(*ptr)) \ 514eda14cbcSMatt Macy digit = tolower(*ptr) - 'a' + 10; \ 515eda14cbcSMatt Macy else \ 516eda14cbcSMatt Macy break; \ 517eda14cbcSMatt Macy \ 518eda14cbcSMatt Macy if (digit >= base) \ 519eda14cbcSMatt Macy break; \ 520eda14cbcSMatt Macy \ 521eda14cbcSMatt Macy last_value = value; \ 522eda14cbcSMatt Macy value = value * base + digit; \ 523eda14cbcSMatt Macy if (last_value > value) /* Overflow */ \ 524eda14cbcSMatt Macy return (ERANGE); \ 525eda14cbcSMatt Macy \ 526eda14cbcSMatt Macy ptr++; \ 527eda14cbcSMatt Macy } \ 528eda14cbcSMatt Macy \ 529716fd348SMartin Matuska *result = minus ? -value : value; \ 530eda14cbcSMatt Macy \ 531eda14cbcSMatt Macy if (endptr) \ 532716fd348SMartin Matuska *endptr = ptr; \ 533eda14cbcSMatt Macy \ 534eda14cbcSMatt Macy return (0); \ 535eda14cbcSMatt Macy } \ 536eda14cbcSMatt Macy 537eda14cbcSMatt Macy define_ddi_strtox(l, long) 538716fd348SMartin Matuska define_ddi_strtox(ull, unsigned long long) 539eda14cbcSMatt Macy define_ddi_strtox(ll, long long) 540eda14cbcSMatt Macy 541eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtol); 542eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtoll); 543eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtoull); 544eda14cbcSMatt Macy 545eda14cbcSMatt Macy int 546eda14cbcSMatt Macy ddi_copyin(const void *from, void *to, size_t len, int flags) 547eda14cbcSMatt Macy { 548eda14cbcSMatt Macy /* Fake ioctl() issued by kernel, 'from' is a kernel address */ 549eda14cbcSMatt Macy if (flags & FKIOCTL) { 550eda14cbcSMatt Macy memcpy(to, from, len); 551eda14cbcSMatt Macy return (0); 552eda14cbcSMatt Macy } 553eda14cbcSMatt Macy 554eda14cbcSMatt Macy return (copyin(from, to, len)); 555eda14cbcSMatt Macy } 556eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_copyin); 557eda14cbcSMatt Macy 558dbd5678dSMartin Matuska #define define_spl_param(type, fmt) \ 559dbd5678dSMartin Matuska int \ 560dbd5678dSMartin Matuska spl_param_get_##type(char *buf, zfs_kernel_param_t *kp) \ 561dbd5678dSMartin Matuska { \ 562dbd5678dSMartin Matuska return (scnprintf(buf, PAGE_SIZE, fmt "\n", \ 563dbd5678dSMartin Matuska *(type *)kp->arg)); \ 564dbd5678dSMartin Matuska } \ 565dbd5678dSMartin Matuska int \ 566dbd5678dSMartin Matuska spl_param_set_##type(const char *buf, zfs_kernel_param_t *kp) \ 567dbd5678dSMartin Matuska { \ 568dbd5678dSMartin Matuska return (kstrto##type(buf, 0, (type *)kp->arg)); \ 569dbd5678dSMartin Matuska } \ 570dbd5678dSMartin Matuska const struct kernel_param_ops spl_param_ops_##type = { \ 571dbd5678dSMartin Matuska .set = spl_param_set_##type, \ 572dbd5678dSMartin Matuska .get = spl_param_get_##type, \ 573dbd5678dSMartin Matuska }; \ 574dbd5678dSMartin Matuska EXPORT_SYMBOL(spl_param_get_##type); \ 575dbd5678dSMartin Matuska EXPORT_SYMBOL(spl_param_set_##type); \ 576dbd5678dSMartin Matuska EXPORT_SYMBOL(spl_param_ops_##type); 577dbd5678dSMartin Matuska 578dbd5678dSMartin Matuska define_spl_param(s64, "%lld") 579dbd5678dSMartin Matuska define_spl_param(u64, "%llu") 580dbd5678dSMartin Matuska 581be181ee2SMartin Matuska /* 582be181ee2SMartin Matuska * Post a uevent to userspace whenever a new vdev adds to the pool. It is 583be181ee2SMartin Matuska * necessary to sync blkid information with udev, which zed daemon uses 584be181ee2SMartin Matuska * during device hotplug to identify the vdev. 585be181ee2SMartin Matuska */ 586be181ee2SMartin Matuska void 587be181ee2SMartin Matuska spl_signal_kobj_evt(struct block_device *bdev) 588be181ee2SMartin Matuska { 589be181ee2SMartin Matuska #if defined(HAVE_BDEV_KOBJ) || defined(HAVE_PART_TO_DEV) 590be181ee2SMartin Matuska #ifdef HAVE_BDEV_KOBJ 591be181ee2SMartin Matuska struct kobject *disk_kobj = bdev_kobj(bdev); 592be181ee2SMartin Matuska #else 593be181ee2SMartin Matuska struct kobject *disk_kobj = &part_to_dev(bdev->bd_part)->kobj; 594be181ee2SMartin Matuska #endif 595be181ee2SMartin Matuska if (disk_kobj) { 596be181ee2SMartin Matuska int ret = kobject_uevent(disk_kobj, KOBJ_CHANGE); 597be181ee2SMartin Matuska if (ret) { 598be181ee2SMartin Matuska pr_warn("ZFS: Sending event '%d' to kobject: '%s'" 599be181ee2SMartin Matuska " (%p): failed(ret:%d)\n", KOBJ_CHANGE, 600be181ee2SMartin Matuska kobject_name(disk_kobj), disk_kobj, ret); 601be181ee2SMartin Matuska } 602be181ee2SMartin Matuska } 603be181ee2SMartin Matuska #else 604be181ee2SMartin Matuska /* 605be181ee2SMartin Matuska * This is encountered if neither bdev_kobj() nor part_to_dev() is available 606be181ee2SMartin Matuska * in the kernel - likely due to an API change that needs to be chased down. 607be181ee2SMartin Matuska */ 608be181ee2SMartin Matuska #error "Unsupported kernel: unable to get struct kobj from bdev" 609be181ee2SMartin Matuska #endif 610be181ee2SMartin Matuska } 611be181ee2SMartin Matuska EXPORT_SYMBOL(spl_signal_kobj_evt); 612be181ee2SMartin Matuska 613eda14cbcSMatt Macy int 614eda14cbcSMatt Macy ddi_copyout(const void *from, void *to, size_t len, int flags) 615eda14cbcSMatt Macy { 616eda14cbcSMatt Macy /* Fake ioctl() issued by kernel, 'from' is a kernel address */ 617eda14cbcSMatt Macy if (flags & FKIOCTL) { 618eda14cbcSMatt Macy memcpy(to, from, len); 619eda14cbcSMatt Macy return (0); 620eda14cbcSMatt Macy } 621eda14cbcSMatt Macy 622eda14cbcSMatt Macy return (copyout(from, to, len)); 623eda14cbcSMatt Macy } 624eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_copyout); 625eda14cbcSMatt Macy 626eda14cbcSMatt Macy static ssize_t 627eda14cbcSMatt Macy spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos) 628eda14cbcSMatt Macy { 629eda14cbcSMatt Macy #if defined(HAVE_KERNEL_READ_PPOS) 630eda14cbcSMatt Macy return (kernel_read(file, buf, count, pos)); 631eda14cbcSMatt Macy #else 632eda14cbcSMatt Macy mm_segment_t saved_fs; 633eda14cbcSMatt Macy ssize_t ret; 634eda14cbcSMatt Macy 635eda14cbcSMatt Macy saved_fs = get_fs(); 636eda14cbcSMatt Macy set_fs(KERNEL_DS); 637eda14cbcSMatt Macy 638eda14cbcSMatt Macy ret = vfs_read(file, (void __user *)buf, count, pos); 639eda14cbcSMatt Macy 640eda14cbcSMatt Macy set_fs(saved_fs); 641eda14cbcSMatt Macy 642eda14cbcSMatt Macy return (ret); 643eda14cbcSMatt Macy #endif 644eda14cbcSMatt Macy } 645eda14cbcSMatt Macy 646eda14cbcSMatt Macy static int 647eda14cbcSMatt Macy spl_getattr(struct file *filp, struct kstat *stat) 648eda14cbcSMatt Macy { 649eda14cbcSMatt Macy int rc; 650eda14cbcSMatt Macy 651eda14cbcSMatt Macy ASSERT(filp); 652eda14cbcSMatt Macy ASSERT(stat); 653eda14cbcSMatt Macy 654eda14cbcSMatt Macy #if defined(HAVE_4ARGS_VFS_GETATTR) 655eda14cbcSMatt Macy rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS, 656eda14cbcSMatt Macy AT_STATX_SYNC_AS_STAT); 657eda14cbcSMatt Macy #elif defined(HAVE_2ARGS_VFS_GETATTR) 658eda14cbcSMatt Macy rc = vfs_getattr(&filp->f_path, stat); 65916038816SMartin Matuska #elif defined(HAVE_3ARGS_VFS_GETATTR) 660eda14cbcSMatt Macy rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat); 66116038816SMartin Matuska #else 66216038816SMartin Matuska #error "No available vfs_getattr()" 663eda14cbcSMatt Macy #endif 664eda14cbcSMatt Macy if (rc) 665eda14cbcSMatt Macy return (-rc); 666eda14cbcSMatt Macy 667eda14cbcSMatt Macy return (0); 668eda14cbcSMatt Macy } 669eda14cbcSMatt Macy 670eda14cbcSMatt Macy /* 671eda14cbcSMatt Macy * Read the unique system identifier from the /etc/hostid file. 672eda14cbcSMatt Macy * 673eda14cbcSMatt Macy * The behavior of /usr/bin/hostid on Linux systems with the 674eda14cbcSMatt Macy * regular eglibc and coreutils is: 675eda14cbcSMatt Macy * 676eda14cbcSMatt Macy * 1. Generate the value if the /etc/hostid file does not exist 677eda14cbcSMatt Macy * or if the /etc/hostid file is less than four bytes in size. 678eda14cbcSMatt Macy * 679eda14cbcSMatt Macy * 2. If the /etc/hostid file is at least 4 bytes, then return 680eda14cbcSMatt Macy * the first four bytes [0..3] in native endian order. 681eda14cbcSMatt Macy * 682eda14cbcSMatt Macy * 3. Always ignore bytes [4..] if they exist in the file. 683eda14cbcSMatt Macy * 684eda14cbcSMatt Macy * Only the first four bytes are significant, even on systems that 685eda14cbcSMatt Macy * have a 64-bit word size. 686eda14cbcSMatt Macy * 687eda14cbcSMatt Macy * See: 688eda14cbcSMatt Macy * 689eda14cbcSMatt Macy * eglibc: sysdeps/unix/sysv/linux/gethostid.c 690eda14cbcSMatt Macy * coreutils: src/hostid.c 691eda14cbcSMatt Macy * 692eda14cbcSMatt Macy * Notes: 693eda14cbcSMatt Macy * 694eda14cbcSMatt Macy * The /etc/hostid file on Solaris is a text file that often reads: 695eda14cbcSMatt Macy * 696eda14cbcSMatt Macy * # DO NOT EDIT 697eda14cbcSMatt Macy * "0123456789" 698eda14cbcSMatt Macy * 699eda14cbcSMatt Macy * Directly copying this file to Linux results in a constant 700eda14cbcSMatt Macy * hostid of 4f442023 because the default comment constitutes 701eda14cbcSMatt Macy * the first four bytes of the file. 702eda14cbcSMatt Macy * 703eda14cbcSMatt Macy */ 704eda14cbcSMatt Macy 705e92ffd9bSMartin Matuska static char *spl_hostid_path = HW_HOSTID_PATH; 706eda14cbcSMatt Macy module_param(spl_hostid_path, charp, 0444); 707eda14cbcSMatt Macy MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)"); 708eda14cbcSMatt Macy 709eda14cbcSMatt Macy static int 710eda14cbcSMatt Macy hostid_read(uint32_t *hostid) 711eda14cbcSMatt Macy { 712eda14cbcSMatt Macy uint64_t size; 713eda14cbcSMatt Macy uint32_t value = 0; 714eda14cbcSMatt Macy int error; 715eda14cbcSMatt Macy loff_t off; 716eda14cbcSMatt Macy struct file *filp; 717eda14cbcSMatt Macy struct kstat stat; 718eda14cbcSMatt Macy 719eda14cbcSMatt Macy filp = filp_open(spl_hostid_path, 0, 0); 720eda14cbcSMatt Macy 721eda14cbcSMatt Macy if (IS_ERR(filp)) 722eda14cbcSMatt Macy return (ENOENT); 723eda14cbcSMatt Macy 724eda14cbcSMatt Macy error = spl_getattr(filp, &stat); 725eda14cbcSMatt Macy if (error) { 726eda14cbcSMatt Macy filp_close(filp, 0); 727eda14cbcSMatt Macy return (error); 728eda14cbcSMatt Macy } 729eda14cbcSMatt Macy size = stat.size; 73081b22a98SMartin Matuska // cppcheck-suppress sizeofwithnumericparameter 731eda14cbcSMatt Macy if (size < sizeof (HW_HOSTID_MASK)) { 732eda14cbcSMatt Macy filp_close(filp, 0); 733eda14cbcSMatt Macy return (EINVAL); 734eda14cbcSMatt Macy } 735eda14cbcSMatt Macy 736eda14cbcSMatt Macy off = 0; 737eda14cbcSMatt Macy /* 738eda14cbcSMatt Macy * Read directly into the variable like eglibc does. 739eda14cbcSMatt Macy * Short reads are okay; native behavior is preserved. 740eda14cbcSMatt Macy */ 741eda14cbcSMatt Macy error = spl_kernel_read(filp, &value, sizeof (value), &off); 742eda14cbcSMatt Macy if (error < 0) { 743eda14cbcSMatt Macy filp_close(filp, 0); 744eda14cbcSMatt Macy return (EIO); 745eda14cbcSMatt Macy } 746eda14cbcSMatt Macy 747eda14cbcSMatt Macy /* Mask down to 32 bits like coreutils does. */ 748eda14cbcSMatt Macy *hostid = (value & HW_HOSTID_MASK); 749eda14cbcSMatt Macy filp_close(filp, 0); 750eda14cbcSMatt Macy 751eda14cbcSMatt Macy return (0); 752eda14cbcSMatt Macy } 753eda14cbcSMatt Macy 754eda14cbcSMatt Macy /* 755eda14cbcSMatt Macy * Return the system hostid. Preferentially use the spl_hostid module option 756eda14cbcSMatt Macy * when set, otherwise use the value in the /etc/hostid file. 757eda14cbcSMatt Macy */ 758eda14cbcSMatt Macy uint32_t 759eda14cbcSMatt Macy zone_get_hostid(void *zone) 760eda14cbcSMatt Macy { 761eda14cbcSMatt Macy uint32_t hostid; 762eda14cbcSMatt Macy 763eda14cbcSMatt Macy ASSERT3P(zone, ==, NULL); 764eda14cbcSMatt Macy 765eda14cbcSMatt Macy if (spl_hostid != 0) 766eda14cbcSMatt Macy return ((uint32_t)(spl_hostid & HW_HOSTID_MASK)); 767eda14cbcSMatt Macy 768eda14cbcSMatt Macy if (hostid_read(&hostid) == 0) 769eda14cbcSMatt Macy return (hostid); 770eda14cbcSMatt Macy 771eda14cbcSMatt Macy return (0); 772eda14cbcSMatt Macy } 773eda14cbcSMatt Macy EXPORT_SYMBOL(zone_get_hostid); 774eda14cbcSMatt Macy 775eda14cbcSMatt Macy static int 776eda14cbcSMatt Macy spl_kvmem_init(void) 777eda14cbcSMatt Macy { 778eda14cbcSMatt Macy int rc = 0; 779eda14cbcSMatt Macy 780eda14cbcSMatt Macy rc = spl_kmem_init(); 781eda14cbcSMatt Macy if (rc) 782eda14cbcSMatt Macy return (rc); 783eda14cbcSMatt Macy 784eda14cbcSMatt Macy rc = spl_vmem_init(); 785eda14cbcSMatt Macy if (rc) { 786eda14cbcSMatt Macy spl_kmem_fini(); 787eda14cbcSMatt Macy return (rc); 788eda14cbcSMatt Macy } 789eda14cbcSMatt Macy 790eda14cbcSMatt Macy return (rc); 791eda14cbcSMatt Macy } 792eda14cbcSMatt Macy 793eda14cbcSMatt Macy /* 794eda14cbcSMatt Macy * We initialize the random number generator with 128 bits of entropy from the 795eda14cbcSMatt Macy * system random number generator. In the improbable case that we have a zero 796eda14cbcSMatt Macy * seed, we fallback to the system jiffies, unless it is also zero, in which 797eda14cbcSMatt Macy * situation we use a preprogrammed seed. We step forward by 2^64 iterations to 798eda14cbcSMatt Macy * initialize each of the per-cpu seeds so that the sequences generated on each 799eda14cbcSMatt Macy * CPU are guaranteed to never overlap in practice. 800eda14cbcSMatt Macy */ 801c7046f76SMartin Matuska static int __init 802eda14cbcSMatt Macy spl_random_init(void) 803eda14cbcSMatt Macy { 804dbd5678dSMartin Matuska uint64_t s[4]; 805eda14cbcSMatt Macy int i = 0; 806eda14cbcSMatt Macy 807dbd5678dSMartin Matuska spl_pseudo_entropy = __alloc_percpu(4 * sizeof (uint64_t), 808eda14cbcSMatt Macy sizeof (uint64_t)); 809eda14cbcSMatt Macy 810c7046f76SMartin Matuska if (!spl_pseudo_entropy) 811c7046f76SMartin Matuska return (-ENOMEM); 812c7046f76SMartin Matuska 813eda14cbcSMatt Macy get_random_bytes(s, sizeof (s)); 814eda14cbcSMatt Macy 815dbd5678dSMartin Matuska if (s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0) { 816eda14cbcSMatt Macy if (jiffies != 0) { 817eda14cbcSMatt Macy s[0] = jiffies; 818eda14cbcSMatt Macy s[1] = ~0 - jiffies; 819dbd5678dSMartin Matuska s[2] = ~jiffies; 820dbd5678dSMartin Matuska s[3] = jiffies - ~0; 821eda14cbcSMatt Macy } else { 822dbd5678dSMartin Matuska (void) memcpy(s, "improbable seed", 16); 823eda14cbcSMatt Macy } 824eda14cbcSMatt Macy printk("SPL: get_random_bytes() returned 0 " 825eda14cbcSMatt Macy "when generating random seed. Setting initial seed to " 826dbd5678dSMartin Matuska "0x%016llx%016llx%016llx%016llx.\n", cpu_to_be64(s[0]), 827dbd5678dSMartin Matuska cpu_to_be64(s[1]), cpu_to_be64(s[2]), cpu_to_be64(s[3])); 828eda14cbcSMatt Macy } 829eda14cbcSMatt Macy 830eda14cbcSMatt Macy for_each_possible_cpu(i) { 831eda14cbcSMatt Macy uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i); 832eda14cbcSMatt Macy 833eda14cbcSMatt Macy spl_rand_jump(s); 834eda14cbcSMatt Macy 835eda14cbcSMatt Macy wordp[0] = s[0]; 836eda14cbcSMatt Macy wordp[1] = s[1]; 837dbd5678dSMartin Matuska wordp[2] = s[2]; 838dbd5678dSMartin Matuska wordp[3] = s[3]; 839eda14cbcSMatt Macy } 840c7046f76SMartin Matuska 841c7046f76SMartin Matuska return (0); 842eda14cbcSMatt Macy } 843eda14cbcSMatt Macy 844eda14cbcSMatt Macy static void 845eda14cbcSMatt Macy spl_random_fini(void) 846eda14cbcSMatt Macy { 847eda14cbcSMatt Macy free_percpu(spl_pseudo_entropy); 848eda14cbcSMatt Macy } 849eda14cbcSMatt Macy 850eda14cbcSMatt Macy static void 851eda14cbcSMatt Macy spl_kvmem_fini(void) 852eda14cbcSMatt Macy { 853eda14cbcSMatt Macy spl_vmem_fini(); 854eda14cbcSMatt Macy spl_kmem_fini(); 855eda14cbcSMatt Macy } 856eda14cbcSMatt Macy 857eda14cbcSMatt Macy static int __init 858eda14cbcSMatt Macy spl_init(void) 859eda14cbcSMatt Macy { 860eda14cbcSMatt Macy int rc = 0; 861eda14cbcSMatt Macy 862c7046f76SMartin Matuska if ((rc = spl_random_init())) 863c7046f76SMartin Matuska goto out0; 864eda14cbcSMatt Macy 865eda14cbcSMatt Macy if ((rc = spl_kvmem_init())) 866eda14cbcSMatt Macy goto out1; 867eda14cbcSMatt Macy 868eda14cbcSMatt Macy if ((rc = spl_tsd_init())) 869eda14cbcSMatt Macy goto out2; 870eda14cbcSMatt Macy 871eda14cbcSMatt Macy if ((rc = spl_taskq_init())) 872eda14cbcSMatt Macy goto out3; 873eda14cbcSMatt Macy 874eda14cbcSMatt Macy if ((rc = spl_kmem_cache_init())) 875eda14cbcSMatt Macy goto out4; 876eda14cbcSMatt Macy 877eda14cbcSMatt Macy if ((rc = spl_proc_init())) 878eda14cbcSMatt Macy goto out5; 879eda14cbcSMatt Macy 880eda14cbcSMatt Macy if ((rc = spl_kstat_init())) 881eda14cbcSMatt Macy goto out6; 882eda14cbcSMatt Macy 883eda14cbcSMatt Macy if ((rc = spl_zlib_init())) 884eda14cbcSMatt Macy goto out7; 885eda14cbcSMatt Macy 8861f1e2261SMartin Matuska if ((rc = spl_zone_init())) 8871f1e2261SMartin Matuska goto out8; 8881f1e2261SMartin Matuska 889eda14cbcSMatt Macy return (rc); 890eda14cbcSMatt Macy 8911f1e2261SMartin Matuska out8: 8921f1e2261SMartin Matuska spl_zlib_fini(); 893eda14cbcSMatt Macy out7: 894eda14cbcSMatt Macy spl_kstat_fini(); 895eda14cbcSMatt Macy out6: 896eda14cbcSMatt Macy spl_proc_fini(); 897eda14cbcSMatt Macy out5: 898eda14cbcSMatt Macy spl_kmem_cache_fini(); 899eda14cbcSMatt Macy out4: 900eda14cbcSMatt Macy spl_taskq_fini(); 901eda14cbcSMatt Macy out3: 902eda14cbcSMatt Macy spl_tsd_fini(); 903eda14cbcSMatt Macy out2: 904eda14cbcSMatt Macy spl_kvmem_fini(); 905eda14cbcSMatt Macy out1: 906c7046f76SMartin Matuska spl_random_fini(); 907c7046f76SMartin Matuska out0: 908eda14cbcSMatt Macy return (rc); 909eda14cbcSMatt Macy } 910eda14cbcSMatt Macy 911eda14cbcSMatt Macy static void __exit 912eda14cbcSMatt Macy spl_fini(void) 913eda14cbcSMatt Macy { 9141f1e2261SMartin Matuska spl_zone_fini(); 915eda14cbcSMatt Macy spl_zlib_fini(); 916eda14cbcSMatt Macy spl_kstat_fini(); 917eda14cbcSMatt Macy spl_proc_fini(); 918eda14cbcSMatt Macy spl_kmem_cache_fini(); 919eda14cbcSMatt Macy spl_taskq_fini(); 920eda14cbcSMatt Macy spl_tsd_fini(); 921eda14cbcSMatt Macy spl_kvmem_fini(); 922eda14cbcSMatt Macy spl_random_fini(); 923eda14cbcSMatt Macy } 924eda14cbcSMatt Macy 925eda14cbcSMatt Macy module_init(spl_init); 926eda14cbcSMatt Macy module_exit(spl_fini); 927eda14cbcSMatt Macy 928716fd348SMartin Matuska MODULE_DESCRIPTION("Solaris Porting Layer"); 929716fd348SMartin Matuska MODULE_AUTHOR(ZFS_META_AUTHOR); 930716fd348SMartin Matuska MODULE_LICENSE("GPL"); 931716fd348SMartin Matuska MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE); 932