xref: /freebsd-src/sys/contrib/openzfs/module/os/linux/spl/spl-generic.c (revision bb2d13b686e3ccf6c3ccb36209dfb7dcc108b182)
1eda14cbcSMatt Macy /*
2eda14cbcSMatt Macy  *  Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3eda14cbcSMatt Macy  *  Copyright (C) 2007 The Regents of the University of California.
4eda14cbcSMatt Macy  *  Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5eda14cbcSMatt Macy  *  Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6eda14cbcSMatt Macy  *  UCRL-CODE-235197
7eda14cbcSMatt Macy  *
8eda14cbcSMatt Macy  *  This file is part of the SPL, Solaris Porting Layer.
9eda14cbcSMatt Macy  *
10eda14cbcSMatt Macy  *  The SPL is free software; you can redistribute it and/or modify it
11eda14cbcSMatt Macy  *  under the terms of the GNU General Public License as published by the
12eda14cbcSMatt Macy  *  Free Software Foundation; either version 2 of the License, or (at your
13eda14cbcSMatt Macy  *  option) any later version.
14eda14cbcSMatt Macy  *
15eda14cbcSMatt Macy  *  The SPL is distributed in the hope that it will be useful, but WITHOUT
16eda14cbcSMatt Macy  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17eda14cbcSMatt Macy  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18eda14cbcSMatt Macy  *  for more details.
19eda14cbcSMatt Macy  *
20eda14cbcSMatt Macy  *  You should have received a copy of the GNU General Public License along
21eda14cbcSMatt Macy  *  with the SPL.  If not, see <http://www.gnu.org/licenses/>.
22eda14cbcSMatt Macy  *
23eda14cbcSMatt Macy  *  Solaris Porting Layer (SPL) Generic Implementation.
24eda14cbcSMatt Macy  */
25eda14cbcSMatt Macy 
26dbd5678dSMartin Matuska #include <sys/isa_defs.h>
27eda14cbcSMatt Macy #include <sys/sysmacros.h>
28eda14cbcSMatt Macy #include <sys/systeminfo.h>
29eda14cbcSMatt Macy #include <sys/vmsystm.h>
30eda14cbcSMatt Macy #include <sys/kmem.h>
31eda14cbcSMatt Macy #include <sys/kmem_cache.h>
32eda14cbcSMatt Macy #include <sys/vmem.h>
33eda14cbcSMatt Macy #include <sys/mutex.h>
34eda14cbcSMatt Macy #include <sys/rwlock.h>
35eda14cbcSMatt Macy #include <sys/taskq.h>
36eda14cbcSMatt Macy #include <sys/tsd.h>
37eda14cbcSMatt Macy #include <sys/zmod.h>
38eda14cbcSMatt Macy #include <sys/debug.h>
39eda14cbcSMatt Macy #include <sys/proc.h>
40eda14cbcSMatt Macy #include <sys/kstat.h>
41eda14cbcSMatt Macy #include <sys/file.h>
42eda14cbcSMatt Macy #include <sys/sunddi.h>
43eda14cbcSMatt Macy #include <linux/ctype.h>
44eda14cbcSMatt Macy #include <sys/disp.h>
45eda14cbcSMatt Macy #include <sys/random.h>
46da5137abSMartin Matuska #include <sys/string.h>
47eda14cbcSMatt Macy #include <linux/kmod.h>
48eda14cbcSMatt Macy #include <linux/mod_compat.h>
49eda14cbcSMatt Macy #include <sys/cred.h>
50eda14cbcSMatt Macy #include <sys/vnode.h>
51be181ee2SMartin Matuska #include <sys/misc.h>
52dbd5678dSMartin Matuska #include <linux/mod_compat.h>
53eda14cbcSMatt Macy 
54eda14cbcSMatt Macy unsigned long spl_hostid = 0;
55eda14cbcSMatt Macy EXPORT_SYMBOL(spl_hostid);
56e92ffd9bSMartin Matuska 
57c03c5b1cSMartin Matuska /* CSTYLED */
58eda14cbcSMatt Macy module_param(spl_hostid, ulong, 0644);
59eda14cbcSMatt Macy MODULE_PARM_DESC(spl_hostid, "The system hostid.");
60eda14cbcSMatt Macy 
61eda14cbcSMatt Macy proc_t p0;
62eda14cbcSMatt Macy EXPORT_SYMBOL(p0);
63eda14cbcSMatt Macy 
64eda14cbcSMatt Macy /*
65dbd5678dSMartin Matuska  * xoshiro256++ 1.0 PRNG by David Blackman and Sebastiano Vigna
66eda14cbcSMatt Macy  *
67dbd5678dSMartin Matuska  * "Scrambled Linear Pseudorandom Number Generators∗"
68dbd5678dSMartin Matuska  * https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
69eda14cbcSMatt Macy  *
70eda14cbcSMatt Macy  * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
71eda14cbcSMatt Macy  * is to provide bytes containing random numbers. It is mapped to /dev/urandom
72eda14cbcSMatt Macy  * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
73eda14cbcSMatt Macy  * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
74eda14cbcSMatt Macy  * we can implement it using a fast PRNG that we seed using Linux' actual
75eda14cbcSMatt Macy  * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
76eda14cbcSMatt Macy  * with an independent seed so that all calls to random_get_pseudo_bytes() are
77eda14cbcSMatt Macy  * free of atomic instructions.
78eda14cbcSMatt Macy  *
79eda14cbcSMatt Macy  * A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
80dbd5678dSMartin Matuska  * to generate words larger than 256 bits will paradoxically be limited to
81dbd5678dSMartin Matuska  * `2^256 - 1` possibilities. This is because we have a sequence of `2^256 - 1`
82dbd5678dSMartin Matuska  * 256-bit words and selecting the first will implicitly select the second. If
83eda14cbcSMatt Macy  * a caller finds this behavior undesirable, random_get_bytes() should be used
84eda14cbcSMatt Macy  * instead.
85eda14cbcSMatt Macy  *
86eda14cbcSMatt Macy  * XXX: Linux interrupt handlers that trigger within the critical section
87dbd5678dSMartin Matuska  * formed by `s[3] = xp[3];` and `xp[0] = s[0];` and call this function will
88eda14cbcSMatt Macy  * see the same numbers. Nothing in the code currently calls this in an
89eda14cbcSMatt Macy  * interrupt handler, so this is considered to be okay. If that becomes a
90eda14cbcSMatt Macy  * problem, we could create a set of per-cpu variables for interrupt handlers
91eda14cbcSMatt Macy  * and use them when in_interrupt() from linux/preempt_mask.h evaluates to
92eda14cbcSMatt Macy  * true.
93eda14cbcSMatt Macy  */
94dbd5678dSMartin Matuska static void __percpu *spl_pseudo_entropy;
95eda14cbcSMatt Macy 
96eda14cbcSMatt Macy /*
97dbd5678dSMartin Matuska  * rotl()/spl_rand_next()/spl_rand_jump() are copied from the following CC-0
98dbd5678dSMartin Matuska  * licensed file:
99eda14cbcSMatt Macy  *
100dbd5678dSMartin Matuska  * https://prng.di.unimi.it/xoshiro256plusplus.c
101eda14cbcSMatt Macy  */
102eda14cbcSMatt Macy 
103dbd5678dSMartin Matuska static inline uint64_t rotl(const uint64_t x, int k)
104dbd5678dSMartin Matuska {
105dbd5678dSMartin Matuska 	return ((x << k) | (x >> (64 - k)));
106dbd5678dSMartin Matuska }
107dbd5678dSMartin Matuska 
108eda14cbcSMatt Macy static inline uint64_t
109eda14cbcSMatt Macy spl_rand_next(uint64_t *s)
110eda14cbcSMatt Macy {
111dbd5678dSMartin Matuska 	const uint64_t result = rotl(s[0] + s[3], 23) + s[0];
112dbd5678dSMartin Matuska 
113dbd5678dSMartin Matuska 	const uint64_t t = s[1] << 17;
114dbd5678dSMartin Matuska 
115dbd5678dSMartin Matuska 	s[2] ^= s[0];
116dbd5678dSMartin Matuska 	s[3] ^= s[1];
117dbd5678dSMartin Matuska 	s[1] ^= s[2];
118dbd5678dSMartin Matuska 	s[0] ^= s[3];
119dbd5678dSMartin Matuska 
120dbd5678dSMartin Matuska 	s[2] ^= t;
121dbd5678dSMartin Matuska 
122dbd5678dSMartin Matuska 	s[3] = rotl(s[3], 45);
123dbd5678dSMartin Matuska 
124dbd5678dSMartin Matuska 	return (result);
125eda14cbcSMatt Macy }
126eda14cbcSMatt Macy 
127eda14cbcSMatt Macy static inline void
128eda14cbcSMatt Macy spl_rand_jump(uint64_t *s)
129eda14cbcSMatt Macy {
130dbd5678dSMartin Matuska 	static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba,
131dbd5678dSMartin Matuska 	    0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };
132eda14cbcSMatt Macy 
133eda14cbcSMatt Macy 	uint64_t s0 = 0;
134eda14cbcSMatt Macy 	uint64_t s1 = 0;
135dbd5678dSMartin Matuska 	uint64_t s2 = 0;
136dbd5678dSMartin Matuska 	uint64_t s3 = 0;
137eda14cbcSMatt Macy 	int i, b;
138eda14cbcSMatt Macy 	for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++)
139eda14cbcSMatt Macy 		for (b = 0; b < 64; b++) {
140eda14cbcSMatt Macy 			if (JUMP[i] & 1ULL << b) {
141eda14cbcSMatt Macy 				s0 ^= s[0];
142eda14cbcSMatt Macy 				s1 ^= s[1];
143dbd5678dSMartin Matuska 				s2 ^= s[2];
144dbd5678dSMartin Matuska 				s3 ^= s[3];
145eda14cbcSMatt Macy 			}
146eda14cbcSMatt Macy 			(void) spl_rand_next(s);
147eda14cbcSMatt Macy 		}
148eda14cbcSMatt Macy 
149eda14cbcSMatt Macy 	s[0] = s0;
150eda14cbcSMatt Macy 	s[1] = s1;
151dbd5678dSMartin Matuska 	s[2] = s2;
152dbd5678dSMartin Matuska 	s[3] = s3;
153eda14cbcSMatt Macy }
154eda14cbcSMatt Macy 
155eda14cbcSMatt Macy int
156eda14cbcSMatt Macy random_get_pseudo_bytes(uint8_t *ptr, size_t len)
157eda14cbcSMatt Macy {
158dbd5678dSMartin Matuska 	uint64_t *xp, s[4];
159eda14cbcSMatt Macy 
160eda14cbcSMatt Macy 	ASSERT(ptr);
161eda14cbcSMatt Macy 
162eda14cbcSMatt Macy 	xp = get_cpu_ptr(spl_pseudo_entropy);
163eda14cbcSMatt Macy 
164eda14cbcSMatt Macy 	s[0] = xp[0];
165eda14cbcSMatt Macy 	s[1] = xp[1];
166dbd5678dSMartin Matuska 	s[2] = xp[2];
167dbd5678dSMartin Matuska 	s[3] = xp[3];
168eda14cbcSMatt Macy 
169eda14cbcSMatt Macy 	while (len) {
170eda14cbcSMatt Macy 		union {
171eda14cbcSMatt Macy 			uint64_t ui64;
172eda14cbcSMatt Macy 			uint8_t byte[sizeof (uint64_t)];
173eda14cbcSMatt Macy 		}entropy;
174eda14cbcSMatt Macy 		int i = MIN(len, sizeof (uint64_t));
175eda14cbcSMatt Macy 
176eda14cbcSMatt Macy 		len -= i;
177eda14cbcSMatt Macy 		entropy.ui64 = spl_rand_next(s);
178eda14cbcSMatt Macy 
179dbd5678dSMartin Matuska 		/*
180dbd5678dSMartin Matuska 		 * xoshiro256++ has low entropy lower bytes, so we copy the
181dbd5678dSMartin Matuska 		 * higher order bytes first.
182dbd5678dSMartin Matuska 		 */
183eda14cbcSMatt Macy 		while (i--)
184dbd5678dSMartin Matuska #ifdef _ZFS_BIG_ENDIAN
185eda14cbcSMatt Macy 			*ptr++ = entropy.byte[i];
186dbd5678dSMartin Matuska #else
187dbd5678dSMartin Matuska 			*ptr++ = entropy.byte[7 - i];
188dbd5678dSMartin Matuska #endif
189eda14cbcSMatt Macy 	}
190eda14cbcSMatt Macy 
191eda14cbcSMatt Macy 	xp[0] = s[0];
192eda14cbcSMatt Macy 	xp[1] = s[1];
193dbd5678dSMartin Matuska 	xp[2] = s[2];
194dbd5678dSMartin Matuska 	xp[3] = s[3];
195eda14cbcSMatt Macy 
196eda14cbcSMatt Macy 	put_cpu_ptr(spl_pseudo_entropy);
197eda14cbcSMatt Macy 
198eda14cbcSMatt Macy 	return (0);
199eda14cbcSMatt Macy }
200eda14cbcSMatt Macy 
201eda14cbcSMatt Macy 
202eda14cbcSMatt Macy EXPORT_SYMBOL(random_get_pseudo_bytes);
203eda14cbcSMatt Macy 
204eda14cbcSMatt Macy #if BITS_PER_LONG == 32
205eda14cbcSMatt Macy 
206eda14cbcSMatt Macy /*
207eda14cbcSMatt Macy  * Support 64/64 => 64 division on a 32-bit platform.  While the kernel
208eda14cbcSMatt Macy  * provides a div64_u64() function for this we do not use it because the
209eda14cbcSMatt Macy  * implementation is flawed.  There are cases which return incorrect
210eda14cbcSMatt Macy  * results as late as linux-2.6.35.  Until this is fixed upstream the
211eda14cbcSMatt Macy  * spl must provide its own implementation.
212eda14cbcSMatt Macy  *
213eda14cbcSMatt Macy  * This implementation is a slightly modified version of the algorithm
214eda14cbcSMatt Macy  * proposed by the book 'Hacker's Delight'.  The original source can be
215eda14cbcSMatt Macy  * found here and is available for use without restriction.
216eda14cbcSMatt Macy  *
217eda14cbcSMatt Macy  * http://www.hackersdelight.org/HDcode/newCode/divDouble.c
218eda14cbcSMatt Macy  */
219eda14cbcSMatt Macy 
220eda14cbcSMatt Macy /*
221eda14cbcSMatt Macy  * Calculate number of leading of zeros for a 64-bit value.
222eda14cbcSMatt Macy  */
223eda14cbcSMatt Macy static int
224eda14cbcSMatt Macy nlz64(uint64_t x)
225eda14cbcSMatt Macy {
226eda14cbcSMatt Macy 	register int n = 0;
227eda14cbcSMatt Macy 
228eda14cbcSMatt Macy 	if (x == 0)
229eda14cbcSMatt Macy 		return (64);
230eda14cbcSMatt Macy 
231eda14cbcSMatt Macy 	if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; }
232eda14cbcSMatt Macy 	if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; }
233eda14cbcSMatt Macy 	if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n +  8; x = x <<  8; }
234eda14cbcSMatt Macy 	if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n +  4; x = x <<  4; }
235eda14cbcSMatt Macy 	if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n +  2; x = x <<  2; }
236eda14cbcSMatt Macy 	if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n +  1; }
237eda14cbcSMatt Macy 
238eda14cbcSMatt Macy 	return (n);
239eda14cbcSMatt Macy }
240eda14cbcSMatt Macy 
241eda14cbcSMatt Macy /*
242eda14cbcSMatt Macy  * Newer kernels have a div_u64() function but we define our own
243eda14cbcSMatt Macy  * to simplify portability between kernel versions.
244eda14cbcSMatt Macy  */
245eda14cbcSMatt Macy static inline uint64_t
246eda14cbcSMatt Macy __div_u64(uint64_t u, uint32_t v)
247eda14cbcSMatt Macy {
248eda14cbcSMatt Macy 	(void) do_div(u, v);
249eda14cbcSMatt Macy 	return (u);
250eda14cbcSMatt Macy }
251eda14cbcSMatt Macy 
252eda14cbcSMatt Macy /*
253eda14cbcSMatt Macy  * Turn off missing prototypes warning for these functions. They are
254eda14cbcSMatt Macy  * replacements for libgcc-provided functions and will never be called
255eda14cbcSMatt Macy  * directly.
256eda14cbcSMatt Macy  */
257*bb2d13b6SMartin Matuska #if defined(__GNUC__) && !defined(__clang__)
258eda14cbcSMatt Macy #pragma GCC diagnostic push
259eda14cbcSMatt Macy #pragma GCC diagnostic ignored "-Wmissing-prototypes"
260*bb2d13b6SMartin Matuska #endif
261eda14cbcSMatt Macy 
262eda14cbcSMatt Macy /*
263eda14cbcSMatt Macy  * Implementation of 64-bit unsigned division for 32-bit machines.
264eda14cbcSMatt Macy  *
265eda14cbcSMatt Macy  * First the procedure takes care of the case in which the divisor is a
266eda14cbcSMatt Macy  * 32-bit quantity. There are two subcases: (1) If the left half of the
267eda14cbcSMatt Macy  * dividend is less than the divisor, one execution of do_div() is all that
268eda14cbcSMatt Macy  * is required (overflow is not possible). (2) Otherwise it does two
269eda14cbcSMatt Macy  * divisions, using the grade school method.
270eda14cbcSMatt Macy  */
271eda14cbcSMatt Macy uint64_t
272eda14cbcSMatt Macy __udivdi3(uint64_t u, uint64_t v)
273eda14cbcSMatt Macy {
274eda14cbcSMatt Macy 	uint64_t u0, u1, v1, q0, q1, k;
275eda14cbcSMatt Macy 	int n;
276eda14cbcSMatt Macy 
277eda14cbcSMatt Macy 	if (v >> 32 == 0) {			// If v < 2**32:
278eda14cbcSMatt Macy 		if (u >> 32 < v) {		// If u/v cannot overflow,
279eda14cbcSMatt Macy 			return (__div_u64(u, v)); // just do one division.
280eda14cbcSMatt Macy 		} else {			// If u/v would overflow:
281eda14cbcSMatt Macy 			u1 = u >> 32;		// Break u into two halves.
282eda14cbcSMatt Macy 			u0 = u & 0xFFFFFFFF;
283eda14cbcSMatt Macy 			q1 = __div_u64(u1, v);	// First quotient digit.
284eda14cbcSMatt Macy 			k  = u1 - q1 * v;	// First remainder, < v.
285eda14cbcSMatt Macy 			u0 += (k << 32);
286eda14cbcSMatt Macy 			q0 = __div_u64(u0, v);	// Seconds quotient digit.
287eda14cbcSMatt Macy 			return ((q1 << 32) + q0);
288eda14cbcSMatt Macy 		}
289eda14cbcSMatt Macy 	} else {				// If v >= 2**32:
290eda14cbcSMatt Macy 		n = nlz64(v);			// 0 <= n <= 31.
291eda14cbcSMatt Macy 		v1 = (v << n) >> 32;		// Normalize divisor, MSB is 1.
292eda14cbcSMatt Macy 		u1 = u >> 1;			// To ensure no overflow.
293eda14cbcSMatt Macy 		q1 = __div_u64(u1, v1);		// Get quotient from
294eda14cbcSMatt Macy 		q0 = (q1 << n) >> 31;		// Undo normalization and
295eda14cbcSMatt Macy 						// division of u by 2.
296eda14cbcSMatt Macy 		if (q0 != 0)			// Make q0 correct or
297eda14cbcSMatt Macy 			q0 = q0 - 1;		// too small by 1.
298eda14cbcSMatt Macy 		if ((u - q0 * v) >= v)
299eda14cbcSMatt Macy 			q0 = q0 + 1;		// Now q0 is correct.
300eda14cbcSMatt Macy 
301eda14cbcSMatt Macy 		return (q0);
302eda14cbcSMatt Macy 	}
303eda14cbcSMatt Macy }
304eda14cbcSMatt Macy EXPORT_SYMBOL(__udivdi3);
305eda14cbcSMatt Macy 
306eda14cbcSMatt Macy #ifndef abs64
307c03c5b1cSMartin Matuska /* CSTYLED */
308eda14cbcSMatt Macy #define	abs64(x)	({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
309eda14cbcSMatt Macy #endif
310eda14cbcSMatt Macy 
311eda14cbcSMatt Macy /*
312eda14cbcSMatt Macy  * Implementation of 64-bit signed division for 32-bit machines.
313eda14cbcSMatt Macy  */
314eda14cbcSMatt Macy int64_t
315eda14cbcSMatt Macy __divdi3(int64_t u, int64_t v)
316eda14cbcSMatt Macy {
317eda14cbcSMatt Macy 	int64_t q, t;
318eda14cbcSMatt Macy 	q = __udivdi3(abs64(u), abs64(v));
319eda14cbcSMatt Macy 	t = (u ^ v) >> 63;	// If u, v have different
320eda14cbcSMatt Macy 	return ((q ^ t) - t);	// signs, negate q.
321eda14cbcSMatt Macy }
322eda14cbcSMatt Macy EXPORT_SYMBOL(__divdi3);
323eda14cbcSMatt Macy 
324eda14cbcSMatt Macy /*
325eda14cbcSMatt Macy  * Implementation of 64-bit unsigned modulo for 32-bit machines.
326eda14cbcSMatt Macy  */
327eda14cbcSMatt Macy uint64_t
328eda14cbcSMatt Macy __umoddi3(uint64_t dividend, uint64_t divisor)
329eda14cbcSMatt Macy {
330eda14cbcSMatt Macy 	return (dividend - (divisor * __udivdi3(dividend, divisor)));
331eda14cbcSMatt Macy }
332eda14cbcSMatt Macy EXPORT_SYMBOL(__umoddi3);
333eda14cbcSMatt Macy 
334eda14cbcSMatt Macy /* 64-bit signed modulo for 32-bit machines. */
335eda14cbcSMatt Macy int64_t
336eda14cbcSMatt Macy __moddi3(int64_t n, int64_t d)
337eda14cbcSMatt Macy {
338eda14cbcSMatt Macy 	int64_t q;
339eda14cbcSMatt Macy 	boolean_t nn = B_FALSE;
340eda14cbcSMatt Macy 
341eda14cbcSMatt Macy 	if (n < 0) {
342eda14cbcSMatt Macy 		nn = B_TRUE;
343eda14cbcSMatt Macy 		n = -n;
344eda14cbcSMatt Macy 	}
345eda14cbcSMatt Macy 	if (d < 0)
346eda14cbcSMatt Macy 		d = -d;
347eda14cbcSMatt Macy 
348eda14cbcSMatt Macy 	q = __umoddi3(n, d);
349eda14cbcSMatt Macy 
350eda14cbcSMatt Macy 	return (nn ? -q : q);
351eda14cbcSMatt Macy }
352eda14cbcSMatt Macy EXPORT_SYMBOL(__moddi3);
353eda14cbcSMatt Macy 
354eda14cbcSMatt Macy /*
355eda14cbcSMatt Macy  * Implementation of 64-bit unsigned division/modulo for 32-bit machines.
356eda14cbcSMatt Macy  */
357eda14cbcSMatt Macy uint64_t
358eda14cbcSMatt Macy __udivmoddi4(uint64_t n, uint64_t d, uint64_t *r)
359eda14cbcSMatt Macy {
360eda14cbcSMatt Macy 	uint64_t q = __udivdi3(n, d);
361eda14cbcSMatt Macy 	if (r)
362eda14cbcSMatt Macy 		*r = n - d * q;
363eda14cbcSMatt Macy 	return (q);
364eda14cbcSMatt Macy }
365eda14cbcSMatt Macy EXPORT_SYMBOL(__udivmoddi4);
366eda14cbcSMatt Macy 
367eda14cbcSMatt Macy /*
368eda14cbcSMatt Macy  * Implementation of 64-bit signed division/modulo for 32-bit machines.
369eda14cbcSMatt Macy  */
370eda14cbcSMatt Macy int64_t
371eda14cbcSMatt Macy __divmoddi4(int64_t n, int64_t d, int64_t *r)
372eda14cbcSMatt Macy {
373eda14cbcSMatt Macy 	int64_t q, rr;
374eda14cbcSMatt Macy 	boolean_t nn = B_FALSE;
375eda14cbcSMatt Macy 	boolean_t nd = B_FALSE;
376eda14cbcSMatt Macy 	if (n < 0) {
377eda14cbcSMatt Macy 		nn = B_TRUE;
378eda14cbcSMatt Macy 		n = -n;
379eda14cbcSMatt Macy 	}
380eda14cbcSMatt Macy 	if (d < 0) {
381eda14cbcSMatt Macy 		nd = B_TRUE;
382eda14cbcSMatt Macy 		d = -d;
383eda14cbcSMatt Macy 	}
384eda14cbcSMatt Macy 
385eda14cbcSMatt Macy 	q = __udivmoddi4(n, d, (uint64_t *)&rr);
386eda14cbcSMatt Macy 
387eda14cbcSMatt Macy 	if (nn != nd)
388eda14cbcSMatt Macy 		q = -q;
389eda14cbcSMatt Macy 	if (nn)
390eda14cbcSMatt Macy 		rr = -rr;
391eda14cbcSMatt Macy 	if (r)
392eda14cbcSMatt Macy 		*r = rr;
393eda14cbcSMatt Macy 	return (q);
394eda14cbcSMatt Macy }
395eda14cbcSMatt Macy EXPORT_SYMBOL(__divmoddi4);
396eda14cbcSMatt Macy 
397eda14cbcSMatt Macy #if defined(__arm) || defined(__arm__)
398eda14cbcSMatt Macy /*
399eda14cbcSMatt Macy  * Implementation of 64-bit (un)signed division for 32-bit arm machines.
400eda14cbcSMatt Macy  *
401eda14cbcSMatt Macy  * Run-time ABI for the ARM Architecture (page 20).  A pair of (unsigned)
402eda14cbcSMatt Macy  * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
403eda14cbcSMatt Macy  * and the remainder in {r2, r3}.  The return type is specifically left
404eda14cbcSMatt Macy  * set to 'void' to ensure the compiler does not overwrite these registers
405eda14cbcSMatt Macy  * during the return.  All results are in registers as per ABI
406eda14cbcSMatt Macy  */
407eda14cbcSMatt Macy void
408eda14cbcSMatt Macy __aeabi_uldivmod(uint64_t u, uint64_t v)
409eda14cbcSMatt Macy {
410eda14cbcSMatt Macy 	uint64_t res;
411eda14cbcSMatt Macy 	uint64_t mod;
412eda14cbcSMatt Macy 
413eda14cbcSMatt Macy 	res = __udivdi3(u, v);
414eda14cbcSMatt Macy 	mod = __umoddi3(u, v);
415eda14cbcSMatt Macy 	{
416eda14cbcSMatt Macy 		register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
417eda14cbcSMatt Macy 		register uint32_t r1 asm("r1") = (res >> 32);
418eda14cbcSMatt Macy 		register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
419eda14cbcSMatt Macy 		register uint32_t r3 asm("r3") = (mod >> 32);
420eda14cbcSMatt Macy 
421eda14cbcSMatt Macy 		asm volatile(""
422eda14cbcSMatt Macy 		    : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3)  /* output */
423eda14cbcSMatt Macy 		    : "r"(r0), "r"(r1), "r"(r2), "r"(r3));    /* input */
424eda14cbcSMatt Macy 
425eda14cbcSMatt Macy 		return; /* r0; */
426eda14cbcSMatt Macy 	}
427eda14cbcSMatt Macy }
428eda14cbcSMatt Macy EXPORT_SYMBOL(__aeabi_uldivmod);
429eda14cbcSMatt Macy 
430eda14cbcSMatt Macy void
431eda14cbcSMatt Macy __aeabi_ldivmod(int64_t u, int64_t v)
432eda14cbcSMatt Macy {
433eda14cbcSMatt Macy 	int64_t res;
434eda14cbcSMatt Macy 	uint64_t mod;
435eda14cbcSMatt Macy 
436eda14cbcSMatt Macy 	res =  __divdi3(u, v);
437eda14cbcSMatt Macy 	mod = __umoddi3(u, v);
438eda14cbcSMatt Macy 	{
439eda14cbcSMatt Macy 		register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
440eda14cbcSMatt Macy 		register uint32_t r1 asm("r1") = (res >> 32);
441eda14cbcSMatt Macy 		register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
442eda14cbcSMatt Macy 		register uint32_t r3 asm("r3") = (mod >> 32);
443eda14cbcSMatt Macy 
444eda14cbcSMatt Macy 		asm volatile(""
445eda14cbcSMatt Macy 		    : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3)  /* output */
446eda14cbcSMatt Macy 		    : "r"(r0), "r"(r1), "r"(r2), "r"(r3));    /* input */
447eda14cbcSMatt Macy 
448eda14cbcSMatt Macy 		return; /* r0; */
449eda14cbcSMatt Macy 	}
450eda14cbcSMatt Macy }
451eda14cbcSMatt Macy EXPORT_SYMBOL(__aeabi_ldivmod);
452eda14cbcSMatt Macy #endif /* __arm || __arm__ */
453eda14cbcSMatt Macy 
454*bb2d13b6SMartin Matuska #if defined(__GNUC__) && !defined(__clang__)
455eda14cbcSMatt Macy #pragma GCC diagnostic pop
456*bb2d13b6SMartin Matuska #endif
457eda14cbcSMatt Macy 
458eda14cbcSMatt Macy #endif /* BITS_PER_LONG */
459eda14cbcSMatt Macy 
460eda14cbcSMatt Macy /*
461eda14cbcSMatt Macy  * NOTE: The strtoxx behavior is solely based on my reading of the Solaris
462eda14cbcSMatt Macy  * ddi_strtol(9F) man page.  I have not verified the behavior of these
463eda14cbcSMatt Macy  * functions against their Solaris counterparts.  It is possible that I
464eda14cbcSMatt Macy  * may have misinterpreted the man page or the man page is incorrect.
465eda14cbcSMatt Macy  */
466eda14cbcSMatt Macy int ddi_strtol(const char *, char **, int, long *);
467eda14cbcSMatt Macy int ddi_strtoull(const char *, char **, int, unsigned long long *);
468eda14cbcSMatt Macy int ddi_strtoll(const char *, char **, int, long long *);
469eda14cbcSMatt Macy 
470716fd348SMartin Matuska #define	define_ddi_strtox(type, valtype)				\
471716fd348SMartin Matuska int ddi_strto##type(const char *str, char **endptr,			\
472eda14cbcSMatt Macy     int base, valtype *result)						\
473eda14cbcSMatt Macy {									\
474eda14cbcSMatt Macy 	valtype last_value, value = 0;					\
475eda14cbcSMatt Macy 	char *ptr = (char *)str;					\
476716fd348SMartin Matuska 	int digit, minus = 0;						\
477716fd348SMartin Matuska 									\
478716fd348SMartin Matuska 	while (strchr(" \t\n\r\f", *ptr))				\
479716fd348SMartin Matuska 		++ptr;							\
480eda14cbcSMatt Macy 									\
481eda14cbcSMatt Macy 	if (strlen(ptr) == 0)						\
482eda14cbcSMatt Macy 		return (EINVAL);					\
483eda14cbcSMatt Macy 									\
484716fd348SMartin Matuska 	switch (*ptr) {							\
485716fd348SMartin Matuska 	case '-':							\
486716fd348SMartin Matuska 		minus = 1;						\
487716fd348SMartin Matuska 		zfs_fallthrough;					\
488716fd348SMartin Matuska 	case '+':							\
489716fd348SMartin Matuska 		++ptr;							\
490716fd348SMartin Matuska 		break;							\
491716fd348SMartin Matuska 	}								\
492716fd348SMartin Matuska 									\
493eda14cbcSMatt Macy 	/* Auto-detect base based on prefix */				\
494eda14cbcSMatt Macy 	if (!base) {							\
495eda14cbcSMatt Macy 		if (str[0] == '0') {					\
496eda14cbcSMatt Macy 			if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
497eda14cbcSMatt Macy 				base = 16; /* hex */			\
498eda14cbcSMatt Macy 				ptr += 2;				\
499eda14cbcSMatt Macy 			} else if (str[1] >= '0' && str[1] < 8) {	\
500eda14cbcSMatt Macy 				base = 8; /* octal */			\
501eda14cbcSMatt Macy 				ptr += 1;				\
502eda14cbcSMatt Macy 			} else {					\
503eda14cbcSMatt Macy 				return (EINVAL);			\
504eda14cbcSMatt Macy 			}						\
505eda14cbcSMatt Macy 		} else {						\
506eda14cbcSMatt Macy 			base = 10; /* decimal */			\
507eda14cbcSMatt Macy 		}							\
508eda14cbcSMatt Macy 	}								\
509eda14cbcSMatt Macy 									\
510eda14cbcSMatt Macy 	while (1) {							\
511eda14cbcSMatt Macy 		if (isdigit(*ptr))					\
512eda14cbcSMatt Macy 			digit = *ptr - '0';				\
513eda14cbcSMatt Macy 		else if (isalpha(*ptr))					\
514eda14cbcSMatt Macy 			digit = tolower(*ptr) - 'a' + 10;		\
515eda14cbcSMatt Macy 		else							\
516eda14cbcSMatt Macy 			break;						\
517eda14cbcSMatt Macy 									\
518eda14cbcSMatt Macy 		if (digit >= base)					\
519eda14cbcSMatt Macy 			break;						\
520eda14cbcSMatt Macy 									\
521eda14cbcSMatt Macy 		last_value = value;					\
522eda14cbcSMatt Macy 		value = value * base + digit;				\
523eda14cbcSMatt Macy 		if (last_value > value) /* Overflow */			\
524eda14cbcSMatt Macy 			return (ERANGE);				\
525eda14cbcSMatt Macy 									\
526eda14cbcSMatt Macy 		ptr++;							\
527eda14cbcSMatt Macy 	}								\
528eda14cbcSMatt Macy 									\
529716fd348SMartin Matuska 	*result = minus ? -value : value;				\
530eda14cbcSMatt Macy 									\
531eda14cbcSMatt Macy 	if (endptr)							\
532716fd348SMartin Matuska 		*endptr = ptr;						\
533eda14cbcSMatt Macy 									\
534eda14cbcSMatt Macy 	return (0);							\
535eda14cbcSMatt Macy }									\
536eda14cbcSMatt Macy 
537eda14cbcSMatt Macy define_ddi_strtox(l, long)
538716fd348SMartin Matuska define_ddi_strtox(ull, unsigned long long)
539eda14cbcSMatt Macy define_ddi_strtox(ll, long long)
540eda14cbcSMatt Macy 
541eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtol);
542eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtoll);
543eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtoull);
544eda14cbcSMatt Macy 
545eda14cbcSMatt Macy int
546eda14cbcSMatt Macy ddi_copyin(const void *from, void *to, size_t len, int flags)
547eda14cbcSMatt Macy {
548eda14cbcSMatt Macy 	/* Fake ioctl() issued by kernel, 'from' is a kernel address */
549eda14cbcSMatt Macy 	if (flags & FKIOCTL) {
550eda14cbcSMatt Macy 		memcpy(to, from, len);
551eda14cbcSMatt Macy 		return (0);
552eda14cbcSMatt Macy 	}
553eda14cbcSMatt Macy 
554eda14cbcSMatt Macy 	return (copyin(from, to, len));
555eda14cbcSMatt Macy }
556eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_copyin);
557eda14cbcSMatt Macy 
558dbd5678dSMartin Matuska #define	define_spl_param(type, fmt)					\
559dbd5678dSMartin Matuska int									\
560dbd5678dSMartin Matuska spl_param_get_##type(char *buf, zfs_kernel_param_t *kp)			\
561dbd5678dSMartin Matuska {									\
562dbd5678dSMartin Matuska 	return (scnprintf(buf, PAGE_SIZE, fmt "\n",			\
563dbd5678dSMartin Matuska 	    *(type *)kp->arg));						\
564dbd5678dSMartin Matuska }									\
565dbd5678dSMartin Matuska int									\
566dbd5678dSMartin Matuska spl_param_set_##type(const char *buf, zfs_kernel_param_t *kp)		\
567dbd5678dSMartin Matuska {									\
568dbd5678dSMartin Matuska 	return (kstrto##type(buf, 0, (type *)kp->arg));			\
569dbd5678dSMartin Matuska }									\
570dbd5678dSMartin Matuska const struct kernel_param_ops spl_param_ops_##type = {			\
571dbd5678dSMartin Matuska 	.set = spl_param_set_##type,					\
572dbd5678dSMartin Matuska 	.get = spl_param_get_##type,					\
573dbd5678dSMartin Matuska };									\
574dbd5678dSMartin Matuska EXPORT_SYMBOL(spl_param_get_##type);					\
575dbd5678dSMartin Matuska EXPORT_SYMBOL(spl_param_set_##type);					\
576dbd5678dSMartin Matuska EXPORT_SYMBOL(spl_param_ops_##type);
577dbd5678dSMartin Matuska 
578dbd5678dSMartin Matuska define_spl_param(s64, "%lld")
579dbd5678dSMartin Matuska define_spl_param(u64, "%llu")
580dbd5678dSMartin Matuska 
581be181ee2SMartin Matuska /*
582be181ee2SMartin Matuska  * Post a uevent to userspace whenever a new vdev adds to the pool. It is
583be181ee2SMartin Matuska  * necessary to sync blkid information with udev, which zed daemon uses
584be181ee2SMartin Matuska  * during device hotplug to identify the vdev.
585be181ee2SMartin Matuska  */
586be181ee2SMartin Matuska void
587be181ee2SMartin Matuska spl_signal_kobj_evt(struct block_device *bdev)
588be181ee2SMartin Matuska {
589be181ee2SMartin Matuska #if defined(HAVE_BDEV_KOBJ) || defined(HAVE_PART_TO_DEV)
590be181ee2SMartin Matuska #ifdef HAVE_BDEV_KOBJ
591be181ee2SMartin Matuska 	struct kobject *disk_kobj = bdev_kobj(bdev);
592be181ee2SMartin Matuska #else
593be181ee2SMartin Matuska 	struct kobject *disk_kobj = &part_to_dev(bdev->bd_part)->kobj;
594be181ee2SMartin Matuska #endif
595be181ee2SMartin Matuska 	if (disk_kobj) {
596be181ee2SMartin Matuska 		int ret = kobject_uevent(disk_kobj, KOBJ_CHANGE);
597be181ee2SMartin Matuska 		if (ret) {
598be181ee2SMartin Matuska 			pr_warn("ZFS: Sending event '%d' to kobject: '%s'"
599be181ee2SMartin Matuska 			    " (%p): failed(ret:%d)\n", KOBJ_CHANGE,
600be181ee2SMartin Matuska 			    kobject_name(disk_kobj), disk_kobj, ret);
601be181ee2SMartin Matuska 		}
602be181ee2SMartin Matuska 	}
603be181ee2SMartin Matuska #else
604be181ee2SMartin Matuska /*
605be181ee2SMartin Matuska  * This is encountered if neither bdev_kobj() nor part_to_dev() is available
606be181ee2SMartin Matuska  * in the kernel - likely due to an API change that needs to be chased down.
607be181ee2SMartin Matuska  */
608be181ee2SMartin Matuska #error "Unsupported kernel: unable to get struct kobj from bdev"
609be181ee2SMartin Matuska #endif
610be181ee2SMartin Matuska }
611be181ee2SMartin Matuska EXPORT_SYMBOL(spl_signal_kobj_evt);
612be181ee2SMartin Matuska 
613eda14cbcSMatt Macy int
614eda14cbcSMatt Macy ddi_copyout(const void *from, void *to, size_t len, int flags)
615eda14cbcSMatt Macy {
616eda14cbcSMatt Macy 	/* Fake ioctl() issued by kernel, 'from' is a kernel address */
617eda14cbcSMatt Macy 	if (flags & FKIOCTL) {
618eda14cbcSMatt Macy 		memcpy(to, from, len);
619eda14cbcSMatt Macy 		return (0);
620eda14cbcSMatt Macy 	}
621eda14cbcSMatt Macy 
622eda14cbcSMatt Macy 	return (copyout(from, to, len));
623eda14cbcSMatt Macy }
624eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_copyout);
625eda14cbcSMatt Macy 
626eda14cbcSMatt Macy static ssize_t
627eda14cbcSMatt Macy spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos)
628eda14cbcSMatt Macy {
629eda14cbcSMatt Macy #if defined(HAVE_KERNEL_READ_PPOS)
630eda14cbcSMatt Macy 	return (kernel_read(file, buf, count, pos));
631eda14cbcSMatt Macy #else
632eda14cbcSMatt Macy 	mm_segment_t saved_fs;
633eda14cbcSMatt Macy 	ssize_t ret;
634eda14cbcSMatt Macy 
635eda14cbcSMatt Macy 	saved_fs = get_fs();
636eda14cbcSMatt Macy 	set_fs(KERNEL_DS);
637eda14cbcSMatt Macy 
638eda14cbcSMatt Macy 	ret = vfs_read(file, (void __user *)buf, count, pos);
639eda14cbcSMatt Macy 
640eda14cbcSMatt Macy 	set_fs(saved_fs);
641eda14cbcSMatt Macy 
642eda14cbcSMatt Macy 	return (ret);
643eda14cbcSMatt Macy #endif
644eda14cbcSMatt Macy }
645eda14cbcSMatt Macy 
646eda14cbcSMatt Macy static int
647eda14cbcSMatt Macy spl_getattr(struct file *filp, struct kstat *stat)
648eda14cbcSMatt Macy {
649eda14cbcSMatt Macy 	int rc;
650eda14cbcSMatt Macy 
651eda14cbcSMatt Macy 	ASSERT(filp);
652eda14cbcSMatt Macy 	ASSERT(stat);
653eda14cbcSMatt Macy 
654eda14cbcSMatt Macy #if defined(HAVE_4ARGS_VFS_GETATTR)
655eda14cbcSMatt Macy 	rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS,
656eda14cbcSMatt Macy 	    AT_STATX_SYNC_AS_STAT);
657eda14cbcSMatt Macy #elif defined(HAVE_2ARGS_VFS_GETATTR)
658eda14cbcSMatt Macy 	rc = vfs_getattr(&filp->f_path, stat);
65916038816SMartin Matuska #elif defined(HAVE_3ARGS_VFS_GETATTR)
660eda14cbcSMatt Macy 	rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat);
66116038816SMartin Matuska #else
66216038816SMartin Matuska #error "No available vfs_getattr()"
663eda14cbcSMatt Macy #endif
664eda14cbcSMatt Macy 	if (rc)
665eda14cbcSMatt Macy 		return (-rc);
666eda14cbcSMatt Macy 
667eda14cbcSMatt Macy 	return (0);
668eda14cbcSMatt Macy }
669eda14cbcSMatt Macy 
670eda14cbcSMatt Macy /*
671eda14cbcSMatt Macy  * Read the unique system identifier from the /etc/hostid file.
672eda14cbcSMatt Macy  *
673eda14cbcSMatt Macy  * The behavior of /usr/bin/hostid on Linux systems with the
674eda14cbcSMatt Macy  * regular eglibc and coreutils is:
675eda14cbcSMatt Macy  *
676eda14cbcSMatt Macy  *   1. Generate the value if the /etc/hostid file does not exist
677eda14cbcSMatt Macy  *      or if the /etc/hostid file is less than four bytes in size.
678eda14cbcSMatt Macy  *
679eda14cbcSMatt Macy  *   2. If the /etc/hostid file is at least 4 bytes, then return
680eda14cbcSMatt Macy  *      the first four bytes [0..3] in native endian order.
681eda14cbcSMatt Macy  *
682eda14cbcSMatt Macy  *   3. Always ignore bytes [4..] if they exist in the file.
683eda14cbcSMatt Macy  *
684eda14cbcSMatt Macy  * Only the first four bytes are significant, even on systems that
685eda14cbcSMatt Macy  * have a 64-bit word size.
686eda14cbcSMatt Macy  *
687eda14cbcSMatt Macy  * See:
688eda14cbcSMatt Macy  *
689eda14cbcSMatt Macy  *   eglibc: sysdeps/unix/sysv/linux/gethostid.c
690eda14cbcSMatt Macy  *   coreutils: src/hostid.c
691eda14cbcSMatt Macy  *
692eda14cbcSMatt Macy  * Notes:
693eda14cbcSMatt Macy  *
694eda14cbcSMatt Macy  * The /etc/hostid file on Solaris is a text file that often reads:
695eda14cbcSMatt Macy  *
696eda14cbcSMatt Macy  *   # DO NOT EDIT
697eda14cbcSMatt Macy  *   "0123456789"
698eda14cbcSMatt Macy  *
699eda14cbcSMatt Macy  * Directly copying this file to Linux results in a constant
700eda14cbcSMatt Macy  * hostid of 4f442023 because the default comment constitutes
701eda14cbcSMatt Macy  * the first four bytes of the file.
702eda14cbcSMatt Macy  *
703eda14cbcSMatt Macy  */
704eda14cbcSMatt Macy 
705e92ffd9bSMartin Matuska static char *spl_hostid_path = HW_HOSTID_PATH;
706eda14cbcSMatt Macy module_param(spl_hostid_path, charp, 0444);
707eda14cbcSMatt Macy MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
708eda14cbcSMatt Macy 
709eda14cbcSMatt Macy static int
710eda14cbcSMatt Macy hostid_read(uint32_t *hostid)
711eda14cbcSMatt Macy {
712eda14cbcSMatt Macy 	uint64_t size;
713eda14cbcSMatt Macy 	uint32_t value = 0;
714eda14cbcSMatt Macy 	int error;
715eda14cbcSMatt Macy 	loff_t off;
716eda14cbcSMatt Macy 	struct file *filp;
717eda14cbcSMatt Macy 	struct kstat stat;
718eda14cbcSMatt Macy 
719eda14cbcSMatt Macy 	filp = filp_open(spl_hostid_path, 0, 0);
720eda14cbcSMatt Macy 
721eda14cbcSMatt Macy 	if (IS_ERR(filp))
722eda14cbcSMatt Macy 		return (ENOENT);
723eda14cbcSMatt Macy 
724eda14cbcSMatt Macy 	error = spl_getattr(filp, &stat);
725eda14cbcSMatt Macy 	if (error) {
726eda14cbcSMatt Macy 		filp_close(filp, 0);
727eda14cbcSMatt Macy 		return (error);
728eda14cbcSMatt Macy 	}
729eda14cbcSMatt Macy 	size = stat.size;
73081b22a98SMartin Matuska 	// cppcheck-suppress sizeofwithnumericparameter
731eda14cbcSMatt Macy 	if (size < sizeof (HW_HOSTID_MASK)) {
732eda14cbcSMatt Macy 		filp_close(filp, 0);
733eda14cbcSMatt Macy 		return (EINVAL);
734eda14cbcSMatt Macy 	}
735eda14cbcSMatt Macy 
736eda14cbcSMatt Macy 	off = 0;
737eda14cbcSMatt Macy 	/*
738eda14cbcSMatt Macy 	 * Read directly into the variable like eglibc does.
739eda14cbcSMatt Macy 	 * Short reads are okay; native behavior is preserved.
740eda14cbcSMatt Macy 	 */
741eda14cbcSMatt Macy 	error = spl_kernel_read(filp, &value, sizeof (value), &off);
742eda14cbcSMatt Macy 	if (error < 0) {
743eda14cbcSMatt Macy 		filp_close(filp, 0);
744eda14cbcSMatt Macy 		return (EIO);
745eda14cbcSMatt Macy 	}
746eda14cbcSMatt Macy 
747eda14cbcSMatt Macy 	/* Mask down to 32 bits like coreutils does. */
748eda14cbcSMatt Macy 	*hostid = (value & HW_HOSTID_MASK);
749eda14cbcSMatt Macy 	filp_close(filp, 0);
750eda14cbcSMatt Macy 
751eda14cbcSMatt Macy 	return (0);
752eda14cbcSMatt Macy }
753eda14cbcSMatt Macy 
754eda14cbcSMatt Macy /*
755eda14cbcSMatt Macy  * Return the system hostid.  Preferentially use the spl_hostid module option
756eda14cbcSMatt Macy  * when set, otherwise use the value in the /etc/hostid file.
757eda14cbcSMatt Macy  */
758eda14cbcSMatt Macy uint32_t
759eda14cbcSMatt Macy zone_get_hostid(void *zone)
760eda14cbcSMatt Macy {
761eda14cbcSMatt Macy 	uint32_t hostid;
762eda14cbcSMatt Macy 
763eda14cbcSMatt Macy 	ASSERT3P(zone, ==, NULL);
764eda14cbcSMatt Macy 
765eda14cbcSMatt Macy 	if (spl_hostid != 0)
766eda14cbcSMatt Macy 		return ((uint32_t)(spl_hostid & HW_HOSTID_MASK));
767eda14cbcSMatt Macy 
768eda14cbcSMatt Macy 	if (hostid_read(&hostid) == 0)
769eda14cbcSMatt Macy 		return (hostid);
770eda14cbcSMatt Macy 
771eda14cbcSMatt Macy 	return (0);
772eda14cbcSMatt Macy }
773eda14cbcSMatt Macy EXPORT_SYMBOL(zone_get_hostid);
774eda14cbcSMatt Macy 
775eda14cbcSMatt Macy static int
776eda14cbcSMatt Macy spl_kvmem_init(void)
777eda14cbcSMatt Macy {
778eda14cbcSMatt Macy 	int rc = 0;
779eda14cbcSMatt Macy 
780eda14cbcSMatt Macy 	rc = spl_kmem_init();
781eda14cbcSMatt Macy 	if (rc)
782eda14cbcSMatt Macy 		return (rc);
783eda14cbcSMatt Macy 
784eda14cbcSMatt Macy 	rc = spl_vmem_init();
785eda14cbcSMatt Macy 	if (rc) {
786eda14cbcSMatt Macy 		spl_kmem_fini();
787eda14cbcSMatt Macy 		return (rc);
788eda14cbcSMatt Macy 	}
789eda14cbcSMatt Macy 
790eda14cbcSMatt Macy 	return (rc);
791eda14cbcSMatt Macy }
792eda14cbcSMatt Macy 
793eda14cbcSMatt Macy /*
794eda14cbcSMatt Macy  * We initialize the random number generator with 128 bits of entropy from the
795eda14cbcSMatt Macy  * system random number generator. In the improbable case that we have a zero
796eda14cbcSMatt Macy  * seed, we fallback to the system jiffies, unless it is also zero, in which
797eda14cbcSMatt Macy  * situation we use a preprogrammed seed. We step forward by 2^64 iterations to
798eda14cbcSMatt Macy  * initialize each of the per-cpu seeds so that the sequences generated on each
799eda14cbcSMatt Macy  * CPU are guaranteed to never overlap in practice.
800eda14cbcSMatt Macy  */
801c7046f76SMartin Matuska static int __init
802eda14cbcSMatt Macy spl_random_init(void)
803eda14cbcSMatt Macy {
804dbd5678dSMartin Matuska 	uint64_t s[4];
805eda14cbcSMatt Macy 	int i = 0;
806eda14cbcSMatt Macy 
807dbd5678dSMartin Matuska 	spl_pseudo_entropy = __alloc_percpu(4 * sizeof (uint64_t),
808eda14cbcSMatt Macy 	    sizeof (uint64_t));
809eda14cbcSMatt Macy 
810c7046f76SMartin Matuska 	if (!spl_pseudo_entropy)
811c7046f76SMartin Matuska 		return (-ENOMEM);
812c7046f76SMartin Matuska 
813eda14cbcSMatt Macy 	get_random_bytes(s, sizeof (s));
814eda14cbcSMatt Macy 
815dbd5678dSMartin Matuska 	if (s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0) {
816eda14cbcSMatt Macy 		if (jiffies != 0) {
817eda14cbcSMatt Macy 			s[0] = jiffies;
818eda14cbcSMatt Macy 			s[1] = ~0 - jiffies;
819dbd5678dSMartin Matuska 			s[2] = ~jiffies;
820dbd5678dSMartin Matuska 			s[3] = jiffies - ~0;
821eda14cbcSMatt Macy 		} else {
822dbd5678dSMartin Matuska 			(void) memcpy(s, "improbable seed", 16);
823eda14cbcSMatt Macy 		}
824eda14cbcSMatt Macy 		printk("SPL: get_random_bytes() returned 0 "
825eda14cbcSMatt Macy 		    "when generating random seed. Setting initial seed to "
826dbd5678dSMartin Matuska 		    "0x%016llx%016llx%016llx%016llx.\n", cpu_to_be64(s[0]),
827dbd5678dSMartin Matuska 		    cpu_to_be64(s[1]), cpu_to_be64(s[2]), cpu_to_be64(s[3]));
828eda14cbcSMatt Macy 	}
829eda14cbcSMatt Macy 
830eda14cbcSMatt Macy 	for_each_possible_cpu(i) {
831eda14cbcSMatt Macy 		uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i);
832eda14cbcSMatt Macy 
833eda14cbcSMatt Macy 		spl_rand_jump(s);
834eda14cbcSMatt Macy 
835eda14cbcSMatt Macy 		wordp[0] = s[0];
836eda14cbcSMatt Macy 		wordp[1] = s[1];
837dbd5678dSMartin Matuska 		wordp[2] = s[2];
838dbd5678dSMartin Matuska 		wordp[3] = s[3];
839eda14cbcSMatt Macy 	}
840c7046f76SMartin Matuska 
841c7046f76SMartin Matuska 	return (0);
842eda14cbcSMatt Macy }
843eda14cbcSMatt Macy 
844eda14cbcSMatt Macy static void
845eda14cbcSMatt Macy spl_random_fini(void)
846eda14cbcSMatt Macy {
847eda14cbcSMatt Macy 	free_percpu(spl_pseudo_entropy);
848eda14cbcSMatt Macy }
849eda14cbcSMatt Macy 
850eda14cbcSMatt Macy static void
851eda14cbcSMatt Macy spl_kvmem_fini(void)
852eda14cbcSMatt Macy {
853eda14cbcSMatt Macy 	spl_vmem_fini();
854eda14cbcSMatt Macy 	spl_kmem_fini();
855eda14cbcSMatt Macy }
856eda14cbcSMatt Macy 
857eda14cbcSMatt Macy static int __init
858eda14cbcSMatt Macy spl_init(void)
859eda14cbcSMatt Macy {
860eda14cbcSMatt Macy 	int rc = 0;
861eda14cbcSMatt Macy 
862c7046f76SMartin Matuska 	if ((rc = spl_random_init()))
863c7046f76SMartin Matuska 		goto out0;
864eda14cbcSMatt Macy 
865eda14cbcSMatt Macy 	if ((rc = spl_kvmem_init()))
866eda14cbcSMatt Macy 		goto out1;
867eda14cbcSMatt Macy 
868eda14cbcSMatt Macy 	if ((rc = spl_tsd_init()))
869eda14cbcSMatt Macy 		goto out2;
870eda14cbcSMatt Macy 
871eda14cbcSMatt Macy 	if ((rc = spl_taskq_init()))
872eda14cbcSMatt Macy 		goto out3;
873eda14cbcSMatt Macy 
874eda14cbcSMatt Macy 	if ((rc = spl_kmem_cache_init()))
875eda14cbcSMatt Macy 		goto out4;
876eda14cbcSMatt Macy 
877eda14cbcSMatt Macy 	if ((rc = spl_proc_init()))
878eda14cbcSMatt Macy 		goto out5;
879eda14cbcSMatt Macy 
880eda14cbcSMatt Macy 	if ((rc = spl_kstat_init()))
881eda14cbcSMatt Macy 		goto out6;
882eda14cbcSMatt Macy 
883eda14cbcSMatt Macy 	if ((rc = spl_zlib_init()))
884eda14cbcSMatt Macy 		goto out7;
885eda14cbcSMatt Macy 
8861f1e2261SMartin Matuska 	if ((rc = spl_zone_init()))
8871f1e2261SMartin Matuska 		goto out8;
8881f1e2261SMartin Matuska 
889eda14cbcSMatt Macy 	return (rc);
890eda14cbcSMatt Macy 
8911f1e2261SMartin Matuska out8:
8921f1e2261SMartin Matuska 	spl_zlib_fini();
893eda14cbcSMatt Macy out7:
894eda14cbcSMatt Macy 	spl_kstat_fini();
895eda14cbcSMatt Macy out6:
896eda14cbcSMatt Macy 	spl_proc_fini();
897eda14cbcSMatt Macy out5:
898eda14cbcSMatt Macy 	spl_kmem_cache_fini();
899eda14cbcSMatt Macy out4:
900eda14cbcSMatt Macy 	spl_taskq_fini();
901eda14cbcSMatt Macy out3:
902eda14cbcSMatt Macy 	spl_tsd_fini();
903eda14cbcSMatt Macy out2:
904eda14cbcSMatt Macy 	spl_kvmem_fini();
905eda14cbcSMatt Macy out1:
906c7046f76SMartin Matuska 	spl_random_fini();
907c7046f76SMartin Matuska out0:
908eda14cbcSMatt Macy 	return (rc);
909eda14cbcSMatt Macy }
910eda14cbcSMatt Macy 
911eda14cbcSMatt Macy static void __exit
912eda14cbcSMatt Macy spl_fini(void)
913eda14cbcSMatt Macy {
9141f1e2261SMartin Matuska 	spl_zone_fini();
915eda14cbcSMatt Macy 	spl_zlib_fini();
916eda14cbcSMatt Macy 	spl_kstat_fini();
917eda14cbcSMatt Macy 	spl_proc_fini();
918eda14cbcSMatt Macy 	spl_kmem_cache_fini();
919eda14cbcSMatt Macy 	spl_taskq_fini();
920eda14cbcSMatt Macy 	spl_tsd_fini();
921eda14cbcSMatt Macy 	spl_kvmem_fini();
922eda14cbcSMatt Macy 	spl_random_fini();
923eda14cbcSMatt Macy }
924eda14cbcSMatt Macy 
925eda14cbcSMatt Macy module_init(spl_init);
926eda14cbcSMatt Macy module_exit(spl_fini);
927eda14cbcSMatt Macy 
928716fd348SMartin Matuska MODULE_DESCRIPTION("Solaris Porting Layer");
929716fd348SMartin Matuska MODULE_AUTHOR(ZFS_META_AUTHOR);
930716fd348SMartin Matuska MODULE_LICENSE("GPL");
931716fd348SMartin Matuska MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE);
932