1eda14cbcSMatt Macy /* 2eda14cbcSMatt Macy * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. 3eda14cbcSMatt Macy * Copyright (C) 2007 The Regents of the University of California. 4eda14cbcSMatt Macy * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 5eda14cbcSMatt Macy * Written by Brian Behlendorf <behlendorf1@llnl.gov>. 6eda14cbcSMatt Macy * UCRL-CODE-235197 7eda14cbcSMatt Macy * 8eda14cbcSMatt Macy * This file is part of the SPL, Solaris Porting Layer. 9eda14cbcSMatt Macy * 10eda14cbcSMatt Macy * The SPL is free software; you can redistribute it and/or modify it 11eda14cbcSMatt Macy * under the terms of the GNU General Public License as published by the 12eda14cbcSMatt Macy * Free Software Foundation; either version 2 of the License, or (at your 13eda14cbcSMatt Macy * option) any later version. 14eda14cbcSMatt Macy * 15eda14cbcSMatt Macy * The SPL is distributed in the hope that it will be useful, but WITHOUT 16eda14cbcSMatt Macy * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17eda14cbcSMatt Macy * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 18eda14cbcSMatt Macy * for more details. 19eda14cbcSMatt Macy * 20eda14cbcSMatt Macy * You should have received a copy of the GNU General Public License along 21eda14cbcSMatt Macy * with the SPL. If not, see <http://www.gnu.org/licenses/>. 22eda14cbcSMatt Macy * 23eda14cbcSMatt Macy * Solaris Porting Layer (SPL) Generic Implementation. 24eda14cbcSMatt Macy */ 25eda14cbcSMatt Macy 26dbd5678dSMartin Matuska #include <sys/isa_defs.h> 27eda14cbcSMatt Macy #include <sys/sysmacros.h> 28eda14cbcSMatt Macy #include <sys/systeminfo.h> 29eda14cbcSMatt Macy #include <sys/vmsystm.h> 30eda14cbcSMatt Macy #include <sys/kmem.h> 31eda14cbcSMatt Macy #include <sys/kmem_cache.h> 32eda14cbcSMatt Macy #include <sys/vmem.h> 33eda14cbcSMatt Macy #include <sys/mutex.h> 34eda14cbcSMatt Macy #include <sys/rwlock.h> 35eda14cbcSMatt Macy #include <sys/taskq.h> 36eda14cbcSMatt Macy #include <sys/tsd.h> 37eda14cbcSMatt Macy #include <sys/zmod.h> 38eda14cbcSMatt Macy #include <sys/debug.h> 39eda14cbcSMatt Macy #include <sys/proc.h> 40eda14cbcSMatt Macy #include <sys/kstat.h> 41eda14cbcSMatt Macy #include <sys/file.h> 42eda14cbcSMatt Macy #include <sys/sunddi.h> 43eda14cbcSMatt Macy #include <linux/ctype.h> 44eda14cbcSMatt Macy #include <sys/disp.h> 45eda14cbcSMatt Macy #include <sys/random.h> 46da5137abSMartin Matuska #include <sys/string.h> 47eda14cbcSMatt Macy #include <linux/kmod.h> 48eda14cbcSMatt Macy #include <linux/mod_compat.h> 49eda14cbcSMatt Macy #include <sys/cred.h> 50eda14cbcSMatt Macy #include <sys/vnode.h> 51be181ee2SMartin Matuska #include <sys/misc.h> 52dbd5678dSMartin Matuska #include <linux/mod_compat.h> 53eda14cbcSMatt Macy 54eda14cbcSMatt Macy unsigned long spl_hostid = 0; 55eda14cbcSMatt Macy EXPORT_SYMBOL(spl_hostid); 56e92ffd9bSMartin Matuska 57eda14cbcSMatt Macy module_param(spl_hostid, ulong, 0644); 58eda14cbcSMatt Macy MODULE_PARM_DESC(spl_hostid, "The system hostid."); 59eda14cbcSMatt Macy 60eda14cbcSMatt Macy proc_t p0; 61eda14cbcSMatt Macy EXPORT_SYMBOL(p0); 62eda14cbcSMatt Macy 63eda14cbcSMatt Macy /* 64dbd5678dSMartin Matuska * xoshiro256++ 1.0 PRNG by David Blackman and Sebastiano Vigna 65eda14cbcSMatt Macy * 66dbd5678dSMartin Matuska * "Scrambled Linear Pseudorandom Number Generators∗" 67dbd5678dSMartin Matuska * https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf 68eda14cbcSMatt Macy * 69eda14cbcSMatt Macy * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose 70eda14cbcSMatt Macy * is to provide bytes containing random numbers. It is mapped to /dev/urandom 71eda14cbcSMatt Macy * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's 72eda14cbcSMatt Macy * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so 73eda14cbcSMatt Macy * we can implement it using a fast PRNG that we seed using Linux' actual 74eda14cbcSMatt Macy * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU 75eda14cbcSMatt Macy * with an independent seed so that all calls to random_get_pseudo_bytes() are 76eda14cbcSMatt Macy * free of atomic instructions. 77eda14cbcSMatt Macy * 78eda14cbcSMatt Macy * A consequence of using a fast PRNG is that using random_get_pseudo_bytes() 79dbd5678dSMartin Matuska * to generate words larger than 256 bits will paradoxically be limited to 80dbd5678dSMartin Matuska * `2^256 - 1` possibilities. This is because we have a sequence of `2^256 - 1` 81dbd5678dSMartin Matuska * 256-bit words and selecting the first will implicitly select the second. If 82eda14cbcSMatt Macy * a caller finds this behavior undesirable, random_get_bytes() should be used 83eda14cbcSMatt Macy * instead. 84eda14cbcSMatt Macy * 85eda14cbcSMatt Macy * XXX: Linux interrupt handlers that trigger within the critical section 86dbd5678dSMartin Matuska * formed by `s[3] = xp[3];` and `xp[0] = s[0];` and call this function will 87eda14cbcSMatt Macy * see the same numbers. Nothing in the code currently calls this in an 88eda14cbcSMatt Macy * interrupt handler, so this is considered to be okay. If that becomes a 89eda14cbcSMatt Macy * problem, we could create a set of per-cpu variables for interrupt handlers 90eda14cbcSMatt Macy * and use them when in_interrupt() from linux/preempt_mask.h evaluates to 91eda14cbcSMatt Macy * true. 92eda14cbcSMatt Macy */ 93dbd5678dSMartin Matuska static void __percpu *spl_pseudo_entropy; 94eda14cbcSMatt Macy 95eda14cbcSMatt Macy /* 96dbd5678dSMartin Matuska * rotl()/spl_rand_next()/spl_rand_jump() are copied from the following CC-0 97dbd5678dSMartin Matuska * licensed file: 98eda14cbcSMatt Macy * 99dbd5678dSMartin Matuska * https://prng.di.unimi.it/xoshiro256plusplus.c 100eda14cbcSMatt Macy */ 101eda14cbcSMatt Macy 102dbd5678dSMartin Matuska static inline uint64_t rotl(const uint64_t x, int k) 103dbd5678dSMartin Matuska { 104dbd5678dSMartin Matuska return ((x << k) | (x >> (64 - k))); 105dbd5678dSMartin Matuska } 106dbd5678dSMartin Matuska 107eda14cbcSMatt Macy static inline uint64_t 108eda14cbcSMatt Macy spl_rand_next(uint64_t *s) 109eda14cbcSMatt Macy { 110dbd5678dSMartin Matuska const uint64_t result = rotl(s[0] + s[3], 23) + s[0]; 111dbd5678dSMartin Matuska 112dbd5678dSMartin Matuska const uint64_t t = s[1] << 17; 113dbd5678dSMartin Matuska 114dbd5678dSMartin Matuska s[2] ^= s[0]; 115dbd5678dSMartin Matuska s[3] ^= s[1]; 116dbd5678dSMartin Matuska s[1] ^= s[2]; 117dbd5678dSMartin Matuska s[0] ^= s[3]; 118dbd5678dSMartin Matuska 119dbd5678dSMartin Matuska s[2] ^= t; 120dbd5678dSMartin Matuska 121dbd5678dSMartin Matuska s[3] = rotl(s[3], 45); 122dbd5678dSMartin Matuska 123dbd5678dSMartin Matuska return (result); 124eda14cbcSMatt Macy } 125eda14cbcSMatt Macy 126eda14cbcSMatt Macy static inline void 127eda14cbcSMatt Macy spl_rand_jump(uint64_t *s) 128eda14cbcSMatt Macy { 129dbd5678dSMartin Matuska static const uint64_t JUMP[] = { 0x180ec6d33cfd0aba, 130dbd5678dSMartin Matuska 0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c }; 131eda14cbcSMatt Macy 132eda14cbcSMatt Macy uint64_t s0 = 0; 133eda14cbcSMatt Macy uint64_t s1 = 0; 134dbd5678dSMartin Matuska uint64_t s2 = 0; 135dbd5678dSMartin Matuska uint64_t s3 = 0; 136eda14cbcSMatt Macy int i, b; 137eda14cbcSMatt Macy for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++) 138eda14cbcSMatt Macy for (b = 0; b < 64; b++) { 139eda14cbcSMatt Macy if (JUMP[i] & 1ULL << b) { 140eda14cbcSMatt Macy s0 ^= s[0]; 141eda14cbcSMatt Macy s1 ^= s[1]; 142dbd5678dSMartin Matuska s2 ^= s[2]; 143dbd5678dSMartin Matuska s3 ^= s[3]; 144eda14cbcSMatt Macy } 145eda14cbcSMatt Macy (void) spl_rand_next(s); 146eda14cbcSMatt Macy } 147eda14cbcSMatt Macy 148eda14cbcSMatt Macy s[0] = s0; 149eda14cbcSMatt Macy s[1] = s1; 150dbd5678dSMartin Matuska s[2] = s2; 151dbd5678dSMartin Matuska s[3] = s3; 152eda14cbcSMatt Macy } 153eda14cbcSMatt Macy 154eda14cbcSMatt Macy int 155eda14cbcSMatt Macy random_get_pseudo_bytes(uint8_t *ptr, size_t len) 156eda14cbcSMatt Macy { 157dbd5678dSMartin Matuska uint64_t *xp, s[4]; 158eda14cbcSMatt Macy 159eda14cbcSMatt Macy ASSERT(ptr); 160eda14cbcSMatt Macy 161eda14cbcSMatt Macy xp = get_cpu_ptr(spl_pseudo_entropy); 162eda14cbcSMatt Macy 163eda14cbcSMatt Macy s[0] = xp[0]; 164eda14cbcSMatt Macy s[1] = xp[1]; 165dbd5678dSMartin Matuska s[2] = xp[2]; 166dbd5678dSMartin Matuska s[3] = xp[3]; 167eda14cbcSMatt Macy 168eda14cbcSMatt Macy while (len) { 169eda14cbcSMatt Macy union { 170eda14cbcSMatt Macy uint64_t ui64; 171eda14cbcSMatt Macy uint8_t byte[sizeof (uint64_t)]; 172eda14cbcSMatt Macy }entropy; 173eda14cbcSMatt Macy int i = MIN(len, sizeof (uint64_t)); 174eda14cbcSMatt Macy 175eda14cbcSMatt Macy len -= i; 176eda14cbcSMatt Macy entropy.ui64 = spl_rand_next(s); 177eda14cbcSMatt Macy 178dbd5678dSMartin Matuska /* 179dbd5678dSMartin Matuska * xoshiro256++ has low entropy lower bytes, so we copy the 180dbd5678dSMartin Matuska * higher order bytes first. 181dbd5678dSMartin Matuska */ 182eda14cbcSMatt Macy while (i--) 183dbd5678dSMartin Matuska #ifdef _ZFS_BIG_ENDIAN 184eda14cbcSMatt Macy *ptr++ = entropy.byte[i]; 185dbd5678dSMartin Matuska #else 186dbd5678dSMartin Matuska *ptr++ = entropy.byte[7 - i]; 187dbd5678dSMartin Matuska #endif 188eda14cbcSMatt Macy } 189eda14cbcSMatt Macy 190eda14cbcSMatt Macy xp[0] = s[0]; 191eda14cbcSMatt Macy xp[1] = s[1]; 192dbd5678dSMartin Matuska xp[2] = s[2]; 193dbd5678dSMartin Matuska xp[3] = s[3]; 194eda14cbcSMatt Macy 195eda14cbcSMatt Macy put_cpu_ptr(spl_pseudo_entropy); 196eda14cbcSMatt Macy 197eda14cbcSMatt Macy return (0); 198eda14cbcSMatt Macy } 199eda14cbcSMatt Macy 200eda14cbcSMatt Macy 201eda14cbcSMatt Macy EXPORT_SYMBOL(random_get_pseudo_bytes); 202eda14cbcSMatt Macy 203eda14cbcSMatt Macy #if BITS_PER_LONG == 32 204eda14cbcSMatt Macy 205eda14cbcSMatt Macy /* 206eda14cbcSMatt Macy * Support 64/64 => 64 division on a 32-bit platform. While the kernel 207eda14cbcSMatt Macy * provides a div64_u64() function for this we do not use it because the 208eda14cbcSMatt Macy * implementation is flawed. There are cases which return incorrect 209eda14cbcSMatt Macy * results as late as linux-2.6.35. Until this is fixed upstream the 210eda14cbcSMatt Macy * spl must provide its own implementation. 211eda14cbcSMatt Macy * 212eda14cbcSMatt Macy * This implementation is a slightly modified version of the algorithm 213eda14cbcSMatt Macy * proposed by the book 'Hacker's Delight'. The original source can be 214eda14cbcSMatt Macy * found here and is available for use without restriction. 215eda14cbcSMatt Macy * 216eda14cbcSMatt Macy * http://www.hackersdelight.org/HDcode/newCode/divDouble.c 217eda14cbcSMatt Macy */ 218eda14cbcSMatt Macy 219eda14cbcSMatt Macy /* 220eda14cbcSMatt Macy * Calculate number of leading of zeros for a 64-bit value. 221eda14cbcSMatt Macy */ 222eda14cbcSMatt Macy static int 223eda14cbcSMatt Macy nlz64(uint64_t x) 224eda14cbcSMatt Macy { 225eda14cbcSMatt Macy register int n = 0; 226eda14cbcSMatt Macy 227eda14cbcSMatt Macy if (x == 0) 228eda14cbcSMatt Macy return (64); 229eda14cbcSMatt Macy 230eda14cbcSMatt Macy if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; } 231eda14cbcSMatt Macy if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; } 232eda14cbcSMatt Macy if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n + 8; x = x << 8; } 233eda14cbcSMatt Macy if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n + 4; x = x << 4; } 234eda14cbcSMatt Macy if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n + 2; x = x << 2; } 235eda14cbcSMatt Macy if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n + 1; } 236eda14cbcSMatt Macy 237eda14cbcSMatt Macy return (n); 238eda14cbcSMatt Macy } 239eda14cbcSMatt Macy 240eda14cbcSMatt Macy /* 241eda14cbcSMatt Macy * Newer kernels have a div_u64() function but we define our own 242eda14cbcSMatt Macy * to simplify portability between kernel versions. 243eda14cbcSMatt Macy */ 244eda14cbcSMatt Macy static inline uint64_t 245eda14cbcSMatt Macy __div_u64(uint64_t u, uint32_t v) 246eda14cbcSMatt Macy { 247eda14cbcSMatt Macy (void) do_div(u, v); 248eda14cbcSMatt Macy return (u); 249eda14cbcSMatt Macy } 250eda14cbcSMatt Macy 251eda14cbcSMatt Macy /* 252eda14cbcSMatt Macy * Turn off missing prototypes warning for these functions. They are 253eda14cbcSMatt Macy * replacements for libgcc-provided functions and will never be called 254eda14cbcSMatt Macy * directly. 255eda14cbcSMatt Macy */ 256bb2d13b6SMartin Matuska #if defined(__GNUC__) && !defined(__clang__) 257eda14cbcSMatt Macy #pragma GCC diagnostic push 258eda14cbcSMatt Macy #pragma GCC diagnostic ignored "-Wmissing-prototypes" 259bb2d13b6SMartin Matuska #endif 260eda14cbcSMatt Macy 261eda14cbcSMatt Macy /* 262eda14cbcSMatt Macy * Implementation of 64-bit unsigned division for 32-bit machines. 263eda14cbcSMatt Macy * 264eda14cbcSMatt Macy * First the procedure takes care of the case in which the divisor is a 265eda14cbcSMatt Macy * 32-bit quantity. There are two subcases: (1) If the left half of the 266eda14cbcSMatt Macy * dividend is less than the divisor, one execution of do_div() is all that 267eda14cbcSMatt Macy * is required (overflow is not possible). (2) Otherwise it does two 268eda14cbcSMatt Macy * divisions, using the grade school method. 269eda14cbcSMatt Macy */ 270eda14cbcSMatt Macy uint64_t 271eda14cbcSMatt Macy __udivdi3(uint64_t u, uint64_t v) 272eda14cbcSMatt Macy { 273eda14cbcSMatt Macy uint64_t u0, u1, v1, q0, q1, k; 274eda14cbcSMatt Macy int n; 275eda14cbcSMatt Macy 276eda14cbcSMatt Macy if (v >> 32 == 0) { // If v < 2**32: 277eda14cbcSMatt Macy if (u >> 32 < v) { // If u/v cannot overflow, 278eda14cbcSMatt Macy return (__div_u64(u, v)); // just do one division. 279eda14cbcSMatt Macy } else { // If u/v would overflow: 280eda14cbcSMatt Macy u1 = u >> 32; // Break u into two halves. 281eda14cbcSMatt Macy u0 = u & 0xFFFFFFFF; 282eda14cbcSMatt Macy q1 = __div_u64(u1, v); // First quotient digit. 283eda14cbcSMatt Macy k = u1 - q1 * v; // First remainder, < v. 284eda14cbcSMatt Macy u0 += (k << 32); 285eda14cbcSMatt Macy q0 = __div_u64(u0, v); // Seconds quotient digit. 286eda14cbcSMatt Macy return ((q1 << 32) + q0); 287eda14cbcSMatt Macy } 288eda14cbcSMatt Macy } else { // If v >= 2**32: 289eda14cbcSMatt Macy n = nlz64(v); // 0 <= n <= 31. 290eda14cbcSMatt Macy v1 = (v << n) >> 32; // Normalize divisor, MSB is 1. 291eda14cbcSMatt Macy u1 = u >> 1; // To ensure no overflow. 292eda14cbcSMatt Macy q1 = __div_u64(u1, v1); // Get quotient from 293eda14cbcSMatt Macy q0 = (q1 << n) >> 31; // Undo normalization and 294eda14cbcSMatt Macy // division of u by 2. 295eda14cbcSMatt Macy if (q0 != 0) // Make q0 correct or 296eda14cbcSMatt Macy q0 = q0 - 1; // too small by 1. 297eda14cbcSMatt Macy if ((u - q0 * v) >= v) 298eda14cbcSMatt Macy q0 = q0 + 1; // Now q0 is correct. 299eda14cbcSMatt Macy 300eda14cbcSMatt Macy return (q0); 301eda14cbcSMatt Macy } 302eda14cbcSMatt Macy } 303eda14cbcSMatt Macy EXPORT_SYMBOL(__udivdi3); 304eda14cbcSMatt Macy 305eda14cbcSMatt Macy #ifndef abs64 306c03c5b1cSMartin Matuska /* CSTYLED */ 307eda14cbcSMatt Macy #define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; }) 308eda14cbcSMatt Macy #endif 309eda14cbcSMatt Macy 310eda14cbcSMatt Macy /* 311eda14cbcSMatt Macy * Implementation of 64-bit signed division for 32-bit machines. 312eda14cbcSMatt Macy */ 313eda14cbcSMatt Macy int64_t 314eda14cbcSMatt Macy __divdi3(int64_t u, int64_t v) 315eda14cbcSMatt Macy { 316eda14cbcSMatt Macy int64_t q, t; 317eda14cbcSMatt Macy q = __udivdi3(abs64(u), abs64(v)); 318eda14cbcSMatt Macy t = (u ^ v) >> 63; // If u, v have different 319eda14cbcSMatt Macy return ((q ^ t) - t); // signs, negate q. 320eda14cbcSMatt Macy } 321eda14cbcSMatt Macy EXPORT_SYMBOL(__divdi3); 322eda14cbcSMatt Macy 323eda14cbcSMatt Macy /* 324eda14cbcSMatt Macy * Implementation of 64-bit unsigned modulo for 32-bit machines. 325eda14cbcSMatt Macy */ 326eda14cbcSMatt Macy uint64_t 327eda14cbcSMatt Macy __umoddi3(uint64_t dividend, uint64_t divisor) 328eda14cbcSMatt Macy { 329eda14cbcSMatt Macy return (dividend - (divisor * __udivdi3(dividend, divisor))); 330eda14cbcSMatt Macy } 331eda14cbcSMatt Macy EXPORT_SYMBOL(__umoddi3); 332eda14cbcSMatt Macy 333eda14cbcSMatt Macy /* 64-bit signed modulo for 32-bit machines. */ 334eda14cbcSMatt Macy int64_t 335eda14cbcSMatt Macy __moddi3(int64_t n, int64_t d) 336eda14cbcSMatt Macy { 337eda14cbcSMatt Macy int64_t q; 338eda14cbcSMatt Macy boolean_t nn = B_FALSE; 339eda14cbcSMatt Macy 340eda14cbcSMatt Macy if (n < 0) { 341eda14cbcSMatt Macy nn = B_TRUE; 342eda14cbcSMatt Macy n = -n; 343eda14cbcSMatt Macy } 344eda14cbcSMatt Macy if (d < 0) 345eda14cbcSMatt Macy d = -d; 346eda14cbcSMatt Macy 347eda14cbcSMatt Macy q = __umoddi3(n, d); 348eda14cbcSMatt Macy 349eda14cbcSMatt Macy return (nn ? -q : q); 350eda14cbcSMatt Macy } 351eda14cbcSMatt Macy EXPORT_SYMBOL(__moddi3); 352eda14cbcSMatt Macy 353eda14cbcSMatt Macy /* 354eda14cbcSMatt Macy * Implementation of 64-bit unsigned division/modulo for 32-bit machines. 355eda14cbcSMatt Macy */ 356eda14cbcSMatt Macy uint64_t 357eda14cbcSMatt Macy __udivmoddi4(uint64_t n, uint64_t d, uint64_t *r) 358eda14cbcSMatt Macy { 359eda14cbcSMatt Macy uint64_t q = __udivdi3(n, d); 360eda14cbcSMatt Macy if (r) 361eda14cbcSMatt Macy *r = n - d * q; 362eda14cbcSMatt Macy return (q); 363eda14cbcSMatt Macy } 364eda14cbcSMatt Macy EXPORT_SYMBOL(__udivmoddi4); 365eda14cbcSMatt Macy 366eda14cbcSMatt Macy /* 367eda14cbcSMatt Macy * Implementation of 64-bit signed division/modulo for 32-bit machines. 368eda14cbcSMatt Macy */ 369eda14cbcSMatt Macy int64_t 370eda14cbcSMatt Macy __divmoddi4(int64_t n, int64_t d, int64_t *r) 371eda14cbcSMatt Macy { 372eda14cbcSMatt Macy int64_t q, rr; 373eda14cbcSMatt Macy boolean_t nn = B_FALSE; 374eda14cbcSMatt Macy boolean_t nd = B_FALSE; 375eda14cbcSMatt Macy if (n < 0) { 376eda14cbcSMatt Macy nn = B_TRUE; 377eda14cbcSMatt Macy n = -n; 378eda14cbcSMatt Macy } 379eda14cbcSMatt Macy if (d < 0) { 380eda14cbcSMatt Macy nd = B_TRUE; 381eda14cbcSMatt Macy d = -d; 382eda14cbcSMatt Macy } 383eda14cbcSMatt Macy 384eda14cbcSMatt Macy q = __udivmoddi4(n, d, (uint64_t *)&rr); 385eda14cbcSMatt Macy 386eda14cbcSMatt Macy if (nn != nd) 387eda14cbcSMatt Macy q = -q; 388eda14cbcSMatt Macy if (nn) 389eda14cbcSMatt Macy rr = -rr; 390eda14cbcSMatt Macy if (r) 391eda14cbcSMatt Macy *r = rr; 392eda14cbcSMatt Macy return (q); 393eda14cbcSMatt Macy } 394eda14cbcSMatt Macy EXPORT_SYMBOL(__divmoddi4); 395eda14cbcSMatt Macy 396eda14cbcSMatt Macy #if defined(__arm) || defined(__arm__) 397eda14cbcSMatt Macy /* 398eda14cbcSMatt Macy * Implementation of 64-bit (un)signed division for 32-bit arm machines. 399eda14cbcSMatt Macy * 400eda14cbcSMatt Macy * Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned) 401eda14cbcSMatt Macy * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1}, 402eda14cbcSMatt Macy * and the remainder in {r2, r3}. The return type is specifically left 403eda14cbcSMatt Macy * set to 'void' to ensure the compiler does not overwrite these registers 404eda14cbcSMatt Macy * during the return. All results are in registers as per ABI 405eda14cbcSMatt Macy */ 406eda14cbcSMatt Macy void 407eda14cbcSMatt Macy __aeabi_uldivmod(uint64_t u, uint64_t v) 408eda14cbcSMatt Macy { 409eda14cbcSMatt Macy uint64_t res; 410eda14cbcSMatt Macy uint64_t mod; 411eda14cbcSMatt Macy 412eda14cbcSMatt Macy res = __udivdi3(u, v); 413eda14cbcSMatt Macy mod = __umoddi3(u, v); 414eda14cbcSMatt Macy { 415eda14cbcSMatt Macy register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); 416eda14cbcSMatt Macy register uint32_t r1 asm("r1") = (res >> 32); 417eda14cbcSMatt Macy register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); 418eda14cbcSMatt Macy register uint32_t r3 asm("r3") = (mod >> 32); 419eda14cbcSMatt Macy 420eda14cbcSMatt Macy asm volatile("" 421eda14cbcSMatt Macy : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */ 422eda14cbcSMatt Macy : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ 423eda14cbcSMatt Macy 424eda14cbcSMatt Macy return; /* r0; */ 425eda14cbcSMatt Macy } 426eda14cbcSMatt Macy } 427eda14cbcSMatt Macy EXPORT_SYMBOL(__aeabi_uldivmod); 428eda14cbcSMatt Macy 429eda14cbcSMatt Macy void 430eda14cbcSMatt Macy __aeabi_ldivmod(int64_t u, int64_t v) 431eda14cbcSMatt Macy { 432eda14cbcSMatt Macy int64_t res; 433eda14cbcSMatt Macy uint64_t mod; 434eda14cbcSMatt Macy 435eda14cbcSMatt Macy res = __divdi3(u, v); 436eda14cbcSMatt Macy mod = __umoddi3(u, v); 437eda14cbcSMatt Macy { 438eda14cbcSMatt Macy register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); 439eda14cbcSMatt Macy register uint32_t r1 asm("r1") = (res >> 32); 440eda14cbcSMatt Macy register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); 441eda14cbcSMatt Macy register uint32_t r3 asm("r3") = (mod >> 32); 442eda14cbcSMatt Macy 443eda14cbcSMatt Macy asm volatile("" 444eda14cbcSMatt Macy : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3) /* output */ 445eda14cbcSMatt Macy : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ 446eda14cbcSMatt Macy 447eda14cbcSMatt Macy return; /* r0; */ 448eda14cbcSMatt Macy } 449eda14cbcSMatt Macy } 450eda14cbcSMatt Macy EXPORT_SYMBOL(__aeabi_ldivmod); 451eda14cbcSMatt Macy #endif /* __arm || __arm__ */ 452eda14cbcSMatt Macy 453bb2d13b6SMartin Matuska #if defined(__GNUC__) && !defined(__clang__) 454eda14cbcSMatt Macy #pragma GCC diagnostic pop 455bb2d13b6SMartin Matuska #endif 456eda14cbcSMatt Macy 457eda14cbcSMatt Macy #endif /* BITS_PER_LONG */ 458eda14cbcSMatt Macy 459eda14cbcSMatt Macy /* 460eda14cbcSMatt Macy * NOTE: The strtoxx behavior is solely based on my reading of the Solaris 461eda14cbcSMatt Macy * ddi_strtol(9F) man page. I have not verified the behavior of these 462eda14cbcSMatt Macy * functions against their Solaris counterparts. It is possible that I 463eda14cbcSMatt Macy * may have misinterpreted the man page or the man page is incorrect. 464eda14cbcSMatt Macy */ 465eda14cbcSMatt Macy int ddi_strtol(const char *, char **, int, long *); 466eda14cbcSMatt Macy int ddi_strtoull(const char *, char **, int, unsigned long long *); 467eda14cbcSMatt Macy int ddi_strtoll(const char *, char **, int, long long *); 468eda14cbcSMatt Macy 469716fd348SMartin Matuska #define define_ddi_strtox(type, valtype) \ 470716fd348SMartin Matuska int ddi_strto##type(const char *str, char **endptr, \ 471eda14cbcSMatt Macy int base, valtype *result) \ 472eda14cbcSMatt Macy { \ 473eda14cbcSMatt Macy valtype last_value, value = 0; \ 474eda14cbcSMatt Macy char *ptr = (char *)str; \ 475716fd348SMartin Matuska int digit, minus = 0; \ 476716fd348SMartin Matuska \ 477716fd348SMartin Matuska while (strchr(" \t\n\r\f", *ptr)) \ 478716fd348SMartin Matuska ++ptr; \ 479eda14cbcSMatt Macy \ 480eda14cbcSMatt Macy if (strlen(ptr) == 0) \ 481eda14cbcSMatt Macy return (EINVAL); \ 482eda14cbcSMatt Macy \ 483716fd348SMartin Matuska switch (*ptr) { \ 484716fd348SMartin Matuska case '-': \ 485716fd348SMartin Matuska minus = 1; \ 486716fd348SMartin Matuska zfs_fallthrough; \ 487716fd348SMartin Matuska case '+': \ 488716fd348SMartin Matuska ++ptr; \ 489716fd348SMartin Matuska break; \ 490716fd348SMartin Matuska } \ 491716fd348SMartin Matuska \ 492eda14cbcSMatt Macy /* Auto-detect base based on prefix */ \ 493eda14cbcSMatt Macy if (!base) { \ 494eda14cbcSMatt Macy if (str[0] == '0') { \ 495eda14cbcSMatt Macy if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \ 496eda14cbcSMatt Macy base = 16; /* hex */ \ 497eda14cbcSMatt Macy ptr += 2; \ 4982a58b312SMartin Matuska } else if (str[1] >= '0' && str[1] < '8') { \ 499eda14cbcSMatt Macy base = 8; /* octal */ \ 500eda14cbcSMatt Macy ptr += 1; \ 501eda14cbcSMatt Macy } else { \ 502eda14cbcSMatt Macy return (EINVAL); \ 503eda14cbcSMatt Macy } \ 504eda14cbcSMatt Macy } else { \ 505eda14cbcSMatt Macy base = 10; /* decimal */ \ 506eda14cbcSMatt Macy } \ 507eda14cbcSMatt Macy } \ 508eda14cbcSMatt Macy \ 509eda14cbcSMatt Macy while (1) { \ 510eda14cbcSMatt Macy if (isdigit(*ptr)) \ 511eda14cbcSMatt Macy digit = *ptr - '0'; \ 512eda14cbcSMatt Macy else if (isalpha(*ptr)) \ 513eda14cbcSMatt Macy digit = tolower(*ptr) - 'a' + 10; \ 514eda14cbcSMatt Macy else \ 515eda14cbcSMatt Macy break; \ 516eda14cbcSMatt Macy \ 517eda14cbcSMatt Macy if (digit >= base) \ 518eda14cbcSMatt Macy break; \ 519eda14cbcSMatt Macy \ 520eda14cbcSMatt Macy last_value = value; \ 521eda14cbcSMatt Macy value = value * base + digit; \ 522eda14cbcSMatt Macy if (last_value > value) /* Overflow */ \ 523eda14cbcSMatt Macy return (ERANGE); \ 524eda14cbcSMatt Macy \ 525eda14cbcSMatt Macy ptr++; \ 526eda14cbcSMatt Macy } \ 527eda14cbcSMatt Macy \ 528716fd348SMartin Matuska *result = minus ? -value : value; \ 529eda14cbcSMatt Macy \ 530eda14cbcSMatt Macy if (endptr) \ 531716fd348SMartin Matuska *endptr = ptr; \ 532eda14cbcSMatt Macy \ 533eda14cbcSMatt Macy return (0); \ 534eda14cbcSMatt Macy } \ 535eda14cbcSMatt Macy 536eda14cbcSMatt Macy define_ddi_strtox(l, long) 537716fd348SMartin Matuska define_ddi_strtox(ull, unsigned long long) 538eda14cbcSMatt Macy define_ddi_strtox(ll, long long) 539eda14cbcSMatt Macy 540eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtol); 541eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtoll); 542eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_strtoull); 543eda14cbcSMatt Macy 544eda14cbcSMatt Macy int 545eda14cbcSMatt Macy ddi_copyin(const void *from, void *to, size_t len, int flags) 546eda14cbcSMatt Macy { 547eda14cbcSMatt Macy /* Fake ioctl() issued by kernel, 'from' is a kernel address */ 548eda14cbcSMatt Macy if (flags & FKIOCTL) { 549eda14cbcSMatt Macy memcpy(to, from, len); 550eda14cbcSMatt Macy return (0); 551eda14cbcSMatt Macy } 552eda14cbcSMatt Macy 553eda14cbcSMatt Macy return (copyin(from, to, len)); 554eda14cbcSMatt Macy } 555eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_copyin); 556eda14cbcSMatt Macy 557dbd5678dSMartin Matuska #define define_spl_param(type, fmt) \ 558dbd5678dSMartin Matuska int \ 559dbd5678dSMartin Matuska spl_param_get_##type(char *buf, zfs_kernel_param_t *kp) \ 560dbd5678dSMartin Matuska { \ 561dbd5678dSMartin Matuska return (scnprintf(buf, PAGE_SIZE, fmt "\n", \ 562dbd5678dSMartin Matuska *(type *)kp->arg)); \ 563dbd5678dSMartin Matuska } \ 564dbd5678dSMartin Matuska int \ 565dbd5678dSMartin Matuska spl_param_set_##type(const char *buf, zfs_kernel_param_t *kp) \ 566dbd5678dSMartin Matuska { \ 567dbd5678dSMartin Matuska return (kstrto##type(buf, 0, (type *)kp->arg)); \ 568dbd5678dSMartin Matuska } \ 569dbd5678dSMartin Matuska const struct kernel_param_ops spl_param_ops_##type = { \ 570dbd5678dSMartin Matuska .set = spl_param_set_##type, \ 571dbd5678dSMartin Matuska .get = spl_param_get_##type, \ 572dbd5678dSMartin Matuska }; \ 573dbd5678dSMartin Matuska EXPORT_SYMBOL(spl_param_get_##type); \ 574dbd5678dSMartin Matuska EXPORT_SYMBOL(spl_param_set_##type); \ 575dbd5678dSMartin Matuska EXPORT_SYMBOL(spl_param_ops_##type); 576dbd5678dSMartin Matuska 577dbd5678dSMartin Matuska define_spl_param(s64, "%lld") 578dbd5678dSMartin Matuska define_spl_param(u64, "%llu") 579dbd5678dSMartin Matuska 580be181ee2SMartin Matuska /* 581be181ee2SMartin Matuska * Post a uevent to userspace whenever a new vdev adds to the pool. It is 582be181ee2SMartin Matuska * necessary to sync blkid information with udev, which zed daemon uses 583be181ee2SMartin Matuska * during device hotplug to identify the vdev. 584be181ee2SMartin Matuska */ 585be181ee2SMartin Matuska void 586be181ee2SMartin Matuska spl_signal_kobj_evt(struct block_device *bdev) 587be181ee2SMartin Matuska { 588be181ee2SMartin Matuska #if defined(HAVE_BDEV_KOBJ) || defined(HAVE_PART_TO_DEV) 589be181ee2SMartin Matuska #ifdef HAVE_BDEV_KOBJ 590be181ee2SMartin Matuska struct kobject *disk_kobj = bdev_kobj(bdev); 591be181ee2SMartin Matuska #else 592be181ee2SMartin Matuska struct kobject *disk_kobj = &part_to_dev(bdev->bd_part)->kobj; 593be181ee2SMartin Matuska #endif 594be181ee2SMartin Matuska if (disk_kobj) { 595be181ee2SMartin Matuska int ret = kobject_uevent(disk_kobj, KOBJ_CHANGE); 596be181ee2SMartin Matuska if (ret) { 597be181ee2SMartin Matuska pr_warn("ZFS: Sending event '%d' to kobject: '%s'" 598be181ee2SMartin Matuska " (%p): failed(ret:%d)\n", KOBJ_CHANGE, 599be181ee2SMartin Matuska kobject_name(disk_kobj), disk_kobj, ret); 600be181ee2SMartin Matuska } 601be181ee2SMartin Matuska } 602be181ee2SMartin Matuska #else 603be181ee2SMartin Matuska /* 604be181ee2SMartin Matuska * This is encountered if neither bdev_kobj() nor part_to_dev() is available 605be181ee2SMartin Matuska * in the kernel - likely due to an API change that needs to be chased down. 606be181ee2SMartin Matuska */ 607be181ee2SMartin Matuska #error "Unsupported kernel: unable to get struct kobj from bdev" 608be181ee2SMartin Matuska #endif 609be181ee2SMartin Matuska } 610be181ee2SMartin Matuska EXPORT_SYMBOL(spl_signal_kobj_evt); 611be181ee2SMartin Matuska 612eda14cbcSMatt Macy int 613eda14cbcSMatt Macy ddi_copyout(const void *from, void *to, size_t len, int flags) 614eda14cbcSMatt Macy { 615eda14cbcSMatt Macy /* Fake ioctl() issued by kernel, 'from' is a kernel address */ 616eda14cbcSMatt Macy if (flags & FKIOCTL) { 617eda14cbcSMatt Macy memcpy(to, from, len); 618eda14cbcSMatt Macy return (0); 619eda14cbcSMatt Macy } 620eda14cbcSMatt Macy 621eda14cbcSMatt Macy return (copyout(from, to, len)); 622eda14cbcSMatt Macy } 623eda14cbcSMatt Macy EXPORT_SYMBOL(ddi_copyout); 624eda14cbcSMatt Macy 625eda14cbcSMatt Macy static int 626eda14cbcSMatt Macy spl_getattr(struct file *filp, struct kstat *stat) 627eda14cbcSMatt Macy { 628eda14cbcSMatt Macy int rc; 629eda14cbcSMatt Macy 630eda14cbcSMatt Macy ASSERT(filp); 631eda14cbcSMatt Macy ASSERT(stat); 632eda14cbcSMatt Macy 633eda14cbcSMatt Macy rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS, 634eda14cbcSMatt Macy AT_STATX_SYNC_AS_STAT); 635eda14cbcSMatt Macy if (rc) 636eda14cbcSMatt Macy return (-rc); 637eda14cbcSMatt Macy 638eda14cbcSMatt Macy return (0); 639eda14cbcSMatt Macy } 640eda14cbcSMatt Macy 641eda14cbcSMatt Macy /* 642eda14cbcSMatt Macy * Read the unique system identifier from the /etc/hostid file. 643eda14cbcSMatt Macy * 644eda14cbcSMatt Macy * The behavior of /usr/bin/hostid on Linux systems with the 645eda14cbcSMatt Macy * regular eglibc and coreutils is: 646eda14cbcSMatt Macy * 647eda14cbcSMatt Macy * 1. Generate the value if the /etc/hostid file does not exist 648eda14cbcSMatt Macy * or if the /etc/hostid file is less than four bytes in size. 649eda14cbcSMatt Macy * 650eda14cbcSMatt Macy * 2. If the /etc/hostid file is at least 4 bytes, then return 651eda14cbcSMatt Macy * the first four bytes [0..3] in native endian order. 652eda14cbcSMatt Macy * 653eda14cbcSMatt Macy * 3. Always ignore bytes [4..] if they exist in the file. 654eda14cbcSMatt Macy * 655eda14cbcSMatt Macy * Only the first four bytes are significant, even on systems that 656eda14cbcSMatt Macy * have a 64-bit word size. 657eda14cbcSMatt Macy * 658eda14cbcSMatt Macy * See: 659eda14cbcSMatt Macy * 660eda14cbcSMatt Macy * eglibc: sysdeps/unix/sysv/linux/gethostid.c 661eda14cbcSMatt Macy * coreutils: src/hostid.c 662eda14cbcSMatt Macy * 663eda14cbcSMatt Macy * Notes: 664eda14cbcSMatt Macy * 665eda14cbcSMatt Macy * The /etc/hostid file on Solaris is a text file that often reads: 666eda14cbcSMatt Macy * 667eda14cbcSMatt Macy * # DO NOT EDIT 668eda14cbcSMatt Macy * "0123456789" 669eda14cbcSMatt Macy * 670eda14cbcSMatt Macy * Directly copying this file to Linux results in a constant 671eda14cbcSMatt Macy * hostid of 4f442023 because the default comment constitutes 672eda14cbcSMatt Macy * the first four bytes of the file. 673eda14cbcSMatt Macy * 674eda14cbcSMatt Macy */ 675eda14cbcSMatt Macy 676e92ffd9bSMartin Matuska static char *spl_hostid_path = HW_HOSTID_PATH; 677eda14cbcSMatt Macy module_param(spl_hostid_path, charp, 0444); 678eda14cbcSMatt Macy MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)"); 679eda14cbcSMatt Macy 680eda14cbcSMatt Macy static int 681eda14cbcSMatt Macy hostid_read(uint32_t *hostid) 682eda14cbcSMatt Macy { 683eda14cbcSMatt Macy uint64_t size; 684eda14cbcSMatt Macy uint32_t value = 0; 685eda14cbcSMatt Macy int error; 686eda14cbcSMatt Macy loff_t off; 687eda14cbcSMatt Macy struct file *filp; 688eda14cbcSMatt Macy struct kstat stat; 689eda14cbcSMatt Macy 690eda14cbcSMatt Macy filp = filp_open(spl_hostid_path, 0, 0); 691eda14cbcSMatt Macy 692eda14cbcSMatt Macy if (IS_ERR(filp)) 693eda14cbcSMatt Macy return (ENOENT); 694eda14cbcSMatt Macy 695eda14cbcSMatt Macy error = spl_getattr(filp, &stat); 696eda14cbcSMatt Macy if (error) { 697eda14cbcSMatt Macy filp_close(filp, 0); 698eda14cbcSMatt Macy return (error); 699eda14cbcSMatt Macy } 700eda14cbcSMatt Macy size = stat.size; 70181b22a98SMartin Matuska // cppcheck-suppress sizeofwithnumericparameter 702eda14cbcSMatt Macy if (size < sizeof (HW_HOSTID_MASK)) { 703eda14cbcSMatt Macy filp_close(filp, 0); 704eda14cbcSMatt Macy return (EINVAL); 705eda14cbcSMatt Macy } 706eda14cbcSMatt Macy 707eda14cbcSMatt Macy off = 0; 708eda14cbcSMatt Macy /* 709eda14cbcSMatt Macy * Read directly into the variable like eglibc does. 710eda14cbcSMatt Macy * Short reads are okay; native behavior is preserved. 711eda14cbcSMatt Macy */ 712*7a7741afSMartin Matuska error = kernel_read(filp, &value, sizeof (value), &off); 713eda14cbcSMatt Macy if (error < 0) { 714eda14cbcSMatt Macy filp_close(filp, 0); 715eda14cbcSMatt Macy return (EIO); 716eda14cbcSMatt Macy } 717eda14cbcSMatt Macy 718eda14cbcSMatt Macy /* Mask down to 32 bits like coreutils does. */ 719eda14cbcSMatt Macy *hostid = (value & HW_HOSTID_MASK); 720eda14cbcSMatt Macy filp_close(filp, 0); 721eda14cbcSMatt Macy 722eda14cbcSMatt Macy return (0); 723eda14cbcSMatt Macy } 724eda14cbcSMatt Macy 725eda14cbcSMatt Macy /* 726eda14cbcSMatt Macy * Return the system hostid. Preferentially use the spl_hostid module option 727eda14cbcSMatt Macy * when set, otherwise use the value in the /etc/hostid file. 728eda14cbcSMatt Macy */ 729eda14cbcSMatt Macy uint32_t 730eda14cbcSMatt Macy zone_get_hostid(void *zone) 731eda14cbcSMatt Macy { 732eda14cbcSMatt Macy uint32_t hostid; 733eda14cbcSMatt Macy 734eda14cbcSMatt Macy ASSERT3P(zone, ==, NULL); 735eda14cbcSMatt Macy 736eda14cbcSMatt Macy if (spl_hostid != 0) 737eda14cbcSMatt Macy return ((uint32_t)(spl_hostid & HW_HOSTID_MASK)); 738eda14cbcSMatt Macy 739eda14cbcSMatt Macy if (hostid_read(&hostid) == 0) 740eda14cbcSMatt Macy return (hostid); 741eda14cbcSMatt Macy 742eda14cbcSMatt Macy return (0); 743eda14cbcSMatt Macy } 744eda14cbcSMatt Macy EXPORT_SYMBOL(zone_get_hostid); 745eda14cbcSMatt Macy 746eda14cbcSMatt Macy static int 747eda14cbcSMatt Macy spl_kvmem_init(void) 748eda14cbcSMatt Macy { 749eda14cbcSMatt Macy int rc = 0; 750eda14cbcSMatt Macy 751eda14cbcSMatt Macy rc = spl_kmem_init(); 752eda14cbcSMatt Macy if (rc) 753eda14cbcSMatt Macy return (rc); 754eda14cbcSMatt Macy 755eda14cbcSMatt Macy rc = spl_vmem_init(); 756eda14cbcSMatt Macy if (rc) { 757eda14cbcSMatt Macy spl_kmem_fini(); 758eda14cbcSMatt Macy return (rc); 759eda14cbcSMatt Macy } 760eda14cbcSMatt Macy 761eda14cbcSMatt Macy return (rc); 762eda14cbcSMatt Macy } 763eda14cbcSMatt Macy 764eda14cbcSMatt Macy /* 765eda14cbcSMatt Macy * We initialize the random number generator with 128 bits of entropy from the 766eda14cbcSMatt Macy * system random number generator. In the improbable case that we have a zero 767eda14cbcSMatt Macy * seed, we fallback to the system jiffies, unless it is also zero, in which 768eda14cbcSMatt Macy * situation we use a preprogrammed seed. We step forward by 2^64 iterations to 769eda14cbcSMatt Macy * initialize each of the per-cpu seeds so that the sequences generated on each 770eda14cbcSMatt Macy * CPU are guaranteed to never overlap in practice. 771eda14cbcSMatt Macy */ 772c7046f76SMartin Matuska static int __init 773eda14cbcSMatt Macy spl_random_init(void) 774eda14cbcSMatt Macy { 775dbd5678dSMartin Matuska uint64_t s[4]; 776eda14cbcSMatt Macy int i = 0; 777eda14cbcSMatt Macy 778dbd5678dSMartin Matuska spl_pseudo_entropy = __alloc_percpu(4 * sizeof (uint64_t), 779eda14cbcSMatt Macy sizeof (uint64_t)); 780eda14cbcSMatt Macy 781c7046f76SMartin Matuska if (!spl_pseudo_entropy) 782c7046f76SMartin Matuska return (-ENOMEM); 783c7046f76SMartin Matuska 784eda14cbcSMatt Macy get_random_bytes(s, sizeof (s)); 785eda14cbcSMatt Macy 786dbd5678dSMartin Matuska if (s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0) { 787eda14cbcSMatt Macy if (jiffies != 0) { 788eda14cbcSMatt Macy s[0] = jiffies; 789eda14cbcSMatt Macy s[1] = ~0 - jiffies; 790dbd5678dSMartin Matuska s[2] = ~jiffies; 791dbd5678dSMartin Matuska s[3] = jiffies - ~0; 792eda14cbcSMatt Macy } else { 793dbd5678dSMartin Matuska (void) memcpy(s, "improbable seed", 16); 794eda14cbcSMatt Macy } 795eda14cbcSMatt Macy printk("SPL: get_random_bytes() returned 0 " 796eda14cbcSMatt Macy "when generating random seed. Setting initial seed to " 797dbd5678dSMartin Matuska "0x%016llx%016llx%016llx%016llx.\n", cpu_to_be64(s[0]), 798dbd5678dSMartin Matuska cpu_to_be64(s[1]), cpu_to_be64(s[2]), cpu_to_be64(s[3])); 799eda14cbcSMatt Macy } 800eda14cbcSMatt Macy 801eda14cbcSMatt Macy for_each_possible_cpu(i) { 802eda14cbcSMatt Macy uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i); 803eda14cbcSMatt Macy 804eda14cbcSMatt Macy spl_rand_jump(s); 805eda14cbcSMatt Macy 806eda14cbcSMatt Macy wordp[0] = s[0]; 807eda14cbcSMatt Macy wordp[1] = s[1]; 808dbd5678dSMartin Matuska wordp[2] = s[2]; 809dbd5678dSMartin Matuska wordp[3] = s[3]; 810eda14cbcSMatt Macy } 811c7046f76SMartin Matuska 812c7046f76SMartin Matuska return (0); 813eda14cbcSMatt Macy } 814eda14cbcSMatt Macy 815eda14cbcSMatt Macy static void 816eda14cbcSMatt Macy spl_random_fini(void) 817eda14cbcSMatt Macy { 818eda14cbcSMatt Macy free_percpu(spl_pseudo_entropy); 819eda14cbcSMatt Macy } 820eda14cbcSMatt Macy 821eda14cbcSMatt Macy static void 822eda14cbcSMatt Macy spl_kvmem_fini(void) 823eda14cbcSMatt Macy { 824eda14cbcSMatt Macy spl_vmem_fini(); 825eda14cbcSMatt Macy spl_kmem_fini(); 826eda14cbcSMatt Macy } 827eda14cbcSMatt Macy 828eda14cbcSMatt Macy static int __init 829eda14cbcSMatt Macy spl_init(void) 830eda14cbcSMatt Macy { 831eda14cbcSMatt Macy int rc = 0; 832eda14cbcSMatt Macy 833c7046f76SMartin Matuska if ((rc = spl_random_init())) 834c7046f76SMartin Matuska goto out0; 835eda14cbcSMatt Macy 836eda14cbcSMatt Macy if ((rc = spl_kvmem_init())) 837eda14cbcSMatt Macy goto out1; 838eda14cbcSMatt Macy 839eda14cbcSMatt Macy if ((rc = spl_tsd_init())) 840eda14cbcSMatt Macy goto out2; 841eda14cbcSMatt Macy 842e2df9bb4SMartin Matuska if ((rc = spl_proc_init())) 843eda14cbcSMatt Macy goto out3; 844eda14cbcSMatt Macy 845e2df9bb4SMartin Matuska if ((rc = spl_kstat_init())) 846eda14cbcSMatt Macy goto out4; 847eda14cbcSMatt Macy 848e2df9bb4SMartin Matuska if ((rc = spl_taskq_init())) 849eda14cbcSMatt Macy goto out5; 850eda14cbcSMatt Macy 851e2df9bb4SMartin Matuska if ((rc = spl_kmem_cache_init())) 852eda14cbcSMatt Macy goto out6; 853eda14cbcSMatt Macy 854eda14cbcSMatt Macy if ((rc = spl_zlib_init())) 855eda14cbcSMatt Macy goto out7; 856eda14cbcSMatt Macy 8571f1e2261SMartin Matuska if ((rc = spl_zone_init())) 8581f1e2261SMartin Matuska goto out8; 8591f1e2261SMartin Matuska 860eda14cbcSMatt Macy return (rc); 861eda14cbcSMatt Macy 8621f1e2261SMartin Matuska out8: 8631f1e2261SMartin Matuska spl_zlib_fini(); 864eda14cbcSMatt Macy out7: 865eda14cbcSMatt Macy spl_kmem_cache_fini(); 866e2df9bb4SMartin Matuska out6: 867eda14cbcSMatt Macy spl_taskq_fini(); 868e2df9bb4SMartin Matuska out5: 869e2df9bb4SMartin Matuska spl_kstat_fini(); 870e2df9bb4SMartin Matuska out4: 871e2df9bb4SMartin Matuska spl_proc_fini(); 872eda14cbcSMatt Macy out3: 873eda14cbcSMatt Macy spl_tsd_fini(); 874eda14cbcSMatt Macy out2: 875eda14cbcSMatt Macy spl_kvmem_fini(); 876eda14cbcSMatt Macy out1: 877c7046f76SMartin Matuska spl_random_fini(); 878c7046f76SMartin Matuska out0: 879eda14cbcSMatt Macy return (rc); 880eda14cbcSMatt Macy } 881eda14cbcSMatt Macy 882eda14cbcSMatt Macy static void __exit 883eda14cbcSMatt Macy spl_fini(void) 884eda14cbcSMatt Macy { 8851f1e2261SMartin Matuska spl_zone_fini(); 886eda14cbcSMatt Macy spl_zlib_fini(); 887eda14cbcSMatt Macy spl_kmem_cache_fini(); 888eda14cbcSMatt Macy spl_taskq_fini(); 889e2df9bb4SMartin Matuska spl_kstat_fini(); 890e2df9bb4SMartin Matuska spl_proc_fini(); 891eda14cbcSMatt Macy spl_tsd_fini(); 892eda14cbcSMatt Macy spl_kvmem_fini(); 893eda14cbcSMatt Macy spl_random_fini(); 894eda14cbcSMatt Macy } 895eda14cbcSMatt Macy 896eda14cbcSMatt Macy module_init(spl_init); 897eda14cbcSMatt Macy module_exit(spl_fini); 898eda14cbcSMatt Macy 899716fd348SMartin Matuska MODULE_DESCRIPTION("Solaris Porting Layer"); 900716fd348SMartin Matuska MODULE_AUTHOR(ZFS_META_AUTHOR); 901716fd348SMartin Matuska MODULE_LICENSE("GPL"); 902716fd348SMartin Matuska MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE); 903