1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2017 Nexenta Systems, Inc. 27 */ 28 29 /* Portions Copyright 2007 Jeremy Teo */ 30 /* Portions Copyright 2010 Robert Milkowski */ 31 32 #include <sys/param.h> 33 #include <sys/time.h> 34 #include <sys/systm.h> 35 #include <sys/sysmacros.h> 36 #include <sys/resource.h> 37 #include <security/mac/mac_framework.h> 38 #include <sys/vfs.h> 39 #include <sys/endian.h> 40 #include <sys/vm.h> 41 #include <sys/vnode.h> 42 #include <sys/smr.h> 43 #include <sys/dirent.h> 44 #include <sys/file.h> 45 #include <sys/stat.h> 46 #include <sys/kmem.h> 47 #include <sys/taskq.h> 48 #include <sys/uio.h> 49 #include <sys/atomic.h> 50 #include <sys/namei.h> 51 #include <sys/mman.h> 52 #include <sys/cmn_err.h> 53 #include <sys/kdb.h> 54 #include <sys/sysproto.h> 55 #include <sys/errno.h> 56 #include <sys/unistd.h> 57 #include <sys/zfs_dir.h> 58 #include <sys/zfs_ioctl.h> 59 #include <sys/fs/zfs.h> 60 #include <sys/dmu.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa.h> 63 #include <sys/txg.h> 64 #include <sys/dbuf.h> 65 #include <sys/zap.h> 66 #include <sys/sa.h> 67 #include <sys/policy.h> 68 #include <sys/sunddi.h> 69 #include <sys/filio.h> 70 #include <sys/sid.h> 71 #include <sys/zfs_ctldir.h> 72 #include <sys/zfs_fuid.h> 73 #include <sys/zfs_quota.h> 74 #include <sys/zfs_sa.h> 75 #include <sys/zfs_rlock.h> 76 #include <sys/bio.h> 77 #include <sys/buf.h> 78 #include <sys/sched.h> 79 #include <sys/acl.h> 80 #include <sys/vmmeter.h> 81 #include <vm/vm_param.h> 82 #include <sys/zil.h> 83 #include <sys/zfs_vnops.h> 84 #include <sys/module.h> 85 #include <sys/sysent.h> 86 #include <sys/dmu_impl.h> 87 #include <sys/brt.h> 88 #include <sys/zfeature.h> 89 90 #include <vm/vm_object.h> 91 92 #include <sys/extattr.h> 93 #include <sys/priv.h> 94 95 #ifndef VN_OPEN_INVFS 96 #define VN_OPEN_INVFS 0x0 97 #endif 98 99 VFS_SMR_DECLARE; 100 101 #ifdef DEBUG_VFS_LOCKS 102 #define VNCHECKREF(vp) \ 103 VNASSERT((vp)->v_holdcnt > 0 && (vp)->v_usecount > 0, vp, \ 104 ("%s: wrong ref counts", __func__)); 105 #else 106 #define VNCHECKREF(vp) 107 #endif 108 109 #if __FreeBSD_version >= 1400045 110 typedef uint64_t cookie_t; 111 #else 112 typedef ulong_t cookie_t; 113 #endif 114 115 /* 116 * Programming rules. 117 * 118 * Each vnode op performs some logical unit of work. To do this, the ZPL must 119 * properly lock its in-core state, create a DMU transaction, do the work, 120 * record this work in the intent log (ZIL), commit the DMU transaction, 121 * and wait for the intent log to commit if it is a synchronous operation. 122 * Moreover, the vnode ops must work in both normal and log replay context. 123 * The ordering of events is important to avoid deadlocks and references 124 * to freed memory. The example below illustrates the following Big Rules: 125 * 126 * (1) A check must be made in each zfs thread for a mounted file system. 127 * This is done avoiding races using zfs_enter(zfsvfs). 128 * A zfs_exit(zfsvfs) is needed before all returns. Any znodes 129 * must be checked with zfs_verify_zp(zp). Both of these macros 130 * can return EIO from the calling function. 131 * 132 * (2) VN_RELE() should always be the last thing except for zil_commit() 133 * (if necessary) and zfs_exit(). This is for 3 reasons: 134 * First, if it's the last reference, the vnode/znode 135 * can be freed, so the zp may point to freed memory. Second, the last 136 * reference will call zfs_zinactive(), which may induce a lot of work -- 137 * pushing cached pages (which acquires range locks) and syncing out 138 * cached atime changes. Third, zfs_zinactive() may require a new tx, 139 * which could deadlock the system if you were already holding one. 140 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 141 * 142 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 143 * as they can span dmu_tx_assign() calls. 144 * 145 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 146 * dmu_tx_assign(). This is critical because we don't want to block 147 * while holding locks. 148 * 149 * If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT. This 150 * reduces lock contention and CPU usage when we must wait (note that if 151 * throughput is constrained by the storage, nearly every transaction 152 * must wait). 153 * 154 * Note, in particular, that if a lock is sometimes acquired before 155 * the tx assigns, and sometimes after (e.g. z_lock), then failing 156 * to use a non-blocking assign can deadlock the system. The scenario: 157 * 158 * Thread A has grabbed a lock before calling dmu_tx_assign(). 159 * Thread B is in an already-assigned tx, and blocks for this lock. 160 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 161 * forever, because the previous txg can't quiesce until B's tx commits. 162 * 163 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 164 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 165 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT, 166 * to indicate that this operation has already called dmu_tx_wait(). 167 * This will ensure that we don't retry forever, waiting a short bit 168 * each time. 169 * 170 * (5) If the operation succeeded, generate the intent log entry for it 171 * before dropping locks. This ensures that the ordering of events 172 * in the intent log matches the order in which they actually occurred. 173 * During ZIL replay the zfs_log_* functions will update the sequence 174 * number to indicate the zil transaction has replayed. 175 * 176 * (6) At the end of each vnode op, the DMU tx must always commit, 177 * regardless of whether there were any errors. 178 * 179 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 180 * to ensure that synchronous semantics are provided when necessary. 181 * 182 * In general, this is how things should be ordered in each vnode op: 183 * 184 * zfs_enter(zfsvfs); // exit if unmounted 185 * top: 186 * zfs_dirent_lookup(&dl, ...) // lock directory entry (may VN_HOLD()) 187 * rw_enter(...); // grab any other locks you need 188 * tx = dmu_tx_create(...); // get DMU tx 189 * dmu_tx_hold_*(); // hold each object you might modify 190 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT); 191 * if (error) { 192 * rw_exit(...); // drop locks 193 * zfs_dirent_unlock(dl); // unlock directory entry 194 * VN_RELE(...); // release held vnodes 195 * if (error == ERESTART) { 196 * waited = B_TRUE; 197 * dmu_tx_wait(tx); 198 * dmu_tx_abort(tx); 199 * goto top; 200 * } 201 * dmu_tx_abort(tx); // abort DMU tx 202 * zfs_exit(zfsvfs); // finished in zfs 203 * return (error); // really out of space 204 * } 205 * error = do_real_work(); // do whatever this VOP does 206 * if (error == 0) 207 * zfs_log_*(...); // on success, make ZIL entry 208 * dmu_tx_commit(tx); // commit DMU tx -- error or not 209 * rw_exit(...); // drop locks 210 * zfs_dirent_unlock(dl); // unlock directory entry 211 * VN_RELE(...); // release held vnodes 212 * zil_commit(zilog, foid); // synchronous when necessary 213 * zfs_exit(zfsvfs); // finished in zfs 214 * return (error); // done, report error 215 */ 216 static int 217 zfs_open(vnode_t **vpp, int flag, cred_t *cr) 218 { 219 (void) cr; 220 znode_t *zp = VTOZ(*vpp); 221 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 222 int error; 223 224 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 225 return (error); 226 227 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 228 ((flag & FAPPEND) == 0)) { 229 zfs_exit(zfsvfs, FTAG); 230 return (SET_ERROR(EPERM)); 231 } 232 233 /* 234 * Keep a count of the synchronous opens in the znode. On first 235 * synchronous open we must convert all previous async transactions 236 * into sync to keep correct ordering. 237 */ 238 if (flag & O_SYNC) { 239 if (atomic_inc_32_nv(&zp->z_sync_cnt) == 1) 240 zil_async_to_sync(zfsvfs->z_log, zp->z_id); 241 } 242 243 zfs_exit(zfsvfs, FTAG); 244 return (0); 245 } 246 247 static int 248 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 249 { 250 (void) offset, (void) cr; 251 znode_t *zp = VTOZ(vp); 252 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 253 int error; 254 255 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 256 return (error); 257 258 /* Decrement the synchronous opens in the znode */ 259 if ((flag & O_SYNC) && (count == 1)) 260 atomic_dec_32(&zp->z_sync_cnt); 261 262 zfs_exit(zfsvfs, FTAG); 263 return (0); 264 } 265 266 static int 267 zfs_ioctl(vnode_t *vp, ulong_t com, intptr_t data, int flag, cred_t *cred, 268 int *rvalp) 269 { 270 (void) flag, (void) cred, (void) rvalp; 271 loff_t off; 272 int error; 273 274 switch (com) { 275 case _FIOFFS: 276 { 277 return (0); 278 279 /* 280 * The following two ioctls are used by bfu. Faking out, 281 * necessary to avoid bfu errors. 282 */ 283 } 284 case _FIOGDIO: 285 case _FIOSDIO: 286 { 287 return (0); 288 } 289 290 case F_SEEK_DATA: 291 case F_SEEK_HOLE: 292 { 293 off = *(offset_t *)data; 294 /* offset parameter is in/out */ 295 error = zfs_holey(VTOZ(vp), com, &off); 296 if (error) 297 return (error); 298 *(offset_t *)data = off; 299 return (0); 300 } 301 } 302 return (SET_ERROR(ENOTTY)); 303 } 304 305 static vm_page_t 306 page_busy(vnode_t *vp, int64_t start, int64_t off, int64_t nbytes) 307 { 308 vm_object_t obj; 309 vm_page_t pp; 310 int64_t end; 311 312 /* 313 * At present vm_page_clear_dirty extends the cleared range to DEV_BSIZE 314 * aligned boundaries, if the range is not aligned. As a result a 315 * DEV_BSIZE subrange with partially dirty data may get marked as clean. 316 * It may happen that all DEV_BSIZE subranges are marked clean and thus 317 * the whole page would be considered clean despite have some 318 * dirty data. 319 * For this reason we should shrink the range to DEV_BSIZE aligned 320 * boundaries before calling vm_page_clear_dirty. 321 */ 322 end = rounddown2(off + nbytes, DEV_BSIZE); 323 off = roundup2(off, DEV_BSIZE); 324 nbytes = end - off; 325 326 obj = vp->v_object; 327 vm_page_grab_valid_unlocked(&pp, obj, OFF_TO_IDX(start), 328 VM_ALLOC_NOCREAT | VM_ALLOC_SBUSY | VM_ALLOC_NORMAL | 329 VM_ALLOC_IGN_SBUSY); 330 if (pp != NULL) { 331 ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL); 332 vm_object_pip_add(obj, 1); 333 pmap_remove_write(pp); 334 if (nbytes != 0) 335 vm_page_clear_dirty(pp, off, nbytes); 336 } 337 return (pp); 338 } 339 340 static void 341 page_unbusy(vm_page_t pp) 342 { 343 344 vm_page_sunbusy(pp); 345 vm_object_pip_wakeup(pp->object); 346 } 347 348 static vm_page_t 349 page_hold(vnode_t *vp, int64_t start) 350 { 351 vm_object_t obj; 352 vm_page_t m; 353 354 obj = vp->v_object; 355 vm_page_grab_valid_unlocked(&m, obj, OFF_TO_IDX(start), 356 VM_ALLOC_NOCREAT | VM_ALLOC_WIRED | VM_ALLOC_IGN_SBUSY | 357 VM_ALLOC_NOBUSY); 358 return (m); 359 } 360 361 static void 362 page_unhold(vm_page_t pp) 363 { 364 vm_page_unwire(pp, PQ_ACTIVE); 365 } 366 367 /* 368 * When a file is memory mapped, we must keep the IO data synchronized 369 * between the DMU cache and the memory mapped pages. What this means: 370 * 371 * On Write: If we find a memory mapped page, we write to *both* 372 * the page and the dmu buffer. 373 */ 374 void 375 update_pages(znode_t *zp, int64_t start, int len, objset_t *os) 376 { 377 vm_object_t obj; 378 struct sf_buf *sf; 379 vnode_t *vp = ZTOV(zp); 380 caddr_t va; 381 int off; 382 383 ASSERT3P(vp->v_mount, !=, NULL); 384 obj = vp->v_object; 385 ASSERT3P(obj, !=, NULL); 386 387 off = start & PAGEOFFSET; 388 vm_object_pip_add(obj, 1); 389 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 390 vm_page_t pp; 391 int nbytes = imin(PAGESIZE - off, len); 392 393 if ((pp = page_busy(vp, start, off, nbytes)) != NULL) { 394 va = zfs_map_page(pp, &sf); 395 (void) dmu_read(os, zp->z_id, start + off, nbytes, 396 va + off, DMU_READ_PREFETCH); 397 zfs_unmap_page(sf); 398 page_unbusy(pp); 399 } 400 len -= nbytes; 401 off = 0; 402 } 403 vm_object_pip_wakeup(obj); 404 } 405 406 /* 407 * Read with UIO_NOCOPY flag means that sendfile(2) requests 408 * ZFS to populate a range of page cache pages with data. 409 * 410 * NOTE: this function could be optimized to pre-allocate 411 * all pages in advance, drain exclusive busy on all of them, 412 * map them into contiguous KVA region and populate them 413 * in one single dmu_read() call. 414 */ 415 int 416 mappedread_sf(znode_t *zp, int nbytes, zfs_uio_t *uio) 417 { 418 vnode_t *vp = ZTOV(zp); 419 objset_t *os = zp->z_zfsvfs->z_os; 420 struct sf_buf *sf; 421 vm_object_t obj; 422 vm_page_t pp; 423 int64_t start; 424 caddr_t va; 425 int len = nbytes; 426 int error = 0; 427 428 ASSERT3U(zfs_uio_segflg(uio), ==, UIO_NOCOPY); 429 ASSERT3P(vp->v_mount, !=, NULL); 430 obj = vp->v_object; 431 ASSERT3P(obj, !=, NULL); 432 ASSERT0(zfs_uio_offset(uio) & PAGEOFFSET); 433 434 for (start = zfs_uio_offset(uio); len > 0; start += PAGESIZE) { 435 int bytes = MIN(PAGESIZE, len); 436 437 pp = vm_page_grab_unlocked(obj, OFF_TO_IDX(start), 438 VM_ALLOC_SBUSY | VM_ALLOC_NORMAL | VM_ALLOC_IGN_SBUSY); 439 if (vm_page_none_valid(pp)) { 440 va = zfs_map_page(pp, &sf); 441 error = dmu_read(os, zp->z_id, start, bytes, va, 442 DMU_READ_PREFETCH); 443 if (bytes != PAGESIZE && error == 0) 444 memset(va + bytes, 0, PAGESIZE - bytes); 445 zfs_unmap_page(sf); 446 if (error == 0) { 447 vm_page_valid(pp); 448 vm_page_activate(pp); 449 vm_page_sunbusy(pp); 450 } else { 451 zfs_vmobject_wlock(obj); 452 if (!vm_page_wired(pp) && pp->valid == 0 && 453 vm_page_busy_tryupgrade(pp)) 454 vm_page_free(pp); 455 else 456 vm_page_sunbusy(pp); 457 zfs_vmobject_wunlock(obj); 458 } 459 } else { 460 ASSERT3U(pp->valid, ==, VM_PAGE_BITS_ALL); 461 vm_page_sunbusy(pp); 462 } 463 if (error) 464 break; 465 zfs_uio_advance(uio, bytes); 466 len -= bytes; 467 } 468 return (error); 469 } 470 471 /* 472 * When a file is memory mapped, we must keep the IO data synchronized 473 * between the DMU cache and the memory mapped pages. What this means: 474 * 475 * On Read: We "read" preferentially from memory mapped pages, 476 * else we default from the dmu buffer. 477 * 478 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 479 * the file is memory mapped. 480 */ 481 int 482 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio) 483 { 484 vnode_t *vp = ZTOV(zp); 485 vm_object_t obj; 486 int64_t start; 487 int len = nbytes; 488 int off; 489 int error = 0; 490 491 ASSERT3P(vp->v_mount, !=, NULL); 492 obj = vp->v_object; 493 ASSERT3P(obj, !=, NULL); 494 495 start = zfs_uio_offset(uio); 496 off = start & PAGEOFFSET; 497 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 498 vm_page_t pp; 499 uint64_t bytes = MIN(PAGESIZE - off, len); 500 501 if ((pp = page_hold(vp, start))) { 502 struct sf_buf *sf; 503 caddr_t va; 504 505 va = zfs_map_page(pp, &sf); 506 error = vn_io_fault_uiomove(va + off, bytes, 507 GET_UIO_STRUCT(uio)); 508 zfs_unmap_page(sf); 509 page_unhold(pp); 510 } else { 511 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 512 uio, bytes); 513 } 514 len -= bytes; 515 off = 0; 516 if (error) 517 break; 518 } 519 return (error); 520 } 521 522 int 523 zfs_write_simple(znode_t *zp, const void *data, size_t len, 524 loff_t pos, size_t *presid) 525 { 526 int error = 0; 527 ssize_t resid; 528 529 error = vn_rdwr(UIO_WRITE, ZTOV(zp), __DECONST(void *, data), len, pos, 530 UIO_SYSSPACE, IO_SYNC, kcred, NOCRED, &resid, curthread); 531 532 if (error) { 533 return (SET_ERROR(error)); 534 } else if (presid == NULL) { 535 if (resid != 0) { 536 error = SET_ERROR(EIO); 537 } 538 } else { 539 *presid = resid; 540 } 541 return (error); 542 } 543 544 void 545 zfs_zrele_async(znode_t *zp) 546 { 547 vnode_t *vp = ZTOV(zp); 548 objset_t *os = ITOZSB(vp)->z_os; 549 550 VN_RELE_ASYNC(vp, dsl_pool_zrele_taskq(dmu_objset_pool(os))); 551 } 552 553 static int 554 zfs_dd_callback(struct mount *mp, void *arg, int lkflags, struct vnode **vpp) 555 { 556 int error; 557 558 *vpp = arg; 559 error = vn_lock(*vpp, lkflags); 560 if (error != 0) 561 vrele(*vpp); 562 return (error); 563 } 564 565 static int 566 zfs_lookup_lock(vnode_t *dvp, vnode_t *vp, const char *name, int lkflags) 567 { 568 znode_t *zdp = VTOZ(dvp); 569 zfsvfs_t *zfsvfs __unused = zdp->z_zfsvfs; 570 int error; 571 int ltype; 572 573 if (zfsvfs->z_replay == B_FALSE) 574 ASSERT_VOP_LOCKED(dvp, __func__); 575 576 if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) { 577 ASSERT3P(dvp, ==, vp); 578 vref(dvp); 579 ltype = lkflags & LK_TYPE_MASK; 580 if (ltype != VOP_ISLOCKED(dvp)) { 581 if (ltype == LK_EXCLUSIVE) 582 vn_lock(dvp, LK_UPGRADE | LK_RETRY); 583 else /* if (ltype == LK_SHARED) */ 584 vn_lock(dvp, LK_DOWNGRADE | LK_RETRY); 585 586 /* 587 * Relock for the "." case could leave us with 588 * reclaimed vnode. 589 */ 590 if (VN_IS_DOOMED(dvp)) { 591 vrele(dvp); 592 return (SET_ERROR(ENOENT)); 593 } 594 } 595 return (0); 596 } else if (name[0] == '.' && name[1] == '.' && name[2] == 0) { 597 /* 598 * Note that in this case, dvp is the child vnode, and we 599 * are looking up the parent vnode - exactly reverse from 600 * normal operation. Unlocking dvp requires some rather 601 * tricky unlock/relock dance to prevent mp from being freed; 602 * use vn_vget_ino_gen() which takes care of all that. 603 * 604 * XXX Note that there is a time window when both vnodes are 605 * unlocked. It is possible, although highly unlikely, that 606 * during that window the parent-child relationship between 607 * the vnodes may change, for example, get reversed. 608 * In that case we would have a wrong lock order for the vnodes. 609 * All other filesystems seem to ignore this problem, so we 610 * do the same here. 611 * A potential solution could be implemented as follows: 612 * - using LK_NOWAIT when locking the second vnode and retrying 613 * if necessary 614 * - checking that the parent-child relationship still holds 615 * after locking both vnodes and retrying if it doesn't 616 */ 617 error = vn_vget_ino_gen(dvp, zfs_dd_callback, vp, lkflags, &vp); 618 return (error); 619 } else { 620 error = vn_lock(vp, lkflags); 621 if (error != 0) 622 vrele(vp); 623 return (error); 624 } 625 } 626 627 /* 628 * Lookup an entry in a directory, or an extended attribute directory. 629 * If it exists, return a held vnode reference for it. 630 * 631 * IN: dvp - vnode of directory to search. 632 * nm - name of entry to lookup. 633 * pnp - full pathname to lookup [UNUSED]. 634 * flags - LOOKUP_XATTR set if looking for an attribute. 635 * rdir - root directory vnode [UNUSED]. 636 * cr - credentials of caller. 637 * ct - caller context 638 * 639 * OUT: vpp - vnode of located entry, NULL if not found. 640 * 641 * RETURN: 0 on success, error code on failure. 642 * 643 * Timestamps: 644 * NA 645 */ 646 static int 647 zfs_lookup(vnode_t *dvp, const char *nm, vnode_t **vpp, 648 struct componentname *cnp, int nameiop, cred_t *cr, int flags, 649 boolean_t cached) 650 { 651 znode_t *zdp = VTOZ(dvp); 652 znode_t *zp; 653 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 654 seqc_t dvp_seqc; 655 int error = 0; 656 657 /* 658 * Fast path lookup, however we must skip DNLC lookup 659 * for case folding or normalizing lookups because the 660 * DNLC code only stores the passed in name. This means 661 * creating 'a' and removing 'A' on a case insensitive 662 * file system would work, but DNLC still thinks 'a' 663 * exists and won't let you create it again on the next 664 * pass through fast path. 665 */ 666 if (!(flags & LOOKUP_XATTR)) { 667 if (dvp->v_type != VDIR) { 668 return (SET_ERROR(ENOTDIR)); 669 } else if (zdp->z_sa_hdl == NULL) { 670 return (SET_ERROR(EIO)); 671 } 672 } 673 674 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, 675 const char *, nm); 676 677 if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0) 678 return (error); 679 680 dvp_seqc = vn_seqc_read_notmodify(dvp); 681 682 *vpp = NULL; 683 684 if (flags & LOOKUP_XATTR) { 685 /* 686 * If the xattr property is off, refuse the lookup request. 687 */ 688 if (!(zfsvfs->z_flags & ZSB_XATTR)) { 689 zfs_exit(zfsvfs, FTAG); 690 return (SET_ERROR(EOPNOTSUPP)); 691 } 692 693 /* 694 * We don't allow recursive attributes.. 695 * Maybe someday we will. 696 */ 697 if (zdp->z_pflags & ZFS_XATTR) { 698 zfs_exit(zfsvfs, FTAG); 699 return (SET_ERROR(EINVAL)); 700 } 701 702 if ((error = zfs_get_xattrdir(VTOZ(dvp), &zp, cr, flags))) { 703 zfs_exit(zfsvfs, FTAG); 704 return (error); 705 } 706 *vpp = ZTOV(zp); 707 708 /* 709 * Do we have permission to get into attribute directory? 710 */ 711 error = zfs_zaccess(zp, ACE_EXECUTE, 0, B_FALSE, cr, NULL); 712 if (error) { 713 vrele(ZTOV(zp)); 714 } 715 716 zfs_exit(zfsvfs, FTAG); 717 return (error); 718 } 719 720 /* 721 * Check accessibility of directory if we're not coming in via 722 * VOP_CACHEDLOOKUP. 723 */ 724 if (!cached) { 725 #ifdef NOEXECCHECK 726 if ((cnp->cn_flags & NOEXECCHECK) != 0) { 727 cnp->cn_flags &= ~NOEXECCHECK; 728 } else 729 #endif 730 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr, 731 NULL))) { 732 zfs_exit(zfsvfs, FTAG); 733 return (error); 734 } 735 } 736 737 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 738 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 739 zfs_exit(zfsvfs, FTAG); 740 return (SET_ERROR(EILSEQ)); 741 } 742 743 744 /* 745 * First handle the special cases. 746 */ 747 if ((cnp->cn_flags & ISDOTDOT) != 0) { 748 /* 749 * If we are a snapshot mounted under .zfs, return 750 * the vp for the snapshot directory. 751 */ 752 if (zdp->z_id == zfsvfs->z_root && zfsvfs->z_parent != zfsvfs) { 753 struct componentname cn; 754 vnode_t *zfsctl_vp; 755 int ltype; 756 757 zfs_exit(zfsvfs, FTAG); 758 ltype = VOP_ISLOCKED(dvp); 759 VOP_UNLOCK(dvp); 760 error = zfsctl_root(zfsvfs->z_parent, LK_SHARED, 761 &zfsctl_vp); 762 if (error == 0) { 763 cn.cn_nameptr = "snapshot"; 764 cn.cn_namelen = strlen(cn.cn_nameptr); 765 cn.cn_nameiop = cnp->cn_nameiop; 766 cn.cn_flags = cnp->cn_flags & ~ISDOTDOT; 767 cn.cn_lkflags = cnp->cn_lkflags; 768 error = VOP_LOOKUP(zfsctl_vp, vpp, &cn); 769 vput(zfsctl_vp); 770 } 771 vn_lock(dvp, ltype | LK_RETRY); 772 return (error); 773 } 774 } 775 if (zfs_has_ctldir(zdp) && strcmp(nm, ZFS_CTLDIR_NAME) == 0) { 776 zfs_exit(zfsvfs, FTAG); 777 if ((cnp->cn_flags & ISLASTCN) != 0 && nameiop != LOOKUP) 778 return (SET_ERROR(ENOTSUP)); 779 error = zfsctl_root(zfsvfs, cnp->cn_lkflags, vpp); 780 return (error); 781 } 782 783 /* 784 * The loop is retry the lookup if the parent-child relationship 785 * changes during the dot-dot locking complexities. 786 */ 787 for (;;) { 788 uint64_t parent; 789 790 error = zfs_dirlook(zdp, nm, &zp); 791 if (error == 0) 792 *vpp = ZTOV(zp); 793 794 zfs_exit(zfsvfs, FTAG); 795 if (error != 0) 796 break; 797 798 error = zfs_lookup_lock(dvp, *vpp, nm, cnp->cn_lkflags); 799 if (error != 0) { 800 /* 801 * If we've got a locking error, then the vnode 802 * got reclaimed because of a force unmount. 803 * We never enter doomed vnodes into the name cache. 804 */ 805 *vpp = NULL; 806 return (error); 807 } 808 809 if ((cnp->cn_flags & ISDOTDOT) == 0) 810 break; 811 812 if ((error = zfs_enter(zfsvfs, FTAG)) != 0) { 813 vput(ZTOV(zp)); 814 *vpp = NULL; 815 return (error); 816 } 817 if (zdp->z_sa_hdl == NULL) { 818 error = SET_ERROR(EIO); 819 } else { 820 error = sa_lookup(zdp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 821 &parent, sizeof (parent)); 822 } 823 if (error != 0) { 824 zfs_exit(zfsvfs, FTAG); 825 vput(ZTOV(zp)); 826 break; 827 } 828 if (zp->z_id == parent) { 829 zfs_exit(zfsvfs, FTAG); 830 break; 831 } 832 vput(ZTOV(zp)); 833 } 834 835 if (error != 0) 836 *vpp = NULL; 837 838 /* Translate errors and add SAVENAME when needed. */ 839 if (cnp->cn_flags & ISLASTCN) { 840 switch (nameiop) { 841 case CREATE: 842 case RENAME: 843 if (error == ENOENT) { 844 error = EJUSTRETURN; 845 #if __FreeBSD_version < 1400068 846 cnp->cn_flags |= SAVENAME; 847 #endif 848 break; 849 } 850 zfs_fallthrough; 851 case DELETE: 852 #if __FreeBSD_version < 1400068 853 if (error == 0) 854 cnp->cn_flags |= SAVENAME; 855 #endif 856 break; 857 } 858 } 859 860 if ((cnp->cn_flags & ISDOTDOT) != 0) { 861 /* 862 * FIXME: zfs_lookup_lock relocks vnodes and does nothing to 863 * handle races. In particular different callers may end up 864 * with different vnodes and will try to add conflicting 865 * entries to the namecache. 866 * 867 * While finding different result may be acceptable in face 868 * of concurrent modification, adding conflicting entries 869 * trips over an assert in the namecache. 870 * 871 * Ultimately let an entry through once everything settles. 872 */ 873 if (!vn_seqc_consistent(dvp, dvp_seqc)) { 874 cnp->cn_flags &= ~MAKEENTRY; 875 } 876 } 877 878 /* Insert name into cache (as non-existent) if appropriate. */ 879 if (zfsvfs->z_use_namecache && !zfsvfs->z_replay && 880 error == ENOENT && (cnp->cn_flags & MAKEENTRY) != 0) 881 cache_enter(dvp, NULL, cnp); 882 883 /* Insert name into cache if appropriate. */ 884 if (zfsvfs->z_use_namecache && !zfsvfs->z_replay && 885 error == 0 && (cnp->cn_flags & MAKEENTRY)) { 886 if (!(cnp->cn_flags & ISLASTCN) || 887 (nameiop != DELETE && nameiop != RENAME)) { 888 cache_enter(dvp, *vpp, cnp); 889 } 890 } 891 892 return (error); 893 } 894 895 /* 896 * Attempt to create a new entry in a directory. If the entry 897 * already exists, truncate the file if permissible, else return 898 * an error. Return the vp of the created or trunc'd file. 899 * 900 * IN: dvp - vnode of directory to put new file entry in. 901 * name - name of new file entry. 902 * vap - attributes of new file. 903 * excl - flag indicating exclusive or non-exclusive mode. 904 * mode - mode to open file with. 905 * cr - credentials of caller. 906 * flag - large file flag [UNUSED]. 907 * ct - caller context 908 * vsecp - ACL to be set 909 * mnt_ns - Unused on FreeBSD 910 * 911 * OUT: vpp - vnode of created or trunc'd entry. 912 * 913 * RETURN: 0 on success, error code on failure. 914 * 915 * Timestamps: 916 * dvp - ctime|mtime updated if new entry created 917 * vp - ctime|mtime always, atime if new 918 */ 919 int 920 zfs_create(znode_t *dzp, const char *name, vattr_t *vap, int excl, int mode, 921 znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp, zidmap_t *mnt_ns) 922 { 923 (void) excl, (void) mode, (void) flag; 924 znode_t *zp; 925 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 926 zilog_t *zilog; 927 objset_t *os; 928 dmu_tx_t *tx; 929 int error; 930 uid_t uid = crgetuid(cr); 931 gid_t gid = crgetgid(cr); 932 uint64_t projid = ZFS_DEFAULT_PROJID; 933 zfs_acl_ids_t acl_ids; 934 boolean_t fuid_dirtied; 935 uint64_t txtype; 936 #ifdef DEBUG_VFS_LOCKS 937 vnode_t *dvp = ZTOV(dzp); 938 #endif 939 940 /* 941 * If we have an ephemeral id, ACL, or XVATTR then 942 * make sure file system is at proper version 943 */ 944 if (zfsvfs->z_use_fuids == B_FALSE && 945 (vsecp || (vap->va_mask & AT_XVATTR) || 946 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 947 return (SET_ERROR(EINVAL)); 948 949 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) 950 return (error); 951 os = zfsvfs->z_os; 952 zilog = zfsvfs->z_log; 953 954 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 955 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 956 zfs_exit(zfsvfs, FTAG); 957 return (SET_ERROR(EILSEQ)); 958 } 959 960 if (vap->va_mask & AT_XVATTR) { 961 if ((error = secpolicy_xvattr(ZTOV(dzp), (xvattr_t *)vap, 962 crgetuid(cr), cr, vap->va_type)) != 0) { 963 zfs_exit(zfsvfs, FTAG); 964 return (error); 965 } 966 } 967 968 *zpp = NULL; 969 970 if ((vap->va_mode & S_ISVTX) && secpolicy_vnode_stky_modify(cr)) 971 vap->va_mode &= ~S_ISVTX; 972 973 error = zfs_dirent_lookup(dzp, name, &zp, ZNEW); 974 if (error) { 975 zfs_exit(zfsvfs, FTAG); 976 return (error); 977 } 978 ASSERT3P(zp, ==, NULL); 979 980 /* 981 * Create a new file object and update the directory 982 * to reference it. 983 */ 984 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) { 985 goto out; 986 } 987 988 /* 989 * We only support the creation of regular files in 990 * extended attribute directories. 991 */ 992 993 if ((dzp->z_pflags & ZFS_XATTR) && 994 (vap->va_type != VREG)) { 995 error = SET_ERROR(EINVAL); 996 goto out; 997 } 998 999 if ((error = zfs_acl_ids_create(dzp, 0, vap, 1000 cr, vsecp, &acl_ids, NULL)) != 0) 1001 goto out; 1002 1003 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode)) 1004 projid = zfs_inherit_projid(dzp); 1005 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) { 1006 zfs_acl_ids_free(&acl_ids); 1007 error = SET_ERROR(EDQUOT); 1008 goto out; 1009 } 1010 1011 getnewvnode_reserve(); 1012 1013 tx = dmu_tx_create(os); 1014 1015 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1016 ZFS_SA_BASE_ATTR_SIZE); 1017 1018 fuid_dirtied = zfsvfs->z_fuid_dirty; 1019 if (fuid_dirtied) 1020 zfs_fuid_txhold(zfsvfs, tx); 1021 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1022 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1023 if (!zfsvfs->z_use_sa && 1024 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1025 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1026 0, acl_ids.z_aclp->z_acl_bytes); 1027 } 1028 error = dmu_tx_assign(tx, TXG_WAIT); 1029 if (error) { 1030 zfs_acl_ids_free(&acl_ids); 1031 dmu_tx_abort(tx); 1032 getnewvnode_drop_reserve(); 1033 zfs_exit(zfsvfs, FTAG); 1034 return (error); 1035 } 1036 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1037 1038 error = zfs_link_create(dzp, name, zp, tx, ZNEW); 1039 if (error != 0) { 1040 /* 1041 * Since, we failed to add the directory entry for it, 1042 * delete the newly created dnode. 1043 */ 1044 zfs_znode_delete(zp, tx); 1045 VOP_UNLOCK(ZTOV(zp)); 1046 zrele(zp); 1047 zfs_acl_ids_free(&acl_ids); 1048 dmu_tx_commit(tx); 1049 getnewvnode_drop_reserve(); 1050 goto out; 1051 } 1052 1053 if (fuid_dirtied) 1054 zfs_fuid_sync(zfsvfs, tx); 1055 1056 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1057 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1058 vsecp, acl_ids.z_fuidp, vap); 1059 zfs_acl_ids_free(&acl_ids); 1060 dmu_tx_commit(tx); 1061 1062 getnewvnode_drop_reserve(); 1063 1064 out: 1065 VNCHECKREF(dvp); 1066 if (error == 0) { 1067 *zpp = zp; 1068 } 1069 1070 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1071 zil_commit(zilog, 0); 1072 1073 zfs_exit(zfsvfs, FTAG); 1074 return (error); 1075 } 1076 1077 /* 1078 * Remove an entry from a directory. 1079 * 1080 * IN: dvp - vnode of directory to remove entry from. 1081 * name - name of entry to remove. 1082 * cr - credentials of caller. 1083 * ct - caller context 1084 * flags - case flags 1085 * 1086 * RETURN: 0 on success, error code on failure. 1087 * 1088 * Timestamps: 1089 * dvp - ctime|mtime 1090 * vp - ctime (if nlink > 0) 1091 */ 1092 static int 1093 zfs_remove_(vnode_t *dvp, vnode_t *vp, const char *name, cred_t *cr) 1094 { 1095 znode_t *dzp = VTOZ(dvp); 1096 znode_t *zp; 1097 znode_t *xzp; 1098 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1099 zilog_t *zilog; 1100 uint64_t xattr_obj; 1101 uint64_t obj = 0; 1102 dmu_tx_t *tx; 1103 boolean_t unlinked; 1104 uint64_t txtype; 1105 int error; 1106 1107 1108 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) 1109 return (error); 1110 zp = VTOZ(vp); 1111 if ((error = zfs_verify_zp(zp)) != 0) { 1112 zfs_exit(zfsvfs, FTAG); 1113 return (error); 1114 } 1115 zilog = zfsvfs->z_log; 1116 1117 xattr_obj = 0; 1118 xzp = NULL; 1119 1120 if ((error = zfs_zaccess_delete(dzp, zp, cr, NULL))) { 1121 goto out; 1122 } 1123 1124 /* 1125 * Need to use rmdir for removing directories. 1126 */ 1127 if (vp->v_type == VDIR) { 1128 error = SET_ERROR(EPERM); 1129 goto out; 1130 } 1131 1132 vnevent_remove(vp, dvp, name, ct); 1133 1134 obj = zp->z_id; 1135 1136 /* are there any extended attributes? */ 1137 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1138 &xattr_obj, sizeof (xattr_obj)); 1139 if (error == 0 && xattr_obj) { 1140 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1141 ASSERT0(error); 1142 } 1143 1144 /* 1145 * We may delete the znode now, or we may put it in the unlinked set; 1146 * it depends on whether we're the last link, and on whether there are 1147 * other holds on the vnode. So we dmu_tx_hold() the right things to 1148 * allow for either case. 1149 */ 1150 tx = dmu_tx_create(zfsvfs->z_os); 1151 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1152 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1153 zfs_sa_upgrade_txholds(tx, zp); 1154 zfs_sa_upgrade_txholds(tx, dzp); 1155 1156 if (xzp) { 1157 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1158 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1159 } 1160 1161 /* charge as an update -- would be nice not to charge at all */ 1162 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1163 1164 /* 1165 * Mark this transaction as typically resulting in a net free of space 1166 */ 1167 dmu_tx_mark_netfree(tx); 1168 1169 error = dmu_tx_assign(tx, TXG_WAIT); 1170 if (error) { 1171 dmu_tx_abort(tx); 1172 zfs_exit(zfsvfs, FTAG); 1173 return (error); 1174 } 1175 1176 /* 1177 * Remove the directory entry. 1178 */ 1179 error = zfs_link_destroy(dzp, name, zp, tx, ZEXISTS, &unlinked); 1180 1181 if (error) { 1182 dmu_tx_commit(tx); 1183 goto out; 1184 } 1185 1186 if (unlinked) { 1187 zfs_unlinked_add(zp, tx); 1188 vp->v_vflag |= VV_NOSYNC; 1189 } 1190 /* XXX check changes to linux vnops */ 1191 txtype = TX_REMOVE; 1192 zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked); 1193 1194 dmu_tx_commit(tx); 1195 out: 1196 1197 if (xzp) 1198 vrele(ZTOV(xzp)); 1199 1200 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1201 zil_commit(zilog, 0); 1202 1203 1204 zfs_exit(zfsvfs, FTAG); 1205 return (error); 1206 } 1207 1208 1209 static int 1210 zfs_lookup_internal(znode_t *dzp, const char *name, vnode_t **vpp, 1211 struct componentname *cnp, int nameiop) 1212 { 1213 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1214 int error; 1215 1216 cnp->cn_nameptr = __DECONST(char *, name); 1217 cnp->cn_namelen = strlen(name); 1218 cnp->cn_nameiop = nameiop; 1219 cnp->cn_flags = ISLASTCN; 1220 #if __FreeBSD_version < 1400068 1221 cnp->cn_flags |= SAVENAME; 1222 #endif 1223 cnp->cn_lkflags = LK_EXCLUSIVE | LK_RETRY; 1224 cnp->cn_cred = kcred; 1225 #if __FreeBSD_version < 1400037 1226 cnp->cn_thread = curthread; 1227 #endif 1228 1229 if (zfsvfs->z_use_namecache && !zfsvfs->z_replay) { 1230 struct vop_lookup_args a; 1231 1232 a.a_gen.a_desc = &vop_lookup_desc; 1233 a.a_dvp = ZTOV(dzp); 1234 a.a_vpp = vpp; 1235 a.a_cnp = cnp; 1236 error = vfs_cache_lookup(&a); 1237 } else { 1238 error = zfs_lookup(ZTOV(dzp), name, vpp, cnp, nameiop, kcred, 0, 1239 B_FALSE); 1240 } 1241 #ifdef ZFS_DEBUG 1242 if (error) { 1243 printf("got error %d on name %s on op %d\n", error, name, 1244 nameiop); 1245 kdb_backtrace(); 1246 } 1247 #endif 1248 return (error); 1249 } 1250 1251 int 1252 zfs_remove(znode_t *dzp, const char *name, cred_t *cr, int flags) 1253 { 1254 vnode_t *vp; 1255 int error; 1256 struct componentname cn; 1257 1258 if ((error = zfs_lookup_internal(dzp, name, &vp, &cn, DELETE))) 1259 return (error); 1260 1261 error = zfs_remove_(ZTOV(dzp), vp, name, cr); 1262 vput(vp); 1263 return (error); 1264 } 1265 /* 1266 * Create a new directory and insert it into dvp using the name 1267 * provided. Return a pointer to the inserted directory. 1268 * 1269 * IN: dvp - vnode of directory to add subdir to. 1270 * dirname - name of new directory. 1271 * vap - attributes of new directory. 1272 * cr - credentials of caller. 1273 * ct - caller context 1274 * flags - case flags 1275 * vsecp - ACL to be set 1276 * mnt_ns - Unused on FreeBSD 1277 * 1278 * OUT: vpp - vnode of created directory. 1279 * 1280 * RETURN: 0 on success, error code on failure. 1281 * 1282 * Timestamps: 1283 * dvp - ctime|mtime updated 1284 * vp - ctime|mtime|atime updated 1285 */ 1286 int 1287 zfs_mkdir(znode_t *dzp, const char *dirname, vattr_t *vap, znode_t **zpp, 1288 cred_t *cr, int flags, vsecattr_t *vsecp, zidmap_t *mnt_ns) 1289 { 1290 (void) flags, (void) vsecp; 1291 znode_t *zp; 1292 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1293 zilog_t *zilog; 1294 uint64_t txtype; 1295 dmu_tx_t *tx; 1296 int error; 1297 uid_t uid = crgetuid(cr); 1298 gid_t gid = crgetgid(cr); 1299 zfs_acl_ids_t acl_ids; 1300 boolean_t fuid_dirtied; 1301 1302 ASSERT3U(vap->va_type, ==, VDIR); 1303 1304 /* 1305 * If we have an ephemeral id, ACL, or XVATTR then 1306 * make sure file system is at proper version 1307 */ 1308 if (zfsvfs->z_use_fuids == B_FALSE && 1309 ((vap->va_mask & AT_XVATTR) || 1310 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1311 return (SET_ERROR(EINVAL)); 1312 1313 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) 1314 return (error); 1315 zilog = zfsvfs->z_log; 1316 1317 if (dzp->z_pflags & ZFS_XATTR) { 1318 zfs_exit(zfsvfs, FTAG); 1319 return (SET_ERROR(EINVAL)); 1320 } 1321 1322 if (zfsvfs->z_utf8 && u8_validate(dirname, 1323 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1324 zfs_exit(zfsvfs, FTAG); 1325 return (SET_ERROR(EILSEQ)); 1326 } 1327 1328 if (vap->va_mask & AT_XVATTR) { 1329 if ((error = secpolicy_xvattr(ZTOV(dzp), (xvattr_t *)vap, 1330 crgetuid(cr), cr, vap->va_type)) != 0) { 1331 zfs_exit(zfsvfs, FTAG); 1332 return (error); 1333 } 1334 } 1335 1336 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1337 NULL, &acl_ids, NULL)) != 0) { 1338 zfs_exit(zfsvfs, FTAG); 1339 return (error); 1340 } 1341 1342 /* 1343 * First make sure the new directory doesn't exist. 1344 * 1345 * Existence is checked first to make sure we don't return 1346 * EACCES instead of EEXIST which can cause some applications 1347 * to fail. 1348 */ 1349 *zpp = NULL; 1350 1351 if ((error = zfs_dirent_lookup(dzp, dirname, &zp, ZNEW))) { 1352 zfs_acl_ids_free(&acl_ids); 1353 zfs_exit(zfsvfs, FTAG); 1354 return (error); 1355 } 1356 ASSERT3P(zp, ==, NULL); 1357 1358 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr, 1359 mnt_ns))) { 1360 zfs_acl_ids_free(&acl_ids); 1361 zfs_exit(zfsvfs, FTAG); 1362 return (error); 1363 } 1364 1365 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) { 1366 zfs_acl_ids_free(&acl_ids); 1367 zfs_exit(zfsvfs, FTAG); 1368 return (SET_ERROR(EDQUOT)); 1369 } 1370 1371 /* 1372 * Add a new entry to the directory. 1373 */ 1374 getnewvnode_reserve(); 1375 tx = dmu_tx_create(zfsvfs->z_os); 1376 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1377 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1378 fuid_dirtied = zfsvfs->z_fuid_dirty; 1379 if (fuid_dirtied) 1380 zfs_fuid_txhold(zfsvfs, tx); 1381 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1382 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1383 acl_ids.z_aclp->z_acl_bytes); 1384 } 1385 1386 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1387 ZFS_SA_BASE_ATTR_SIZE); 1388 1389 error = dmu_tx_assign(tx, TXG_WAIT); 1390 if (error) { 1391 zfs_acl_ids_free(&acl_ids); 1392 dmu_tx_abort(tx); 1393 getnewvnode_drop_reserve(); 1394 zfs_exit(zfsvfs, FTAG); 1395 return (error); 1396 } 1397 1398 /* 1399 * Create new node. 1400 */ 1401 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1402 1403 /* 1404 * Now put new name in parent dir. 1405 */ 1406 error = zfs_link_create(dzp, dirname, zp, tx, ZNEW); 1407 if (error != 0) { 1408 zfs_znode_delete(zp, tx); 1409 VOP_UNLOCK(ZTOV(zp)); 1410 zrele(zp); 1411 goto out; 1412 } 1413 1414 if (fuid_dirtied) 1415 zfs_fuid_sync(zfsvfs, tx); 1416 1417 *zpp = zp; 1418 1419 txtype = zfs_log_create_txtype(Z_DIR, NULL, vap); 1420 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, NULL, 1421 acl_ids.z_fuidp, vap); 1422 1423 out: 1424 zfs_acl_ids_free(&acl_ids); 1425 1426 dmu_tx_commit(tx); 1427 1428 getnewvnode_drop_reserve(); 1429 1430 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1431 zil_commit(zilog, 0); 1432 1433 zfs_exit(zfsvfs, FTAG); 1434 return (error); 1435 } 1436 1437 /* 1438 * Remove a directory subdir entry. If the current working 1439 * directory is the same as the subdir to be removed, the 1440 * remove will fail. 1441 * 1442 * IN: dvp - vnode of directory to remove from. 1443 * name - name of directory to be removed. 1444 * cwd - vnode of current working directory. 1445 * cr - credentials of caller. 1446 * ct - caller context 1447 * flags - case flags 1448 * 1449 * RETURN: 0 on success, error code on failure. 1450 * 1451 * Timestamps: 1452 * dvp - ctime|mtime updated 1453 */ 1454 static int 1455 zfs_rmdir_(vnode_t *dvp, vnode_t *vp, const char *name, cred_t *cr) 1456 { 1457 znode_t *dzp = VTOZ(dvp); 1458 znode_t *zp = VTOZ(vp); 1459 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1460 zilog_t *zilog; 1461 dmu_tx_t *tx; 1462 int error; 1463 1464 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) 1465 return (error); 1466 if ((error = zfs_verify_zp(zp)) != 0) { 1467 zfs_exit(zfsvfs, FTAG); 1468 return (error); 1469 } 1470 zilog = zfsvfs->z_log; 1471 1472 1473 if ((error = zfs_zaccess_delete(dzp, zp, cr, NULL))) { 1474 goto out; 1475 } 1476 1477 if (vp->v_type != VDIR) { 1478 error = SET_ERROR(ENOTDIR); 1479 goto out; 1480 } 1481 1482 vnevent_rmdir(vp, dvp, name, ct); 1483 1484 tx = dmu_tx_create(zfsvfs->z_os); 1485 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1486 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1487 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1488 zfs_sa_upgrade_txholds(tx, zp); 1489 zfs_sa_upgrade_txholds(tx, dzp); 1490 dmu_tx_mark_netfree(tx); 1491 error = dmu_tx_assign(tx, TXG_WAIT); 1492 if (error) { 1493 dmu_tx_abort(tx); 1494 zfs_exit(zfsvfs, FTAG); 1495 return (error); 1496 } 1497 1498 error = zfs_link_destroy(dzp, name, zp, tx, ZEXISTS, NULL); 1499 1500 if (error == 0) { 1501 uint64_t txtype = TX_RMDIR; 1502 zfs_log_remove(zilog, tx, txtype, dzp, name, 1503 ZFS_NO_OBJECT, B_FALSE); 1504 } 1505 1506 dmu_tx_commit(tx); 1507 1508 if (zfsvfs->z_use_namecache) 1509 cache_vop_rmdir(dvp, vp); 1510 out: 1511 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1512 zil_commit(zilog, 0); 1513 1514 zfs_exit(zfsvfs, FTAG); 1515 return (error); 1516 } 1517 1518 int 1519 zfs_rmdir(znode_t *dzp, const char *name, znode_t *cwd, cred_t *cr, int flags) 1520 { 1521 struct componentname cn; 1522 vnode_t *vp; 1523 int error; 1524 1525 if ((error = zfs_lookup_internal(dzp, name, &vp, &cn, DELETE))) 1526 return (error); 1527 1528 error = zfs_rmdir_(ZTOV(dzp), vp, name, cr); 1529 vput(vp); 1530 return (error); 1531 } 1532 1533 /* 1534 * Read as many directory entries as will fit into the provided 1535 * buffer from the given directory cursor position (specified in 1536 * the uio structure). 1537 * 1538 * IN: vp - vnode of directory to read. 1539 * uio - structure supplying read location, range info, 1540 * and return buffer. 1541 * cr - credentials of caller. 1542 * ct - caller context 1543 * 1544 * OUT: uio - updated offset and range, buffer filled. 1545 * eofp - set to true if end-of-file detected. 1546 * ncookies- number of entries in cookies 1547 * cookies - offsets to directory entries 1548 * 1549 * RETURN: 0 on success, error code on failure. 1550 * 1551 * Timestamps: 1552 * vp - atime updated 1553 * 1554 * Note that the low 4 bits of the cookie returned by zap is always zero. 1555 * This allows us to use the low range for "special" directory entries: 1556 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1557 * we use the offset 2 for the '.zfs' directory. 1558 */ 1559 static int 1560 zfs_readdir(vnode_t *vp, zfs_uio_t *uio, cred_t *cr, int *eofp, 1561 int *ncookies, cookie_t **cookies) 1562 { 1563 znode_t *zp = VTOZ(vp); 1564 iovec_t *iovp; 1565 dirent64_t *odp; 1566 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1567 objset_t *os; 1568 caddr_t outbuf; 1569 size_t bufsize; 1570 zap_cursor_t zc; 1571 zap_attribute_t zap; 1572 uint_t bytes_wanted; 1573 uint64_t offset; /* must be unsigned; checks for < 1 */ 1574 uint64_t parent; 1575 int local_eof; 1576 int outcount; 1577 int error; 1578 uint8_t prefetch; 1579 uint8_t type; 1580 int ncooks; 1581 cookie_t *cooks = NULL; 1582 1583 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 1584 return (error); 1585 1586 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 1587 &parent, sizeof (parent))) != 0) { 1588 zfs_exit(zfsvfs, FTAG); 1589 return (error); 1590 } 1591 1592 /* 1593 * If we are not given an eof variable, 1594 * use a local one. 1595 */ 1596 if (eofp == NULL) 1597 eofp = &local_eof; 1598 1599 /* 1600 * Check for valid iov_len. 1601 */ 1602 if (GET_UIO_STRUCT(uio)->uio_iov->iov_len <= 0) { 1603 zfs_exit(zfsvfs, FTAG); 1604 return (SET_ERROR(EINVAL)); 1605 } 1606 1607 /* 1608 * Quit if directory has been removed (posix) 1609 */ 1610 if ((*eofp = zp->z_unlinked) != 0) { 1611 zfs_exit(zfsvfs, FTAG); 1612 return (0); 1613 } 1614 1615 error = 0; 1616 os = zfsvfs->z_os; 1617 offset = zfs_uio_offset(uio); 1618 prefetch = zp->z_zn_prefetch; 1619 1620 /* 1621 * Initialize the iterator cursor. 1622 */ 1623 if (offset <= 3) { 1624 /* 1625 * Start iteration from the beginning of the directory. 1626 */ 1627 zap_cursor_init(&zc, os, zp->z_id); 1628 } else { 1629 /* 1630 * The offset is a serialized cursor. 1631 */ 1632 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1633 } 1634 1635 /* 1636 * Get space to change directory entries into fs independent format. 1637 */ 1638 iovp = GET_UIO_STRUCT(uio)->uio_iov; 1639 bytes_wanted = iovp->iov_len; 1640 if (zfs_uio_segflg(uio) != UIO_SYSSPACE || zfs_uio_iovcnt(uio) != 1) { 1641 bufsize = bytes_wanted; 1642 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1643 odp = (struct dirent64 *)outbuf; 1644 } else { 1645 bufsize = bytes_wanted; 1646 outbuf = NULL; 1647 odp = (struct dirent64 *)iovp->iov_base; 1648 } 1649 1650 if (ncookies != NULL) { 1651 /* 1652 * Minimum entry size is dirent size and 1 byte for a file name. 1653 */ 1654 ncooks = zfs_uio_resid(uio) / (sizeof (struct dirent) - 1655 sizeof (((struct dirent *)NULL)->d_name) + 1); 1656 cooks = malloc(ncooks * sizeof (*cooks), M_TEMP, M_WAITOK); 1657 *cookies = cooks; 1658 *ncookies = ncooks; 1659 } 1660 1661 /* 1662 * Transform to file-system independent format 1663 */ 1664 outcount = 0; 1665 while (outcount < bytes_wanted) { 1666 ino64_t objnum; 1667 ushort_t reclen; 1668 off64_t *next = NULL; 1669 1670 /* 1671 * Special case `.', `..', and `.zfs'. 1672 */ 1673 if (offset == 0) { 1674 (void) strcpy(zap.za_name, "."); 1675 zap.za_normalization_conflict = 0; 1676 objnum = zp->z_id; 1677 type = DT_DIR; 1678 } else if (offset == 1) { 1679 (void) strcpy(zap.za_name, ".."); 1680 zap.za_normalization_conflict = 0; 1681 objnum = parent; 1682 type = DT_DIR; 1683 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1684 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1685 zap.za_normalization_conflict = 0; 1686 objnum = ZFSCTL_INO_ROOT; 1687 type = DT_DIR; 1688 } else { 1689 /* 1690 * Grab next entry. 1691 */ 1692 if ((error = zap_cursor_retrieve(&zc, &zap))) { 1693 if ((*eofp = (error == ENOENT)) != 0) 1694 break; 1695 else 1696 goto update; 1697 } 1698 1699 if (zap.za_integer_length != 8 || 1700 zap.za_num_integers != 1) { 1701 cmn_err(CE_WARN, "zap_readdir: bad directory " 1702 "entry, obj = %lld, offset = %lld\n", 1703 (u_longlong_t)zp->z_id, 1704 (u_longlong_t)offset); 1705 error = SET_ERROR(ENXIO); 1706 goto update; 1707 } 1708 1709 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 1710 /* 1711 * MacOS X can extract the object type here such as: 1712 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 1713 */ 1714 type = ZFS_DIRENT_TYPE(zap.za_first_integer); 1715 } 1716 1717 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1718 1719 /* 1720 * Will this entry fit in the buffer? 1721 */ 1722 if (outcount + reclen > bufsize) { 1723 /* 1724 * Did we manage to fit anything in the buffer? 1725 */ 1726 if (!outcount) { 1727 error = SET_ERROR(EINVAL); 1728 goto update; 1729 } 1730 break; 1731 } 1732 /* 1733 * Add normal entry: 1734 */ 1735 odp->d_ino = objnum; 1736 odp->d_reclen = reclen; 1737 odp->d_namlen = strlen(zap.za_name); 1738 /* NOTE: d_off is the offset for the *next* entry. */ 1739 next = &odp->d_off; 1740 strlcpy(odp->d_name, zap.za_name, odp->d_namlen + 1); 1741 odp->d_type = type; 1742 dirent_terminate(odp); 1743 odp = (dirent64_t *)((intptr_t)odp + reclen); 1744 1745 outcount += reclen; 1746 1747 ASSERT3S(outcount, <=, bufsize); 1748 1749 if (prefetch) 1750 dmu_prefetch_dnode(os, objnum, ZIO_PRIORITY_SYNC_READ); 1751 1752 /* 1753 * Move to the next entry, fill in the previous offset. 1754 */ 1755 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1756 zap_cursor_advance(&zc); 1757 offset = zap_cursor_serialize(&zc); 1758 } else { 1759 offset += 1; 1760 } 1761 1762 /* Fill the offset right after advancing the cursor. */ 1763 if (next != NULL) 1764 *next = offset; 1765 if (cooks != NULL) { 1766 *cooks++ = offset; 1767 ncooks--; 1768 KASSERT(ncooks >= 0, ("ncookies=%d", ncooks)); 1769 } 1770 } 1771 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1772 1773 /* Subtract unused cookies */ 1774 if (ncookies != NULL) 1775 *ncookies -= ncooks; 1776 1777 if (zfs_uio_segflg(uio) == UIO_SYSSPACE && zfs_uio_iovcnt(uio) == 1) { 1778 iovp->iov_base += outcount; 1779 iovp->iov_len -= outcount; 1780 zfs_uio_resid(uio) -= outcount; 1781 } else if ((error = 1782 zfs_uiomove(outbuf, (long)outcount, UIO_READ, uio))) { 1783 /* 1784 * Reset the pointer. 1785 */ 1786 offset = zfs_uio_offset(uio); 1787 } 1788 1789 update: 1790 zap_cursor_fini(&zc); 1791 if (zfs_uio_segflg(uio) != UIO_SYSSPACE || zfs_uio_iovcnt(uio) != 1) 1792 kmem_free(outbuf, bufsize); 1793 1794 if (error == ENOENT) 1795 error = 0; 1796 1797 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 1798 1799 zfs_uio_setoffset(uio, offset); 1800 zfs_exit(zfsvfs, FTAG); 1801 if (error != 0 && cookies != NULL) { 1802 free(*cookies, M_TEMP); 1803 *cookies = NULL; 1804 *ncookies = 0; 1805 } 1806 return (error); 1807 } 1808 1809 /* 1810 * Get the requested file attributes and place them in the provided 1811 * vattr structure. 1812 * 1813 * IN: vp - vnode of file. 1814 * vap - va_mask identifies requested attributes. 1815 * If AT_XVATTR set, then optional attrs are requested 1816 * flags - ATTR_NOACLCHECK (CIFS server context) 1817 * cr - credentials of caller. 1818 * 1819 * OUT: vap - attribute values. 1820 * 1821 * RETURN: 0 (always succeeds). 1822 */ 1823 static int 1824 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 1825 { 1826 znode_t *zp = VTOZ(vp); 1827 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1828 int error = 0; 1829 uint32_t blksize; 1830 u_longlong_t nblocks; 1831 uint64_t mtime[2], ctime[2], crtime[2], rdev; 1832 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 1833 xoptattr_t *xoap = NULL; 1834 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 1835 sa_bulk_attr_t bulk[4]; 1836 int count = 0; 1837 1838 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 1839 return (error); 1840 1841 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 1842 1843 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 1844 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 1845 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CRTIME(zfsvfs), NULL, &crtime, 16); 1846 if (vp->v_type == VBLK || vp->v_type == VCHR) 1847 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_RDEV(zfsvfs), NULL, 1848 &rdev, 8); 1849 1850 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 1851 zfs_exit(zfsvfs, FTAG); 1852 return (error); 1853 } 1854 1855 /* 1856 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 1857 * Also, if we are the owner don't bother, since owner should 1858 * always be allowed to read basic attributes of file. 1859 */ 1860 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 1861 (vap->va_uid != crgetuid(cr))) { 1862 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 1863 skipaclchk, cr, NULL))) { 1864 zfs_exit(zfsvfs, FTAG); 1865 return (error); 1866 } 1867 } 1868 1869 /* 1870 * Return all attributes. It's cheaper to provide the answer 1871 * than to determine whether we were asked the question. 1872 */ 1873 1874 vap->va_type = IFTOVT(zp->z_mode); 1875 vap->va_mode = zp->z_mode & ~S_IFMT; 1876 vn_fsid(vp, vap); 1877 vap->va_nodeid = zp->z_id; 1878 vap->va_nlink = zp->z_links; 1879 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp) && 1880 zp->z_links < ZFS_LINK_MAX) 1881 vap->va_nlink++; 1882 vap->va_size = zp->z_size; 1883 if (vp->v_type == VBLK || vp->v_type == VCHR) 1884 vap->va_rdev = zfs_cmpldev(rdev); 1885 else 1886 vap->va_rdev = 0; 1887 vap->va_gen = zp->z_gen; 1888 vap->va_flags = 0; /* FreeBSD: Reset chflags(2) flags. */ 1889 vap->va_filerev = zp->z_seq; 1890 1891 /* 1892 * Add in any requested optional attributes and the create time. 1893 * Also set the corresponding bits in the returned attribute bitmap. 1894 */ 1895 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 1896 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1897 xoap->xoa_archive = 1898 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 1899 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1900 } 1901 1902 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1903 xoap->xoa_readonly = 1904 ((zp->z_pflags & ZFS_READONLY) != 0); 1905 XVA_SET_RTN(xvap, XAT_READONLY); 1906 } 1907 1908 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1909 xoap->xoa_system = 1910 ((zp->z_pflags & ZFS_SYSTEM) != 0); 1911 XVA_SET_RTN(xvap, XAT_SYSTEM); 1912 } 1913 1914 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1915 xoap->xoa_hidden = 1916 ((zp->z_pflags & ZFS_HIDDEN) != 0); 1917 XVA_SET_RTN(xvap, XAT_HIDDEN); 1918 } 1919 1920 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1921 xoap->xoa_nounlink = 1922 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 1923 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1924 } 1925 1926 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1927 xoap->xoa_immutable = 1928 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 1929 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1930 } 1931 1932 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1933 xoap->xoa_appendonly = 1934 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 1935 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1936 } 1937 1938 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1939 xoap->xoa_nodump = 1940 ((zp->z_pflags & ZFS_NODUMP) != 0); 1941 XVA_SET_RTN(xvap, XAT_NODUMP); 1942 } 1943 1944 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1945 xoap->xoa_opaque = 1946 ((zp->z_pflags & ZFS_OPAQUE) != 0); 1947 XVA_SET_RTN(xvap, XAT_OPAQUE); 1948 } 1949 1950 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1951 xoap->xoa_av_quarantined = 1952 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 1953 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1954 } 1955 1956 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1957 xoap->xoa_av_modified = 1958 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 1959 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1960 } 1961 1962 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 1963 vp->v_type == VREG) { 1964 zfs_sa_get_scanstamp(zp, xvap); 1965 } 1966 1967 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1968 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 1969 XVA_SET_RTN(xvap, XAT_REPARSE); 1970 } 1971 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 1972 xoap->xoa_generation = zp->z_gen; 1973 XVA_SET_RTN(xvap, XAT_GEN); 1974 } 1975 1976 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 1977 xoap->xoa_offline = 1978 ((zp->z_pflags & ZFS_OFFLINE) != 0); 1979 XVA_SET_RTN(xvap, XAT_OFFLINE); 1980 } 1981 1982 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 1983 xoap->xoa_sparse = 1984 ((zp->z_pflags & ZFS_SPARSE) != 0); 1985 XVA_SET_RTN(xvap, XAT_SPARSE); 1986 } 1987 1988 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 1989 xoap->xoa_projinherit = 1990 ((zp->z_pflags & ZFS_PROJINHERIT) != 0); 1991 XVA_SET_RTN(xvap, XAT_PROJINHERIT); 1992 } 1993 1994 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 1995 xoap->xoa_projid = zp->z_projid; 1996 XVA_SET_RTN(xvap, XAT_PROJID); 1997 } 1998 } 1999 2000 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2001 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2002 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2003 ZFS_TIME_DECODE(&vap->va_birthtime, crtime); 2004 2005 2006 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks); 2007 vap->va_blksize = blksize; 2008 vap->va_bytes = nblocks << 9; /* nblocks * 512 */ 2009 2010 if (zp->z_blksz == 0) { 2011 /* 2012 * Block size hasn't been set; suggest maximal I/O transfers. 2013 */ 2014 vap->va_blksize = zfsvfs->z_max_blksz; 2015 } 2016 2017 zfs_exit(zfsvfs, FTAG); 2018 return (0); 2019 } 2020 2021 /* 2022 * Set the file attributes to the values contained in the 2023 * vattr structure. 2024 * 2025 * IN: zp - znode of file to be modified. 2026 * vap - new attribute values. 2027 * If AT_XVATTR set, then optional attrs are being set 2028 * flags - ATTR_UTIME set if non-default time values provided. 2029 * - ATTR_NOACLCHECK (CIFS context only). 2030 * cr - credentials of caller. 2031 * mnt_ns - Unused on FreeBSD 2032 * 2033 * RETURN: 0 on success, error code on failure. 2034 * 2035 * Timestamps: 2036 * vp - ctime updated, mtime updated if size changed. 2037 */ 2038 int 2039 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zidmap_t *mnt_ns) 2040 { 2041 vnode_t *vp = ZTOV(zp); 2042 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2043 objset_t *os; 2044 zilog_t *zilog; 2045 dmu_tx_t *tx; 2046 vattr_t oldva; 2047 xvattr_t tmpxvattr; 2048 uint_t mask = vap->va_mask; 2049 uint_t saved_mask = 0; 2050 uint64_t saved_mode; 2051 int trim_mask = 0; 2052 uint64_t new_mode; 2053 uint64_t new_uid, new_gid; 2054 uint64_t xattr_obj; 2055 uint64_t mtime[2], ctime[2]; 2056 uint64_t projid = ZFS_INVALID_PROJID; 2057 znode_t *attrzp; 2058 int need_policy = FALSE; 2059 int err, err2; 2060 zfs_fuid_info_t *fuidp = NULL; 2061 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2062 xoptattr_t *xoap; 2063 zfs_acl_t *aclp; 2064 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2065 boolean_t fuid_dirtied = B_FALSE; 2066 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2067 int count = 0, xattr_count = 0; 2068 2069 if (mask == 0) 2070 return (0); 2071 2072 if (mask & AT_NOSET) 2073 return (SET_ERROR(EINVAL)); 2074 2075 if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 2076 return (err); 2077 2078 os = zfsvfs->z_os; 2079 zilog = zfsvfs->z_log; 2080 2081 /* 2082 * Make sure that if we have ephemeral uid/gid or xvattr specified 2083 * that file system is at proper version level 2084 */ 2085 2086 if (zfsvfs->z_use_fuids == B_FALSE && 2087 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2088 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2089 (mask & AT_XVATTR))) { 2090 zfs_exit(zfsvfs, FTAG); 2091 return (SET_ERROR(EINVAL)); 2092 } 2093 2094 if (mask & AT_SIZE && vp->v_type == VDIR) { 2095 zfs_exit(zfsvfs, FTAG); 2096 return (SET_ERROR(EISDIR)); 2097 } 2098 2099 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2100 zfs_exit(zfsvfs, FTAG); 2101 return (SET_ERROR(EINVAL)); 2102 } 2103 2104 /* 2105 * If this is an xvattr_t, then get a pointer to the structure of 2106 * optional attributes. If this is NULL, then we have a vattr_t. 2107 */ 2108 xoap = xva_getxoptattr(xvap); 2109 2110 xva_init(&tmpxvattr); 2111 2112 /* 2113 * Immutable files can only alter immutable bit and atime 2114 */ 2115 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2116 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2117 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2118 zfs_exit(zfsvfs, FTAG); 2119 return (SET_ERROR(EPERM)); 2120 } 2121 2122 /* 2123 * Note: ZFS_READONLY is handled in zfs_zaccess_common. 2124 */ 2125 2126 /* 2127 * Verify timestamps doesn't overflow 32 bits. 2128 * ZFS can handle large timestamps, but 32bit syscalls can't 2129 * handle times greater than 2039. This check should be removed 2130 * once large timestamps are fully supported. 2131 */ 2132 if (mask & (AT_ATIME | AT_MTIME)) { 2133 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2134 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2135 zfs_exit(zfsvfs, FTAG); 2136 return (SET_ERROR(EOVERFLOW)); 2137 } 2138 } 2139 if (xoap != NULL && (mask & AT_XVATTR)) { 2140 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME) && 2141 TIMESPEC_OVERFLOW(&vap->va_birthtime)) { 2142 zfs_exit(zfsvfs, FTAG); 2143 return (SET_ERROR(EOVERFLOW)); 2144 } 2145 2146 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) { 2147 if (!dmu_objset_projectquota_enabled(os) || 2148 (!S_ISREG(zp->z_mode) && !S_ISDIR(zp->z_mode))) { 2149 zfs_exit(zfsvfs, FTAG); 2150 return (SET_ERROR(EOPNOTSUPP)); 2151 } 2152 2153 projid = xoap->xoa_projid; 2154 if (unlikely(projid == ZFS_INVALID_PROJID)) { 2155 zfs_exit(zfsvfs, FTAG); 2156 return (SET_ERROR(EINVAL)); 2157 } 2158 2159 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID) 2160 projid = ZFS_INVALID_PROJID; 2161 else 2162 need_policy = TRUE; 2163 } 2164 2165 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) && 2166 (xoap->xoa_projinherit != 2167 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) && 2168 (!dmu_objset_projectquota_enabled(os) || 2169 (!S_ISREG(zp->z_mode) && !S_ISDIR(zp->z_mode)))) { 2170 zfs_exit(zfsvfs, FTAG); 2171 return (SET_ERROR(EOPNOTSUPP)); 2172 } 2173 } 2174 2175 attrzp = NULL; 2176 aclp = NULL; 2177 2178 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2179 zfs_exit(zfsvfs, FTAG); 2180 return (SET_ERROR(EROFS)); 2181 } 2182 2183 /* 2184 * First validate permissions 2185 */ 2186 2187 if (mask & AT_SIZE) { 2188 /* 2189 * XXX - Note, we are not providing any open 2190 * mode flags here (like FNDELAY), so we may 2191 * block if there are locks present... this 2192 * should be addressed in openat(). 2193 */ 2194 /* XXX - would it be OK to generate a log record here? */ 2195 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2196 if (err) { 2197 zfs_exit(zfsvfs, FTAG); 2198 return (err); 2199 } 2200 } 2201 2202 if (mask & (AT_ATIME|AT_MTIME) || 2203 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2204 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2205 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2206 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2207 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2208 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2209 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2210 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2211 skipaclchk, cr, mnt_ns); 2212 } 2213 2214 if (mask & (AT_UID|AT_GID)) { 2215 int idmask = (mask & (AT_UID|AT_GID)); 2216 int take_owner; 2217 int take_group; 2218 2219 /* 2220 * NOTE: even if a new mode is being set, 2221 * we may clear S_ISUID/S_ISGID bits. 2222 */ 2223 2224 if (!(mask & AT_MODE)) 2225 vap->va_mode = zp->z_mode; 2226 2227 /* 2228 * Take ownership or chgrp to group we are a member of 2229 */ 2230 2231 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2232 take_group = (mask & AT_GID) && 2233 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2234 2235 /* 2236 * If both AT_UID and AT_GID are set then take_owner and 2237 * take_group must both be set in order to allow taking 2238 * ownership. 2239 * 2240 * Otherwise, send the check through secpolicy_vnode_setattr() 2241 * 2242 */ 2243 2244 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2245 ((idmask == AT_UID) && take_owner) || 2246 ((idmask == AT_GID) && take_group)) { 2247 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2248 skipaclchk, cr, mnt_ns) == 0) { 2249 /* 2250 * Remove setuid/setgid for non-privileged users 2251 */ 2252 secpolicy_setid_clear(vap, vp, cr); 2253 trim_mask = (mask & (AT_UID|AT_GID)); 2254 } else { 2255 need_policy = TRUE; 2256 } 2257 } else { 2258 need_policy = TRUE; 2259 } 2260 } 2261 2262 oldva.va_mode = zp->z_mode; 2263 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2264 if (mask & AT_XVATTR) { 2265 /* 2266 * Update xvattr mask to include only those attributes 2267 * that are actually changing. 2268 * 2269 * the bits will be restored prior to actually setting 2270 * the attributes so the caller thinks they were set. 2271 */ 2272 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2273 if (xoap->xoa_appendonly != 2274 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2275 need_policy = TRUE; 2276 } else { 2277 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2278 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2279 } 2280 } 2281 2282 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) { 2283 if (xoap->xoa_projinherit != 2284 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) { 2285 need_policy = TRUE; 2286 } else { 2287 XVA_CLR_REQ(xvap, XAT_PROJINHERIT); 2288 XVA_SET_REQ(&tmpxvattr, XAT_PROJINHERIT); 2289 } 2290 } 2291 2292 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2293 if (xoap->xoa_nounlink != 2294 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2295 need_policy = TRUE; 2296 } else { 2297 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2298 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2299 } 2300 } 2301 2302 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2303 if (xoap->xoa_immutable != 2304 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2305 need_policy = TRUE; 2306 } else { 2307 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2308 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2309 } 2310 } 2311 2312 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2313 if (xoap->xoa_nodump != 2314 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2315 need_policy = TRUE; 2316 } else { 2317 XVA_CLR_REQ(xvap, XAT_NODUMP); 2318 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2319 } 2320 } 2321 2322 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2323 if (xoap->xoa_av_modified != 2324 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2325 need_policy = TRUE; 2326 } else { 2327 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2328 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2329 } 2330 } 2331 2332 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2333 if ((vp->v_type != VREG && 2334 xoap->xoa_av_quarantined) || 2335 xoap->xoa_av_quarantined != 2336 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2337 need_policy = TRUE; 2338 } else { 2339 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2340 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2341 } 2342 } 2343 2344 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2345 zfs_exit(zfsvfs, FTAG); 2346 return (SET_ERROR(EPERM)); 2347 } 2348 2349 if (need_policy == FALSE && 2350 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2351 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2352 need_policy = TRUE; 2353 } 2354 } 2355 2356 if (mask & AT_MODE) { 2357 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr, 2358 mnt_ns) == 0) { 2359 err = secpolicy_setid_setsticky_clear(vp, vap, 2360 &oldva, cr); 2361 if (err) { 2362 zfs_exit(zfsvfs, FTAG); 2363 return (err); 2364 } 2365 trim_mask |= AT_MODE; 2366 } else { 2367 need_policy = TRUE; 2368 } 2369 } 2370 2371 if (need_policy) { 2372 /* 2373 * If trim_mask is set then take ownership 2374 * has been granted or write_acl is present and user 2375 * has the ability to modify mode. In that case remove 2376 * UID|GID and or MODE from mask so that 2377 * secpolicy_vnode_setattr() doesn't revoke it. 2378 */ 2379 2380 if (trim_mask) { 2381 saved_mask = vap->va_mask; 2382 vap->va_mask &= ~trim_mask; 2383 if (trim_mask & AT_MODE) { 2384 /* 2385 * Save the mode, as secpolicy_vnode_setattr() 2386 * will overwrite it with ova.va_mode. 2387 */ 2388 saved_mode = vap->va_mode; 2389 } 2390 } 2391 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2392 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2393 if (err) { 2394 zfs_exit(zfsvfs, FTAG); 2395 return (err); 2396 } 2397 2398 if (trim_mask) { 2399 vap->va_mask |= saved_mask; 2400 if (trim_mask & AT_MODE) { 2401 /* 2402 * Recover the mode after 2403 * secpolicy_vnode_setattr(). 2404 */ 2405 vap->va_mode = saved_mode; 2406 } 2407 } 2408 } 2409 2410 /* 2411 * secpolicy_vnode_setattr, or take ownership may have 2412 * changed va_mask 2413 */ 2414 mask = vap->va_mask; 2415 2416 if ((mask & (AT_UID | AT_GID)) || projid != ZFS_INVALID_PROJID) { 2417 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 2418 &xattr_obj, sizeof (xattr_obj)); 2419 2420 if (err == 0 && xattr_obj) { 2421 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 2422 if (err == 0) { 2423 err = vn_lock(ZTOV(attrzp), LK_EXCLUSIVE); 2424 if (err != 0) 2425 vrele(ZTOV(attrzp)); 2426 } 2427 if (err) 2428 goto out2; 2429 } 2430 if (mask & AT_UID) { 2431 new_uid = zfs_fuid_create(zfsvfs, 2432 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2433 if (new_uid != zp->z_uid && 2434 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT, 2435 new_uid)) { 2436 if (attrzp) 2437 vput(ZTOV(attrzp)); 2438 err = SET_ERROR(EDQUOT); 2439 goto out2; 2440 } 2441 } 2442 2443 if (mask & AT_GID) { 2444 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2445 cr, ZFS_GROUP, &fuidp); 2446 if (new_gid != zp->z_gid && 2447 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT, 2448 new_gid)) { 2449 if (attrzp) 2450 vput(ZTOV(attrzp)); 2451 err = SET_ERROR(EDQUOT); 2452 goto out2; 2453 } 2454 } 2455 2456 if (projid != ZFS_INVALID_PROJID && 2457 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) { 2458 if (attrzp) 2459 vput(ZTOV(attrzp)); 2460 err = SET_ERROR(EDQUOT); 2461 goto out2; 2462 } 2463 } 2464 tx = dmu_tx_create(os); 2465 2466 if (mask & AT_MODE) { 2467 uint64_t pmode = zp->z_mode; 2468 uint64_t acl_obj; 2469 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2470 2471 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 2472 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 2473 err = SET_ERROR(EPERM); 2474 goto out; 2475 } 2476 2477 if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))) 2478 goto out; 2479 2480 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 2481 /* 2482 * Are we upgrading ACL from old V0 format 2483 * to V1 format? 2484 */ 2485 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 2486 zfs_znode_acl_version(zp) == 2487 ZFS_ACL_VERSION_INITIAL) { 2488 dmu_tx_hold_free(tx, acl_obj, 0, 2489 DMU_OBJECT_END); 2490 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2491 0, aclp->z_acl_bytes); 2492 } else { 2493 dmu_tx_hold_write(tx, acl_obj, 0, 2494 aclp->z_acl_bytes); 2495 } 2496 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2497 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2498 0, aclp->z_acl_bytes); 2499 } 2500 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2501 } else { 2502 if (((mask & AT_XVATTR) && 2503 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 2504 (projid != ZFS_INVALID_PROJID && 2505 !(zp->z_pflags & ZFS_PROJID))) 2506 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2507 else 2508 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2509 } 2510 2511 if (attrzp) { 2512 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 2513 } 2514 2515 fuid_dirtied = zfsvfs->z_fuid_dirty; 2516 if (fuid_dirtied) 2517 zfs_fuid_txhold(zfsvfs, tx); 2518 2519 zfs_sa_upgrade_txholds(tx, zp); 2520 2521 err = dmu_tx_assign(tx, TXG_WAIT); 2522 if (err) 2523 goto out; 2524 2525 count = 0; 2526 /* 2527 * Set each attribute requested. 2528 * We group settings according to the locks they need to acquire. 2529 * 2530 * Note: you cannot set ctime directly, although it will be 2531 * updated as a side-effect of calling this function. 2532 */ 2533 2534 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) { 2535 /* 2536 * For the existed object that is upgraded from old system, 2537 * its on-disk layout has no slot for the project ID attribute. 2538 * But quota accounting logic needs to access related slots by 2539 * offset directly. So we need to adjust old objects' layout 2540 * to make the project ID to some unified and fixed offset. 2541 */ 2542 if (attrzp) 2543 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid); 2544 if (err == 0) 2545 err = sa_add_projid(zp->z_sa_hdl, tx, projid); 2546 2547 if (unlikely(err == EEXIST)) 2548 err = 0; 2549 else if (err != 0) 2550 goto out; 2551 else 2552 projid = ZFS_INVALID_PROJID; 2553 } 2554 2555 if (mask & (AT_UID|AT_GID|AT_MODE)) 2556 mutex_enter(&zp->z_acl_lock); 2557 2558 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 2559 &zp->z_pflags, sizeof (zp->z_pflags)); 2560 2561 if (attrzp) { 2562 if (mask & (AT_UID|AT_GID|AT_MODE)) 2563 mutex_enter(&attrzp->z_acl_lock); 2564 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2565 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 2566 sizeof (attrzp->z_pflags)); 2567 if (projid != ZFS_INVALID_PROJID) { 2568 attrzp->z_projid = projid; 2569 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2570 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid, 2571 sizeof (attrzp->z_projid)); 2572 } 2573 } 2574 2575 if (mask & (AT_UID|AT_GID)) { 2576 2577 if (mask & AT_UID) { 2578 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 2579 &new_uid, sizeof (new_uid)); 2580 zp->z_uid = new_uid; 2581 if (attrzp) { 2582 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2583 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 2584 sizeof (new_uid)); 2585 attrzp->z_uid = new_uid; 2586 } 2587 } 2588 2589 if (mask & AT_GID) { 2590 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 2591 NULL, &new_gid, sizeof (new_gid)); 2592 zp->z_gid = new_gid; 2593 if (attrzp) { 2594 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2595 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 2596 sizeof (new_gid)); 2597 attrzp->z_gid = new_gid; 2598 } 2599 } 2600 if (!(mask & AT_MODE)) { 2601 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 2602 NULL, &new_mode, sizeof (new_mode)); 2603 new_mode = zp->z_mode; 2604 } 2605 err = zfs_acl_chown_setattr(zp); 2606 ASSERT0(err); 2607 if (attrzp) { 2608 vn_seqc_write_begin(ZTOV(attrzp)); 2609 err = zfs_acl_chown_setattr(attrzp); 2610 vn_seqc_write_end(ZTOV(attrzp)); 2611 ASSERT0(err); 2612 } 2613 } 2614 2615 if (mask & AT_MODE) { 2616 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 2617 &new_mode, sizeof (new_mode)); 2618 zp->z_mode = new_mode; 2619 ASSERT3P(aclp, !=, NULL); 2620 err = zfs_aclset_common(zp, aclp, cr, tx); 2621 ASSERT0(err); 2622 if (zp->z_acl_cached) 2623 zfs_acl_free(zp->z_acl_cached); 2624 zp->z_acl_cached = aclp; 2625 aclp = NULL; 2626 } 2627 2628 2629 if (mask & AT_ATIME) { 2630 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 2631 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 2632 &zp->z_atime, sizeof (zp->z_atime)); 2633 } 2634 2635 if (mask & AT_MTIME) { 2636 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 2637 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 2638 mtime, sizeof (mtime)); 2639 } 2640 2641 if (projid != ZFS_INVALID_PROJID) { 2642 zp->z_projid = projid; 2643 SA_ADD_BULK_ATTR(bulk, count, 2644 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid, 2645 sizeof (zp->z_projid)); 2646 } 2647 2648 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 2649 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 2650 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 2651 NULL, mtime, sizeof (mtime)); 2652 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 2653 &ctime, sizeof (ctime)); 2654 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); 2655 } else if (mask != 0) { 2656 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 2657 &ctime, sizeof (ctime)); 2658 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime); 2659 if (attrzp) { 2660 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 2661 SA_ZPL_CTIME(zfsvfs), NULL, 2662 &ctime, sizeof (ctime)); 2663 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 2664 mtime, ctime); 2665 } 2666 } 2667 2668 /* 2669 * Do this after setting timestamps to prevent timestamp 2670 * update from toggling bit 2671 */ 2672 2673 if (xoap && (mask & AT_XVATTR)) { 2674 2675 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) 2676 xoap->xoa_createtime = vap->va_birthtime; 2677 /* 2678 * restore trimmed off masks 2679 * so that return masks can be set for caller. 2680 */ 2681 2682 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 2683 XVA_SET_REQ(xvap, XAT_APPENDONLY); 2684 } 2685 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 2686 XVA_SET_REQ(xvap, XAT_NOUNLINK); 2687 } 2688 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 2689 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 2690 } 2691 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 2692 XVA_SET_REQ(xvap, XAT_NODUMP); 2693 } 2694 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 2695 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 2696 } 2697 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 2698 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 2699 } 2700 if (XVA_ISSET_REQ(&tmpxvattr, XAT_PROJINHERIT)) { 2701 XVA_SET_REQ(xvap, XAT_PROJINHERIT); 2702 } 2703 2704 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 2705 ASSERT3S(vp->v_type, ==, VREG); 2706 2707 zfs_xvattr_set(zp, xvap, tx); 2708 } 2709 2710 if (fuid_dirtied) 2711 zfs_fuid_sync(zfsvfs, tx); 2712 2713 if (mask != 0) 2714 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2715 2716 if (mask & (AT_UID|AT_GID|AT_MODE)) 2717 mutex_exit(&zp->z_acl_lock); 2718 2719 if (attrzp) { 2720 if (mask & (AT_UID|AT_GID|AT_MODE)) 2721 mutex_exit(&attrzp->z_acl_lock); 2722 } 2723 out: 2724 if (err == 0 && attrzp) { 2725 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 2726 xattr_count, tx); 2727 ASSERT0(err2); 2728 } 2729 2730 if (attrzp) 2731 vput(ZTOV(attrzp)); 2732 2733 if (aclp) 2734 zfs_acl_free(aclp); 2735 2736 if (fuidp) { 2737 zfs_fuid_info_free(fuidp); 2738 fuidp = NULL; 2739 } 2740 2741 if (err) { 2742 dmu_tx_abort(tx); 2743 } else { 2744 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 2745 dmu_tx_commit(tx); 2746 } 2747 2748 out2: 2749 if (os->os_sync == ZFS_SYNC_ALWAYS) 2750 zil_commit(zilog, 0); 2751 2752 zfs_exit(zfsvfs, FTAG); 2753 return (err); 2754 } 2755 2756 /* 2757 * Look up the directory entries corresponding to the source and target 2758 * directory/name pairs. 2759 */ 2760 static int 2761 zfs_rename_relock_lookup(znode_t *sdzp, const struct componentname *scnp, 2762 znode_t **szpp, znode_t *tdzp, const struct componentname *tcnp, 2763 znode_t **tzpp) 2764 { 2765 zfsvfs_t *zfsvfs; 2766 znode_t *szp, *tzp; 2767 int error; 2768 2769 /* 2770 * Before using sdzp and tdzp we must ensure that they are live. 2771 * As a porting legacy from illumos we have two things to worry 2772 * about. One is typical for FreeBSD and it is that the vnode is 2773 * not reclaimed (doomed). The other is that the znode is live. 2774 * The current code can invalidate the znode without acquiring the 2775 * corresponding vnode lock if the object represented by the znode 2776 * and vnode is no longer valid after a rollback or receive operation. 2777 * z_teardown_lock hidden behind zfs_enter and zfs_exit is the lock 2778 * that protects the znodes from the invalidation. 2779 */ 2780 zfsvfs = sdzp->z_zfsvfs; 2781 ASSERT3P(zfsvfs, ==, tdzp->z_zfsvfs); 2782 if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0) 2783 return (error); 2784 if ((error = zfs_verify_zp(tdzp)) != 0) { 2785 zfs_exit(zfsvfs, FTAG); 2786 return (error); 2787 } 2788 2789 /* 2790 * Re-resolve svp to be certain it still exists and fetch the 2791 * correct vnode. 2792 */ 2793 error = zfs_dirent_lookup(sdzp, scnp->cn_nameptr, &szp, ZEXISTS); 2794 if (error != 0) { 2795 /* Source entry invalid or not there. */ 2796 if ((scnp->cn_flags & ISDOTDOT) != 0 || 2797 (scnp->cn_namelen == 1 && scnp->cn_nameptr[0] == '.')) 2798 error = SET_ERROR(EINVAL); 2799 goto out; 2800 } 2801 *szpp = szp; 2802 2803 /* 2804 * Re-resolve tvp, if it disappeared we just carry on. 2805 */ 2806 error = zfs_dirent_lookup(tdzp, tcnp->cn_nameptr, &tzp, 0); 2807 if (error != 0) { 2808 vrele(ZTOV(szp)); 2809 if ((tcnp->cn_flags & ISDOTDOT) != 0) 2810 error = SET_ERROR(EINVAL); 2811 goto out; 2812 } 2813 *tzpp = tzp; 2814 out: 2815 zfs_exit(zfsvfs, FTAG); 2816 return (error); 2817 } 2818 2819 /* 2820 * We acquire all but fdvp locks using non-blocking acquisitions. If we 2821 * fail to acquire any lock in the path we will drop all held locks, 2822 * acquire the new lock in a blocking fashion, and then release it and 2823 * restart the rename. This acquire/release step ensures that we do not 2824 * spin on a lock waiting for release. On error release all vnode locks 2825 * and decrement references the way tmpfs_rename() would do. 2826 */ 2827 static int 2828 zfs_rename_relock(struct vnode *sdvp, struct vnode **svpp, 2829 struct vnode *tdvp, struct vnode **tvpp, 2830 const struct componentname *scnp, const struct componentname *tcnp) 2831 { 2832 struct vnode *nvp, *svp, *tvp; 2833 znode_t *sdzp, *tdzp, *szp, *tzp; 2834 int error; 2835 2836 VOP_UNLOCK(tdvp); 2837 if (*tvpp != NULL && *tvpp != tdvp) 2838 VOP_UNLOCK(*tvpp); 2839 2840 relock: 2841 error = vn_lock(sdvp, LK_EXCLUSIVE); 2842 if (error) 2843 goto out; 2844 error = vn_lock(tdvp, LK_EXCLUSIVE | LK_NOWAIT); 2845 if (error != 0) { 2846 VOP_UNLOCK(sdvp); 2847 if (error != EBUSY) 2848 goto out; 2849 error = vn_lock(tdvp, LK_EXCLUSIVE); 2850 if (error) 2851 goto out; 2852 VOP_UNLOCK(tdvp); 2853 goto relock; 2854 } 2855 tdzp = VTOZ(tdvp); 2856 sdzp = VTOZ(sdvp); 2857 2858 error = zfs_rename_relock_lookup(sdzp, scnp, &szp, tdzp, tcnp, &tzp); 2859 if (error != 0) { 2860 VOP_UNLOCK(sdvp); 2861 VOP_UNLOCK(tdvp); 2862 goto out; 2863 } 2864 svp = ZTOV(szp); 2865 tvp = tzp != NULL ? ZTOV(tzp) : NULL; 2866 2867 /* 2868 * Now try acquire locks on svp and tvp. 2869 */ 2870 nvp = svp; 2871 error = vn_lock(nvp, LK_EXCLUSIVE | LK_NOWAIT); 2872 if (error != 0) { 2873 VOP_UNLOCK(sdvp); 2874 VOP_UNLOCK(tdvp); 2875 if (tvp != NULL) 2876 vrele(tvp); 2877 if (error != EBUSY) { 2878 vrele(nvp); 2879 goto out; 2880 } 2881 error = vn_lock(nvp, LK_EXCLUSIVE); 2882 if (error != 0) { 2883 vrele(nvp); 2884 goto out; 2885 } 2886 VOP_UNLOCK(nvp); 2887 /* 2888 * Concurrent rename race. 2889 * XXX ? 2890 */ 2891 if (nvp == tdvp) { 2892 vrele(nvp); 2893 error = SET_ERROR(EINVAL); 2894 goto out; 2895 } 2896 vrele(*svpp); 2897 *svpp = nvp; 2898 goto relock; 2899 } 2900 vrele(*svpp); 2901 *svpp = nvp; 2902 2903 if (*tvpp != NULL) 2904 vrele(*tvpp); 2905 *tvpp = NULL; 2906 if (tvp != NULL) { 2907 nvp = tvp; 2908 error = vn_lock(nvp, LK_EXCLUSIVE | LK_NOWAIT); 2909 if (error != 0) { 2910 VOP_UNLOCK(sdvp); 2911 VOP_UNLOCK(tdvp); 2912 VOP_UNLOCK(*svpp); 2913 if (error != EBUSY) { 2914 vrele(nvp); 2915 goto out; 2916 } 2917 error = vn_lock(nvp, LK_EXCLUSIVE); 2918 if (error != 0) { 2919 vrele(nvp); 2920 goto out; 2921 } 2922 vput(nvp); 2923 goto relock; 2924 } 2925 *tvpp = nvp; 2926 } 2927 2928 return (0); 2929 2930 out: 2931 return (error); 2932 } 2933 2934 /* 2935 * Note that we must use VRELE_ASYNC in this function as it walks 2936 * up the directory tree and vrele may need to acquire an exclusive 2937 * lock if a last reference to a vnode is dropped. 2938 */ 2939 static int 2940 zfs_rename_check(znode_t *szp, znode_t *sdzp, znode_t *tdzp) 2941 { 2942 zfsvfs_t *zfsvfs; 2943 znode_t *zp, *zp1; 2944 uint64_t parent; 2945 int error; 2946 2947 zfsvfs = tdzp->z_zfsvfs; 2948 if (tdzp == szp) 2949 return (SET_ERROR(EINVAL)); 2950 if (tdzp == sdzp) 2951 return (0); 2952 if (tdzp->z_id == zfsvfs->z_root) 2953 return (0); 2954 zp = tdzp; 2955 for (;;) { 2956 ASSERT(!zp->z_unlinked); 2957 if ((error = sa_lookup(zp->z_sa_hdl, 2958 SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0) 2959 break; 2960 2961 if (parent == szp->z_id) { 2962 error = SET_ERROR(EINVAL); 2963 break; 2964 } 2965 if (parent == zfsvfs->z_root) 2966 break; 2967 if (parent == sdzp->z_id) 2968 break; 2969 2970 error = zfs_zget(zfsvfs, parent, &zp1); 2971 if (error != 0) 2972 break; 2973 2974 if (zp != tdzp) 2975 VN_RELE_ASYNC(ZTOV(zp), 2976 dsl_pool_zrele_taskq( 2977 dmu_objset_pool(zfsvfs->z_os))); 2978 zp = zp1; 2979 } 2980 2981 if (error == ENOTDIR) 2982 panic("checkpath: .. not a directory\n"); 2983 if (zp != tdzp) 2984 VN_RELE_ASYNC(ZTOV(zp), 2985 dsl_pool_zrele_taskq(dmu_objset_pool(zfsvfs->z_os))); 2986 return (error); 2987 } 2988 2989 static int 2990 zfs_do_rename_impl(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp, 2991 vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp, 2992 cred_t *cr); 2993 2994 /* 2995 * Move an entry from the provided source directory to the target 2996 * directory. Change the entry name as indicated. 2997 * 2998 * IN: sdvp - Source directory containing the "old entry". 2999 * scnp - Old entry name. 3000 * tdvp - Target directory to contain the "new entry". 3001 * tcnp - New entry name. 3002 * cr - credentials of caller. 3003 * INOUT: svpp - Source file 3004 * tvpp - Target file, may point to NULL initially 3005 * 3006 * RETURN: 0 on success, error code on failure. 3007 * 3008 * Timestamps: 3009 * sdvp,tdvp - ctime|mtime updated 3010 */ 3011 static int 3012 zfs_do_rename(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp, 3013 vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp, 3014 cred_t *cr) 3015 { 3016 int error; 3017 3018 ASSERT_VOP_ELOCKED(tdvp, __func__); 3019 if (*tvpp != NULL) 3020 ASSERT_VOP_ELOCKED(*tvpp, __func__); 3021 3022 /* Reject renames across filesystems. */ 3023 if ((*svpp)->v_mount != tdvp->v_mount || 3024 ((*tvpp) != NULL && (*svpp)->v_mount != (*tvpp)->v_mount)) { 3025 error = SET_ERROR(EXDEV); 3026 goto out; 3027 } 3028 3029 if (zfsctl_is_node(tdvp)) { 3030 error = SET_ERROR(EXDEV); 3031 goto out; 3032 } 3033 3034 /* 3035 * Lock all four vnodes to ensure safety and semantics of renaming. 3036 */ 3037 error = zfs_rename_relock(sdvp, svpp, tdvp, tvpp, scnp, tcnp); 3038 if (error != 0) { 3039 /* no vnodes are locked in the case of error here */ 3040 return (error); 3041 } 3042 3043 error = zfs_do_rename_impl(sdvp, svpp, scnp, tdvp, tvpp, tcnp, cr); 3044 VOP_UNLOCK(sdvp); 3045 VOP_UNLOCK(*svpp); 3046 out: 3047 if (*tvpp != NULL) 3048 VOP_UNLOCK(*tvpp); 3049 if (tdvp != *tvpp) 3050 VOP_UNLOCK(tdvp); 3051 3052 return (error); 3053 } 3054 3055 static int 3056 zfs_do_rename_impl(vnode_t *sdvp, vnode_t **svpp, struct componentname *scnp, 3057 vnode_t *tdvp, vnode_t **tvpp, struct componentname *tcnp, 3058 cred_t *cr) 3059 { 3060 dmu_tx_t *tx; 3061 zfsvfs_t *zfsvfs; 3062 zilog_t *zilog; 3063 znode_t *tdzp, *sdzp, *tzp, *szp; 3064 const char *snm = scnp->cn_nameptr; 3065 const char *tnm = tcnp->cn_nameptr; 3066 int error; 3067 3068 tdzp = VTOZ(tdvp); 3069 sdzp = VTOZ(sdvp); 3070 zfsvfs = tdzp->z_zfsvfs; 3071 3072 if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0) 3073 return (error); 3074 if ((error = zfs_verify_zp(sdzp)) != 0) { 3075 zfs_exit(zfsvfs, FTAG); 3076 return (error); 3077 } 3078 zilog = zfsvfs->z_log; 3079 3080 if (zfsvfs->z_utf8 && u8_validate(tnm, 3081 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3082 error = SET_ERROR(EILSEQ); 3083 goto out; 3084 } 3085 3086 /* If source and target are the same file, there is nothing to do. */ 3087 if ((*svpp) == (*tvpp)) { 3088 error = 0; 3089 goto out; 3090 } 3091 3092 if (((*svpp)->v_type == VDIR && (*svpp)->v_mountedhere != NULL) || 3093 ((*tvpp) != NULL && (*tvpp)->v_type == VDIR && 3094 (*tvpp)->v_mountedhere != NULL)) { 3095 error = SET_ERROR(EXDEV); 3096 goto out; 3097 } 3098 3099 szp = VTOZ(*svpp); 3100 if ((error = zfs_verify_zp(szp)) != 0) { 3101 zfs_exit(zfsvfs, FTAG); 3102 return (error); 3103 } 3104 tzp = *tvpp == NULL ? NULL : VTOZ(*tvpp); 3105 if (tzp != NULL) { 3106 if ((error = zfs_verify_zp(tzp)) != 0) { 3107 zfs_exit(zfsvfs, FTAG); 3108 return (error); 3109 } 3110 } 3111 3112 /* 3113 * This is to prevent the creation of links into attribute space 3114 * by renaming a linked file into/outof an attribute directory. 3115 * See the comment in zfs_link() for why this is considered bad. 3116 */ 3117 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3118 error = SET_ERROR(EINVAL); 3119 goto out; 3120 } 3121 3122 /* 3123 * If we are using project inheritance, means if the directory has 3124 * ZFS_PROJINHERIT set, then its descendant directories will inherit 3125 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 3126 * such case, we only allow renames into our tree when the project 3127 * IDs are the same. 3128 */ 3129 if (tdzp->z_pflags & ZFS_PROJINHERIT && 3130 tdzp->z_projid != szp->z_projid) { 3131 error = SET_ERROR(EXDEV); 3132 goto out; 3133 } 3134 3135 /* 3136 * Must have write access at the source to remove the old entry 3137 * and write access at the target to create the new entry. 3138 * Note that if target and source are the same, this can be 3139 * done in a single check. 3140 */ 3141 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, NULL))) 3142 goto out; 3143 3144 if ((*svpp)->v_type == VDIR) { 3145 /* 3146 * Avoid ".", "..", and aliases of "." for obvious reasons. 3147 */ 3148 if ((scnp->cn_namelen == 1 && scnp->cn_nameptr[0] == '.') || 3149 sdzp == szp || 3150 (scnp->cn_flags | tcnp->cn_flags) & ISDOTDOT) { 3151 error = EINVAL; 3152 goto out; 3153 } 3154 3155 /* 3156 * Check to make sure rename is valid. 3157 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3158 */ 3159 if ((error = zfs_rename_check(szp, sdzp, tdzp))) 3160 goto out; 3161 } 3162 3163 /* 3164 * Does target exist? 3165 */ 3166 if (tzp) { 3167 /* 3168 * Source and target must be the same type. 3169 */ 3170 if ((*svpp)->v_type == VDIR) { 3171 if ((*tvpp)->v_type != VDIR) { 3172 error = SET_ERROR(ENOTDIR); 3173 goto out; 3174 } else { 3175 cache_purge(tdvp); 3176 if (sdvp != tdvp) 3177 cache_purge(sdvp); 3178 } 3179 } else { 3180 if ((*tvpp)->v_type == VDIR) { 3181 error = SET_ERROR(EISDIR); 3182 goto out; 3183 } 3184 } 3185 } 3186 3187 vn_seqc_write_begin(*svpp); 3188 vn_seqc_write_begin(sdvp); 3189 if (*tvpp != NULL) 3190 vn_seqc_write_begin(*tvpp); 3191 if (tdvp != *tvpp) 3192 vn_seqc_write_begin(tdvp); 3193 3194 vnevent_rename_src(*svpp, sdvp, scnp->cn_nameptr, ct); 3195 if (tzp) 3196 vnevent_rename_dest(*tvpp, tdvp, tnm, ct); 3197 3198 /* 3199 * notify the target directory if it is not the same 3200 * as source directory. 3201 */ 3202 if (tdvp != sdvp) { 3203 vnevent_rename_dest_dir(tdvp, ct); 3204 } 3205 3206 tx = dmu_tx_create(zfsvfs->z_os); 3207 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3208 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3209 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3210 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3211 if (sdzp != tdzp) { 3212 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3213 zfs_sa_upgrade_txholds(tx, tdzp); 3214 } 3215 if (tzp) { 3216 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3217 zfs_sa_upgrade_txholds(tx, tzp); 3218 } 3219 3220 zfs_sa_upgrade_txholds(tx, szp); 3221 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3222 error = dmu_tx_assign(tx, TXG_WAIT); 3223 if (error) { 3224 dmu_tx_abort(tx); 3225 goto out_seq; 3226 } 3227 3228 if (tzp) /* Attempt to remove the existing target */ 3229 error = zfs_link_destroy(tdzp, tnm, tzp, tx, 0, NULL); 3230 3231 if (error == 0) { 3232 error = zfs_link_create(tdzp, tnm, szp, tx, ZRENAMING); 3233 if (error == 0) { 3234 szp->z_pflags |= ZFS_AV_MODIFIED; 3235 3236 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3237 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3238 ASSERT0(error); 3239 3240 error = zfs_link_destroy(sdzp, snm, szp, tx, ZRENAMING, 3241 NULL); 3242 if (error == 0) { 3243 zfs_log_rename(zilog, tx, TX_RENAME, sdzp, 3244 snm, tdzp, tnm, szp); 3245 } else { 3246 /* 3247 * At this point, we have successfully created 3248 * the target name, but have failed to remove 3249 * the source name. Since the create was done 3250 * with the ZRENAMING flag, there are 3251 * complications; for one, the link count is 3252 * wrong. The easiest way to deal with this 3253 * is to remove the newly created target, and 3254 * return the original error. This must 3255 * succeed; fortunately, it is very unlikely to 3256 * fail, since we just created it. 3257 */ 3258 VERIFY0(zfs_link_destroy(tdzp, tnm, szp, tx, 3259 ZRENAMING, NULL)); 3260 } 3261 } 3262 if (error == 0) { 3263 cache_vop_rename(sdvp, *svpp, tdvp, *tvpp, scnp, tcnp); 3264 } 3265 } 3266 3267 dmu_tx_commit(tx); 3268 3269 out_seq: 3270 vn_seqc_write_end(*svpp); 3271 vn_seqc_write_end(sdvp); 3272 if (*tvpp != NULL) 3273 vn_seqc_write_end(*tvpp); 3274 if (tdvp != *tvpp) 3275 vn_seqc_write_end(tdvp); 3276 3277 out: 3278 if (error == 0 && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3279 zil_commit(zilog, 0); 3280 zfs_exit(zfsvfs, FTAG); 3281 3282 return (error); 3283 } 3284 3285 int 3286 zfs_rename(znode_t *sdzp, const char *sname, znode_t *tdzp, const char *tname, 3287 cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zidmap_t *mnt_ns) 3288 { 3289 struct componentname scn, tcn; 3290 vnode_t *sdvp, *tdvp; 3291 vnode_t *svp, *tvp; 3292 int error; 3293 svp = tvp = NULL; 3294 3295 if (rflags != 0 || wo_vap != NULL) 3296 return (SET_ERROR(EINVAL)); 3297 3298 sdvp = ZTOV(sdzp); 3299 tdvp = ZTOV(tdzp); 3300 error = zfs_lookup_internal(sdzp, sname, &svp, &scn, DELETE); 3301 if (sdzp->z_zfsvfs->z_replay == B_FALSE) 3302 VOP_UNLOCK(sdvp); 3303 if (error != 0) 3304 goto fail; 3305 VOP_UNLOCK(svp); 3306 3307 vn_lock(tdvp, LK_EXCLUSIVE | LK_RETRY); 3308 error = zfs_lookup_internal(tdzp, tname, &tvp, &tcn, RENAME); 3309 if (error == EJUSTRETURN) 3310 tvp = NULL; 3311 else if (error != 0) { 3312 VOP_UNLOCK(tdvp); 3313 goto fail; 3314 } 3315 3316 error = zfs_do_rename(sdvp, &svp, &scn, tdvp, &tvp, &tcn, cr); 3317 fail: 3318 if (svp != NULL) 3319 vrele(svp); 3320 if (tvp != NULL) 3321 vrele(tvp); 3322 3323 return (error); 3324 } 3325 3326 /* 3327 * Insert the indicated symbolic reference entry into the directory. 3328 * 3329 * IN: dvp - Directory to contain new symbolic link. 3330 * link - Name for new symlink entry. 3331 * vap - Attributes of new entry. 3332 * cr - credentials of caller. 3333 * ct - caller context 3334 * flags - case flags 3335 * mnt_ns - Unused on FreeBSD 3336 * 3337 * RETURN: 0 on success, error code on failure. 3338 * 3339 * Timestamps: 3340 * dvp - ctime|mtime updated 3341 */ 3342 int 3343 zfs_symlink(znode_t *dzp, const char *name, vattr_t *vap, 3344 const char *link, znode_t **zpp, cred_t *cr, int flags, zidmap_t *mnt_ns) 3345 { 3346 (void) flags; 3347 znode_t *zp; 3348 dmu_tx_t *tx; 3349 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3350 zilog_t *zilog; 3351 uint64_t len = strlen(link); 3352 int error; 3353 zfs_acl_ids_t acl_ids; 3354 boolean_t fuid_dirtied; 3355 uint64_t txtype = TX_SYMLINK; 3356 3357 ASSERT3S(vap->va_type, ==, VLNK); 3358 3359 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0) 3360 return (error); 3361 zilog = zfsvfs->z_log; 3362 3363 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3364 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3365 zfs_exit(zfsvfs, FTAG); 3366 return (SET_ERROR(EILSEQ)); 3367 } 3368 3369 if (len > MAXPATHLEN) { 3370 zfs_exit(zfsvfs, FTAG); 3371 return (SET_ERROR(ENAMETOOLONG)); 3372 } 3373 3374 if ((error = zfs_acl_ids_create(dzp, 0, 3375 vap, cr, NULL, &acl_ids, NULL)) != 0) { 3376 zfs_exit(zfsvfs, FTAG); 3377 return (error); 3378 } 3379 3380 /* 3381 * Attempt to lock directory; fail if entry already exists. 3382 */ 3383 error = zfs_dirent_lookup(dzp, name, &zp, ZNEW); 3384 if (error) { 3385 zfs_acl_ids_free(&acl_ids); 3386 zfs_exit(zfsvfs, FTAG); 3387 return (error); 3388 } 3389 3390 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) { 3391 zfs_acl_ids_free(&acl_ids); 3392 zfs_exit(zfsvfs, FTAG); 3393 return (error); 3394 } 3395 3396 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, 3397 0 /* projid */)) { 3398 zfs_acl_ids_free(&acl_ids); 3399 zfs_exit(zfsvfs, FTAG); 3400 return (SET_ERROR(EDQUOT)); 3401 } 3402 3403 getnewvnode_reserve(); 3404 tx = dmu_tx_create(zfsvfs->z_os); 3405 fuid_dirtied = zfsvfs->z_fuid_dirty; 3406 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3407 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3408 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3409 ZFS_SA_BASE_ATTR_SIZE + len); 3410 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3411 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3412 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3413 acl_ids.z_aclp->z_acl_bytes); 3414 } 3415 if (fuid_dirtied) 3416 zfs_fuid_txhold(zfsvfs, tx); 3417 error = dmu_tx_assign(tx, TXG_WAIT); 3418 if (error) { 3419 zfs_acl_ids_free(&acl_ids); 3420 dmu_tx_abort(tx); 3421 getnewvnode_drop_reserve(); 3422 zfs_exit(zfsvfs, FTAG); 3423 return (error); 3424 } 3425 3426 /* 3427 * Create a new object for the symlink. 3428 * for version 4 ZPL datasets the symlink will be an SA attribute 3429 */ 3430 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3431 3432 if (fuid_dirtied) 3433 zfs_fuid_sync(zfsvfs, tx); 3434 3435 if (zp->z_is_sa) 3436 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3437 __DECONST(void *, link), len, tx); 3438 else 3439 zfs_sa_symlink(zp, __DECONST(char *, link), len, tx); 3440 3441 zp->z_size = len; 3442 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3443 &zp->z_size, sizeof (zp->z_size), tx); 3444 /* 3445 * Insert the new object into the directory. 3446 */ 3447 error = zfs_link_create(dzp, name, zp, tx, ZNEW); 3448 if (error != 0) { 3449 zfs_znode_delete(zp, tx); 3450 VOP_UNLOCK(ZTOV(zp)); 3451 zrele(zp); 3452 } else { 3453 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3454 } 3455 3456 zfs_acl_ids_free(&acl_ids); 3457 3458 dmu_tx_commit(tx); 3459 3460 getnewvnode_drop_reserve(); 3461 3462 if (error == 0) { 3463 *zpp = zp; 3464 3465 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3466 zil_commit(zilog, 0); 3467 } 3468 3469 zfs_exit(zfsvfs, FTAG); 3470 return (error); 3471 } 3472 3473 /* 3474 * Return, in the buffer contained in the provided uio structure, 3475 * the symbolic path referred to by vp. 3476 * 3477 * IN: vp - vnode of symbolic link. 3478 * uio - structure to contain the link path. 3479 * cr - credentials of caller. 3480 * ct - caller context 3481 * 3482 * OUT: uio - structure containing the link path. 3483 * 3484 * RETURN: 0 on success, error code on failure. 3485 * 3486 * Timestamps: 3487 * vp - atime updated 3488 */ 3489 static int 3490 zfs_readlink(vnode_t *vp, zfs_uio_t *uio, cred_t *cr, caller_context_t *ct) 3491 { 3492 (void) cr, (void) ct; 3493 znode_t *zp = VTOZ(vp); 3494 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3495 int error; 3496 3497 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 3498 return (error); 3499 3500 if (zp->z_is_sa) 3501 error = sa_lookup_uio(zp->z_sa_hdl, 3502 SA_ZPL_SYMLINK(zfsvfs), uio); 3503 else 3504 error = zfs_sa_readlink(zp, uio); 3505 3506 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3507 3508 zfs_exit(zfsvfs, FTAG); 3509 return (error); 3510 } 3511 3512 /* 3513 * Insert a new entry into directory tdvp referencing svp. 3514 * 3515 * IN: tdvp - Directory to contain new entry. 3516 * svp - vnode of new entry. 3517 * name - name of new entry. 3518 * cr - credentials of caller. 3519 * 3520 * RETURN: 0 on success, error code on failure. 3521 * 3522 * Timestamps: 3523 * tdvp - ctime|mtime updated 3524 * svp - ctime updated 3525 */ 3526 int 3527 zfs_link(znode_t *tdzp, znode_t *szp, const char *name, cred_t *cr, 3528 int flags) 3529 { 3530 (void) flags; 3531 znode_t *tzp; 3532 zfsvfs_t *zfsvfs = tdzp->z_zfsvfs; 3533 zilog_t *zilog; 3534 dmu_tx_t *tx; 3535 int error; 3536 uint64_t parent; 3537 uid_t owner; 3538 3539 ASSERT3S(ZTOV(tdzp)->v_type, ==, VDIR); 3540 3541 if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0) 3542 return (error); 3543 zilog = zfsvfs->z_log; 3544 3545 /* 3546 * POSIX dictates that we return EPERM here. 3547 * Better choices include ENOTSUP or EISDIR. 3548 */ 3549 if (ZTOV(szp)->v_type == VDIR) { 3550 zfs_exit(zfsvfs, FTAG); 3551 return (SET_ERROR(EPERM)); 3552 } 3553 3554 if ((error = zfs_verify_zp(szp)) != 0) { 3555 zfs_exit(zfsvfs, FTAG); 3556 return (error); 3557 } 3558 3559 /* 3560 * If we are using project inheritance, means if the directory has 3561 * ZFS_PROJINHERIT set, then its descendant directories will inherit 3562 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under 3563 * such case, we only allow hard link creation in our tree when the 3564 * project IDs are the same. 3565 */ 3566 if (tdzp->z_pflags & ZFS_PROJINHERIT && 3567 tdzp->z_projid != szp->z_projid) { 3568 zfs_exit(zfsvfs, FTAG); 3569 return (SET_ERROR(EXDEV)); 3570 } 3571 3572 if (szp->z_pflags & (ZFS_APPENDONLY | 3573 ZFS_IMMUTABLE | ZFS_READONLY)) { 3574 zfs_exit(zfsvfs, FTAG); 3575 return (SET_ERROR(EPERM)); 3576 } 3577 3578 /* Prevent links to .zfs/shares files */ 3579 3580 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 3581 &parent, sizeof (uint64_t))) != 0) { 3582 zfs_exit(zfsvfs, FTAG); 3583 return (error); 3584 } 3585 if (parent == zfsvfs->z_shares_dir) { 3586 zfs_exit(zfsvfs, FTAG); 3587 return (SET_ERROR(EPERM)); 3588 } 3589 3590 if (zfsvfs->z_utf8 && u8_validate(name, 3591 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3592 zfs_exit(zfsvfs, FTAG); 3593 return (SET_ERROR(EILSEQ)); 3594 } 3595 3596 /* 3597 * We do not support links between attributes and non-attributes 3598 * because of the potential security risk of creating links 3599 * into "normal" file space in order to circumvent restrictions 3600 * imposed in attribute space. 3601 */ 3602 if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) { 3603 zfs_exit(zfsvfs, FTAG); 3604 return (SET_ERROR(EINVAL)); 3605 } 3606 3607 3608 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 3609 if (owner != crgetuid(cr) && secpolicy_basic_link(ZTOV(szp), cr) != 0) { 3610 zfs_exit(zfsvfs, FTAG); 3611 return (SET_ERROR(EPERM)); 3612 } 3613 3614 if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr, NULL))) { 3615 zfs_exit(zfsvfs, FTAG); 3616 return (error); 3617 } 3618 3619 /* 3620 * Attempt to lock directory; fail if entry already exists. 3621 */ 3622 error = zfs_dirent_lookup(tdzp, name, &tzp, ZNEW); 3623 if (error) { 3624 zfs_exit(zfsvfs, FTAG); 3625 return (error); 3626 } 3627 3628 tx = dmu_tx_create(zfsvfs->z_os); 3629 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3630 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name); 3631 zfs_sa_upgrade_txholds(tx, szp); 3632 zfs_sa_upgrade_txholds(tx, tdzp); 3633 error = dmu_tx_assign(tx, TXG_WAIT); 3634 if (error) { 3635 dmu_tx_abort(tx); 3636 zfs_exit(zfsvfs, FTAG); 3637 return (error); 3638 } 3639 3640 error = zfs_link_create(tdzp, name, szp, tx, 0); 3641 3642 if (error == 0) { 3643 uint64_t txtype = TX_LINK; 3644 zfs_log_link(zilog, tx, txtype, tdzp, szp, name); 3645 } 3646 3647 dmu_tx_commit(tx); 3648 3649 if (error == 0) { 3650 vnevent_link(ZTOV(szp), ct); 3651 } 3652 3653 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3654 zil_commit(zilog, 0); 3655 3656 zfs_exit(zfsvfs, FTAG); 3657 return (error); 3658 } 3659 3660 /* 3661 * Free or allocate space in a file. Currently, this function only 3662 * supports the `F_FREESP' command. However, this command is somewhat 3663 * misnamed, as its functionality includes the ability to allocate as 3664 * well as free space. 3665 * 3666 * IN: ip - inode of file to free data in. 3667 * cmd - action to take (only F_FREESP supported). 3668 * bfp - section of file to free/alloc. 3669 * flag - current file open mode flags. 3670 * offset - current file offset. 3671 * cr - credentials of caller. 3672 * 3673 * RETURN: 0 on success, error code on failure. 3674 * 3675 * Timestamps: 3676 * ip - ctime|mtime updated 3677 */ 3678 int 3679 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag, 3680 offset_t offset, cred_t *cr) 3681 { 3682 (void) offset; 3683 zfsvfs_t *zfsvfs = ZTOZSB(zp); 3684 uint64_t off, len; 3685 int error; 3686 3687 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 3688 return (error); 3689 3690 if (cmd != F_FREESP) { 3691 zfs_exit(zfsvfs, FTAG); 3692 return (SET_ERROR(EINVAL)); 3693 } 3694 3695 /* 3696 * Callers might not be able to detect properly that we are read-only, 3697 * so check it explicitly here. 3698 */ 3699 if (zfs_is_readonly(zfsvfs)) { 3700 zfs_exit(zfsvfs, FTAG); 3701 return (SET_ERROR(EROFS)); 3702 } 3703 3704 if (bfp->l_len < 0) { 3705 zfs_exit(zfsvfs, FTAG); 3706 return (SET_ERROR(EINVAL)); 3707 } 3708 3709 /* 3710 * Permissions aren't checked on Solaris because on this OS 3711 * zfs_space() can only be called with an opened file handle. 3712 * On Linux we can get here through truncate_range() which 3713 * operates directly on inodes, so we need to check access rights. 3714 */ 3715 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr, NULL))) { 3716 zfs_exit(zfsvfs, FTAG); 3717 return (error); 3718 } 3719 3720 off = bfp->l_start; 3721 len = bfp->l_len; /* 0 means from off to end of file */ 3722 3723 error = zfs_freesp(zp, off, len, flag, TRUE); 3724 3725 zfs_exit(zfsvfs, FTAG); 3726 return (error); 3727 } 3728 3729 static void 3730 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3731 { 3732 (void) cr, (void) ct; 3733 znode_t *zp = VTOZ(vp); 3734 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3735 int error; 3736 3737 ZFS_TEARDOWN_INACTIVE_ENTER_READ(zfsvfs); 3738 if (zp->z_sa_hdl == NULL) { 3739 /* 3740 * The fs has been unmounted, or we did a 3741 * suspend/resume and this file no longer exists. 3742 */ 3743 ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs); 3744 vrecycle(vp); 3745 return; 3746 } 3747 3748 if (zp->z_unlinked) { 3749 /* 3750 * Fast path to recycle a vnode of a removed file. 3751 */ 3752 ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs); 3753 vrecycle(vp); 3754 return; 3755 } 3756 3757 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3758 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3759 3760 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3761 zfs_sa_upgrade_txholds(tx, zp); 3762 error = dmu_tx_assign(tx, TXG_WAIT); 3763 if (error) { 3764 dmu_tx_abort(tx); 3765 } else { 3766 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 3767 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 3768 zp->z_atime_dirty = 0; 3769 dmu_tx_commit(tx); 3770 } 3771 } 3772 ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs); 3773 } 3774 3775 3776 _Static_assert(sizeof (struct zfid_short) <= sizeof (struct fid), 3777 "struct zfid_short bigger than struct fid"); 3778 _Static_assert(sizeof (struct zfid_long) <= sizeof (struct fid), 3779 "struct zfid_long bigger than struct fid"); 3780 3781 static int 3782 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 3783 { 3784 (void) ct; 3785 znode_t *zp = VTOZ(vp); 3786 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3787 uint32_t gen; 3788 uint64_t gen64; 3789 uint64_t object = zp->z_id; 3790 zfid_short_t *zfid; 3791 int size, i, error; 3792 3793 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 3794 return (error); 3795 3796 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 3797 &gen64, sizeof (uint64_t))) != 0) { 3798 zfs_exit(zfsvfs, FTAG); 3799 return (error); 3800 } 3801 3802 gen = (uint32_t)gen64; 3803 3804 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3805 fidp->fid_len = size; 3806 3807 zfid = (zfid_short_t *)fidp; 3808 3809 zfid->zf_len = size; 3810 3811 for (i = 0; i < sizeof (zfid->zf_object); i++) 3812 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3813 3814 /* Must have a non-zero generation number to distinguish from .zfs */ 3815 if (gen == 0) 3816 gen = 1; 3817 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3818 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3819 3820 if (size == LONG_FID_LEN) { 3821 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 3822 zfid_long_t *zlfid; 3823 3824 zlfid = (zfid_long_t *)fidp; 3825 3826 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 3827 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 3828 3829 /* XXX - this should be the generation number for the objset */ 3830 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 3831 zlfid->zf_setgen[i] = 0; 3832 } 3833 3834 zfs_exit(zfsvfs, FTAG); 3835 return (0); 3836 } 3837 3838 static int 3839 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 3840 caller_context_t *ct) 3841 { 3842 znode_t *zp; 3843 zfsvfs_t *zfsvfs; 3844 int error; 3845 3846 switch (cmd) { 3847 case _PC_LINK_MAX: 3848 *valp = MIN(LONG_MAX, ZFS_LINK_MAX); 3849 return (0); 3850 3851 case _PC_FILESIZEBITS: 3852 *valp = 64; 3853 return (0); 3854 case _PC_MIN_HOLE_SIZE: 3855 *valp = (int)SPA_MINBLOCKSIZE; 3856 return (0); 3857 case _PC_ACL_EXTENDED: 3858 #if 0 /* POSIX ACLs are not implemented for ZFS on FreeBSD yet. */ 3859 zp = VTOZ(vp); 3860 zfsvfs = zp->z_zfsvfs; 3861 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 3862 return (error); 3863 *valp = zfsvfs->z_acl_type == ZFSACLTYPE_POSIX ? 1 : 0; 3864 zfs_exit(zfsvfs, FTAG); 3865 #else 3866 *valp = 0; 3867 #endif 3868 return (0); 3869 3870 case _PC_ACL_NFS4: 3871 zp = VTOZ(vp); 3872 zfsvfs = zp->z_zfsvfs; 3873 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 3874 return (error); 3875 *valp = zfsvfs->z_acl_type == ZFS_ACLTYPE_NFSV4 ? 1 : 0; 3876 zfs_exit(zfsvfs, FTAG); 3877 return (0); 3878 3879 case _PC_ACL_PATH_MAX: 3880 *valp = ACL_MAX_ENTRIES; 3881 return (0); 3882 3883 default: 3884 return (EOPNOTSUPP); 3885 } 3886 } 3887 3888 static int 3889 zfs_getpages(struct vnode *vp, vm_page_t *ma, int count, int *rbehind, 3890 int *rahead) 3891 { 3892 znode_t *zp = VTOZ(vp); 3893 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3894 zfs_locked_range_t *lr; 3895 vm_object_t object; 3896 off_t start, end, obj_size; 3897 uint_t blksz; 3898 int pgsin_b, pgsin_a; 3899 int error; 3900 3901 if (zfs_enter_verify_zp(zfsvfs, zp, FTAG) != 0) 3902 return (zfs_vm_pagerret_error); 3903 3904 start = IDX_TO_OFF(ma[0]->pindex); 3905 end = IDX_TO_OFF(ma[count - 1]->pindex + 1); 3906 3907 /* 3908 * Lock a range covering all required and optional pages. 3909 * Note that we need to handle the case of the block size growing. 3910 */ 3911 for (;;) { 3912 blksz = zp->z_blksz; 3913 lr = zfs_rangelock_tryenter(&zp->z_rangelock, 3914 rounddown(start, blksz), 3915 roundup(end, blksz) - rounddown(start, blksz), RL_READER); 3916 if (lr == NULL) { 3917 if (rahead != NULL) { 3918 *rahead = 0; 3919 rahead = NULL; 3920 } 3921 if (rbehind != NULL) { 3922 *rbehind = 0; 3923 rbehind = NULL; 3924 } 3925 break; 3926 } 3927 if (blksz == zp->z_blksz) 3928 break; 3929 zfs_rangelock_exit(lr); 3930 } 3931 3932 object = ma[0]->object; 3933 zfs_vmobject_wlock(object); 3934 obj_size = object->un_pager.vnp.vnp_size; 3935 zfs_vmobject_wunlock(object); 3936 if (IDX_TO_OFF(ma[count - 1]->pindex) >= obj_size) { 3937 if (lr != NULL) 3938 zfs_rangelock_exit(lr); 3939 zfs_exit(zfsvfs, FTAG); 3940 return (zfs_vm_pagerret_bad); 3941 } 3942 3943 pgsin_b = 0; 3944 if (rbehind != NULL) { 3945 pgsin_b = OFF_TO_IDX(start - rounddown(start, blksz)); 3946 pgsin_b = MIN(*rbehind, pgsin_b); 3947 } 3948 3949 pgsin_a = 0; 3950 if (rahead != NULL) { 3951 pgsin_a = OFF_TO_IDX(roundup(end, blksz) - end); 3952 if (end + IDX_TO_OFF(pgsin_a) >= obj_size) 3953 pgsin_a = OFF_TO_IDX(round_page(obj_size) - end); 3954 pgsin_a = MIN(*rahead, pgsin_a); 3955 } 3956 3957 /* 3958 * NB: we need to pass the exact byte size of the data that we expect 3959 * to read after accounting for the file size. This is required because 3960 * ZFS will panic if we request DMU to read beyond the end of the last 3961 * allocated block. 3962 */ 3963 error = dmu_read_pages(zfsvfs->z_os, zp->z_id, ma, count, &pgsin_b, 3964 &pgsin_a, MIN(end, obj_size) - (end - PAGE_SIZE)); 3965 3966 if (lr != NULL) 3967 zfs_rangelock_exit(lr); 3968 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3969 3970 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, count*PAGE_SIZE); 3971 3972 zfs_exit(zfsvfs, FTAG); 3973 3974 if (error != 0) 3975 return (zfs_vm_pagerret_error); 3976 3977 VM_CNT_INC(v_vnodein); 3978 VM_CNT_ADD(v_vnodepgsin, count + pgsin_b + pgsin_a); 3979 if (rbehind != NULL) 3980 *rbehind = pgsin_b; 3981 if (rahead != NULL) 3982 *rahead = pgsin_a; 3983 return (zfs_vm_pagerret_ok); 3984 } 3985 3986 #ifndef _SYS_SYSPROTO_H_ 3987 struct vop_getpages_args { 3988 struct vnode *a_vp; 3989 vm_page_t *a_m; 3990 int a_count; 3991 int *a_rbehind; 3992 int *a_rahead; 3993 }; 3994 #endif 3995 3996 static int 3997 zfs_freebsd_getpages(struct vop_getpages_args *ap) 3998 { 3999 4000 return (zfs_getpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_rbehind, 4001 ap->a_rahead)); 4002 } 4003 4004 static int 4005 zfs_putpages(struct vnode *vp, vm_page_t *ma, size_t len, int flags, 4006 int *rtvals) 4007 { 4008 znode_t *zp = VTOZ(vp); 4009 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4010 zfs_locked_range_t *lr; 4011 dmu_tx_t *tx; 4012 struct sf_buf *sf; 4013 vm_object_t object; 4014 vm_page_t m; 4015 caddr_t va; 4016 size_t tocopy; 4017 size_t lo_len; 4018 vm_ooffset_t lo_off; 4019 vm_ooffset_t off; 4020 uint_t blksz; 4021 int ncount; 4022 int pcount; 4023 int err; 4024 int i; 4025 4026 object = vp->v_object; 4027 KASSERT(ma[0]->object == object, ("mismatching object")); 4028 KASSERT(len > 0 && (len & PAGE_MASK) == 0, ("unexpected length")); 4029 4030 pcount = btoc(len); 4031 ncount = pcount; 4032 for (i = 0; i < pcount; i++) 4033 rtvals[i] = zfs_vm_pagerret_error; 4034 4035 if (zfs_enter_verify_zp(zfsvfs, zp, FTAG) != 0) 4036 return (zfs_vm_pagerret_error); 4037 4038 off = IDX_TO_OFF(ma[0]->pindex); 4039 blksz = zp->z_blksz; 4040 lo_off = rounddown(off, blksz); 4041 lo_len = roundup(len + (off - lo_off), blksz); 4042 lr = zfs_rangelock_enter(&zp->z_rangelock, lo_off, lo_len, RL_WRITER); 4043 4044 zfs_vmobject_wlock(object); 4045 if (len + off > object->un_pager.vnp.vnp_size) { 4046 if (object->un_pager.vnp.vnp_size > off) { 4047 int pgoff; 4048 4049 len = object->un_pager.vnp.vnp_size - off; 4050 ncount = btoc(len); 4051 if ((pgoff = (int)len & PAGE_MASK) != 0) { 4052 /* 4053 * If the object is locked and the following 4054 * conditions hold, then the page's dirty 4055 * field cannot be concurrently changed by a 4056 * pmap operation. 4057 */ 4058 m = ma[ncount - 1]; 4059 vm_page_assert_sbusied(m); 4060 KASSERT(!pmap_page_is_write_mapped(m), 4061 ("zfs_putpages: page %p is not read-only", 4062 m)); 4063 vm_page_clear_dirty(m, pgoff, PAGE_SIZE - 4064 pgoff); 4065 } 4066 } else { 4067 len = 0; 4068 ncount = 0; 4069 } 4070 if (ncount < pcount) { 4071 for (i = ncount; i < pcount; i++) { 4072 rtvals[i] = zfs_vm_pagerret_bad; 4073 } 4074 } 4075 } 4076 zfs_vmobject_wunlock(object); 4077 4078 boolean_t commit = (flags & (zfs_vm_pagerput_sync | 4079 zfs_vm_pagerput_inval)) != 0 || 4080 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS; 4081 4082 if (ncount == 0) 4083 goto out; 4084 4085 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, zp->z_uid) || 4086 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, zp->z_gid) || 4087 (zp->z_projid != ZFS_DEFAULT_PROJID && 4088 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT, 4089 zp->z_projid))) { 4090 goto out; 4091 } 4092 4093 tx = dmu_tx_create(zfsvfs->z_os); 4094 dmu_tx_hold_write(tx, zp->z_id, off, len); 4095 4096 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4097 zfs_sa_upgrade_txholds(tx, zp); 4098 err = dmu_tx_assign(tx, TXG_WAIT); 4099 if (err != 0) { 4100 dmu_tx_abort(tx); 4101 goto out; 4102 } 4103 4104 if (zp->z_blksz < PAGE_SIZE) { 4105 for (i = 0; len > 0; off += tocopy, len -= tocopy, i++) { 4106 tocopy = len > PAGE_SIZE ? PAGE_SIZE : len; 4107 va = zfs_map_page(ma[i], &sf); 4108 dmu_write(zfsvfs->z_os, zp->z_id, off, tocopy, va, tx); 4109 zfs_unmap_page(sf); 4110 } 4111 } else { 4112 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, ma, tx); 4113 } 4114 4115 if (err == 0) { 4116 uint64_t mtime[2], ctime[2]; 4117 sa_bulk_attr_t bulk[3]; 4118 int count = 0; 4119 4120 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4121 &mtime, 16); 4122 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4123 &ctime, 16); 4124 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4125 &zp->z_pflags, 8); 4126 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime); 4127 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 4128 ASSERT0(err); 4129 /* 4130 * XXX we should be passing a callback to undirty 4131 * but that would make the locking messier 4132 */ 4133 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, 4134 len, commit, NULL, NULL); 4135 4136 zfs_vmobject_wlock(object); 4137 for (i = 0; i < ncount; i++) { 4138 rtvals[i] = zfs_vm_pagerret_ok; 4139 vm_page_undirty(ma[i]); 4140 } 4141 zfs_vmobject_wunlock(object); 4142 VM_CNT_INC(v_vnodeout); 4143 VM_CNT_ADD(v_vnodepgsout, ncount); 4144 } 4145 dmu_tx_commit(tx); 4146 4147 out: 4148 zfs_rangelock_exit(lr); 4149 if (commit) 4150 zil_commit(zfsvfs->z_log, zp->z_id); 4151 4152 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, len); 4153 4154 zfs_exit(zfsvfs, FTAG); 4155 return (rtvals[0]); 4156 } 4157 4158 #ifndef _SYS_SYSPROTO_H_ 4159 struct vop_putpages_args { 4160 struct vnode *a_vp; 4161 vm_page_t *a_m; 4162 int a_count; 4163 int a_sync; 4164 int *a_rtvals; 4165 }; 4166 #endif 4167 4168 static int 4169 zfs_freebsd_putpages(struct vop_putpages_args *ap) 4170 { 4171 4172 return (zfs_putpages(ap->a_vp, ap->a_m, ap->a_count, ap->a_sync, 4173 ap->a_rtvals)); 4174 } 4175 4176 #ifndef _SYS_SYSPROTO_H_ 4177 struct vop_bmap_args { 4178 struct vnode *a_vp; 4179 daddr_t a_bn; 4180 struct bufobj **a_bop; 4181 daddr_t *a_bnp; 4182 int *a_runp; 4183 int *a_runb; 4184 }; 4185 #endif 4186 4187 static int 4188 zfs_freebsd_bmap(struct vop_bmap_args *ap) 4189 { 4190 4191 if (ap->a_bop != NULL) 4192 *ap->a_bop = &ap->a_vp->v_bufobj; 4193 if (ap->a_bnp != NULL) 4194 *ap->a_bnp = ap->a_bn; 4195 if (ap->a_runp != NULL) 4196 *ap->a_runp = 0; 4197 if (ap->a_runb != NULL) 4198 *ap->a_runb = 0; 4199 4200 return (0); 4201 } 4202 4203 #ifndef _SYS_SYSPROTO_H_ 4204 struct vop_open_args { 4205 struct vnode *a_vp; 4206 int a_mode; 4207 struct ucred *a_cred; 4208 struct thread *a_td; 4209 }; 4210 #endif 4211 4212 static int 4213 zfs_freebsd_open(struct vop_open_args *ap) 4214 { 4215 vnode_t *vp = ap->a_vp; 4216 znode_t *zp = VTOZ(vp); 4217 int error; 4218 4219 error = zfs_open(&vp, ap->a_mode, ap->a_cred); 4220 if (error == 0) 4221 vnode_create_vobject(vp, zp->z_size, ap->a_td); 4222 return (error); 4223 } 4224 4225 #ifndef _SYS_SYSPROTO_H_ 4226 struct vop_close_args { 4227 struct vnode *a_vp; 4228 int a_fflag; 4229 struct ucred *a_cred; 4230 struct thread *a_td; 4231 }; 4232 #endif 4233 4234 static int 4235 zfs_freebsd_close(struct vop_close_args *ap) 4236 { 4237 4238 return (zfs_close(ap->a_vp, ap->a_fflag, 1, 0, ap->a_cred)); 4239 } 4240 4241 #ifndef _SYS_SYSPROTO_H_ 4242 struct vop_ioctl_args { 4243 struct vnode *a_vp; 4244 ulong_t a_command; 4245 caddr_t a_data; 4246 int a_fflag; 4247 struct ucred *cred; 4248 struct thread *td; 4249 }; 4250 #endif 4251 4252 static int 4253 zfs_freebsd_ioctl(struct vop_ioctl_args *ap) 4254 { 4255 4256 return (zfs_ioctl(ap->a_vp, ap->a_command, (intptr_t)ap->a_data, 4257 ap->a_fflag, ap->a_cred, NULL)); 4258 } 4259 4260 static int 4261 ioflags(int ioflags) 4262 { 4263 int flags = 0; 4264 4265 if (ioflags & IO_APPEND) 4266 flags |= O_APPEND; 4267 if (ioflags & IO_NDELAY) 4268 flags |= O_NONBLOCK; 4269 if (ioflags & IO_SYNC) 4270 flags |= O_SYNC; 4271 4272 return (flags); 4273 } 4274 4275 #ifndef _SYS_SYSPROTO_H_ 4276 struct vop_read_args { 4277 struct vnode *a_vp; 4278 struct uio *a_uio; 4279 int a_ioflag; 4280 struct ucred *a_cred; 4281 }; 4282 #endif 4283 4284 static int 4285 zfs_freebsd_read(struct vop_read_args *ap) 4286 { 4287 zfs_uio_t uio; 4288 zfs_uio_init(&uio, ap->a_uio); 4289 return (zfs_read(VTOZ(ap->a_vp), &uio, ioflags(ap->a_ioflag), 4290 ap->a_cred)); 4291 } 4292 4293 #ifndef _SYS_SYSPROTO_H_ 4294 struct vop_write_args { 4295 struct vnode *a_vp; 4296 struct uio *a_uio; 4297 int a_ioflag; 4298 struct ucred *a_cred; 4299 }; 4300 #endif 4301 4302 static int 4303 zfs_freebsd_write(struct vop_write_args *ap) 4304 { 4305 zfs_uio_t uio; 4306 zfs_uio_init(&uio, ap->a_uio); 4307 return (zfs_write(VTOZ(ap->a_vp), &uio, ioflags(ap->a_ioflag), 4308 ap->a_cred)); 4309 } 4310 4311 /* 4312 * VOP_FPLOOKUP_VEXEC routines are subject to special circumstances, see 4313 * the comment above cache_fplookup for details. 4314 */ 4315 static int 4316 zfs_freebsd_fplookup_vexec(struct vop_fplookup_vexec_args *v) 4317 { 4318 vnode_t *vp; 4319 znode_t *zp; 4320 uint64_t pflags; 4321 4322 vp = v->a_vp; 4323 zp = VTOZ_SMR(vp); 4324 if (__predict_false(zp == NULL)) 4325 return (EAGAIN); 4326 pflags = atomic_load_64(&zp->z_pflags); 4327 if (pflags & ZFS_AV_QUARANTINED) 4328 return (EAGAIN); 4329 if (pflags & ZFS_XATTR) 4330 return (EAGAIN); 4331 if ((pflags & ZFS_NO_EXECS_DENIED) == 0) 4332 return (EAGAIN); 4333 return (0); 4334 } 4335 4336 static int 4337 zfs_freebsd_fplookup_symlink(struct vop_fplookup_symlink_args *v) 4338 { 4339 vnode_t *vp; 4340 znode_t *zp; 4341 char *target; 4342 4343 vp = v->a_vp; 4344 zp = VTOZ_SMR(vp); 4345 if (__predict_false(zp == NULL)) { 4346 return (EAGAIN); 4347 } 4348 4349 target = atomic_load_consume_ptr(&zp->z_cached_symlink); 4350 if (target == NULL) { 4351 return (EAGAIN); 4352 } 4353 return (cache_symlink_resolve(v->a_fpl, target, strlen(target))); 4354 } 4355 4356 #ifndef _SYS_SYSPROTO_H_ 4357 struct vop_access_args { 4358 struct vnode *a_vp; 4359 accmode_t a_accmode; 4360 struct ucred *a_cred; 4361 struct thread *a_td; 4362 }; 4363 #endif 4364 4365 static int 4366 zfs_freebsd_access(struct vop_access_args *ap) 4367 { 4368 vnode_t *vp = ap->a_vp; 4369 znode_t *zp = VTOZ(vp); 4370 accmode_t accmode; 4371 int error = 0; 4372 4373 4374 if (ap->a_accmode == VEXEC) { 4375 if (zfs_fastaccesschk_execute(zp, ap->a_cred) == 0) 4376 return (0); 4377 } 4378 4379 /* 4380 * ZFS itself only knowns about VREAD, VWRITE, VEXEC and VAPPEND, 4381 */ 4382 accmode = ap->a_accmode & (VREAD|VWRITE|VEXEC|VAPPEND); 4383 if (accmode != 0) 4384 error = zfs_access(zp, accmode, 0, ap->a_cred); 4385 4386 /* 4387 * VADMIN has to be handled by vaccess(). 4388 */ 4389 if (error == 0) { 4390 accmode = ap->a_accmode & ~(VREAD|VWRITE|VEXEC|VAPPEND); 4391 if (accmode != 0) { 4392 error = vaccess(vp->v_type, zp->z_mode, zp->z_uid, 4393 zp->z_gid, accmode, ap->a_cred); 4394 } 4395 } 4396 4397 /* 4398 * For VEXEC, ensure that at least one execute bit is set for 4399 * non-directories. 4400 */ 4401 if (error == 0 && (ap->a_accmode & VEXEC) != 0 && vp->v_type != VDIR && 4402 (zp->z_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0) { 4403 error = EACCES; 4404 } 4405 4406 return (error); 4407 } 4408 4409 #ifndef _SYS_SYSPROTO_H_ 4410 struct vop_lookup_args { 4411 struct vnode *a_dvp; 4412 struct vnode **a_vpp; 4413 struct componentname *a_cnp; 4414 }; 4415 #endif 4416 4417 static int 4418 zfs_freebsd_lookup(struct vop_lookup_args *ap, boolean_t cached) 4419 { 4420 struct componentname *cnp = ap->a_cnp; 4421 char nm[NAME_MAX + 1]; 4422 4423 ASSERT3U(cnp->cn_namelen, <, sizeof (nm)); 4424 strlcpy(nm, cnp->cn_nameptr, MIN(cnp->cn_namelen + 1, sizeof (nm))); 4425 4426 return (zfs_lookup(ap->a_dvp, nm, ap->a_vpp, cnp, cnp->cn_nameiop, 4427 cnp->cn_cred, 0, cached)); 4428 } 4429 4430 static int 4431 zfs_freebsd_cachedlookup(struct vop_cachedlookup_args *ap) 4432 { 4433 4434 return (zfs_freebsd_lookup((struct vop_lookup_args *)ap, B_TRUE)); 4435 } 4436 4437 #ifndef _SYS_SYSPROTO_H_ 4438 struct vop_lookup_args { 4439 struct vnode *a_dvp; 4440 struct vnode **a_vpp; 4441 struct componentname *a_cnp; 4442 }; 4443 #endif 4444 4445 static int 4446 zfs_cache_lookup(struct vop_lookup_args *ap) 4447 { 4448 zfsvfs_t *zfsvfs; 4449 4450 zfsvfs = ap->a_dvp->v_mount->mnt_data; 4451 if (zfsvfs->z_use_namecache) 4452 return (vfs_cache_lookup(ap)); 4453 else 4454 return (zfs_freebsd_lookup(ap, B_FALSE)); 4455 } 4456 4457 #ifndef _SYS_SYSPROTO_H_ 4458 struct vop_create_args { 4459 struct vnode *a_dvp; 4460 struct vnode **a_vpp; 4461 struct componentname *a_cnp; 4462 struct vattr *a_vap; 4463 }; 4464 #endif 4465 4466 static int 4467 zfs_freebsd_create(struct vop_create_args *ap) 4468 { 4469 zfsvfs_t *zfsvfs; 4470 struct componentname *cnp = ap->a_cnp; 4471 vattr_t *vap = ap->a_vap; 4472 znode_t *zp = NULL; 4473 int rc, mode; 4474 4475 #if __FreeBSD_version < 1400068 4476 ASSERT(cnp->cn_flags & SAVENAME); 4477 #endif 4478 4479 vattr_init_mask(vap); 4480 mode = vap->va_mode & ALLPERMS; 4481 zfsvfs = ap->a_dvp->v_mount->mnt_data; 4482 *ap->a_vpp = NULL; 4483 4484 rc = zfs_create(VTOZ(ap->a_dvp), cnp->cn_nameptr, vap, 0, mode, 4485 &zp, cnp->cn_cred, 0 /* flag */, NULL /* vsecattr */, NULL); 4486 if (rc == 0) 4487 *ap->a_vpp = ZTOV(zp); 4488 if (zfsvfs->z_use_namecache && 4489 rc == 0 && (cnp->cn_flags & MAKEENTRY) != 0) 4490 cache_enter(ap->a_dvp, *ap->a_vpp, cnp); 4491 4492 return (rc); 4493 } 4494 4495 #ifndef _SYS_SYSPROTO_H_ 4496 struct vop_remove_args { 4497 struct vnode *a_dvp; 4498 struct vnode *a_vp; 4499 struct componentname *a_cnp; 4500 }; 4501 #endif 4502 4503 static int 4504 zfs_freebsd_remove(struct vop_remove_args *ap) 4505 { 4506 4507 #if __FreeBSD_version < 1400068 4508 ASSERT(ap->a_cnp->cn_flags & SAVENAME); 4509 #endif 4510 4511 return (zfs_remove_(ap->a_dvp, ap->a_vp, ap->a_cnp->cn_nameptr, 4512 ap->a_cnp->cn_cred)); 4513 } 4514 4515 #ifndef _SYS_SYSPROTO_H_ 4516 struct vop_mkdir_args { 4517 struct vnode *a_dvp; 4518 struct vnode **a_vpp; 4519 struct componentname *a_cnp; 4520 struct vattr *a_vap; 4521 }; 4522 #endif 4523 4524 static int 4525 zfs_freebsd_mkdir(struct vop_mkdir_args *ap) 4526 { 4527 vattr_t *vap = ap->a_vap; 4528 znode_t *zp = NULL; 4529 int rc; 4530 4531 #if __FreeBSD_version < 1400068 4532 ASSERT(ap->a_cnp->cn_flags & SAVENAME); 4533 #endif 4534 4535 vattr_init_mask(vap); 4536 *ap->a_vpp = NULL; 4537 4538 rc = zfs_mkdir(VTOZ(ap->a_dvp), ap->a_cnp->cn_nameptr, vap, &zp, 4539 ap->a_cnp->cn_cred, 0, NULL, NULL); 4540 4541 if (rc == 0) 4542 *ap->a_vpp = ZTOV(zp); 4543 return (rc); 4544 } 4545 4546 #ifndef _SYS_SYSPROTO_H_ 4547 struct vop_rmdir_args { 4548 struct vnode *a_dvp; 4549 struct vnode *a_vp; 4550 struct componentname *a_cnp; 4551 }; 4552 #endif 4553 4554 static int 4555 zfs_freebsd_rmdir(struct vop_rmdir_args *ap) 4556 { 4557 struct componentname *cnp = ap->a_cnp; 4558 4559 #if __FreeBSD_version < 1400068 4560 ASSERT(cnp->cn_flags & SAVENAME); 4561 #endif 4562 4563 return (zfs_rmdir_(ap->a_dvp, ap->a_vp, cnp->cn_nameptr, cnp->cn_cred)); 4564 } 4565 4566 #ifndef _SYS_SYSPROTO_H_ 4567 struct vop_readdir_args { 4568 struct vnode *a_vp; 4569 struct uio *a_uio; 4570 struct ucred *a_cred; 4571 int *a_eofflag; 4572 int *a_ncookies; 4573 cookie_t **a_cookies; 4574 }; 4575 #endif 4576 4577 static int 4578 zfs_freebsd_readdir(struct vop_readdir_args *ap) 4579 { 4580 zfs_uio_t uio; 4581 zfs_uio_init(&uio, ap->a_uio); 4582 return (zfs_readdir(ap->a_vp, &uio, ap->a_cred, ap->a_eofflag, 4583 ap->a_ncookies, ap->a_cookies)); 4584 } 4585 4586 #ifndef _SYS_SYSPROTO_H_ 4587 struct vop_fsync_args { 4588 struct vnode *a_vp; 4589 int a_waitfor; 4590 struct thread *a_td; 4591 }; 4592 #endif 4593 4594 static int 4595 zfs_freebsd_fsync(struct vop_fsync_args *ap) 4596 { 4597 4598 return (zfs_fsync(VTOZ(ap->a_vp), 0, ap->a_td->td_ucred)); 4599 } 4600 4601 #ifndef _SYS_SYSPROTO_H_ 4602 struct vop_getattr_args { 4603 struct vnode *a_vp; 4604 struct vattr *a_vap; 4605 struct ucred *a_cred; 4606 }; 4607 #endif 4608 4609 static int 4610 zfs_freebsd_getattr(struct vop_getattr_args *ap) 4611 { 4612 vattr_t *vap = ap->a_vap; 4613 xvattr_t xvap; 4614 ulong_t fflags = 0; 4615 int error; 4616 4617 xva_init(&xvap); 4618 xvap.xva_vattr = *vap; 4619 xvap.xva_vattr.va_mask |= AT_XVATTR; 4620 4621 /* Convert chflags into ZFS-type flags. */ 4622 /* XXX: what about SF_SETTABLE?. */ 4623 XVA_SET_REQ(&xvap, XAT_IMMUTABLE); 4624 XVA_SET_REQ(&xvap, XAT_APPENDONLY); 4625 XVA_SET_REQ(&xvap, XAT_NOUNLINK); 4626 XVA_SET_REQ(&xvap, XAT_NODUMP); 4627 XVA_SET_REQ(&xvap, XAT_READONLY); 4628 XVA_SET_REQ(&xvap, XAT_ARCHIVE); 4629 XVA_SET_REQ(&xvap, XAT_SYSTEM); 4630 XVA_SET_REQ(&xvap, XAT_HIDDEN); 4631 XVA_SET_REQ(&xvap, XAT_REPARSE); 4632 XVA_SET_REQ(&xvap, XAT_OFFLINE); 4633 XVA_SET_REQ(&xvap, XAT_SPARSE); 4634 4635 error = zfs_getattr(ap->a_vp, (vattr_t *)&xvap, 0, ap->a_cred); 4636 if (error != 0) 4637 return (error); 4638 4639 /* Convert ZFS xattr into chflags. */ 4640 #define FLAG_CHECK(fflag, xflag, xfield) do { \ 4641 if (XVA_ISSET_RTN(&xvap, (xflag)) && (xfield) != 0) \ 4642 fflags |= (fflag); \ 4643 } while (0) 4644 FLAG_CHECK(SF_IMMUTABLE, XAT_IMMUTABLE, 4645 xvap.xva_xoptattrs.xoa_immutable); 4646 FLAG_CHECK(SF_APPEND, XAT_APPENDONLY, 4647 xvap.xva_xoptattrs.xoa_appendonly); 4648 FLAG_CHECK(SF_NOUNLINK, XAT_NOUNLINK, 4649 xvap.xva_xoptattrs.xoa_nounlink); 4650 FLAG_CHECK(UF_ARCHIVE, XAT_ARCHIVE, 4651 xvap.xva_xoptattrs.xoa_archive); 4652 FLAG_CHECK(UF_NODUMP, XAT_NODUMP, 4653 xvap.xva_xoptattrs.xoa_nodump); 4654 FLAG_CHECK(UF_READONLY, XAT_READONLY, 4655 xvap.xva_xoptattrs.xoa_readonly); 4656 FLAG_CHECK(UF_SYSTEM, XAT_SYSTEM, 4657 xvap.xva_xoptattrs.xoa_system); 4658 FLAG_CHECK(UF_HIDDEN, XAT_HIDDEN, 4659 xvap.xva_xoptattrs.xoa_hidden); 4660 FLAG_CHECK(UF_REPARSE, XAT_REPARSE, 4661 xvap.xva_xoptattrs.xoa_reparse); 4662 FLAG_CHECK(UF_OFFLINE, XAT_OFFLINE, 4663 xvap.xva_xoptattrs.xoa_offline); 4664 FLAG_CHECK(UF_SPARSE, XAT_SPARSE, 4665 xvap.xva_xoptattrs.xoa_sparse); 4666 4667 #undef FLAG_CHECK 4668 *vap = xvap.xva_vattr; 4669 vap->va_flags = fflags; 4670 return (0); 4671 } 4672 4673 #ifndef _SYS_SYSPROTO_H_ 4674 struct vop_setattr_args { 4675 struct vnode *a_vp; 4676 struct vattr *a_vap; 4677 struct ucred *a_cred; 4678 }; 4679 #endif 4680 4681 static int 4682 zfs_freebsd_setattr(struct vop_setattr_args *ap) 4683 { 4684 vnode_t *vp = ap->a_vp; 4685 vattr_t *vap = ap->a_vap; 4686 cred_t *cred = ap->a_cred; 4687 xvattr_t xvap; 4688 ulong_t fflags; 4689 uint64_t zflags; 4690 4691 vattr_init_mask(vap); 4692 vap->va_mask &= ~AT_NOSET; 4693 4694 xva_init(&xvap); 4695 xvap.xva_vattr = *vap; 4696 4697 zflags = VTOZ(vp)->z_pflags; 4698 4699 if (vap->va_flags != VNOVAL) { 4700 zfsvfs_t *zfsvfs = VTOZ(vp)->z_zfsvfs; 4701 int error; 4702 4703 if (zfsvfs->z_use_fuids == B_FALSE) 4704 return (EOPNOTSUPP); 4705 4706 fflags = vap->va_flags; 4707 /* 4708 * XXX KDM 4709 * We need to figure out whether it makes sense to allow 4710 * UF_REPARSE through, since we don't really have other 4711 * facilities to handle reparse points and zfs_setattr() 4712 * doesn't currently allow setting that attribute anyway. 4713 */ 4714 if ((fflags & ~(SF_IMMUTABLE|SF_APPEND|SF_NOUNLINK|UF_ARCHIVE| 4715 UF_NODUMP|UF_SYSTEM|UF_HIDDEN|UF_READONLY|UF_REPARSE| 4716 UF_OFFLINE|UF_SPARSE)) != 0) 4717 return (EOPNOTSUPP); 4718 /* 4719 * Unprivileged processes are not permitted to unset system 4720 * flags, or modify flags if any system flags are set. 4721 * Privileged non-jail processes may not modify system flags 4722 * if securelevel > 0 and any existing system flags are set. 4723 * Privileged jail processes behave like privileged non-jail 4724 * processes if the PR_ALLOW_CHFLAGS permission bit is set; 4725 * otherwise, they behave like unprivileged processes. 4726 */ 4727 if (secpolicy_fs_owner(vp->v_mount, cred) == 0 || 4728 priv_check_cred(cred, PRIV_VFS_SYSFLAGS) == 0) { 4729 if (zflags & 4730 (ZFS_IMMUTABLE | ZFS_APPENDONLY | ZFS_NOUNLINK)) { 4731 error = securelevel_gt(cred, 0); 4732 if (error != 0) 4733 return (error); 4734 } 4735 } else { 4736 /* 4737 * Callers may only modify the file flags on 4738 * objects they have VADMIN rights for. 4739 */ 4740 if ((error = VOP_ACCESS(vp, VADMIN, cred, 4741 curthread)) != 0) 4742 return (error); 4743 if (zflags & 4744 (ZFS_IMMUTABLE | ZFS_APPENDONLY | 4745 ZFS_NOUNLINK)) { 4746 return (EPERM); 4747 } 4748 if (fflags & 4749 (SF_IMMUTABLE | SF_APPEND | SF_NOUNLINK)) { 4750 return (EPERM); 4751 } 4752 } 4753 4754 #define FLAG_CHANGE(fflag, zflag, xflag, xfield) do { \ 4755 if (((fflags & (fflag)) && !(zflags & (zflag))) || \ 4756 ((zflags & (zflag)) && !(fflags & (fflag)))) { \ 4757 XVA_SET_REQ(&xvap, (xflag)); \ 4758 (xfield) = ((fflags & (fflag)) != 0); \ 4759 } \ 4760 } while (0) 4761 /* Convert chflags into ZFS-type flags. */ 4762 /* XXX: what about SF_SETTABLE?. */ 4763 FLAG_CHANGE(SF_IMMUTABLE, ZFS_IMMUTABLE, XAT_IMMUTABLE, 4764 xvap.xva_xoptattrs.xoa_immutable); 4765 FLAG_CHANGE(SF_APPEND, ZFS_APPENDONLY, XAT_APPENDONLY, 4766 xvap.xva_xoptattrs.xoa_appendonly); 4767 FLAG_CHANGE(SF_NOUNLINK, ZFS_NOUNLINK, XAT_NOUNLINK, 4768 xvap.xva_xoptattrs.xoa_nounlink); 4769 FLAG_CHANGE(UF_ARCHIVE, ZFS_ARCHIVE, XAT_ARCHIVE, 4770 xvap.xva_xoptattrs.xoa_archive); 4771 FLAG_CHANGE(UF_NODUMP, ZFS_NODUMP, XAT_NODUMP, 4772 xvap.xva_xoptattrs.xoa_nodump); 4773 FLAG_CHANGE(UF_READONLY, ZFS_READONLY, XAT_READONLY, 4774 xvap.xva_xoptattrs.xoa_readonly); 4775 FLAG_CHANGE(UF_SYSTEM, ZFS_SYSTEM, XAT_SYSTEM, 4776 xvap.xva_xoptattrs.xoa_system); 4777 FLAG_CHANGE(UF_HIDDEN, ZFS_HIDDEN, XAT_HIDDEN, 4778 xvap.xva_xoptattrs.xoa_hidden); 4779 FLAG_CHANGE(UF_REPARSE, ZFS_REPARSE, XAT_REPARSE, 4780 xvap.xva_xoptattrs.xoa_reparse); 4781 FLAG_CHANGE(UF_OFFLINE, ZFS_OFFLINE, XAT_OFFLINE, 4782 xvap.xva_xoptattrs.xoa_offline); 4783 FLAG_CHANGE(UF_SPARSE, ZFS_SPARSE, XAT_SPARSE, 4784 xvap.xva_xoptattrs.xoa_sparse); 4785 #undef FLAG_CHANGE 4786 } 4787 if (vap->va_birthtime.tv_sec != VNOVAL) { 4788 xvap.xva_vattr.va_mask |= AT_XVATTR; 4789 XVA_SET_REQ(&xvap, XAT_CREATETIME); 4790 } 4791 return (zfs_setattr(VTOZ(vp), (vattr_t *)&xvap, 0, cred, NULL)); 4792 } 4793 4794 #ifndef _SYS_SYSPROTO_H_ 4795 struct vop_rename_args { 4796 struct vnode *a_fdvp; 4797 struct vnode *a_fvp; 4798 struct componentname *a_fcnp; 4799 struct vnode *a_tdvp; 4800 struct vnode *a_tvp; 4801 struct componentname *a_tcnp; 4802 }; 4803 #endif 4804 4805 static int 4806 zfs_freebsd_rename(struct vop_rename_args *ap) 4807 { 4808 vnode_t *fdvp = ap->a_fdvp; 4809 vnode_t *fvp = ap->a_fvp; 4810 vnode_t *tdvp = ap->a_tdvp; 4811 vnode_t *tvp = ap->a_tvp; 4812 int error; 4813 4814 #if __FreeBSD_version < 1400068 4815 ASSERT(ap->a_fcnp->cn_flags & (SAVENAME|SAVESTART)); 4816 ASSERT(ap->a_tcnp->cn_flags & (SAVENAME|SAVESTART)); 4817 #endif 4818 4819 error = zfs_do_rename(fdvp, &fvp, ap->a_fcnp, tdvp, &tvp, 4820 ap->a_tcnp, ap->a_fcnp->cn_cred); 4821 4822 vrele(fdvp); 4823 vrele(fvp); 4824 vrele(tdvp); 4825 if (tvp != NULL) 4826 vrele(tvp); 4827 4828 return (error); 4829 } 4830 4831 #ifndef _SYS_SYSPROTO_H_ 4832 struct vop_symlink_args { 4833 struct vnode *a_dvp; 4834 struct vnode **a_vpp; 4835 struct componentname *a_cnp; 4836 struct vattr *a_vap; 4837 char *a_target; 4838 }; 4839 #endif 4840 4841 static int 4842 zfs_freebsd_symlink(struct vop_symlink_args *ap) 4843 { 4844 struct componentname *cnp = ap->a_cnp; 4845 vattr_t *vap = ap->a_vap; 4846 znode_t *zp = NULL; 4847 char *symlink; 4848 size_t symlink_len; 4849 int rc; 4850 4851 #if __FreeBSD_version < 1400068 4852 ASSERT(cnp->cn_flags & SAVENAME); 4853 #endif 4854 4855 vap->va_type = VLNK; /* FreeBSD: Syscall only sets va_mode. */ 4856 vattr_init_mask(vap); 4857 *ap->a_vpp = NULL; 4858 4859 rc = zfs_symlink(VTOZ(ap->a_dvp), cnp->cn_nameptr, vap, 4860 ap->a_target, &zp, cnp->cn_cred, 0 /* flags */, NULL); 4861 if (rc == 0) { 4862 *ap->a_vpp = ZTOV(zp); 4863 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__); 4864 MPASS(zp->z_cached_symlink == NULL); 4865 symlink_len = strlen(ap->a_target); 4866 symlink = cache_symlink_alloc(symlink_len + 1, M_WAITOK); 4867 if (symlink != NULL) { 4868 memcpy(symlink, ap->a_target, symlink_len); 4869 symlink[symlink_len] = '\0'; 4870 atomic_store_rel_ptr((uintptr_t *)&zp->z_cached_symlink, 4871 (uintptr_t)symlink); 4872 } 4873 } 4874 return (rc); 4875 } 4876 4877 #ifndef _SYS_SYSPROTO_H_ 4878 struct vop_readlink_args { 4879 struct vnode *a_vp; 4880 struct uio *a_uio; 4881 struct ucred *a_cred; 4882 }; 4883 #endif 4884 4885 static int 4886 zfs_freebsd_readlink(struct vop_readlink_args *ap) 4887 { 4888 zfs_uio_t uio; 4889 int error; 4890 znode_t *zp = VTOZ(ap->a_vp); 4891 char *symlink, *base; 4892 size_t symlink_len; 4893 bool trycache; 4894 4895 zfs_uio_init(&uio, ap->a_uio); 4896 trycache = false; 4897 if (zfs_uio_segflg(&uio) == UIO_SYSSPACE && 4898 zfs_uio_iovcnt(&uio) == 1) { 4899 base = zfs_uio_iovbase(&uio, 0); 4900 symlink_len = zfs_uio_iovlen(&uio, 0); 4901 trycache = true; 4902 } 4903 error = zfs_readlink(ap->a_vp, &uio, ap->a_cred, NULL); 4904 if (atomic_load_ptr(&zp->z_cached_symlink) != NULL || 4905 error != 0 || !trycache) { 4906 return (error); 4907 } 4908 symlink_len -= zfs_uio_resid(&uio); 4909 symlink = cache_symlink_alloc(symlink_len + 1, M_WAITOK); 4910 if (symlink != NULL) { 4911 memcpy(symlink, base, symlink_len); 4912 symlink[symlink_len] = '\0'; 4913 if (!atomic_cmpset_rel_ptr((uintptr_t *)&zp->z_cached_symlink, 4914 (uintptr_t)NULL, (uintptr_t)symlink)) { 4915 cache_symlink_free(symlink, symlink_len + 1); 4916 } 4917 } 4918 return (error); 4919 } 4920 4921 #ifndef _SYS_SYSPROTO_H_ 4922 struct vop_link_args { 4923 struct vnode *a_tdvp; 4924 struct vnode *a_vp; 4925 struct componentname *a_cnp; 4926 }; 4927 #endif 4928 4929 static int 4930 zfs_freebsd_link(struct vop_link_args *ap) 4931 { 4932 struct componentname *cnp = ap->a_cnp; 4933 vnode_t *vp = ap->a_vp; 4934 vnode_t *tdvp = ap->a_tdvp; 4935 4936 if (tdvp->v_mount != vp->v_mount) 4937 return (EXDEV); 4938 4939 #if __FreeBSD_version < 1400068 4940 ASSERT(cnp->cn_flags & SAVENAME); 4941 #endif 4942 4943 return (zfs_link(VTOZ(tdvp), VTOZ(vp), 4944 cnp->cn_nameptr, cnp->cn_cred, 0)); 4945 } 4946 4947 #ifndef _SYS_SYSPROTO_H_ 4948 struct vop_inactive_args { 4949 struct vnode *a_vp; 4950 struct thread *a_td; 4951 }; 4952 #endif 4953 4954 static int 4955 zfs_freebsd_inactive(struct vop_inactive_args *ap) 4956 { 4957 vnode_t *vp = ap->a_vp; 4958 4959 zfs_inactive(vp, curthread->td_ucred, NULL); 4960 return (0); 4961 } 4962 4963 #ifndef _SYS_SYSPROTO_H_ 4964 struct vop_need_inactive_args { 4965 struct vnode *a_vp; 4966 struct thread *a_td; 4967 }; 4968 #endif 4969 4970 static int 4971 zfs_freebsd_need_inactive(struct vop_need_inactive_args *ap) 4972 { 4973 vnode_t *vp = ap->a_vp; 4974 znode_t *zp = VTOZ(vp); 4975 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4976 int need; 4977 4978 if (vn_need_pageq_flush(vp)) 4979 return (1); 4980 4981 if (!ZFS_TEARDOWN_INACTIVE_TRY_ENTER_READ(zfsvfs)) 4982 return (1); 4983 need = (zp->z_sa_hdl == NULL || zp->z_unlinked || zp->z_atime_dirty); 4984 ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs); 4985 4986 return (need); 4987 } 4988 4989 #ifndef _SYS_SYSPROTO_H_ 4990 struct vop_reclaim_args { 4991 struct vnode *a_vp; 4992 struct thread *a_td; 4993 }; 4994 #endif 4995 4996 static int 4997 zfs_freebsd_reclaim(struct vop_reclaim_args *ap) 4998 { 4999 vnode_t *vp = ap->a_vp; 5000 znode_t *zp = VTOZ(vp); 5001 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5002 5003 ASSERT3P(zp, !=, NULL); 5004 5005 /* 5006 * z_teardown_inactive_lock protects from a race with 5007 * zfs_znode_dmu_fini in zfsvfs_teardown during 5008 * force unmount. 5009 */ 5010 ZFS_TEARDOWN_INACTIVE_ENTER_READ(zfsvfs); 5011 if (zp->z_sa_hdl == NULL) 5012 zfs_znode_free(zp); 5013 else 5014 zfs_zinactive(zp); 5015 ZFS_TEARDOWN_INACTIVE_EXIT_READ(zfsvfs); 5016 5017 vp->v_data = NULL; 5018 return (0); 5019 } 5020 5021 #ifndef _SYS_SYSPROTO_H_ 5022 struct vop_fid_args { 5023 struct vnode *a_vp; 5024 struct fid *a_fid; 5025 }; 5026 #endif 5027 5028 static int 5029 zfs_freebsd_fid(struct vop_fid_args *ap) 5030 { 5031 5032 return (zfs_fid(ap->a_vp, (void *)ap->a_fid, NULL)); 5033 } 5034 5035 5036 #ifndef _SYS_SYSPROTO_H_ 5037 struct vop_pathconf_args { 5038 struct vnode *a_vp; 5039 int a_name; 5040 register_t *a_retval; 5041 } *ap; 5042 #endif 5043 5044 static int 5045 zfs_freebsd_pathconf(struct vop_pathconf_args *ap) 5046 { 5047 ulong_t val; 5048 int error; 5049 5050 error = zfs_pathconf(ap->a_vp, ap->a_name, &val, 5051 curthread->td_ucred, NULL); 5052 if (error == 0) { 5053 *ap->a_retval = val; 5054 return (error); 5055 } 5056 if (error != EOPNOTSUPP) 5057 return (error); 5058 5059 switch (ap->a_name) { 5060 case _PC_NAME_MAX: 5061 *ap->a_retval = NAME_MAX; 5062 return (0); 5063 #if __FreeBSD_version >= 1400032 5064 case _PC_DEALLOC_PRESENT: 5065 *ap->a_retval = 1; 5066 return (0); 5067 #endif 5068 case _PC_PIPE_BUF: 5069 if (ap->a_vp->v_type == VDIR || ap->a_vp->v_type == VFIFO) { 5070 *ap->a_retval = PIPE_BUF; 5071 return (0); 5072 } 5073 return (EINVAL); 5074 default: 5075 return (vop_stdpathconf(ap)); 5076 } 5077 } 5078 5079 static int zfs_xattr_compat = 1; 5080 5081 static int 5082 zfs_check_attrname(const char *name) 5083 { 5084 /* We don't allow '/' character in attribute name. */ 5085 if (strchr(name, '/') != NULL) 5086 return (SET_ERROR(EINVAL)); 5087 /* We don't allow attribute names that start with a namespace prefix. */ 5088 if (ZFS_XA_NS_PREFIX_FORBIDDEN(name)) 5089 return (SET_ERROR(EINVAL)); 5090 return (0); 5091 } 5092 5093 /* 5094 * FreeBSD's extended attributes namespace defines file name prefix for ZFS' 5095 * extended attribute name: 5096 * 5097 * NAMESPACE XATTR_COMPAT PREFIX 5098 * system * freebsd:system: 5099 * user 1 (none, can be used to access ZFS 5100 * fsattr(5) attributes created on Solaris) 5101 * user 0 user. 5102 */ 5103 static int 5104 zfs_create_attrname(int attrnamespace, const char *name, char *attrname, 5105 size_t size, boolean_t compat) 5106 { 5107 const char *namespace, *prefix, *suffix; 5108 5109 memset(attrname, 0, size); 5110 5111 switch (attrnamespace) { 5112 case EXTATTR_NAMESPACE_USER: 5113 if (compat) { 5114 /* 5115 * This is the default namespace by which we can access 5116 * all attributes created on Solaris. 5117 */ 5118 prefix = namespace = suffix = ""; 5119 } else { 5120 /* 5121 * This is compatible with the user namespace encoding 5122 * on Linux prior to xattr_compat, but nothing 5123 * else. 5124 */ 5125 prefix = ""; 5126 namespace = "user"; 5127 suffix = "."; 5128 } 5129 break; 5130 case EXTATTR_NAMESPACE_SYSTEM: 5131 prefix = "freebsd:"; 5132 namespace = EXTATTR_NAMESPACE_SYSTEM_STRING; 5133 suffix = ":"; 5134 break; 5135 case EXTATTR_NAMESPACE_EMPTY: 5136 default: 5137 return (SET_ERROR(EINVAL)); 5138 } 5139 if (snprintf(attrname, size, "%s%s%s%s", prefix, namespace, suffix, 5140 name) >= size) { 5141 return (SET_ERROR(ENAMETOOLONG)); 5142 } 5143 return (0); 5144 } 5145 5146 static int 5147 zfs_ensure_xattr_cached(znode_t *zp) 5148 { 5149 int error = 0; 5150 5151 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); 5152 5153 if (zp->z_xattr_cached != NULL) 5154 return (0); 5155 5156 if (rw_write_held(&zp->z_xattr_lock)) 5157 return (zfs_sa_get_xattr(zp)); 5158 5159 if (!rw_tryupgrade(&zp->z_xattr_lock)) { 5160 rw_exit(&zp->z_xattr_lock); 5161 rw_enter(&zp->z_xattr_lock, RW_WRITER); 5162 } 5163 if (zp->z_xattr_cached == NULL) 5164 error = zfs_sa_get_xattr(zp); 5165 rw_downgrade(&zp->z_xattr_lock); 5166 return (error); 5167 } 5168 5169 #ifndef _SYS_SYSPROTO_H_ 5170 struct vop_getextattr { 5171 IN struct vnode *a_vp; 5172 IN int a_attrnamespace; 5173 IN const char *a_name; 5174 INOUT struct uio *a_uio; 5175 OUT size_t *a_size; 5176 IN struct ucred *a_cred; 5177 IN struct thread *a_td; 5178 }; 5179 #endif 5180 5181 static int 5182 zfs_getextattr_dir(struct vop_getextattr_args *ap, const char *attrname) 5183 { 5184 struct thread *td = ap->a_td; 5185 struct nameidata nd; 5186 struct vattr va; 5187 vnode_t *xvp = NULL, *vp; 5188 int error, flags; 5189 5190 error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, 5191 LOOKUP_XATTR, B_FALSE); 5192 if (error != 0) 5193 return (error); 5194 5195 flags = FREAD; 5196 #if __FreeBSD_version < 1400043 5197 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, 5198 xvp, td); 5199 #else 5200 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp); 5201 #endif 5202 error = vn_open_cred(&nd, &flags, 0, VN_OPEN_INVFS, ap->a_cred, NULL); 5203 if (error != 0) 5204 return (SET_ERROR(error)); 5205 vp = nd.ni_vp; 5206 NDFREE_PNBUF(&nd); 5207 5208 if (ap->a_size != NULL) { 5209 error = VOP_GETATTR(vp, &va, ap->a_cred); 5210 if (error == 0) 5211 *ap->a_size = (size_t)va.va_size; 5212 } else if (ap->a_uio != NULL) 5213 error = VOP_READ(vp, ap->a_uio, IO_UNIT, ap->a_cred); 5214 5215 VOP_UNLOCK(vp); 5216 vn_close(vp, flags, ap->a_cred, td); 5217 return (error); 5218 } 5219 5220 static int 5221 zfs_getextattr_sa(struct vop_getextattr_args *ap, const char *attrname) 5222 { 5223 znode_t *zp = VTOZ(ap->a_vp); 5224 uchar_t *nv_value; 5225 uint_t nv_size; 5226 int error; 5227 5228 error = zfs_ensure_xattr_cached(zp); 5229 if (error != 0) 5230 return (error); 5231 5232 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); 5233 ASSERT3P(zp->z_xattr_cached, !=, NULL); 5234 5235 error = nvlist_lookup_byte_array(zp->z_xattr_cached, attrname, 5236 &nv_value, &nv_size); 5237 if (error != 0) 5238 return (SET_ERROR(error)); 5239 5240 if (ap->a_size != NULL) 5241 *ap->a_size = nv_size; 5242 else if (ap->a_uio != NULL) 5243 error = uiomove(nv_value, nv_size, ap->a_uio); 5244 if (error != 0) 5245 return (SET_ERROR(error)); 5246 5247 return (0); 5248 } 5249 5250 static int 5251 zfs_getextattr_impl(struct vop_getextattr_args *ap, boolean_t compat) 5252 { 5253 znode_t *zp = VTOZ(ap->a_vp); 5254 zfsvfs_t *zfsvfs = ZTOZSB(zp); 5255 char attrname[EXTATTR_MAXNAMELEN+1]; 5256 int error; 5257 5258 error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname, 5259 sizeof (attrname), compat); 5260 if (error != 0) 5261 return (error); 5262 5263 error = ENOENT; 5264 if (zfsvfs->z_use_sa && zp->z_is_sa) 5265 error = zfs_getextattr_sa(ap, attrname); 5266 if (error == ENOENT) 5267 error = zfs_getextattr_dir(ap, attrname); 5268 return (error); 5269 } 5270 5271 /* 5272 * Vnode operation to retrieve a named extended attribute. 5273 */ 5274 static int 5275 zfs_getextattr(struct vop_getextattr_args *ap) 5276 { 5277 znode_t *zp = VTOZ(ap->a_vp); 5278 zfsvfs_t *zfsvfs = ZTOZSB(zp); 5279 int error; 5280 5281 /* 5282 * If the xattr property is off, refuse the request. 5283 */ 5284 if (!(zfsvfs->z_flags & ZSB_XATTR)) 5285 return (SET_ERROR(EOPNOTSUPP)); 5286 5287 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 5288 ap->a_cred, ap->a_td, VREAD); 5289 if (error != 0) 5290 return (SET_ERROR(error)); 5291 5292 error = zfs_check_attrname(ap->a_name); 5293 if (error != 0) 5294 return (error); 5295 5296 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 5297 return (error); 5298 error = ENOENT; 5299 rw_enter(&zp->z_xattr_lock, RW_READER); 5300 5301 error = zfs_getextattr_impl(ap, zfs_xattr_compat); 5302 if ((error == ENOENT || error == ENOATTR) && 5303 ap->a_attrnamespace == EXTATTR_NAMESPACE_USER) { 5304 /* 5305 * Fall back to the alternate namespace format if we failed to 5306 * find a user xattr. 5307 */ 5308 error = zfs_getextattr_impl(ap, !zfs_xattr_compat); 5309 } 5310 5311 rw_exit(&zp->z_xattr_lock); 5312 zfs_exit(zfsvfs, FTAG); 5313 if (error == ENOENT) 5314 error = SET_ERROR(ENOATTR); 5315 return (error); 5316 } 5317 5318 #ifndef _SYS_SYSPROTO_H_ 5319 struct vop_deleteextattr { 5320 IN struct vnode *a_vp; 5321 IN int a_attrnamespace; 5322 IN const char *a_name; 5323 IN struct ucred *a_cred; 5324 IN struct thread *a_td; 5325 }; 5326 #endif 5327 5328 static int 5329 zfs_deleteextattr_dir(struct vop_deleteextattr_args *ap, const char *attrname) 5330 { 5331 struct nameidata nd; 5332 vnode_t *xvp = NULL, *vp; 5333 int error; 5334 5335 error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, 5336 LOOKUP_XATTR, B_FALSE); 5337 if (error != 0) 5338 return (error); 5339 5340 #if __FreeBSD_version < 1400043 5341 NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF, 5342 UIO_SYSSPACE, attrname, xvp, ap->a_td); 5343 #else 5344 NDINIT_ATVP(&nd, DELETE, NOFOLLOW | LOCKPARENT | LOCKLEAF, 5345 UIO_SYSSPACE, attrname, xvp); 5346 #endif 5347 error = namei(&nd); 5348 if (error != 0) 5349 return (SET_ERROR(error)); 5350 5351 vp = nd.ni_vp; 5352 error = VOP_REMOVE(nd.ni_dvp, vp, &nd.ni_cnd); 5353 NDFREE_PNBUF(&nd); 5354 5355 vput(nd.ni_dvp); 5356 if (vp == nd.ni_dvp) 5357 vrele(vp); 5358 else 5359 vput(vp); 5360 5361 return (error); 5362 } 5363 5364 static int 5365 zfs_deleteextattr_sa(struct vop_deleteextattr_args *ap, const char *attrname) 5366 { 5367 znode_t *zp = VTOZ(ap->a_vp); 5368 nvlist_t *nvl; 5369 int error; 5370 5371 error = zfs_ensure_xattr_cached(zp); 5372 if (error != 0) 5373 return (error); 5374 5375 ASSERT(RW_WRITE_HELD(&zp->z_xattr_lock)); 5376 ASSERT3P(zp->z_xattr_cached, !=, NULL); 5377 5378 nvl = zp->z_xattr_cached; 5379 error = nvlist_remove(nvl, attrname, DATA_TYPE_BYTE_ARRAY); 5380 if (error != 0) 5381 error = SET_ERROR(error); 5382 else 5383 error = zfs_sa_set_xattr(zp, attrname, NULL, 0); 5384 if (error != 0) { 5385 zp->z_xattr_cached = NULL; 5386 nvlist_free(nvl); 5387 } 5388 return (error); 5389 } 5390 5391 static int 5392 zfs_deleteextattr_impl(struct vop_deleteextattr_args *ap, boolean_t compat) 5393 { 5394 znode_t *zp = VTOZ(ap->a_vp); 5395 zfsvfs_t *zfsvfs = ZTOZSB(zp); 5396 char attrname[EXTATTR_MAXNAMELEN+1]; 5397 int error; 5398 5399 error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname, 5400 sizeof (attrname), compat); 5401 if (error != 0) 5402 return (error); 5403 5404 error = ENOENT; 5405 if (zfsvfs->z_use_sa && zp->z_is_sa) 5406 error = zfs_deleteextattr_sa(ap, attrname); 5407 if (error == ENOENT) 5408 error = zfs_deleteextattr_dir(ap, attrname); 5409 return (error); 5410 } 5411 5412 /* 5413 * Vnode operation to remove a named attribute. 5414 */ 5415 static int 5416 zfs_deleteextattr(struct vop_deleteextattr_args *ap) 5417 { 5418 znode_t *zp = VTOZ(ap->a_vp); 5419 zfsvfs_t *zfsvfs = ZTOZSB(zp); 5420 int error; 5421 5422 /* 5423 * If the xattr property is off, refuse the request. 5424 */ 5425 if (!(zfsvfs->z_flags & ZSB_XATTR)) 5426 return (SET_ERROR(EOPNOTSUPP)); 5427 5428 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 5429 ap->a_cred, ap->a_td, VWRITE); 5430 if (error != 0) 5431 return (SET_ERROR(error)); 5432 5433 error = zfs_check_attrname(ap->a_name); 5434 if (error != 0) 5435 return (error); 5436 5437 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 5438 return (error); 5439 rw_enter(&zp->z_xattr_lock, RW_WRITER); 5440 5441 error = zfs_deleteextattr_impl(ap, zfs_xattr_compat); 5442 if ((error == ENOENT || error == ENOATTR) && 5443 ap->a_attrnamespace == EXTATTR_NAMESPACE_USER) { 5444 /* 5445 * Fall back to the alternate namespace format if we failed to 5446 * find a user xattr. 5447 */ 5448 error = zfs_deleteextattr_impl(ap, !zfs_xattr_compat); 5449 } 5450 5451 rw_exit(&zp->z_xattr_lock); 5452 zfs_exit(zfsvfs, FTAG); 5453 if (error == ENOENT) 5454 error = SET_ERROR(ENOATTR); 5455 return (error); 5456 } 5457 5458 #ifndef _SYS_SYSPROTO_H_ 5459 struct vop_setextattr { 5460 IN struct vnode *a_vp; 5461 IN int a_attrnamespace; 5462 IN const char *a_name; 5463 INOUT struct uio *a_uio; 5464 IN struct ucred *a_cred; 5465 IN struct thread *a_td; 5466 }; 5467 #endif 5468 5469 static int 5470 zfs_setextattr_dir(struct vop_setextattr_args *ap, const char *attrname) 5471 { 5472 struct thread *td = ap->a_td; 5473 struct nameidata nd; 5474 struct vattr va; 5475 vnode_t *xvp = NULL, *vp; 5476 int error, flags; 5477 5478 error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, 5479 LOOKUP_XATTR | CREATE_XATTR_DIR, B_FALSE); 5480 if (error != 0) 5481 return (error); 5482 5483 flags = FFLAGS(O_WRONLY | O_CREAT); 5484 #if __FreeBSD_version < 1400043 5485 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp, td); 5486 #else 5487 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, attrname, xvp); 5488 #endif 5489 error = vn_open_cred(&nd, &flags, 0600, VN_OPEN_INVFS, ap->a_cred, 5490 NULL); 5491 if (error != 0) 5492 return (SET_ERROR(error)); 5493 vp = nd.ni_vp; 5494 NDFREE_PNBUF(&nd); 5495 5496 VATTR_NULL(&va); 5497 va.va_size = 0; 5498 error = VOP_SETATTR(vp, &va, ap->a_cred); 5499 if (error == 0) 5500 VOP_WRITE(vp, ap->a_uio, IO_UNIT, ap->a_cred); 5501 5502 VOP_UNLOCK(vp); 5503 vn_close(vp, flags, ap->a_cred, td); 5504 return (error); 5505 } 5506 5507 static int 5508 zfs_setextattr_sa(struct vop_setextattr_args *ap, const char *attrname) 5509 { 5510 znode_t *zp = VTOZ(ap->a_vp); 5511 nvlist_t *nvl; 5512 size_t sa_size; 5513 int error; 5514 5515 error = zfs_ensure_xattr_cached(zp); 5516 if (error != 0) 5517 return (error); 5518 5519 ASSERT(RW_WRITE_HELD(&zp->z_xattr_lock)); 5520 ASSERT3P(zp->z_xattr_cached, !=, NULL); 5521 5522 nvl = zp->z_xattr_cached; 5523 size_t entry_size = ap->a_uio->uio_resid; 5524 if (entry_size > DXATTR_MAX_ENTRY_SIZE) 5525 return (SET_ERROR(EFBIG)); 5526 error = nvlist_size(nvl, &sa_size, NV_ENCODE_XDR); 5527 if (error != 0) 5528 return (SET_ERROR(error)); 5529 if (sa_size > DXATTR_MAX_SA_SIZE) 5530 return (SET_ERROR(EFBIG)); 5531 uchar_t *buf = kmem_alloc(entry_size, KM_SLEEP); 5532 error = uiomove(buf, entry_size, ap->a_uio); 5533 if (error != 0) { 5534 error = SET_ERROR(error); 5535 } else { 5536 error = nvlist_add_byte_array(nvl, attrname, buf, entry_size); 5537 if (error != 0) 5538 error = SET_ERROR(error); 5539 } 5540 if (error == 0) 5541 error = zfs_sa_set_xattr(zp, attrname, buf, entry_size); 5542 kmem_free(buf, entry_size); 5543 if (error != 0) { 5544 zp->z_xattr_cached = NULL; 5545 nvlist_free(nvl); 5546 } 5547 return (error); 5548 } 5549 5550 static int 5551 zfs_setextattr_impl(struct vop_setextattr_args *ap, boolean_t compat) 5552 { 5553 znode_t *zp = VTOZ(ap->a_vp); 5554 zfsvfs_t *zfsvfs = ZTOZSB(zp); 5555 char attrname[EXTATTR_MAXNAMELEN+1]; 5556 int error; 5557 5558 error = zfs_create_attrname(ap->a_attrnamespace, ap->a_name, attrname, 5559 sizeof (attrname), compat); 5560 if (error != 0) 5561 return (error); 5562 5563 struct vop_deleteextattr_args vda = { 5564 .a_vp = ap->a_vp, 5565 .a_attrnamespace = ap->a_attrnamespace, 5566 .a_name = ap->a_name, 5567 .a_cred = ap->a_cred, 5568 .a_td = ap->a_td, 5569 }; 5570 error = ENOENT; 5571 if (zfsvfs->z_use_sa && zp->z_is_sa && zfsvfs->z_xattr_sa) { 5572 error = zfs_setextattr_sa(ap, attrname); 5573 if (error == 0) { 5574 /* 5575 * Successfully put into SA, we need to clear the one 5576 * in dir if present. 5577 */ 5578 zfs_deleteextattr_dir(&vda, attrname); 5579 } 5580 } 5581 if (error != 0) { 5582 error = zfs_setextattr_dir(ap, attrname); 5583 if (error == 0 && zp->z_is_sa) { 5584 /* 5585 * Successfully put into dir, we need to clear the one 5586 * in SA if present. 5587 */ 5588 zfs_deleteextattr_sa(&vda, attrname); 5589 } 5590 } 5591 if (error == 0 && ap->a_attrnamespace == EXTATTR_NAMESPACE_USER) { 5592 /* 5593 * Also clear all versions of the alternate compat name. 5594 */ 5595 zfs_deleteextattr_impl(&vda, !compat); 5596 } 5597 return (error); 5598 } 5599 5600 /* 5601 * Vnode operation to set a named attribute. 5602 */ 5603 static int 5604 zfs_setextattr(struct vop_setextattr_args *ap) 5605 { 5606 znode_t *zp = VTOZ(ap->a_vp); 5607 zfsvfs_t *zfsvfs = ZTOZSB(zp); 5608 int error; 5609 5610 /* 5611 * If the xattr property is off, refuse the request. 5612 */ 5613 if (!(zfsvfs->z_flags & ZSB_XATTR)) 5614 return (SET_ERROR(EOPNOTSUPP)); 5615 5616 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 5617 ap->a_cred, ap->a_td, VWRITE); 5618 if (error != 0) 5619 return (SET_ERROR(error)); 5620 5621 error = zfs_check_attrname(ap->a_name); 5622 if (error != 0) 5623 return (error); 5624 5625 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 5626 return (error); 5627 rw_enter(&zp->z_xattr_lock, RW_WRITER); 5628 5629 error = zfs_setextattr_impl(ap, zfs_xattr_compat); 5630 5631 rw_exit(&zp->z_xattr_lock); 5632 zfs_exit(zfsvfs, FTAG); 5633 return (error); 5634 } 5635 5636 #ifndef _SYS_SYSPROTO_H_ 5637 struct vop_listextattr { 5638 IN struct vnode *a_vp; 5639 IN int a_attrnamespace; 5640 INOUT struct uio *a_uio; 5641 OUT size_t *a_size; 5642 IN struct ucred *a_cred; 5643 IN struct thread *a_td; 5644 }; 5645 #endif 5646 5647 static int 5648 zfs_listextattr_dir(struct vop_listextattr_args *ap, const char *attrprefix) 5649 { 5650 struct thread *td = ap->a_td; 5651 struct nameidata nd; 5652 uint8_t dirbuf[sizeof (struct dirent)]; 5653 struct iovec aiov; 5654 struct uio auio; 5655 vnode_t *xvp = NULL, *vp; 5656 int error, eof; 5657 5658 error = zfs_lookup(ap->a_vp, NULL, &xvp, NULL, 0, ap->a_cred, 5659 LOOKUP_XATTR, B_FALSE); 5660 if (error != 0) { 5661 /* 5662 * ENOATTR means that the EA directory does not yet exist, 5663 * i.e. there are no extended attributes there. 5664 */ 5665 if (error == ENOATTR) 5666 error = 0; 5667 return (error); 5668 } 5669 5670 #if __FreeBSD_version < 1400043 5671 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED, 5672 UIO_SYSSPACE, ".", xvp, td); 5673 #else 5674 NDINIT_ATVP(&nd, LOOKUP, NOFOLLOW | LOCKLEAF | LOCKSHARED, 5675 UIO_SYSSPACE, ".", xvp); 5676 #endif 5677 error = namei(&nd); 5678 if (error != 0) 5679 return (SET_ERROR(error)); 5680 vp = nd.ni_vp; 5681 NDFREE_PNBUF(&nd); 5682 5683 auio.uio_iov = &aiov; 5684 auio.uio_iovcnt = 1; 5685 auio.uio_segflg = UIO_SYSSPACE; 5686 auio.uio_td = td; 5687 auio.uio_rw = UIO_READ; 5688 auio.uio_offset = 0; 5689 5690 size_t plen = strlen(attrprefix); 5691 5692 do { 5693 aiov.iov_base = (void *)dirbuf; 5694 aiov.iov_len = sizeof (dirbuf); 5695 auio.uio_resid = sizeof (dirbuf); 5696 error = VOP_READDIR(vp, &auio, ap->a_cred, &eof, NULL, NULL); 5697 if (error != 0) 5698 break; 5699 int done = sizeof (dirbuf) - auio.uio_resid; 5700 for (int pos = 0; pos < done; ) { 5701 struct dirent *dp = (struct dirent *)(dirbuf + pos); 5702 pos += dp->d_reclen; 5703 /* 5704 * XXX: Temporarily we also accept DT_UNKNOWN, as this 5705 * is what we get when attribute was created on Solaris. 5706 */ 5707 if (dp->d_type != DT_REG && dp->d_type != DT_UNKNOWN) 5708 continue; 5709 else if (plen == 0 && 5710 ZFS_XA_NS_PREFIX_FORBIDDEN(dp->d_name)) 5711 continue; 5712 else if (strncmp(dp->d_name, attrprefix, plen) != 0) 5713 continue; 5714 uint8_t nlen = dp->d_namlen - plen; 5715 if (ap->a_size != NULL) { 5716 *ap->a_size += 1 + nlen; 5717 } else if (ap->a_uio != NULL) { 5718 /* 5719 * Format of extattr name entry is one byte for 5720 * length and the rest for name. 5721 */ 5722 error = uiomove(&nlen, 1, ap->a_uio); 5723 if (error == 0) { 5724 char *namep = dp->d_name + plen; 5725 error = uiomove(namep, nlen, ap->a_uio); 5726 } 5727 if (error != 0) { 5728 error = SET_ERROR(error); 5729 break; 5730 } 5731 } 5732 } 5733 } while (!eof && error == 0); 5734 5735 vput(vp); 5736 return (error); 5737 } 5738 5739 static int 5740 zfs_listextattr_sa(struct vop_listextattr_args *ap, const char *attrprefix) 5741 { 5742 znode_t *zp = VTOZ(ap->a_vp); 5743 int error; 5744 5745 error = zfs_ensure_xattr_cached(zp); 5746 if (error != 0) 5747 return (error); 5748 5749 ASSERT(RW_LOCK_HELD(&zp->z_xattr_lock)); 5750 ASSERT3P(zp->z_xattr_cached, !=, NULL); 5751 5752 size_t plen = strlen(attrprefix); 5753 nvpair_t *nvp = NULL; 5754 while ((nvp = nvlist_next_nvpair(zp->z_xattr_cached, nvp)) != NULL) { 5755 ASSERT3U(nvpair_type(nvp), ==, DATA_TYPE_BYTE_ARRAY); 5756 5757 const char *name = nvpair_name(nvp); 5758 if (plen == 0 && ZFS_XA_NS_PREFIX_FORBIDDEN(name)) 5759 continue; 5760 else if (strncmp(name, attrprefix, plen) != 0) 5761 continue; 5762 uint8_t nlen = strlen(name) - plen; 5763 if (ap->a_size != NULL) { 5764 *ap->a_size += 1 + nlen; 5765 } else if (ap->a_uio != NULL) { 5766 /* 5767 * Format of extattr name entry is one byte for 5768 * length and the rest for name. 5769 */ 5770 error = uiomove(&nlen, 1, ap->a_uio); 5771 if (error == 0) { 5772 char *namep = __DECONST(char *, name) + plen; 5773 error = uiomove(namep, nlen, ap->a_uio); 5774 } 5775 if (error != 0) { 5776 error = SET_ERROR(error); 5777 break; 5778 } 5779 } 5780 } 5781 5782 return (error); 5783 } 5784 5785 static int 5786 zfs_listextattr_impl(struct vop_listextattr_args *ap, boolean_t compat) 5787 { 5788 znode_t *zp = VTOZ(ap->a_vp); 5789 zfsvfs_t *zfsvfs = ZTOZSB(zp); 5790 char attrprefix[16]; 5791 int error; 5792 5793 error = zfs_create_attrname(ap->a_attrnamespace, "", attrprefix, 5794 sizeof (attrprefix), compat); 5795 if (error != 0) 5796 return (error); 5797 5798 if (zfsvfs->z_use_sa && zp->z_is_sa) 5799 error = zfs_listextattr_sa(ap, attrprefix); 5800 if (error == 0) 5801 error = zfs_listextattr_dir(ap, attrprefix); 5802 return (error); 5803 } 5804 5805 /* 5806 * Vnode operation to retrieve extended attributes on a vnode. 5807 */ 5808 static int 5809 zfs_listextattr(struct vop_listextattr_args *ap) 5810 { 5811 znode_t *zp = VTOZ(ap->a_vp); 5812 zfsvfs_t *zfsvfs = ZTOZSB(zp); 5813 int error; 5814 5815 if (ap->a_size != NULL) 5816 *ap->a_size = 0; 5817 5818 /* 5819 * If the xattr property is off, refuse the request. 5820 */ 5821 if (!(zfsvfs->z_flags & ZSB_XATTR)) 5822 return (SET_ERROR(EOPNOTSUPP)); 5823 5824 error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace, 5825 ap->a_cred, ap->a_td, VREAD); 5826 if (error != 0) 5827 return (SET_ERROR(error)); 5828 5829 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 5830 return (error); 5831 rw_enter(&zp->z_xattr_lock, RW_READER); 5832 5833 error = zfs_listextattr_impl(ap, zfs_xattr_compat); 5834 if (error == 0 && ap->a_attrnamespace == EXTATTR_NAMESPACE_USER) { 5835 /* Also list user xattrs with the alternate format. */ 5836 error = zfs_listextattr_impl(ap, !zfs_xattr_compat); 5837 } 5838 5839 rw_exit(&zp->z_xattr_lock); 5840 zfs_exit(zfsvfs, FTAG); 5841 return (error); 5842 } 5843 5844 #ifndef _SYS_SYSPROTO_H_ 5845 struct vop_getacl_args { 5846 struct vnode *vp; 5847 acl_type_t type; 5848 struct acl *aclp; 5849 struct ucred *cred; 5850 struct thread *td; 5851 }; 5852 #endif 5853 5854 static int 5855 zfs_freebsd_getacl(struct vop_getacl_args *ap) 5856 { 5857 int error; 5858 vsecattr_t vsecattr; 5859 5860 if (ap->a_type != ACL_TYPE_NFS4) 5861 return (EINVAL); 5862 5863 vsecattr.vsa_mask = VSA_ACE | VSA_ACECNT; 5864 if ((error = zfs_getsecattr(VTOZ(ap->a_vp), 5865 &vsecattr, 0, ap->a_cred))) 5866 return (error); 5867 5868 error = acl_from_aces(ap->a_aclp, vsecattr.vsa_aclentp, 5869 vsecattr.vsa_aclcnt); 5870 if (vsecattr.vsa_aclentp != NULL) 5871 kmem_free(vsecattr.vsa_aclentp, vsecattr.vsa_aclentsz); 5872 5873 return (error); 5874 } 5875 5876 #ifndef _SYS_SYSPROTO_H_ 5877 struct vop_setacl_args { 5878 struct vnode *vp; 5879 acl_type_t type; 5880 struct acl *aclp; 5881 struct ucred *cred; 5882 struct thread *td; 5883 }; 5884 #endif 5885 5886 static int 5887 zfs_freebsd_setacl(struct vop_setacl_args *ap) 5888 { 5889 int error; 5890 vsecattr_t vsecattr; 5891 int aclbsize; /* size of acl list in bytes */ 5892 aclent_t *aaclp; 5893 5894 if (ap->a_type != ACL_TYPE_NFS4) 5895 return (EINVAL); 5896 5897 if (ap->a_aclp == NULL) 5898 return (EINVAL); 5899 5900 if (ap->a_aclp->acl_cnt < 1 || ap->a_aclp->acl_cnt > MAX_ACL_ENTRIES) 5901 return (EINVAL); 5902 5903 /* 5904 * With NFSv4 ACLs, chmod(2) may need to add additional entries, 5905 * splitting every entry into two and appending "canonical six" 5906 * entries at the end. Don't allow for setting an ACL that would 5907 * cause chmod(2) to run out of ACL entries. 5908 */ 5909 if (ap->a_aclp->acl_cnt * 2 + 6 > ACL_MAX_ENTRIES) 5910 return (ENOSPC); 5911 5912 error = acl_nfs4_check(ap->a_aclp, ap->a_vp->v_type == VDIR); 5913 if (error != 0) 5914 return (error); 5915 5916 vsecattr.vsa_mask = VSA_ACE; 5917 aclbsize = ap->a_aclp->acl_cnt * sizeof (ace_t); 5918 vsecattr.vsa_aclentp = kmem_alloc(aclbsize, KM_SLEEP); 5919 aaclp = vsecattr.vsa_aclentp; 5920 vsecattr.vsa_aclentsz = aclbsize; 5921 5922 aces_from_acl(vsecattr.vsa_aclentp, &vsecattr.vsa_aclcnt, ap->a_aclp); 5923 error = zfs_setsecattr(VTOZ(ap->a_vp), &vsecattr, 0, ap->a_cred); 5924 kmem_free(aaclp, aclbsize); 5925 5926 return (error); 5927 } 5928 5929 #ifndef _SYS_SYSPROTO_H_ 5930 struct vop_aclcheck_args { 5931 struct vnode *vp; 5932 acl_type_t type; 5933 struct acl *aclp; 5934 struct ucred *cred; 5935 struct thread *td; 5936 }; 5937 #endif 5938 5939 static int 5940 zfs_freebsd_aclcheck(struct vop_aclcheck_args *ap) 5941 { 5942 5943 return (EOPNOTSUPP); 5944 } 5945 5946 static int 5947 zfs_vptocnp(struct vop_vptocnp_args *ap) 5948 { 5949 vnode_t *covered_vp; 5950 vnode_t *vp = ap->a_vp; 5951 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 5952 znode_t *zp = VTOZ(vp); 5953 int ltype; 5954 int error; 5955 5956 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 5957 return (error); 5958 5959 /* 5960 * If we are a snapshot mounted under .zfs, run the operation 5961 * on the covered vnode. 5962 */ 5963 if (zp->z_id != zfsvfs->z_root || zfsvfs->z_parent == zfsvfs) { 5964 char name[MAXNAMLEN + 1]; 5965 znode_t *dzp; 5966 size_t len; 5967 5968 error = zfs_znode_parent_and_name(zp, &dzp, name); 5969 if (error == 0) { 5970 len = strlen(name); 5971 if (*ap->a_buflen < len) 5972 error = SET_ERROR(ENOMEM); 5973 } 5974 if (error == 0) { 5975 *ap->a_buflen -= len; 5976 memcpy(ap->a_buf + *ap->a_buflen, name, len); 5977 *ap->a_vpp = ZTOV(dzp); 5978 } 5979 zfs_exit(zfsvfs, FTAG); 5980 return (error); 5981 } 5982 zfs_exit(zfsvfs, FTAG); 5983 5984 covered_vp = vp->v_mount->mnt_vnodecovered; 5985 enum vgetstate vs = vget_prep(covered_vp); 5986 ltype = VOP_ISLOCKED(vp); 5987 VOP_UNLOCK(vp); 5988 error = vget_finish(covered_vp, LK_SHARED, vs); 5989 if (error == 0) { 5990 error = VOP_VPTOCNP(covered_vp, ap->a_vpp, ap->a_buf, 5991 ap->a_buflen); 5992 vput(covered_vp); 5993 } 5994 vn_lock(vp, ltype | LK_RETRY); 5995 if (VN_IS_DOOMED(vp)) 5996 error = SET_ERROR(ENOENT); 5997 return (error); 5998 } 5999 6000 #if __FreeBSD_version >= 1400032 6001 static int 6002 zfs_deallocate(struct vop_deallocate_args *ap) 6003 { 6004 znode_t *zp = VTOZ(ap->a_vp); 6005 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 6006 zilog_t *zilog; 6007 off_t off, len, file_sz; 6008 int error; 6009 6010 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0) 6011 return (error); 6012 6013 /* 6014 * Callers might not be able to detect properly that we are read-only, 6015 * so check it explicitly here. 6016 */ 6017 if (zfs_is_readonly(zfsvfs)) { 6018 zfs_exit(zfsvfs, FTAG); 6019 return (SET_ERROR(EROFS)); 6020 } 6021 6022 zilog = zfsvfs->z_log; 6023 off = *ap->a_offset; 6024 len = *ap->a_len; 6025 file_sz = zp->z_size; 6026 if (off + len > file_sz) 6027 len = file_sz - off; 6028 /* Fast path for out-of-range request. */ 6029 if (len <= 0) { 6030 *ap->a_len = 0; 6031 zfs_exit(zfsvfs, FTAG); 6032 return (0); 6033 } 6034 6035 error = zfs_freesp(zp, off, len, O_RDWR, TRUE); 6036 if (error == 0) { 6037 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS || 6038 (ap->a_ioflag & IO_SYNC) != 0) 6039 zil_commit(zilog, zp->z_id); 6040 *ap->a_offset = off + len; 6041 *ap->a_len = 0; 6042 } 6043 6044 zfs_exit(zfsvfs, FTAG); 6045 return (error); 6046 } 6047 #endif 6048 6049 #ifndef _SYS_SYSPROTO_H_ 6050 struct vop_copy_file_range_args { 6051 struct vnode *a_invp; 6052 off_t *a_inoffp; 6053 struct vnode *a_outvp; 6054 off_t *a_outoffp; 6055 size_t *a_lenp; 6056 unsigned int a_flags; 6057 struct ucred *a_incred; 6058 struct ucred *a_outcred; 6059 struct thread *a_fsizetd; 6060 } 6061 #endif 6062 /* 6063 * TODO: FreeBSD will only call file system-specific copy_file_range() if both 6064 * files resides under the same mountpoint. In case of ZFS we want to be called 6065 * even is files are in different datasets (but on the same pools, but we need 6066 * to check that ourselves). 6067 */ 6068 static int 6069 zfs_freebsd_copy_file_range(struct vop_copy_file_range_args *ap) 6070 { 6071 zfsvfs_t *outzfsvfs; 6072 struct vnode *invp = ap->a_invp; 6073 struct vnode *outvp = ap->a_outvp; 6074 struct mount *mp; 6075 int error; 6076 uint64_t len = *ap->a_lenp; 6077 6078 if (!zfs_bclone_enabled) { 6079 mp = NULL; 6080 goto bad_write_fallback; 6081 } 6082 6083 /* 6084 * TODO: If offset/length is not aligned to recordsize, use 6085 * vn_generic_copy_file_range() on this fragment. 6086 * It would be better to do this after we lock the vnodes, but then we 6087 * need something else than vn_generic_copy_file_range(). 6088 */ 6089 6090 vn_start_write(outvp, &mp, V_WAIT); 6091 if (__predict_true(mp == outvp->v_mount)) { 6092 outzfsvfs = (zfsvfs_t *)mp->mnt_data; 6093 if (!spa_feature_is_enabled(dmu_objset_spa(outzfsvfs->z_os), 6094 SPA_FEATURE_BLOCK_CLONING)) { 6095 goto bad_write_fallback; 6096 } 6097 } 6098 if (invp == outvp) { 6099 if (vn_lock(outvp, LK_EXCLUSIVE) != 0) { 6100 goto bad_write_fallback; 6101 } 6102 } else { 6103 #if (__FreeBSD_version >= 1302506 && __FreeBSD_version < 1400000) || \ 6104 __FreeBSD_version >= 1400086 6105 vn_lock_pair(invp, false, LK_EXCLUSIVE, outvp, false, 6106 LK_EXCLUSIVE); 6107 #else 6108 vn_lock_pair(invp, false, outvp, false); 6109 #endif 6110 if (VN_IS_DOOMED(invp) || VN_IS_DOOMED(outvp)) { 6111 goto bad_locked_fallback; 6112 } 6113 } 6114 6115 #ifdef MAC 6116 error = mac_vnode_check_write(curthread->td_ucred, ap->a_outcred, 6117 outvp); 6118 if (error != 0) 6119 goto out_locked; 6120 #endif 6121 6122 error = zfs_clone_range(VTOZ(invp), ap->a_inoffp, VTOZ(outvp), 6123 ap->a_outoffp, &len, ap->a_outcred); 6124 if (error == EXDEV || error == EAGAIN || error == EINVAL || 6125 error == EOPNOTSUPP) 6126 goto bad_locked_fallback; 6127 *ap->a_lenp = (size_t)len; 6128 out_locked: 6129 if (invp != outvp) 6130 VOP_UNLOCK(invp); 6131 VOP_UNLOCK(outvp); 6132 if (mp != NULL) 6133 vn_finished_write(mp); 6134 return (error); 6135 6136 bad_locked_fallback: 6137 if (invp != outvp) 6138 VOP_UNLOCK(invp); 6139 VOP_UNLOCK(outvp); 6140 bad_write_fallback: 6141 if (mp != NULL) 6142 vn_finished_write(mp); 6143 error = ENOSYS; 6144 return (error); 6145 } 6146 6147 struct vop_vector zfs_vnodeops; 6148 struct vop_vector zfs_fifoops; 6149 struct vop_vector zfs_shareops; 6150 6151 struct vop_vector zfs_vnodeops = { 6152 .vop_default = &default_vnodeops, 6153 .vop_inactive = zfs_freebsd_inactive, 6154 .vop_need_inactive = zfs_freebsd_need_inactive, 6155 .vop_reclaim = zfs_freebsd_reclaim, 6156 .vop_fplookup_vexec = zfs_freebsd_fplookup_vexec, 6157 .vop_fplookup_symlink = zfs_freebsd_fplookup_symlink, 6158 .vop_access = zfs_freebsd_access, 6159 .vop_allocate = VOP_EINVAL, 6160 #if __FreeBSD_version >= 1400032 6161 .vop_deallocate = zfs_deallocate, 6162 #endif 6163 .vop_lookup = zfs_cache_lookup, 6164 .vop_cachedlookup = zfs_freebsd_cachedlookup, 6165 .vop_getattr = zfs_freebsd_getattr, 6166 .vop_setattr = zfs_freebsd_setattr, 6167 .vop_create = zfs_freebsd_create, 6168 .vop_mknod = (vop_mknod_t *)zfs_freebsd_create, 6169 .vop_mkdir = zfs_freebsd_mkdir, 6170 .vop_readdir = zfs_freebsd_readdir, 6171 .vop_fsync = zfs_freebsd_fsync, 6172 .vop_open = zfs_freebsd_open, 6173 .vop_close = zfs_freebsd_close, 6174 .vop_rmdir = zfs_freebsd_rmdir, 6175 .vop_ioctl = zfs_freebsd_ioctl, 6176 .vop_link = zfs_freebsd_link, 6177 .vop_symlink = zfs_freebsd_symlink, 6178 .vop_readlink = zfs_freebsd_readlink, 6179 .vop_read = zfs_freebsd_read, 6180 .vop_write = zfs_freebsd_write, 6181 .vop_remove = zfs_freebsd_remove, 6182 .vop_rename = zfs_freebsd_rename, 6183 .vop_pathconf = zfs_freebsd_pathconf, 6184 .vop_bmap = zfs_freebsd_bmap, 6185 .vop_fid = zfs_freebsd_fid, 6186 .vop_getextattr = zfs_getextattr, 6187 .vop_deleteextattr = zfs_deleteextattr, 6188 .vop_setextattr = zfs_setextattr, 6189 .vop_listextattr = zfs_listextattr, 6190 .vop_getacl = zfs_freebsd_getacl, 6191 .vop_setacl = zfs_freebsd_setacl, 6192 .vop_aclcheck = zfs_freebsd_aclcheck, 6193 .vop_getpages = zfs_freebsd_getpages, 6194 .vop_putpages = zfs_freebsd_putpages, 6195 .vop_vptocnp = zfs_vptocnp, 6196 .vop_lock1 = vop_lock, 6197 .vop_unlock = vop_unlock, 6198 .vop_islocked = vop_islocked, 6199 #if __FreeBSD_version >= 1400043 6200 .vop_add_writecount = vop_stdadd_writecount_nomsync, 6201 #endif 6202 .vop_copy_file_range = zfs_freebsd_copy_file_range, 6203 }; 6204 VFS_VOP_VECTOR_REGISTER(zfs_vnodeops); 6205 6206 struct vop_vector zfs_fifoops = { 6207 .vop_default = &fifo_specops, 6208 .vop_fsync = zfs_freebsd_fsync, 6209 .vop_fplookup_vexec = zfs_freebsd_fplookup_vexec, 6210 .vop_fplookup_symlink = zfs_freebsd_fplookup_symlink, 6211 .vop_access = zfs_freebsd_access, 6212 .vop_getattr = zfs_freebsd_getattr, 6213 .vop_inactive = zfs_freebsd_inactive, 6214 .vop_read = VOP_PANIC, 6215 .vop_reclaim = zfs_freebsd_reclaim, 6216 .vop_setattr = zfs_freebsd_setattr, 6217 .vop_write = VOP_PANIC, 6218 .vop_pathconf = zfs_freebsd_pathconf, 6219 .vop_fid = zfs_freebsd_fid, 6220 .vop_getacl = zfs_freebsd_getacl, 6221 .vop_setacl = zfs_freebsd_setacl, 6222 .vop_aclcheck = zfs_freebsd_aclcheck, 6223 #if __FreeBSD_version >= 1400043 6224 .vop_add_writecount = vop_stdadd_writecount_nomsync, 6225 #endif 6226 }; 6227 VFS_VOP_VECTOR_REGISTER(zfs_fifoops); 6228 6229 /* 6230 * special share hidden files vnode operations template 6231 */ 6232 struct vop_vector zfs_shareops = { 6233 .vop_default = &default_vnodeops, 6234 .vop_fplookup_vexec = VOP_EAGAIN, 6235 .vop_fplookup_symlink = VOP_EAGAIN, 6236 .vop_access = zfs_freebsd_access, 6237 .vop_inactive = zfs_freebsd_inactive, 6238 .vop_reclaim = zfs_freebsd_reclaim, 6239 .vop_fid = zfs_freebsd_fid, 6240 .vop_pathconf = zfs_freebsd_pathconf, 6241 #if __FreeBSD_version >= 1400043 6242 .vop_add_writecount = vop_stdadd_writecount_nomsync, 6243 #endif 6244 }; 6245 VFS_VOP_VECTOR_REGISTER(zfs_shareops); 6246 6247 ZFS_MODULE_PARAM(zfs, zfs_, xattr_compat, INT, ZMOD_RW, 6248 "Use legacy ZFS xattr naming for writing new user namespace xattrs"); 6249