xref: /freebsd-src/sys/contrib/openzfs/module/os/freebsd/zfs/zfs_vfsops.c (revision 371f152c7ff76b99acbdf0decf5aa5ca1cc45bd6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24  * All rights reserved.
25  * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
28  */
29 
30 /* Portions Copyright 2010 Robert Milkowski */
31 
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/kernel.h>
36 #include <sys/sysmacros.h>
37 #include <sys/kmem.h>
38 #include <sys/acl.h>
39 #include <sys/vnode.h>
40 #include <sys/vfs.h>
41 #include <sys/mntent.h>
42 #include <sys/mount.h>
43 #include <sys/cmn_err.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/zfs_dir.h>
46 #include <sys/zil.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/dmu.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/dsl_dataset.h>
51 #include <sys/dsl_deleg.h>
52 #include <sys/spa.h>
53 #include <sys/zap.h>
54 #include <sys/sa.h>
55 #include <sys/sa_impl.h>
56 #include <sys/policy.h>
57 #include <sys/atomic.h>
58 #include <sys/zfs_ioctl.h>
59 #include <sys/zfs_ctldir.h>
60 #include <sys/zfs_fuid.h>
61 #include <sys/sunddi.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/dsl_dir.h>
64 #include <sys/spa_boot.h>
65 #include <sys/jail.h>
66 #include <ufs/ufs/quota.h>
67 #include <sys/zfs_quota.h>
68 
69 #include "zfs_comutil.h"
70 
71 #ifndef	MNTK_VMSETSIZE_BUG
72 #define	MNTK_VMSETSIZE_BUG	0
73 #endif
74 #ifndef	MNTK_NOMSYNC
75 #define	MNTK_NOMSYNC	8
76 #endif
77 
78 /* BEGIN CSTYLED */
79 struct mtx zfs_debug_mtx;
80 MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
81 
82 SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
83 
84 int zfs_super_owner;
85 SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
86     "File system owner can perform privileged operation on his file systems");
87 
88 int zfs_debug_level;
89 SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RWTUN, &zfs_debug_level, 0,
90 	"Debug level");
91 
92 SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
93 static int zfs_version_acl = ZFS_ACL_VERSION;
94 SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
95     "ZFS_ACL_VERSION");
96 static int zfs_version_spa = SPA_VERSION;
97 SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
98     "SPA_VERSION");
99 static int zfs_version_zpl = ZPL_VERSION;
100 SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
101     "ZPL_VERSION");
102 /* END CSTYLED */
103 
104 static int zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg);
105 static int zfs_mount(vfs_t *vfsp);
106 static int zfs_umount(vfs_t *vfsp, int fflag);
107 static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
108 static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
109 static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
110 static int zfs_sync(vfs_t *vfsp, int waitfor);
111 #if __FreeBSD_version >= 1300098
112 static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp,
113     struct ucred **credanonp, int *numsecflavors, int *secflavors);
114 #else
115 static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
116     struct ucred **credanonp, int *numsecflavors, int **secflavors);
117 #endif
118 static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
119 static void zfs_freevfs(vfs_t *vfsp);
120 
121 struct vfsops zfs_vfsops = {
122 	.vfs_mount =		zfs_mount,
123 	.vfs_unmount =		zfs_umount,
124 #if __FreeBSD_version >= 1300049
125 	.vfs_root =		vfs_cache_root,
126 	.vfs_cachedroot = zfs_root,
127 #else
128 	.vfs_root =		zfs_root,
129 #endif
130 	.vfs_statfs =		zfs_statfs,
131 	.vfs_vget =		zfs_vget,
132 	.vfs_sync =		zfs_sync,
133 	.vfs_checkexp =		zfs_checkexp,
134 	.vfs_fhtovp =		zfs_fhtovp,
135 	.vfs_quotactl =		zfs_quotactl,
136 };
137 
138 VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
139 
140 /*
141  * We need to keep a count of active fs's.
142  * This is necessary to prevent our module
143  * from being unloaded after a umount -f
144  */
145 static uint32_t	zfs_active_fs_count = 0;
146 
147 int
148 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
149     char *setpoint)
150 {
151 	int error;
152 	zfsvfs_t *zfvp;
153 	vfs_t *vfsp;
154 	objset_t *os;
155 	uint64_t tmp = *val;
156 
157 	error = dmu_objset_from_ds(ds, &os);
158 	if (error != 0)
159 		return (error);
160 
161 	error = getzfsvfs_impl(os, &zfvp);
162 	if (error != 0)
163 		return (error);
164 	if (zfvp == NULL)
165 		return (ENOENT);
166 	vfsp = zfvp->z_vfs;
167 	switch (zfs_prop) {
168 	case ZFS_PROP_ATIME:
169 		if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL))
170 			tmp = 0;
171 		if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL))
172 			tmp = 1;
173 		break;
174 	case ZFS_PROP_DEVICES:
175 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
176 			tmp = 0;
177 		if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL))
178 			tmp = 1;
179 		break;
180 	case ZFS_PROP_EXEC:
181 		if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
182 			tmp = 0;
183 		if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL))
184 			tmp = 1;
185 		break;
186 	case ZFS_PROP_SETUID:
187 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
188 			tmp = 0;
189 		if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL))
190 			tmp = 1;
191 		break;
192 	case ZFS_PROP_READONLY:
193 		if (vfs_optionisset(vfsp, MNTOPT_RW, NULL))
194 			tmp = 0;
195 		if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
196 			tmp = 1;
197 		break;
198 	case ZFS_PROP_XATTR:
199 		if (zfvp->z_flags & ZSB_XATTR)
200 			tmp = zfvp->z_xattr;
201 		break;
202 	case ZFS_PROP_NBMAND:
203 		if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL))
204 			tmp = 0;
205 		if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
206 			tmp = 1;
207 		break;
208 	default:
209 		vfs_unbusy(vfsp);
210 		return (ENOENT);
211 	}
212 
213 	vfs_unbusy(vfsp);
214 	if (tmp != *val) {
215 		(void) strcpy(setpoint, "temporary");
216 		*val = tmp;
217 	}
218 	return (0);
219 }
220 
221 static int
222 zfs_getquota(zfsvfs_t *zfsvfs, uid_t id, int isgroup, struct dqblk64 *dqp)
223 {
224 	int error = 0;
225 	char buf[32];
226 	uint64_t usedobj, quotaobj;
227 	uint64_t quota, used = 0;
228 	timespec_t now;
229 
230 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
231 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
232 
233 	if (quotaobj == 0 || zfsvfs->z_replay) {
234 		error = ENOENT;
235 		goto done;
236 	}
237 	(void) sprintf(buf, "%llx", (longlong_t)id);
238 	if ((error = zap_lookup(zfsvfs->z_os, quotaobj,
239 	    buf, sizeof (quota), 1, &quota)) != 0) {
240 		dprintf("%s(%d): quotaobj lookup failed\n",
241 		    __FUNCTION__, __LINE__);
242 		goto done;
243 	}
244 	/*
245 	 * quota(8) uses bsoftlimit as "quoota", and hardlimit as "limit".
246 	 * So we set them to be the same.
247 	 */
248 	dqp->dqb_bsoftlimit = dqp->dqb_bhardlimit = btodb(quota);
249 	error = zap_lookup(zfsvfs->z_os, usedobj, buf, sizeof (used), 1, &used);
250 	if (error && error != ENOENT) {
251 		dprintf("%s(%d):  usedobj failed; %d\n",
252 		    __FUNCTION__, __LINE__, error);
253 		goto done;
254 	}
255 	dqp->dqb_curblocks = btodb(used);
256 	dqp->dqb_ihardlimit = dqp->dqb_isoftlimit = 0;
257 	vfs_timestamp(&now);
258 	/*
259 	 * Setting this to 0 causes FreeBSD quota(8) to print
260 	 * the number of days since the epoch, which isn't
261 	 * particularly useful.
262 	 */
263 	dqp->dqb_btime = dqp->dqb_itime = now.tv_sec;
264 done:
265 	return (error);
266 }
267 
268 static int
269 zfs_quotactl(vfs_t *vfsp, int cmds, uid_t id, void *arg)
270 {
271 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
272 	struct thread *td;
273 	int cmd, type, error = 0;
274 	int bitsize;
275 	zfs_userquota_prop_t quota_type;
276 	struct dqblk64 dqblk = { 0 };
277 
278 	td = curthread;
279 	cmd = cmds >> SUBCMDSHIFT;
280 	type = cmds & SUBCMDMASK;
281 
282 	ZFS_ENTER(zfsvfs);
283 	if (id == -1) {
284 		switch (type) {
285 		case USRQUOTA:
286 			id = td->td_ucred->cr_ruid;
287 			break;
288 		case GRPQUOTA:
289 			id = td->td_ucred->cr_rgid;
290 			break;
291 		default:
292 			error = EINVAL;
293 			if (cmd == Q_QUOTAON || cmd == Q_QUOTAOFF)
294 				vfs_unbusy(vfsp);
295 			goto done;
296 		}
297 	}
298 	/*
299 	 * Map BSD type to:
300 	 * ZFS_PROP_USERUSED,
301 	 * ZFS_PROP_USERQUOTA,
302 	 * ZFS_PROP_GROUPUSED,
303 	 * ZFS_PROP_GROUPQUOTA
304 	 */
305 	switch (cmd) {
306 	case Q_SETQUOTA:
307 	case Q_SETQUOTA32:
308 		if (type == USRQUOTA)
309 			quota_type = ZFS_PROP_USERQUOTA;
310 		else if (type == GRPQUOTA)
311 			quota_type = ZFS_PROP_GROUPQUOTA;
312 		else
313 			error = EINVAL;
314 		break;
315 	case Q_GETQUOTA:
316 	case Q_GETQUOTA32:
317 		if (type == USRQUOTA)
318 			quota_type = ZFS_PROP_USERUSED;
319 		else if (type == GRPQUOTA)
320 			quota_type = ZFS_PROP_GROUPUSED;
321 		else
322 			error = EINVAL;
323 		break;
324 	}
325 
326 	/*
327 	 * Depending on the cmd, we may need to get
328 	 * the ruid and domain (see fuidstr_to_sid?),
329 	 * the fuid (how?), or other information.
330 	 * Create fuid using zfs_fuid_create(zfsvfs, id,
331 	 * ZFS_OWNER or ZFS_GROUP, cr, &fuidp)?
332 	 * I think I can use just the id?
333 	 *
334 	 * Look at zfs_id_overquota() to look up a quota.
335 	 * zap_lookup(something, quotaobj, fuidstring,
336 	 *     sizeof (long long), 1, &quota)
337 	 *
338 	 * See zfs_set_userquota() to set a quota.
339 	 */
340 	if ((uint32_t)type >= MAXQUOTAS) {
341 		error = EINVAL;
342 		goto done;
343 	}
344 
345 	switch (cmd) {
346 	case Q_GETQUOTASIZE:
347 		bitsize = 64;
348 		error = copyout(&bitsize, arg, sizeof (int));
349 		break;
350 	case Q_QUOTAON:
351 		// As far as I can tell, you can't turn quotas on or off on zfs
352 		error = 0;
353 		vfs_unbusy(vfsp);
354 		break;
355 	case Q_QUOTAOFF:
356 		error = ENOTSUP;
357 		vfs_unbusy(vfsp);
358 		break;
359 	case Q_SETQUOTA:
360 		error = copyin(arg, &dqblk, sizeof (dqblk));
361 		if (error == 0)
362 			error = zfs_set_userquota(zfsvfs, quota_type,
363 			    "", id, dbtob(dqblk.dqb_bhardlimit));
364 		break;
365 	case Q_GETQUOTA:
366 		error = zfs_getquota(zfsvfs, id, type == GRPQUOTA, &dqblk);
367 		if (error == 0)
368 			error = copyout(&dqblk, arg, sizeof (dqblk));
369 		break;
370 	default:
371 		error = EINVAL;
372 		break;
373 	}
374 done:
375 	ZFS_EXIT(zfsvfs);
376 	return (error);
377 }
378 
379 
380 boolean_t
381 zfs_is_readonly(zfsvfs_t *zfsvfs)
382 {
383 	return (!!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY));
384 }
385 
386 /*ARGSUSED*/
387 static int
388 zfs_sync(vfs_t *vfsp, int waitfor)
389 {
390 
391 	/*
392 	 * Data integrity is job one.  We don't want a compromised kernel
393 	 * writing to the storage pool, so we never sync during panic.
394 	 */
395 	if (panicstr)
396 		return (0);
397 
398 	/*
399 	 * Ignore the system syncher.  ZFS already commits async data
400 	 * at zfs_txg_timeout intervals.
401 	 */
402 	if (waitfor == MNT_LAZY)
403 		return (0);
404 
405 	if (vfsp != NULL) {
406 		/*
407 		 * Sync a specific filesystem.
408 		 */
409 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
410 		dsl_pool_t *dp;
411 		int error;
412 
413 		error = vfs_stdsync(vfsp, waitfor);
414 		if (error != 0)
415 			return (error);
416 
417 		ZFS_ENTER(zfsvfs);
418 		dp = dmu_objset_pool(zfsvfs->z_os);
419 
420 		/*
421 		 * If the system is shutting down, then skip any
422 		 * filesystems which may exist on a suspended pool.
423 		 */
424 		if (rebooting && spa_suspended(dp->dp_spa)) {
425 			ZFS_EXIT(zfsvfs);
426 			return (0);
427 		}
428 
429 		if (zfsvfs->z_log != NULL)
430 			zil_commit(zfsvfs->z_log, 0);
431 
432 		ZFS_EXIT(zfsvfs);
433 	} else {
434 		/*
435 		 * Sync all ZFS filesystems.  This is what happens when you
436 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
437 		 * request by waiting for all pools to commit all dirty data.
438 		 */
439 		spa_sync_allpools();
440 	}
441 
442 	return (0);
443 }
444 
445 static void
446 atime_changed_cb(void *arg, uint64_t newval)
447 {
448 	zfsvfs_t *zfsvfs = arg;
449 
450 	if (newval == TRUE) {
451 		zfsvfs->z_atime = TRUE;
452 		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
453 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
454 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
455 	} else {
456 		zfsvfs->z_atime = FALSE;
457 		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
458 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
459 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
460 	}
461 }
462 
463 static void
464 xattr_changed_cb(void *arg, uint64_t newval)
465 {
466 	zfsvfs_t *zfsvfs = arg;
467 
468 	if (newval == ZFS_XATTR_OFF) {
469 		zfsvfs->z_flags &= ~ZSB_XATTR;
470 	} else {
471 		zfsvfs->z_flags |= ZSB_XATTR;
472 
473 		if (newval == ZFS_XATTR_SA)
474 			zfsvfs->z_xattr_sa = B_TRUE;
475 		else
476 			zfsvfs->z_xattr_sa = B_FALSE;
477 	}
478 }
479 
480 static void
481 blksz_changed_cb(void *arg, uint64_t newval)
482 {
483 	zfsvfs_t *zfsvfs = arg;
484 	ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
485 	ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
486 	ASSERT(ISP2(newval));
487 
488 	zfsvfs->z_max_blksz = newval;
489 	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
490 }
491 
492 static void
493 readonly_changed_cb(void *arg, uint64_t newval)
494 {
495 	zfsvfs_t *zfsvfs = arg;
496 
497 	if (newval) {
498 		/* XXX locking on vfs_flag? */
499 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
500 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
501 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
502 	} else {
503 		/* XXX locking on vfs_flag? */
504 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
505 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
506 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
507 	}
508 }
509 
510 static void
511 setuid_changed_cb(void *arg, uint64_t newval)
512 {
513 	zfsvfs_t *zfsvfs = arg;
514 
515 	if (newval == FALSE) {
516 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
517 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
518 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
519 	} else {
520 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
521 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
522 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
523 	}
524 }
525 
526 static void
527 exec_changed_cb(void *arg, uint64_t newval)
528 {
529 	zfsvfs_t *zfsvfs = arg;
530 
531 	if (newval == FALSE) {
532 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
533 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
534 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
535 	} else {
536 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
537 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
538 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
539 	}
540 }
541 
542 /*
543  * The nbmand mount option can be changed at mount time.
544  * We can't allow it to be toggled on live file systems or incorrect
545  * behavior may be seen from cifs clients
546  *
547  * This property isn't registered via dsl_prop_register(), but this callback
548  * will be called when a file system is first mounted
549  */
550 static void
551 nbmand_changed_cb(void *arg, uint64_t newval)
552 {
553 	zfsvfs_t *zfsvfs = arg;
554 	if (newval == FALSE) {
555 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
556 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
557 	} else {
558 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
559 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
560 	}
561 }
562 
563 static void
564 snapdir_changed_cb(void *arg, uint64_t newval)
565 {
566 	zfsvfs_t *zfsvfs = arg;
567 
568 	zfsvfs->z_show_ctldir = newval;
569 }
570 
571 static void
572 vscan_changed_cb(void *arg, uint64_t newval)
573 {
574 	zfsvfs_t *zfsvfs = arg;
575 
576 	zfsvfs->z_vscan = newval;
577 }
578 
579 static void
580 acl_mode_changed_cb(void *arg, uint64_t newval)
581 {
582 	zfsvfs_t *zfsvfs = arg;
583 
584 	zfsvfs->z_acl_mode = newval;
585 }
586 
587 static void
588 acl_inherit_changed_cb(void *arg, uint64_t newval)
589 {
590 	zfsvfs_t *zfsvfs = arg;
591 
592 	zfsvfs->z_acl_inherit = newval;
593 }
594 
595 static void
596 acl_type_changed_cb(void *arg, uint64_t newval)
597 {
598 	zfsvfs_t *zfsvfs = arg;
599 
600 	zfsvfs->z_acl_type = newval;
601 }
602 
603 static int
604 zfs_register_callbacks(vfs_t *vfsp)
605 {
606 	struct dsl_dataset *ds = NULL;
607 	objset_t *os = NULL;
608 	zfsvfs_t *zfsvfs = NULL;
609 	uint64_t nbmand;
610 	boolean_t readonly = B_FALSE;
611 	boolean_t do_readonly = B_FALSE;
612 	boolean_t setuid = B_FALSE;
613 	boolean_t do_setuid = B_FALSE;
614 	boolean_t exec = B_FALSE;
615 	boolean_t do_exec = B_FALSE;
616 	boolean_t xattr = B_FALSE;
617 	boolean_t atime = B_FALSE;
618 	boolean_t do_atime = B_FALSE;
619 	boolean_t do_xattr = B_FALSE;
620 	int error = 0;
621 
622 	ASSERT(vfsp);
623 	zfsvfs = vfsp->vfs_data;
624 	ASSERT(zfsvfs);
625 	os = zfsvfs->z_os;
626 
627 	/*
628 	 * This function can be called for a snapshot when we update snapshot's
629 	 * mount point, which isn't really supported.
630 	 */
631 	if (dmu_objset_is_snapshot(os))
632 		return (EOPNOTSUPP);
633 
634 	/*
635 	 * The act of registering our callbacks will destroy any mount
636 	 * options we may have.  In order to enable temporary overrides
637 	 * of mount options, we stash away the current values and
638 	 * restore them after we register the callbacks.
639 	 */
640 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
641 	    !spa_writeable(dmu_objset_spa(os))) {
642 		readonly = B_TRUE;
643 		do_readonly = B_TRUE;
644 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
645 		readonly = B_FALSE;
646 		do_readonly = B_TRUE;
647 	}
648 	if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
649 		setuid = B_FALSE;
650 		do_setuid = B_TRUE;
651 	} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
652 		setuid = B_TRUE;
653 		do_setuid = B_TRUE;
654 	}
655 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
656 		exec = B_FALSE;
657 		do_exec = B_TRUE;
658 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
659 		exec = B_TRUE;
660 		do_exec = B_TRUE;
661 	}
662 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
663 		zfsvfs->z_xattr = xattr = ZFS_XATTR_OFF;
664 		do_xattr = B_TRUE;
665 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
666 		zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR;
667 		do_xattr = B_TRUE;
668 	} else if (vfs_optionisset(vfsp, MNTOPT_DIRXATTR, NULL)) {
669 		zfsvfs->z_xattr = xattr = ZFS_XATTR_DIR;
670 		do_xattr = B_TRUE;
671 	} else if (vfs_optionisset(vfsp, MNTOPT_SAXATTR, NULL)) {
672 		zfsvfs->z_xattr = xattr = ZFS_XATTR_SA;
673 		do_xattr = B_TRUE;
674 	}
675 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
676 		atime = B_FALSE;
677 		do_atime = B_TRUE;
678 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
679 		atime = B_TRUE;
680 		do_atime = B_TRUE;
681 	}
682 
683 	/*
684 	 * We need to enter pool configuration here, so that we can use
685 	 * dsl_prop_get_int_ds() to handle the special nbmand property below.
686 	 * dsl_prop_get_integer() can not be used, because it has to acquire
687 	 * spa_namespace_lock and we can not do that because we already hold
688 	 * z_teardown_lock.  The problem is that spa_write_cachefile() is called
689 	 * with spa_namespace_lock held and the function calls ZFS vnode
690 	 * operations to write the cache file and thus z_teardown_lock is
691 	 * acquired after spa_namespace_lock.
692 	 */
693 	ds = dmu_objset_ds(os);
694 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
695 
696 	/*
697 	 * nbmand is a special property.  It can only be changed at
698 	 * mount time.
699 	 *
700 	 * This is weird, but it is documented to only be changeable
701 	 * at mount time.
702 	 */
703 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
704 		nbmand = B_FALSE;
705 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
706 		nbmand = B_TRUE;
707 	} else if ((error = dsl_prop_get_int_ds(ds, "nbmand", &nbmand) != 0)) {
708 		dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
709 		return (error);
710 	}
711 
712 	/*
713 	 * Register property callbacks.
714 	 *
715 	 * It would probably be fine to just check for i/o error from
716 	 * the first prop_register(), but I guess I like to go
717 	 * overboard...
718 	 */
719 	error = dsl_prop_register(ds,
720 	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
721 	error = error ? error : dsl_prop_register(ds,
722 	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
723 	error = error ? error : dsl_prop_register(ds,
724 	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
725 	error = error ? error : dsl_prop_register(ds,
726 	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
727 	error = error ? error : dsl_prop_register(ds,
728 	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
729 	error = error ? error : dsl_prop_register(ds,
730 	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
731 	error = error ? error : dsl_prop_register(ds,
732 	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
733 	error = error ? error : dsl_prop_register(ds,
734 	    zfs_prop_to_name(ZFS_PROP_ACLTYPE), acl_type_changed_cb, zfsvfs);
735 	error = error ? error : dsl_prop_register(ds,
736 	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
737 	error = error ? error : dsl_prop_register(ds,
738 	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
739 	    zfsvfs);
740 	error = error ? error : dsl_prop_register(ds,
741 	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
742 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
743 	if (error)
744 		goto unregister;
745 
746 	/*
747 	 * Invoke our callbacks to restore temporary mount options.
748 	 */
749 	if (do_readonly)
750 		readonly_changed_cb(zfsvfs, readonly);
751 	if (do_setuid)
752 		setuid_changed_cb(zfsvfs, setuid);
753 	if (do_exec)
754 		exec_changed_cb(zfsvfs, exec);
755 	if (do_xattr)
756 		xattr_changed_cb(zfsvfs, xattr);
757 	if (do_atime)
758 		atime_changed_cb(zfsvfs, atime);
759 
760 	nbmand_changed_cb(zfsvfs, nbmand);
761 
762 	return (0);
763 
764 unregister:
765 	dsl_prop_unregister_all(ds, zfsvfs);
766 	return (error);
767 }
768 
769 /*
770  * Associate this zfsvfs with the given objset, which must be owned.
771  * This will cache a bunch of on-disk state from the objset in the
772  * zfsvfs.
773  */
774 static int
775 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
776 {
777 	int error;
778 	uint64_t val;
779 
780 	zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
781 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
782 	zfsvfs->z_os = os;
783 
784 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
785 	if (error != 0)
786 		return (error);
787 	if (zfsvfs->z_version >
788 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
789 		(void) printf("Can't mount a version %lld file system "
790 		    "on a version %lld pool\n. Pool must be upgraded to mount "
791 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
792 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
793 		return (SET_ERROR(ENOTSUP));
794 	}
795 	error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
796 	if (error != 0)
797 		return (error);
798 	zfsvfs->z_norm = (int)val;
799 
800 	error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
801 	if (error != 0)
802 		return (error);
803 	zfsvfs->z_utf8 = (val != 0);
804 
805 	error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
806 	if (error != 0)
807 		return (error);
808 	zfsvfs->z_case = (uint_t)val;
809 
810 	error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val);
811 	if (error != 0)
812 		return (error);
813 	zfsvfs->z_acl_type = (uint_t)val;
814 
815 	/*
816 	 * Fold case on file systems that are always or sometimes case
817 	 * insensitive.
818 	 */
819 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
820 	    zfsvfs->z_case == ZFS_CASE_MIXED)
821 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
822 
823 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
824 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
825 
826 	uint64_t sa_obj = 0;
827 	if (zfsvfs->z_use_sa) {
828 		/* should either have both of these objects or none */
829 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
830 		    &sa_obj);
831 		if (error != 0)
832 			return (error);
833 	}
834 
835 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
836 	    &zfsvfs->z_attr_table);
837 	if (error != 0)
838 		return (error);
839 
840 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
841 		sa_register_update_callback(os, zfs_sa_upgrade);
842 
843 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
844 	    &zfsvfs->z_root);
845 	if (error != 0)
846 		return (error);
847 	ASSERT(zfsvfs->z_root != 0);
848 
849 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
850 	    &zfsvfs->z_unlinkedobj);
851 	if (error != 0)
852 		return (error);
853 
854 	error = zap_lookup(os, MASTER_NODE_OBJ,
855 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
856 	    8, 1, &zfsvfs->z_userquota_obj);
857 	if (error == ENOENT)
858 		zfsvfs->z_userquota_obj = 0;
859 	else if (error != 0)
860 		return (error);
861 
862 	error = zap_lookup(os, MASTER_NODE_OBJ,
863 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
864 	    8, 1, &zfsvfs->z_groupquota_obj);
865 	if (error == ENOENT)
866 		zfsvfs->z_groupquota_obj = 0;
867 	else if (error != 0)
868 		return (error);
869 
870 	error = zap_lookup(os, MASTER_NODE_OBJ,
871 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
872 	    8, 1, &zfsvfs->z_projectquota_obj);
873 	if (error == ENOENT)
874 		zfsvfs->z_projectquota_obj = 0;
875 	else if (error != 0)
876 		return (error);
877 
878 	error = zap_lookup(os, MASTER_NODE_OBJ,
879 	    zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
880 	    8, 1, &zfsvfs->z_userobjquota_obj);
881 	if (error == ENOENT)
882 		zfsvfs->z_userobjquota_obj = 0;
883 	else if (error != 0)
884 		return (error);
885 
886 	error = zap_lookup(os, MASTER_NODE_OBJ,
887 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
888 	    8, 1, &zfsvfs->z_groupobjquota_obj);
889 	if (error == ENOENT)
890 		zfsvfs->z_groupobjquota_obj = 0;
891 	else if (error != 0)
892 		return (error);
893 
894 	error = zap_lookup(os, MASTER_NODE_OBJ,
895 	    zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
896 	    8, 1, &zfsvfs->z_projectobjquota_obj);
897 	if (error == ENOENT)
898 		zfsvfs->z_projectobjquota_obj = 0;
899 	else if (error != 0)
900 		return (error);
901 
902 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
903 	    &zfsvfs->z_fuid_obj);
904 	if (error == ENOENT)
905 		zfsvfs->z_fuid_obj = 0;
906 	else if (error != 0)
907 		return (error);
908 
909 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
910 	    &zfsvfs->z_shares_dir);
911 	if (error == ENOENT)
912 		zfsvfs->z_shares_dir = 0;
913 	else if (error != 0)
914 		return (error);
915 
916 	/*
917 	 * Only use the name cache if we are looking for a
918 	 * name on a file system that does not require normalization
919 	 * or case folding.  We can also look there if we happen to be
920 	 * on a non-normalizing, mixed sensitivity file system IF we
921 	 * are looking for the exact name (which is always the case on
922 	 * FreeBSD).
923 	 */
924 	zfsvfs->z_use_namecache = !zfsvfs->z_norm ||
925 	    ((zfsvfs->z_case == ZFS_CASE_MIXED) &&
926 	    !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER));
927 
928 	return (0);
929 }
930 
931 taskq_t *zfsvfs_taskq;
932 
933 static void
934 zfsvfs_task_unlinked_drain(void *context, int pending __unused)
935 {
936 
937 	zfs_unlinked_drain((zfsvfs_t *)context);
938 }
939 
940 int
941 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
942 {
943 	objset_t *os;
944 	zfsvfs_t *zfsvfs;
945 	int error;
946 	boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
947 
948 	/*
949 	 * XXX: Fix struct statfs so this isn't necessary!
950 	 *
951 	 * The 'osname' is used as the filesystem's special node, which means
952 	 * it must fit in statfs.f_mntfromname, or else it can't be
953 	 * enumerated, so libzfs_mnttab_find() returns NULL, which causes
954 	 * 'zfs unmount' to think it's not mounted when it is.
955 	 */
956 	if (strlen(osname) >= MNAMELEN)
957 		return (SET_ERROR(ENAMETOOLONG));
958 
959 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
960 
961 	error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs,
962 	    &os);
963 	if (error != 0) {
964 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
965 		return (error);
966 	}
967 
968 	error = zfsvfs_create_impl(zfvp, zfsvfs, os);
969 
970 	return (error);
971 }
972 
973 
974 int
975 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
976 {
977 	int error;
978 
979 	zfsvfs->z_vfs = NULL;
980 	zfsvfs->z_parent = zfsvfs;
981 
982 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
983 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
984 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
985 	    offsetof(znode_t, z_link_node));
986 	TASK_INIT(&zfsvfs->z_unlinked_drain_task, 0,
987 	    zfsvfs_task_unlinked_drain, zfsvfs);
988 	ZFS_TEARDOWN_INIT(zfsvfs);
989 	ZFS_TEARDOWN_INACTIVE_INIT(zfsvfs);
990 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
991 	for (int i = 0; i != ZFS_OBJ_MTX_SZ; i++)
992 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
993 
994 	error = zfsvfs_init(zfsvfs, os);
995 	if (error != 0) {
996 		dmu_objset_disown(os, B_TRUE, zfsvfs);
997 		*zfvp = NULL;
998 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
999 		return (error);
1000 	}
1001 
1002 	*zfvp = zfsvfs;
1003 	return (0);
1004 }
1005 
1006 static int
1007 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1008 {
1009 	int error;
1010 
1011 	/*
1012 	 * Check for a bad on-disk format version now since we
1013 	 * lied about owning the dataset readonly before.
1014 	 */
1015 	if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) &&
1016 	    dmu_objset_incompatible_encryption_version(zfsvfs->z_os))
1017 		return (SET_ERROR(EROFS));
1018 
1019 	error = zfs_register_callbacks(zfsvfs->z_vfs);
1020 	if (error)
1021 		return (error);
1022 
1023 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1024 
1025 	/*
1026 	 * If we are not mounting (ie: online recv), then we don't
1027 	 * have to worry about replaying the log as we blocked all
1028 	 * operations out since we closed the ZIL.
1029 	 */
1030 	if (mounting) {
1031 		boolean_t readonly;
1032 
1033 		ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
1034 		dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
1035 
1036 		/*
1037 		 * During replay we remove the read only flag to
1038 		 * allow replays to succeed.
1039 		 */
1040 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1041 		if (readonly != 0) {
1042 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1043 		} else {
1044 			dsl_dir_t *dd;
1045 			zap_stats_t zs;
1046 
1047 			if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
1048 			    &zs) == 0) {
1049 				dataset_kstats_update_nunlinks_kstat(
1050 				    &zfsvfs->z_kstat, zs.zs_num_entries);
1051 				dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1052 				    "num_entries in unlinked set: %llu",
1053 				    zs.zs_num_entries);
1054 			}
1055 
1056 			zfs_unlinked_drain(zfsvfs);
1057 			dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
1058 			dd->dd_activity_cancelled = B_FALSE;
1059 		}
1060 
1061 		/*
1062 		 * Parse and replay the intent log.
1063 		 *
1064 		 * Because of ziltest, this must be done after
1065 		 * zfs_unlinked_drain().  (Further note: ziltest
1066 		 * doesn't use readonly mounts, where
1067 		 * zfs_unlinked_drain() isn't called.)  This is because
1068 		 * ziltest causes spa_sync() to think it's committed,
1069 		 * but actually it is not, so the intent log contains
1070 		 * many txg's worth of changes.
1071 		 *
1072 		 * In particular, if object N is in the unlinked set in
1073 		 * the last txg to actually sync, then it could be
1074 		 * actually freed in a later txg and then reallocated
1075 		 * in a yet later txg.  This would write a "create
1076 		 * object N" record to the intent log.  Normally, this
1077 		 * would be fine because the spa_sync() would have
1078 		 * written out the fact that object N is free, before
1079 		 * we could write the "create object N" intent log
1080 		 * record.
1081 		 *
1082 		 * But when we are in ziltest mode, we advance the "open
1083 		 * txg" without actually spa_sync()-ing the changes to
1084 		 * disk.  So we would see that object N is still
1085 		 * allocated and in the unlinked set, and there is an
1086 		 * intent log record saying to allocate it.
1087 		 */
1088 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1089 			if (zil_replay_disable) {
1090 				zil_destroy(zfsvfs->z_log, B_FALSE);
1091 			} else {
1092 				boolean_t use_nc = zfsvfs->z_use_namecache;
1093 				zfsvfs->z_use_namecache = B_FALSE;
1094 				zfsvfs->z_replay = B_TRUE;
1095 				zil_replay(zfsvfs->z_os, zfsvfs,
1096 				    zfs_replay_vector);
1097 				zfsvfs->z_replay = B_FALSE;
1098 				zfsvfs->z_use_namecache = use_nc;
1099 			}
1100 		}
1101 
1102 		/* restore readonly bit */
1103 		if (readonly != 0)
1104 			zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
1105 	}
1106 
1107 	/*
1108 	 * Set the objset user_ptr to track its zfsvfs.
1109 	 */
1110 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1111 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1112 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1113 
1114 	return (0);
1115 }
1116 
1117 void
1118 zfsvfs_free(zfsvfs_t *zfsvfs)
1119 {
1120 	int i;
1121 
1122 	zfs_fuid_destroy(zfsvfs);
1123 
1124 	mutex_destroy(&zfsvfs->z_znodes_lock);
1125 	mutex_destroy(&zfsvfs->z_lock);
1126 	ASSERT(zfsvfs->z_nr_znodes == 0);
1127 	list_destroy(&zfsvfs->z_all_znodes);
1128 	ZFS_TEARDOWN_DESTROY(zfsvfs);
1129 	ZFS_TEARDOWN_INACTIVE_DESTROY(zfsvfs);
1130 	rw_destroy(&zfsvfs->z_fuid_lock);
1131 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1132 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1133 	dataset_kstats_destroy(&zfsvfs->z_kstat);
1134 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1135 }
1136 
1137 static void
1138 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1139 {
1140 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1141 	if (zfsvfs->z_vfs) {
1142 		if (zfsvfs->z_use_fuids) {
1143 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1144 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1145 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1146 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1147 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1148 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1149 		} else {
1150 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1151 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1152 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1153 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1154 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1155 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1156 		}
1157 	}
1158 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1159 }
1160 
1161 static int
1162 zfs_domount(vfs_t *vfsp, char *osname)
1163 {
1164 	uint64_t recordsize, fsid_guid;
1165 	int error = 0;
1166 	zfsvfs_t *zfsvfs;
1167 
1168 	ASSERT(vfsp);
1169 	ASSERT(osname);
1170 
1171 	error = zfsvfs_create(osname, vfsp->mnt_flag & MNT_RDONLY, &zfsvfs);
1172 	if (error)
1173 		return (error);
1174 	zfsvfs->z_vfs = vfsp;
1175 
1176 	if ((error = dsl_prop_get_integer(osname,
1177 	    "recordsize", &recordsize, NULL)))
1178 		goto out;
1179 	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1180 	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1181 
1182 	vfsp->vfs_data = zfsvfs;
1183 	vfsp->mnt_flag |= MNT_LOCAL;
1184 	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1185 	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1186 	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1187 	/*
1188 	 * This can cause a loss of coherence between ARC and page cache
1189 	 * on ZoF - unclear if the problem is in FreeBSD or ZoF
1190 	 */
1191 	vfsp->mnt_kern_flag |= MNTK_NO_IOPF;	/* vn_io_fault can be used */
1192 	vfsp->mnt_kern_flag |= MNTK_NOMSYNC;
1193 	vfsp->mnt_kern_flag |= MNTK_VMSETSIZE_BUG;
1194 
1195 #if defined(_KERNEL) && !defined(KMEM_DEBUG)
1196 	vfsp->mnt_kern_flag |= MNTK_FPLOOKUP;
1197 #endif
1198 	/*
1199 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1200 	 * separates our fsid from any other filesystem types, and a
1201 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1202 	 * all objsets open on this system, provided by unique_create().
1203 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1204 	 * because that's where other Solaris filesystems put it.
1205 	 */
1206 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1207 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1208 	vfsp->vfs_fsid.val[0] = fsid_guid;
1209 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1210 	    (vfsp->mnt_vfc->vfc_typenum & 0xFF);
1211 
1212 	/*
1213 	 * Set features for file system.
1214 	 */
1215 	zfs_set_fuid_feature(zfsvfs);
1216 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1217 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1218 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1219 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1220 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1221 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1222 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1223 	}
1224 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1225 
1226 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1227 		uint64_t pval;
1228 
1229 		atime_changed_cb(zfsvfs, B_FALSE);
1230 		readonly_changed_cb(zfsvfs, B_TRUE);
1231 		if ((error = dsl_prop_get_integer(osname,
1232 		    "xattr", &pval, NULL)))
1233 			goto out;
1234 		xattr_changed_cb(zfsvfs, pval);
1235 		if ((error = dsl_prop_get_integer(osname,
1236 		    "acltype", &pval, NULL)))
1237 			goto out;
1238 		acl_type_changed_cb(zfsvfs, pval);
1239 		zfsvfs->z_issnap = B_TRUE;
1240 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1241 
1242 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1243 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1244 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1245 	} else {
1246 		if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1247 			goto out;
1248 	}
1249 
1250 	vfs_mountedfrom(vfsp, osname);
1251 
1252 	if (!zfsvfs->z_issnap)
1253 		zfsctl_create(zfsvfs);
1254 out:
1255 	if (error) {
1256 		dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1257 		zfsvfs_free(zfsvfs);
1258 	} else {
1259 		atomic_inc_32(&zfs_active_fs_count);
1260 	}
1261 
1262 	return (error);
1263 }
1264 
1265 static void
1266 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1267 {
1268 	objset_t *os = zfsvfs->z_os;
1269 
1270 	if (!dmu_objset_is_snapshot(os))
1271 		dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
1272 }
1273 
1274 static int
1275 getpoolname(const char *osname, char *poolname)
1276 {
1277 	char *p;
1278 
1279 	p = strchr(osname, '/');
1280 	if (p == NULL) {
1281 		if (strlen(osname) >= MAXNAMELEN)
1282 			return (ENAMETOOLONG);
1283 		(void) strcpy(poolname, osname);
1284 	} else {
1285 		if (p - osname >= MAXNAMELEN)
1286 			return (ENAMETOOLONG);
1287 		(void) strncpy(poolname, osname, p - osname);
1288 		poolname[p - osname] = '\0';
1289 	}
1290 	return (0);
1291 }
1292 
1293 /*ARGSUSED*/
1294 static int
1295 zfs_mount(vfs_t *vfsp)
1296 {
1297 	kthread_t	*td = curthread;
1298 	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1299 	cred_t		*cr = td->td_ucred;
1300 	char		*osname;
1301 	int		error = 0;
1302 	int		canwrite;
1303 
1304 	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1305 		return (SET_ERROR(EINVAL));
1306 
1307 	/*
1308 	 * If full-owner-access is enabled and delegated administration is
1309 	 * turned on, we must set nosuid.
1310 	 */
1311 	if (zfs_super_owner &&
1312 	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1313 		secpolicy_fs_mount_clearopts(cr, vfsp);
1314 	}
1315 
1316 	/*
1317 	 * Check for mount privilege?
1318 	 *
1319 	 * If we don't have privilege then see if
1320 	 * we have local permission to allow it
1321 	 */
1322 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1323 	if (error) {
1324 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1325 			goto out;
1326 
1327 		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1328 			vattr_t		vattr;
1329 
1330 			/*
1331 			 * Make sure user is the owner of the mount point
1332 			 * or has sufficient privileges.
1333 			 */
1334 
1335 			vattr.va_mask = AT_UID;
1336 
1337 			vn_lock(mvp, LK_SHARED | LK_RETRY);
1338 			if (VOP_GETATTR(mvp, &vattr, cr)) {
1339 				VOP_UNLOCK1(mvp);
1340 				goto out;
1341 			}
1342 
1343 			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1344 			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1345 				VOP_UNLOCK1(mvp);
1346 				goto out;
1347 			}
1348 			VOP_UNLOCK1(mvp);
1349 		}
1350 
1351 		secpolicy_fs_mount_clearopts(cr, vfsp);
1352 	}
1353 
1354 	/*
1355 	 * Refuse to mount a filesystem if we are in a local zone and the
1356 	 * dataset is not visible.
1357 	 */
1358 	if (!INGLOBALZONE(curproc) &&
1359 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1360 		error = SET_ERROR(EPERM);
1361 		goto out;
1362 	}
1363 
1364 	vfsp->vfs_flag |= MNT_NFS4ACLS;
1365 
1366 	/*
1367 	 * When doing a remount, we simply refresh our temporary properties
1368 	 * according to those options set in the current VFS options.
1369 	 */
1370 	if (vfsp->vfs_flag & MS_REMOUNT) {
1371 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
1372 
1373 		/*
1374 		 * Refresh mount options with z_teardown_lock blocking I/O while
1375 		 * the filesystem is in an inconsistent state.
1376 		 * The lock also serializes this code with filesystem
1377 		 * manipulations between entry to zfs_suspend_fs() and return
1378 		 * from zfs_resume_fs().
1379 		 */
1380 		ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1381 		zfs_unregister_callbacks(zfsvfs);
1382 		error = zfs_register_callbacks(vfsp);
1383 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1384 		goto out;
1385 	}
1386 
1387 	/* Initial root mount: try hard to import the requested root pool. */
1388 	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1389 	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1390 		char pname[MAXNAMELEN];
1391 
1392 		error = getpoolname(osname, pname);
1393 		if (error == 0)
1394 			error = spa_import_rootpool(pname, false);
1395 		if (error)
1396 			goto out;
1397 	}
1398 	DROP_GIANT();
1399 	error = zfs_domount(vfsp, osname);
1400 	PICKUP_GIANT();
1401 
1402 out:
1403 	return (error);
1404 }
1405 
1406 static int
1407 zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1408 {
1409 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1410 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1411 
1412 	statp->f_version = STATFS_VERSION;
1413 
1414 	ZFS_ENTER(zfsvfs);
1415 
1416 	dmu_objset_space(zfsvfs->z_os,
1417 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1418 
1419 	/*
1420 	 * The underlying storage pool actually uses multiple block sizes.
1421 	 * We report the fragsize as the smallest block size we support,
1422 	 * and we report our blocksize as the filesystem's maximum blocksize.
1423 	 */
1424 	statp->f_bsize = SPA_MINBLOCKSIZE;
1425 	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1426 
1427 	/*
1428 	 * The following report "total" blocks of various kinds in the
1429 	 * file system, but reported in terms of f_frsize - the
1430 	 * "fragment" size.
1431 	 */
1432 
1433 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1434 	statp->f_bfree = availbytes / statp->f_bsize;
1435 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1436 
1437 	/*
1438 	 * statvfs() should really be called statufs(), because it assumes
1439 	 * static metadata.  ZFS doesn't preallocate files, so the best
1440 	 * we can do is report the max that could possibly fit in f_files,
1441 	 * and that minus the number actually used in f_ffree.
1442 	 * For f_ffree, report the smaller of the number of object available
1443 	 * and the number of blocks (each object will take at least a block).
1444 	 */
1445 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1446 	statp->f_files = statp->f_ffree + usedobjs;
1447 
1448 	/*
1449 	 * We're a zfs filesystem.
1450 	 */
1451 	strlcpy(statp->f_fstypename, "zfs",
1452 	    sizeof (statp->f_fstypename));
1453 
1454 	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1455 	    sizeof (statp->f_mntfromname));
1456 	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1457 	    sizeof (statp->f_mntonname));
1458 
1459 	statp->f_namemax = MAXNAMELEN - 1;
1460 
1461 	ZFS_EXIT(zfsvfs);
1462 	return (0);
1463 }
1464 
1465 static int
1466 zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1467 {
1468 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1469 	znode_t *rootzp;
1470 	int error;
1471 
1472 	ZFS_ENTER(zfsvfs);
1473 
1474 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1475 	if (error == 0)
1476 		*vpp = ZTOV(rootzp);
1477 
1478 	ZFS_EXIT(zfsvfs);
1479 
1480 	if (error == 0) {
1481 		error = vn_lock(*vpp, flags);
1482 		if (error != 0) {
1483 			VN_RELE(*vpp);
1484 			*vpp = NULL;
1485 		}
1486 	}
1487 	return (error);
1488 }
1489 
1490 /*
1491  * Teardown the zfsvfs::z_os.
1492  *
1493  * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1494  * and 'z_teardown_inactive_lock' held.
1495  */
1496 static int
1497 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1498 {
1499 	znode_t	*zp;
1500 	dsl_dir_t *dd;
1501 
1502 	/*
1503 	 * If someone has not already unmounted this file system,
1504 	 * drain the zrele_taskq to ensure all active references to the
1505 	 * zfsvfs_t have been handled only then can it be safely destroyed.
1506 	 */
1507 	if (zfsvfs->z_os) {
1508 		/*
1509 		 * If we're unmounting we have to wait for the list to
1510 		 * drain completely.
1511 		 *
1512 		 * If we're not unmounting there's no guarantee the list
1513 		 * will drain completely, but zreles run from the taskq
1514 		 * may add the parents of dir-based xattrs to the taskq
1515 		 * so we want to wait for these.
1516 		 *
1517 		 * We can safely read z_nr_znodes without locking because the
1518 		 * VFS has already blocked operations which add to the
1519 		 * z_all_znodes list and thus increment z_nr_znodes.
1520 		 */
1521 		int round = 0;
1522 		while (zfsvfs->z_nr_znodes > 0) {
1523 			taskq_wait_outstanding(dsl_pool_zrele_taskq(
1524 			    dmu_objset_pool(zfsvfs->z_os)), 0);
1525 			if (++round > 1 && !unmounting)
1526 				break;
1527 		}
1528 	}
1529 	ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1530 
1531 	if (!unmounting) {
1532 		/*
1533 		 * We purge the parent filesystem's vfsp as the parent
1534 		 * filesystem and all of its snapshots have their vnode's
1535 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1536 		 * 'z_parent' is self referential for non-snapshots.
1537 		 */
1538 #ifdef FREEBSD_NAMECACHE
1539 #if __FreeBSD_version >= 1300117
1540 		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1541 #else
1542 		cache_purgevfs(zfsvfs->z_parent->z_vfs, true);
1543 #endif
1544 #endif
1545 	}
1546 
1547 	/*
1548 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1549 	 * threads are blocked as zil_close can call zfs_inactive.
1550 	 */
1551 	if (zfsvfs->z_log) {
1552 		zil_close(zfsvfs->z_log);
1553 		zfsvfs->z_log = NULL;
1554 	}
1555 
1556 	ZFS_TEARDOWN_INACTIVE_ENTER_WRITE(zfsvfs);
1557 
1558 	/*
1559 	 * If we are not unmounting (ie: online recv) and someone already
1560 	 * unmounted this file system while we were doing the switcheroo,
1561 	 * or a reopen of z_os failed then just bail out now.
1562 	 */
1563 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1564 		ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
1565 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1566 		return (SET_ERROR(EIO));
1567 	}
1568 
1569 	/*
1570 	 * At this point there are no vops active, and any new vops will
1571 	 * fail with EIO since we have z_teardown_lock for writer (only
1572 	 * relevant for forced unmount).
1573 	 *
1574 	 * Release all holds on dbufs.
1575 	 */
1576 	mutex_enter(&zfsvfs->z_znodes_lock);
1577 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1578 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1579 		if (zp->z_sa_hdl) {
1580 			ASSERT(ZTOV(zp)->v_count >= 0);
1581 			zfs_znode_dmu_fini(zp);
1582 		}
1583 	mutex_exit(&zfsvfs->z_znodes_lock);
1584 
1585 	/*
1586 	 * If we are unmounting, set the unmounted flag and let new vops
1587 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1588 	 * other vops will fail with EIO.
1589 	 */
1590 	if (unmounting) {
1591 		zfsvfs->z_unmounted = B_TRUE;
1592 		ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
1593 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1594 	}
1595 
1596 	/*
1597 	 * z_os will be NULL if there was an error in attempting to reopen
1598 	 * zfsvfs, so just return as the properties had already been
1599 	 * unregistered and cached data had been evicted before.
1600 	 */
1601 	if (zfsvfs->z_os == NULL)
1602 		return (0);
1603 
1604 	/*
1605 	 * Unregister properties.
1606 	 */
1607 	zfs_unregister_callbacks(zfsvfs);
1608 
1609 	/*
1610 	 * Evict cached data
1611 	 */
1612 	if (!zfs_is_readonly(zfsvfs))
1613 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1614 	dmu_objset_evict_dbufs(zfsvfs->z_os);
1615 	dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
1616 	dsl_dir_cancel_waiters(dd);
1617 
1618 	return (0);
1619 }
1620 
1621 /*ARGSUSED*/
1622 static int
1623 zfs_umount(vfs_t *vfsp, int fflag)
1624 {
1625 	kthread_t *td = curthread;
1626 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1627 	objset_t *os;
1628 	cred_t *cr = td->td_ucred;
1629 	int ret;
1630 
1631 	ret = secpolicy_fs_unmount(cr, vfsp);
1632 	if (ret) {
1633 		if (dsl_deleg_access((char *)vfsp->vfs_resource,
1634 		    ZFS_DELEG_PERM_MOUNT, cr))
1635 			return (ret);
1636 	}
1637 
1638 	/*
1639 	 * Unmount any snapshots mounted under .zfs before unmounting the
1640 	 * dataset itself.
1641 	 */
1642 	if (zfsvfs->z_ctldir != NULL) {
1643 		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1644 			return (ret);
1645 	}
1646 
1647 	if (fflag & MS_FORCE) {
1648 		/*
1649 		 * Mark file system as unmounted before calling
1650 		 * vflush(FORCECLOSE). This way we ensure no future vnops
1651 		 * will be called and risk operating on DOOMED vnodes.
1652 		 */
1653 		ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1654 		zfsvfs->z_unmounted = B_TRUE;
1655 		ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1656 	}
1657 
1658 	/*
1659 	 * Flush all the files.
1660 	 */
1661 	ret = vflush(vfsp, 0, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1662 	if (ret != 0)
1663 		return (ret);
1664 	while (taskqueue_cancel(zfsvfs_taskq->tq_queue,
1665 	    &zfsvfs->z_unlinked_drain_task, NULL) != 0)
1666 		taskqueue_drain(zfsvfs_taskq->tq_queue,
1667 		    &zfsvfs->z_unlinked_drain_task);
1668 
1669 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1670 	os = zfsvfs->z_os;
1671 
1672 	/*
1673 	 * z_os will be NULL if there was an error in
1674 	 * attempting to reopen zfsvfs.
1675 	 */
1676 	if (os != NULL) {
1677 		/*
1678 		 * Unset the objset user_ptr.
1679 		 */
1680 		mutex_enter(&os->os_user_ptr_lock);
1681 		dmu_objset_set_user(os, NULL);
1682 		mutex_exit(&os->os_user_ptr_lock);
1683 
1684 		/*
1685 		 * Finally release the objset
1686 		 */
1687 		dmu_objset_disown(os, B_TRUE, zfsvfs);
1688 	}
1689 
1690 	/*
1691 	 * We can now safely destroy the '.zfs' directory node.
1692 	 */
1693 	if (zfsvfs->z_ctldir != NULL)
1694 		zfsctl_destroy(zfsvfs);
1695 	zfs_freevfs(vfsp);
1696 
1697 	return (0);
1698 }
1699 
1700 static int
1701 zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
1702 {
1703 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1704 	znode_t		*zp;
1705 	int 		err;
1706 
1707 	/*
1708 	 * zfs_zget() can't operate on virtual entries like .zfs/ or
1709 	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
1710 	 * This will make NFS to switch to LOOKUP instead of using VGET.
1711 	 */
1712 	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
1713 	    (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
1714 		return (EOPNOTSUPP);
1715 
1716 	ZFS_ENTER(zfsvfs);
1717 	err = zfs_zget(zfsvfs, ino, &zp);
1718 	if (err == 0 && zp->z_unlinked) {
1719 		vrele(ZTOV(zp));
1720 		err = EINVAL;
1721 	}
1722 	if (err == 0)
1723 		*vpp = ZTOV(zp);
1724 	ZFS_EXIT(zfsvfs);
1725 	if (err == 0) {
1726 		err = vn_lock(*vpp, flags);
1727 		if (err != 0)
1728 			vrele(*vpp);
1729 	}
1730 	if (err != 0)
1731 		*vpp = NULL;
1732 	return (err);
1733 }
1734 
1735 static int
1736 #if __FreeBSD_version >= 1300098
1737 zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, uint64_t *extflagsp,
1738     struct ucred **credanonp, int *numsecflavors, int *secflavors)
1739 #else
1740 zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
1741     struct ucred **credanonp, int *numsecflavors, int **secflavors)
1742 #endif
1743 {
1744 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1745 
1746 	/*
1747 	 * If this is regular file system vfsp is the same as
1748 	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
1749 	 * zfsvfs->z_parent->z_vfs represents parent file system
1750 	 * which we have to use here, because only this file system
1751 	 * has mnt_export configured.
1752 	 */
1753 	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
1754 	    credanonp, numsecflavors, secflavors));
1755 }
1756 
1757 CTASSERT(SHORT_FID_LEN <= sizeof (struct fid));
1758 CTASSERT(LONG_FID_LEN <= sizeof (struct fid));
1759 
1760 static int
1761 zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
1762 {
1763 	struct componentname cn;
1764 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1765 	znode_t		*zp;
1766 	vnode_t		*dvp;
1767 	uint64_t	object = 0;
1768 	uint64_t	fid_gen = 0;
1769 	uint64_t	gen_mask;
1770 	uint64_t	zp_gen;
1771 	int 		i, err;
1772 
1773 	*vpp = NULL;
1774 
1775 	ZFS_ENTER(zfsvfs);
1776 
1777 	/*
1778 	 * On FreeBSD we can get snapshot's mount point or its parent file
1779 	 * system mount point depending if snapshot is already mounted or not.
1780 	 */
1781 	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
1782 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1783 		uint64_t	objsetid = 0;
1784 		uint64_t	setgen = 0;
1785 
1786 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1787 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1788 
1789 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1790 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1791 
1792 		ZFS_EXIT(zfsvfs);
1793 
1794 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1795 		if (err)
1796 			return (SET_ERROR(EINVAL));
1797 		ZFS_ENTER(zfsvfs);
1798 	}
1799 
1800 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1801 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1802 
1803 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1804 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1805 
1806 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1807 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1808 	} else {
1809 		ZFS_EXIT(zfsvfs);
1810 		return (SET_ERROR(EINVAL));
1811 	}
1812 
1813 	/*
1814 	 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
1815 	 * directory tree. If the object == zfsvfs->z_shares_dir, then
1816 	 * we are in the .zfs/shares directory tree.
1817 	 */
1818 	if ((fid_gen == 0 &&
1819 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
1820 	    (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
1821 		ZFS_EXIT(zfsvfs);
1822 		VERIFY0(zfsctl_root(zfsvfs, LK_SHARED, &dvp));
1823 		if (object == ZFSCTL_INO_SNAPDIR) {
1824 			cn.cn_nameptr = "snapshot";
1825 			cn.cn_namelen = strlen(cn.cn_nameptr);
1826 			cn.cn_nameiop = LOOKUP;
1827 			cn.cn_flags = ISLASTCN | LOCKLEAF;
1828 			cn.cn_lkflags = flags;
1829 			VERIFY0(VOP_LOOKUP(dvp, vpp, &cn));
1830 			vput(dvp);
1831 		} else if (object == zfsvfs->z_shares_dir) {
1832 			/*
1833 			 * XXX This branch must not be taken,
1834 			 * if it is, then the lookup below will
1835 			 * explode.
1836 			 */
1837 			cn.cn_nameptr = "shares";
1838 			cn.cn_namelen = strlen(cn.cn_nameptr);
1839 			cn.cn_nameiop = LOOKUP;
1840 			cn.cn_flags = ISLASTCN;
1841 			cn.cn_lkflags = flags;
1842 			VERIFY0(VOP_LOOKUP(dvp, vpp, &cn));
1843 			vput(dvp);
1844 		} else {
1845 			*vpp = dvp;
1846 		}
1847 		return (err);
1848 	}
1849 
1850 	gen_mask = -1ULL >> (64 - 8 * i);
1851 
1852 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1853 	if ((err = zfs_zget(zfsvfs, object, &zp))) {
1854 		ZFS_EXIT(zfsvfs);
1855 		return (err);
1856 	}
1857 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1858 	    sizeof (uint64_t));
1859 	zp_gen = zp_gen & gen_mask;
1860 	if (zp_gen == 0)
1861 		zp_gen = 1;
1862 	if (zp->z_unlinked || zp_gen != fid_gen) {
1863 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1864 		vrele(ZTOV(zp));
1865 		ZFS_EXIT(zfsvfs);
1866 		return (SET_ERROR(EINVAL));
1867 	}
1868 
1869 	*vpp = ZTOV(zp);
1870 	ZFS_EXIT(zfsvfs);
1871 	err = vn_lock(*vpp, flags);
1872 	if (err == 0)
1873 		vnode_create_vobject(*vpp, zp->z_size, curthread);
1874 	else
1875 		*vpp = NULL;
1876 	return (err);
1877 }
1878 
1879 /*
1880  * Block out VOPs and close zfsvfs_t::z_os
1881  *
1882  * Note, if successful, then we return with the 'z_teardown_lock' and
1883  * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
1884  * dataset and objset intact so that they can be atomically handed off during
1885  * a subsequent rollback or recv operation and the resume thereafter.
1886  */
1887 int
1888 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1889 {
1890 	int error;
1891 
1892 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1893 		return (error);
1894 
1895 	return (0);
1896 }
1897 
1898 /*
1899  * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
1900  * is an invariant across any of the operations that can be performed while the
1901  * filesystem was suspended.  Whether it succeeded or failed, the preconditions
1902  * are the same: the relevant objset and associated dataset are owned by
1903  * zfsvfs, held, and long held on entry.
1904  */
1905 int
1906 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1907 {
1908 	int err;
1909 	znode_t *zp;
1910 
1911 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1912 	ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs));
1913 
1914 	/*
1915 	 * We already own this, so just update the objset_t, as the one we
1916 	 * had before may have been evicted.
1917 	 */
1918 	objset_t *os;
1919 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
1920 	VERIFY(dsl_dataset_long_held(ds));
1921 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1922 	dsl_pool_config_enter(dp, FTAG);
1923 	VERIFY0(dmu_objset_from_ds(ds, &os));
1924 	dsl_pool_config_exit(dp, FTAG);
1925 
1926 	err = zfsvfs_init(zfsvfs, os);
1927 	if (err != 0)
1928 		goto bail;
1929 
1930 	ds->ds_dir->dd_activity_cancelled = B_FALSE;
1931 	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1932 
1933 	zfs_set_fuid_feature(zfsvfs);
1934 
1935 	/*
1936 	 * Attempt to re-establish all the active znodes with
1937 	 * their dbufs.  If a zfs_rezget() fails, then we'll let
1938 	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1939 	 * when they try to use their znode.
1940 	 */
1941 	mutex_enter(&zfsvfs->z_znodes_lock);
1942 	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1943 	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1944 		(void) zfs_rezget(zp);
1945 	}
1946 	mutex_exit(&zfsvfs->z_znodes_lock);
1947 
1948 bail:
1949 	/* release the VOPs */
1950 	ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
1951 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1952 
1953 	if (err) {
1954 		/*
1955 		 * Since we couldn't setup the sa framework, try to force
1956 		 * unmount this file system.
1957 		 */
1958 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) {
1959 			vfs_ref(zfsvfs->z_vfs);
1960 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
1961 		}
1962 	}
1963 	return (err);
1964 }
1965 
1966 static void
1967 zfs_freevfs(vfs_t *vfsp)
1968 {
1969 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1970 
1971 	zfsvfs_free(zfsvfs);
1972 
1973 	atomic_dec_32(&zfs_active_fs_count);
1974 }
1975 
1976 #ifdef __i386__
1977 static int desiredvnodes_backup;
1978 #include <sys/vmmeter.h>
1979 
1980 
1981 #include <vm/vm_page.h>
1982 #include <vm/vm_object.h>
1983 #include <vm/vm_kern.h>
1984 #include <vm/vm_map.h>
1985 #endif
1986 
1987 static void
1988 zfs_vnodes_adjust(void)
1989 {
1990 #ifdef __i386__
1991 	int newdesiredvnodes;
1992 
1993 	desiredvnodes_backup = desiredvnodes;
1994 
1995 	/*
1996 	 * We calculate newdesiredvnodes the same way it is done in
1997 	 * vntblinit(). If it is equal to desiredvnodes, it means that
1998 	 * it wasn't tuned by the administrator and we can tune it down.
1999 	 */
2000 	newdesiredvnodes = min(maxproc + vm_cnt.v_page_count / 4, 2 *
2001 	    vm_kmem_size / (5 * (sizeof (struct vm_object) +
2002 	    sizeof (struct vnode))));
2003 	if (newdesiredvnodes == desiredvnodes)
2004 		desiredvnodes = (3 * newdesiredvnodes) / 4;
2005 #endif
2006 }
2007 
2008 static void
2009 zfs_vnodes_adjust_back(void)
2010 {
2011 
2012 #ifdef __i386__
2013 	desiredvnodes = desiredvnodes_backup;
2014 #endif
2015 }
2016 
2017 void
2018 zfs_init(void)
2019 {
2020 
2021 	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2022 
2023 	/*
2024 	 * Initialize .zfs directory structures
2025 	 */
2026 	zfsctl_init();
2027 
2028 	/*
2029 	 * Initialize znode cache, vnode ops, etc...
2030 	 */
2031 	zfs_znode_init();
2032 
2033 	/*
2034 	 * Reduce number of vnodes. Originally number of vnodes is calculated
2035 	 * with UFS inode in mind. We reduce it here, because it's too big for
2036 	 * ZFS/i386.
2037 	 */
2038 	zfs_vnodes_adjust();
2039 
2040 	dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2041 
2042 	zfsvfs_taskq = taskq_create("zfsvfs", 1, minclsyspri, 0, 0, 0);
2043 }
2044 
2045 void
2046 zfs_fini(void)
2047 {
2048 	taskq_destroy(zfsvfs_taskq);
2049 	zfsctl_fini();
2050 	zfs_znode_fini();
2051 	zfs_vnodes_adjust_back();
2052 }
2053 
2054 int
2055 zfs_busy(void)
2056 {
2057 	return (zfs_active_fs_count != 0);
2058 }
2059 
2060 /*
2061  * Release VOPs and unmount a suspended filesystem.
2062  */
2063 int
2064 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
2065 {
2066 	ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
2067 	ASSERT(ZFS_TEARDOWN_INACTIVE_WRITE_HELD(zfsvfs));
2068 
2069 	/*
2070 	 * We already own this, so just hold and rele it to update the
2071 	 * objset_t, as the one we had before may have been evicted.
2072 	 */
2073 	objset_t *os;
2074 	VERIFY3P(ds->ds_owner, ==, zfsvfs);
2075 	VERIFY(dsl_dataset_long_held(ds));
2076 	dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
2077 	dsl_pool_config_enter(dp, FTAG);
2078 	VERIFY0(dmu_objset_from_ds(ds, &os));
2079 	dsl_pool_config_exit(dp, FTAG);
2080 	zfsvfs->z_os = os;
2081 
2082 	/* release the VOPs */
2083 	ZFS_TEARDOWN_INACTIVE_EXIT_WRITE(zfsvfs);
2084 	ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
2085 
2086 	/*
2087 	 * Try to force unmount this file system.
2088 	 */
2089 	(void) zfs_umount(zfsvfs->z_vfs, 0);
2090 	zfsvfs->z_unmounted = B_TRUE;
2091 	return (0);
2092 }
2093 
2094 int
2095 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2096 {
2097 	int error;
2098 	objset_t *os = zfsvfs->z_os;
2099 	dmu_tx_t *tx;
2100 
2101 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2102 		return (SET_ERROR(EINVAL));
2103 
2104 	if (newvers < zfsvfs->z_version)
2105 		return (SET_ERROR(EINVAL));
2106 
2107 	if (zfs_spa_version_map(newvers) >
2108 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2109 		return (SET_ERROR(ENOTSUP));
2110 
2111 	tx = dmu_tx_create(os);
2112 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2113 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2114 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2115 		    ZFS_SA_ATTRS);
2116 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2117 	}
2118 	error = dmu_tx_assign(tx, TXG_WAIT);
2119 	if (error) {
2120 		dmu_tx_abort(tx);
2121 		return (error);
2122 	}
2123 
2124 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2125 	    8, 1, &newvers, tx);
2126 
2127 	if (error) {
2128 		dmu_tx_commit(tx);
2129 		return (error);
2130 	}
2131 
2132 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2133 		uint64_t sa_obj;
2134 
2135 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2136 		    SPA_VERSION_SA);
2137 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2138 		    DMU_OT_NONE, 0, tx);
2139 
2140 		error = zap_add(os, MASTER_NODE_OBJ,
2141 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2142 		ASSERT0(error);
2143 
2144 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2145 		sa_register_update_callback(os, zfs_sa_upgrade);
2146 	}
2147 
2148 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2149 	    "from %ju to %ju", (uintmax_t)zfsvfs->z_version,
2150 	    (uintmax_t)newvers);
2151 	dmu_tx_commit(tx);
2152 
2153 	zfsvfs->z_version = newvers;
2154 	os->os_version = newvers;
2155 
2156 	zfs_set_fuid_feature(zfsvfs);
2157 
2158 	return (0);
2159 }
2160 
2161 /*
2162  * Read a property stored within the master node.
2163  */
2164 int
2165 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2166 {
2167 	uint64_t *cached_copy = NULL;
2168 
2169 	/*
2170 	 * Figure out where in the objset_t the cached copy would live, if it
2171 	 * is available for the requested property.
2172 	 */
2173 	if (os != NULL) {
2174 		switch (prop) {
2175 		case ZFS_PROP_VERSION:
2176 			cached_copy = &os->os_version;
2177 			break;
2178 		case ZFS_PROP_NORMALIZE:
2179 			cached_copy = &os->os_normalization;
2180 			break;
2181 		case ZFS_PROP_UTF8ONLY:
2182 			cached_copy = &os->os_utf8only;
2183 			break;
2184 		case ZFS_PROP_CASE:
2185 			cached_copy = &os->os_casesensitivity;
2186 			break;
2187 		default:
2188 			break;
2189 		}
2190 	}
2191 	if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
2192 		*value = *cached_copy;
2193 		return (0);
2194 	}
2195 
2196 	/*
2197 	 * If the property wasn't cached, look up the file system's value for
2198 	 * the property. For the version property, we look up a slightly
2199 	 * different string.
2200 	 */
2201 	const char *pname;
2202 	int error = ENOENT;
2203 	if (prop == ZFS_PROP_VERSION) {
2204 		pname = ZPL_VERSION_STR;
2205 	} else {
2206 		pname = zfs_prop_to_name(prop);
2207 	}
2208 
2209 	if (os != NULL) {
2210 		ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
2211 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2212 	}
2213 
2214 	if (error == ENOENT) {
2215 		/* No value set, use the default value */
2216 		switch (prop) {
2217 		case ZFS_PROP_VERSION:
2218 			*value = ZPL_VERSION;
2219 			break;
2220 		case ZFS_PROP_NORMALIZE:
2221 		case ZFS_PROP_UTF8ONLY:
2222 			*value = 0;
2223 			break;
2224 		case ZFS_PROP_CASE:
2225 			*value = ZFS_CASE_SENSITIVE;
2226 			break;
2227 		case ZFS_PROP_ACLTYPE:
2228 			*value = ZFS_ACLTYPE_NFSV4;
2229 			break;
2230 		default:
2231 			return (error);
2232 		}
2233 		error = 0;
2234 	}
2235 
2236 	/*
2237 	 * If one of the methods for getting the property value above worked,
2238 	 * copy it into the objset_t's cache.
2239 	 */
2240 	if (error == 0 && cached_copy != NULL) {
2241 		*cached_copy = *value;
2242 	}
2243 
2244 	return (error);
2245 }
2246 
2247 /*
2248  * Return true if the corresponding vfs's unmounted flag is set.
2249  * Otherwise return false.
2250  * If this function returns true we know VFS unmount has been initiated.
2251  */
2252 boolean_t
2253 zfs_get_vfs_flag_unmounted(objset_t *os)
2254 {
2255 	zfsvfs_t *zfvp;
2256 	boolean_t unmounted = B_FALSE;
2257 
2258 	ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2259 
2260 	mutex_enter(&os->os_user_ptr_lock);
2261 	zfvp = dmu_objset_get_user(os);
2262 	if (zfvp != NULL && zfvp->z_vfs != NULL &&
2263 	    (zfvp->z_vfs->mnt_kern_flag & MNTK_UNMOUNT))
2264 		unmounted = B_TRUE;
2265 	mutex_exit(&os->os_user_ptr_lock);
2266 
2267 	return (unmounted);
2268 }
2269 
2270 #ifdef _KERNEL
2271 void
2272 zfsvfs_update_fromname(const char *oldname, const char *newname)
2273 {
2274 	char tmpbuf[MAXPATHLEN];
2275 	struct mount *mp;
2276 	char *fromname;
2277 	size_t oldlen;
2278 
2279 	oldlen = strlen(oldname);
2280 
2281 	mtx_lock(&mountlist_mtx);
2282 	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2283 		fromname = mp->mnt_stat.f_mntfromname;
2284 		if (strcmp(fromname, oldname) == 0) {
2285 			(void) strlcpy(fromname, newname,
2286 			    sizeof (mp->mnt_stat.f_mntfromname));
2287 			continue;
2288 		}
2289 		if (strncmp(fromname, oldname, oldlen) == 0 &&
2290 		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2291 			(void) snprintf(tmpbuf, sizeof (tmpbuf), "%s%s",
2292 			    newname, fromname + oldlen);
2293 			(void) strlcpy(fromname, tmpbuf,
2294 			    sizeof (mp->mnt_stat.f_mntfromname));
2295 			continue;
2296 		}
2297 	}
2298 	mtx_unlock(&mountlist_mtx);
2299 }
2300 #endif
2301