1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013, 2016 by Delphix. All rights reserved. 25 * Copyright 2017 Nexenta Systems, Inc. 26 */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vnode.h> 36 #include <sys/extdirent.h> 37 #include <sys/file.h> 38 #include <sys/kmem.h> 39 #include <sys/uio.h> 40 #include <sys/cmn_err.h> 41 #include <sys/errno.h> 42 #include <sys/stat.h> 43 #include <sys/unistd.h> 44 #include <sys/sunddi.h> 45 #include <sys/random.h> 46 #include <sys/policy.h> 47 #include <sys/condvar.h> 48 #include <sys/callb.h> 49 #include <sys/smp.h> 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/fs/zfs.h> 53 #include <sys/zap.h> 54 #include <sys/dmu.h> 55 #include <sys/atomic.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/sa.h> 59 #include <sys/zfs_sa.h> 60 #include <sys/dmu_objset.h> 61 #include <sys/dsl_dir.h> 62 63 #include <sys/ccompat.h> 64 65 /* 66 * zfs_match_find() is used by zfs_dirent_lookup() to perform zap lookups 67 * of names after deciding which is the appropriate lookup interface. 68 */ 69 static int 70 zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, const char *name, 71 matchtype_t mt, uint64_t *zoid) 72 { 73 int error; 74 75 if (zfsvfs->z_norm) { 76 77 /* 78 * In the non-mixed case we only expect there would ever 79 * be one match, but we need to use the normalizing lookup. 80 */ 81 error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1, 82 zoid, mt, NULL, 0, NULL); 83 } else { 84 error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid); 85 } 86 *zoid = ZFS_DIRENT_OBJ(*zoid); 87 88 return (error); 89 } 90 91 /* 92 * Look up a directory entry under a locked vnode. 93 * dvp being locked gives us a guarantee that there are no concurrent 94 * modification of the directory and, thus, if a node can be found in 95 * the directory, then it must not be unlinked. 96 * 97 * Input arguments: 98 * dzp - znode for directory 99 * name - name of entry to lock 100 * flag - ZNEW: if the entry already exists, fail with EEXIST. 101 * ZEXISTS: if the entry does not exist, fail with ENOENT. 102 * ZXATTR: we want dzp's xattr directory 103 * 104 * Output arguments: 105 * zpp - pointer to the znode for the entry (NULL if there isn't one) 106 * 107 * Return value: 0 on success or errno on failure. 108 * 109 * NOTE: Always checks for, and rejects, '.' and '..'. 110 */ 111 int 112 zfs_dirent_lookup(znode_t *dzp, const char *name, znode_t **zpp, int flag) 113 { 114 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 115 znode_t *zp; 116 matchtype_t mt = 0; 117 uint64_t zoid; 118 int error = 0; 119 120 if (zfsvfs->z_replay == B_FALSE) 121 ASSERT_VOP_LOCKED(ZTOV(dzp), __func__); 122 123 *zpp = NULL; 124 125 /* 126 * Verify that we are not trying to lock '.', '..', or '.zfs' 127 */ 128 if (name[0] == '.' && 129 (((name[1] == '\0') || (name[1] == '.' && name[2] == '\0')) || 130 (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0))) 131 return (SET_ERROR(EEXIST)); 132 133 /* 134 * Case sensitivity and normalization preferences are set when 135 * the file system is created. These are stored in the 136 * zfsvfs->z_case and zfsvfs->z_norm fields. These choices 137 * affect how we perform zap lookups. 138 * 139 * When matching we may need to normalize & change case according to 140 * FS settings. 141 * 142 * Note that a normalized match is necessary for a case insensitive 143 * filesystem when the lookup request is not exact because normalization 144 * can fold case independent of normalizing code point sequences. 145 * 146 * See the table above zfs_dropname(). 147 */ 148 if (zfsvfs->z_norm != 0) { 149 mt = MT_NORMALIZE; 150 151 /* 152 * Determine if the match needs to honor the case specified in 153 * lookup, and if so keep track of that so that during 154 * normalization we don't fold case. 155 */ 156 if (zfsvfs->z_case == ZFS_CASE_MIXED) { 157 mt |= MT_MATCH_CASE; 158 } 159 } 160 161 /* 162 * Only look in or update the DNLC if we are looking for the 163 * name on a file system that does not require normalization 164 * or case folding. We can also look there if we happen to be 165 * on a non-normalizing, mixed sensitivity file system IF we 166 * are looking for the exact name. 167 * 168 * NB: we do not need to worry about this flag for ZFS_CASE_SENSITIVE 169 * because in that case MT_EXACT and MT_FIRST should produce exactly 170 * the same result. 171 */ 172 173 if (dzp->z_unlinked && !(flag & ZXATTR)) 174 return (ENOENT); 175 if (flag & ZXATTR) { 176 error = sa_lookup(dzp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &zoid, 177 sizeof (zoid)); 178 if (error == 0) 179 error = (zoid == 0 ? ENOENT : 0); 180 } else { 181 error = zfs_match_find(zfsvfs, dzp, name, mt, &zoid); 182 } 183 if (error) { 184 if (error != ENOENT || (flag & ZEXISTS)) { 185 return (error); 186 } 187 } else { 188 if (flag & ZNEW) { 189 return (SET_ERROR(EEXIST)); 190 } 191 error = zfs_zget(zfsvfs, zoid, &zp); 192 if (error) 193 return (error); 194 ASSERT(!zp->z_unlinked); 195 *zpp = zp; 196 } 197 198 return (0); 199 } 200 201 static int 202 zfs_dd_lookup(znode_t *dzp, znode_t **zpp) 203 { 204 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 205 znode_t *zp; 206 uint64_t parent; 207 int error; 208 209 if (zfsvfs->z_replay == B_FALSE) 210 ASSERT_VOP_LOCKED(ZTOV(dzp), __func__); 211 ASSERT(RRM_READ_HELD(&zfsvfs->z_teardown_lock)); 212 213 if (dzp->z_unlinked) 214 return (ENOENT); 215 216 if ((error = sa_lookup(dzp->z_sa_hdl, 217 SA_ZPL_PARENT(zfsvfs), &parent, sizeof (parent))) != 0) 218 return (error); 219 220 error = zfs_zget(zfsvfs, parent, &zp); 221 if (error == 0) 222 *zpp = zp; 223 return (error); 224 } 225 226 int 227 zfs_dirlook(znode_t *dzp, const char *name, znode_t **zpp) 228 { 229 zfsvfs_t *zfsvfs __unused = dzp->z_zfsvfs; 230 znode_t *zp = NULL; 231 int error = 0; 232 233 #ifdef ZFS_DEBUG 234 if (zfsvfs->z_replay == B_FALSE) 235 ASSERT_VOP_LOCKED(ZTOV(dzp), __func__); 236 ASSERT(RRM_READ_HELD(&zfsvfs->z_teardown_lock)); 237 #endif 238 if (dzp->z_unlinked) 239 return (SET_ERROR(ENOENT)); 240 241 if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) { 242 *zpp = dzp; 243 } else if (name[0] == '.' && name[1] == '.' && name[2] == 0) { 244 error = zfs_dd_lookup(dzp, &zp); 245 if (error == 0) 246 *zpp = zp; 247 } else { 248 error = zfs_dirent_lookup(dzp, name, &zp, ZEXISTS); 249 if (error == 0) { 250 dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */ 251 *zpp = zp; 252 } 253 } 254 return (error); 255 } 256 257 /* 258 * unlinked Set (formerly known as the "delete queue") Error Handling 259 * 260 * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we 261 * don't specify the name of the entry that we will be manipulating. We 262 * also fib and say that we won't be adding any new entries to the 263 * unlinked set, even though we might (this is to lower the minimum file 264 * size that can be deleted in a full filesystem). So on the small 265 * chance that the nlink list is using a fat zap (ie. has more than 266 * 2000 entries), we *may* not pre-read a block that's needed. 267 * Therefore it is remotely possible for some of the assertions 268 * regarding the unlinked set below to fail due to i/o error. On a 269 * nondebug system, this will result in the space being leaked. 270 */ 271 void 272 zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx) 273 { 274 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 275 276 ASSERT(zp->z_unlinked); 277 ASSERT(zp->z_links == 0); 278 279 VERIFY3U(0, ==, 280 zap_add_int(zfsvfs->z_os, zfsvfs->z_unlinkedobj, zp->z_id, tx)); 281 282 dataset_kstats_update_nunlinks_kstat(&zfsvfs->z_kstat, 1); 283 } 284 285 /* 286 * Clean up any znodes that had no links when we either crashed or 287 * (force) umounted the file system. 288 */ 289 void 290 zfs_unlinked_drain(zfsvfs_t *zfsvfs) 291 { 292 zap_cursor_t zc; 293 zap_attribute_t zap; 294 dmu_object_info_t doi; 295 znode_t *zp; 296 dmu_tx_t *tx; 297 int error; 298 299 /* 300 * Iterate over the contents of the unlinked set. 301 */ 302 for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj); 303 zap_cursor_retrieve(&zc, &zap) == 0; 304 zap_cursor_advance(&zc)) { 305 306 /* 307 * See what kind of object we have in list 308 */ 309 310 error = dmu_object_info(zfsvfs->z_os, 311 zap.za_first_integer, &doi); 312 if (error != 0) 313 continue; 314 315 ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) || 316 (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS)); 317 /* 318 * We need to re-mark these list entries for deletion, 319 * so we pull them back into core and set zp->z_unlinked. 320 */ 321 error = zfs_zget(zfsvfs, zap.za_first_integer, &zp); 322 323 /* 324 * We may pick up znodes that are already marked for deletion. 325 * This could happen during the purge of an extended attribute 326 * directory. All we need to do is skip over them, since they 327 * are already in the system marked z_unlinked. 328 */ 329 if (error != 0) 330 continue; 331 332 vn_lock(ZTOV(zp), LK_EXCLUSIVE | LK_RETRY); 333 334 /* 335 * Due to changes in zfs_rmnode we need to make sure the 336 * link count is set to zero here. 337 */ 338 if (zp->z_links != 0) { 339 tx = dmu_tx_create(zfsvfs->z_os); 340 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 341 error = dmu_tx_assign(tx, TXG_WAIT); 342 if (error != 0) { 343 dmu_tx_abort(tx); 344 vput(ZTOV(zp)); 345 continue; 346 } 347 zp->z_links = 0; 348 VERIFY0(sa_update(zp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 349 &zp->z_links, sizeof (zp->z_links), tx)); 350 dmu_tx_commit(tx); 351 } 352 353 zp->z_unlinked = B_TRUE; 354 vput(ZTOV(zp)); 355 } 356 zap_cursor_fini(&zc); 357 } 358 359 /* 360 * Delete the entire contents of a directory. Return a count 361 * of the number of entries that could not be deleted. If we encounter 362 * an error, return a count of at least one so that the directory stays 363 * in the unlinked set. 364 * 365 * NOTE: this function assumes that the directory is inactive, 366 * so there is no need to lock its entries before deletion. 367 * Also, it assumes the directory contents is *only* regular 368 * files. 369 */ 370 static int 371 zfs_purgedir(znode_t *dzp) 372 { 373 zap_cursor_t zc; 374 zap_attribute_t zap; 375 znode_t *xzp; 376 dmu_tx_t *tx; 377 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 378 int skipped = 0; 379 int error; 380 381 for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id); 382 (error = zap_cursor_retrieve(&zc, &zap)) == 0; 383 zap_cursor_advance(&zc)) { 384 error = zfs_zget(zfsvfs, 385 ZFS_DIRENT_OBJ(zap.za_first_integer), &xzp); 386 if (error) { 387 skipped += 1; 388 continue; 389 } 390 391 vn_lock(ZTOV(xzp), LK_EXCLUSIVE | LK_RETRY); 392 ASSERT((ZTOV(xzp)->v_type == VREG) || 393 (ZTOV(xzp)->v_type == VLNK)); 394 395 tx = dmu_tx_create(zfsvfs->z_os); 396 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 397 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name); 398 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 399 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 400 /* Is this really needed ? */ 401 zfs_sa_upgrade_txholds(tx, xzp); 402 dmu_tx_mark_netfree(tx); 403 error = dmu_tx_assign(tx, TXG_WAIT); 404 if (error) { 405 dmu_tx_abort(tx); 406 vput(ZTOV(xzp)); 407 skipped += 1; 408 continue; 409 } 410 411 error = zfs_link_destroy(dzp, zap.za_name, xzp, tx, 0, NULL); 412 if (error) 413 skipped += 1; 414 dmu_tx_commit(tx); 415 416 vput(ZTOV(xzp)); 417 } 418 zap_cursor_fini(&zc); 419 if (error != ENOENT) 420 skipped += 1; 421 return (skipped); 422 } 423 424 extern taskq_t *zfsvfs_taskq; 425 426 void 427 zfs_rmnode(znode_t *zp) 428 { 429 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 430 objset_t *os = zfsvfs->z_os; 431 dmu_tx_t *tx; 432 uint64_t acl_obj; 433 uint64_t xattr_obj; 434 uint64_t count; 435 int error; 436 437 ASSERT(zp->z_links == 0); 438 if (zfsvfs->z_replay == B_FALSE) 439 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__); 440 441 /* 442 * If this is an attribute directory, purge its contents. 443 */ 444 if (ZTOV(zp) != NULL && ZTOV(zp)->v_type == VDIR && 445 (zp->z_pflags & ZFS_XATTR)) { 446 if (zfs_purgedir(zp) != 0) { 447 /* 448 * Not enough space to delete some xattrs. 449 * Leave it in the unlinked set. 450 */ 451 zfs_znode_dmu_fini(zp); 452 zfs_znode_free(zp); 453 return; 454 } 455 } else { 456 /* 457 * Free up all the data in the file. We don't do this for 458 * XATTR directories because we need truncate and remove to be 459 * in the same tx, like in zfs_znode_delete(). Otherwise, if 460 * we crash here we'll end up with an inconsistent truncated 461 * zap object in the delete queue. Note a truncated file is 462 * harmless since it only contains user data. 463 */ 464 error = dmu_free_long_range(os, zp->z_id, 0, DMU_OBJECT_END); 465 if (error) { 466 /* 467 * Not enough space or we were interrupted by unmount. 468 * Leave the file in the unlinked set. 469 */ 470 zfs_znode_dmu_fini(zp); 471 zfs_znode_free(zp); 472 return; 473 } 474 } 475 476 /* 477 * If the file has extended attributes, we're going to unlink 478 * the xattr dir. 479 */ 480 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 481 &xattr_obj, sizeof (xattr_obj)); 482 if (error) 483 xattr_obj = 0; 484 485 acl_obj = zfs_external_acl(zp); 486 487 /* 488 * Set up the final transaction. 489 */ 490 tx = dmu_tx_create(os); 491 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 492 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 493 if (xattr_obj) 494 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL); 495 if (acl_obj) 496 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 497 498 zfs_sa_upgrade_txholds(tx, zp); 499 error = dmu_tx_assign(tx, TXG_WAIT); 500 if (error) { 501 /* 502 * Not enough space to delete the file. Leave it in the 503 * unlinked set, leaking it until the fs is remounted (at 504 * which point we'll call zfs_unlinked_drain() to process it). 505 */ 506 dmu_tx_abort(tx); 507 zfs_znode_dmu_fini(zp); 508 zfs_znode_free(zp); 509 return; 510 } 511 512 /* 513 * FreeBSD's implementation of zfs_zget requires a vnode to back it. 514 * This means that we could end up calling into getnewvnode while 515 * calling zfs_rmnode as a result of a prior call to getnewvnode 516 * trying to clear vnodes out of the cache. If this repeats we can 517 * recurse enough that we overflow our stack. To avoid this, we 518 * avoid calling zfs_zget on the xattr znode and instead simply add 519 * it to the unlinked set and schedule a call to zfs_unlinked_drain. 520 */ 521 if (xattr_obj) { 522 /* Add extended attribute directory to the unlinked set. */ 523 VERIFY3U(0, ==, 524 zap_add_int(os, zfsvfs->z_unlinkedobj, xattr_obj, tx)); 525 } 526 527 mutex_enter(&os->os_dsl_dataset->ds_dir->dd_activity_lock); 528 529 /* Remove this znode from the unlinked set */ 530 VERIFY3U(0, ==, 531 zap_remove_int(os, zfsvfs->z_unlinkedobj, zp->z_id, tx)); 532 533 if (zap_count(os, zfsvfs->z_unlinkedobj, &count) == 0 && count == 0) { 534 cv_broadcast(&os->os_dsl_dataset->ds_dir->dd_activity_cv); 535 } 536 537 mutex_exit(&os->os_dsl_dataset->ds_dir->dd_activity_lock); 538 539 dataset_kstats_update_nunlinked_kstat(&zfsvfs->z_kstat, 1); 540 541 zfs_znode_delete(zp, tx); 542 543 dmu_tx_commit(tx); 544 545 if (xattr_obj) { 546 /* 547 * We're using the FreeBSD taskqueue API here instead of 548 * the Solaris taskq API since the FreeBSD API allows for a 549 * task to be enqueued multiple times but executed once. 550 */ 551 taskqueue_enqueue(zfsvfs_taskq->tq_queue, 552 &zfsvfs->z_unlinked_drain_task); 553 } 554 } 555 556 static uint64_t 557 zfs_dirent(znode_t *zp, uint64_t mode) 558 { 559 uint64_t de = zp->z_id; 560 561 if (zp->z_zfsvfs->z_version >= ZPL_VERSION_DIRENT_TYPE) 562 de |= IFTODT(mode) << 60; 563 return (de); 564 } 565 566 /* 567 * Link zp into dzp. Can only fail if zp has been unlinked. 568 */ 569 int 570 zfs_link_create(znode_t *dzp, const char *name, znode_t *zp, dmu_tx_t *tx, 571 int flag) 572 { 573 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 574 vnode_t *vp = ZTOV(zp); 575 uint64_t value; 576 int zp_is_dir = (vp->v_type == VDIR); 577 sa_bulk_attr_t bulk[5]; 578 uint64_t mtime[2], ctime[2]; 579 int count = 0; 580 int error; 581 582 if (zfsvfs->z_replay == B_FALSE) { 583 ASSERT_VOP_ELOCKED(ZTOV(dzp), __func__); 584 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__); 585 } 586 if (zp_is_dir) { 587 if (dzp->z_links >= ZFS_LINK_MAX) 588 return (SET_ERROR(EMLINK)); 589 } 590 if (!(flag & ZRENAMING)) { 591 if (zp->z_unlinked) { /* no new links to unlinked zp */ 592 ASSERT(!(flag & (ZNEW | ZEXISTS))); 593 return (SET_ERROR(ENOENT)); 594 } 595 if (zp->z_links >= ZFS_LINK_MAX - zp_is_dir) { 596 return (SET_ERROR(EMLINK)); 597 } 598 zp->z_links++; 599 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 600 &zp->z_links, sizeof (zp->z_links)); 601 602 } else { 603 ASSERT(zp->z_unlinked == 0); 604 } 605 value = zfs_dirent(zp, zp->z_mode); 606 error = zap_add(zp->z_zfsvfs->z_os, dzp->z_id, name, 607 8, 1, &value, tx); 608 609 /* 610 * zap_add could fail to add the entry if it exceeds the capacity of the 611 * leaf-block and zap_leaf_split() failed to help. 612 * The caller of this routine is responsible for failing the transaction 613 * which will rollback the SA updates done above. 614 */ 615 if (error != 0) { 616 if (!(flag & ZRENAMING) && !(flag & ZNEW)) 617 zp->z_links--; 618 return (error); 619 } 620 621 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, 622 &dzp->z_id, sizeof (dzp->z_id)); 623 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 624 &zp->z_pflags, sizeof (zp->z_pflags)); 625 626 if (!(flag & ZNEW)) { 627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 628 ctime, sizeof (ctime)); 629 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, 630 ctime); 631 } 632 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 633 ASSERT0(error); 634 635 dzp->z_size++; 636 dzp->z_links += zp_is_dir; 637 count = 0; 638 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 639 &dzp->z_size, sizeof (dzp->z_size)); 640 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 641 &dzp->z_links, sizeof (dzp->z_links)); 642 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 643 mtime, sizeof (mtime)); 644 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 645 ctime, sizeof (ctime)); 646 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 647 &dzp->z_pflags, sizeof (dzp->z_pflags)); 648 zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime); 649 error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx); 650 ASSERT0(error); 651 return (0); 652 } 653 654 /* 655 * The match type in the code for this function should conform to: 656 * 657 * ------------------------------------------------------------------------ 658 * fs type | z_norm | lookup type | match type 659 * ---------|-------------|-------------|---------------------------------- 660 * CS !norm | 0 | 0 | 0 (exact) 661 * CS norm | formX | 0 | MT_NORMALIZE 662 * CI !norm | upper | !ZCIEXACT | MT_NORMALIZE 663 * CI !norm | upper | ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE 664 * CI norm | upper|formX | !ZCIEXACT | MT_NORMALIZE 665 * CI norm | upper|formX | ZCIEXACT | MT_NORMALIZE | MT_MATCH_CASE 666 * CM !norm | upper | !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE 667 * CM !norm | upper | ZCILOOK | MT_NORMALIZE 668 * CM norm | upper|formX | !ZCILOOK | MT_NORMALIZE | MT_MATCH_CASE 669 * CM norm | upper|formX | ZCILOOK | MT_NORMALIZE 670 * 671 * Abbreviations: 672 * CS = Case Sensitive, CI = Case Insensitive, CM = Case Mixed 673 * upper = case folding set by fs type on creation (U8_TEXTPREP_TOUPPER) 674 * formX = unicode normalization form set on fs creation 675 */ 676 static int 677 zfs_dropname(znode_t *dzp, const char *name, znode_t *zp, dmu_tx_t *tx, 678 int flag) 679 { 680 int error; 681 682 if (zp->z_zfsvfs->z_norm) { 683 matchtype_t mt = MT_NORMALIZE; 684 685 if (zp->z_zfsvfs->z_case == ZFS_CASE_MIXED) { 686 mt |= MT_MATCH_CASE; 687 } 688 689 error = zap_remove_norm(zp->z_zfsvfs->z_os, dzp->z_id, 690 name, mt, tx); 691 } else { 692 error = zap_remove(zp->z_zfsvfs->z_os, dzp->z_id, name, tx); 693 } 694 695 return (error); 696 } 697 698 /* 699 * Unlink zp from dzp, and mark zp for deletion if this was the last link. 700 * Can fail if zp is a mount point (EBUSY) or a non-empty directory (EEXIST). 701 * If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list. 702 * If it's non-NULL, we use it to indicate whether the znode needs deletion, 703 * and it's the caller's job to do it. 704 */ 705 int 706 zfs_link_destroy(znode_t *dzp, const char *name, znode_t *zp, dmu_tx_t *tx, 707 int flag, boolean_t *unlinkedp) 708 { 709 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 710 vnode_t *vp = ZTOV(zp); 711 int zp_is_dir = (vp->v_type == VDIR); 712 boolean_t unlinked = B_FALSE; 713 sa_bulk_attr_t bulk[5]; 714 uint64_t mtime[2], ctime[2]; 715 int count = 0; 716 int error; 717 718 if (zfsvfs->z_replay == B_FALSE) { 719 ASSERT_VOP_ELOCKED(ZTOV(dzp), __func__); 720 ASSERT_VOP_ELOCKED(ZTOV(zp), __func__); 721 } 722 if (!(flag & ZRENAMING)) { 723 724 if (zp_is_dir && !zfs_dirempty(zp)) 725 return (SET_ERROR(ENOTEMPTY)); 726 727 /* 728 * If we get here, we are going to try to remove the object. 729 * First try removing the name from the directory; if that 730 * fails, return the error. 731 */ 732 error = zfs_dropname(dzp, name, zp, tx, flag); 733 if (error != 0) { 734 return (error); 735 } 736 737 if (zp->z_links <= zp_is_dir) { 738 zfs_panic_recover("zfs: link count on vnode %p is %u, " 739 "should be at least %u", zp->z_vnode, 740 (int)zp->z_links, 741 zp_is_dir + 1); 742 zp->z_links = zp_is_dir + 1; 743 } 744 if (--zp->z_links == zp_is_dir) { 745 zp->z_unlinked = B_TRUE; 746 zp->z_links = 0; 747 unlinked = B_TRUE; 748 } else { 749 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), 750 NULL, &ctime, sizeof (ctime)); 751 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 752 NULL, &zp->z_pflags, sizeof (zp->z_pflags)); 753 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, 754 ctime); 755 } 756 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), 757 NULL, &zp->z_links, sizeof (zp->z_links)); 758 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 759 count = 0; 760 ASSERT0(error); 761 } else { 762 ASSERT(zp->z_unlinked == 0); 763 error = zfs_dropname(dzp, name, zp, tx, flag); 764 if (error != 0) 765 return (error); 766 } 767 768 dzp->z_size--; /* one dirent removed */ 769 dzp->z_links -= zp_is_dir; /* ".." link from zp */ 770 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), 771 NULL, &dzp->z_links, sizeof (dzp->z_links)); 772 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), 773 NULL, &dzp->z_size, sizeof (dzp->z_size)); 774 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), 775 NULL, ctime, sizeof (ctime)); 776 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 777 NULL, mtime, sizeof (mtime)); 778 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 779 NULL, &dzp->z_pflags, sizeof (dzp->z_pflags)); 780 zfs_tstamp_update_setup(dzp, CONTENT_MODIFIED, mtime, ctime); 781 error = sa_bulk_update(dzp->z_sa_hdl, bulk, count, tx); 782 ASSERT0(error); 783 784 if (unlinkedp != NULL) 785 *unlinkedp = unlinked; 786 else if (unlinked) 787 zfs_unlinked_add(zp, tx); 788 789 return (0); 790 } 791 792 /* 793 * Indicate whether the directory is empty. 794 */ 795 boolean_t 796 zfs_dirempty(znode_t *dzp) 797 { 798 return (dzp->z_size == 2); 799 } 800 801 int 802 zfs_make_xattrdir(znode_t *zp, vattr_t *vap, znode_t **xvpp, cred_t *cr) 803 { 804 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 805 znode_t *xzp; 806 dmu_tx_t *tx; 807 int error; 808 zfs_acl_ids_t acl_ids; 809 boolean_t fuid_dirtied; 810 uint64_t parent __unused; 811 812 *xvpp = NULL; 813 814 if ((error = zfs_acl_ids_create(zp, IS_XATTR, vap, cr, NULL, 815 &acl_ids)) != 0) 816 return (error); 817 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, 0)) { 818 zfs_acl_ids_free(&acl_ids); 819 return (SET_ERROR(EDQUOT)); 820 } 821 822 getnewvnode_reserve_(); 823 824 tx = dmu_tx_create(zfsvfs->z_os); 825 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 826 ZFS_SA_BASE_ATTR_SIZE); 827 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 828 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 829 fuid_dirtied = zfsvfs->z_fuid_dirty; 830 if (fuid_dirtied) 831 zfs_fuid_txhold(zfsvfs, tx); 832 error = dmu_tx_assign(tx, TXG_WAIT); 833 if (error) { 834 zfs_acl_ids_free(&acl_ids); 835 dmu_tx_abort(tx); 836 getnewvnode_drop_reserve(); 837 return (error); 838 } 839 zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, &acl_ids); 840 841 if (fuid_dirtied) 842 zfs_fuid_sync(zfsvfs, tx); 843 844 #ifdef ZFS_DEBUG 845 error = sa_lookup(xzp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 846 &parent, sizeof (parent)); 847 ASSERT(error == 0 && parent == zp->z_id); 848 #endif 849 850 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xzp->z_id, 851 sizeof (xzp->z_id), tx)); 852 853 (void) zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp, 854 xzp, "", NULL, acl_ids.z_fuidp, vap); 855 856 zfs_acl_ids_free(&acl_ids); 857 dmu_tx_commit(tx); 858 859 getnewvnode_drop_reserve(); 860 861 *xvpp = xzp; 862 863 return (0); 864 } 865 866 /* 867 * Return a znode for the extended attribute directory for zp. 868 * ** If the directory does not already exist, it is created ** 869 * 870 * IN: zp - znode to obtain attribute directory from 871 * cr - credentials of caller 872 * flags - flags from the VOP_LOOKUP call 873 * 874 * OUT: xzpp - pointer to extended attribute znode 875 * 876 * RETURN: 0 on success 877 * error number on failure 878 */ 879 int 880 zfs_get_xattrdir(znode_t *zp, znode_t **xzpp, cred_t *cr, int flags) 881 { 882 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 883 znode_t *xzp; 884 vattr_t va; 885 int error; 886 top: 887 error = zfs_dirent_lookup(zp, "", &xzp, ZXATTR); 888 if (error) 889 return (error); 890 891 if (xzp != NULL) { 892 *xzpp = xzp; 893 return (0); 894 } 895 896 897 if (!(flags & CREATE_XATTR_DIR)) 898 return (SET_ERROR(ENOATTR)); 899 900 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 901 return (SET_ERROR(EROFS)); 902 } 903 904 /* 905 * The ability to 'create' files in an attribute 906 * directory comes from the write_xattr permission on the base file. 907 * 908 * The ability to 'search' an attribute directory requires 909 * read_xattr permission on the base file. 910 * 911 * Once in a directory the ability to read/write attributes 912 * is controlled by the permissions on the attribute file. 913 */ 914 va.va_mask = AT_MODE | AT_UID | AT_GID; 915 va.va_type = VDIR; 916 va.va_mode = S_IFDIR | S_ISVTX | 0777; 917 zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid); 918 919 error = zfs_make_xattrdir(zp, &va, xzpp, cr); 920 921 if (error == ERESTART) { 922 /* NB: we already did dmu_tx_wait() if necessary */ 923 goto top; 924 } 925 if (error == 0) 926 VOP_UNLOCK1(ZTOV(*xzpp)); 927 928 return (error); 929 } 930 931 /* 932 * Decide whether it is okay to remove within a sticky directory. 933 * 934 * In sticky directories, write access is not sufficient; 935 * you can remove entries from a directory only if: 936 * 937 * you own the directory, 938 * you own the entry, 939 * the entry is a plain file and you have write access, 940 * or you are privileged (checked in secpolicy...). 941 * 942 * The function returns 0 if remove access is granted. 943 */ 944 int 945 zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr) 946 { 947 uid_t uid; 948 uid_t downer; 949 uid_t fowner; 950 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 951 952 if (zdp->z_zfsvfs->z_replay) 953 return (0); 954 955 if ((zdp->z_mode & S_ISVTX) == 0) 956 return (0); 957 958 downer = zfs_fuid_map_id(zfsvfs, zdp->z_uid, cr, ZFS_OWNER); 959 fowner = zfs_fuid_map_id(zfsvfs, zp->z_uid, cr, ZFS_OWNER); 960 961 if ((uid = crgetuid(cr)) == downer || uid == fowner || 962 (ZTOV(zp)->v_type == VREG && 963 zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr) == 0)) 964 return (0); 965 else 966 return (secpolicy_vnode_remove(ZTOV(zp), cr)); 967 } 968