xref: /freebsd-src/sys/contrib/openzfs/module/icp/algs/modes/ccm.c (revision eda14cbc264d6969b02f2b1994cef11148e914f1)
1*eda14cbcSMatt Macy /*
2*eda14cbcSMatt Macy  * CDDL HEADER START
3*eda14cbcSMatt Macy  *
4*eda14cbcSMatt Macy  * The contents of this file are subject to the terms of the
5*eda14cbcSMatt Macy  * Common Development and Distribution License (the "License").
6*eda14cbcSMatt Macy  * You may not use this file except in compliance with the License.
7*eda14cbcSMatt Macy  *
8*eda14cbcSMatt Macy  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9*eda14cbcSMatt Macy  * or http://www.opensolaris.org/os/licensing.
10*eda14cbcSMatt Macy  * See the License for the specific language governing permissions
11*eda14cbcSMatt Macy  * and limitations under the License.
12*eda14cbcSMatt Macy  *
13*eda14cbcSMatt Macy  * When distributing Covered Code, include this CDDL HEADER in each
14*eda14cbcSMatt Macy  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15*eda14cbcSMatt Macy  * If applicable, add the following below this CDDL HEADER, with the
16*eda14cbcSMatt Macy  * fields enclosed by brackets "[]" replaced with your own identifying
17*eda14cbcSMatt Macy  * information: Portions Copyright [yyyy] [name of copyright owner]
18*eda14cbcSMatt Macy  *
19*eda14cbcSMatt Macy  * CDDL HEADER END
20*eda14cbcSMatt Macy  */
21*eda14cbcSMatt Macy /*
22*eda14cbcSMatt Macy  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23*eda14cbcSMatt Macy  * Use is subject to license terms.
24*eda14cbcSMatt Macy  */
25*eda14cbcSMatt Macy 
26*eda14cbcSMatt Macy #include <sys/zfs_context.h>
27*eda14cbcSMatt Macy #include <modes/modes.h>
28*eda14cbcSMatt Macy #include <sys/crypto/common.h>
29*eda14cbcSMatt Macy #include <sys/crypto/impl.h>
30*eda14cbcSMatt Macy 
31*eda14cbcSMatt Macy #ifdef HAVE_EFFICIENT_UNALIGNED_ACCESS
32*eda14cbcSMatt Macy #include <sys/byteorder.h>
33*eda14cbcSMatt Macy #define	UNALIGNED_POINTERS_PERMITTED
34*eda14cbcSMatt Macy #endif
35*eda14cbcSMatt Macy 
36*eda14cbcSMatt Macy /*
37*eda14cbcSMatt Macy  * Encrypt multiple blocks of data in CCM mode.  Decrypt for CCM mode
38*eda14cbcSMatt Macy  * is done in another function.
39*eda14cbcSMatt Macy  */
40*eda14cbcSMatt Macy int
41*eda14cbcSMatt Macy ccm_mode_encrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
42*eda14cbcSMatt Macy     crypto_data_t *out, size_t block_size,
43*eda14cbcSMatt Macy     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
44*eda14cbcSMatt Macy     void (*copy_block)(uint8_t *, uint8_t *),
45*eda14cbcSMatt Macy     void (*xor_block)(uint8_t *, uint8_t *))
46*eda14cbcSMatt Macy {
47*eda14cbcSMatt Macy 	size_t remainder = length;
48*eda14cbcSMatt Macy 	size_t need = 0;
49*eda14cbcSMatt Macy 	uint8_t *datap = (uint8_t *)data;
50*eda14cbcSMatt Macy 	uint8_t *blockp;
51*eda14cbcSMatt Macy 	uint8_t *lastp;
52*eda14cbcSMatt Macy 	void *iov_or_mp;
53*eda14cbcSMatt Macy 	offset_t offset;
54*eda14cbcSMatt Macy 	uint8_t *out_data_1;
55*eda14cbcSMatt Macy 	uint8_t *out_data_2;
56*eda14cbcSMatt Macy 	size_t out_data_1_len;
57*eda14cbcSMatt Macy 	uint64_t counter;
58*eda14cbcSMatt Macy 	uint8_t *mac_buf;
59*eda14cbcSMatt Macy 
60*eda14cbcSMatt Macy 	if (length + ctx->ccm_remainder_len < block_size) {
61*eda14cbcSMatt Macy 		/* accumulate bytes here and return */
62*eda14cbcSMatt Macy 		bcopy(datap,
63*eda14cbcSMatt Macy 		    (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
64*eda14cbcSMatt Macy 		    length);
65*eda14cbcSMatt Macy 		ctx->ccm_remainder_len += length;
66*eda14cbcSMatt Macy 		ctx->ccm_copy_to = datap;
67*eda14cbcSMatt Macy 		return (CRYPTO_SUCCESS);
68*eda14cbcSMatt Macy 	}
69*eda14cbcSMatt Macy 
70*eda14cbcSMatt Macy 	lastp = (uint8_t *)ctx->ccm_cb;
71*eda14cbcSMatt Macy 	crypto_init_ptrs(out, &iov_or_mp, &offset);
72*eda14cbcSMatt Macy 
73*eda14cbcSMatt Macy 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
74*eda14cbcSMatt Macy 
75*eda14cbcSMatt Macy 	do {
76*eda14cbcSMatt Macy 		/* Unprocessed data from last call. */
77*eda14cbcSMatt Macy 		if (ctx->ccm_remainder_len > 0) {
78*eda14cbcSMatt Macy 			need = block_size - ctx->ccm_remainder_len;
79*eda14cbcSMatt Macy 
80*eda14cbcSMatt Macy 			if (need > remainder)
81*eda14cbcSMatt Macy 				return (CRYPTO_DATA_LEN_RANGE);
82*eda14cbcSMatt Macy 
83*eda14cbcSMatt Macy 			bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
84*eda14cbcSMatt Macy 			    [ctx->ccm_remainder_len], need);
85*eda14cbcSMatt Macy 
86*eda14cbcSMatt Macy 			blockp = (uint8_t *)ctx->ccm_remainder;
87*eda14cbcSMatt Macy 		} else {
88*eda14cbcSMatt Macy 			blockp = datap;
89*eda14cbcSMatt Macy 		}
90*eda14cbcSMatt Macy 
91*eda14cbcSMatt Macy 		/*
92*eda14cbcSMatt Macy 		 * do CBC MAC
93*eda14cbcSMatt Macy 		 *
94*eda14cbcSMatt Macy 		 * XOR the previous cipher block current clear block.
95*eda14cbcSMatt Macy 		 * mac_buf always contain previous cipher block.
96*eda14cbcSMatt Macy 		 */
97*eda14cbcSMatt Macy 		xor_block(blockp, mac_buf);
98*eda14cbcSMatt Macy 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
99*eda14cbcSMatt Macy 
100*eda14cbcSMatt Macy 		/* ccm_cb is the counter block */
101*eda14cbcSMatt Macy 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb,
102*eda14cbcSMatt Macy 		    (uint8_t *)ctx->ccm_tmp);
103*eda14cbcSMatt Macy 
104*eda14cbcSMatt Macy 		lastp = (uint8_t *)ctx->ccm_tmp;
105*eda14cbcSMatt Macy 
106*eda14cbcSMatt Macy 		/*
107*eda14cbcSMatt Macy 		 * Increment counter. Counter bits are confined
108*eda14cbcSMatt Macy 		 * to the bottom 64 bits of the counter block.
109*eda14cbcSMatt Macy 		 */
110*eda14cbcSMatt Macy #ifdef _ZFS_LITTLE_ENDIAN
111*eda14cbcSMatt Macy 		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
112*eda14cbcSMatt Macy 		counter = htonll(counter + 1);
113*eda14cbcSMatt Macy #else
114*eda14cbcSMatt Macy 		counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
115*eda14cbcSMatt Macy 		counter++;
116*eda14cbcSMatt Macy #endif	/* _ZFS_LITTLE_ENDIAN */
117*eda14cbcSMatt Macy 		counter &= ctx->ccm_counter_mask;
118*eda14cbcSMatt Macy 		ctx->ccm_cb[1] =
119*eda14cbcSMatt Macy 		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
120*eda14cbcSMatt Macy 
121*eda14cbcSMatt Macy 		/*
122*eda14cbcSMatt Macy 		 * XOR encrypted counter block with the current clear block.
123*eda14cbcSMatt Macy 		 */
124*eda14cbcSMatt Macy 		xor_block(blockp, lastp);
125*eda14cbcSMatt Macy 
126*eda14cbcSMatt Macy 		ctx->ccm_processed_data_len += block_size;
127*eda14cbcSMatt Macy 
128*eda14cbcSMatt Macy 		crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
129*eda14cbcSMatt Macy 		    &out_data_1_len, &out_data_2, block_size);
130*eda14cbcSMatt Macy 
131*eda14cbcSMatt Macy 		/* copy block to where it belongs */
132*eda14cbcSMatt Macy 		if (out_data_1_len == block_size) {
133*eda14cbcSMatt Macy 			copy_block(lastp, out_data_1);
134*eda14cbcSMatt Macy 		} else {
135*eda14cbcSMatt Macy 			bcopy(lastp, out_data_1, out_data_1_len);
136*eda14cbcSMatt Macy 			if (out_data_2 != NULL) {
137*eda14cbcSMatt Macy 				bcopy(lastp + out_data_1_len,
138*eda14cbcSMatt Macy 				    out_data_2,
139*eda14cbcSMatt Macy 				    block_size - out_data_1_len);
140*eda14cbcSMatt Macy 			}
141*eda14cbcSMatt Macy 		}
142*eda14cbcSMatt Macy 		/* update offset */
143*eda14cbcSMatt Macy 		out->cd_offset += block_size;
144*eda14cbcSMatt Macy 
145*eda14cbcSMatt Macy 		/* Update pointer to next block of data to be processed. */
146*eda14cbcSMatt Macy 		if (ctx->ccm_remainder_len != 0) {
147*eda14cbcSMatt Macy 			datap += need;
148*eda14cbcSMatt Macy 			ctx->ccm_remainder_len = 0;
149*eda14cbcSMatt Macy 		} else {
150*eda14cbcSMatt Macy 			datap += block_size;
151*eda14cbcSMatt Macy 		}
152*eda14cbcSMatt Macy 
153*eda14cbcSMatt Macy 		remainder = (size_t)&data[length] - (size_t)datap;
154*eda14cbcSMatt Macy 
155*eda14cbcSMatt Macy 		/* Incomplete last block. */
156*eda14cbcSMatt Macy 		if (remainder > 0 && remainder < block_size) {
157*eda14cbcSMatt Macy 			bcopy(datap, ctx->ccm_remainder, remainder);
158*eda14cbcSMatt Macy 			ctx->ccm_remainder_len = remainder;
159*eda14cbcSMatt Macy 			ctx->ccm_copy_to = datap;
160*eda14cbcSMatt Macy 			goto out;
161*eda14cbcSMatt Macy 		}
162*eda14cbcSMatt Macy 		ctx->ccm_copy_to = NULL;
163*eda14cbcSMatt Macy 
164*eda14cbcSMatt Macy 	} while (remainder > 0);
165*eda14cbcSMatt Macy 
166*eda14cbcSMatt Macy out:
167*eda14cbcSMatt Macy 	return (CRYPTO_SUCCESS);
168*eda14cbcSMatt Macy }
169*eda14cbcSMatt Macy 
170*eda14cbcSMatt Macy void
171*eda14cbcSMatt Macy calculate_ccm_mac(ccm_ctx_t *ctx, uint8_t *ccm_mac,
172*eda14cbcSMatt Macy     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
173*eda14cbcSMatt Macy {
174*eda14cbcSMatt Macy 	uint64_t counter;
175*eda14cbcSMatt Macy 	uint8_t *counterp, *mac_buf;
176*eda14cbcSMatt Macy 	int i;
177*eda14cbcSMatt Macy 
178*eda14cbcSMatt Macy 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
179*eda14cbcSMatt Macy 
180*eda14cbcSMatt Macy 	/* first counter block start with index 0 */
181*eda14cbcSMatt Macy 	counter = 0;
182*eda14cbcSMatt Macy 	ctx->ccm_cb[1] = (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
183*eda14cbcSMatt Macy 
184*eda14cbcSMatt Macy 	counterp = (uint8_t *)ctx->ccm_tmp;
185*eda14cbcSMatt Macy 	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
186*eda14cbcSMatt Macy 
187*eda14cbcSMatt Macy 	/* calculate XOR of MAC with first counter block */
188*eda14cbcSMatt Macy 	for (i = 0; i < ctx->ccm_mac_len; i++) {
189*eda14cbcSMatt Macy 		ccm_mac[i] = mac_buf[i] ^ counterp[i];
190*eda14cbcSMatt Macy 	}
191*eda14cbcSMatt Macy }
192*eda14cbcSMatt Macy 
193*eda14cbcSMatt Macy /* ARGSUSED */
194*eda14cbcSMatt Macy int
195*eda14cbcSMatt Macy ccm_encrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
196*eda14cbcSMatt Macy     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
197*eda14cbcSMatt Macy     void (*xor_block)(uint8_t *, uint8_t *))
198*eda14cbcSMatt Macy {
199*eda14cbcSMatt Macy 	uint8_t *lastp, *mac_buf, *ccm_mac_p, *macp = NULL;
200*eda14cbcSMatt Macy 	void *iov_or_mp;
201*eda14cbcSMatt Macy 	offset_t offset;
202*eda14cbcSMatt Macy 	uint8_t *out_data_1;
203*eda14cbcSMatt Macy 	uint8_t *out_data_2;
204*eda14cbcSMatt Macy 	size_t out_data_1_len;
205*eda14cbcSMatt Macy 	int i;
206*eda14cbcSMatt Macy 
207*eda14cbcSMatt Macy 	if (out->cd_length < (ctx->ccm_remainder_len + ctx->ccm_mac_len)) {
208*eda14cbcSMatt Macy 		return (CRYPTO_DATA_LEN_RANGE);
209*eda14cbcSMatt Macy 	}
210*eda14cbcSMatt Macy 
211*eda14cbcSMatt Macy 	/*
212*eda14cbcSMatt Macy 	 * When we get here, the number of bytes of payload processed
213*eda14cbcSMatt Macy 	 * plus whatever data remains, if any,
214*eda14cbcSMatt Macy 	 * should be the same as the number of bytes that's being
215*eda14cbcSMatt Macy 	 * passed in the argument during init time.
216*eda14cbcSMatt Macy 	 */
217*eda14cbcSMatt Macy 	if ((ctx->ccm_processed_data_len + ctx->ccm_remainder_len)
218*eda14cbcSMatt Macy 	    != (ctx->ccm_data_len)) {
219*eda14cbcSMatt Macy 		return (CRYPTO_DATA_LEN_RANGE);
220*eda14cbcSMatt Macy 	}
221*eda14cbcSMatt Macy 
222*eda14cbcSMatt Macy 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
223*eda14cbcSMatt Macy 
224*eda14cbcSMatt Macy 	if (ctx->ccm_remainder_len > 0) {
225*eda14cbcSMatt Macy 
226*eda14cbcSMatt Macy 		/* ccm_mac_input_buf is not used for encryption */
227*eda14cbcSMatt Macy 		macp = (uint8_t *)ctx->ccm_mac_input_buf;
228*eda14cbcSMatt Macy 		bzero(macp, block_size);
229*eda14cbcSMatt Macy 
230*eda14cbcSMatt Macy 		/* copy remainder to temporary buffer */
231*eda14cbcSMatt Macy 		bcopy(ctx->ccm_remainder, macp, ctx->ccm_remainder_len);
232*eda14cbcSMatt Macy 
233*eda14cbcSMatt Macy 		/* calculate the CBC MAC */
234*eda14cbcSMatt Macy 		xor_block(macp, mac_buf);
235*eda14cbcSMatt Macy 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
236*eda14cbcSMatt Macy 
237*eda14cbcSMatt Macy 		/* calculate the counter mode */
238*eda14cbcSMatt Macy 		lastp = (uint8_t *)ctx->ccm_tmp;
239*eda14cbcSMatt Macy 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, lastp);
240*eda14cbcSMatt Macy 
241*eda14cbcSMatt Macy 		/* XOR with counter block */
242*eda14cbcSMatt Macy 		for (i = 0; i < ctx->ccm_remainder_len; i++) {
243*eda14cbcSMatt Macy 			macp[i] ^= lastp[i];
244*eda14cbcSMatt Macy 		}
245*eda14cbcSMatt Macy 		ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
246*eda14cbcSMatt Macy 	}
247*eda14cbcSMatt Macy 
248*eda14cbcSMatt Macy 	/* Calculate the CCM MAC */
249*eda14cbcSMatt Macy 	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
250*eda14cbcSMatt Macy 	calculate_ccm_mac(ctx, ccm_mac_p, encrypt_block);
251*eda14cbcSMatt Macy 
252*eda14cbcSMatt Macy 	crypto_init_ptrs(out, &iov_or_mp, &offset);
253*eda14cbcSMatt Macy 	crypto_get_ptrs(out, &iov_or_mp, &offset, &out_data_1,
254*eda14cbcSMatt Macy 	    &out_data_1_len, &out_data_2,
255*eda14cbcSMatt Macy 	    ctx->ccm_remainder_len + ctx->ccm_mac_len);
256*eda14cbcSMatt Macy 
257*eda14cbcSMatt Macy 	if (ctx->ccm_remainder_len > 0) {
258*eda14cbcSMatt Macy 
259*eda14cbcSMatt Macy 		/* copy temporary block to where it belongs */
260*eda14cbcSMatt Macy 		if (out_data_2 == NULL) {
261*eda14cbcSMatt Macy 			/* everything will fit in out_data_1 */
262*eda14cbcSMatt Macy 			bcopy(macp, out_data_1, ctx->ccm_remainder_len);
263*eda14cbcSMatt Macy 			bcopy(ccm_mac_p, out_data_1 + ctx->ccm_remainder_len,
264*eda14cbcSMatt Macy 			    ctx->ccm_mac_len);
265*eda14cbcSMatt Macy 		} else {
266*eda14cbcSMatt Macy 
267*eda14cbcSMatt Macy 			if (out_data_1_len < ctx->ccm_remainder_len) {
268*eda14cbcSMatt Macy 
269*eda14cbcSMatt Macy 				size_t data_2_len_used;
270*eda14cbcSMatt Macy 
271*eda14cbcSMatt Macy 				bcopy(macp, out_data_1, out_data_1_len);
272*eda14cbcSMatt Macy 
273*eda14cbcSMatt Macy 				data_2_len_used = ctx->ccm_remainder_len
274*eda14cbcSMatt Macy 				    - out_data_1_len;
275*eda14cbcSMatt Macy 
276*eda14cbcSMatt Macy 				bcopy((uint8_t *)macp + out_data_1_len,
277*eda14cbcSMatt Macy 				    out_data_2, data_2_len_used);
278*eda14cbcSMatt Macy 				bcopy(ccm_mac_p, out_data_2 + data_2_len_used,
279*eda14cbcSMatt Macy 				    ctx->ccm_mac_len);
280*eda14cbcSMatt Macy 			} else {
281*eda14cbcSMatt Macy 				bcopy(macp, out_data_1, out_data_1_len);
282*eda14cbcSMatt Macy 				if (out_data_1_len == ctx->ccm_remainder_len) {
283*eda14cbcSMatt Macy 					/* mac will be in out_data_2 */
284*eda14cbcSMatt Macy 					bcopy(ccm_mac_p, out_data_2,
285*eda14cbcSMatt Macy 					    ctx->ccm_mac_len);
286*eda14cbcSMatt Macy 				} else {
287*eda14cbcSMatt Macy 					size_t len_not_used = out_data_1_len -
288*eda14cbcSMatt Macy 					    ctx->ccm_remainder_len;
289*eda14cbcSMatt Macy 					/*
290*eda14cbcSMatt Macy 					 * part of mac in will be in
291*eda14cbcSMatt Macy 					 * out_data_1, part of the mac will be
292*eda14cbcSMatt Macy 					 * in out_data_2
293*eda14cbcSMatt Macy 					 */
294*eda14cbcSMatt Macy 					bcopy(ccm_mac_p,
295*eda14cbcSMatt Macy 					    out_data_1 + ctx->ccm_remainder_len,
296*eda14cbcSMatt Macy 					    len_not_used);
297*eda14cbcSMatt Macy 					bcopy(ccm_mac_p + len_not_used,
298*eda14cbcSMatt Macy 					    out_data_2,
299*eda14cbcSMatt Macy 					    ctx->ccm_mac_len - len_not_used);
300*eda14cbcSMatt Macy 
301*eda14cbcSMatt Macy 				}
302*eda14cbcSMatt Macy 			}
303*eda14cbcSMatt Macy 		}
304*eda14cbcSMatt Macy 	} else {
305*eda14cbcSMatt Macy 		/* copy block to where it belongs */
306*eda14cbcSMatt Macy 		bcopy(ccm_mac_p, out_data_1, out_data_1_len);
307*eda14cbcSMatt Macy 		if (out_data_2 != NULL) {
308*eda14cbcSMatt Macy 			bcopy(ccm_mac_p + out_data_1_len, out_data_2,
309*eda14cbcSMatt Macy 			    block_size - out_data_1_len);
310*eda14cbcSMatt Macy 		}
311*eda14cbcSMatt Macy 	}
312*eda14cbcSMatt Macy 	out->cd_offset += ctx->ccm_remainder_len + ctx->ccm_mac_len;
313*eda14cbcSMatt Macy 	ctx->ccm_remainder_len = 0;
314*eda14cbcSMatt Macy 	return (CRYPTO_SUCCESS);
315*eda14cbcSMatt Macy }
316*eda14cbcSMatt Macy 
317*eda14cbcSMatt Macy /*
318*eda14cbcSMatt Macy  * This will only deal with decrypting the last block of the input that
319*eda14cbcSMatt Macy  * might not be a multiple of block length.
320*eda14cbcSMatt Macy  */
321*eda14cbcSMatt Macy static void
322*eda14cbcSMatt Macy ccm_decrypt_incomplete_block(ccm_ctx_t *ctx,
323*eda14cbcSMatt Macy     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *))
324*eda14cbcSMatt Macy {
325*eda14cbcSMatt Macy 	uint8_t *datap, *outp, *counterp;
326*eda14cbcSMatt Macy 	int i;
327*eda14cbcSMatt Macy 
328*eda14cbcSMatt Macy 	datap = (uint8_t *)ctx->ccm_remainder;
329*eda14cbcSMatt Macy 	outp = &((ctx->ccm_pt_buf)[ctx->ccm_processed_data_len]);
330*eda14cbcSMatt Macy 
331*eda14cbcSMatt Macy 	counterp = (uint8_t *)ctx->ccm_tmp;
332*eda14cbcSMatt Macy 	encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, counterp);
333*eda14cbcSMatt Macy 
334*eda14cbcSMatt Macy 	/* XOR with counter block */
335*eda14cbcSMatt Macy 	for (i = 0; i < ctx->ccm_remainder_len; i++) {
336*eda14cbcSMatt Macy 		outp[i] = datap[i] ^ counterp[i];
337*eda14cbcSMatt Macy 	}
338*eda14cbcSMatt Macy }
339*eda14cbcSMatt Macy 
340*eda14cbcSMatt Macy /*
341*eda14cbcSMatt Macy  * This will decrypt the cipher text.  However, the plaintext won't be
342*eda14cbcSMatt Macy  * returned to the caller.  It will be returned when decrypt_final() is
343*eda14cbcSMatt Macy  * called if the MAC matches
344*eda14cbcSMatt Macy  */
345*eda14cbcSMatt Macy /* ARGSUSED */
346*eda14cbcSMatt Macy int
347*eda14cbcSMatt Macy ccm_mode_decrypt_contiguous_blocks(ccm_ctx_t *ctx, char *data, size_t length,
348*eda14cbcSMatt Macy     crypto_data_t *out, size_t block_size,
349*eda14cbcSMatt Macy     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
350*eda14cbcSMatt Macy     void (*copy_block)(uint8_t *, uint8_t *),
351*eda14cbcSMatt Macy     void (*xor_block)(uint8_t *, uint8_t *))
352*eda14cbcSMatt Macy {
353*eda14cbcSMatt Macy 	size_t remainder = length;
354*eda14cbcSMatt Macy 	size_t need = 0;
355*eda14cbcSMatt Macy 	uint8_t *datap = (uint8_t *)data;
356*eda14cbcSMatt Macy 	uint8_t *blockp;
357*eda14cbcSMatt Macy 	uint8_t *cbp;
358*eda14cbcSMatt Macy 	uint64_t counter;
359*eda14cbcSMatt Macy 	size_t pt_len, total_decrypted_len, mac_len, pm_len, pd_len;
360*eda14cbcSMatt Macy 	uint8_t *resultp;
361*eda14cbcSMatt Macy 
362*eda14cbcSMatt Macy 
363*eda14cbcSMatt Macy 	pm_len = ctx->ccm_processed_mac_len;
364*eda14cbcSMatt Macy 
365*eda14cbcSMatt Macy 	if (pm_len > 0) {
366*eda14cbcSMatt Macy 		uint8_t *tmp;
367*eda14cbcSMatt Macy 		/*
368*eda14cbcSMatt Macy 		 * all ciphertext has been processed, just waiting for
369*eda14cbcSMatt Macy 		 * part of the value of the mac
370*eda14cbcSMatt Macy 		 */
371*eda14cbcSMatt Macy 		if ((pm_len + length) > ctx->ccm_mac_len) {
372*eda14cbcSMatt Macy 			return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
373*eda14cbcSMatt Macy 		}
374*eda14cbcSMatt Macy 		tmp = (uint8_t *)ctx->ccm_mac_input_buf;
375*eda14cbcSMatt Macy 
376*eda14cbcSMatt Macy 		bcopy(datap, tmp + pm_len, length);
377*eda14cbcSMatt Macy 
378*eda14cbcSMatt Macy 		ctx->ccm_processed_mac_len += length;
379*eda14cbcSMatt Macy 		return (CRYPTO_SUCCESS);
380*eda14cbcSMatt Macy 	}
381*eda14cbcSMatt Macy 
382*eda14cbcSMatt Macy 	/*
383*eda14cbcSMatt Macy 	 * If we decrypt the given data, what total amount of data would
384*eda14cbcSMatt Macy 	 * have been decrypted?
385*eda14cbcSMatt Macy 	 */
386*eda14cbcSMatt Macy 	pd_len = ctx->ccm_processed_data_len;
387*eda14cbcSMatt Macy 	total_decrypted_len = pd_len + length + ctx->ccm_remainder_len;
388*eda14cbcSMatt Macy 
389*eda14cbcSMatt Macy 	if (total_decrypted_len >
390*eda14cbcSMatt Macy 	    (ctx->ccm_data_len + ctx->ccm_mac_len)) {
391*eda14cbcSMatt Macy 		return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
392*eda14cbcSMatt Macy 	}
393*eda14cbcSMatt Macy 
394*eda14cbcSMatt Macy 	pt_len = ctx->ccm_data_len;
395*eda14cbcSMatt Macy 
396*eda14cbcSMatt Macy 	if (total_decrypted_len > pt_len) {
397*eda14cbcSMatt Macy 		/*
398*eda14cbcSMatt Macy 		 * part of the input will be the MAC, need to isolate that
399*eda14cbcSMatt Macy 		 * to be dealt with later.  The left-over data in
400*eda14cbcSMatt Macy 		 * ccm_remainder_len from last time will not be part of the
401*eda14cbcSMatt Macy 		 * MAC.  Otherwise, it would have already been taken out
402*eda14cbcSMatt Macy 		 * when this call is made last time.
403*eda14cbcSMatt Macy 		 */
404*eda14cbcSMatt Macy 		size_t pt_part = pt_len - pd_len - ctx->ccm_remainder_len;
405*eda14cbcSMatt Macy 
406*eda14cbcSMatt Macy 		mac_len = length - pt_part;
407*eda14cbcSMatt Macy 
408*eda14cbcSMatt Macy 		ctx->ccm_processed_mac_len = mac_len;
409*eda14cbcSMatt Macy 		bcopy(data + pt_part, ctx->ccm_mac_input_buf, mac_len);
410*eda14cbcSMatt Macy 
411*eda14cbcSMatt Macy 		if (pt_part + ctx->ccm_remainder_len < block_size) {
412*eda14cbcSMatt Macy 			/*
413*eda14cbcSMatt Macy 			 * since this is last of the ciphertext, will
414*eda14cbcSMatt Macy 			 * just decrypt with it here
415*eda14cbcSMatt Macy 			 */
416*eda14cbcSMatt Macy 			bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
417*eda14cbcSMatt Macy 			    [ctx->ccm_remainder_len], pt_part);
418*eda14cbcSMatt Macy 			ctx->ccm_remainder_len += pt_part;
419*eda14cbcSMatt Macy 			ccm_decrypt_incomplete_block(ctx, encrypt_block);
420*eda14cbcSMatt Macy 			ctx->ccm_processed_data_len += ctx->ccm_remainder_len;
421*eda14cbcSMatt Macy 			ctx->ccm_remainder_len = 0;
422*eda14cbcSMatt Macy 			return (CRYPTO_SUCCESS);
423*eda14cbcSMatt Macy 		} else {
424*eda14cbcSMatt Macy 			/* let rest of the code handle this */
425*eda14cbcSMatt Macy 			length = pt_part;
426*eda14cbcSMatt Macy 		}
427*eda14cbcSMatt Macy 	} else if (length + ctx->ccm_remainder_len < block_size) {
428*eda14cbcSMatt Macy 			/* accumulate bytes here and return */
429*eda14cbcSMatt Macy 		bcopy(datap,
430*eda14cbcSMatt Macy 		    (uint8_t *)ctx->ccm_remainder + ctx->ccm_remainder_len,
431*eda14cbcSMatt Macy 		    length);
432*eda14cbcSMatt Macy 		ctx->ccm_remainder_len += length;
433*eda14cbcSMatt Macy 		ctx->ccm_copy_to = datap;
434*eda14cbcSMatt Macy 		return (CRYPTO_SUCCESS);
435*eda14cbcSMatt Macy 	}
436*eda14cbcSMatt Macy 
437*eda14cbcSMatt Macy 	do {
438*eda14cbcSMatt Macy 		/* Unprocessed data from last call. */
439*eda14cbcSMatt Macy 		if (ctx->ccm_remainder_len > 0) {
440*eda14cbcSMatt Macy 			need = block_size - ctx->ccm_remainder_len;
441*eda14cbcSMatt Macy 
442*eda14cbcSMatt Macy 			if (need > remainder)
443*eda14cbcSMatt Macy 				return (CRYPTO_ENCRYPTED_DATA_LEN_RANGE);
444*eda14cbcSMatt Macy 
445*eda14cbcSMatt Macy 			bcopy(datap, &((uint8_t *)ctx->ccm_remainder)
446*eda14cbcSMatt Macy 			    [ctx->ccm_remainder_len], need);
447*eda14cbcSMatt Macy 
448*eda14cbcSMatt Macy 			blockp = (uint8_t *)ctx->ccm_remainder;
449*eda14cbcSMatt Macy 		} else {
450*eda14cbcSMatt Macy 			blockp = datap;
451*eda14cbcSMatt Macy 		}
452*eda14cbcSMatt Macy 
453*eda14cbcSMatt Macy 		/* Calculate the counter mode, ccm_cb is the counter block */
454*eda14cbcSMatt Macy 		cbp = (uint8_t *)ctx->ccm_tmp;
455*eda14cbcSMatt Macy 		encrypt_block(ctx->ccm_keysched, (uint8_t *)ctx->ccm_cb, cbp);
456*eda14cbcSMatt Macy 
457*eda14cbcSMatt Macy 		/*
458*eda14cbcSMatt Macy 		 * Increment counter.
459*eda14cbcSMatt Macy 		 * Counter bits are confined to the bottom 64 bits
460*eda14cbcSMatt Macy 		 */
461*eda14cbcSMatt Macy #ifdef _ZFS_LITTLE_ENDIAN
462*eda14cbcSMatt Macy 		counter = ntohll(ctx->ccm_cb[1] & ctx->ccm_counter_mask);
463*eda14cbcSMatt Macy 		counter = htonll(counter + 1);
464*eda14cbcSMatt Macy #else
465*eda14cbcSMatt Macy 		counter = ctx->ccm_cb[1] & ctx->ccm_counter_mask;
466*eda14cbcSMatt Macy 		counter++;
467*eda14cbcSMatt Macy #endif	/* _ZFS_LITTLE_ENDIAN */
468*eda14cbcSMatt Macy 		counter &= ctx->ccm_counter_mask;
469*eda14cbcSMatt Macy 		ctx->ccm_cb[1] =
470*eda14cbcSMatt Macy 		    (ctx->ccm_cb[1] & ~(ctx->ccm_counter_mask)) | counter;
471*eda14cbcSMatt Macy 
472*eda14cbcSMatt Macy 		/* XOR with the ciphertext */
473*eda14cbcSMatt Macy 		xor_block(blockp, cbp);
474*eda14cbcSMatt Macy 
475*eda14cbcSMatt Macy 		/* Copy the plaintext to the "holding buffer" */
476*eda14cbcSMatt Macy 		resultp = (uint8_t *)ctx->ccm_pt_buf +
477*eda14cbcSMatt Macy 		    ctx->ccm_processed_data_len;
478*eda14cbcSMatt Macy 		copy_block(cbp, resultp);
479*eda14cbcSMatt Macy 
480*eda14cbcSMatt Macy 		ctx->ccm_processed_data_len += block_size;
481*eda14cbcSMatt Macy 
482*eda14cbcSMatt Macy 		ctx->ccm_lastp = blockp;
483*eda14cbcSMatt Macy 
484*eda14cbcSMatt Macy 		/* Update pointer to next block of data to be processed. */
485*eda14cbcSMatt Macy 		if (ctx->ccm_remainder_len != 0) {
486*eda14cbcSMatt Macy 			datap += need;
487*eda14cbcSMatt Macy 			ctx->ccm_remainder_len = 0;
488*eda14cbcSMatt Macy 		} else {
489*eda14cbcSMatt Macy 			datap += block_size;
490*eda14cbcSMatt Macy 		}
491*eda14cbcSMatt Macy 
492*eda14cbcSMatt Macy 		remainder = (size_t)&data[length] - (size_t)datap;
493*eda14cbcSMatt Macy 
494*eda14cbcSMatt Macy 		/* Incomplete last block */
495*eda14cbcSMatt Macy 		if (remainder > 0 && remainder < block_size) {
496*eda14cbcSMatt Macy 			bcopy(datap, ctx->ccm_remainder, remainder);
497*eda14cbcSMatt Macy 			ctx->ccm_remainder_len = remainder;
498*eda14cbcSMatt Macy 			ctx->ccm_copy_to = datap;
499*eda14cbcSMatt Macy 			if (ctx->ccm_processed_mac_len > 0) {
500*eda14cbcSMatt Macy 				/*
501*eda14cbcSMatt Macy 				 * not expecting anymore ciphertext, just
502*eda14cbcSMatt Macy 				 * compute plaintext for the remaining input
503*eda14cbcSMatt Macy 				 */
504*eda14cbcSMatt Macy 				ccm_decrypt_incomplete_block(ctx,
505*eda14cbcSMatt Macy 				    encrypt_block);
506*eda14cbcSMatt Macy 				ctx->ccm_processed_data_len += remainder;
507*eda14cbcSMatt Macy 				ctx->ccm_remainder_len = 0;
508*eda14cbcSMatt Macy 			}
509*eda14cbcSMatt Macy 			goto out;
510*eda14cbcSMatt Macy 		}
511*eda14cbcSMatt Macy 		ctx->ccm_copy_to = NULL;
512*eda14cbcSMatt Macy 
513*eda14cbcSMatt Macy 	} while (remainder > 0);
514*eda14cbcSMatt Macy 
515*eda14cbcSMatt Macy out:
516*eda14cbcSMatt Macy 	return (CRYPTO_SUCCESS);
517*eda14cbcSMatt Macy }
518*eda14cbcSMatt Macy 
519*eda14cbcSMatt Macy int
520*eda14cbcSMatt Macy ccm_decrypt_final(ccm_ctx_t *ctx, crypto_data_t *out, size_t block_size,
521*eda14cbcSMatt Macy     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
522*eda14cbcSMatt Macy     void (*copy_block)(uint8_t *, uint8_t *),
523*eda14cbcSMatt Macy     void (*xor_block)(uint8_t *, uint8_t *))
524*eda14cbcSMatt Macy {
525*eda14cbcSMatt Macy 	size_t mac_remain, pt_len;
526*eda14cbcSMatt Macy 	uint8_t *pt, *mac_buf, *macp, *ccm_mac_p;
527*eda14cbcSMatt Macy 	int rv;
528*eda14cbcSMatt Macy 
529*eda14cbcSMatt Macy 	pt_len = ctx->ccm_data_len;
530*eda14cbcSMatt Macy 
531*eda14cbcSMatt Macy 	/* Make sure output buffer can fit all of the plaintext */
532*eda14cbcSMatt Macy 	if (out->cd_length < pt_len) {
533*eda14cbcSMatt Macy 		return (CRYPTO_DATA_LEN_RANGE);
534*eda14cbcSMatt Macy 	}
535*eda14cbcSMatt Macy 
536*eda14cbcSMatt Macy 	pt = ctx->ccm_pt_buf;
537*eda14cbcSMatt Macy 	mac_remain = ctx->ccm_processed_data_len;
538*eda14cbcSMatt Macy 	mac_buf = (uint8_t *)ctx->ccm_mac_buf;
539*eda14cbcSMatt Macy 
540*eda14cbcSMatt Macy 	macp = (uint8_t *)ctx->ccm_tmp;
541*eda14cbcSMatt Macy 
542*eda14cbcSMatt Macy 	while (mac_remain > 0) {
543*eda14cbcSMatt Macy 
544*eda14cbcSMatt Macy 		if (mac_remain < block_size) {
545*eda14cbcSMatt Macy 			bzero(macp, block_size);
546*eda14cbcSMatt Macy 			bcopy(pt, macp, mac_remain);
547*eda14cbcSMatt Macy 			mac_remain = 0;
548*eda14cbcSMatt Macy 		} else {
549*eda14cbcSMatt Macy 			copy_block(pt, macp);
550*eda14cbcSMatt Macy 			mac_remain -= block_size;
551*eda14cbcSMatt Macy 			pt += block_size;
552*eda14cbcSMatt Macy 		}
553*eda14cbcSMatt Macy 
554*eda14cbcSMatt Macy 		/* calculate the CBC MAC */
555*eda14cbcSMatt Macy 		xor_block(macp, mac_buf);
556*eda14cbcSMatt Macy 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
557*eda14cbcSMatt Macy 	}
558*eda14cbcSMatt Macy 
559*eda14cbcSMatt Macy 	/* Calculate the CCM MAC */
560*eda14cbcSMatt Macy 	ccm_mac_p = (uint8_t *)ctx->ccm_tmp;
561*eda14cbcSMatt Macy 	calculate_ccm_mac((ccm_ctx_t *)ctx, ccm_mac_p, encrypt_block);
562*eda14cbcSMatt Macy 
563*eda14cbcSMatt Macy 	/* compare the input CCM MAC value with what we calculated */
564*eda14cbcSMatt Macy 	if (bcmp(ctx->ccm_mac_input_buf, ccm_mac_p, ctx->ccm_mac_len)) {
565*eda14cbcSMatt Macy 		/* They don't match */
566*eda14cbcSMatt Macy 		return (CRYPTO_INVALID_MAC);
567*eda14cbcSMatt Macy 	} else {
568*eda14cbcSMatt Macy 		rv = crypto_put_output_data(ctx->ccm_pt_buf, out, pt_len);
569*eda14cbcSMatt Macy 		if (rv != CRYPTO_SUCCESS)
570*eda14cbcSMatt Macy 			return (rv);
571*eda14cbcSMatt Macy 		out->cd_offset += pt_len;
572*eda14cbcSMatt Macy 	}
573*eda14cbcSMatt Macy 	return (CRYPTO_SUCCESS);
574*eda14cbcSMatt Macy }
575*eda14cbcSMatt Macy 
576*eda14cbcSMatt Macy static int
577*eda14cbcSMatt Macy ccm_validate_args(CK_AES_CCM_PARAMS *ccm_param, boolean_t is_encrypt_init)
578*eda14cbcSMatt Macy {
579*eda14cbcSMatt Macy 	size_t macSize, nonceSize;
580*eda14cbcSMatt Macy 	uint8_t q;
581*eda14cbcSMatt Macy 	uint64_t maxValue;
582*eda14cbcSMatt Macy 
583*eda14cbcSMatt Macy 	/*
584*eda14cbcSMatt Macy 	 * Check the length of the MAC.  The only valid
585*eda14cbcSMatt Macy 	 * lengths for the MAC are: 4, 6, 8, 10, 12, 14, 16
586*eda14cbcSMatt Macy 	 */
587*eda14cbcSMatt Macy 	macSize = ccm_param->ulMACSize;
588*eda14cbcSMatt Macy 	if ((macSize < 4) || (macSize > 16) || ((macSize % 2) != 0)) {
589*eda14cbcSMatt Macy 		return (CRYPTO_MECHANISM_PARAM_INVALID);
590*eda14cbcSMatt Macy 	}
591*eda14cbcSMatt Macy 
592*eda14cbcSMatt Macy 	/* Check the nonce length.  Valid values are 7, 8, 9, 10, 11, 12, 13 */
593*eda14cbcSMatt Macy 	nonceSize = ccm_param->ulNonceSize;
594*eda14cbcSMatt Macy 	if ((nonceSize < 7) || (nonceSize > 13)) {
595*eda14cbcSMatt Macy 		return (CRYPTO_MECHANISM_PARAM_INVALID);
596*eda14cbcSMatt Macy 	}
597*eda14cbcSMatt Macy 
598*eda14cbcSMatt Macy 	/* q is the length of the field storing the length, in bytes */
599*eda14cbcSMatt Macy 	q = (uint8_t)((15 - nonceSize) & 0xFF);
600*eda14cbcSMatt Macy 
601*eda14cbcSMatt Macy 
602*eda14cbcSMatt Macy 	/*
603*eda14cbcSMatt Macy 	 * If it is decrypt, need to make sure size of ciphertext is at least
604*eda14cbcSMatt Macy 	 * bigger than MAC len
605*eda14cbcSMatt Macy 	 */
606*eda14cbcSMatt Macy 	if ((!is_encrypt_init) && (ccm_param->ulDataSize < macSize)) {
607*eda14cbcSMatt Macy 		return (CRYPTO_MECHANISM_PARAM_INVALID);
608*eda14cbcSMatt Macy 	}
609*eda14cbcSMatt Macy 
610*eda14cbcSMatt Macy 	/*
611*eda14cbcSMatt Macy 	 * Check to make sure the length of the payload is within the
612*eda14cbcSMatt Macy 	 * range of values allowed by q
613*eda14cbcSMatt Macy 	 */
614*eda14cbcSMatt Macy 	if (q < 8) {
615*eda14cbcSMatt Macy 		maxValue = (1ULL << (q * 8)) - 1;
616*eda14cbcSMatt Macy 	} else {
617*eda14cbcSMatt Macy 		maxValue = ULONG_MAX;
618*eda14cbcSMatt Macy 	}
619*eda14cbcSMatt Macy 
620*eda14cbcSMatt Macy 	if (ccm_param->ulDataSize > maxValue) {
621*eda14cbcSMatt Macy 		return (CRYPTO_MECHANISM_PARAM_INVALID);
622*eda14cbcSMatt Macy 	}
623*eda14cbcSMatt Macy 	return (CRYPTO_SUCCESS);
624*eda14cbcSMatt Macy }
625*eda14cbcSMatt Macy 
626*eda14cbcSMatt Macy /*
627*eda14cbcSMatt Macy  * Format the first block used in CBC-MAC (B0) and the initial counter
628*eda14cbcSMatt Macy  * block based on formatting functions and counter generation functions
629*eda14cbcSMatt Macy  * specified in RFC 3610 and NIST publication 800-38C, appendix A
630*eda14cbcSMatt Macy  *
631*eda14cbcSMatt Macy  * b0 is the first block used in CBC-MAC
632*eda14cbcSMatt Macy  * cb0 is the first counter block
633*eda14cbcSMatt Macy  *
634*eda14cbcSMatt Macy  * It's assumed that the arguments b0 and cb0 are preallocated AES blocks
635*eda14cbcSMatt Macy  *
636*eda14cbcSMatt Macy  */
637*eda14cbcSMatt Macy static void
638*eda14cbcSMatt Macy ccm_format_initial_blocks(uchar_t *nonce, ulong_t nonceSize,
639*eda14cbcSMatt Macy     ulong_t authDataSize, uint8_t *b0, ccm_ctx_t *aes_ctx)
640*eda14cbcSMatt Macy {
641*eda14cbcSMatt Macy 	uint64_t payloadSize;
642*eda14cbcSMatt Macy 	uint8_t t, q, have_adata = 0;
643*eda14cbcSMatt Macy 	size_t limit;
644*eda14cbcSMatt Macy 	int i, j, k;
645*eda14cbcSMatt Macy 	uint64_t mask = 0;
646*eda14cbcSMatt Macy 	uint8_t *cb;
647*eda14cbcSMatt Macy 
648*eda14cbcSMatt Macy 	q = (uint8_t)((15 - nonceSize) & 0xFF);
649*eda14cbcSMatt Macy 	t = (uint8_t)((aes_ctx->ccm_mac_len) & 0xFF);
650*eda14cbcSMatt Macy 
651*eda14cbcSMatt Macy 	/* Construct the first octet of b0 */
652*eda14cbcSMatt Macy 	if (authDataSize > 0) {
653*eda14cbcSMatt Macy 		have_adata = 1;
654*eda14cbcSMatt Macy 	}
655*eda14cbcSMatt Macy 	b0[0] = (have_adata << 6) | (((t - 2)  / 2) << 3) | (q - 1);
656*eda14cbcSMatt Macy 
657*eda14cbcSMatt Macy 	/* copy the nonce value into b0 */
658*eda14cbcSMatt Macy 	bcopy(nonce, &(b0[1]), nonceSize);
659*eda14cbcSMatt Macy 
660*eda14cbcSMatt Macy 	/* store the length of the payload into b0 */
661*eda14cbcSMatt Macy 	bzero(&(b0[1+nonceSize]), q);
662*eda14cbcSMatt Macy 
663*eda14cbcSMatt Macy 	payloadSize = aes_ctx->ccm_data_len;
664*eda14cbcSMatt Macy 	limit = 8 < q ? 8 : q;
665*eda14cbcSMatt Macy 
666*eda14cbcSMatt Macy 	for (i = 0, j = 0, k = 15; i < limit; i++, j += 8, k--) {
667*eda14cbcSMatt Macy 		b0[k] = (uint8_t)((payloadSize >> j) & 0xFF);
668*eda14cbcSMatt Macy 	}
669*eda14cbcSMatt Macy 
670*eda14cbcSMatt Macy 	/* format the counter block */
671*eda14cbcSMatt Macy 
672*eda14cbcSMatt Macy 	cb = (uint8_t *)aes_ctx->ccm_cb;
673*eda14cbcSMatt Macy 
674*eda14cbcSMatt Macy 	cb[0] = 0x07 & (q-1); /* first byte */
675*eda14cbcSMatt Macy 
676*eda14cbcSMatt Macy 	/* copy the nonce value into the counter block */
677*eda14cbcSMatt Macy 	bcopy(nonce, &(cb[1]), nonceSize);
678*eda14cbcSMatt Macy 
679*eda14cbcSMatt Macy 	bzero(&(cb[1+nonceSize]), q);
680*eda14cbcSMatt Macy 
681*eda14cbcSMatt Macy 	/* Create the mask for the counter field based on the size of nonce */
682*eda14cbcSMatt Macy 	q <<= 3;
683*eda14cbcSMatt Macy 	while (q-- > 0) {
684*eda14cbcSMatt Macy 		mask |= (1ULL << q);
685*eda14cbcSMatt Macy 	}
686*eda14cbcSMatt Macy 
687*eda14cbcSMatt Macy #ifdef _ZFS_LITTLE_ENDIAN
688*eda14cbcSMatt Macy 	mask = htonll(mask);
689*eda14cbcSMatt Macy #endif
690*eda14cbcSMatt Macy 	aes_ctx->ccm_counter_mask = mask;
691*eda14cbcSMatt Macy 
692*eda14cbcSMatt Macy 	/*
693*eda14cbcSMatt Macy 	 * During calculation, we start using counter block 1, we will
694*eda14cbcSMatt Macy 	 * set it up right here.
695*eda14cbcSMatt Macy 	 * We can just set the last byte to have the value 1, because
696*eda14cbcSMatt Macy 	 * even with the biggest nonce of 13, the last byte of the
697*eda14cbcSMatt Macy 	 * counter block will be used for the counter value.
698*eda14cbcSMatt Macy 	 */
699*eda14cbcSMatt Macy 	cb[15] = 0x01;
700*eda14cbcSMatt Macy }
701*eda14cbcSMatt Macy 
702*eda14cbcSMatt Macy /*
703*eda14cbcSMatt Macy  * Encode the length of the associated data as
704*eda14cbcSMatt Macy  * specified in RFC 3610 and NIST publication 800-38C, appendix A
705*eda14cbcSMatt Macy  */
706*eda14cbcSMatt Macy static void
707*eda14cbcSMatt Macy encode_adata_len(ulong_t auth_data_len, uint8_t *encoded, size_t *encoded_len)
708*eda14cbcSMatt Macy {
709*eda14cbcSMatt Macy #ifdef UNALIGNED_POINTERS_PERMITTED
710*eda14cbcSMatt Macy 	uint32_t	*lencoded_ptr;
711*eda14cbcSMatt Macy #ifdef _LP64
712*eda14cbcSMatt Macy 	uint64_t	*llencoded_ptr;
713*eda14cbcSMatt Macy #endif
714*eda14cbcSMatt Macy #endif	/* UNALIGNED_POINTERS_PERMITTED */
715*eda14cbcSMatt Macy 
716*eda14cbcSMatt Macy 	if (auth_data_len < ((1ULL<<16) - (1ULL<<8))) {
717*eda14cbcSMatt Macy 		/* 0 < a < (2^16-2^8) */
718*eda14cbcSMatt Macy 		*encoded_len = 2;
719*eda14cbcSMatt Macy 		encoded[0] = (auth_data_len & 0xff00) >> 8;
720*eda14cbcSMatt Macy 		encoded[1] = auth_data_len & 0xff;
721*eda14cbcSMatt Macy 
722*eda14cbcSMatt Macy 	} else if ((auth_data_len >= ((1ULL<<16) - (1ULL<<8))) &&
723*eda14cbcSMatt Macy 	    (auth_data_len < (1ULL << 31))) {
724*eda14cbcSMatt Macy 		/* (2^16-2^8) <= a < 2^32 */
725*eda14cbcSMatt Macy 		*encoded_len = 6;
726*eda14cbcSMatt Macy 		encoded[0] = 0xff;
727*eda14cbcSMatt Macy 		encoded[1] = 0xfe;
728*eda14cbcSMatt Macy #ifdef UNALIGNED_POINTERS_PERMITTED
729*eda14cbcSMatt Macy 		lencoded_ptr = (uint32_t *)&encoded[2];
730*eda14cbcSMatt Macy 		*lencoded_ptr = htonl(auth_data_len);
731*eda14cbcSMatt Macy #else
732*eda14cbcSMatt Macy 		encoded[2] = (auth_data_len & 0xff000000) >> 24;
733*eda14cbcSMatt Macy 		encoded[3] = (auth_data_len & 0xff0000) >> 16;
734*eda14cbcSMatt Macy 		encoded[4] = (auth_data_len & 0xff00) >> 8;
735*eda14cbcSMatt Macy 		encoded[5] = auth_data_len & 0xff;
736*eda14cbcSMatt Macy #endif	/* UNALIGNED_POINTERS_PERMITTED */
737*eda14cbcSMatt Macy 
738*eda14cbcSMatt Macy #ifdef _LP64
739*eda14cbcSMatt Macy 	} else {
740*eda14cbcSMatt Macy 		/* 2^32 <= a < 2^64 */
741*eda14cbcSMatt Macy 		*encoded_len = 10;
742*eda14cbcSMatt Macy 		encoded[0] = 0xff;
743*eda14cbcSMatt Macy 		encoded[1] = 0xff;
744*eda14cbcSMatt Macy #ifdef UNALIGNED_POINTERS_PERMITTED
745*eda14cbcSMatt Macy 		llencoded_ptr = (uint64_t *)&encoded[2];
746*eda14cbcSMatt Macy 		*llencoded_ptr = htonl(auth_data_len);
747*eda14cbcSMatt Macy #else
748*eda14cbcSMatt Macy 		encoded[2] = (auth_data_len & 0xff00000000000000) >> 56;
749*eda14cbcSMatt Macy 		encoded[3] = (auth_data_len & 0xff000000000000) >> 48;
750*eda14cbcSMatt Macy 		encoded[4] = (auth_data_len & 0xff0000000000) >> 40;
751*eda14cbcSMatt Macy 		encoded[5] = (auth_data_len & 0xff00000000) >> 32;
752*eda14cbcSMatt Macy 		encoded[6] = (auth_data_len & 0xff000000) >> 24;
753*eda14cbcSMatt Macy 		encoded[7] = (auth_data_len & 0xff0000) >> 16;
754*eda14cbcSMatt Macy 		encoded[8] = (auth_data_len & 0xff00) >> 8;
755*eda14cbcSMatt Macy 		encoded[9] = auth_data_len & 0xff;
756*eda14cbcSMatt Macy #endif	/* UNALIGNED_POINTERS_PERMITTED */
757*eda14cbcSMatt Macy #endif	/* _LP64 */
758*eda14cbcSMatt Macy 	}
759*eda14cbcSMatt Macy }
760*eda14cbcSMatt Macy 
761*eda14cbcSMatt Macy static int
762*eda14cbcSMatt Macy ccm_init(ccm_ctx_t *ctx, unsigned char *nonce, size_t nonce_len,
763*eda14cbcSMatt Macy     unsigned char *auth_data, size_t auth_data_len, size_t block_size,
764*eda14cbcSMatt Macy     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
765*eda14cbcSMatt Macy     void (*xor_block)(uint8_t *, uint8_t *))
766*eda14cbcSMatt Macy {
767*eda14cbcSMatt Macy 	uint8_t *mac_buf, *datap, *ivp, *authp;
768*eda14cbcSMatt Macy 	size_t remainder, processed;
769*eda14cbcSMatt Macy 	uint8_t encoded_a[10]; /* max encoded auth data length is 10 octets */
770*eda14cbcSMatt Macy 	size_t encoded_a_len = 0;
771*eda14cbcSMatt Macy 
772*eda14cbcSMatt Macy 	mac_buf = (uint8_t *)&(ctx->ccm_mac_buf);
773*eda14cbcSMatt Macy 
774*eda14cbcSMatt Macy 	/*
775*eda14cbcSMatt Macy 	 * Format the 1st block for CBC-MAC and construct the
776*eda14cbcSMatt Macy 	 * 1st counter block.
777*eda14cbcSMatt Macy 	 *
778*eda14cbcSMatt Macy 	 * aes_ctx->ccm_iv is used for storing the counter block
779*eda14cbcSMatt Macy 	 * mac_buf will store b0 at this time.
780*eda14cbcSMatt Macy 	 */
781*eda14cbcSMatt Macy 	ccm_format_initial_blocks(nonce, nonce_len,
782*eda14cbcSMatt Macy 	    auth_data_len, mac_buf, ctx);
783*eda14cbcSMatt Macy 
784*eda14cbcSMatt Macy 	/* The IV for CBC MAC for AES CCM mode is always zero */
785*eda14cbcSMatt Macy 	ivp = (uint8_t *)ctx->ccm_tmp;
786*eda14cbcSMatt Macy 	bzero(ivp, block_size);
787*eda14cbcSMatt Macy 
788*eda14cbcSMatt Macy 	xor_block(ivp, mac_buf);
789*eda14cbcSMatt Macy 
790*eda14cbcSMatt Macy 	/* encrypt the nonce */
791*eda14cbcSMatt Macy 	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
792*eda14cbcSMatt Macy 
793*eda14cbcSMatt Macy 	/* take care of the associated data, if any */
794*eda14cbcSMatt Macy 	if (auth_data_len == 0) {
795*eda14cbcSMatt Macy 		return (CRYPTO_SUCCESS);
796*eda14cbcSMatt Macy 	}
797*eda14cbcSMatt Macy 
798*eda14cbcSMatt Macy 	encode_adata_len(auth_data_len, encoded_a, &encoded_a_len);
799*eda14cbcSMatt Macy 
800*eda14cbcSMatt Macy 	remainder = auth_data_len;
801*eda14cbcSMatt Macy 
802*eda14cbcSMatt Macy 	/* 1st block: it contains encoded associated data, and some data */
803*eda14cbcSMatt Macy 	authp = (uint8_t *)ctx->ccm_tmp;
804*eda14cbcSMatt Macy 	bzero(authp, block_size);
805*eda14cbcSMatt Macy 	bcopy(encoded_a, authp, encoded_a_len);
806*eda14cbcSMatt Macy 	processed = block_size - encoded_a_len;
807*eda14cbcSMatt Macy 	if (processed > auth_data_len) {
808*eda14cbcSMatt Macy 		/* in case auth_data is very small */
809*eda14cbcSMatt Macy 		processed = auth_data_len;
810*eda14cbcSMatt Macy 	}
811*eda14cbcSMatt Macy 	bcopy(auth_data, authp+encoded_a_len, processed);
812*eda14cbcSMatt Macy 	/* xor with previous buffer */
813*eda14cbcSMatt Macy 	xor_block(authp, mac_buf);
814*eda14cbcSMatt Macy 	encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
815*eda14cbcSMatt Macy 	remainder -= processed;
816*eda14cbcSMatt Macy 	if (remainder == 0) {
817*eda14cbcSMatt Macy 		/* a small amount of associated data, it's all done now */
818*eda14cbcSMatt Macy 		return (CRYPTO_SUCCESS);
819*eda14cbcSMatt Macy 	}
820*eda14cbcSMatt Macy 
821*eda14cbcSMatt Macy 	do {
822*eda14cbcSMatt Macy 		if (remainder < block_size) {
823*eda14cbcSMatt Macy 			/*
824*eda14cbcSMatt Macy 			 * There's not a block full of data, pad rest of
825*eda14cbcSMatt Macy 			 * buffer with zero
826*eda14cbcSMatt Macy 			 */
827*eda14cbcSMatt Macy 			bzero(authp, block_size);
828*eda14cbcSMatt Macy 			bcopy(&(auth_data[processed]), authp, remainder);
829*eda14cbcSMatt Macy 			datap = (uint8_t *)authp;
830*eda14cbcSMatt Macy 			remainder = 0;
831*eda14cbcSMatt Macy 		} else {
832*eda14cbcSMatt Macy 			datap = (uint8_t *)(&(auth_data[processed]));
833*eda14cbcSMatt Macy 			processed += block_size;
834*eda14cbcSMatt Macy 			remainder -= block_size;
835*eda14cbcSMatt Macy 		}
836*eda14cbcSMatt Macy 
837*eda14cbcSMatt Macy 		xor_block(datap, mac_buf);
838*eda14cbcSMatt Macy 		encrypt_block(ctx->ccm_keysched, mac_buf, mac_buf);
839*eda14cbcSMatt Macy 
840*eda14cbcSMatt Macy 	} while (remainder > 0);
841*eda14cbcSMatt Macy 
842*eda14cbcSMatt Macy 	return (CRYPTO_SUCCESS);
843*eda14cbcSMatt Macy }
844*eda14cbcSMatt Macy 
845*eda14cbcSMatt Macy /*
846*eda14cbcSMatt Macy  * The following function should be call at encrypt or decrypt init time
847*eda14cbcSMatt Macy  * for AES CCM mode.
848*eda14cbcSMatt Macy  */
849*eda14cbcSMatt Macy int
850*eda14cbcSMatt Macy ccm_init_ctx(ccm_ctx_t *ccm_ctx, char *param, int kmflag,
851*eda14cbcSMatt Macy     boolean_t is_encrypt_init, size_t block_size,
852*eda14cbcSMatt Macy     int (*encrypt_block)(const void *, const uint8_t *, uint8_t *),
853*eda14cbcSMatt Macy     void (*xor_block)(uint8_t *, uint8_t *))
854*eda14cbcSMatt Macy {
855*eda14cbcSMatt Macy 	int rv;
856*eda14cbcSMatt Macy 	CK_AES_CCM_PARAMS *ccm_param;
857*eda14cbcSMatt Macy 
858*eda14cbcSMatt Macy 	if (param != NULL) {
859*eda14cbcSMatt Macy 		ccm_param = (CK_AES_CCM_PARAMS *)param;
860*eda14cbcSMatt Macy 
861*eda14cbcSMatt Macy 		if ((rv = ccm_validate_args(ccm_param,
862*eda14cbcSMatt Macy 		    is_encrypt_init)) != 0) {
863*eda14cbcSMatt Macy 			return (rv);
864*eda14cbcSMatt Macy 		}
865*eda14cbcSMatt Macy 
866*eda14cbcSMatt Macy 		ccm_ctx->ccm_mac_len = ccm_param->ulMACSize;
867*eda14cbcSMatt Macy 		if (is_encrypt_init) {
868*eda14cbcSMatt Macy 			ccm_ctx->ccm_data_len = ccm_param->ulDataSize;
869*eda14cbcSMatt Macy 		} else {
870*eda14cbcSMatt Macy 			ccm_ctx->ccm_data_len =
871*eda14cbcSMatt Macy 			    ccm_param->ulDataSize - ccm_ctx->ccm_mac_len;
872*eda14cbcSMatt Macy 			ccm_ctx->ccm_processed_mac_len = 0;
873*eda14cbcSMatt Macy 		}
874*eda14cbcSMatt Macy 		ccm_ctx->ccm_processed_data_len = 0;
875*eda14cbcSMatt Macy 
876*eda14cbcSMatt Macy 		ccm_ctx->ccm_flags |= CCM_MODE;
877*eda14cbcSMatt Macy 	} else {
878*eda14cbcSMatt Macy 		return (CRYPTO_MECHANISM_PARAM_INVALID);
879*eda14cbcSMatt Macy 	}
880*eda14cbcSMatt Macy 
881*eda14cbcSMatt Macy 	if (ccm_init(ccm_ctx, ccm_param->nonce, ccm_param->ulNonceSize,
882*eda14cbcSMatt Macy 	    ccm_param->authData, ccm_param->ulAuthDataSize, block_size,
883*eda14cbcSMatt Macy 	    encrypt_block, xor_block) != 0) {
884*eda14cbcSMatt Macy 		return (CRYPTO_MECHANISM_PARAM_INVALID);
885*eda14cbcSMatt Macy 	}
886*eda14cbcSMatt Macy 	if (!is_encrypt_init) {
887*eda14cbcSMatt Macy 		/* allocate buffer for storing decrypted plaintext */
888*eda14cbcSMatt Macy 		ccm_ctx->ccm_pt_buf = vmem_alloc(ccm_ctx->ccm_data_len,
889*eda14cbcSMatt Macy 		    kmflag);
890*eda14cbcSMatt Macy 		if (ccm_ctx->ccm_pt_buf == NULL) {
891*eda14cbcSMatt Macy 			rv = CRYPTO_HOST_MEMORY;
892*eda14cbcSMatt Macy 		}
893*eda14cbcSMatt Macy 	}
894*eda14cbcSMatt Macy 	return (rv);
895*eda14cbcSMatt Macy }
896*eda14cbcSMatt Macy 
897*eda14cbcSMatt Macy void *
898*eda14cbcSMatt Macy ccm_alloc_ctx(int kmflag)
899*eda14cbcSMatt Macy {
900*eda14cbcSMatt Macy 	ccm_ctx_t *ccm_ctx;
901*eda14cbcSMatt Macy 
902*eda14cbcSMatt Macy 	if ((ccm_ctx = kmem_zalloc(sizeof (ccm_ctx_t), kmflag)) == NULL)
903*eda14cbcSMatt Macy 		return (NULL);
904*eda14cbcSMatt Macy 
905*eda14cbcSMatt Macy 	ccm_ctx->ccm_flags = CCM_MODE;
906*eda14cbcSMatt Macy 	return (ccm_ctx);
907*eda14cbcSMatt Macy }
908