11f1e2261SMartin Matuska /* 21f1e2261SMartin Matuska * CDDL HEADER START 31f1e2261SMartin Matuska * 41f1e2261SMartin Matuska * The contents of this file are subject to the terms of the 51f1e2261SMartin Matuska * Common Development and Distribution License (the "License"). 61f1e2261SMartin Matuska * You may not use this file except in compliance with the License. 71f1e2261SMartin Matuska * 81f1e2261SMartin Matuska * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9271171e0SMartin Matuska * or https://opensource.org/licenses/CDDL-1.0. 101f1e2261SMartin Matuska * See the License for the specific language governing permissions 111f1e2261SMartin Matuska * and limitations under the License. 121f1e2261SMartin Matuska * 131f1e2261SMartin Matuska * When distributing Covered Code, include this CDDL HEADER in each 141f1e2261SMartin Matuska * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 151f1e2261SMartin Matuska * If applicable, add the following below this CDDL HEADER, with the 161f1e2261SMartin Matuska * fields enclosed by brackets "[]" replaced with your own identifying 171f1e2261SMartin Matuska * information: Portions Copyright [yyyy] [name of copyright owner] 181f1e2261SMartin Matuska * 191f1e2261SMartin Matuska * CDDL HEADER END 201f1e2261SMartin Matuska */ 211f1e2261SMartin Matuska 221f1e2261SMartin Matuska /* 231f1e2261SMartin Matuska * Based on BLAKE3 v1.3.1, https://github.com/BLAKE3-team/BLAKE3 241f1e2261SMartin Matuska * Copyright (c) 2019-2020 Samuel Neves and Jack O'Connor 251f1e2261SMartin Matuska * Copyright (c) 2021-2022 Tino Reichardt <milky-zfs@mcmilk.de> 261f1e2261SMartin Matuska */ 271f1e2261SMartin Matuska 281f1e2261SMartin Matuska #include <sys/zfs_context.h> 291f1e2261SMartin Matuska #include <sys/blake3.h> 301f1e2261SMartin Matuska 311f1e2261SMartin Matuska #include "blake3_impl.h" 321f1e2261SMartin Matuska 331f1e2261SMartin Matuska /* 341f1e2261SMartin Matuska * We need 1056 byte stack for blake3_compress_subtree_wide() 351f1e2261SMartin Matuska * - we define this pragma to make gcc happy 361f1e2261SMartin Matuska */ 371f1e2261SMartin Matuska #if defined(__GNUC__) 381f1e2261SMartin Matuska #pragma GCC diagnostic ignored "-Wframe-larger-than=" 391f1e2261SMartin Matuska #endif 401f1e2261SMartin Matuska 411f1e2261SMartin Matuska /* internal used */ 421f1e2261SMartin Matuska typedef struct { 431f1e2261SMartin Matuska uint32_t input_cv[8]; 441f1e2261SMartin Matuska uint64_t counter; 451f1e2261SMartin Matuska uint8_t block[BLAKE3_BLOCK_LEN]; 461f1e2261SMartin Matuska uint8_t block_len; 471f1e2261SMartin Matuska uint8_t flags; 481f1e2261SMartin Matuska } output_t; 491f1e2261SMartin Matuska 501f1e2261SMartin Matuska /* internal flags */ 511f1e2261SMartin Matuska enum blake3_flags { 521f1e2261SMartin Matuska CHUNK_START = 1 << 0, 531f1e2261SMartin Matuska CHUNK_END = 1 << 1, 541f1e2261SMartin Matuska PARENT = 1 << 2, 551f1e2261SMartin Matuska ROOT = 1 << 3, 561f1e2261SMartin Matuska KEYED_HASH = 1 << 4, 571f1e2261SMartin Matuska DERIVE_KEY_CONTEXT = 1 << 5, 581f1e2261SMartin Matuska DERIVE_KEY_MATERIAL = 1 << 6, 591f1e2261SMartin Matuska }; 601f1e2261SMartin Matuska 611f1e2261SMartin Matuska /* internal start */ 621f1e2261SMartin Matuska static void chunk_state_init(blake3_chunk_state_t *ctx, 631f1e2261SMartin Matuska const uint32_t key[8], uint8_t flags) 641f1e2261SMartin Matuska { 651f1e2261SMartin Matuska memcpy(ctx->cv, key, BLAKE3_KEY_LEN); 661f1e2261SMartin Matuska ctx->chunk_counter = 0; 671f1e2261SMartin Matuska memset(ctx->buf, 0, BLAKE3_BLOCK_LEN); 681f1e2261SMartin Matuska ctx->buf_len = 0; 691f1e2261SMartin Matuska ctx->blocks_compressed = 0; 701f1e2261SMartin Matuska ctx->flags = flags; 711f1e2261SMartin Matuska } 721f1e2261SMartin Matuska 731f1e2261SMartin Matuska static void chunk_state_reset(blake3_chunk_state_t *ctx, 741f1e2261SMartin Matuska const uint32_t key[8], uint64_t chunk_counter) 751f1e2261SMartin Matuska { 761f1e2261SMartin Matuska memcpy(ctx->cv, key, BLAKE3_KEY_LEN); 771f1e2261SMartin Matuska ctx->chunk_counter = chunk_counter; 781f1e2261SMartin Matuska ctx->blocks_compressed = 0; 791f1e2261SMartin Matuska memset(ctx->buf, 0, BLAKE3_BLOCK_LEN); 801f1e2261SMartin Matuska ctx->buf_len = 0; 811f1e2261SMartin Matuska } 821f1e2261SMartin Matuska 831f1e2261SMartin Matuska static size_t chunk_state_len(const blake3_chunk_state_t *ctx) 841f1e2261SMartin Matuska { 851f1e2261SMartin Matuska return (BLAKE3_BLOCK_LEN * (size_t)ctx->blocks_compressed) + 861f1e2261SMartin Matuska ((size_t)ctx->buf_len); 871f1e2261SMartin Matuska } 881f1e2261SMartin Matuska 891f1e2261SMartin Matuska static size_t chunk_state_fill_buf(blake3_chunk_state_t *ctx, 901f1e2261SMartin Matuska const uint8_t *input, size_t input_len) 911f1e2261SMartin Matuska { 921f1e2261SMartin Matuska size_t take = BLAKE3_BLOCK_LEN - ((size_t)ctx->buf_len); 931f1e2261SMartin Matuska if (take > input_len) { 941f1e2261SMartin Matuska take = input_len; 951f1e2261SMartin Matuska } 961f1e2261SMartin Matuska uint8_t *dest = ctx->buf + ((size_t)ctx->buf_len); 971f1e2261SMartin Matuska memcpy(dest, input, take); 981f1e2261SMartin Matuska ctx->buf_len += (uint8_t)take; 991f1e2261SMartin Matuska return (take); 1001f1e2261SMartin Matuska } 1011f1e2261SMartin Matuska 1021f1e2261SMartin Matuska static uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state_t *ctx) 1031f1e2261SMartin Matuska { 1041f1e2261SMartin Matuska if (ctx->blocks_compressed == 0) { 1051f1e2261SMartin Matuska return (CHUNK_START); 1061f1e2261SMartin Matuska } else { 1071f1e2261SMartin Matuska return (0); 1081f1e2261SMartin Matuska } 1091f1e2261SMartin Matuska } 1101f1e2261SMartin Matuska 1111f1e2261SMartin Matuska static output_t make_output(const uint32_t input_cv[8], 1121f1e2261SMartin Matuska const uint8_t *block, uint8_t block_len, 1131f1e2261SMartin Matuska uint64_t counter, uint8_t flags) 1141f1e2261SMartin Matuska { 1151f1e2261SMartin Matuska output_t ret; 1161f1e2261SMartin Matuska memcpy(ret.input_cv, input_cv, 32); 1171f1e2261SMartin Matuska memcpy(ret.block, block, BLAKE3_BLOCK_LEN); 1181f1e2261SMartin Matuska ret.block_len = block_len; 1191f1e2261SMartin Matuska ret.counter = counter; 1201f1e2261SMartin Matuska ret.flags = flags; 1211f1e2261SMartin Matuska return (ret); 1221f1e2261SMartin Matuska } 1231f1e2261SMartin Matuska 1241f1e2261SMartin Matuska /* 1251f1e2261SMartin Matuska * Chaining values within a given chunk (specifically the compress_in_place 1261f1e2261SMartin Matuska * interface) are represented as words. This avoids unnecessary bytes<->words 1271f1e2261SMartin Matuska * conversion overhead in the portable implementation. However, the hash_many 1281f1e2261SMartin Matuska * interface handles both user input and parent node blocks, so it accepts 1291f1e2261SMartin Matuska * bytes. For that reason, chaining values in the CV stack are represented as 1301f1e2261SMartin Matuska * bytes. 1311f1e2261SMartin Matuska */ 132*c7046f76SMartin Matuska static void output_chaining_value(const blake3_ops_t *ops, 1331f1e2261SMartin Matuska const output_t *ctx, uint8_t cv[32]) 1341f1e2261SMartin Matuska { 1351f1e2261SMartin Matuska uint32_t cv_words[8]; 1361f1e2261SMartin Matuska memcpy(cv_words, ctx->input_cv, 32); 1371f1e2261SMartin Matuska ops->compress_in_place(cv_words, ctx->block, ctx->block_len, 1381f1e2261SMartin Matuska ctx->counter, ctx->flags); 1391f1e2261SMartin Matuska store_cv_words(cv, cv_words); 1401f1e2261SMartin Matuska } 1411f1e2261SMartin Matuska 142*c7046f76SMartin Matuska static void output_root_bytes(const blake3_ops_t *ops, const output_t *ctx, 1431f1e2261SMartin Matuska uint64_t seek, uint8_t *out, size_t out_len) 1441f1e2261SMartin Matuska { 1451f1e2261SMartin Matuska uint64_t output_block_counter = seek / 64; 1461f1e2261SMartin Matuska size_t offset_within_block = seek % 64; 1471f1e2261SMartin Matuska uint8_t wide_buf[64]; 1481f1e2261SMartin Matuska while (out_len > 0) { 1491f1e2261SMartin Matuska ops->compress_xof(ctx->input_cv, ctx->block, ctx->block_len, 1501f1e2261SMartin Matuska output_block_counter, ctx->flags | ROOT, wide_buf); 1511f1e2261SMartin Matuska size_t available_bytes = 64 - offset_within_block; 1521f1e2261SMartin Matuska size_t memcpy_len; 1531f1e2261SMartin Matuska if (out_len > available_bytes) { 1541f1e2261SMartin Matuska memcpy_len = available_bytes; 1551f1e2261SMartin Matuska } else { 1561f1e2261SMartin Matuska memcpy_len = out_len; 1571f1e2261SMartin Matuska } 1581f1e2261SMartin Matuska memcpy(out, wide_buf + offset_within_block, memcpy_len); 1591f1e2261SMartin Matuska out += memcpy_len; 1601f1e2261SMartin Matuska out_len -= memcpy_len; 1611f1e2261SMartin Matuska output_block_counter += 1; 1621f1e2261SMartin Matuska offset_within_block = 0; 1631f1e2261SMartin Matuska } 1641f1e2261SMartin Matuska } 1651f1e2261SMartin Matuska 166*c7046f76SMartin Matuska static void chunk_state_update(const blake3_ops_t *ops, 1671f1e2261SMartin Matuska blake3_chunk_state_t *ctx, const uint8_t *input, size_t input_len) 1681f1e2261SMartin Matuska { 1691f1e2261SMartin Matuska if (ctx->buf_len > 0) { 1701f1e2261SMartin Matuska size_t take = chunk_state_fill_buf(ctx, input, input_len); 1711f1e2261SMartin Matuska input += take; 1721f1e2261SMartin Matuska input_len -= take; 1731f1e2261SMartin Matuska if (input_len > 0) { 1741f1e2261SMartin Matuska ops->compress_in_place(ctx->cv, ctx->buf, 1751f1e2261SMartin Matuska BLAKE3_BLOCK_LEN, ctx->chunk_counter, 1761f1e2261SMartin Matuska ctx->flags|chunk_state_maybe_start_flag(ctx)); 1771f1e2261SMartin Matuska ctx->blocks_compressed += 1; 1781f1e2261SMartin Matuska ctx->buf_len = 0; 1791f1e2261SMartin Matuska memset(ctx->buf, 0, BLAKE3_BLOCK_LEN); 1801f1e2261SMartin Matuska } 1811f1e2261SMartin Matuska } 1821f1e2261SMartin Matuska 1831f1e2261SMartin Matuska while (input_len > BLAKE3_BLOCK_LEN) { 1841f1e2261SMartin Matuska ops->compress_in_place(ctx->cv, input, BLAKE3_BLOCK_LEN, 1851f1e2261SMartin Matuska ctx->chunk_counter, 1861f1e2261SMartin Matuska ctx->flags|chunk_state_maybe_start_flag(ctx)); 1871f1e2261SMartin Matuska ctx->blocks_compressed += 1; 1881f1e2261SMartin Matuska input += BLAKE3_BLOCK_LEN; 1891f1e2261SMartin Matuska input_len -= BLAKE3_BLOCK_LEN; 1901f1e2261SMartin Matuska } 1911f1e2261SMartin Matuska 1921f1e2261SMartin Matuska size_t take = chunk_state_fill_buf(ctx, input, input_len); 1931f1e2261SMartin Matuska input += take; 1941f1e2261SMartin Matuska input_len -= take; 1951f1e2261SMartin Matuska } 1961f1e2261SMartin Matuska 1971f1e2261SMartin Matuska static output_t chunk_state_output(const blake3_chunk_state_t *ctx) 1981f1e2261SMartin Matuska { 1991f1e2261SMartin Matuska uint8_t block_flags = 2001f1e2261SMartin Matuska ctx->flags | chunk_state_maybe_start_flag(ctx) | CHUNK_END; 2011f1e2261SMartin Matuska return (make_output(ctx->cv, ctx->buf, ctx->buf_len, ctx->chunk_counter, 2021f1e2261SMartin Matuska block_flags)); 2031f1e2261SMartin Matuska } 2041f1e2261SMartin Matuska 2051f1e2261SMartin Matuska static output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN], 2061f1e2261SMartin Matuska const uint32_t key[8], uint8_t flags) 2071f1e2261SMartin Matuska { 2081f1e2261SMartin Matuska return (make_output(key, block, BLAKE3_BLOCK_LEN, 0, flags | PARENT)); 2091f1e2261SMartin Matuska } 2101f1e2261SMartin Matuska 2111f1e2261SMartin Matuska /* 2121f1e2261SMartin Matuska * Given some input larger than one chunk, return the number of bytes that 2131f1e2261SMartin Matuska * should go in the left subtree. This is the largest power-of-2 number of 2141f1e2261SMartin Matuska * chunks that leaves at least 1 byte for the right subtree. 2151f1e2261SMartin Matuska */ 2161f1e2261SMartin Matuska static size_t left_len(size_t content_len) 2171f1e2261SMartin Matuska { 2181f1e2261SMartin Matuska /* 2191f1e2261SMartin Matuska * Subtract 1 to reserve at least one byte for the right side. 2201f1e2261SMartin Matuska * content_len 2211f1e2261SMartin Matuska * should always be greater than BLAKE3_CHUNK_LEN. 2221f1e2261SMartin Matuska */ 2231f1e2261SMartin Matuska size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN; 2241f1e2261SMartin Matuska return (round_down_to_power_of_2(full_chunks) * BLAKE3_CHUNK_LEN); 2251f1e2261SMartin Matuska } 2261f1e2261SMartin Matuska 2271f1e2261SMartin Matuska /* 2281f1e2261SMartin Matuska * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time 2291f1e2261SMartin Matuska * on a single thread. Write out the chunk chaining values and return the 2301f1e2261SMartin Matuska * number of chunks hashed. These chunks are never the root and never empty; 2311f1e2261SMartin Matuska * those cases use a different codepath. 2321f1e2261SMartin Matuska */ 233*c7046f76SMartin Matuska static size_t compress_chunks_parallel(const blake3_ops_t *ops, 2341f1e2261SMartin Matuska const uint8_t *input, size_t input_len, const uint32_t key[8], 2351f1e2261SMartin Matuska uint64_t chunk_counter, uint8_t flags, uint8_t *out) 2361f1e2261SMartin Matuska { 2371f1e2261SMartin Matuska const uint8_t *chunks_array[MAX_SIMD_DEGREE]; 2381f1e2261SMartin Matuska size_t input_position = 0; 2391f1e2261SMartin Matuska size_t chunks_array_len = 0; 2401f1e2261SMartin Matuska while (input_len - input_position >= BLAKE3_CHUNK_LEN) { 2411f1e2261SMartin Matuska chunks_array[chunks_array_len] = &input[input_position]; 2421f1e2261SMartin Matuska input_position += BLAKE3_CHUNK_LEN; 2431f1e2261SMartin Matuska chunks_array_len += 1; 2441f1e2261SMartin Matuska } 2451f1e2261SMartin Matuska 2461f1e2261SMartin Matuska ops->hash_many(chunks_array, chunks_array_len, BLAKE3_CHUNK_LEN / 2471f1e2261SMartin Matuska BLAKE3_BLOCK_LEN, key, chunk_counter, B_TRUE, flags, CHUNK_START, 2481f1e2261SMartin Matuska CHUNK_END, out); 2491f1e2261SMartin Matuska 2501f1e2261SMartin Matuska /* 2511f1e2261SMartin Matuska * Hash the remaining partial chunk, if there is one. Note that the 2521f1e2261SMartin Matuska * empty chunk (meaning the empty message) is a different codepath. 2531f1e2261SMartin Matuska */ 2541f1e2261SMartin Matuska if (input_len > input_position) { 2551f1e2261SMartin Matuska uint64_t counter = chunk_counter + (uint64_t)chunks_array_len; 2561f1e2261SMartin Matuska blake3_chunk_state_t chunk_state; 2571f1e2261SMartin Matuska chunk_state_init(&chunk_state, key, flags); 2581f1e2261SMartin Matuska chunk_state.chunk_counter = counter; 2591f1e2261SMartin Matuska chunk_state_update(ops, &chunk_state, &input[input_position], 2601f1e2261SMartin Matuska input_len - input_position); 2611f1e2261SMartin Matuska output_t output = chunk_state_output(&chunk_state); 2621f1e2261SMartin Matuska output_chaining_value(ops, &output, &out[chunks_array_len * 2631f1e2261SMartin Matuska BLAKE3_OUT_LEN]); 2641f1e2261SMartin Matuska return (chunks_array_len + 1); 2651f1e2261SMartin Matuska } else { 2661f1e2261SMartin Matuska return (chunks_array_len); 2671f1e2261SMartin Matuska } 2681f1e2261SMartin Matuska } 2691f1e2261SMartin Matuska 2701f1e2261SMartin Matuska /* 2711f1e2261SMartin Matuska * Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time 2721f1e2261SMartin Matuska * on a single thread. Write out the parent chaining values and return the 2731f1e2261SMartin Matuska * number of parents hashed. (If there's an odd input chaining value left over, 2741f1e2261SMartin Matuska * return it as an additional output.) These parents are never the root and 2751f1e2261SMartin Matuska * never empty; those cases use a different codepath. 2761f1e2261SMartin Matuska */ 277*c7046f76SMartin Matuska static size_t compress_parents_parallel(const blake3_ops_t *ops, 2781f1e2261SMartin Matuska const uint8_t *child_chaining_values, size_t num_chaining_values, 2791f1e2261SMartin Matuska const uint32_t key[8], uint8_t flags, uint8_t *out) 2801f1e2261SMartin Matuska { 2811f1e2261SMartin Matuska const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2]; 2821f1e2261SMartin Matuska size_t parents_array_len = 0; 2831f1e2261SMartin Matuska 2841f1e2261SMartin Matuska while (num_chaining_values - (2 * parents_array_len) >= 2) { 2851f1e2261SMartin Matuska parents_array[parents_array_len] = &child_chaining_values[2 * 2861f1e2261SMartin Matuska parents_array_len * BLAKE3_OUT_LEN]; 2871f1e2261SMartin Matuska parents_array_len += 1; 2881f1e2261SMartin Matuska } 2891f1e2261SMartin Matuska 2901f1e2261SMartin Matuska ops->hash_many(parents_array, parents_array_len, 1, key, 0, B_FALSE, 2911f1e2261SMartin Matuska flags | PARENT, 0, 0, out); 2921f1e2261SMartin Matuska 2931f1e2261SMartin Matuska /* If there's an odd child left over, it becomes an output. */ 2941f1e2261SMartin Matuska if (num_chaining_values > 2 * parents_array_len) { 2951f1e2261SMartin Matuska memcpy(&out[parents_array_len * BLAKE3_OUT_LEN], 2961f1e2261SMartin Matuska &child_chaining_values[2 * parents_array_len * 2971f1e2261SMartin Matuska BLAKE3_OUT_LEN], BLAKE3_OUT_LEN); 2981f1e2261SMartin Matuska return (parents_array_len + 1); 2991f1e2261SMartin Matuska } else { 3001f1e2261SMartin Matuska return (parents_array_len); 3011f1e2261SMartin Matuska } 3021f1e2261SMartin Matuska } 3031f1e2261SMartin Matuska 3041f1e2261SMartin Matuska /* 3051f1e2261SMartin Matuska * The wide helper function returns (writes out) an array of chaining values 3061f1e2261SMartin Matuska * and returns the length of that array. The number of chaining values returned 3071f1e2261SMartin Matuska * is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer, 3081f1e2261SMartin Matuska * if the input is shorter than that many chunks. The reason for maintaining a 3091f1e2261SMartin Matuska * wide array of chaining values going back up the tree, is to allow the 3101f1e2261SMartin Matuska * implementation to hash as many parents in parallel as possible. 3111f1e2261SMartin Matuska * 3121f1e2261SMartin Matuska * As a special case when the SIMD degree is 1, this function will still return 3131f1e2261SMartin Matuska * at least 2 outputs. This guarantees that this function doesn't perform the 3141f1e2261SMartin Matuska * root compression. (If it did, it would use the wrong flags, and also we 3151f1e2261SMartin Matuska * wouldn't be able to implement exendable ouput.) Note that this function is 3161f1e2261SMartin Matuska * not used when the whole input is only 1 chunk long; that's a different 3171f1e2261SMartin Matuska * codepath. 3181f1e2261SMartin Matuska * 3191f1e2261SMartin Matuska * Why not just have the caller split the input on the first update(), instead 3201f1e2261SMartin Matuska * of implementing this special rule? Because we don't want to limit SIMD or 3211f1e2261SMartin Matuska * multi-threading parallelism for that update(). 3221f1e2261SMartin Matuska */ 323*c7046f76SMartin Matuska static size_t blake3_compress_subtree_wide(const blake3_ops_t *ops, 3241f1e2261SMartin Matuska const uint8_t *input, size_t input_len, const uint32_t key[8], 3251f1e2261SMartin Matuska uint64_t chunk_counter, uint8_t flags, uint8_t *out) 3261f1e2261SMartin Matuska { 3271f1e2261SMartin Matuska /* 3281f1e2261SMartin Matuska * Note that the single chunk case does *not* bump the SIMD degree up 3291f1e2261SMartin Matuska * to 2 when it is 1. If this implementation adds multi-threading in 3301f1e2261SMartin Matuska * the future, this gives us the option of multi-threading even the 3311f1e2261SMartin Matuska * 2-chunk case, which can help performance on smaller platforms. 3321f1e2261SMartin Matuska */ 3331f1e2261SMartin Matuska if (input_len <= (size_t)(ops->degree * BLAKE3_CHUNK_LEN)) { 3341f1e2261SMartin Matuska return (compress_chunks_parallel(ops, input, input_len, key, 3351f1e2261SMartin Matuska chunk_counter, flags, out)); 3361f1e2261SMartin Matuska } 3371f1e2261SMartin Matuska 3381f1e2261SMartin Matuska 3391f1e2261SMartin Matuska /* 3401f1e2261SMartin Matuska * With more than simd_degree chunks, we need to recurse. Start by 3411f1e2261SMartin Matuska * dividing the input into left and right subtrees. (Note that this is 3421f1e2261SMartin Matuska * only optimal as long as the SIMD degree is a power of 2. If we ever 3431f1e2261SMartin Matuska * get a SIMD degree of 3 or something, we'll need a more complicated 3441f1e2261SMartin Matuska * strategy.) 3451f1e2261SMartin Matuska */ 3461f1e2261SMartin Matuska size_t left_input_len = left_len(input_len); 3471f1e2261SMartin Matuska size_t right_input_len = input_len - left_input_len; 3481f1e2261SMartin Matuska const uint8_t *right_input = &input[left_input_len]; 3491f1e2261SMartin Matuska uint64_t right_chunk_counter = chunk_counter + 3501f1e2261SMartin Matuska (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN); 3511f1e2261SMartin Matuska 3521f1e2261SMartin Matuska /* 3531f1e2261SMartin Matuska * Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 3541f1e2261SMartin Matuska * to account for the special case of returning 2 outputs when the 3551f1e2261SMartin Matuska * SIMD degree is 1. 3561f1e2261SMartin Matuska */ 3571f1e2261SMartin Matuska uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; 3581f1e2261SMartin Matuska size_t degree = ops->degree; 3591f1e2261SMartin Matuska if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) { 3601f1e2261SMartin Matuska 3611f1e2261SMartin Matuska /* 3621f1e2261SMartin Matuska * The special case: We always use a degree of at least two, 3631f1e2261SMartin Matuska * to make sure there are two outputs. Except, as noted above, 3641f1e2261SMartin Matuska * at the chunk level, where we allow degree=1. (Note that the 3651f1e2261SMartin Matuska * 1-chunk-input case is a different codepath.) 3661f1e2261SMartin Matuska */ 3671f1e2261SMartin Matuska degree = 2; 3681f1e2261SMartin Matuska } 3691f1e2261SMartin Matuska uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN]; 3701f1e2261SMartin Matuska 3711f1e2261SMartin Matuska /* 3721f1e2261SMartin Matuska * Recurse! If this implementation adds multi-threading support in the 3731f1e2261SMartin Matuska * future, this is where it will go. 3741f1e2261SMartin Matuska */ 3751f1e2261SMartin Matuska size_t left_n = blake3_compress_subtree_wide(ops, input, left_input_len, 3761f1e2261SMartin Matuska key, chunk_counter, flags, cv_array); 3771f1e2261SMartin Matuska size_t right_n = blake3_compress_subtree_wide(ops, right_input, 3781f1e2261SMartin Matuska right_input_len, key, right_chunk_counter, flags, right_cvs); 3791f1e2261SMartin Matuska 3801f1e2261SMartin Matuska /* 3811f1e2261SMartin Matuska * The special case again. If simd_degree=1, then we'll have left_n=1 3821f1e2261SMartin Matuska * and right_n=1. Rather than compressing them into a single output, 3831f1e2261SMartin Matuska * return them directly, to make sure we always have at least two 3841f1e2261SMartin Matuska * outputs. 3851f1e2261SMartin Matuska */ 3861f1e2261SMartin Matuska if (left_n == 1) { 3871f1e2261SMartin Matuska memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); 3881f1e2261SMartin Matuska return (2); 3891f1e2261SMartin Matuska } 3901f1e2261SMartin Matuska 3911f1e2261SMartin Matuska /* Otherwise, do one layer of parent node compression. */ 3921f1e2261SMartin Matuska size_t num_chaining_values = left_n + right_n; 3931f1e2261SMartin Matuska return compress_parents_parallel(ops, cv_array, 3941f1e2261SMartin Matuska num_chaining_values, key, flags, out); 3951f1e2261SMartin Matuska } 3961f1e2261SMartin Matuska 3971f1e2261SMartin Matuska /* 3981f1e2261SMartin Matuska * Hash a subtree with compress_subtree_wide(), and then condense the resulting 3991f1e2261SMartin Matuska * list of chaining values down to a single parent node. Don't compress that 4001f1e2261SMartin Matuska * last parent node, however. Instead, return its message bytes (the 4011f1e2261SMartin Matuska * concatenated chaining values of its children). This is necessary when the 4021f1e2261SMartin Matuska * first call to update() supplies a complete subtree, because the topmost 4031f1e2261SMartin Matuska * parent node of that subtree could end up being the root. It's also necessary 4041f1e2261SMartin Matuska * for extended output in the general case. 4051f1e2261SMartin Matuska * 4061f1e2261SMartin Matuska * As with compress_subtree_wide(), this function is not used on inputs of 1 4071f1e2261SMartin Matuska * chunk or less. That's a different codepath. 4081f1e2261SMartin Matuska */ 409*c7046f76SMartin Matuska static void compress_subtree_to_parent_node(const blake3_ops_t *ops, 4101f1e2261SMartin Matuska const uint8_t *input, size_t input_len, const uint32_t key[8], 4111f1e2261SMartin Matuska uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) 4121f1e2261SMartin Matuska { 4131f1e2261SMartin Matuska uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; 4141f1e2261SMartin Matuska size_t num_cvs = blake3_compress_subtree_wide(ops, input, input_len, 4151f1e2261SMartin Matuska key, chunk_counter, flags, cv_array); 4161f1e2261SMartin Matuska 4171f1e2261SMartin Matuska /* 4181f1e2261SMartin Matuska * If MAX_SIMD_DEGREE is greater than 2 and there's enough input, 4191f1e2261SMartin Matuska * compress_subtree_wide() returns more than 2 chaining values. Condense 4201f1e2261SMartin Matuska * them into 2 by forming parent nodes repeatedly. 4211f1e2261SMartin Matuska */ 4221f1e2261SMartin Matuska uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2]; 4231f1e2261SMartin Matuska while (num_cvs > 2) { 4241f1e2261SMartin Matuska num_cvs = compress_parents_parallel(ops, cv_array, num_cvs, key, 4251f1e2261SMartin Matuska flags, out_array); 4261f1e2261SMartin Matuska memcpy(cv_array, out_array, num_cvs * BLAKE3_OUT_LEN); 4271f1e2261SMartin Matuska } 4281f1e2261SMartin Matuska memcpy(out, cv_array, 2 * BLAKE3_OUT_LEN); 4291f1e2261SMartin Matuska } 4301f1e2261SMartin Matuska 4311f1e2261SMartin Matuska static void hasher_init_base(BLAKE3_CTX *ctx, const uint32_t key[8], 4321f1e2261SMartin Matuska uint8_t flags) 4331f1e2261SMartin Matuska { 4341f1e2261SMartin Matuska memcpy(ctx->key, key, BLAKE3_KEY_LEN); 4351f1e2261SMartin Matuska chunk_state_init(&ctx->chunk, key, flags); 4361f1e2261SMartin Matuska ctx->cv_stack_len = 0; 4371f1e2261SMartin Matuska ctx->ops = blake3_impl_get_ops(); 4381f1e2261SMartin Matuska } 4391f1e2261SMartin Matuska 4401f1e2261SMartin Matuska /* 4411f1e2261SMartin Matuska * As described in hasher_push_cv() below, we do "lazy merging", delaying 4421f1e2261SMartin Matuska * merges until right before the next CV is about to be added. This is 4431f1e2261SMartin Matuska * different from the reference implementation. Another difference is that we 4441f1e2261SMartin Matuska * aren't always merging 1 chunk at a time. Instead, each CV might represent 4451f1e2261SMartin Matuska * any power-of-two number of chunks, as long as the smaller-above-larger 4461f1e2261SMartin Matuska * stack order is maintained. Instead of the "count the trailing 0-bits" 4471f1e2261SMartin Matuska * algorithm described in the spec, we use a "count the total number of 4481f1e2261SMartin Matuska * 1-bits" variant that doesn't require us to retain the subtree size of the 4491f1e2261SMartin Matuska * CV on top of the stack. The principle is the same: each CV that should 4501f1e2261SMartin Matuska * remain in the stack is represented by a 1-bit in the total number of chunks 4511f1e2261SMartin Matuska * (or bytes) so far. 4521f1e2261SMartin Matuska */ 4531f1e2261SMartin Matuska static void hasher_merge_cv_stack(BLAKE3_CTX *ctx, uint64_t total_len) 4541f1e2261SMartin Matuska { 4551f1e2261SMartin Matuska size_t post_merge_stack_len = (size_t)popcnt(total_len); 4561f1e2261SMartin Matuska while (ctx->cv_stack_len > post_merge_stack_len) { 4571f1e2261SMartin Matuska uint8_t *parent_node = 4581f1e2261SMartin Matuska &ctx->cv_stack[(ctx->cv_stack_len - 2) * BLAKE3_OUT_LEN]; 4591f1e2261SMartin Matuska output_t output = 4601f1e2261SMartin Matuska parent_output(parent_node, ctx->key, ctx->chunk.flags); 4611f1e2261SMartin Matuska output_chaining_value(ctx->ops, &output, parent_node); 4621f1e2261SMartin Matuska ctx->cv_stack_len -= 1; 4631f1e2261SMartin Matuska } 4641f1e2261SMartin Matuska } 4651f1e2261SMartin Matuska 4661f1e2261SMartin Matuska /* 4671f1e2261SMartin Matuska * In reference_impl.rs, we merge the new CV with existing CVs from the stack 4681f1e2261SMartin Matuska * before pushing it. We can do that because we know more input is coming, so 4691f1e2261SMartin Matuska * we know none of the merges are root. 4701f1e2261SMartin Matuska * 4711f1e2261SMartin Matuska * This setting is different. We want to feed as much input as possible to 4721f1e2261SMartin Matuska * compress_subtree_wide(), without setting aside anything for the chunk_state. 4731f1e2261SMartin Matuska * If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once 4741f1e2261SMartin Matuska * as a single subtree, if at all possible. 4751f1e2261SMartin Matuska * 4761f1e2261SMartin Matuska * This leads to two problems: 4771f1e2261SMartin Matuska * 1) This 64 KiB input might be the only call that ever gets made to update. 4781f1e2261SMartin Matuska * In this case, the root node of the 64 KiB subtree would be the root node 4791f1e2261SMartin Matuska * of the whole tree, and it would need to be ROOT finalized. We can't 4801f1e2261SMartin Matuska * compress it until we know. 4811f1e2261SMartin Matuska * 2) This 64 KiB input might complete a larger tree, whose root node is 4821f1e2261SMartin Matuska * similarly going to be the the root of the whole tree. For example, maybe 4831f1e2261SMartin Matuska * we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the 4841f1e2261SMartin Matuska * node at the root of the 256 KiB subtree until we know how to finalize it. 4851f1e2261SMartin Matuska * 4861f1e2261SMartin Matuska * The second problem is solved with "lazy merging". That is, when we're about 4871f1e2261SMartin Matuska * to add a CV to the stack, we don't merge it with anything first, as the 4881f1e2261SMartin Matuska * reference impl does. Instead we do merges using the *previous* CV that was 4891f1e2261SMartin Matuska * added, which is sitting on top of the stack, and we put the new CV 4901f1e2261SMartin Matuska * (unmerged) on top of the stack afterwards. This guarantees that we never 4911f1e2261SMartin Matuska * merge the root node until finalize(). 4921f1e2261SMartin Matuska * 4931f1e2261SMartin Matuska * Solving the first problem requires an additional tool, 4941f1e2261SMartin Matuska * compress_subtree_to_parent_node(). That function always returns the top 4951f1e2261SMartin Matuska * *two* chaining values of the subtree it's compressing. We then do lazy 4961f1e2261SMartin Matuska * merging with each of them separately, so that the second CV will always 4971f1e2261SMartin Matuska * remain unmerged. (That also helps us support extendable output when we're 4981f1e2261SMartin Matuska * hashing an input all-at-once.) 4991f1e2261SMartin Matuska */ 5001f1e2261SMartin Matuska static void hasher_push_cv(BLAKE3_CTX *ctx, uint8_t new_cv[BLAKE3_OUT_LEN], 5011f1e2261SMartin Matuska uint64_t chunk_counter) 5021f1e2261SMartin Matuska { 5031f1e2261SMartin Matuska hasher_merge_cv_stack(ctx, chunk_counter); 5041f1e2261SMartin Matuska memcpy(&ctx->cv_stack[ctx->cv_stack_len * BLAKE3_OUT_LEN], new_cv, 5051f1e2261SMartin Matuska BLAKE3_OUT_LEN); 5061f1e2261SMartin Matuska ctx->cv_stack_len += 1; 5071f1e2261SMartin Matuska } 5081f1e2261SMartin Matuska 5091f1e2261SMartin Matuska void 5101f1e2261SMartin Matuska Blake3_Init(BLAKE3_CTX *ctx) 5111f1e2261SMartin Matuska { 5121f1e2261SMartin Matuska hasher_init_base(ctx, BLAKE3_IV, 0); 5131f1e2261SMartin Matuska } 5141f1e2261SMartin Matuska 5151f1e2261SMartin Matuska void 5161f1e2261SMartin Matuska Blake3_InitKeyed(BLAKE3_CTX *ctx, const uint8_t key[BLAKE3_KEY_LEN]) 5171f1e2261SMartin Matuska { 5181f1e2261SMartin Matuska uint32_t key_words[8]; 5191f1e2261SMartin Matuska load_key_words(key, key_words); 5201f1e2261SMartin Matuska hasher_init_base(ctx, key_words, KEYED_HASH); 5211f1e2261SMartin Matuska } 5221f1e2261SMartin Matuska 5231f1e2261SMartin Matuska static void 5241f1e2261SMartin Matuska Blake3_Update2(BLAKE3_CTX *ctx, const void *input, size_t input_len) 5251f1e2261SMartin Matuska { 5261f1e2261SMartin Matuska /* 5271f1e2261SMartin Matuska * Explicitly checking for zero avoids causing UB by passing a null 5281f1e2261SMartin Matuska * pointer to memcpy. This comes up in practice with things like: 5291f1e2261SMartin Matuska * std::vector<uint8_t> v; 5301f1e2261SMartin Matuska * blake3_hasher_update(&hasher, v.data(), v.size()); 5311f1e2261SMartin Matuska */ 5321f1e2261SMartin Matuska if (input_len == 0) { 5331f1e2261SMartin Matuska return; 5341f1e2261SMartin Matuska } 5351f1e2261SMartin Matuska 5361f1e2261SMartin Matuska const uint8_t *input_bytes = (const uint8_t *)input; 5371f1e2261SMartin Matuska 5381f1e2261SMartin Matuska /* 5391f1e2261SMartin Matuska * If we have some partial chunk bytes in the internal chunk_state, we 5401f1e2261SMartin Matuska * need to finish that chunk first. 5411f1e2261SMartin Matuska */ 5421f1e2261SMartin Matuska if (chunk_state_len(&ctx->chunk) > 0) { 5431f1e2261SMartin Matuska size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(&ctx->chunk); 5441f1e2261SMartin Matuska if (take > input_len) { 5451f1e2261SMartin Matuska take = input_len; 5461f1e2261SMartin Matuska } 5471f1e2261SMartin Matuska chunk_state_update(ctx->ops, &ctx->chunk, input_bytes, take); 5481f1e2261SMartin Matuska input_bytes += take; 5491f1e2261SMartin Matuska input_len -= take; 5501f1e2261SMartin Matuska /* 5511f1e2261SMartin Matuska * If we've filled the current chunk and there's more coming, 5521f1e2261SMartin Matuska * finalize this chunk and proceed. In this case we know it's 5531f1e2261SMartin Matuska * not the root. 5541f1e2261SMartin Matuska */ 5551f1e2261SMartin Matuska if (input_len > 0) { 5561f1e2261SMartin Matuska output_t output = chunk_state_output(&ctx->chunk); 5571f1e2261SMartin Matuska uint8_t chunk_cv[32]; 5581f1e2261SMartin Matuska output_chaining_value(ctx->ops, &output, chunk_cv); 5591f1e2261SMartin Matuska hasher_push_cv(ctx, chunk_cv, ctx->chunk.chunk_counter); 5601f1e2261SMartin Matuska chunk_state_reset(&ctx->chunk, ctx->key, 5611f1e2261SMartin Matuska ctx->chunk.chunk_counter + 1); 5621f1e2261SMartin Matuska } else { 5631f1e2261SMartin Matuska return; 5641f1e2261SMartin Matuska } 5651f1e2261SMartin Matuska } 5661f1e2261SMartin Matuska 5671f1e2261SMartin Matuska /* 5681f1e2261SMartin Matuska * Now the chunk_state is clear, and we have more input. If there's 5691f1e2261SMartin Matuska * more than a single chunk (so, definitely not the root chunk), hash 5701f1e2261SMartin Matuska * the largest whole subtree we can, with the full benefits of SIMD 5711f1e2261SMartin Matuska * (and maybe in the future, multi-threading) parallelism. Two 5721f1e2261SMartin Matuska * restrictions: 5731f1e2261SMartin Matuska * - The subtree has to be a power-of-2 number of chunks. Only 5741f1e2261SMartin Matuska * subtrees along the right edge can be incomplete, and we don't know 5751f1e2261SMartin Matuska * where the right edge is going to be until we get to finalize(). 5761f1e2261SMartin Matuska * - The subtree must evenly divide the total number of chunks up 5771f1e2261SMartin Matuska * until this point (if total is not 0). If the current incomplete 5781f1e2261SMartin Matuska * subtree is only waiting for 1 more chunk, we can't hash a subtree 5791f1e2261SMartin Matuska * of 4 chunks. We have to complete the current subtree first. 5801f1e2261SMartin Matuska * Because we might need to break up the input to form powers of 2, or 5811f1e2261SMartin Matuska * to evenly divide what we already have, this part runs in a loop. 5821f1e2261SMartin Matuska */ 5831f1e2261SMartin Matuska while (input_len > BLAKE3_CHUNK_LEN) { 5841f1e2261SMartin Matuska size_t subtree_len = round_down_to_power_of_2(input_len); 5851f1e2261SMartin Matuska uint64_t count_so_far = 5861f1e2261SMartin Matuska ctx->chunk.chunk_counter * BLAKE3_CHUNK_LEN; 5871f1e2261SMartin Matuska /* 5881f1e2261SMartin Matuska * Shrink the subtree_len until it evenly divides the count so 5891f1e2261SMartin Matuska * far. We know that subtree_len itself is a power of 2, so we 5901f1e2261SMartin Matuska * can use a bitmasking trick instead of an actual remainder 5911f1e2261SMartin Matuska * operation. (Note that if the caller consistently passes 5921f1e2261SMartin Matuska * power-of-2 inputs of the same size, as is hopefully 5931f1e2261SMartin Matuska * typical, this loop condition will always fail, and 5941f1e2261SMartin Matuska * subtree_len will always be the full length of the input.) 5951f1e2261SMartin Matuska * 5961f1e2261SMartin Matuska * An aside: We don't have to shrink subtree_len quite this 5971f1e2261SMartin Matuska * much. For example, if count_so_far is 1, we could pass 2 5981f1e2261SMartin Matuska * chunks to compress_subtree_to_parent_node. Since we'll get 5991f1e2261SMartin Matuska * 2 CVs back, we'll still get the right answer in the end, 6001f1e2261SMartin Matuska * and we might get to use 2-way SIMD parallelism. The problem 6011f1e2261SMartin Matuska * with this optimization, is that it gets us stuck always 6021f1e2261SMartin Matuska * hashing 2 chunks. The total number of chunks will remain 6031f1e2261SMartin Matuska * odd, and we'll never graduate to higher degrees of 6041f1e2261SMartin Matuska * parallelism. See 6051f1e2261SMartin Matuska * https://github.com/BLAKE3-team/BLAKE3/issues/69. 6061f1e2261SMartin Matuska */ 6071f1e2261SMartin Matuska while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) { 6081f1e2261SMartin Matuska subtree_len /= 2; 6091f1e2261SMartin Matuska } 6101f1e2261SMartin Matuska /* 6111f1e2261SMartin Matuska * The shrunken subtree_len might now be 1 chunk long. If so, 6121f1e2261SMartin Matuska * hash that one chunk by itself. Otherwise, compress the 6131f1e2261SMartin Matuska * subtree into a pair of CVs. 6141f1e2261SMartin Matuska */ 6151f1e2261SMartin Matuska uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN; 6161f1e2261SMartin Matuska if (subtree_len <= BLAKE3_CHUNK_LEN) { 6171f1e2261SMartin Matuska blake3_chunk_state_t chunk_state; 6181f1e2261SMartin Matuska chunk_state_init(&chunk_state, ctx->key, 6191f1e2261SMartin Matuska ctx->chunk.flags); 6201f1e2261SMartin Matuska chunk_state.chunk_counter = ctx->chunk.chunk_counter; 6211f1e2261SMartin Matuska chunk_state_update(ctx->ops, &chunk_state, input_bytes, 6221f1e2261SMartin Matuska subtree_len); 6231f1e2261SMartin Matuska output_t output = chunk_state_output(&chunk_state); 6241f1e2261SMartin Matuska uint8_t cv[BLAKE3_OUT_LEN]; 6251f1e2261SMartin Matuska output_chaining_value(ctx->ops, &output, cv); 6261f1e2261SMartin Matuska hasher_push_cv(ctx, cv, chunk_state.chunk_counter); 6271f1e2261SMartin Matuska } else { 6281f1e2261SMartin Matuska /* 6291f1e2261SMartin Matuska * This is the high-performance happy path, though 6301f1e2261SMartin Matuska * getting here depends on the caller giving us a long 6311f1e2261SMartin Matuska * enough input. 6321f1e2261SMartin Matuska */ 6331f1e2261SMartin Matuska uint8_t cv_pair[2 * BLAKE3_OUT_LEN]; 6341f1e2261SMartin Matuska compress_subtree_to_parent_node(ctx->ops, input_bytes, 6351f1e2261SMartin Matuska subtree_len, ctx->key, ctx-> chunk.chunk_counter, 6361f1e2261SMartin Matuska ctx->chunk.flags, cv_pair); 6371f1e2261SMartin Matuska hasher_push_cv(ctx, cv_pair, ctx->chunk.chunk_counter); 6381f1e2261SMartin Matuska hasher_push_cv(ctx, &cv_pair[BLAKE3_OUT_LEN], 6391f1e2261SMartin Matuska ctx->chunk.chunk_counter + (subtree_chunks / 2)); 6401f1e2261SMartin Matuska } 6411f1e2261SMartin Matuska ctx->chunk.chunk_counter += subtree_chunks; 6421f1e2261SMartin Matuska input_bytes += subtree_len; 6431f1e2261SMartin Matuska input_len -= subtree_len; 6441f1e2261SMartin Matuska } 6451f1e2261SMartin Matuska 6461f1e2261SMartin Matuska /* 6471f1e2261SMartin Matuska * If there's any remaining input less than a full chunk, add it to 6481f1e2261SMartin Matuska * the chunk state. In that case, also do a final merge loop to make 6491f1e2261SMartin Matuska * sure the subtree stack doesn't contain any unmerged pairs. The 6501f1e2261SMartin Matuska * remaining input means we know these merges are non-root. This merge 6511f1e2261SMartin Matuska * loop isn't strictly necessary here, because hasher_push_chunk_cv 6521f1e2261SMartin Matuska * already does its own merge loop, but it simplifies 6531f1e2261SMartin Matuska * blake3_hasher_finalize below. 6541f1e2261SMartin Matuska */ 6551f1e2261SMartin Matuska if (input_len > 0) { 6561f1e2261SMartin Matuska chunk_state_update(ctx->ops, &ctx->chunk, input_bytes, 6571f1e2261SMartin Matuska input_len); 6581f1e2261SMartin Matuska hasher_merge_cv_stack(ctx, ctx->chunk.chunk_counter); 6591f1e2261SMartin Matuska } 6601f1e2261SMartin Matuska } 6611f1e2261SMartin Matuska 6621f1e2261SMartin Matuska void 6631f1e2261SMartin Matuska Blake3_Update(BLAKE3_CTX *ctx, const void *input, size_t todo) 6641f1e2261SMartin Matuska { 6651f1e2261SMartin Matuska size_t done = 0; 6661f1e2261SMartin Matuska const uint8_t *data = input; 6671f1e2261SMartin Matuska const size_t block_max = 1024 * 64; 6681f1e2261SMartin Matuska 6691f1e2261SMartin Matuska /* max feed buffer to leave the stack size small */ 6701f1e2261SMartin Matuska while (todo != 0) { 6711f1e2261SMartin Matuska size_t block = (todo >= block_max) ? block_max : todo; 6721f1e2261SMartin Matuska Blake3_Update2(ctx, data + done, block); 6731f1e2261SMartin Matuska done += block; 6741f1e2261SMartin Matuska todo -= block; 6751f1e2261SMartin Matuska } 6761f1e2261SMartin Matuska } 6771f1e2261SMartin Matuska 6781f1e2261SMartin Matuska void 6791f1e2261SMartin Matuska Blake3_Final(const BLAKE3_CTX *ctx, uint8_t *out) 6801f1e2261SMartin Matuska { 6811f1e2261SMartin Matuska Blake3_FinalSeek(ctx, 0, out, BLAKE3_OUT_LEN); 6821f1e2261SMartin Matuska } 6831f1e2261SMartin Matuska 6841f1e2261SMartin Matuska void 6851f1e2261SMartin Matuska Blake3_FinalSeek(const BLAKE3_CTX *ctx, uint64_t seek, uint8_t *out, 6861f1e2261SMartin Matuska size_t out_len) 6871f1e2261SMartin Matuska { 6881f1e2261SMartin Matuska /* 6891f1e2261SMartin Matuska * Explicitly checking for zero avoids causing UB by passing a null 6901f1e2261SMartin Matuska * pointer to memcpy. This comes up in practice with things like: 6911f1e2261SMartin Matuska * std::vector<uint8_t> v; 6921f1e2261SMartin Matuska * blake3_hasher_finalize(&hasher, v.data(), v.size()); 6931f1e2261SMartin Matuska */ 6941f1e2261SMartin Matuska if (out_len == 0) { 6951f1e2261SMartin Matuska return; 6961f1e2261SMartin Matuska } 6971f1e2261SMartin Matuska /* If the subtree stack is empty, then the current chunk is the root. */ 6981f1e2261SMartin Matuska if (ctx->cv_stack_len == 0) { 6991f1e2261SMartin Matuska output_t output = chunk_state_output(&ctx->chunk); 7001f1e2261SMartin Matuska output_root_bytes(ctx->ops, &output, seek, out, out_len); 7011f1e2261SMartin Matuska return; 7021f1e2261SMartin Matuska } 7031f1e2261SMartin Matuska /* 7041f1e2261SMartin Matuska * If there are any bytes in the chunk state, finalize that chunk and 7051f1e2261SMartin Matuska * do a roll-up merge between that chunk hash and every subtree in the 7061f1e2261SMartin Matuska * stack. In this case, the extra merge loop at the end of 7071f1e2261SMartin Matuska * blake3_hasher_update guarantees that none of the subtrees in the 7081f1e2261SMartin Matuska * stack need to be merged with each other first. Otherwise, if there 7091f1e2261SMartin Matuska * are no bytes in the chunk state, then the top of the stack is a 7101f1e2261SMartin Matuska * chunk hash, and we start the merge from that. 7111f1e2261SMartin Matuska */ 7121f1e2261SMartin Matuska output_t output; 7131f1e2261SMartin Matuska size_t cvs_remaining; 7141f1e2261SMartin Matuska if (chunk_state_len(&ctx->chunk) > 0) { 7151f1e2261SMartin Matuska cvs_remaining = ctx->cv_stack_len; 7161f1e2261SMartin Matuska output = chunk_state_output(&ctx->chunk); 7171f1e2261SMartin Matuska } else { 7181f1e2261SMartin Matuska /* There are always at least 2 CVs in the stack in this case. */ 7191f1e2261SMartin Matuska cvs_remaining = ctx->cv_stack_len - 2; 7201f1e2261SMartin Matuska output = parent_output(&ctx->cv_stack[cvs_remaining * 32], 7211f1e2261SMartin Matuska ctx->key, ctx->chunk.flags); 7221f1e2261SMartin Matuska } 7231f1e2261SMartin Matuska while (cvs_remaining > 0) { 7241f1e2261SMartin Matuska cvs_remaining -= 1; 7251f1e2261SMartin Matuska uint8_t parent_block[BLAKE3_BLOCK_LEN]; 7261f1e2261SMartin Matuska memcpy(parent_block, &ctx->cv_stack[cvs_remaining * 32], 32); 7271f1e2261SMartin Matuska output_chaining_value(ctx->ops, &output, &parent_block[32]); 7281f1e2261SMartin Matuska output = parent_output(parent_block, ctx->key, 7291f1e2261SMartin Matuska ctx->chunk.flags); 7301f1e2261SMartin Matuska } 7311f1e2261SMartin Matuska output_root_bytes(ctx->ops, &output, seek, out, out_len); 7321f1e2261SMartin Matuska } 733