1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved. 25 * Copyright 2015 RackTop Systems. 26 * Copyright (c) 2016, Intel Corporation. 27 */ 28 29 /* 30 * Pool import support functions. 31 * 32 * Used by zpool, ztest, zdb, and zhack to locate importable configs. Since 33 * these commands are expected to run in the global zone, we can assume 34 * that the devices are all readable when called. 35 * 36 * To import a pool, we rely on reading the configuration information from the 37 * ZFS label of each device. If we successfully read the label, then we 38 * organize the configuration information in the following hierarchy: 39 * 40 * pool guid -> toplevel vdev guid -> label txg 41 * 42 * Duplicate entries matching this same tuple will be discarded. Once we have 43 * examined every device, we pick the best label txg config for each toplevel 44 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 45 * update any paths that have changed. Finally, we attempt to import the pool 46 * using our derived config, and record the results. 47 */ 48 49 #include <aio.h> 50 #include <ctype.h> 51 #include <dirent.h> 52 #include <errno.h> 53 #include <libintl.h> 54 #include <libgen.h> 55 #include <stddef.h> 56 #include <stdlib.h> 57 #include <string.h> 58 #include <sys/stat.h> 59 #include <unistd.h> 60 #include <fcntl.h> 61 #include <sys/dktp/fdisk.h> 62 #include <sys/vdev_impl.h> 63 #include <sys/fs/zfs.h> 64 #include <sys/vdev_impl.h> 65 66 #include <thread_pool.h> 67 #include <libzutil.h> 68 #include <libnvpair.h> 69 70 #include "zutil_import.h" 71 72 /*PRINTFLIKE2*/ 73 static void 74 zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...) 75 { 76 va_list ap; 77 78 va_start(ap, fmt); 79 80 (void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap); 81 hdl->lpc_desc_active = B_TRUE; 82 83 va_end(ap); 84 } 85 86 static void 87 zutil_verror(libpc_handle_t *hdl, const char *error, const char *fmt, 88 va_list ap) 89 { 90 char action[1024]; 91 92 (void) vsnprintf(action, sizeof (action), fmt, ap); 93 94 if (hdl->lpc_desc_active) 95 hdl->lpc_desc_active = B_FALSE; 96 else 97 hdl->lpc_desc[0] = '\0'; 98 99 if (hdl->lpc_printerr) { 100 if (hdl->lpc_desc[0] != '\0') 101 error = hdl->lpc_desc; 102 103 (void) fprintf(stderr, "%s: %s\n", action, error); 104 } 105 } 106 107 /*PRINTFLIKE3*/ 108 static int 109 zutil_error_fmt(libpc_handle_t *hdl, const char *error, const char *fmt, ...) 110 { 111 va_list ap; 112 113 va_start(ap, fmt); 114 115 zutil_verror(hdl, error, fmt, ap); 116 117 va_end(ap); 118 119 return (-1); 120 } 121 122 static int 123 zutil_error(libpc_handle_t *hdl, const char *error, const char *msg) 124 { 125 return (zutil_error_fmt(hdl, error, "%s", msg)); 126 } 127 128 static int 129 zutil_no_memory(libpc_handle_t *hdl) 130 { 131 zutil_error(hdl, EZFS_NOMEM, "internal error"); 132 exit(1); 133 } 134 135 void * 136 zutil_alloc(libpc_handle_t *hdl, size_t size) 137 { 138 void *data; 139 140 if ((data = calloc(1, size)) == NULL) 141 (void) zutil_no_memory(hdl); 142 143 return (data); 144 } 145 146 char * 147 zutil_strdup(libpc_handle_t *hdl, const char *str) 148 { 149 char *ret; 150 151 if ((ret = strdup(str)) == NULL) 152 (void) zutil_no_memory(hdl); 153 154 return (ret); 155 } 156 157 /* 158 * Intermediate structures used to gather configuration information. 159 */ 160 typedef struct config_entry { 161 uint64_t ce_txg; 162 nvlist_t *ce_config; 163 struct config_entry *ce_next; 164 } config_entry_t; 165 166 typedef struct vdev_entry { 167 uint64_t ve_guid; 168 config_entry_t *ve_configs; 169 struct vdev_entry *ve_next; 170 } vdev_entry_t; 171 172 typedef struct pool_entry { 173 uint64_t pe_guid; 174 vdev_entry_t *pe_vdevs; 175 struct pool_entry *pe_next; 176 } pool_entry_t; 177 178 typedef struct name_entry { 179 char *ne_name; 180 uint64_t ne_guid; 181 uint64_t ne_order; 182 uint64_t ne_num_labels; 183 struct name_entry *ne_next; 184 } name_entry_t; 185 186 typedef struct pool_list { 187 pool_entry_t *pools; 188 name_entry_t *names; 189 } pool_list_t; 190 191 /* 192 * Go through and fix up any path and/or devid information for the given vdev 193 * configuration. 194 */ 195 static int 196 fix_paths(libpc_handle_t *hdl, nvlist_t *nv, name_entry_t *names) 197 { 198 nvlist_t **child; 199 uint_t c, children; 200 uint64_t guid; 201 name_entry_t *ne, *best; 202 char *path; 203 204 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 205 &child, &children) == 0) { 206 for (c = 0; c < children; c++) 207 if (fix_paths(hdl, child[c], names) != 0) 208 return (-1); 209 return (0); 210 } 211 212 /* 213 * This is a leaf (file or disk) vdev. In either case, go through 214 * the name list and see if we find a matching guid. If so, replace 215 * the path and see if we can calculate a new devid. 216 * 217 * There may be multiple names associated with a particular guid, in 218 * which case we have overlapping partitions or multiple paths to the 219 * same disk. In this case we prefer to use the path name which 220 * matches the ZPOOL_CONFIG_PATH. If no matching entry is found we 221 * use the lowest order device which corresponds to the first match 222 * while traversing the ZPOOL_IMPORT_PATH search path. 223 */ 224 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 225 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 226 path = NULL; 227 228 best = NULL; 229 for (ne = names; ne != NULL; ne = ne->ne_next) { 230 if (ne->ne_guid == guid) { 231 if (path == NULL) { 232 best = ne; 233 break; 234 } 235 236 if ((strlen(path) == strlen(ne->ne_name)) && 237 strncmp(path, ne->ne_name, strlen(path)) == 0) { 238 best = ne; 239 break; 240 } 241 242 if (best == NULL) { 243 best = ne; 244 continue; 245 } 246 247 /* Prefer paths with move vdev labels. */ 248 if (ne->ne_num_labels > best->ne_num_labels) { 249 best = ne; 250 continue; 251 } 252 253 /* Prefer paths earlier in the search order. */ 254 if (ne->ne_num_labels == best->ne_num_labels && 255 ne->ne_order < best->ne_order) { 256 best = ne; 257 continue; 258 } 259 } 260 } 261 262 if (best == NULL) 263 return (0); 264 265 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 266 return (-1); 267 268 update_vdev_config_dev_strs(nv); 269 270 return (0); 271 } 272 273 /* 274 * Add the given configuration to the list of known devices. 275 */ 276 static int 277 add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path, 278 int order, int num_labels, nvlist_t *config) 279 { 280 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 281 pool_entry_t *pe; 282 vdev_entry_t *ve; 283 config_entry_t *ce; 284 name_entry_t *ne; 285 286 /* 287 * If this is a hot spare not currently in use or level 2 cache 288 * device, add it to the list of names to translate, but don't do 289 * anything else. 290 */ 291 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 292 &state) == 0 && 293 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 294 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 295 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 296 return (-1); 297 298 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 299 free(ne); 300 return (-1); 301 } 302 ne->ne_guid = vdev_guid; 303 ne->ne_order = order; 304 ne->ne_num_labels = num_labels; 305 ne->ne_next = pl->names; 306 pl->names = ne; 307 308 return (0); 309 } 310 311 /* 312 * If we have a valid config but cannot read any of these fields, then 313 * it means we have a half-initialized label. In vdev_label_init() 314 * we write a label with txg == 0 so that we can identify the device 315 * in case the user refers to the same disk later on. If we fail to 316 * create the pool, we'll be left with a label in this state 317 * which should not be considered part of a valid pool. 318 */ 319 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 320 &pool_guid) != 0 || 321 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 322 &vdev_guid) != 0 || 323 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 324 &top_guid) != 0 || 325 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 326 &txg) != 0 || txg == 0) { 327 return (0); 328 } 329 330 /* 331 * First, see if we know about this pool. If not, then add it to the 332 * list of known pools. 333 */ 334 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 335 if (pe->pe_guid == pool_guid) 336 break; 337 } 338 339 if (pe == NULL) { 340 if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 341 return (-1); 342 } 343 pe->pe_guid = pool_guid; 344 pe->pe_next = pl->pools; 345 pl->pools = pe; 346 } 347 348 /* 349 * Second, see if we know about this toplevel vdev. Add it if its 350 * missing. 351 */ 352 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 353 if (ve->ve_guid == top_guid) 354 break; 355 } 356 357 if (ve == NULL) { 358 if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 359 return (-1); 360 } 361 ve->ve_guid = top_guid; 362 ve->ve_next = pe->pe_vdevs; 363 pe->pe_vdevs = ve; 364 } 365 366 /* 367 * Third, see if we have a config with a matching transaction group. If 368 * so, then we do nothing. Otherwise, add it to the list of known 369 * configs. 370 */ 371 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 372 if (ce->ce_txg == txg) 373 break; 374 } 375 376 if (ce == NULL) { 377 if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) { 378 return (-1); 379 } 380 ce->ce_txg = txg; 381 ce->ce_config = fnvlist_dup(config); 382 ce->ce_next = ve->ve_configs; 383 ve->ve_configs = ce; 384 } 385 386 /* 387 * At this point we've successfully added our config to the list of 388 * known configs. The last thing to do is add the vdev guid -> path 389 * mappings so that we can fix up the configuration as necessary before 390 * doing the import. 391 */ 392 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL) 393 return (-1); 394 395 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) { 396 free(ne); 397 return (-1); 398 } 399 400 ne->ne_guid = vdev_guid; 401 ne->ne_order = order; 402 ne->ne_num_labels = num_labels; 403 ne->ne_next = pl->names; 404 pl->names = ne; 405 406 return (0); 407 } 408 409 static int 410 zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid, 411 boolean_t *isactive) 412 { 413 ASSERT(hdl->lpc_ops->pco_pool_active != NULL); 414 415 int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name, 416 guid, isactive); 417 418 return (error); 419 } 420 421 static nvlist_t * 422 zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig) 423 { 424 ASSERT(hdl->lpc_ops->pco_refresh_config != NULL); 425 426 return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle, 427 tryconfig)); 428 } 429 430 /* 431 * Determine if the vdev id is a hole in the namespace. 432 */ 433 static boolean_t 434 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 435 { 436 int c; 437 438 for (c = 0; c < holes; c++) { 439 440 /* Top-level is a hole */ 441 if (hole_array[c] == id) 442 return (B_TRUE); 443 } 444 return (B_FALSE); 445 } 446 447 /* 448 * Convert our list of pools into the definitive set of configurations. We 449 * start by picking the best config for each toplevel vdev. Once that's done, 450 * we assemble the toplevel vdevs into a full config for the pool. We make a 451 * pass to fix up any incorrect paths, and then add it to the main list to 452 * return to the user. 453 */ 454 static nvlist_t * 455 get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok, 456 nvlist_t *policy) 457 { 458 pool_entry_t *pe; 459 vdev_entry_t *ve; 460 config_entry_t *ce; 461 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 462 nvlist_t **spares, **l2cache; 463 uint_t i, nspares, nl2cache; 464 boolean_t config_seen; 465 uint64_t best_txg; 466 char *name, *hostname = NULL; 467 uint64_t guid; 468 uint_t children = 0; 469 nvlist_t **child = NULL; 470 uint_t holes; 471 uint64_t *hole_array, max_id; 472 uint_t c; 473 boolean_t isactive; 474 uint64_t hostid; 475 nvlist_t *nvl; 476 boolean_t valid_top_config = B_FALSE; 477 478 if (nvlist_alloc(&ret, 0, 0) != 0) 479 goto nomem; 480 481 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 482 uint64_t id, max_txg = 0; 483 484 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 485 goto nomem; 486 config_seen = B_FALSE; 487 488 /* 489 * Iterate over all toplevel vdevs. Grab the pool configuration 490 * from the first one we find, and then go through the rest and 491 * add them as necessary to the 'vdevs' member of the config. 492 */ 493 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 494 495 /* 496 * Determine the best configuration for this vdev by 497 * selecting the config with the latest transaction 498 * group. 499 */ 500 best_txg = 0; 501 for (ce = ve->ve_configs; ce != NULL; 502 ce = ce->ce_next) { 503 504 if (ce->ce_txg > best_txg) { 505 tmp = ce->ce_config; 506 best_txg = ce->ce_txg; 507 } 508 } 509 510 /* 511 * We rely on the fact that the max txg for the 512 * pool will contain the most up-to-date information 513 * about the valid top-levels in the vdev namespace. 514 */ 515 if (best_txg > max_txg) { 516 (void) nvlist_remove(config, 517 ZPOOL_CONFIG_VDEV_CHILDREN, 518 DATA_TYPE_UINT64); 519 (void) nvlist_remove(config, 520 ZPOOL_CONFIG_HOLE_ARRAY, 521 DATA_TYPE_UINT64_ARRAY); 522 523 max_txg = best_txg; 524 hole_array = NULL; 525 holes = 0; 526 max_id = 0; 527 valid_top_config = B_FALSE; 528 529 if (nvlist_lookup_uint64(tmp, 530 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 531 verify(nvlist_add_uint64(config, 532 ZPOOL_CONFIG_VDEV_CHILDREN, 533 max_id) == 0); 534 valid_top_config = B_TRUE; 535 } 536 537 if (nvlist_lookup_uint64_array(tmp, 538 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 539 &holes) == 0) { 540 verify(nvlist_add_uint64_array(config, 541 ZPOOL_CONFIG_HOLE_ARRAY, 542 hole_array, holes) == 0); 543 } 544 } 545 546 if (!config_seen) { 547 /* 548 * Copy the relevant pieces of data to the pool 549 * configuration: 550 * 551 * version 552 * pool guid 553 * name 554 * comment (if available) 555 * pool state 556 * hostid (if available) 557 * hostname (if available) 558 */ 559 uint64_t state, version; 560 char *comment = NULL; 561 562 version = fnvlist_lookup_uint64(tmp, 563 ZPOOL_CONFIG_VERSION); 564 fnvlist_add_uint64(config, 565 ZPOOL_CONFIG_VERSION, version); 566 guid = fnvlist_lookup_uint64(tmp, 567 ZPOOL_CONFIG_POOL_GUID); 568 fnvlist_add_uint64(config, 569 ZPOOL_CONFIG_POOL_GUID, guid); 570 name = fnvlist_lookup_string(tmp, 571 ZPOOL_CONFIG_POOL_NAME); 572 fnvlist_add_string(config, 573 ZPOOL_CONFIG_POOL_NAME, name); 574 575 if (nvlist_lookup_string(tmp, 576 ZPOOL_CONFIG_COMMENT, &comment) == 0) 577 fnvlist_add_string(config, 578 ZPOOL_CONFIG_COMMENT, comment); 579 580 state = fnvlist_lookup_uint64(tmp, 581 ZPOOL_CONFIG_POOL_STATE); 582 fnvlist_add_uint64(config, 583 ZPOOL_CONFIG_POOL_STATE, state); 584 585 hostid = 0; 586 if (nvlist_lookup_uint64(tmp, 587 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 588 fnvlist_add_uint64(config, 589 ZPOOL_CONFIG_HOSTID, hostid); 590 hostname = fnvlist_lookup_string(tmp, 591 ZPOOL_CONFIG_HOSTNAME); 592 fnvlist_add_string(config, 593 ZPOOL_CONFIG_HOSTNAME, hostname); 594 } 595 596 config_seen = B_TRUE; 597 } 598 599 /* 600 * Add this top-level vdev to the child array. 601 */ 602 verify(nvlist_lookup_nvlist(tmp, 603 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 604 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 605 &id) == 0); 606 607 if (id >= children) { 608 nvlist_t **newchild; 609 610 newchild = zutil_alloc(hdl, (id + 1) * 611 sizeof (nvlist_t *)); 612 if (newchild == NULL) 613 goto nomem; 614 615 for (c = 0; c < children; c++) 616 newchild[c] = child[c]; 617 618 free(child); 619 child = newchild; 620 children = id + 1; 621 } 622 if (nvlist_dup(nvtop, &child[id], 0) != 0) 623 goto nomem; 624 625 } 626 627 /* 628 * If we have information about all the top-levels then 629 * clean up the nvlist which we've constructed. This 630 * means removing any extraneous devices that are 631 * beyond the valid range or adding devices to the end 632 * of our array which appear to be missing. 633 */ 634 if (valid_top_config) { 635 if (max_id < children) { 636 for (c = max_id; c < children; c++) 637 nvlist_free(child[c]); 638 children = max_id; 639 } else if (max_id > children) { 640 nvlist_t **newchild; 641 642 newchild = zutil_alloc(hdl, (max_id) * 643 sizeof (nvlist_t *)); 644 if (newchild == NULL) 645 goto nomem; 646 647 for (c = 0; c < children; c++) 648 newchild[c] = child[c]; 649 650 free(child); 651 child = newchild; 652 children = max_id; 653 } 654 } 655 656 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 657 &guid) == 0); 658 659 /* 660 * The vdev namespace may contain holes as a result of 661 * device removal. We must add them back into the vdev 662 * tree before we process any missing devices. 663 */ 664 if (holes > 0) { 665 ASSERT(valid_top_config); 666 667 for (c = 0; c < children; c++) { 668 nvlist_t *holey; 669 670 if (child[c] != NULL || 671 !vdev_is_hole(hole_array, holes, c)) 672 continue; 673 674 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 675 0) != 0) 676 goto nomem; 677 678 /* 679 * Holes in the namespace are treated as 680 * "hole" top-level vdevs and have a 681 * special flag set on them. 682 */ 683 if (nvlist_add_string(holey, 684 ZPOOL_CONFIG_TYPE, 685 VDEV_TYPE_HOLE) != 0 || 686 nvlist_add_uint64(holey, 687 ZPOOL_CONFIG_ID, c) != 0 || 688 nvlist_add_uint64(holey, 689 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 690 nvlist_free(holey); 691 goto nomem; 692 } 693 child[c] = holey; 694 } 695 } 696 697 /* 698 * Look for any missing top-level vdevs. If this is the case, 699 * create a faked up 'missing' vdev as a placeholder. We cannot 700 * simply compress the child array, because the kernel performs 701 * certain checks to make sure the vdev IDs match their location 702 * in the configuration. 703 */ 704 for (c = 0; c < children; c++) { 705 if (child[c] == NULL) { 706 nvlist_t *missing; 707 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 708 0) != 0) 709 goto nomem; 710 if (nvlist_add_string(missing, 711 ZPOOL_CONFIG_TYPE, 712 VDEV_TYPE_MISSING) != 0 || 713 nvlist_add_uint64(missing, 714 ZPOOL_CONFIG_ID, c) != 0 || 715 nvlist_add_uint64(missing, 716 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 717 nvlist_free(missing); 718 goto nomem; 719 } 720 child[c] = missing; 721 } 722 } 723 724 /* 725 * Put all of this pool's top-level vdevs into a root vdev. 726 */ 727 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 728 goto nomem; 729 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 730 VDEV_TYPE_ROOT) != 0 || 731 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 732 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 733 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 734 child, children) != 0) { 735 nvlist_free(nvroot); 736 goto nomem; 737 } 738 739 for (c = 0; c < children; c++) 740 nvlist_free(child[c]); 741 free(child); 742 children = 0; 743 child = NULL; 744 745 /* 746 * Go through and fix up any paths and/or devids based on our 747 * known list of vdev GUID -> path mappings. 748 */ 749 if (fix_paths(hdl, nvroot, pl->names) != 0) { 750 nvlist_free(nvroot); 751 goto nomem; 752 } 753 754 /* 755 * Add the root vdev to this pool's configuration. 756 */ 757 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 758 nvroot) != 0) { 759 nvlist_free(nvroot); 760 goto nomem; 761 } 762 nvlist_free(nvroot); 763 764 /* 765 * zdb uses this path to report on active pools that were 766 * imported or created using -R. 767 */ 768 if (active_ok) 769 goto add_pool; 770 771 /* 772 * Determine if this pool is currently active, in which case we 773 * can't actually import it. 774 */ 775 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 776 &name) == 0); 777 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 778 &guid) == 0); 779 780 if (zutil_pool_active(hdl, name, guid, &isactive) != 0) 781 goto error; 782 783 if (isactive) { 784 nvlist_free(config); 785 config = NULL; 786 continue; 787 } 788 789 if (policy != NULL) { 790 if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY, 791 policy) != 0) 792 goto nomem; 793 } 794 795 if ((nvl = zutil_refresh_config(hdl, config)) == NULL) { 796 nvlist_free(config); 797 config = NULL; 798 continue; 799 } 800 801 nvlist_free(config); 802 config = nvl; 803 804 /* 805 * Go through and update the paths for spares, now that we have 806 * them. 807 */ 808 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 809 &nvroot) == 0); 810 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 811 &spares, &nspares) == 0) { 812 for (i = 0; i < nspares; i++) { 813 if (fix_paths(hdl, spares[i], pl->names) != 0) 814 goto nomem; 815 } 816 } 817 818 /* 819 * Update the paths for l2cache devices. 820 */ 821 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 822 &l2cache, &nl2cache) == 0) { 823 for (i = 0; i < nl2cache; i++) { 824 if (fix_paths(hdl, l2cache[i], pl->names) != 0) 825 goto nomem; 826 } 827 } 828 829 /* 830 * Restore the original information read from the actual label. 831 */ 832 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 833 DATA_TYPE_UINT64); 834 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 835 DATA_TYPE_STRING); 836 if (hostid != 0) { 837 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 838 hostid) == 0); 839 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 840 hostname) == 0); 841 } 842 843 add_pool: 844 /* 845 * Add this pool to the list of configs. 846 */ 847 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 848 &name) == 0); 849 850 if (nvlist_add_nvlist(ret, name, config) != 0) 851 goto nomem; 852 853 nvlist_free(config); 854 config = NULL; 855 } 856 857 return (ret); 858 859 nomem: 860 (void) zutil_no_memory(hdl); 861 error: 862 nvlist_free(config); 863 nvlist_free(ret); 864 for (c = 0; c < children; c++) 865 nvlist_free(child[c]); 866 free(child); 867 868 return (NULL); 869 } 870 871 /* 872 * Return the offset of the given label. 873 */ 874 static uint64_t 875 label_offset(uint64_t size, int l) 876 { 877 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 878 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 879 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 880 } 881 882 /* 883 * Given a file descriptor, read the label information and return an nvlist 884 * describing the configuration, if there is one. The number of valid 885 * labels found will be returned in num_labels when non-NULL. 886 */ 887 int 888 zpool_read_label(int fd, nvlist_t **config, int *num_labels) 889 { 890 struct stat64 statbuf; 891 struct aiocb aiocbs[VDEV_LABELS]; 892 struct aiocb *aiocbps[VDEV_LABELS]; 893 vdev_phys_t *labels; 894 nvlist_t *expected_config = NULL; 895 uint64_t expected_guid = 0, size; 896 int error, l, count = 0; 897 898 *config = NULL; 899 900 if (fstat64_blk(fd, &statbuf) == -1) 901 return (0); 902 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 903 904 error = posix_memalign((void **)&labels, PAGESIZE, 905 VDEV_LABELS * sizeof (*labels)); 906 if (error) 907 return (-1); 908 909 memset(aiocbs, 0, sizeof (aiocbs)); 910 for (l = 0; l < VDEV_LABELS; l++) { 911 off_t offset = label_offset(size, l) + VDEV_SKIP_SIZE; 912 913 aiocbs[l].aio_fildes = fd; 914 aiocbs[l].aio_offset = offset; 915 aiocbs[l].aio_buf = &labels[l]; 916 aiocbs[l].aio_nbytes = sizeof (vdev_phys_t); 917 aiocbs[l].aio_lio_opcode = LIO_READ; 918 aiocbps[l] = &aiocbs[l]; 919 } 920 921 if (lio_listio(LIO_WAIT, aiocbps, VDEV_LABELS, NULL) != 0) { 922 int saved_errno = errno; 923 924 if (errno == EAGAIN || errno == EINTR || errno == EIO) { 925 /* 926 * A portion of the requests may have been submitted. 927 * Clean them up. 928 */ 929 for (l = 0; l < VDEV_LABELS; l++) { 930 errno = 0; 931 int r = aio_error(&aiocbs[l]); 932 if (r != EINVAL) 933 (void) aio_return(&aiocbs[l]); 934 } 935 } 936 free(labels); 937 errno = saved_errno; 938 return (-1); 939 } 940 941 for (l = 0; l < VDEV_LABELS; l++) { 942 uint64_t state, guid, txg; 943 944 if (aio_return(&aiocbs[l]) != sizeof (vdev_phys_t)) 945 continue; 946 947 if (nvlist_unpack(labels[l].vp_nvlist, 948 sizeof (labels[l].vp_nvlist), config, 0) != 0) 949 continue; 950 951 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID, 952 &guid) != 0 || guid == 0) { 953 nvlist_free(*config); 954 continue; 955 } 956 957 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 958 &state) != 0 || state > POOL_STATE_L2CACHE) { 959 nvlist_free(*config); 960 continue; 961 } 962 963 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 964 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 965 &txg) != 0 || txg == 0)) { 966 nvlist_free(*config); 967 continue; 968 } 969 970 if (expected_guid) { 971 if (expected_guid == guid) 972 count++; 973 974 nvlist_free(*config); 975 } else { 976 expected_config = *config; 977 expected_guid = guid; 978 count++; 979 } 980 } 981 982 if (num_labels != NULL) 983 *num_labels = count; 984 985 free(labels); 986 *config = expected_config; 987 988 return (0); 989 } 990 991 /* 992 * Sorted by full path and then vdev guid to allow for multiple entries with 993 * the same full path name. This is required because it's possible to 994 * have multiple block devices with labels that refer to the same 995 * ZPOOL_CONFIG_PATH yet have different vdev guids. In this case both 996 * entries need to be added to the cache. Scenarios where this can occur 997 * include overwritten pool labels, devices which are visible from multiple 998 * hosts and multipath devices. 999 */ 1000 int 1001 slice_cache_compare(const void *arg1, const void *arg2) 1002 { 1003 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name; 1004 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name; 1005 uint64_t guid1 = ((rdsk_node_t *)arg1)->rn_vdev_guid; 1006 uint64_t guid2 = ((rdsk_node_t *)arg2)->rn_vdev_guid; 1007 int rv; 1008 1009 rv = TREE_ISIGN(strcmp(nm1, nm2)); 1010 if (rv) 1011 return (rv); 1012 1013 return (TREE_CMP(guid1, guid2)); 1014 } 1015 1016 static int 1017 label_paths_impl(libpc_handle_t *hdl, nvlist_t *nvroot, uint64_t pool_guid, 1018 uint64_t vdev_guid, char **path, char **devid) 1019 { 1020 nvlist_t **child; 1021 uint_t c, children; 1022 uint64_t guid; 1023 char *val; 1024 int error; 1025 1026 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 1027 &child, &children) == 0) { 1028 for (c = 0; c < children; c++) { 1029 error = label_paths_impl(hdl, child[c], 1030 pool_guid, vdev_guid, path, devid); 1031 if (error) 1032 return (error); 1033 } 1034 return (0); 1035 } 1036 1037 if (nvroot == NULL) 1038 return (0); 1039 1040 error = nvlist_lookup_uint64(nvroot, ZPOOL_CONFIG_GUID, &guid); 1041 if ((error != 0) || (guid != vdev_guid)) 1042 return (0); 1043 1044 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_PATH, &val); 1045 if (error == 0) 1046 *path = val; 1047 1048 error = nvlist_lookup_string(nvroot, ZPOOL_CONFIG_DEVID, &val); 1049 if (error == 0) 1050 *devid = val; 1051 1052 return (0); 1053 } 1054 1055 /* 1056 * Given a disk label fetch the ZPOOL_CONFIG_PATH and ZPOOL_CONFIG_DEVID 1057 * and store these strings as config_path and devid_path respectively. 1058 * The returned pointers are only valid as long as label remains valid. 1059 */ 1060 int 1061 label_paths(libpc_handle_t *hdl, nvlist_t *label, char **path, char **devid) 1062 { 1063 nvlist_t *nvroot; 1064 uint64_t pool_guid; 1065 uint64_t vdev_guid; 1066 1067 *path = NULL; 1068 *devid = NULL; 1069 1070 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 1071 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &pool_guid) || 1072 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &vdev_guid)) 1073 return (ENOENT); 1074 1075 return (label_paths_impl(hdl, nvroot, pool_guid, vdev_guid, path, 1076 devid)); 1077 } 1078 1079 static void 1080 zpool_find_import_scan_add_slice(libpc_handle_t *hdl, pthread_mutex_t *lock, 1081 avl_tree_t *cache, const char *path, const char *name, int order) 1082 { 1083 avl_index_t where; 1084 rdsk_node_t *slice; 1085 1086 slice = zutil_alloc(hdl, sizeof (rdsk_node_t)); 1087 if (asprintf(&slice->rn_name, "%s/%s", path, name) == -1) { 1088 free(slice); 1089 return; 1090 } 1091 slice->rn_vdev_guid = 0; 1092 slice->rn_lock = lock; 1093 slice->rn_avl = cache; 1094 slice->rn_hdl = hdl; 1095 slice->rn_order = order + IMPORT_ORDER_SCAN_OFFSET; 1096 slice->rn_labelpaths = B_FALSE; 1097 1098 pthread_mutex_lock(lock); 1099 if (avl_find(cache, slice, &where)) { 1100 free(slice->rn_name); 1101 free(slice); 1102 } else { 1103 avl_insert(cache, slice, where); 1104 } 1105 pthread_mutex_unlock(lock); 1106 } 1107 1108 static int 1109 zpool_find_import_scan_dir(libpc_handle_t *hdl, pthread_mutex_t *lock, 1110 avl_tree_t *cache, const char *dir, int order) 1111 { 1112 int error; 1113 char path[MAXPATHLEN]; 1114 struct dirent64 *dp; 1115 DIR *dirp; 1116 1117 if (realpath(dir, path) == NULL) { 1118 error = errno; 1119 if (error == ENOENT) 1120 return (0); 1121 1122 zutil_error_aux(hdl, strerror(error)); 1123 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1124 TEXT_DOMAIN, "cannot resolve path '%s'"), dir); 1125 return (error); 1126 } 1127 1128 dirp = opendir(path); 1129 if (dirp == NULL) { 1130 error = errno; 1131 zutil_error_aux(hdl, strerror(error)); 1132 (void) zutil_error_fmt(hdl, EZFS_BADPATH, 1133 dgettext(TEXT_DOMAIN, "cannot open '%s'"), path); 1134 return (error); 1135 } 1136 1137 while ((dp = readdir64(dirp)) != NULL) { 1138 const char *name = dp->d_name; 1139 if (name[0] == '.' && 1140 (name[1] == 0 || (name[1] == '.' && name[2] == 0))) 1141 continue; 1142 1143 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, 1144 order); 1145 } 1146 1147 (void) closedir(dirp); 1148 return (0); 1149 } 1150 1151 static int 1152 zpool_find_import_scan_path(libpc_handle_t *hdl, pthread_mutex_t *lock, 1153 avl_tree_t *cache, const char *dir, int order) 1154 { 1155 int error = 0; 1156 char path[MAXPATHLEN]; 1157 char *d, *b; 1158 char *dpath, *name; 1159 1160 /* 1161 * Separate the directory part and last part of the 1162 * path. We do this so that we can get the realpath of 1163 * the directory. We don't get the realpath on the 1164 * whole path because if it's a symlink, we want the 1165 * path of the symlink not where it points to. 1166 */ 1167 d = zutil_strdup(hdl, dir); 1168 b = zutil_strdup(hdl, dir); 1169 dpath = dirname(d); 1170 name = basename(b); 1171 1172 if (realpath(dpath, path) == NULL) { 1173 error = errno; 1174 if (error == ENOENT) { 1175 error = 0; 1176 goto out; 1177 } 1178 1179 zutil_error_aux(hdl, strerror(error)); 1180 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1181 TEXT_DOMAIN, "cannot resolve path '%s'"), dir); 1182 goto out; 1183 } 1184 1185 zpool_find_import_scan_add_slice(hdl, lock, cache, path, name, order); 1186 1187 out: 1188 free(b); 1189 free(d); 1190 return (error); 1191 } 1192 1193 /* 1194 * Scan a list of directories for zfs devices. 1195 */ 1196 static int 1197 zpool_find_import_scan(libpc_handle_t *hdl, pthread_mutex_t *lock, 1198 avl_tree_t **slice_cache, const char * const *dir, size_t dirs) 1199 { 1200 avl_tree_t *cache; 1201 rdsk_node_t *slice; 1202 void *cookie; 1203 int i, error; 1204 1205 *slice_cache = NULL; 1206 cache = zutil_alloc(hdl, sizeof (avl_tree_t)); 1207 avl_create(cache, slice_cache_compare, sizeof (rdsk_node_t), 1208 offsetof(rdsk_node_t, rn_node)); 1209 1210 for (i = 0; i < dirs; i++) { 1211 struct stat sbuf; 1212 1213 if (stat(dir[i], &sbuf) != 0) { 1214 error = errno; 1215 if (error == ENOENT) 1216 continue; 1217 1218 zutil_error_aux(hdl, strerror(error)); 1219 (void) zutil_error_fmt(hdl, EZFS_BADPATH, dgettext( 1220 TEXT_DOMAIN, "cannot resolve path '%s'"), dir[i]); 1221 goto error; 1222 } 1223 1224 /* 1225 * If dir[i] is a directory, we walk through it and add all 1226 * the entries to the cache. If it's not a directory, we just 1227 * add it to the cache. 1228 */ 1229 if (S_ISDIR(sbuf.st_mode)) { 1230 if ((error = zpool_find_import_scan_dir(hdl, lock, 1231 cache, dir[i], i)) != 0) 1232 goto error; 1233 } else { 1234 if ((error = zpool_find_import_scan_path(hdl, lock, 1235 cache, dir[i], i)) != 0) 1236 goto error; 1237 } 1238 } 1239 1240 *slice_cache = cache; 1241 return (0); 1242 1243 error: 1244 cookie = NULL; 1245 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { 1246 free(slice->rn_name); 1247 free(slice); 1248 } 1249 free(cache); 1250 1251 return (error); 1252 } 1253 1254 /* 1255 * Given a list of directories to search, find all pools stored on disk. This 1256 * includes partial pools which are not available to import. If no args are 1257 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1258 * poolname or guid (but not both) are provided by the caller when trying 1259 * to import a specific pool. 1260 */ 1261 static nvlist_t * 1262 zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg) 1263 { 1264 nvlist_t *ret = NULL; 1265 pool_list_t pools = { 0 }; 1266 pool_entry_t *pe, *penext; 1267 vdev_entry_t *ve, *venext; 1268 config_entry_t *ce, *cenext; 1269 name_entry_t *ne, *nenext; 1270 pthread_mutex_t lock; 1271 avl_tree_t *cache; 1272 rdsk_node_t *slice; 1273 void *cookie; 1274 tpool_t *t; 1275 1276 verify(iarg->poolname == NULL || iarg->guid == 0); 1277 pthread_mutex_init(&lock, NULL); 1278 1279 /* 1280 * Locate pool member vdevs by blkid or by directory scanning. 1281 * On success a newly allocated AVL tree which is populated with an 1282 * entry for each discovered vdev will be returned in the cache. 1283 * It's the caller's responsibility to consume and destroy this tree. 1284 */ 1285 if (iarg->scan || iarg->paths != 0) { 1286 size_t dirs = iarg->paths; 1287 const char * const *dir = (const char * const *)iarg->path; 1288 1289 if (dirs == 0) 1290 dir = zpool_default_search_paths(&dirs); 1291 1292 if (zpool_find_import_scan(hdl, &lock, &cache, dir, dirs) != 0) 1293 return (NULL); 1294 } else { 1295 if (zpool_find_import_blkid(hdl, &lock, &cache) != 0) 1296 return (NULL); 1297 } 1298 1299 /* 1300 * Create a thread pool to parallelize the process of reading and 1301 * validating labels, a large number of threads can be used due to 1302 * minimal contention. 1303 */ 1304 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 0, NULL); 1305 for (slice = avl_first(cache); slice; 1306 (slice = avl_walk(cache, slice, AVL_AFTER))) 1307 (void) tpool_dispatch(t, zpool_open_func, slice); 1308 1309 tpool_wait(t); 1310 tpool_destroy(t); 1311 1312 /* 1313 * Process the cache, filtering out any entries which are not 1314 * for the specified pool then adding matching label configs. 1315 */ 1316 cookie = NULL; 1317 while ((slice = avl_destroy_nodes(cache, &cookie)) != NULL) { 1318 if (slice->rn_config != NULL) { 1319 nvlist_t *config = slice->rn_config; 1320 boolean_t matched = B_TRUE; 1321 boolean_t aux = B_FALSE; 1322 int fd; 1323 1324 /* 1325 * Check if it's a spare or l2cache device. If it is, 1326 * we need to skip the name and guid check since they 1327 * don't exist on aux device label. 1328 */ 1329 if (iarg->poolname != NULL || iarg->guid != 0) { 1330 uint64_t state; 1331 aux = nvlist_lookup_uint64(config, 1332 ZPOOL_CONFIG_POOL_STATE, &state) == 0 && 1333 (state == POOL_STATE_SPARE || 1334 state == POOL_STATE_L2CACHE); 1335 } 1336 1337 if (iarg->poolname != NULL && !aux) { 1338 char *pname; 1339 1340 matched = nvlist_lookup_string(config, 1341 ZPOOL_CONFIG_POOL_NAME, &pname) == 0 && 1342 strcmp(iarg->poolname, pname) == 0; 1343 } else if (iarg->guid != 0 && !aux) { 1344 uint64_t this_guid; 1345 1346 matched = nvlist_lookup_uint64(config, 1347 ZPOOL_CONFIG_POOL_GUID, &this_guid) == 0 && 1348 iarg->guid == this_guid; 1349 } 1350 if (matched) { 1351 /* 1352 * Verify all remaining entries can be opened 1353 * exclusively. This will prune all underlying 1354 * multipath devices which otherwise could 1355 * result in the vdev appearing as UNAVAIL. 1356 * 1357 * Under zdb, this step isn't required and 1358 * would prevent a zdb -e of active pools with 1359 * no cachefile. 1360 */ 1361 fd = open(slice->rn_name, O_RDONLY | O_EXCL); 1362 if (fd >= 0 || iarg->can_be_active) { 1363 if (fd >= 0) 1364 close(fd); 1365 add_config(hdl, &pools, 1366 slice->rn_name, slice->rn_order, 1367 slice->rn_num_labels, config); 1368 } 1369 } 1370 nvlist_free(config); 1371 } 1372 free(slice->rn_name); 1373 free(slice); 1374 } 1375 avl_destroy(cache); 1376 free(cache); 1377 pthread_mutex_destroy(&lock); 1378 1379 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy); 1380 1381 for (pe = pools.pools; pe != NULL; pe = penext) { 1382 penext = pe->pe_next; 1383 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1384 venext = ve->ve_next; 1385 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1386 cenext = ce->ce_next; 1387 nvlist_free(ce->ce_config); 1388 free(ce); 1389 } 1390 free(ve); 1391 } 1392 free(pe); 1393 } 1394 1395 for (ne = pools.names; ne != NULL; ne = nenext) { 1396 nenext = ne->ne_next; 1397 free(ne->ne_name); 1398 free(ne); 1399 } 1400 1401 return (ret); 1402 } 1403 1404 /* 1405 * Given a cache file, return the contents as a list of importable pools. 1406 * poolname or guid (but not both) are provided by the caller when trying 1407 * to import a specific pool. 1408 */ 1409 static nvlist_t * 1410 zpool_find_import_cached(libpc_handle_t *hdl, const char *cachefile, 1411 const char *poolname, uint64_t guid) 1412 { 1413 char *buf; 1414 int fd; 1415 struct stat64 statbuf; 1416 nvlist_t *raw, *src, *dst; 1417 nvlist_t *pools; 1418 nvpair_t *elem; 1419 char *name; 1420 uint64_t this_guid; 1421 boolean_t active; 1422 1423 verify(poolname == NULL || guid == 0); 1424 1425 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1426 zutil_error_aux(hdl, "%s", strerror(errno)); 1427 (void) zutil_error(hdl, EZFS_BADCACHE, 1428 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1429 return (NULL); 1430 } 1431 1432 if (fstat64(fd, &statbuf) != 0) { 1433 zutil_error_aux(hdl, "%s", strerror(errno)); 1434 (void) close(fd); 1435 (void) zutil_error(hdl, EZFS_BADCACHE, 1436 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1437 return (NULL); 1438 } 1439 1440 if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) { 1441 (void) close(fd); 1442 return (NULL); 1443 } 1444 1445 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1446 (void) close(fd); 1447 free(buf); 1448 (void) zutil_error(hdl, EZFS_BADCACHE, 1449 dgettext(TEXT_DOMAIN, 1450 "failed to read cache file contents")); 1451 return (NULL); 1452 } 1453 1454 (void) close(fd); 1455 1456 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1457 free(buf); 1458 (void) zutil_error(hdl, EZFS_BADCACHE, 1459 dgettext(TEXT_DOMAIN, 1460 "invalid or corrupt cache file contents")); 1461 return (NULL); 1462 } 1463 1464 free(buf); 1465 1466 /* 1467 * Go through and get the current state of the pools and refresh their 1468 * state. 1469 */ 1470 if (nvlist_alloc(&pools, 0, 0) != 0) { 1471 (void) zutil_no_memory(hdl); 1472 nvlist_free(raw); 1473 return (NULL); 1474 } 1475 1476 elem = NULL; 1477 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1478 src = fnvpair_value_nvlist(elem); 1479 1480 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME); 1481 if (poolname != NULL && strcmp(poolname, name) != 0) 1482 continue; 1483 1484 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID); 1485 if (guid != 0 && guid != this_guid) 1486 continue; 1487 1488 if (zutil_pool_active(hdl, name, this_guid, &active) != 0) { 1489 nvlist_free(raw); 1490 nvlist_free(pools); 1491 return (NULL); 1492 } 1493 1494 if (active) 1495 continue; 1496 1497 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE, 1498 cachefile) != 0) { 1499 (void) zutil_no_memory(hdl); 1500 nvlist_free(raw); 1501 nvlist_free(pools); 1502 return (NULL); 1503 } 1504 1505 if ((dst = zutil_refresh_config(hdl, src)) == NULL) { 1506 nvlist_free(raw); 1507 nvlist_free(pools); 1508 return (NULL); 1509 } 1510 1511 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1512 (void) zutil_no_memory(hdl); 1513 nvlist_free(dst); 1514 nvlist_free(raw); 1515 nvlist_free(pools); 1516 return (NULL); 1517 } 1518 nvlist_free(dst); 1519 } 1520 1521 nvlist_free(raw); 1522 return (pools); 1523 } 1524 1525 nvlist_t * 1526 zpool_search_import(void *hdl, importargs_t *import, 1527 const pool_config_ops_t *pco) 1528 { 1529 libpc_handle_t handle = { 0 }; 1530 nvlist_t *pools = NULL; 1531 1532 handle.lpc_lib_handle = hdl; 1533 handle.lpc_ops = pco; 1534 handle.lpc_printerr = B_TRUE; 1535 1536 verify(import->poolname == NULL || import->guid == 0); 1537 1538 if (import->cachefile != NULL) 1539 pools = zpool_find_import_cached(&handle, import->cachefile, 1540 import->poolname, import->guid); 1541 else 1542 pools = zpool_find_import_impl(&handle, import); 1543 1544 if ((pools == NULL || nvlist_empty(pools)) && 1545 handle.lpc_open_access_error && geteuid() != 0) { 1546 (void) zutil_error(&handle, EZFS_EACESS, dgettext(TEXT_DOMAIN, 1547 "no pools found")); 1548 } 1549 1550 return (pools); 1551 } 1552 1553 static boolean_t 1554 pool_match(nvlist_t *cfg, char *tgt) 1555 { 1556 uint64_t v, guid = strtoull(tgt, NULL, 0); 1557 char *s; 1558 1559 if (guid != 0) { 1560 if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0) 1561 return (v == guid); 1562 } else { 1563 if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0) 1564 return (strcmp(s, tgt) == 0); 1565 } 1566 return (B_FALSE); 1567 } 1568 1569 int 1570 zpool_find_config(void *hdl, const char *target, nvlist_t **configp, 1571 importargs_t *args, const pool_config_ops_t *pco) 1572 { 1573 nvlist_t *pools; 1574 nvlist_t *match = NULL; 1575 nvlist_t *config = NULL; 1576 char *sepp = NULL; 1577 char sep = '\0'; 1578 int count = 0; 1579 char *targetdup = strdup(target); 1580 1581 *configp = NULL; 1582 1583 if ((sepp = strpbrk(targetdup, "/@")) != NULL) { 1584 sep = *sepp; 1585 *sepp = '\0'; 1586 } 1587 1588 pools = zpool_search_import(hdl, args, pco); 1589 1590 if (pools != NULL) { 1591 nvpair_t *elem = NULL; 1592 while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) { 1593 VERIFY0(nvpair_value_nvlist(elem, &config)); 1594 if (pool_match(config, targetdup)) { 1595 count++; 1596 if (match != NULL) { 1597 /* multiple matches found */ 1598 continue; 1599 } else { 1600 match = fnvlist_dup(config); 1601 } 1602 } 1603 } 1604 fnvlist_free(pools); 1605 } 1606 1607 if (count == 0) { 1608 free(targetdup); 1609 return (ENOENT); 1610 } 1611 1612 if (count > 1) { 1613 free(targetdup); 1614 fnvlist_free(match); 1615 return (EINVAL); 1616 } 1617 1618 *configp = match; 1619 free(targetdup); 1620 1621 return (0); 1622 } 1623