1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2016, 2017, Intel Corporation. 26 * Copyright (c) 2017 Open-E, Inc. All Rights Reserved. 27 */ 28 29 /* 30 * ZFS syseventd module. 31 * 32 * file origin: openzfs/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c 33 * 34 * The purpose of this module is to identify when devices are added to the 35 * system, and appropriately online or replace the affected vdevs. 36 * 37 * When a device is added to the system: 38 * 39 * 1. Search for any vdevs whose devid matches that of the newly added 40 * device. 41 * 42 * 2. If no vdevs are found, then search for any vdevs whose udev path 43 * matches that of the new device. 44 * 45 * 3. If no vdevs match by either method, then ignore the event. 46 * 47 * 4. Attempt to online the device with a flag to indicate that it should 48 * be unspared when resilvering completes. If this succeeds, then the 49 * same device was inserted and we should continue normally. 50 * 51 * 5. If the pool does not have the 'autoreplace' property set, attempt to 52 * online the device again without the unspare flag, which will 53 * generate a FMA fault. 54 * 55 * 6. If the pool has the 'autoreplace' property set, and the matching vdev 56 * is a whole disk, then label the new disk and attempt a 'zpool 57 * replace'. 58 * 59 * The module responds to EC_DEV_ADD events. The special ESC_ZFS_VDEV_CHECK 60 * event indicates that a device failed to open during pool load, but the 61 * autoreplace property was set. In this case, we deferred the associated 62 * FMA fault until our module had a chance to process the autoreplace logic. 63 * If the device could not be replaced, then the second online attempt will 64 * trigger the FMA fault that we skipped earlier. 65 * 66 * On Linux udev provides a disk insert for both the disk and the partition. 67 */ 68 69 #include <ctype.h> 70 #include <fcntl.h> 71 #include <libnvpair.h> 72 #include <libzfs.h> 73 #include <libzutil.h> 74 #include <limits.h> 75 #include <stddef.h> 76 #include <stdlib.h> 77 #include <string.h> 78 #include <syslog.h> 79 #include <sys/list.h> 80 #include <sys/sunddi.h> 81 #include <sys/sysevent/eventdefs.h> 82 #include <sys/sysevent/dev.h> 83 #include <thread_pool.h> 84 #include <pthread.h> 85 #include <unistd.h> 86 #include <errno.h> 87 #include "zfs_agents.h" 88 #include "../zed_log.h" 89 90 #define DEV_BYID_PATH "/dev/disk/by-id/" 91 #define DEV_BYPATH_PATH "/dev/disk/by-path/" 92 #define DEV_BYVDEV_PATH "/dev/disk/by-vdev/" 93 94 typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t); 95 96 libzfs_handle_t *g_zfshdl; 97 list_t g_pool_list; /* list of unavailable pools at initialization */ 98 list_t g_device_list; /* list of disks with asynchronous label request */ 99 tpool_t *g_tpool; 100 boolean_t g_enumeration_done; 101 pthread_t g_zfs_tid; /* zfs_enum_pools() thread */ 102 103 typedef struct unavailpool { 104 zpool_handle_t *uap_zhp; 105 list_node_t uap_node; 106 } unavailpool_t; 107 108 typedef struct pendingdev { 109 char pd_physpath[128]; 110 list_node_t pd_node; 111 } pendingdev_t; 112 113 static int 114 zfs_toplevel_state(zpool_handle_t *zhp) 115 { 116 nvlist_t *nvroot; 117 vdev_stat_t *vs; 118 unsigned int c; 119 120 verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL), 121 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 122 verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS, 123 (uint64_t **)&vs, &c) == 0); 124 return (vs->vs_state); 125 } 126 127 static int 128 zfs_unavail_pool(zpool_handle_t *zhp, void *data) 129 { 130 zed_log_msg(LOG_INFO, "zfs_unavail_pool: examining '%s' (state %d)", 131 zpool_get_name(zhp), (int)zfs_toplevel_state(zhp)); 132 133 if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) { 134 unavailpool_t *uap; 135 uap = malloc(sizeof (unavailpool_t)); 136 if (uap == NULL) { 137 perror("malloc"); 138 exit(EXIT_FAILURE); 139 } 140 141 uap->uap_zhp = zhp; 142 list_insert_tail((list_t *)data, uap); 143 } else { 144 zpool_close(zhp); 145 } 146 return (0); 147 } 148 149 /* 150 * Two stage replace on Linux 151 * since we get disk notifications 152 * we can wait for partitioned disk slice to show up! 153 * 154 * First stage tags the disk, initiates async partitioning, and returns 155 * Second stage finds the tag and proceeds to ZFS labeling/replace 156 * 157 * disk-add --> label-disk + tag-disk --> partition-add --> zpool_vdev_attach 158 * 159 * 1. physical match with no fs, no partition 160 * tag it top, partition disk 161 * 162 * 2. physical match again, see partition and tag 163 * 164 */ 165 166 /* 167 * The device associated with the given vdev (either by devid or physical path) 168 * has been added to the system. If 'isdisk' is set, then we only attempt a 169 * replacement if it's a whole disk. This also implies that we should label the 170 * disk first. 171 * 172 * First, we attempt to online the device (making sure to undo any spare 173 * operation when finished). If this succeeds, then we're done. If it fails, 174 * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened, 175 * but that the label was not what we expected. If the 'autoreplace' property 176 * is enabled, then we relabel the disk (if specified), and attempt a 'zpool 177 * replace'. If the online is successful, but the new state is something else 178 * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of 179 * race, and we should avoid attempting to relabel the disk. 180 * 181 * Also can arrive here from a ESC_ZFS_VDEV_CHECK event 182 */ 183 static void 184 zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled) 185 { 186 const char *path; 187 vdev_state_t newstate; 188 nvlist_t *nvroot, *newvd; 189 pendingdev_t *device; 190 uint64_t wholedisk = 0ULL; 191 uint64_t offline = 0ULL, faulted = 0ULL; 192 uint64_t guid = 0ULL; 193 uint64_t is_spare = 0; 194 const char *physpath = NULL, *new_devid = NULL, *enc_sysfs_path = NULL; 195 char rawpath[PATH_MAX], fullpath[PATH_MAX]; 196 char devpath[PATH_MAX]; 197 int ret; 198 int online_flag = ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE; 199 boolean_t is_sd = B_FALSE; 200 boolean_t is_mpath_wholedisk = B_FALSE; 201 uint_t c; 202 vdev_stat_t *vs; 203 204 if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0) 205 return; 206 207 /* Skip healthy disks */ 208 verify(nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS, 209 (uint64_t **)&vs, &c) == 0); 210 if (vs->vs_state == VDEV_STATE_HEALTHY) { 211 zed_log_msg(LOG_INFO, "%s: %s is already healthy, skip it.", 212 __func__, path); 213 return; 214 } 215 216 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath); 217 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, 218 &enc_sysfs_path); 219 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); 220 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline); 221 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_FAULTED, &faulted); 222 223 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &guid); 224 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_IS_SPARE, &is_spare); 225 226 /* 227 * Special case: 228 * 229 * We've seen times where a disk won't have a ZPOOL_CONFIG_PHYS_PATH 230 * entry in their config. For example, on this force-faulted disk: 231 * 232 * children[0]: 233 * type: 'disk' 234 * id: 0 235 * guid: 14309659774640089719 236 * path: '/dev/disk/by-vdev/L28' 237 * whole_disk: 0 238 * DTL: 654 239 * create_txg: 4 240 * com.delphix:vdev_zap_leaf: 1161 241 * faulted: 1 242 * aux_state: 'external' 243 * children[1]: 244 * type: 'disk' 245 * id: 1 246 * guid: 16002508084177980912 247 * path: '/dev/disk/by-vdev/L29' 248 * devid: 'dm-uuid-mpath-35000c500a61d68a3' 249 * phys_path: 'L29' 250 * vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32' 251 * whole_disk: 0 252 * DTL: 1028 253 * create_txg: 4 254 * com.delphix:vdev_zap_leaf: 131 255 * 256 * If the disk's path is a /dev/disk/by-vdev/ path, then we can infer 257 * the ZPOOL_CONFIG_PHYS_PATH from the by-vdev disk name. 258 */ 259 if (physpath == NULL && path != NULL) { 260 /* If path begins with "/dev/disk/by-vdev/" ... */ 261 if (strncmp(path, DEV_BYVDEV_PATH, 262 strlen(DEV_BYVDEV_PATH)) == 0) { 263 /* Set physpath to the char after "/dev/disk/by-vdev" */ 264 physpath = &path[strlen(DEV_BYVDEV_PATH)]; 265 } 266 } 267 268 /* 269 * We don't want to autoreplace offlined disks. However, we do want to 270 * replace force-faulted disks (`zpool offline -f`). Force-faulted 271 * disks have both offline=1 and faulted=1 in the nvlist. 272 */ 273 if (offline && !faulted) { 274 zed_log_msg(LOG_INFO, "%s: %s is offline, skip autoreplace", 275 __func__, path); 276 return; 277 } 278 279 is_mpath_wholedisk = is_mpath_whole_disk(path); 280 zed_log_msg(LOG_INFO, "zfs_process_add: pool '%s' vdev '%s', phys '%s'" 281 " %s blank disk, %s mpath blank disk, %s labeled, enc sysfs '%s', " 282 "(guid %llu)", 283 zpool_get_name(zhp), path, 284 physpath ? physpath : "NULL", 285 wholedisk ? "is" : "not", 286 is_mpath_wholedisk? "is" : "not", 287 labeled ? "is" : "not", 288 enc_sysfs_path, 289 (long long unsigned int)guid); 290 291 /* 292 * The VDEV guid is preferred for identification (gets passed in path) 293 */ 294 if (guid != 0) { 295 (void) snprintf(fullpath, sizeof (fullpath), "%llu", 296 (long long unsigned int)guid); 297 } else { 298 /* 299 * otherwise use path sans partition suffix for whole disks 300 */ 301 (void) strlcpy(fullpath, path, sizeof (fullpath)); 302 if (wholedisk) { 303 char *spath = zfs_strip_partition(fullpath); 304 if (!spath) { 305 zed_log_msg(LOG_INFO, "%s: Can't alloc", 306 __func__); 307 return; 308 } 309 310 (void) strlcpy(fullpath, spath, sizeof (fullpath)); 311 free(spath); 312 } 313 } 314 315 if (is_spare) 316 online_flag |= ZFS_ONLINE_SPARE; 317 318 /* 319 * Attempt to online the device. 320 */ 321 if (zpool_vdev_online(zhp, fullpath, online_flag, &newstate) == 0 && 322 (newstate == VDEV_STATE_HEALTHY || 323 newstate == VDEV_STATE_DEGRADED)) { 324 zed_log_msg(LOG_INFO, 325 " zpool_vdev_online: vdev '%s' ('%s') is " 326 "%s", fullpath, physpath, (newstate == VDEV_STATE_HEALTHY) ? 327 "HEALTHY" : "DEGRADED"); 328 return; 329 } 330 331 /* 332 * vdev_id alias rule for using scsi_debug devices (FMA automated 333 * testing) 334 */ 335 if (physpath != NULL && strcmp("scsidebug", physpath) == 0) 336 is_sd = B_TRUE; 337 338 /* 339 * If the pool doesn't have the autoreplace property set, then use 340 * vdev online to trigger a FMA fault by posting an ereport. 341 */ 342 if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) || 343 !(wholedisk || is_mpath_wholedisk) || (physpath == NULL)) { 344 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, 345 &newstate); 346 zed_log_msg(LOG_INFO, "Pool's autoreplace is not enabled or " 347 "not a blank disk for '%s' ('%s')", fullpath, 348 physpath); 349 return; 350 } 351 352 /* 353 * Convert physical path into its current device node. Rawpath 354 * needs to be /dev/disk/by-vdev for a scsi_debug device since 355 * /dev/disk/by-path will not be present. 356 */ 357 (void) snprintf(rawpath, sizeof (rawpath), "%s%s", 358 is_sd ? DEV_BYVDEV_PATH : DEV_BYPATH_PATH, physpath); 359 360 if (realpath(rawpath, devpath) == NULL && !is_mpath_wholedisk) { 361 zed_log_msg(LOG_INFO, " realpath: %s failed (%s)", 362 rawpath, strerror(errno)); 363 364 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT, 365 &newstate); 366 367 zed_log_msg(LOG_INFO, " zpool_vdev_online: %s FORCEFAULT (%s)", 368 fullpath, libzfs_error_description(g_zfshdl)); 369 return; 370 } 371 372 /* Only autoreplace bad disks */ 373 if ((vs->vs_state != VDEV_STATE_DEGRADED) && 374 (vs->vs_state != VDEV_STATE_FAULTED) && 375 (vs->vs_state != VDEV_STATE_REMOVED) && 376 (vs->vs_state != VDEV_STATE_CANT_OPEN)) { 377 zed_log_msg(LOG_INFO, " not autoreplacing since disk isn't in " 378 "a bad state (currently %llu)", vs->vs_state); 379 return; 380 } 381 382 nvlist_lookup_string(vdev, "new_devid", &new_devid); 383 384 if (is_mpath_wholedisk) { 385 /* Don't label device mapper or multipath disks. */ 386 } else if (!labeled) { 387 /* 388 * we're auto-replacing a raw disk, so label it first 389 */ 390 char *leafname; 391 392 /* 393 * If this is a request to label a whole disk, then attempt to 394 * write out the label. Before we can label the disk, we need 395 * to map the physical string that was matched on to the under 396 * lying device node. 397 * 398 * If any part of this process fails, then do a force online 399 * to trigger a ZFS fault for the device (and any hot spare 400 * replacement). 401 */ 402 leafname = strrchr(devpath, '/') + 1; 403 404 /* 405 * If this is a request to label a whole disk, then attempt to 406 * write out the label. 407 */ 408 if (zpool_label_disk(g_zfshdl, zhp, leafname) != 0) { 409 zed_log_msg(LOG_INFO, " zpool_label_disk: could not " 410 "label '%s' (%s)", leafname, 411 libzfs_error_description(g_zfshdl)); 412 413 (void) zpool_vdev_online(zhp, fullpath, 414 ZFS_ONLINE_FORCEFAULT, &newstate); 415 return; 416 } 417 418 /* 419 * The disk labeling is asynchronous on Linux. Just record 420 * this label request and return as there will be another 421 * disk add event for the partition after the labeling is 422 * completed. 423 */ 424 device = malloc(sizeof (pendingdev_t)); 425 if (device == NULL) { 426 perror("malloc"); 427 exit(EXIT_FAILURE); 428 } 429 430 (void) strlcpy(device->pd_physpath, physpath, 431 sizeof (device->pd_physpath)); 432 list_insert_tail(&g_device_list, device); 433 434 zed_log_msg(LOG_INFO, " zpool_label_disk: async '%s' (%llu)", 435 leafname, (u_longlong_t)guid); 436 437 return; /* resumes at EC_DEV_ADD.ESC_DISK for partition */ 438 439 } else /* labeled */ { 440 boolean_t found = B_FALSE; 441 /* 442 * match up with request above to label the disk 443 */ 444 for (device = list_head(&g_device_list); device != NULL; 445 device = list_next(&g_device_list, device)) { 446 if (strcmp(physpath, device->pd_physpath) == 0) { 447 list_remove(&g_device_list, device); 448 free(device); 449 found = B_TRUE; 450 break; 451 } 452 zed_log_msg(LOG_INFO, "zpool_label_disk: %s != %s", 453 physpath, device->pd_physpath); 454 } 455 if (!found) { 456 /* unexpected partition slice encountered */ 457 zed_log_msg(LOG_INFO, "labeled disk %s unexpected here", 458 fullpath); 459 (void) zpool_vdev_online(zhp, fullpath, 460 ZFS_ONLINE_FORCEFAULT, &newstate); 461 return; 462 } 463 464 zed_log_msg(LOG_INFO, " zpool_label_disk: resume '%s' (%llu)", 465 physpath, (u_longlong_t)guid); 466 467 (void) snprintf(devpath, sizeof (devpath), "%s%s", 468 DEV_BYID_PATH, new_devid); 469 } 470 471 /* 472 * Construct the root vdev to pass to zpool_vdev_attach(). While adding 473 * the entire vdev structure is harmless, we construct a reduced set of 474 * path/physpath/wholedisk to keep it simple. 475 */ 476 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) { 477 zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory"); 478 return; 479 } 480 if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) { 481 zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory"); 482 nvlist_free(nvroot); 483 return; 484 } 485 486 if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 || 487 nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 || 488 nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID, new_devid) != 0 || 489 (physpath != NULL && nvlist_add_string(newvd, 490 ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) || 491 (enc_sysfs_path != NULL && nvlist_add_string(newvd, 492 ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, enc_sysfs_path) != 0) || 493 nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 || 494 nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 || 495 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 496 (const nvlist_t **)&newvd, 1) != 0) { 497 zed_log_msg(LOG_WARNING, "zfs_mod: unable to add nvlist pairs"); 498 nvlist_free(newvd); 499 nvlist_free(nvroot); 500 return; 501 } 502 503 nvlist_free(newvd); 504 505 /* 506 * Wait for udev to verify the links exist, then auto-replace 507 * the leaf disk at same physical location. 508 */ 509 if (zpool_label_disk_wait(path, 3000) != 0) { 510 zed_log_msg(LOG_WARNING, "zfs_mod: expected replacement " 511 "disk %s is missing", path); 512 nvlist_free(nvroot); 513 return; 514 } 515 516 /* 517 * Prefer sequential resilvering when supported (mirrors and dRAID), 518 * otherwise fallback to a traditional healing resilver. 519 */ 520 ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_TRUE); 521 if (ret != 0) { 522 ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, 523 B_TRUE, B_FALSE); 524 } 525 526 zed_log_msg(LOG_INFO, " zpool_vdev_replace: %s with %s (%s)", 527 fullpath, path, (ret == 0) ? "no errors" : 528 libzfs_error_description(g_zfshdl)); 529 530 nvlist_free(nvroot); 531 } 532 533 /* 534 * Utility functions to find a vdev matching given criteria. 535 */ 536 typedef struct dev_data { 537 const char *dd_compare; 538 const char *dd_prop; 539 zfs_process_func_t dd_func; 540 boolean_t dd_found; 541 boolean_t dd_islabeled; 542 uint64_t dd_pool_guid; 543 uint64_t dd_vdev_guid; 544 uint64_t dd_new_vdev_guid; 545 const char *dd_new_devid; 546 uint64_t dd_num_spares; 547 } dev_data_t; 548 549 static void 550 zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data) 551 { 552 dev_data_t *dp = data; 553 const char *path = NULL; 554 uint_t c, children; 555 nvlist_t **child; 556 uint64_t guid = 0; 557 uint64_t isspare = 0; 558 559 /* 560 * First iterate over any children. 561 */ 562 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, 563 &child, &children) == 0) { 564 for (c = 0; c < children; c++) 565 zfs_iter_vdev(zhp, child[c], data); 566 } 567 568 /* 569 * Iterate over any spares and cache devices 570 */ 571 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_SPARES, 572 &child, &children) == 0) { 573 for (c = 0; c < children; c++) 574 zfs_iter_vdev(zhp, child[c], data); 575 } 576 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_L2CACHE, 577 &child, &children) == 0) { 578 for (c = 0; c < children; c++) 579 zfs_iter_vdev(zhp, child[c], data); 580 } 581 582 /* once a vdev was matched and processed there is nothing left to do */ 583 if (dp->dd_found && dp->dd_num_spares == 0) 584 return; 585 (void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, &guid); 586 587 /* 588 * Match by GUID if available otherwise fallback to devid or physical 589 */ 590 if (dp->dd_vdev_guid != 0) { 591 if (guid != dp->dd_vdev_guid) 592 return; 593 zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched on %llu", guid); 594 dp->dd_found = B_TRUE; 595 596 } else if (dp->dd_compare != NULL) { 597 /* 598 * NOTE: On Linux there is an event for partition, so unlike 599 * illumos, substring matching is not required to accommodate 600 * the partition suffix. An exact match will be present in 601 * the dp->dd_compare value. 602 * If the attached disk already contains a vdev GUID, it means 603 * the disk is not clean. In such a scenario, the physical path 604 * would be a match that makes the disk faulted when trying to 605 * online it. So, we would only want to proceed if either GUID 606 * matches with the last attached disk or the disk is in clean 607 * state. 608 */ 609 if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 || 610 strcmp(dp->dd_compare, path) != 0) { 611 return; 612 } 613 if (dp->dd_new_vdev_guid != 0 && dp->dd_new_vdev_guid != guid) { 614 zed_log_msg(LOG_INFO, " %s: no match (GUID:%llu" 615 " != vdev GUID:%llu)", __func__, 616 dp->dd_new_vdev_guid, guid); 617 return; 618 } 619 620 zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched %s on %s", 621 dp->dd_prop, path); 622 dp->dd_found = B_TRUE; 623 624 /* pass the new devid for use by replacing code */ 625 if (dp->dd_new_devid != NULL) { 626 (void) nvlist_add_string(nvl, "new_devid", 627 dp->dd_new_devid); 628 } 629 } 630 631 if (dp->dd_found == B_TRUE && nvlist_lookup_uint64(nvl, 632 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 633 dp->dd_num_spares++; 634 635 (dp->dd_func)(zhp, nvl, dp->dd_islabeled); 636 } 637 638 static void 639 zfs_enable_ds(void *arg) 640 { 641 unavailpool_t *pool = (unavailpool_t *)arg; 642 643 (void) zpool_enable_datasets(pool->uap_zhp, NULL, 0); 644 zpool_close(pool->uap_zhp); 645 free(pool); 646 } 647 648 static int 649 zfs_iter_pool(zpool_handle_t *zhp, void *data) 650 { 651 nvlist_t *config, *nvl; 652 dev_data_t *dp = data; 653 uint64_t pool_guid; 654 unavailpool_t *pool; 655 656 zed_log_msg(LOG_INFO, "zfs_iter_pool: evaluating vdevs on %s (by %s)", 657 zpool_get_name(zhp), dp->dd_vdev_guid ? "GUID" : dp->dd_prop); 658 659 /* 660 * For each vdev in this pool, look for a match to apply dd_func 661 */ 662 if ((config = zpool_get_config(zhp, NULL)) != NULL) { 663 if (dp->dd_pool_guid == 0 || 664 (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 665 &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) { 666 (void) nvlist_lookup_nvlist(config, 667 ZPOOL_CONFIG_VDEV_TREE, &nvl); 668 zfs_iter_vdev(zhp, nvl, data); 669 } 670 } else { 671 zed_log_msg(LOG_INFO, "%s: no config\n", __func__); 672 } 673 674 /* 675 * if this pool was originally unavailable, 676 * then enable its datasets asynchronously 677 */ 678 if (g_enumeration_done) { 679 for (pool = list_head(&g_pool_list); pool != NULL; 680 pool = list_next(&g_pool_list, pool)) { 681 682 if (strcmp(zpool_get_name(zhp), 683 zpool_get_name(pool->uap_zhp))) 684 continue; 685 if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) { 686 list_remove(&g_pool_list, pool); 687 (void) tpool_dispatch(g_tpool, zfs_enable_ds, 688 pool); 689 break; 690 } 691 } 692 } 693 694 zpool_close(zhp); 695 696 /* cease iteration after a match */ 697 return (dp->dd_found && dp->dd_num_spares == 0); 698 } 699 700 /* 701 * Given a physical device location, iterate over all 702 * (pool, vdev) pairs which correspond to that location. 703 */ 704 static boolean_t 705 devphys_iter(const char *physical, const char *devid, zfs_process_func_t func, 706 boolean_t is_slice, uint64_t new_vdev_guid) 707 { 708 dev_data_t data = { 0 }; 709 710 data.dd_compare = physical; 711 data.dd_func = func; 712 data.dd_prop = ZPOOL_CONFIG_PHYS_PATH; 713 data.dd_found = B_FALSE; 714 data.dd_islabeled = is_slice; 715 data.dd_new_devid = devid; /* used by auto replace code */ 716 data.dd_new_vdev_guid = new_vdev_guid; 717 718 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 719 720 return (data.dd_found); 721 } 722 723 /* 724 * Given a device identifier, find any vdevs with a matching by-vdev 725 * path. Normally we shouldn't need this as the comparison would be 726 * made earlier in the devphys_iter(). For example, if we were replacing 727 * /dev/disk/by-vdev/L28, normally devphys_iter() would match the 728 * ZPOOL_CONFIG_PHYS_PATH of "L28" from the old disk config to "L28" 729 * of the new disk config. However, we've seen cases where 730 * ZPOOL_CONFIG_PHYS_PATH was not in the config for the old disk. Here's 731 * an example of a real 2-disk mirror pool where one disk was force 732 * faulted: 733 * 734 * com.delphix:vdev_zap_top: 129 735 * children[0]: 736 * type: 'disk' 737 * id: 0 738 * guid: 14309659774640089719 739 * path: '/dev/disk/by-vdev/L28' 740 * whole_disk: 0 741 * DTL: 654 742 * create_txg: 4 743 * com.delphix:vdev_zap_leaf: 1161 744 * faulted: 1 745 * aux_state: 'external' 746 * children[1]: 747 * type: 'disk' 748 * id: 1 749 * guid: 16002508084177980912 750 * path: '/dev/disk/by-vdev/L29' 751 * devid: 'dm-uuid-mpath-35000c500a61d68a3' 752 * phys_path: 'L29' 753 * vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32' 754 * whole_disk: 0 755 * DTL: 1028 756 * create_txg: 4 757 * com.delphix:vdev_zap_leaf: 131 758 * 759 * So in the case above, the only thing we could compare is the path. 760 * 761 * We can do this because we assume by-vdev paths are authoritative as physical 762 * paths. We could not assume this for normal paths like /dev/sda since the 763 * physical location /dev/sda points to could change over time. 764 */ 765 static boolean_t 766 by_vdev_path_iter(const char *by_vdev_path, const char *devid, 767 zfs_process_func_t func, boolean_t is_slice) 768 { 769 dev_data_t data = { 0 }; 770 771 data.dd_compare = by_vdev_path; 772 data.dd_func = func; 773 data.dd_prop = ZPOOL_CONFIG_PATH; 774 data.dd_found = B_FALSE; 775 data.dd_islabeled = is_slice; 776 data.dd_new_devid = devid; 777 778 if (strncmp(by_vdev_path, DEV_BYVDEV_PATH, 779 strlen(DEV_BYVDEV_PATH)) != 0) { 780 /* by_vdev_path doesn't start with "/dev/disk/by-vdev/" */ 781 return (B_FALSE); 782 } 783 784 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 785 786 return (data.dd_found); 787 } 788 789 /* 790 * Given a device identifier, find any vdevs with a matching devid. 791 * On Linux we can match devid directly which is always a whole disk. 792 */ 793 static boolean_t 794 devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice) 795 { 796 dev_data_t data = { 0 }; 797 798 data.dd_compare = devid; 799 data.dd_func = func; 800 data.dd_prop = ZPOOL_CONFIG_DEVID; 801 data.dd_found = B_FALSE; 802 data.dd_islabeled = is_slice; 803 data.dd_new_devid = devid; 804 805 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 806 807 return (data.dd_found); 808 } 809 810 /* 811 * Given a device guid, find any vdevs with a matching guid. 812 */ 813 static boolean_t 814 guid_iter(uint64_t pool_guid, uint64_t vdev_guid, const char *devid, 815 zfs_process_func_t func, boolean_t is_slice) 816 { 817 dev_data_t data = { 0 }; 818 819 data.dd_func = func; 820 data.dd_found = B_FALSE; 821 data.dd_pool_guid = pool_guid; 822 data.dd_vdev_guid = vdev_guid; 823 data.dd_islabeled = is_slice; 824 data.dd_new_devid = devid; 825 826 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 827 828 return (data.dd_found); 829 } 830 831 /* 832 * Handle a EC_DEV_ADD.ESC_DISK event. 833 * 834 * illumos 835 * Expects: DEV_PHYS_PATH string in schema 836 * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID 837 * 838 * path: '/dev/dsk/c0t1d0s0' (persistent) 839 * devid: 'id1,sd@SATA_____Hitachi_HDS72101______JP2940HZ3H74MC/a' 840 * phys_path: '/pci@0,0/pci103c,1609@11/disk@1,0:a' 841 * 842 * linux 843 * provides: DEV_PHYS_PATH and DEV_IDENTIFIER strings in schema 844 * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID 845 * 846 * path: '/dev/sdc1' (not persistent) 847 * devid: 'ata-SAMSUNG_HD204UI_S2HGJD2Z805891-part1' 848 * phys_path: 'pci-0000:04:00.0-sas-0x4433221106000000-lun-0' 849 */ 850 static int 851 zfs_deliver_add(nvlist_t *nvl) 852 { 853 const char *devpath = NULL, *devid = NULL; 854 uint64_t pool_guid = 0, vdev_guid = 0; 855 boolean_t is_slice; 856 857 /* 858 * Expecting a devid string and an optional physical location and guid 859 */ 860 if (nvlist_lookup_string(nvl, DEV_IDENTIFIER, &devid) != 0) { 861 zed_log_msg(LOG_INFO, "%s: no dev identifier\n", __func__); 862 return (-1); 863 } 864 865 (void) nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath); 866 (void) nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &pool_guid); 867 (void) nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &vdev_guid); 868 869 is_slice = (nvlist_lookup_boolean(nvl, DEV_IS_PART) == 0); 870 871 zed_log_msg(LOG_INFO, "zfs_deliver_add: adding %s (%s) (is_slice %d)", 872 devid, devpath ? devpath : "NULL", is_slice); 873 874 /* 875 * Iterate over all vdevs looking for a match in the following order: 876 * 1. ZPOOL_CONFIG_DEVID (identifies the unique disk) 877 * 2. ZPOOL_CONFIG_PHYS_PATH (identifies disk physical location). 878 * 3. ZPOOL_CONFIG_GUID (identifies unique vdev). 879 * 4. ZPOOL_CONFIG_PATH for /dev/disk/by-vdev devices only (since 880 * by-vdev paths represent physical paths). 881 */ 882 if (devid_iter(devid, zfs_process_add, is_slice)) 883 return (0); 884 if (devpath != NULL && devphys_iter(devpath, devid, zfs_process_add, 885 is_slice, vdev_guid)) 886 return (0); 887 if (vdev_guid != 0) 888 (void) guid_iter(pool_guid, vdev_guid, devid, zfs_process_add, 889 is_slice); 890 891 if (devpath != NULL) { 892 /* Can we match a /dev/disk/by-vdev/ path? */ 893 char by_vdev_path[MAXPATHLEN]; 894 snprintf(by_vdev_path, sizeof (by_vdev_path), 895 "/dev/disk/by-vdev/%s", devpath); 896 if (by_vdev_path_iter(by_vdev_path, devid, zfs_process_add, 897 is_slice)) 898 return (0); 899 } 900 901 return (0); 902 } 903 904 /* 905 * Called when we receive a VDEV_CHECK event, which indicates a device could not 906 * be opened during initial pool open, but the autoreplace property was set on 907 * the pool. In this case, we treat it as if it were an add event. 908 */ 909 static int 910 zfs_deliver_check(nvlist_t *nvl) 911 { 912 dev_data_t data = { 0 }; 913 914 if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, 915 &data.dd_pool_guid) != 0 || 916 nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, 917 &data.dd_vdev_guid) != 0 || 918 data.dd_vdev_guid == 0) 919 return (0); 920 921 zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu", 922 data.dd_pool_guid, data.dd_vdev_guid); 923 924 data.dd_func = zfs_process_add; 925 926 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data); 927 928 return (0); 929 } 930 931 /* 932 * Given a path to a vdev, lookup the vdev's physical size from its 933 * config nvlist. 934 * 935 * Returns the vdev's physical size in bytes on success, 0 on error. 936 */ 937 static uint64_t 938 vdev_size_from_config(zpool_handle_t *zhp, const char *vdev_path) 939 { 940 nvlist_t *nvl = NULL; 941 boolean_t avail_spare, l2cache, log; 942 vdev_stat_t *vs = NULL; 943 uint_t c; 944 945 nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log); 946 if (!nvl) 947 return (0); 948 949 verify(nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_VDEV_STATS, 950 (uint64_t **)&vs, &c) == 0); 951 if (!vs) { 952 zed_log_msg(LOG_INFO, "%s: no nvlist for '%s'", __func__, 953 vdev_path); 954 return (0); 955 } 956 957 return (vs->vs_pspace); 958 } 959 960 /* 961 * Given a path to a vdev, lookup if the vdev is a "whole disk" in the 962 * config nvlist. "whole disk" means that ZFS was passed a whole disk 963 * at pool creation time, which it partitioned up and has full control over. 964 * Thus a partition with wholedisk=1 set tells us that zfs created the 965 * partition at creation time. A partition without whole disk set would have 966 * been created by externally (like with fdisk) and passed to ZFS. 967 * 968 * Returns the whole disk value (either 0 or 1). 969 */ 970 static uint64_t 971 vdev_whole_disk_from_config(zpool_handle_t *zhp, const char *vdev_path) 972 { 973 nvlist_t *nvl = NULL; 974 boolean_t avail_spare, l2cache, log; 975 uint64_t wholedisk = 0; 976 977 nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log); 978 if (!nvl) 979 return (0); 980 981 (void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk); 982 983 return (wholedisk); 984 } 985 986 /* 987 * If the device size grew more than 1% then return true. 988 */ 989 #define DEVICE_GREW(oldsize, newsize) \ 990 ((newsize > oldsize) && \ 991 ((newsize / (newsize - oldsize)) <= 100)) 992 993 static int 994 zfsdle_vdev_online(zpool_handle_t *zhp, void *data) 995 { 996 boolean_t avail_spare, l2cache; 997 nvlist_t *udev_nvl = data; 998 nvlist_t *tgt; 999 int error; 1000 1001 const char *tmp_devname; 1002 char devname[MAXPATHLEN] = ""; 1003 uint64_t guid; 1004 1005 if (nvlist_lookup_uint64(udev_nvl, ZFS_EV_VDEV_GUID, &guid) == 0) { 1006 sprintf(devname, "%llu", (u_longlong_t)guid); 1007 } else if (nvlist_lookup_string(udev_nvl, DEV_PHYS_PATH, 1008 &tmp_devname) == 0) { 1009 strlcpy(devname, tmp_devname, MAXPATHLEN); 1010 zfs_append_partition(devname, MAXPATHLEN); 1011 } else { 1012 zed_log_msg(LOG_INFO, "%s: no guid or physpath", __func__); 1013 } 1014 1015 zed_log_msg(LOG_INFO, "zfsdle_vdev_online: searching for '%s' in '%s'", 1016 devname, zpool_get_name(zhp)); 1017 1018 if ((tgt = zpool_find_vdev_by_physpath(zhp, devname, 1019 &avail_spare, &l2cache, NULL)) != NULL) { 1020 const char *path; 1021 char fullpath[MAXPATHLEN]; 1022 uint64_t wholedisk = 0; 1023 1024 error = nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &path); 1025 if (error) { 1026 zpool_close(zhp); 1027 return (0); 1028 } 1029 1030 (void) nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK, 1031 &wholedisk); 1032 1033 if (wholedisk) { 1034 char *tmp; 1035 path = strrchr(path, '/'); 1036 if (path != NULL) { 1037 tmp = zfs_strip_partition(path + 1); 1038 if (tmp == NULL) { 1039 zpool_close(zhp); 1040 return (0); 1041 } 1042 } else { 1043 zpool_close(zhp); 1044 return (0); 1045 } 1046 1047 (void) strlcpy(fullpath, tmp, sizeof (fullpath)); 1048 free(tmp); 1049 1050 /* 1051 * We need to reopen the pool associated with this 1052 * device so that the kernel can update the size of 1053 * the expanded device. When expanding there is no 1054 * need to restart the scrub from the beginning. 1055 */ 1056 boolean_t scrub_restart = B_FALSE; 1057 (void) zpool_reopen_one(zhp, &scrub_restart); 1058 } else { 1059 (void) strlcpy(fullpath, path, sizeof (fullpath)); 1060 } 1061 1062 if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) { 1063 vdev_state_t newstate; 1064 1065 if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) { 1066 /* 1067 * If this disk size has not changed, then 1068 * there's no need to do an autoexpand. To 1069 * check we look at the disk's size in its 1070 * config, and compare it to the disk size 1071 * that udev is reporting. 1072 */ 1073 uint64_t udev_size = 0, conf_size = 0, 1074 wholedisk = 0, udev_parent_size = 0; 1075 1076 /* 1077 * Get the size of our disk that udev is 1078 * reporting. 1079 */ 1080 if (nvlist_lookup_uint64(udev_nvl, DEV_SIZE, 1081 &udev_size) != 0) { 1082 udev_size = 0; 1083 } 1084 1085 /* 1086 * Get the size of our disk's parent device 1087 * from udev (where sda1's parent is sda). 1088 */ 1089 if (nvlist_lookup_uint64(udev_nvl, 1090 DEV_PARENT_SIZE, &udev_parent_size) != 0) { 1091 udev_parent_size = 0; 1092 } 1093 1094 conf_size = vdev_size_from_config(zhp, 1095 fullpath); 1096 1097 wholedisk = vdev_whole_disk_from_config(zhp, 1098 fullpath); 1099 1100 /* 1101 * Only attempt an autoexpand if the vdev size 1102 * changed. There are two different cases 1103 * to consider. 1104 * 1105 * 1. wholedisk=1 1106 * If you do a 'zpool create' on a whole disk 1107 * (like /dev/sda), then zfs will create 1108 * partitions on the disk (like /dev/sda1). In 1109 * that case, wholedisk=1 will be set in the 1110 * partition's nvlist config. So zed will need 1111 * to see if your parent device (/dev/sda) 1112 * expanded in size, and if so, then attempt 1113 * the autoexpand. 1114 * 1115 * 2. wholedisk=0 1116 * If you do a 'zpool create' on an existing 1117 * partition, or a device that doesn't allow 1118 * partitions, then wholedisk=0, and you will 1119 * simply need to check if the device itself 1120 * expanded in size. 1121 */ 1122 if (DEVICE_GREW(conf_size, udev_size) || 1123 (wholedisk && DEVICE_GREW(conf_size, 1124 udev_parent_size))) { 1125 error = zpool_vdev_online(zhp, fullpath, 1126 0, &newstate); 1127 1128 zed_log_msg(LOG_INFO, 1129 "%s: autoexpanding '%s' from %llu" 1130 " to %llu bytes in pool '%s': %d", 1131 __func__, fullpath, conf_size, 1132 MAX(udev_size, udev_parent_size), 1133 zpool_get_name(zhp), error); 1134 } 1135 } 1136 } 1137 zpool_close(zhp); 1138 return (1); 1139 } 1140 zpool_close(zhp); 1141 return (0); 1142 } 1143 1144 /* 1145 * This function handles the ESC_DEV_DLE device change event. Use the 1146 * provided vdev guid when looking up a disk or partition, when the guid 1147 * is not present assume the entire disk is owned by ZFS and append the 1148 * expected -part1 partition information then lookup by physical path. 1149 */ 1150 static int 1151 zfs_deliver_dle(nvlist_t *nvl) 1152 { 1153 const char *devname; 1154 char name[MAXPATHLEN]; 1155 uint64_t guid; 1156 1157 if (nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &guid) == 0) { 1158 sprintf(name, "%llu", (u_longlong_t)guid); 1159 } else if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) == 0) { 1160 strlcpy(name, devname, MAXPATHLEN); 1161 zfs_append_partition(name, MAXPATHLEN); 1162 } else { 1163 sprintf(name, "unknown"); 1164 zed_log_msg(LOG_INFO, "zfs_deliver_dle: no guid or physpath"); 1165 } 1166 1167 if (zpool_iter(g_zfshdl, zfsdle_vdev_online, nvl) != 1) { 1168 zed_log_msg(LOG_INFO, "zfs_deliver_dle: device '%s' not " 1169 "found", name); 1170 return (1); 1171 } 1172 1173 return (0); 1174 } 1175 1176 /* 1177 * syseventd daemon module event handler 1178 * 1179 * Handles syseventd daemon zfs device related events: 1180 * 1181 * EC_DEV_ADD.ESC_DISK 1182 * EC_DEV_STATUS.ESC_DEV_DLE 1183 * EC_ZFS.ESC_ZFS_VDEV_CHECK 1184 * 1185 * Note: assumes only one thread active at a time (not thread safe) 1186 */ 1187 static int 1188 zfs_slm_deliver_event(const char *class, const char *subclass, nvlist_t *nvl) 1189 { 1190 int ret; 1191 boolean_t is_check = B_FALSE, is_dle = B_FALSE; 1192 1193 if (strcmp(class, EC_DEV_ADD) == 0) { 1194 /* 1195 * We're mainly interested in disk additions, but we also listen 1196 * for new loop devices, to allow for simplified testing. 1197 */ 1198 if (strcmp(subclass, ESC_DISK) != 0 && 1199 strcmp(subclass, ESC_LOFI) != 0) 1200 return (0); 1201 1202 is_check = B_FALSE; 1203 } else if (strcmp(class, EC_ZFS) == 0 && 1204 strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) { 1205 /* 1206 * This event signifies that a device failed to open 1207 * during pool load, but the 'autoreplace' property was 1208 * set, so we should pretend it's just been added. 1209 */ 1210 is_check = B_TRUE; 1211 } else if (strcmp(class, EC_DEV_STATUS) == 0 && 1212 strcmp(subclass, ESC_DEV_DLE) == 0) { 1213 is_dle = B_TRUE; 1214 } else { 1215 return (0); 1216 } 1217 1218 if (is_dle) 1219 ret = zfs_deliver_dle(nvl); 1220 else if (is_check) 1221 ret = zfs_deliver_check(nvl); 1222 else 1223 ret = zfs_deliver_add(nvl); 1224 1225 return (ret); 1226 } 1227 1228 static void * 1229 zfs_enum_pools(void *arg) 1230 { 1231 (void) arg; 1232 1233 (void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list); 1234 /* 1235 * Linux - instead of using a thread pool, each list entry 1236 * will spawn a thread when an unavailable pool transitions 1237 * to available. zfs_slm_fini will wait for these threads. 1238 */ 1239 g_enumeration_done = B_TRUE; 1240 return (NULL); 1241 } 1242 1243 /* 1244 * called from zed daemon at startup 1245 * 1246 * sent messages from zevents or udev monitor 1247 * 1248 * For now, each agent has its own libzfs instance 1249 */ 1250 int 1251 zfs_slm_init(void) 1252 { 1253 if ((g_zfshdl = libzfs_init()) == NULL) 1254 return (-1); 1255 1256 /* 1257 * collect a list of unavailable pools (asynchronously, 1258 * since this can take a while) 1259 */ 1260 list_create(&g_pool_list, sizeof (struct unavailpool), 1261 offsetof(struct unavailpool, uap_node)); 1262 1263 if (pthread_create(&g_zfs_tid, NULL, zfs_enum_pools, NULL) != 0) { 1264 list_destroy(&g_pool_list); 1265 libzfs_fini(g_zfshdl); 1266 return (-1); 1267 } 1268 1269 pthread_setname_np(g_zfs_tid, "enum-pools"); 1270 list_create(&g_device_list, sizeof (struct pendingdev), 1271 offsetof(struct pendingdev, pd_node)); 1272 1273 return (0); 1274 } 1275 1276 void 1277 zfs_slm_fini(void) 1278 { 1279 unavailpool_t *pool; 1280 pendingdev_t *device; 1281 1282 /* wait for zfs_enum_pools thread to complete */ 1283 (void) pthread_join(g_zfs_tid, NULL); 1284 /* destroy the thread pool */ 1285 if (g_tpool != NULL) { 1286 tpool_wait(g_tpool); 1287 tpool_destroy(g_tpool); 1288 } 1289 1290 while ((pool = list_remove_head(&g_pool_list)) != NULL) { 1291 zpool_close(pool->uap_zhp); 1292 free(pool); 1293 } 1294 list_destroy(&g_pool_list); 1295 1296 while ((device = list_remove_head(&g_device_list)) != NULL) 1297 free(device); 1298 list_destroy(&g_device_list); 1299 1300 libzfs_fini(g_zfshdl); 1301 } 1302 1303 void 1304 zfs_slm_event(const char *class, const char *subclass, nvlist_t *nvl) 1305 { 1306 zed_log_msg(LOG_INFO, "zfs_slm_event: %s.%s", class, subclass); 1307 (void) zfs_slm_deliver_event(class, subclass, nvl); 1308 } 1309