1*c9ccf3a3SEmmanuel Vadot# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause) 2*c9ccf3a3SEmmanuel Vadot%YAML 1.2 3*c9ccf3a3SEmmanuel Vadot--- 4*c9ccf3a3SEmmanuel Vadot$id: http://devicetree.org/schemas/iio/afe/temperature-sense-rtd.yaml# 5*c9ccf3a3SEmmanuel Vadot$schema: http://devicetree.org/meta-schemas/core.yaml# 6*c9ccf3a3SEmmanuel Vadot 7*c9ccf3a3SEmmanuel Vadottitle: Temperature Sense RTD 8*c9ccf3a3SEmmanuel Vadot 9*c9ccf3a3SEmmanuel Vadotmaintainers: 10*c9ccf3a3SEmmanuel Vadot - Liam Beguin <liambeguin@gmail.com> 11*c9ccf3a3SEmmanuel Vadot 12*c9ccf3a3SEmmanuel Vadotdescription: | 13*c9ccf3a3SEmmanuel Vadot RTDs (Resistance Temperature Detectors) are a kind of temperature sensors 14*c9ccf3a3SEmmanuel Vadot used to get a linear voltage to temperature reading within a give range 15*c9ccf3a3SEmmanuel Vadot (usually 0 to 100 degrees Celsius). 16*c9ccf3a3SEmmanuel Vadot 17*c9ccf3a3SEmmanuel Vadot When an io-channel measures the output voltage across an RTD such as a 18*c9ccf3a3SEmmanuel Vadot PT1000, the interesting measurement is almost always the corresponding 19*c9ccf3a3SEmmanuel Vadot temperature, not the voltage output. This binding describes such a circuit. 20*c9ccf3a3SEmmanuel Vadot 21*c9ccf3a3SEmmanuel Vadot The general transfer function here is (using SI units) 22*c9ccf3a3SEmmanuel Vadot 23*c9ccf3a3SEmmanuel Vadot V = R(T) * iexc 24*c9ccf3a3SEmmanuel Vadot R(T) = r0 * (1 + alpha * T) 25*c9ccf3a3SEmmanuel Vadot T = 1 / (alpha * r0 * iexc) * (V - r0 * iexc) 26*c9ccf3a3SEmmanuel Vadot 27*c9ccf3a3SEmmanuel Vadot The following circuit matches what's in the examples section. 28*c9ccf3a3SEmmanuel Vadot 29*c9ccf3a3SEmmanuel Vadot 5V0 30*c9ccf3a3SEmmanuel Vadot ----- 31*c9ccf3a3SEmmanuel Vadot | 32*c9ccf3a3SEmmanuel Vadot +---+----+ 33*c9ccf3a3SEmmanuel Vadot | R 5k | 34*c9ccf3a3SEmmanuel Vadot +---+----+ 35*c9ccf3a3SEmmanuel Vadot | 36*c9ccf3a3SEmmanuel Vadot V 1mA 37*c9ccf3a3SEmmanuel Vadot | 38*c9ccf3a3SEmmanuel Vadot +---- Vout 39*c9ccf3a3SEmmanuel Vadot | 40*c9ccf3a3SEmmanuel Vadot +---+----+ 41*c9ccf3a3SEmmanuel Vadot | PT1000 | 42*c9ccf3a3SEmmanuel Vadot +---+----+ 43*c9ccf3a3SEmmanuel Vadot | 44*c9ccf3a3SEmmanuel Vadot ----- 45*c9ccf3a3SEmmanuel Vadot GND 46*c9ccf3a3SEmmanuel Vadot 47*c9ccf3a3SEmmanuel Vadotproperties: 48*c9ccf3a3SEmmanuel Vadot compatible: 49*c9ccf3a3SEmmanuel Vadot const: temperature-sense-rtd 50*c9ccf3a3SEmmanuel Vadot 51*c9ccf3a3SEmmanuel Vadot io-channels: 52*c9ccf3a3SEmmanuel Vadot maxItems: 1 53*c9ccf3a3SEmmanuel Vadot description: | 54*c9ccf3a3SEmmanuel Vadot Channel node of a voltage io-channel. 55*c9ccf3a3SEmmanuel Vadot 56*c9ccf3a3SEmmanuel Vadot '#io-channel-cells': 57*c9ccf3a3SEmmanuel Vadot const: 0 58*c9ccf3a3SEmmanuel Vadot 59*c9ccf3a3SEmmanuel Vadot excitation-current-microamp: 60*c9ccf3a3SEmmanuel Vadot description: The current fed through the RTD sensor. 61*c9ccf3a3SEmmanuel Vadot 62*c9ccf3a3SEmmanuel Vadot alpha-ppm-per-celsius: 63*c9ccf3a3SEmmanuel Vadot description: | 64*c9ccf3a3SEmmanuel Vadot alpha can also be expressed in micro-ohms per ohm Celsius. It's a linear 65*c9ccf3a3SEmmanuel Vadot approximation of the resistance versus temperature relationship 66*c9ccf3a3SEmmanuel Vadot between 0 and 100 degrees Celsius. 67*c9ccf3a3SEmmanuel Vadot 68*c9ccf3a3SEmmanuel Vadot alpha = (R_100 - R_0) / (100 * R_0) 69*c9ccf3a3SEmmanuel Vadot 70*c9ccf3a3SEmmanuel Vadot Where, R_100 is the resistance of the sensor at 100 degrees Celsius, and 71*c9ccf3a3SEmmanuel Vadot R_0 (or r-naught-ohms) is the resistance of the sensor at 0 degrees 72*c9ccf3a3SEmmanuel Vadot Celsius. 73*c9ccf3a3SEmmanuel Vadot 74*c9ccf3a3SEmmanuel Vadot Pure platinum has an alpha of 3925. Industry standards such as IEC60751 75*c9ccf3a3SEmmanuel Vadot and ASTM E-1137 specify an alpha of 3850. 76*c9ccf3a3SEmmanuel Vadot 77*c9ccf3a3SEmmanuel Vadot r-naught-ohms: 78*c9ccf3a3SEmmanuel Vadot description: | 79*c9ccf3a3SEmmanuel Vadot Resistance of the sensor at 0 degrees Celsius. 80*c9ccf3a3SEmmanuel Vadot Common values are 100 for PT100, 500 for PT500, and 1000 for PT1000 81*c9ccf3a3SEmmanuel Vadot 82*c9ccf3a3SEmmanuel VadotadditionalProperties: false 83*c9ccf3a3SEmmanuel Vadotrequired: 84*c9ccf3a3SEmmanuel Vadot - compatible 85*c9ccf3a3SEmmanuel Vadot - io-channels 86*c9ccf3a3SEmmanuel Vadot - excitation-current-microamp 87*c9ccf3a3SEmmanuel Vadot - alpha-ppm-per-celsius 88*c9ccf3a3SEmmanuel Vadot - r-naught-ohms 89*c9ccf3a3SEmmanuel Vadot 90*c9ccf3a3SEmmanuel Vadotexamples: 91*c9ccf3a3SEmmanuel Vadot - | 92*c9ccf3a3SEmmanuel Vadot pt1000_1: temperature-sensor0 { 93*c9ccf3a3SEmmanuel Vadot compatible = "temperature-sense-rtd"; 94*c9ccf3a3SEmmanuel Vadot #io-channel-cells = <0>; 95*c9ccf3a3SEmmanuel Vadot io-channels = <&temp_adc1 0>; 96*c9ccf3a3SEmmanuel Vadot 97*c9ccf3a3SEmmanuel Vadot excitation-current-microamp = <1000>; /* i = U/R = 5 / 5000 */ 98*c9ccf3a3SEmmanuel Vadot alpha-ppm-per-celsius = <3908>; 99*c9ccf3a3SEmmanuel Vadot r-naught-ohms = <1000>; 100*c9ccf3a3SEmmanuel Vadot }; 101*c9ccf3a3SEmmanuel Vadot... 102