xref: /freebsd-src/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision f5678b698afb3a97f99804f87ebb179de5f87df0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26  * Use is subject to license terms.
27  */
28 
29 #pragma ident	"%Z%%M%	%I%	%E% SMI"
30 
31 /*
32  * DTrace - Dynamic Tracing for Solaris
33  *
34  * This is the implementation of the Solaris Dynamic Tracing framework
35  * (DTrace).  The user-visible interface to DTrace is described at length in
36  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
37  * library, the in-kernel DTrace framework, and the DTrace providers are
38  * described in the block comments in the <sys/dtrace.h> header file.  The
39  * internal architecture of DTrace is described in the block comments in the
40  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
41  * implementation very much assume mastery of all of these sources; if one has
42  * an unanswered question about the implementation, one should consult them
43  * first.
44  *
45  * The functions here are ordered roughly as follows:
46  *
47  *   - Probe context functions
48  *   - Probe hashing functions
49  *   - Non-probe context utility functions
50  *   - Matching functions
51  *   - Provider-to-Framework API functions
52  *   - Probe management functions
53  *   - DIF object functions
54  *   - Format functions
55  *   - Predicate functions
56  *   - ECB functions
57  *   - Buffer functions
58  *   - Enabling functions
59  *   - DOF functions
60  *   - Anonymous enabling functions
61  *   - Consumer state functions
62  *   - Helper functions
63  *   - Hook functions
64  *   - Driver cookbook functions
65  *
66  * Each group of functions begins with a block comment labelled the "DTrace
67  * [Group] Functions", allowing one to find each block by searching forward
68  * on capital-f functions.
69  */
70 #include <sys/errno.h>
71 #if !defined(sun)
72 #include <sys/time.h>
73 #endif
74 #include <sys/stat.h>
75 #include <sys/modctl.h>
76 #include <sys/conf.h>
77 #include <sys/systm.h>
78 #if defined(sun)
79 #include <sys/ddi.h>
80 #include <sys/sunddi.h>
81 #endif
82 #include <sys/cpuvar.h>
83 #include <sys/kmem.h>
84 #if defined(sun)
85 #include <sys/strsubr.h>
86 #endif
87 #include <sys/sysmacros.h>
88 #include <sys/dtrace_impl.h>
89 #include <sys/atomic.h>
90 #include <sys/cmn_err.h>
91 #if defined(sun)
92 #include <sys/mutex_impl.h>
93 #include <sys/rwlock_impl.h>
94 #endif
95 #include <sys/ctf_api.h>
96 #if defined(sun)
97 #include <sys/panic.h>
98 #include <sys/priv_impl.h>
99 #endif
100 #include <sys/policy.h>
101 #if defined(sun)
102 #include <sys/cred_impl.h>
103 #include <sys/procfs_isa.h>
104 #endif
105 #include <sys/taskq.h>
106 #if defined(sun)
107 #include <sys/mkdev.h>
108 #include <sys/kdi.h>
109 #endif
110 #include <sys/zone.h>
111 #include <sys/socket.h>
112 #include <netinet/in.h>
113 
114 /* FreeBSD includes: */
115 #if !defined(sun)
116 #include <sys/callout.h>
117 #include <sys/ctype.h>
118 #include <sys/limits.h>
119 #include <sys/kdb.h>
120 #include <sys/kernel.h>
121 #include <sys/malloc.h>
122 #include <sys/sysctl.h>
123 #include <sys/lock.h>
124 #include <sys/mutex.h>
125 #include <sys/rwlock.h>
126 #include <sys/sx.h>
127 #include <sys/dtrace_bsd.h>
128 #include <netinet/in.h>
129 #include "dtrace_cddl.h"
130 #include "dtrace_debug.c"
131 #endif
132 
133 /*
134  * DTrace Tunable Variables
135  *
136  * The following variables may be tuned by adding a line to /etc/system that
137  * includes both the name of the DTrace module ("dtrace") and the name of the
138  * variable.  For example:
139  *
140  *   set dtrace:dtrace_destructive_disallow = 1
141  *
142  * In general, the only variables that one should be tuning this way are those
143  * that affect system-wide DTrace behavior, and for which the default behavior
144  * is undesirable.  Most of these variables are tunable on a per-consumer
145  * basis using DTrace options, and need not be tuned on a system-wide basis.
146  * When tuning these variables, avoid pathological values; while some attempt
147  * is made to verify the integrity of these variables, they are not considered
148  * part of the supported interface to DTrace, and they are therefore not
149  * checked comprehensively.  Further, these variables should not be tuned
150  * dynamically via "mdb -kw" or other means; they should only be tuned via
151  * /etc/system.
152  */
153 int		dtrace_destructive_disallow = 0;
154 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
155 size_t		dtrace_difo_maxsize = (256 * 1024);
156 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
157 size_t		dtrace_global_maxsize = (16 * 1024);
158 size_t		dtrace_actions_max = (16 * 1024);
159 size_t		dtrace_retain_max = 1024;
160 dtrace_optval_t	dtrace_helper_actions_max = 128;
161 dtrace_optval_t	dtrace_helper_providers_max = 32;
162 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
163 size_t		dtrace_strsize_default = 256;
164 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
165 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
166 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
167 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
168 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
169 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
170 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
171 dtrace_optval_t	dtrace_nspec_default = 1;
172 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
173 dtrace_optval_t dtrace_stackframes_default = 20;
174 dtrace_optval_t dtrace_ustackframes_default = 20;
175 dtrace_optval_t dtrace_jstackframes_default = 50;
176 dtrace_optval_t dtrace_jstackstrsize_default = 512;
177 int		dtrace_msgdsize_max = 128;
178 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
179 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
180 int		dtrace_devdepth_max = 32;
181 int		dtrace_err_verbose;
182 hrtime_t	dtrace_deadman_interval = NANOSEC;
183 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
184 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
185 
186 /*
187  * DTrace External Variables
188  *
189  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
190  * available to DTrace consumers via the backtick (`) syntax.  One of these,
191  * dtrace_zero, is made deliberately so:  it is provided as a source of
192  * well-known, zero-filled memory.  While this variable is not documented,
193  * it is used by some translators as an implementation detail.
194  */
195 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
196 
197 /*
198  * DTrace Internal Variables
199  */
200 #if defined(sun)
201 static dev_info_t	*dtrace_devi;		/* device info */
202 #endif
203 #if defined(sun)
204 static vmem_t		*dtrace_arena;		/* probe ID arena */
205 static vmem_t		*dtrace_minor;		/* minor number arena */
206 static taskq_t		*dtrace_taskq;		/* task queue */
207 #else
208 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
209 #endif
210 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
211 static int		dtrace_nprobes;		/* number of probes */
212 static dtrace_provider_t *dtrace_provider;	/* provider list */
213 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
214 static int		dtrace_opens;		/* number of opens */
215 static int		dtrace_helpers;		/* number of helpers */
216 #if defined(sun)
217 static void		*dtrace_softstate;	/* softstate pointer */
218 #endif
219 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
220 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
221 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
222 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
223 static int		dtrace_toxranges;	/* number of toxic ranges */
224 static int		dtrace_toxranges_max;	/* size of toxic range array */
225 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
226 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
227 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
228 static kthread_t	*dtrace_panicked;	/* panicking thread */
229 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
230 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
231 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
232 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
233 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
234 #if !defined(sun)
235 static struct mtx	dtrace_unr_mtx;
236 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
237 int		dtrace_in_probe;	/* non-zero if executing a probe */
238 #if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
239 uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
240 #endif
241 #endif
242 
243 /*
244  * DTrace Locking
245  * DTrace is protected by three (relatively coarse-grained) locks:
246  *
247  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
248  *     including enabling state, probes, ECBs, consumer state, helper state,
249  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
250  *     probe context is lock-free -- synchronization is handled via the
251  *     dtrace_sync() cross call mechanism.
252  *
253  * (2) dtrace_provider_lock is required when manipulating provider state, or
254  *     when provider state must be held constant.
255  *
256  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
257  *     when meta provider state must be held constant.
258  *
259  * The lock ordering between these three locks is dtrace_meta_lock before
260  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
261  * several places where dtrace_provider_lock is held by the framework as it
262  * calls into the providers -- which then call back into the framework,
263  * grabbing dtrace_lock.)
264  *
265  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
266  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
267  * role as a coarse-grained lock; it is acquired before both of these locks.
268  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
269  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
270  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
271  * acquired _between_ dtrace_provider_lock and dtrace_lock.
272  */
273 static kmutex_t		dtrace_lock;		/* probe state lock */
274 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
275 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
276 
277 #if !defined(sun)
278 /* XXX FreeBSD hacks. */
279 static kmutex_t		mod_lock;
280 
281 #define cr_suid		cr_svuid
282 #define cr_sgid		cr_svgid
283 #define	ipaddr_t	in_addr_t
284 #define mod_modname	pathname
285 #define vuprintf	vprintf
286 #define ttoproc(_a)	((_a)->td_proc)
287 #define crgetzoneid(_a)	0
288 #define	NCPU		MAXCPU
289 #define SNOCD		0
290 #define CPU_ON_INTR(_a)	0
291 
292 #define PRIV_EFFECTIVE		(1 << 0)
293 #define PRIV_DTRACE_KERNEL	(1 << 1)
294 #define PRIV_DTRACE_PROC	(1 << 2)
295 #define PRIV_DTRACE_USER	(1 << 3)
296 #define PRIV_PROC_OWNER		(1 << 4)
297 #define PRIV_PROC_ZONE		(1 << 5)
298 #define PRIV_ALL		~0
299 
300 SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
301 #endif
302 
303 #if defined(sun)
304 #define curcpu	CPU->cpu_id
305 #endif
306 
307 
308 /*
309  * DTrace Provider Variables
310  *
311  * These are the variables relating to DTrace as a provider (that is, the
312  * provider of the BEGIN, END, and ERROR probes).
313  */
314 static dtrace_pattr_t	dtrace_provider_attr = {
315 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
316 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
317 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
318 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320 };
321 
322 static void
323 dtrace_nullop(void)
324 {}
325 
326 static dtrace_pops_t	dtrace_provider_ops = {
327 	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
328 	(void (*)(void *, modctl_t *))dtrace_nullop,
329 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
330 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333 	NULL,
334 	NULL,
335 	NULL,
336 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
337 };
338 
339 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
340 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
341 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
342 
343 /*
344  * DTrace Helper Tracing Variables
345  */
346 uint32_t dtrace_helptrace_next = 0;
347 uint32_t dtrace_helptrace_nlocals;
348 char	*dtrace_helptrace_buffer;
349 int	dtrace_helptrace_bufsize = 512 * 1024;
350 
351 #ifdef DEBUG
352 int	dtrace_helptrace_enabled = 1;
353 #else
354 int	dtrace_helptrace_enabled = 0;
355 #endif
356 
357 /*
358  * DTrace Error Hashing
359  *
360  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
361  * table.  This is very useful for checking coverage of tests that are
362  * expected to induce DIF or DOF processing errors, and may be useful for
363  * debugging problems in the DIF code generator or in DOF generation .  The
364  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
365  */
366 #ifdef DEBUG
367 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
368 static const char *dtrace_errlast;
369 static kthread_t *dtrace_errthread;
370 static kmutex_t dtrace_errlock;
371 #endif
372 
373 /*
374  * DTrace Macros and Constants
375  *
376  * These are various macros that are useful in various spots in the
377  * implementation, along with a few random constants that have no meaning
378  * outside of the implementation.  There is no real structure to this cpp
379  * mishmash -- but is there ever?
380  */
381 #define	DTRACE_HASHSTR(hash, probe)	\
382 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
383 
384 #define	DTRACE_HASHNEXT(hash, probe)	\
385 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
386 
387 #define	DTRACE_HASHPREV(hash, probe)	\
388 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
389 
390 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
391 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
392 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
393 
394 #define	DTRACE_AGGHASHSIZE_SLEW		17
395 
396 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
397 
398 /*
399  * The key for a thread-local variable consists of the lower 61 bits of the
400  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
401  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
402  * equal to a variable identifier.  This is necessary (but not sufficient) to
403  * assure that global associative arrays never collide with thread-local
404  * variables.  To guarantee that they cannot collide, we must also define the
405  * order for keying dynamic variables.  That order is:
406  *
407  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
408  *
409  * Because the variable-key and the tls-key are in orthogonal spaces, there is
410  * no way for a global variable key signature to match a thread-local key
411  * signature.
412  */
413 #if defined(sun)
414 #define	DTRACE_TLS_THRKEY(where) { \
415 	uint_t intr = 0; \
416 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
417 	for (; actv; actv >>= 1) \
418 		intr++; \
419 	ASSERT(intr < (1 << 3)); \
420 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
421 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
422 }
423 #else
424 #define	DTRACE_TLS_THRKEY(where) { \
425 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
426 	uint_t intr = 0; \
427 	uint_t actv = _c->cpu_intr_actv; \
428 	for (; actv; actv >>= 1) \
429 		intr++; \
430 	ASSERT(intr < (1 << 3)); \
431 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
432 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
433 }
434 #endif
435 
436 #define	DT_BSWAP_8(x)	((x) & 0xff)
437 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
438 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
439 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
440 
441 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
442 
443 #define	DTRACE_STORE(type, tomax, offset, what) \
444 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
445 
446 #ifndef __x86
447 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
448 	if (addr & (size - 1)) {					\
449 		*flags |= CPU_DTRACE_BADALIGN;				\
450 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
451 		return (0);						\
452 	}
453 #else
454 #define	DTRACE_ALIGNCHECK(addr, size, flags)
455 #endif
456 
457 /*
458  * Test whether a range of memory starting at testaddr of size testsz falls
459  * within the range of memory described by addr, sz.  We take care to avoid
460  * problems with overflow and underflow of the unsigned quantities, and
461  * disallow all negative sizes.  Ranges of size 0 are allowed.
462  */
463 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
464 	((testaddr) - (baseaddr) < (basesz) && \
465 	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
466 	(testaddr) + (testsz) >= (testaddr))
467 
468 /*
469  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
470  * alloc_sz on the righthand side of the comparison in order to avoid overflow
471  * or underflow in the comparison with it.  This is simpler than the INRANGE
472  * check above, because we know that the dtms_scratch_ptr is valid in the
473  * range.  Allocations of size zero are allowed.
474  */
475 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
476 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
477 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
478 
479 #define	DTRACE_LOADFUNC(bits)						\
480 /*CSTYLED*/								\
481 uint##bits##_t								\
482 dtrace_load##bits(uintptr_t addr)					\
483 {									\
484 	size_t size = bits / NBBY;					\
485 	/*CSTYLED*/							\
486 	uint##bits##_t rval;						\
487 	int i;								\
488 	volatile uint16_t *flags = (volatile uint16_t *)		\
489 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
490 									\
491 	DTRACE_ALIGNCHECK(addr, size, flags);				\
492 									\
493 	for (i = 0; i < dtrace_toxranges; i++) {			\
494 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
495 			continue;					\
496 									\
497 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
498 			continue;					\
499 									\
500 		/*							\
501 		 * This address falls within a toxic region; return 0.	\
502 		 */							\
503 		*flags |= CPU_DTRACE_BADADDR;				\
504 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
505 		return (0);						\
506 	}								\
507 									\
508 	*flags |= CPU_DTRACE_NOFAULT;					\
509 	/*CSTYLED*/							\
510 	rval = *((volatile uint##bits##_t *)addr);			\
511 	*flags &= ~CPU_DTRACE_NOFAULT;					\
512 									\
513 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
514 }
515 
516 #ifdef _LP64
517 #define	dtrace_loadptr	dtrace_load64
518 #else
519 #define	dtrace_loadptr	dtrace_load32
520 #endif
521 
522 #define	DTRACE_DYNHASH_FREE	0
523 #define	DTRACE_DYNHASH_SINK	1
524 #define	DTRACE_DYNHASH_VALID	2
525 
526 #define	DTRACE_MATCH_NEXT	0
527 #define	DTRACE_MATCH_DONE	1
528 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
529 #define	DTRACE_STATE_ALIGN	64
530 
531 #define	DTRACE_FLAGS2FLT(flags)						\
532 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
533 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
534 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
535 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
536 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
537 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
538 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
539 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
540 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
541 	DTRACEFLT_UNKNOWN)
542 
543 #define	DTRACEACT_ISSTRING(act)						\
544 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
545 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
546 
547 /* Function prototype definitions: */
548 static size_t dtrace_strlen(const char *, size_t);
549 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
550 static void dtrace_enabling_provide(dtrace_provider_t *);
551 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
552 static void dtrace_enabling_matchall(void);
553 static dtrace_state_t *dtrace_anon_grab(void);
554 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
555     dtrace_state_t *, uint64_t, uint64_t);
556 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
557 static void dtrace_buffer_drop(dtrace_buffer_t *);
558 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
559     dtrace_state_t *, dtrace_mstate_t *);
560 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
561     dtrace_optval_t);
562 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
563 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
564 uint16_t dtrace_load16(uintptr_t);
565 uint32_t dtrace_load32(uintptr_t);
566 uint64_t dtrace_load64(uintptr_t);
567 uint8_t dtrace_load8(uintptr_t);
568 void dtrace_dynvar_clean(dtrace_dstate_t *);
569 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
570     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
571 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
572 
573 /*
574  * DTrace Probe Context Functions
575  *
576  * These functions are called from probe context.  Because probe context is
577  * any context in which C may be called, arbitrarily locks may be held,
578  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
579  * As a result, functions called from probe context may only call other DTrace
580  * support functions -- they may not interact at all with the system at large.
581  * (Note that the ASSERT macro is made probe-context safe by redefining it in
582  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
583  * loads are to be performed from probe context, they _must_ be in terms of
584  * the safe dtrace_load*() variants.
585  *
586  * Some functions in this block are not actually called from probe context;
587  * for these functions, there will be a comment above the function reading
588  * "Note:  not called from probe context."
589  */
590 void
591 dtrace_panic(const char *format, ...)
592 {
593 	va_list alist;
594 
595 	va_start(alist, format);
596 	dtrace_vpanic(format, alist);
597 	va_end(alist);
598 }
599 
600 int
601 dtrace_assfail(const char *a, const char *f, int l)
602 {
603 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
604 
605 	/*
606 	 * We just need something here that even the most clever compiler
607 	 * cannot optimize away.
608 	 */
609 	return (a[(uintptr_t)f]);
610 }
611 
612 /*
613  * Atomically increment a specified error counter from probe context.
614  */
615 static void
616 dtrace_error(uint32_t *counter)
617 {
618 	/*
619 	 * Most counters stored to in probe context are per-CPU counters.
620 	 * However, there are some error conditions that are sufficiently
621 	 * arcane that they don't merit per-CPU storage.  If these counters
622 	 * are incremented concurrently on different CPUs, scalability will be
623 	 * adversely affected -- but we don't expect them to be white-hot in a
624 	 * correctly constructed enabling...
625 	 */
626 	uint32_t oval, nval;
627 
628 	do {
629 		oval = *counter;
630 
631 		if ((nval = oval + 1) == 0) {
632 			/*
633 			 * If the counter would wrap, set it to 1 -- assuring
634 			 * that the counter is never zero when we have seen
635 			 * errors.  (The counter must be 32-bits because we
636 			 * aren't guaranteed a 64-bit compare&swap operation.)
637 			 * To save this code both the infamy of being fingered
638 			 * by a priggish news story and the indignity of being
639 			 * the target of a neo-puritan witch trial, we're
640 			 * carefully avoiding any colorful description of the
641 			 * likelihood of this condition -- but suffice it to
642 			 * say that it is only slightly more likely than the
643 			 * overflow of predicate cache IDs, as discussed in
644 			 * dtrace_predicate_create().
645 			 */
646 			nval = 1;
647 		}
648 	} while (dtrace_cas32(counter, oval, nval) != oval);
649 }
650 
651 /*
652  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
653  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
654  */
655 DTRACE_LOADFUNC(8)
656 DTRACE_LOADFUNC(16)
657 DTRACE_LOADFUNC(32)
658 DTRACE_LOADFUNC(64)
659 
660 static int
661 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
662 {
663 	if (dest < mstate->dtms_scratch_base)
664 		return (0);
665 
666 	if (dest + size < dest)
667 		return (0);
668 
669 	if (dest + size > mstate->dtms_scratch_ptr)
670 		return (0);
671 
672 	return (1);
673 }
674 
675 static int
676 dtrace_canstore_statvar(uint64_t addr, size_t sz,
677     dtrace_statvar_t **svars, int nsvars)
678 {
679 	int i;
680 
681 	for (i = 0; i < nsvars; i++) {
682 		dtrace_statvar_t *svar = svars[i];
683 
684 		if (svar == NULL || svar->dtsv_size == 0)
685 			continue;
686 
687 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
688 			return (1);
689 	}
690 
691 	return (0);
692 }
693 
694 /*
695  * Check to see if the address is within a memory region to which a store may
696  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
697  * region.  The caller of dtrace_canstore() is responsible for performing any
698  * alignment checks that are needed before stores are actually executed.
699  */
700 static int
701 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
702     dtrace_vstate_t *vstate)
703 {
704 	/*
705 	 * First, check to see if the address is in scratch space...
706 	 */
707 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
708 	    mstate->dtms_scratch_size))
709 		return (1);
710 
711 	/*
712 	 * Now check to see if it's a dynamic variable.  This check will pick
713 	 * up both thread-local variables and any global dynamically-allocated
714 	 * variables.
715 	 */
716 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
717 	    vstate->dtvs_dynvars.dtds_size)) {
718 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
719 		uintptr_t base = (uintptr_t)dstate->dtds_base +
720 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
721 		uintptr_t chunkoffs;
722 
723 		/*
724 		 * Before we assume that we can store here, we need to make
725 		 * sure that it isn't in our metadata -- storing to our
726 		 * dynamic variable metadata would corrupt our state.  For
727 		 * the range to not include any dynamic variable metadata,
728 		 * it must:
729 		 *
730 		 *	(1) Start above the hash table that is at the base of
731 		 *	the dynamic variable space
732 		 *
733 		 *	(2) Have a starting chunk offset that is beyond the
734 		 *	dtrace_dynvar_t that is at the base of every chunk
735 		 *
736 		 *	(3) Not span a chunk boundary
737 		 *
738 		 */
739 		if (addr < base)
740 			return (0);
741 
742 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
743 
744 		if (chunkoffs < sizeof (dtrace_dynvar_t))
745 			return (0);
746 
747 		if (chunkoffs + sz > dstate->dtds_chunksize)
748 			return (0);
749 
750 		return (1);
751 	}
752 
753 	/*
754 	 * Finally, check the static local and global variables.  These checks
755 	 * take the longest, so we perform them last.
756 	 */
757 	if (dtrace_canstore_statvar(addr, sz,
758 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
759 		return (1);
760 
761 	if (dtrace_canstore_statvar(addr, sz,
762 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
763 		return (1);
764 
765 	return (0);
766 }
767 
768 
769 /*
770  * Convenience routine to check to see if the address is within a memory
771  * region in which a load may be issued given the user's privilege level;
772  * if not, it sets the appropriate error flags and loads 'addr' into the
773  * illegal value slot.
774  *
775  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
776  * appropriate memory access protection.
777  */
778 static int
779 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
780     dtrace_vstate_t *vstate)
781 {
782 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
783 
784 	/*
785 	 * If we hold the privilege to read from kernel memory, then
786 	 * everything is readable.
787 	 */
788 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
789 		return (1);
790 
791 	/*
792 	 * You can obviously read that which you can store.
793 	 */
794 	if (dtrace_canstore(addr, sz, mstate, vstate))
795 		return (1);
796 
797 	/*
798 	 * We're allowed to read from our own string table.
799 	 */
800 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
801 	    mstate->dtms_difo->dtdo_strlen))
802 		return (1);
803 
804 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
805 	*illval = addr;
806 	return (0);
807 }
808 
809 /*
810  * Convenience routine to check to see if a given string is within a memory
811  * region in which a load may be issued given the user's privilege level;
812  * this exists so that we don't need to issue unnecessary dtrace_strlen()
813  * calls in the event that the user has all privileges.
814  */
815 static int
816 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
817     dtrace_vstate_t *vstate)
818 {
819 	size_t strsz;
820 
821 	/*
822 	 * If we hold the privilege to read from kernel memory, then
823 	 * everything is readable.
824 	 */
825 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
826 		return (1);
827 
828 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
829 	if (dtrace_canload(addr, strsz, mstate, vstate))
830 		return (1);
831 
832 	return (0);
833 }
834 
835 /*
836  * Convenience routine to check to see if a given variable is within a memory
837  * region in which a load may be issued given the user's privilege level.
838  */
839 static int
840 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
841     dtrace_vstate_t *vstate)
842 {
843 	size_t sz;
844 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
845 
846 	/*
847 	 * If we hold the privilege to read from kernel memory, then
848 	 * everything is readable.
849 	 */
850 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
851 		return (1);
852 
853 	if (type->dtdt_kind == DIF_TYPE_STRING)
854 		sz = dtrace_strlen(src,
855 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
856 	else
857 		sz = type->dtdt_size;
858 
859 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
860 }
861 
862 /*
863  * Compare two strings using safe loads.
864  */
865 static int
866 dtrace_strncmp(char *s1, char *s2, size_t limit)
867 {
868 	uint8_t c1, c2;
869 	volatile uint16_t *flags;
870 
871 	if (s1 == s2 || limit == 0)
872 		return (0);
873 
874 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
875 
876 	do {
877 		if (s1 == NULL) {
878 			c1 = '\0';
879 		} else {
880 			c1 = dtrace_load8((uintptr_t)s1++);
881 		}
882 
883 		if (s2 == NULL) {
884 			c2 = '\0';
885 		} else {
886 			c2 = dtrace_load8((uintptr_t)s2++);
887 		}
888 
889 		if (c1 != c2)
890 			return (c1 - c2);
891 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
892 
893 	return (0);
894 }
895 
896 /*
897  * Compute strlen(s) for a string using safe memory accesses.  The additional
898  * len parameter is used to specify a maximum length to ensure completion.
899  */
900 static size_t
901 dtrace_strlen(const char *s, size_t lim)
902 {
903 	uint_t len;
904 
905 	for (len = 0; len != lim; len++) {
906 		if (dtrace_load8((uintptr_t)s++) == '\0')
907 			break;
908 	}
909 
910 	return (len);
911 }
912 
913 /*
914  * Check if an address falls within a toxic region.
915  */
916 static int
917 dtrace_istoxic(uintptr_t kaddr, size_t size)
918 {
919 	uintptr_t taddr, tsize;
920 	int i;
921 
922 	for (i = 0; i < dtrace_toxranges; i++) {
923 		taddr = dtrace_toxrange[i].dtt_base;
924 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
925 
926 		if (kaddr - taddr < tsize) {
927 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
928 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
929 			return (1);
930 		}
931 
932 		if (taddr - kaddr < size) {
933 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
934 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
935 			return (1);
936 		}
937 	}
938 
939 	return (0);
940 }
941 
942 /*
943  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
944  * memory specified by the DIF program.  The dst is assumed to be safe memory
945  * that we can store to directly because it is managed by DTrace.  As with
946  * standard bcopy, overlapping copies are handled properly.
947  */
948 static void
949 dtrace_bcopy(const void *src, void *dst, size_t len)
950 {
951 	if (len != 0) {
952 		uint8_t *s1 = dst;
953 		const uint8_t *s2 = src;
954 
955 		if (s1 <= s2) {
956 			do {
957 				*s1++ = dtrace_load8((uintptr_t)s2++);
958 			} while (--len != 0);
959 		} else {
960 			s2 += len;
961 			s1 += len;
962 
963 			do {
964 				*--s1 = dtrace_load8((uintptr_t)--s2);
965 			} while (--len != 0);
966 		}
967 	}
968 }
969 
970 /*
971  * Copy src to dst using safe memory accesses, up to either the specified
972  * length, or the point that a nul byte is encountered.  The src is assumed to
973  * be unsafe memory specified by the DIF program.  The dst is assumed to be
974  * safe memory that we can store to directly because it is managed by DTrace.
975  * Unlike dtrace_bcopy(), overlapping regions are not handled.
976  */
977 static void
978 dtrace_strcpy(const void *src, void *dst, size_t len)
979 {
980 	if (len != 0) {
981 		uint8_t *s1 = dst, c;
982 		const uint8_t *s2 = src;
983 
984 		do {
985 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
986 		} while (--len != 0 && c != '\0');
987 	}
988 }
989 
990 /*
991  * Copy src to dst, deriving the size and type from the specified (BYREF)
992  * variable type.  The src is assumed to be unsafe memory specified by the DIF
993  * program.  The dst is assumed to be DTrace variable memory that is of the
994  * specified type; we assume that we can store to directly.
995  */
996 static void
997 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
998 {
999 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1000 
1001 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1002 		dtrace_strcpy(src, dst, type->dtdt_size);
1003 	} else {
1004 		dtrace_bcopy(src, dst, type->dtdt_size);
1005 	}
1006 }
1007 
1008 /*
1009  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1010  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1011  * safe memory that we can access directly because it is managed by DTrace.
1012  */
1013 static int
1014 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1015 {
1016 	volatile uint16_t *flags;
1017 
1018 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1019 
1020 	if (s1 == s2)
1021 		return (0);
1022 
1023 	if (s1 == NULL || s2 == NULL)
1024 		return (1);
1025 
1026 	if (s1 != s2 && len != 0) {
1027 		const uint8_t *ps1 = s1;
1028 		const uint8_t *ps2 = s2;
1029 
1030 		do {
1031 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1032 				return (1);
1033 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1034 	}
1035 	return (0);
1036 }
1037 
1038 /*
1039  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1040  * is for safe DTrace-managed memory only.
1041  */
1042 static void
1043 dtrace_bzero(void *dst, size_t len)
1044 {
1045 	uchar_t *cp;
1046 
1047 	for (cp = dst; len != 0; len--)
1048 		*cp++ = 0;
1049 }
1050 
1051 static void
1052 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1053 {
1054 	uint64_t result[2];
1055 
1056 	result[0] = addend1[0] + addend2[0];
1057 	result[1] = addend1[1] + addend2[1] +
1058 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1059 
1060 	sum[0] = result[0];
1061 	sum[1] = result[1];
1062 }
1063 
1064 /*
1065  * Shift the 128-bit value in a by b. If b is positive, shift left.
1066  * If b is negative, shift right.
1067  */
1068 static void
1069 dtrace_shift_128(uint64_t *a, int b)
1070 {
1071 	uint64_t mask;
1072 
1073 	if (b == 0)
1074 		return;
1075 
1076 	if (b < 0) {
1077 		b = -b;
1078 		if (b >= 64) {
1079 			a[0] = a[1] >> (b - 64);
1080 			a[1] = 0;
1081 		} else {
1082 			a[0] >>= b;
1083 			mask = 1LL << (64 - b);
1084 			mask -= 1;
1085 			a[0] |= ((a[1] & mask) << (64 - b));
1086 			a[1] >>= b;
1087 		}
1088 	} else {
1089 		if (b >= 64) {
1090 			a[1] = a[0] << (b - 64);
1091 			a[0] = 0;
1092 		} else {
1093 			a[1] <<= b;
1094 			mask = a[0] >> (64 - b);
1095 			a[1] |= mask;
1096 			a[0] <<= b;
1097 		}
1098 	}
1099 }
1100 
1101 /*
1102  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1103  * use native multiplication on those, and then re-combine into the
1104  * resulting 128-bit value.
1105  *
1106  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1107  *     hi1 * hi2 << 64 +
1108  *     hi1 * lo2 << 32 +
1109  *     hi2 * lo1 << 32 +
1110  *     lo1 * lo2
1111  */
1112 static void
1113 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1114 {
1115 	uint64_t hi1, hi2, lo1, lo2;
1116 	uint64_t tmp[2];
1117 
1118 	hi1 = factor1 >> 32;
1119 	hi2 = factor2 >> 32;
1120 
1121 	lo1 = factor1 & DT_MASK_LO;
1122 	lo2 = factor2 & DT_MASK_LO;
1123 
1124 	product[0] = lo1 * lo2;
1125 	product[1] = hi1 * hi2;
1126 
1127 	tmp[0] = hi1 * lo2;
1128 	tmp[1] = 0;
1129 	dtrace_shift_128(tmp, 32);
1130 	dtrace_add_128(product, tmp, product);
1131 
1132 	tmp[0] = hi2 * lo1;
1133 	tmp[1] = 0;
1134 	dtrace_shift_128(tmp, 32);
1135 	dtrace_add_128(product, tmp, product);
1136 }
1137 
1138 /*
1139  * This privilege check should be used by actions and subroutines to
1140  * verify that the user credentials of the process that enabled the
1141  * invoking ECB match the target credentials
1142  */
1143 static int
1144 dtrace_priv_proc_common_user(dtrace_state_t *state)
1145 {
1146 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1147 
1148 	/*
1149 	 * We should always have a non-NULL state cred here, since if cred
1150 	 * is null (anonymous tracing), we fast-path bypass this routine.
1151 	 */
1152 	ASSERT(s_cr != NULL);
1153 
1154 	if ((cr = CRED()) != NULL &&
1155 	    s_cr->cr_uid == cr->cr_uid &&
1156 	    s_cr->cr_uid == cr->cr_ruid &&
1157 	    s_cr->cr_uid == cr->cr_suid &&
1158 	    s_cr->cr_gid == cr->cr_gid &&
1159 	    s_cr->cr_gid == cr->cr_rgid &&
1160 	    s_cr->cr_gid == cr->cr_sgid)
1161 		return (1);
1162 
1163 	return (0);
1164 }
1165 
1166 /*
1167  * This privilege check should be used by actions and subroutines to
1168  * verify that the zone of the process that enabled the invoking ECB
1169  * matches the target credentials
1170  */
1171 static int
1172 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1173 {
1174 #if defined(sun)
1175 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1176 
1177 	/*
1178 	 * We should always have a non-NULL state cred here, since if cred
1179 	 * is null (anonymous tracing), we fast-path bypass this routine.
1180 	 */
1181 	ASSERT(s_cr != NULL);
1182 
1183 	if ((cr = CRED()) != NULL &&
1184 	    s_cr->cr_zone == cr->cr_zone)
1185 		return (1);
1186 
1187 	return (0);
1188 #else
1189 	return (1);
1190 #endif
1191 }
1192 
1193 /*
1194  * This privilege check should be used by actions and subroutines to
1195  * verify that the process has not setuid or changed credentials.
1196  */
1197 static int
1198 dtrace_priv_proc_common_nocd(void)
1199 {
1200 	proc_t *proc;
1201 
1202 	if ((proc = ttoproc(curthread)) != NULL &&
1203 	    !(proc->p_flag & SNOCD))
1204 		return (1);
1205 
1206 	return (0);
1207 }
1208 
1209 static int
1210 dtrace_priv_proc_destructive(dtrace_state_t *state)
1211 {
1212 	int action = state->dts_cred.dcr_action;
1213 
1214 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1215 	    dtrace_priv_proc_common_zone(state) == 0)
1216 		goto bad;
1217 
1218 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1219 	    dtrace_priv_proc_common_user(state) == 0)
1220 		goto bad;
1221 
1222 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1223 	    dtrace_priv_proc_common_nocd() == 0)
1224 		goto bad;
1225 
1226 	return (1);
1227 
1228 bad:
1229 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1230 
1231 	return (0);
1232 }
1233 
1234 static int
1235 dtrace_priv_proc_control(dtrace_state_t *state)
1236 {
1237 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1238 		return (1);
1239 
1240 	if (dtrace_priv_proc_common_zone(state) &&
1241 	    dtrace_priv_proc_common_user(state) &&
1242 	    dtrace_priv_proc_common_nocd())
1243 		return (1);
1244 
1245 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1246 
1247 	return (0);
1248 }
1249 
1250 static int
1251 dtrace_priv_proc(dtrace_state_t *state)
1252 {
1253 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1254 		return (1);
1255 
1256 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1257 
1258 	return (0);
1259 }
1260 
1261 static int
1262 dtrace_priv_kernel(dtrace_state_t *state)
1263 {
1264 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1265 		return (1);
1266 
1267 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1268 
1269 	return (0);
1270 }
1271 
1272 static int
1273 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1274 {
1275 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1276 		return (1);
1277 
1278 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1279 
1280 	return (0);
1281 }
1282 
1283 /*
1284  * Note:  not called from probe context.  This function is called
1285  * asynchronously (and at a regular interval) from outside of probe context to
1286  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1287  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1288  */
1289 void
1290 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1291 {
1292 	dtrace_dynvar_t *dirty;
1293 	dtrace_dstate_percpu_t *dcpu;
1294 	int i, work = 0;
1295 
1296 	for (i = 0; i < NCPU; i++) {
1297 		dcpu = &dstate->dtds_percpu[i];
1298 
1299 		ASSERT(dcpu->dtdsc_rinsing == NULL);
1300 
1301 		/*
1302 		 * If the dirty list is NULL, there is no dirty work to do.
1303 		 */
1304 		if (dcpu->dtdsc_dirty == NULL)
1305 			continue;
1306 
1307 		/*
1308 		 * If the clean list is non-NULL, then we're not going to do
1309 		 * any work for this CPU -- it means that there has not been
1310 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1311 		 * since the last time we cleaned house.
1312 		 */
1313 		if (dcpu->dtdsc_clean != NULL)
1314 			continue;
1315 
1316 		work = 1;
1317 
1318 		/*
1319 		 * Atomically move the dirty list aside.
1320 		 */
1321 		do {
1322 			dirty = dcpu->dtdsc_dirty;
1323 
1324 			/*
1325 			 * Before we zap the dirty list, set the rinsing list.
1326 			 * (This allows for a potential assertion in
1327 			 * dtrace_dynvar():  if a free dynamic variable appears
1328 			 * on a hash chain, either the dirty list or the
1329 			 * rinsing list for some CPU must be non-NULL.)
1330 			 */
1331 			dcpu->dtdsc_rinsing = dirty;
1332 			dtrace_membar_producer();
1333 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1334 		    dirty, NULL) != dirty);
1335 	}
1336 
1337 	if (!work) {
1338 		/*
1339 		 * We have no work to do; we can simply return.
1340 		 */
1341 		return;
1342 	}
1343 
1344 	dtrace_sync();
1345 
1346 	for (i = 0; i < NCPU; i++) {
1347 		dcpu = &dstate->dtds_percpu[i];
1348 
1349 		if (dcpu->dtdsc_rinsing == NULL)
1350 			continue;
1351 
1352 		/*
1353 		 * We are now guaranteed that no hash chain contains a pointer
1354 		 * into this dirty list; we can make it clean.
1355 		 */
1356 		ASSERT(dcpu->dtdsc_clean == NULL);
1357 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1358 		dcpu->dtdsc_rinsing = NULL;
1359 	}
1360 
1361 	/*
1362 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1363 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1364 	 * This prevents a race whereby a CPU incorrectly decides that
1365 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1366 	 * after dtrace_dynvar_clean() has completed.
1367 	 */
1368 	dtrace_sync();
1369 
1370 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1371 }
1372 
1373 /*
1374  * Depending on the value of the op parameter, this function looks-up,
1375  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1376  * allocation is requested, this function will return a pointer to a
1377  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1378  * variable can be allocated.  If NULL is returned, the appropriate counter
1379  * will be incremented.
1380  */
1381 dtrace_dynvar_t *
1382 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1383     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1384     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1385 {
1386 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1387 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1388 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1389 	processorid_t me = curcpu, cpu = me;
1390 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1391 	size_t bucket, ksize;
1392 	size_t chunksize = dstate->dtds_chunksize;
1393 	uintptr_t kdata, lock, nstate;
1394 	uint_t i;
1395 
1396 	ASSERT(nkeys != 0);
1397 
1398 	/*
1399 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1400 	 * algorithm.  For the by-value portions, we perform the algorithm in
1401 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1402 	 * bit, and seems to have only a minute effect on distribution.  For
1403 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1404 	 * over each referenced byte.  It's painful to do this, but it's much
1405 	 * better than pathological hash distribution.  The efficacy of the
1406 	 * hashing algorithm (and a comparison with other algorithms) may be
1407 	 * found by running the ::dtrace_dynstat MDB dcmd.
1408 	 */
1409 	for (i = 0; i < nkeys; i++) {
1410 		if (key[i].dttk_size == 0) {
1411 			uint64_t val = key[i].dttk_value;
1412 
1413 			hashval += (val >> 48) & 0xffff;
1414 			hashval += (hashval << 10);
1415 			hashval ^= (hashval >> 6);
1416 
1417 			hashval += (val >> 32) & 0xffff;
1418 			hashval += (hashval << 10);
1419 			hashval ^= (hashval >> 6);
1420 
1421 			hashval += (val >> 16) & 0xffff;
1422 			hashval += (hashval << 10);
1423 			hashval ^= (hashval >> 6);
1424 
1425 			hashval += val & 0xffff;
1426 			hashval += (hashval << 10);
1427 			hashval ^= (hashval >> 6);
1428 		} else {
1429 			/*
1430 			 * This is incredibly painful, but it beats the hell
1431 			 * out of the alternative.
1432 			 */
1433 			uint64_t j, size = key[i].dttk_size;
1434 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1435 
1436 			if (!dtrace_canload(base, size, mstate, vstate))
1437 				break;
1438 
1439 			for (j = 0; j < size; j++) {
1440 				hashval += dtrace_load8(base + j);
1441 				hashval += (hashval << 10);
1442 				hashval ^= (hashval >> 6);
1443 			}
1444 		}
1445 	}
1446 
1447 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1448 		return (NULL);
1449 
1450 	hashval += (hashval << 3);
1451 	hashval ^= (hashval >> 11);
1452 	hashval += (hashval << 15);
1453 
1454 	/*
1455 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1456 	 * comes out to be one of our two sentinel hash values.  If this
1457 	 * actually happens, we set the hashval to be a value known to be a
1458 	 * non-sentinel value.
1459 	 */
1460 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1461 		hashval = DTRACE_DYNHASH_VALID;
1462 
1463 	/*
1464 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1465 	 * important here, tricks can be pulled to reduce it.  (However, it's
1466 	 * critical that hash collisions be kept to an absolute minimum;
1467 	 * they're much more painful than a divide.)  It's better to have a
1468 	 * solution that generates few collisions and still keeps things
1469 	 * relatively simple.
1470 	 */
1471 	bucket = hashval % dstate->dtds_hashsize;
1472 
1473 	if (op == DTRACE_DYNVAR_DEALLOC) {
1474 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1475 
1476 		for (;;) {
1477 			while ((lock = *lockp) & 1)
1478 				continue;
1479 
1480 			if (dtrace_casptr((volatile void *)lockp,
1481 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1482 				break;
1483 		}
1484 
1485 		dtrace_membar_producer();
1486 	}
1487 
1488 top:
1489 	prev = NULL;
1490 	lock = hash[bucket].dtdh_lock;
1491 
1492 	dtrace_membar_consumer();
1493 
1494 	start = hash[bucket].dtdh_chain;
1495 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1496 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1497 	    op != DTRACE_DYNVAR_DEALLOC));
1498 
1499 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1500 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1501 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1502 
1503 		if (dvar->dtdv_hashval != hashval) {
1504 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1505 				/*
1506 				 * We've reached the sink, and therefore the
1507 				 * end of the hash chain; we can kick out of
1508 				 * the loop knowing that we have seen a valid
1509 				 * snapshot of state.
1510 				 */
1511 				ASSERT(dvar->dtdv_next == NULL);
1512 				ASSERT(dvar == &dtrace_dynhash_sink);
1513 				break;
1514 			}
1515 
1516 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1517 				/*
1518 				 * We've gone off the rails:  somewhere along
1519 				 * the line, one of the members of this hash
1520 				 * chain was deleted.  Note that we could also
1521 				 * detect this by simply letting this loop run
1522 				 * to completion, as we would eventually hit
1523 				 * the end of the dirty list.  However, we
1524 				 * want to avoid running the length of the
1525 				 * dirty list unnecessarily (it might be quite
1526 				 * long), so we catch this as early as
1527 				 * possible by detecting the hash marker.  In
1528 				 * this case, we simply set dvar to NULL and
1529 				 * break; the conditional after the loop will
1530 				 * send us back to top.
1531 				 */
1532 				dvar = NULL;
1533 				break;
1534 			}
1535 
1536 			goto next;
1537 		}
1538 
1539 		if (dtuple->dtt_nkeys != nkeys)
1540 			goto next;
1541 
1542 		for (i = 0; i < nkeys; i++, dkey++) {
1543 			if (dkey->dttk_size != key[i].dttk_size)
1544 				goto next; /* size or type mismatch */
1545 
1546 			if (dkey->dttk_size != 0) {
1547 				if (dtrace_bcmp(
1548 				    (void *)(uintptr_t)key[i].dttk_value,
1549 				    (void *)(uintptr_t)dkey->dttk_value,
1550 				    dkey->dttk_size))
1551 					goto next;
1552 			} else {
1553 				if (dkey->dttk_value != key[i].dttk_value)
1554 					goto next;
1555 			}
1556 		}
1557 
1558 		if (op != DTRACE_DYNVAR_DEALLOC)
1559 			return (dvar);
1560 
1561 		ASSERT(dvar->dtdv_next == NULL ||
1562 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1563 
1564 		if (prev != NULL) {
1565 			ASSERT(hash[bucket].dtdh_chain != dvar);
1566 			ASSERT(start != dvar);
1567 			ASSERT(prev->dtdv_next == dvar);
1568 			prev->dtdv_next = dvar->dtdv_next;
1569 		} else {
1570 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1571 			    start, dvar->dtdv_next) != start) {
1572 				/*
1573 				 * We have failed to atomically swing the
1574 				 * hash table head pointer, presumably because
1575 				 * of a conflicting allocation on another CPU.
1576 				 * We need to reread the hash chain and try
1577 				 * again.
1578 				 */
1579 				goto top;
1580 			}
1581 		}
1582 
1583 		dtrace_membar_producer();
1584 
1585 		/*
1586 		 * Now set the hash value to indicate that it's free.
1587 		 */
1588 		ASSERT(hash[bucket].dtdh_chain != dvar);
1589 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1590 
1591 		dtrace_membar_producer();
1592 
1593 		/*
1594 		 * Set the next pointer to point at the dirty list, and
1595 		 * atomically swing the dirty pointer to the newly freed dvar.
1596 		 */
1597 		do {
1598 			next = dcpu->dtdsc_dirty;
1599 			dvar->dtdv_next = next;
1600 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1601 
1602 		/*
1603 		 * Finally, unlock this hash bucket.
1604 		 */
1605 		ASSERT(hash[bucket].dtdh_lock == lock);
1606 		ASSERT(lock & 1);
1607 		hash[bucket].dtdh_lock++;
1608 
1609 		return (NULL);
1610 next:
1611 		prev = dvar;
1612 		continue;
1613 	}
1614 
1615 	if (dvar == NULL) {
1616 		/*
1617 		 * If dvar is NULL, it is because we went off the rails:
1618 		 * one of the elements that we traversed in the hash chain
1619 		 * was deleted while we were traversing it.  In this case,
1620 		 * we assert that we aren't doing a dealloc (deallocs lock
1621 		 * the hash bucket to prevent themselves from racing with
1622 		 * one another), and retry the hash chain traversal.
1623 		 */
1624 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1625 		goto top;
1626 	}
1627 
1628 	if (op != DTRACE_DYNVAR_ALLOC) {
1629 		/*
1630 		 * If we are not to allocate a new variable, we want to
1631 		 * return NULL now.  Before we return, check that the value
1632 		 * of the lock word hasn't changed.  If it has, we may have
1633 		 * seen an inconsistent snapshot.
1634 		 */
1635 		if (op == DTRACE_DYNVAR_NOALLOC) {
1636 			if (hash[bucket].dtdh_lock != lock)
1637 				goto top;
1638 		} else {
1639 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1640 			ASSERT(hash[bucket].dtdh_lock == lock);
1641 			ASSERT(lock & 1);
1642 			hash[bucket].dtdh_lock++;
1643 		}
1644 
1645 		return (NULL);
1646 	}
1647 
1648 	/*
1649 	 * We need to allocate a new dynamic variable.  The size we need is the
1650 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1651 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1652 	 * the size of any referred-to data (dsize).  We then round the final
1653 	 * size up to the chunksize for allocation.
1654 	 */
1655 	for (ksize = 0, i = 0; i < nkeys; i++)
1656 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1657 
1658 	/*
1659 	 * This should be pretty much impossible, but could happen if, say,
1660 	 * strange DIF specified the tuple.  Ideally, this should be an
1661 	 * assertion and not an error condition -- but that requires that the
1662 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1663 	 * bullet-proof.  (That is, it must not be able to be fooled by
1664 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1665 	 * solving this would presumably not amount to solving the Halting
1666 	 * Problem -- but it still seems awfully hard.
1667 	 */
1668 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1669 	    ksize + dsize > chunksize) {
1670 		dcpu->dtdsc_drops++;
1671 		return (NULL);
1672 	}
1673 
1674 	nstate = DTRACE_DSTATE_EMPTY;
1675 
1676 	do {
1677 retry:
1678 		free = dcpu->dtdsc_free;
1679 
1680 		if (free == NULL) {
1681 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1682 			void *rval;
1683 
1684 			if (clean == NULL) {
1685 				/*
1686 				 * We're out of dynamic variable space on
1687 				 * this CPU.  Unless we have tried all CPUs,
1688 				 * we'll try to allocate from a different
1689 				 * CPU.
1690 				 */
1691 				switch (dstate->dtds_state) {
1692 				case DTRACE_DSTATE_CLEAN: {
1693 					void *sp = &dstate->dtds_state;
1694 
1695 					if (++cpu >= NCPU)
1696 						cpu = 0;
1697 
1698 					if (dcpu->dtdsc_dirty != NULL &&
1699 					    nstate == DTRACE_DSTATE_EMPTY)
1700 						nstate = DTRACE_DSTATE_DIRTY;
1701 
1702 					if (dcpu->dtdsc_rinsing != NULL)
1703 						nstate = DTRACE_DSTATE_RINSING;
1704 
1705 					dcpu = &dstate->dtds_percpu[cpu];
1706 
1707 					if (cpu != me)
1708 						goto retry;
1709 
1710 					(void) dtrace_cas32(sp,
1711 					    DTRACE_DSTATE_CLEAN, nstate);
1712 
1713 					/*
1714 					 * To increment the correct bean
1715 					 * counter, take another lap.
1716 					 */
1717 					goto retry;
1718 				}
1719 
1720 				case DTRACE_DSTATE_DIRTY:
1721 					dcpu->dtdsc_dirty_drops++;
1722 					break;
1723 
1724 				case DTRACE_DSTATE_RINSING:
1725 					dcpu->dtdsc_rinsing_drops++;
1726 					break;
1727 
1728 				case DTRACE_DSTATE_EMPTY:
1729 					dcpu->dtdsc_drops++;
1730 					break;
1731 				}
1732 
1733 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1734 				return (NULL);
1735 			}
1736 
1737 			/*
1738 			 * The clean list appears to be non-empty.  We want to
1739 			 * move the clean list to the free list; we start by
1740 			 * moving the clean pointer aside.
1741 			 */
1742 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1743 			    clean, NULL) != clean) {
1744 				/*
1745 				 * We are in one of two situations:
1746 				 *
1747 				 *  (a)	The clean list was switched to the
1748 				 *	free list by another CPU.
1749 				 *
1750 				 *  (b)	The clean list was added to by the
1751 				 *	cleansing cyclic.
1752 				 *
1753 				 * In either of these situations, we can
1754 				 * just reattempt the free list allocation.
1755 				 */
1756 				goto retry;
1757 			}
1758 
1759 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1760 
1761 			/*
1762 			 * Now we'll move the clean list to the free list.
1763 			 * It's impossible for this to fail:  the only way
1764 			 * the free list can be updated is through this
1765 			 * code path, and only one CPU can own the clean list.
1766 			 * Thus, it would only be possible for this to fail if
1767 			 * this code were racing with dtrace_dynvar_clean().
1768 			 * (That is, if dtrace_dynvar_clean() updated the clean
1769 			 * list, and we ended up racing to update the free
1770 			 * list.)  This race is prevented by the dtrace_sync()
1771 			 * in dtrace_dynvar_clean() -- which flushes the
1772 			 * owners of the clean lists out before resetting
1773 			 * the clean lists.
1774 			 */
1775 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1776 			ASSERT(rval == NULL);
1777 			goto retry;
1778 		}
1779 
1780 		dvar = free;
1781 		new_free = dvar->dtdv_next;
1782 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1783 
1784 	/*
1785 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1786 	 * tuple array and copy any referenced key data into the data space
1787 	 * following the tuple array.  As we do this, we relocate dttk_value
1788 	 * in the final tuple to point to the key data address in the chunk.
1789 	 */
1790 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1791 	dvar->dtdv_data = (void *)(kdata + ksize);
1792 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1793 
1794 	for (i = 0; i < nkeys; i++) {
1795 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1796 		size_t kesize = key[i].dttk_size;
1797 
1798 		if (kesize != 0) {
1799 			dtrace_bcopy(
1800 			    (const void *)(uintptr_t)key[i].dttk_value,
1801 			    (void *)kdata, kesize);
1802 			dkey->dttk_value = kdata;
1803 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1804 		} else {
1805 			dkey->dttk_value = key[i].dttk_value;
1806 		}
1807 
1808 		dkey->dttk_size = kesize;
1809 	}
1810 
1811 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1812 	dvar->dtdv_hashval = hashval;
1813 	dvar->dtdv_next = start;
1814 
1815 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1816 		return (dvar);
1817 
1818 	/*
1819 	 * The cas has failed.  Either another CPU is adding an element to
1820 	 * this hash chain, or another CPU is deleting an element from this
1821 	 * hash chain.  The simplest way to deal with both of these cases
1822 	 * (though not necessarily the most efficient) is to free our
1823 	 * allocated block and tail-call ourselves.  Note that the free is
1824 	 * to the dirty list and _not_ to the free list.  This is to prevent
1825 	 * races with allocators, above.
1826 	 */
1827 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1828 
1829 	dtrace_membar_producer();
1830 
1831 	do {
1832 		free = dcpu->dtdsc_dirty;
1833 		dvar->dtdv_next = free;
1834 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1835 
1836 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1837 }
1838 
1839 /*ARGSUSED*/
1840 static void
1841 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1842 {
1843 	if ((int64_t)nval < (int64_t)*oval)
1844 		*oval = nval;
1845 }
1846 
1847 /*ARGSUSED*/
1848 static void
1849 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1850 {
1851 	if ((int64_t)nval > (int64_t)*oval)
1852 		*oval = nval;
1853 }
1854 
1855 static void
1856 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1857 {
1858 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1859 	int64_t val = (int64_t)nval;
1860 
1861 	if (val < 0) {
1862 		for (i = 0; i < zero; i++) {
1863 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1864 				quanta[i] += incr;
1865 				return;
1866 			}
1867 		}
1868 	} else {
1869 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1870 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1871 				quanta[i - 1] += incr;
1872 				return;
1873 			}
1874 		}
1875 
1876 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1877 		return;
1878 	}
1879 
1880 	ASSERT(0);
1881 }
1882 
1883 static void
1884 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1885 {
1886 	uint64_t arg = *lquanta++;
1887 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1888 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1889 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1890 	int32_t val = (int32_t)nval, level;
1891 
1892 	ASSERT(step != 0);
1893 	ASSERT(levels != 0);
1894 
1895 	if (val < base) {
1896 		/*
1897 		 * This is an underflow.
1898 		 */
1899 		lquanta[0] += incr;
1900 		return;
1901 	}
1902 
1903 	level = (val - base) / step;
1904 
1905 	if (level < levels) {
1906 		lquanta[level + 1] += incr;
1907 		return;
1908 	}
1909 
1910 	/*
1911 	 * This is an overflow.
1912 	 */
1913 	lquanta[levels + 1] += incr;
1914 }
1915 
1916 static int
1917 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1918     uint16_t high, uint16_t nsteps, int64_t value)
1919 {
1920 	int64_t this = 1, last, next;
1921 	int base = 1, order;
1922 
1923 	ASSERT(factor <= nsteps);
1924 	ASSERT(nsteps % factor == 0);
1925 
1926 	for (order = 0; order < low; order++)
1927 		this *= factor;
1928 
1929 	/*
1930 	 * If our value is less than our factor taken to the power of the
1931 	 * low order of magnitude, it goes into the zeroth bucket.
1932 	 */
1933 	if (value < (last = this))
1934 		return (0);
1935 
1936 	for (this *= factor; order <= high; order++) {
1937 		int nbuckets = this > nsteps ? nsteps : this;
1938 
1939 		if ((next = this * factor) < this) {
1940 			/*
1941 			 * We should not generally get log/linear quantizations
1942 			 * with a high magnitude that allows 64-bits to
1943 			 * overflow, but we nonetheless protect against this
1944 			 * by explicitly checking for overflow, and clamping
1945 			 * our value accordingly.
1946 			 */
1947 			value = this - 1;
1948 		}
1949 
1950 		if (value < this) {
1951 			/*
1952 			 * If our value lies within this order of magnitude,
1953 			 * determine its position by taking the offset within
1954 			 * the order of magnitude, dividing by the bucket
1955 			 * width, and adding to our (accumulated) base.
1956 			 */
1957 			return (base + (value - last) / (this / nbuckets));
1958 		}
1959 
1960 		base += nbuckets - (nbuckets / factor);
1961 		last = this;
1962 		this = next;
1963 	}
1964 
1965 	/*
1966 	 * Our value is greater than or equal to our factor taken to the
1967 	 * power of one plus the high magnitude -- return the top bucket.
1968 	 */
1969 	return (base);
1970 }
1971 
1972 static void
1973 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1974 {
1975 	uint64_t arg = *llquanta++;
1976 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1977 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1978 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1979 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1980 
1981 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
1982 	    low, high, nsteps, nval)] += incr;
1983 }
1984 
1985 /*ARGSUSED*/
1986 static void
1987 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1988 {
1989 	data[0]++;
1990 	data[1] += nval;
1991 }
1992 
1993 /*ARGSUSED*/
1994 static void
1995 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1996 {
1997 	int64_t snval = (int64_t)nval;
1998 	uint64_t tmp[2];
1999 
2000 	data[0]++;
2001 	data[1] += nval;
2002 
2003 	/*
2004 	 * What we want to say here is:
2005 	 *
2006 	 * data[2] += nval * nval;
2007 	 *
2008 	 * But given that nval is 64-bit, we could easily overflow, so
2009 	 * we do this as 128-bit arithmetic.
2010 	 */
2011 	if (snval < 0)
2012 		snval = -snval;
2013 
2014 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2015 	dtrace_add_128(data + 2, tmp, data + 2);
2016 }
2017 
2018 /*ARGSUSED*/
2019 static void
2020 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2021 {
2022 	*oval = *oval + 1;
2023 }
2024 
2025 /*ARGSUSED*/
2026 static void
2027 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2028 {
2029 	*oval += nval;
2030 }
2031 
2032 /*
2033  * Aggregate given the tuple in the principal data buffer, and the aggregating
2034  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2035  * buffer is specified as the buf parameter.  This routine does not return
2036  * failure; if there is no space in the aggregation buffer, the data will be
2037  * dropped, and a corresponding counter incremented.
2038  */
2039 static void
2040 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2041     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2042 {
2043 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2044 	uint32_t i, ndx, size, fsize;
2045 	uint32_t align = sizeof (uint64_t) - 1;
2046 	dtrace_aggbuffer_t *agb;
2047 	dtrace_aggkey_t *key;
2048 	uint32_t hashval = 0, limit, isstr;
2049 	caddr_t tomax, data, kdata;
2050 	dtrace_actkind_t action;
2051 	dtrace_action_t *act;
2052 	uintptr_t offs;
2053 
2054 	if (buf == NULL)
2055 		return;
2056 
2057 	if (!agg->dtag_hasarg) {
2058 		/*
2059 		 * Currently, only quantize() and lquantize() take additional
2060 		 * arguments, and they have the same semantics:  an increment
2061 		 * value that defaults to 1 when not present.  If additional
2062 		 * aggregating actions take arguments, the setting of the
2063 		 * default argument value will presumably have to become more
2064 		 * sophisticated...
2065 		 */
2066 		arg = 1;
2067 	}
2068 
2069 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2070 	size = rec->dtrd_offset - agg->dtag_base;
2071 	fsize = size + rec->dtrd_size;
2072 
2073 	ASSERT(dbuf->dtb_tomax != NULL);
2074 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2075 
2076 	if ((tomax = buf->dtb_tomax) == NULL) {
2077 		dtrace_buffer_drop(buf);
2078 		return;
2079 	}
2080 
2081 	/*
2082 	 * The metastructure is always at the bottom of the buffer.
2083 	 */
2084 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2085 	    sizeof (dtrace_aggbuffer_t));
2086 
2087 	if (buf->dtb_offset == 0) {
2088 		/*
2089 		 * We just kludge up approximately 1/8th of the size to be
2090 		 * buckets.  If this guess ends up being routinely
2091 		 * off-the-mark, we may need to dynamically readjust this
2092 		 * based on past performance.
2093 		 */
2094 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2095 
2096 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2097 		    (uintptr_t)tomax || hashsize == 0) {
2098 			/*
2099 			 * We've been given a ludicrously small buffer;
2100 			 * increment our drop count and leave.
2101 			 */
2102 			dtrace_buffer_drop(buf);
2103 			return;
2104 		}
2105 
2106 		/*
2107 		 * And now, a pathetic attempt to try to get a an odd (or
2108 		 * perchance, a prime) hash size for better hash distribution.
2109 		 */
2110 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2111 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2112 
2113 		agb->dtagb_hashsize = hashsize;
2114 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2115 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2116 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2117 
2118 		for (i = 0; i < agb->dtagb_hashsize; i++)
2119 			agb->dtagb_hash[i] = NULL;
2120 	}
2121 
2122 	ASSERT(agg->dtag_first != NULL);
2123 	ASSERT(agg->dtag_first->dta_intuple);
2124 
2125 	/*
2126 	 * Calculate the hash value based on the key.  Note that we _don't_
2127 	 * include the aggid in the hashing (but we will store it as part of
2128 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2129 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2130 	 * gets good distribution in practice.  The efficacy of the hashing
2131 	 * algorithm (and a comparison with other algorithms) may be found by
2132 	 * running the ::dtrace_aggstat MDB dcmd.
2133 	 */
2134 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2135 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2136 		limit = i + act->dta_rec.dtrd_size;
2137 		ASSERT(limit <= size);
2138 		isstr = DTRACEACT_ISSTRING(act);
2139 
2140 		for (; i < limit; i++) {
2141 			hashval += data[i];
2142 			hashval += (hashval << 10);
2143 			hashval ^= (hashval >> 6);
2144 
2145 			if (isstr && data[i] == '\0')
2146 				break;
2147 		}
2148 	}
2149 
2150 	hashval += (hashval << 3);
2151 	hashval ^= (hashval >> 11);
2152 	hashval += (hashval << 15);
2153 
2154 	/*
2155 	 * Yes, the divide here is expensive -- but it's generally the least
2156 	 * of the performance issues given the amount of data that we iterate
2157 	 * over to compute hash values, compare data, etc.
2158 	 */
2159 	ndx = hashval % agb->dtagb_hashsize;
2160 
2161 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2162 		ASSERT((caddr_t)key >= tomax);
2163 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2164 
2165 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2166 			continue;
2167 
2168 		kdata = key->dtak_data;
2169 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2170 
2171 		for (act = agg->dtag_first; act->dta_intuple;
2172 		    act = act->dta_next) {
2173 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2174 			limit = i + act->dta_rec.dtrd_size;
2175 			ASSERT(limit <= size);
2176 			isstr = DTRACEACT_ISSTRING(act);
2177 
2178 			for (; i < limit; i++) {
2179 				if (kdata[i] != data[i])
2180 					goto next;
2181 
2182 				if (isstr && data[i] == '\0')
2183 					break;
2184 			}
2185 		}
2186 
2187 		if (action != key->dtak_action) {
2188 			/*
2189 			 * We are aggregating on the same value in the same
2190 			 * aggregation with two different aggregating actions.
2191 			 * (This should have been picked up in the compiler,
2192 			 * so we may be dealing with errant or devious DIF.)
2193 			 * This is an error condition; we indicate as much,
2194 			 * and return.
2195 			 */
2196 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2197 			return;
2198 		}
2199 
2200 		/*
2201 		 * This is a hit:  we need to apply the aggregator to
2202 		 * the value at this key.
2203 		 */
2204 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2205 		return;
2206 next:
2207 		continue;
2208 	}
2209 
2210 	/*
2211 	 * We didn't find it.  We need to allocate some zero-filled space,
2212 	 * link it into the hash table appropriately, and apply the aggregator
2213 	 * to the (zero-filled) value.
2214 	 */
2215 	offs = buf->dtb_offset;
2216 	while (offs & (align - 1))
2217 		offs += sizeof (uint32_t);
2218 
2219 	/*
2220 	 * If we don't have enough room to both allocate a new key _and_
2221 	 * its associated data, increment the drop count and return.
2222 	 */
2223 	if ((uintptr_t)tomax + offs + fsize >
2224 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2225 		dtrace_buffer_drop(buf);
2226 		return;
2227 	}
2228 
2229 	/*CONSTCOND*/
2230 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2231 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2232 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2233 
2234 	key->dtak_data = kdata = tomax + offs;
2235 	buf->dtb_offset = offs + fsize;
2236 
2237 	/*
2238 	 * Now copy the data across.
2239 	 */
2240 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2241 
2242 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2243 		kdata[i] = data[i];
2244 
2245 	/*
2246 	 * Because strings are not zeroed out by default, we need to iterate
2247 	 * looking for actions that store strings, and we need to explicitly
2248 	 * pad these strings out with zeroes.
2249 	 */
2250 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2251 		int nul;
2252 
2253 		if (!DTRACEACT_ISSTRING(act))
2254 			continue;
2255 
2256 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2257 		limit = i + act->dta_rec.dtrd_size;
2258 		ASSERT(limit <= size);
2259 
2260 		for (nul = 0; i < limit; i++) {
2261 			if (nul) {
2262 				kdata[i] = '\0';
2263 				continue;
2264 			}
2265 
2266 			if (data[i] != '\0')
2267 				continue;
2268 
2269 			nul = 1;
2270 		}
2271 	}
2272 
2273 	for (i = size; i < fsize; i++)
2274 		kdata[i] = 0;
2275 
2276 	key->dtak_hashval = hashval;
2277 	key->dtak_size = size;
2278 	key->dtak_action = action;
2279 	key->dtak_next = agb->dtagb_hash[ndx];
2280 	agb->dtagb_hash[ndx] = key;
2281 
2282 	/*
2283 	 * Finally, apply the aggregator.
2284 	 */
2285 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2286 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2287 }
2288 
2289 /*
2290  * Given consumer state, this routine finds a speculation in the INACTIVE
2291  * state and transitions it into the ACTIVE state.  If there is no speculation
2292  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2293  * incremented -- it is up to the caller to take appropriate action.
2294  */
2295 static int
2296 dtrace_speculation(dtrace_state_t *state)
2297 {
2298 	int i = 0;
2299 	dtrace_speculation_state_t current;
2300 	uint32_t *stat = &state->dts_speculations_unavail, count;
2301 
2302 	while (i < state->dts_nspeculations) {
2303 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2304 
2305 		current = spec->dtsp_state;
2306 
2307 		if (current != DTRACESPEC_INACTIVE) {
2308 			if (current == DTRACESPEC_COMMITTINGMANY ||
2309 			    current == DTRACESPEC_COMMITTING ||
2310 			    current == DTRACESPEC_DISCARDING)
2311 				stat = &state->dts_speculations_busy;
2312 			i++;
2313 			continue;
2314 		}
2315 
2316 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2317 		    current, DTRACESPEC_ACTIVE) == current)
2318 			return (i + 1);
2319 	}
2320 
2321 	/*
2322 	 * We couldn't find a speculation.  If we found as much as a single
2323 	 * busy speculation buffer, we'll attribute this failure as "busy"
2324 	 * instead of "unavail".
2325 	 */
2326 	do {
2327 		count = *stat;
2328 	} while (dtrace_cas32(stat, count, count + 1) != count);
2329 
2330 	return (0);
2331 }
2332 
2333 /*
2334  * This routine commits an active speculation.  If the specified speculation
2335  * is not in a valid state to perform a commit(), this routine will silently do
2336  * nothing.  The state of the specified speculation is transitioned according
2337  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2338  */
2339 static void
2340 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2341     dtrace_specid_t which)
2342 {
2343 	dtrace_speculation_t *spec;
2344 	dtrace_buffer_t *src, *dest;
2345 	uintptr_t daddr, saddr, dlimit;
2346 	dtrace_speculation_state_t current, new = 0;
2347 	intptr_t offs;
2348 
2349 	if (which == 0)
2350 		return;
2351 
2352 	if (which > state->dts_nspeculations) {
2353 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2354 		return;
2355 	}
2356 
2357 	spec = &state->dts_speculations[which - 1];
2358 	src = &spec->dtsp_buffer[cpu];
2359 	dest = &state->dts_buffer[cpu];
2360 
2361 	do {
2362 		current = spec->dtsp_state;
2363 
2364 		if (current == DTRACESPEC_COMMITTINGMANY)
2365 			break;
2366 
2367 		switch (current) {
2368 		case DTRACESPEC_INACTIVE:
2369 		case DTRACESPEC_DISCARDING:
2370 			return;
2371 
2372 		case DTRACESPEC_COMMITTING:
2373 			/*
2374 			 * This is only possible if we are (a) commit()'ing
2375 			 * without having done a prior speculate() on this CPU
2376 			 * and (b) racing with another commit() on a different
2377 			 * CPU.  There's nothing to do -- we just assert that
2378 			 * our offset is 0.
2379 			 */
2380 			ASSERT(src->dtb_offset == 0);
2381 			return;
2382 
2383 		case DTRACESPEC_ACTIVE:
2384 			new = DTRACESPEC_COMMITTING;
2385 			break;
2386 
2387 		case DTRACESPEC_ACTIVEONE:
2388 			/*
2389 			 * This speculation is active on one CPU.  If our
2390 			 * buffer offset is non-zero, we know that the one CPU
2391 			 * must be us.  Otherwise, we are committing on a
2392 			 * different CPU from the speculate(), and we must
2393 			 * rely on being asynchronously cleaned.
2394 			 */
2395 			if (src->dtb_offset != 0) {
2396 				new = DTRACESPEC_COMMITTING;
2397 				break;
2398 			}
2399 			/*FALLTHROUGH*/
2400 
2401 		case DTRACESPEC_ACTIVEMANY:
2402 			new = DTRACESPEC_COMMITTINGMANY;
2403 			break;
2404 
2405 		default:
2406 			ASSERT(0);
2407 		}
2408 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2409 	    current, new) != current);
2410 
2411 	/*
2412 	 * We have set the state to indicate that we are committing this
2413 	 * speculation.  Now reserve the necessary space in the destination
2414 	 * buffer.
2415 	 */
2416 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2417 	    sizeof (uint64_t), state, NULL)) < 0) {
2418 		dtrace_buffer_drop(dest);
2419 		goto out;
2420 	}
2421 
2422 	/*
2423 	 * We have the space; copy the buffer across.  (Note that this is a
2424 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2425 	 * a serious performance issue, a high-performance DTrace-specific
2426 	 * bcopy() should obviously be invented.)
2427 	 */
2428 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2429 	dlimit = daddr + src->dtb_offset;
2430 	saddr = (uintptr_t)src->dtb_tomax;
2431 
2432 	/*
2433 	 * First, the aligned portion.
2434 	 */
2435 	while (dlimit - daddr >= sizeof (uint64_t)) {
2436 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2437 
2438 		daddr += sizeof (uint64_t);
2439 		saddr += sizeof (uint64_t);
2440 	}
2441 
2442 	/*
2443 	 * Now any left-over bit...
2444 	 */
2445 	while (dlimit - daddr)
2446 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2447 
2448 	/*
2449 	 * Finally, commit the reserved space in the destination buffer.
2450 	 */
2451 	dest->dtb_offset = offs + src->dtb_offset;
2452 
2453 out:
2454 	/*
2455 	 * If we're lucky enough to be the only active CPU on this speculation
2456 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2457 	 */
2458 	if (current == DTRACESPEC_ACTIVE ||
2459 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2460 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2461 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2462 
2463 		ASSERT(rval == DTRACESPEC_COMMITTING);
2464 	}
2465 
2466 	src->dtb_offset = 0;
2467 	src->dtb_xamot_drops += src->dtb_drops;
2468 	src->dtb_drops = 0;
2469 }
2470 
2471 /*
2472  * This routine discards an active speculation.  If the specified speculation
2473  * is not in a valid state to perform a discard(), this routine will silently
2474  * do nothing.  The state of the specified speculation is transitioned
2475  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2476  */
2477 static void
2478 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2479     dtrace_specid_t which)
2480 {
2481 	dtrace_speculation_t *spec;
2482 	dtrace_speculation_state_t current, new = 0;
2483 	dtrace_buffer_t *buf;
2484 
2485 	if (which == 0)
2486 		return;
2487 
2488 	if (which > state->dts_nspeculations) {
2489 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2490 		return;
2491 	}
2492 
2493 	spec = &state->dts_speculations[which - 1];
2494 	buf = &spec->dtsp_buffer[cpu];
2495 
2496 	do {
2497 		current = spec->dtsp_state;
2498 
2499 		switch (current) {
2500 		case DTRACESPEC_INACTIVE:
2501 		case DTRACESPEC_COMMITTINGMANY:
2502 		case DTRACESPEC_COMMITTING:
2503 		case DTRACESPEC_DISCARDING:
2504 			return;
2505 
2506 		case DTRACESPEC_ACTIVE:
2507 		case DTRACESPEC_ACTIVEMANY:
2508 			new = DTRACESPEC_DISCARDING;
2509 			break;
2510 
2511 		case DTRACESPEC_ACTIVEONE:
2512 			if (buf->dtb_offset != 0) {
2513 				new = DTRACESPEC_INACTIVE;
2514 			} else {
2515 				new = DTRACESPEC_DISCARDING;
2516 			}
2517 			break;
2518 
2519 		default:
2520 			ASSERT(0);
2521 		}
2522 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2523 	    current, new) != current);
2524 
2525 	buf->dtb_offset = 0;
2526 	buf->dtb_drops = 0;
2527 }
2528 
2529 /*
2530  * Note:  not called from probe context.  This function is called
2531  * asynchronously from cross call context to clean any speculations that are
2532  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2533  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2534  * speculation.
2535  */
2536 static void
2537 dtrace_speculation_clean_here(dtrace_state_t *state)
2538 {
2539 	dtrace_icookie_t cookie;
2540 	processorid_t cpu = curcpu;
2541 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2542 	dtrace_specid_t i;
2543 
2544 	cookie = dtrace_interrupt_disable();
2545 
2546 	if (dest->dtb_tomax == NULL) {
2547 		dtrace_interrupt_enable(cookie);
2548 		return;
2549 	}
2550 
2551 	for (i = 0; i < state->dts_nspeculations; i++) {
2552 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2553 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2554 
2555 		if (src->dtb_tomax == NULL)
2556 			continue;
2557 
2558 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2559 			src->dtb_offset = 0;
2560 			continue;
2561 		}
2562 
2563 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2564 			continue;
2565 
2566 		if (src->dtb_offset == 0)
2567 			continue;
2568 
2569 		dtrace_speculation_commit(state, cpu, i + 1);
2570 	}
2571 
2572 	dtrace_interrupt_enable(cookie);
2573 }
2574 
2575 /*
2576  * Note:  not called from probe context.  This function is called
2577  * asynchronously (and at a regular interval) to clean any speculations that
2578  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2579  * is work to be done, it cross calls all CPUs to perform that work;
2580  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2581  * INACTIVE state until they have been cleaned by all CPUs.
2582  */
2583 static void
2584 dtrace_speculation_clean(dtrace_state_t *state)
2585 {
2586 	int work = 0, rv;
2587 	dtrace_specid_t i;
2588 
2589 	for (i = 0; i < state->dts_nspeculations; i++) {
2590 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2591 
2592 		ASSERT(!spec->dtsp_cleaning);
2593 
2594 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2595 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2596 			continue;
2597 
2598 		work++;
2599 		spec->dtsp_cleaning = 1;
2600 	}
2601 
2602 	if (!work)
2603 		return;
2604 
2605 	dtrace_xcall(DTRACE_CPUALL,
2606 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2607 
2608 	/*
2609 	 * We now know that all CPUs have committed or discarded their
2610 	 * speculation buffers, as appropriate.  We can now set the state
2611 	 * to inactive.
2612 	 */
2613 	for (i = 0; i < state->dts_nspeculations; i++) {
2614 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2615 		dtrace_speculation_state_t current, new;
2616 
2617 		if (!spec->dtsp_cleaning)
2618 			continue;
2619 
2620 		current = spec->dtsp_state;
2621 		ASSERT(current == DTRACESPEC_DISCARDING ||
2622 		    current == DTRACESPEC_COMMITTINGMANY);
2623 
2624 		new = DTRACESPEC_INACTIVE;
2625 
2626 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2627 		ASSERT(rv == current);
2628 		spec->dtsp_cleaning = 0;
2629 	}
2630 }
2631 
2632 /*
2633  * Called as part of a speculate() to get the speculative buffer associated
2634  * with a given speculation.  Returns NULL if the specified speculation is not
2635  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2636  * the active CPU is not the specified CPU -- the speculation will be
2637  * atomically transitioned into the ACTIVEMANY state.
2638  */
2639 static dtrace_buffer_t *
2640 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2641     dtrace_specid_t which)
2642 {
2643 	dtrace_speculation_t *spec;
2644 	dtrace_speculation_state_t current, new = 0;
2645 	dtrace_buffer_t *buf;
2646 
2647 	if (which == 0)
2648 		return (NULL);
2649 
2650 	if (which > state->dts_nspeculations) {
2651 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2652 		return (NULL);
2653 	}
2654 
2655 	spec = &state->dts_speculations[which - 1];
2656 	buf = &spec->dtsp_buffer[cpuid];
2657 
2658 	do {
2659 		current = spec->dtsp_state;
2660 
2661 		switch (current) {
2662 		case DTRACESPEC_INACTIVE:
2663 		case DTRACESPEC_COMMITTINGMANY:
2664 		case DTRACESPEC_DISCARDING:
2665 			return (NULL);
2666 
2667 		case DTRACESPEC_COMMITTING:
2668 			ASSERT(buf->dtb_offset == 0);
2669 			return (NULL);
2670 
2671 		case DTRACESPEC_ACTIVEONE:
2672 			/*
2673 			 * This speculation is currently active on one CPU.
2674 			 * Check the offset in the buffer; if it's non-zero,
2675 			 * that CPU must be us (and we leave the state alone).
2676 			 * If it's zero, assume that we're starting on a new
2677 			 * CPU -- and change the state to indicate that the
2678 			 * speculation is active on more than one CPU.
2679 			 */
2680 			if (buf->dtb_offset != 0)
2681 				return (buf);
2682 
2683 			new = DTRACESPEC_ACTIVEMANY;
2684 			break;
2685 
2686 		case DTRACESPEC_ACTIVEMANY:
2687 			return (buf);
2688 
2689 		case DTRACESPEC_ACTIVE:
2690 			new = DTRACESPEC_ACTIVEONE;
2691 			break;
2692 
2693 		default:
2694 			ASSERT(0);
2695 		}
2696 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2697 	    current, new) != current);
2698 
2699 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2700 	return (buf);
2701 }
2702 
2703 /*
2704  * Return a string.  In the event that the user lacks the privilege to access
2705  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2706  * don't fail access checking.
2707  *
2708  * dtrace_dif_variable() uses this routine as a helper for various
2709  * builtin values such as 'execname' and 'probefunc.'
2710  */
2711 uintptr_t
2712 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2713     dtrace_mstate_t *mstate)
2714 {
2715 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2716 	uintptr_t ret;
2717 	size_t strsz;
2718 
2719 	/*
2720 	 * The easy case: this probe is allowed to read all of memory, so
2721 	 * we can just return this as a vanilla pointer.
2722 	 */
2723 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2724 		return (addr);
2725 
2726 	/*
2727 	 * This is the tougher case: we copy the string in question from
2728 	 * kernel memory into scratch memory and return it that way: this
2729 	 * ensures that we won't trip up when access checking tests the
2730 	 * BYREF return value.
2731 	 */
2732 	strsz = dtrace_strlen((char *)addr, size) + 1;
2733 
2734 	if (mstate->dtms_scratch_ptr + strsz >
2735 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2736 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2737 		return (0);
2738 	}
2739 
2740 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2741 	    strsz);
2742 	ret = mstate->dtms_scratch_ptr;
2743 	mstate->dtms_scratch_ptr += strsz;
2744 	return (ret);
2745 }
2746 
2747 /*
2748  * Return a string from a memoy address which is known to have one or
2749  * more concatenated, individually zero terminated, sub-strings.
2750  * In the event that the user lacks the privilege to access
2751  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2752  * don't fail access checking.
2753  *
2754  * dtrace_dif_variable() uses this routine as a helper for various
2755  * builtin values such as 'execargs'.
2756  */
2757 static uintptr_t
2758 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2759     dtrace_mstate_t *mstate)
2760 {
2761 	char *p;
2762 	size_t i;
2763 	uintptr_t ret;
2764 
2765 	if (mstate->dtms_scratch_ptr + strsz >
2766 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2767 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2768 		return (0);
2769 	}
2770 
2771 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2772 	    strsz);
2773 
2774 	/* Replace sub-string termination characters with a space. */
2775 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2776 	    p++, i++)
2777 		if (*p == '\0')
2778 			*p = ' ';
2779 
2780 	ret = mstate->dtms_scratch_ptr;
2781 	mstate->dtms_scratch_ptr += strsz;
2782 	return (ret);
2783 }
2784 
2785 /*
2786  * This function implements the DIF emulator's variable lookups.  The emulator
2787  * passes a reserved variable identifier and optional built-in array index.
2788  */
2789 static uint64_t
2790 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2791     uint64_t ndx)
2792 {
2793 	/*
2794 	 * If we're accessing one of the uncached arguments, we'll turn this
2795 	 * into a reference in the args array.
2796 	 */
2797 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2798 		ndx = v - DIF_VAR_ARG0;
2799 		v = DIF_VAR_ARGS;
2800 	}
2801 
2802 	switch (v) {
2803 	case DIF_VAR_ARGS:
2804 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2805 		if (ndx >= sizeof (mstate->dtms_arg) /
2806 		    sizeof (mstate->dtms_arg[0])) {
2807 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2808 			dtrace_provider_t *pv;
2809 			uint64_t val;
2810 
2811 			pv = mstate->dtms_probe->dtpr_provider;
2812 			if (pv->dtpv_pops.dtps_getargval != NULL)
2813 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2814 				    mstate->dtms_probe->dtpr_id,
2815 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2816 			else
2817 				val = dtrace_getarg(ndx, aframes);
2818 
2819 			/*
2820 			 * This is regrettably required to keep the compiler
2821 			 * from tail-optimizing the call to dtrace_getarg().
2822 			 * The condition always evaluates to true, but the
2823 			 * compiler has no way of figuring that out a priori.
2824 			 * (None of this would be necessary if the compiler
2825 			 * could be relied upon to _always_ tail-optimize
2826 			 * the call to dtrace_getarg() -- but it can't.)
2827 			 */
2828 			if (mstate->dtms_probe != NULL)
2829 				return (val);
2830 
2831 			ASSERT(0);
2832 		}
2833 
2834 		return (mstate->dtms_arg[ndx]);
2835 
2836 #if defined(sun)
2837 	case DIF_VAR_UREGS: {
2838 		klwp_t *lwp;
2839 
2840 		if (!dtrace_priv_proc(state))
2841 			return (0);
2842 
2843 		if ((lwp = curthread->t_lwp) == NULL) {
2844 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2845 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2846 			return (0);
2847 		}
2848 
2849 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2850 		return (0);
2851 	}
2852 #else
2853 	case DIF_VAR_UREGS: {
2854 		struct trapframe *tframe;
2855 
2856 		if (!dtrace_priv_proc(state))
2857 			return (0);
2858 
2859 		if ((tframe = curthread->td_frame) == NULL) {
2860 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2861 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2862 			return (0);
2863 		}
2864 
2865 		return (dtrace_getreg(tframe, ndx));
2866 	}
2867 #endif
2868 
2869 	case DIF_VAR_CURTHREAD:
2870 		if (!dtrace_priv_kernel(state))
2871 			return (0);
2872 		return ((uint64_t)(uintptr_t)curthread);
2873 
2874 	case DIF_VAR_TIMESTAMP:
2875 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2876 			mstate->dtms_timestamp = dtrace_gethrtime();
2877 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2878 		}
2879 		return (mstate->dtms_timestamp);
2880 
2881 	case DIF_VAR_VTIMESTAMP:
2882 		ASSERT(dtrace_vtime_references != 0);
2883 		return (curthread->t_dtrace_vtime);
2884 
2885 	case DIF_VAR_WALLTIMESTAMP:
2886 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2887 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2888 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2889 		}
2890 		return (mstate->dtms_walltimestamp);
2891 
2892 #if defined(sun)
2893 	case DIF_VAR_IPL:
2894 		if (!dtrace_priv_kernel(state))
2895 			return (0);
2896 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2897 			mstate->dtms_ipl = dtrace_getipl();
2898 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2899 		}
2900 		return (mstate->dtms_ipl);
2901 #endif
2902 
2903 	case DIF_VAR_EPID:
2904 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2905 		return (mstate->dtms_epid);
2906 
2907 	case DIF_VAR_ID:
2908 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2909 		return (mstate->dtms_probe->dtpr_id);
2910 
2911 	case DIF_VAR_STACKDEPTH:
2912 		if (!dtrace_priv_kernel(state))
2913 			return (0);
2914 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2915 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2916 
2917 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2918 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2919 		}
2920 		return (mstate->dtms_stackdepth);
2921 
2922 	case DIF_VAR_USTACKDEPTH:
2923 		if (!dtrace_priv_proc(state))
2924 			return (0);
2925 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2926 			/*
2927 			 * See comment in DIF_VAR_PID.
2928 			 */
2929 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2930 			    CPU_ON_INTR(CPU)) {
2931 				mstate->dtms_ustackdepth = 0;
2932 			} else {
2933 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2934 				mstate->dtms_ustackdepth =
2935 				    dtrace_getustackdepth();
2936 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2937 			}
2938 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2939 		}
2940 		return (mstate->dtms_ustackdepth);
2941 
2942 	case DIF_VAR_CALLER:
2943 		if (!dtrace_priv_kernel(state))
2944 			return (0);
2945 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2946 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2947 
2948 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2949 				/*
2950 				 * If this is an unanchored probe, we are
2951 				 * required to go through the slow path:
2952 				 * dtrace_caller() only guarantees correct
2953 				 * results for anchored probes.
2954 				 */
2955 				pc_t caller[2] = {0, 0};
2956 
2957 				dtrace_getpcstack(caller, 2, aframes,
2958 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2959 				mstate->dtms_caller = caller[1];
2960 			} else if ((mstate->dtms_caller =
2961 			    dtrace_caller(aframes)) == -1) {
2962 				/*
2963 				 * We have failed to do this the quick way;
2964 				 * we must resort to the slower approach of
2965 				 * calling dtrace_getpcstack().
2966 				 */
2967 				pc_t caller = 0;
2968 
2969 				dtrace_getpcstack(&caller, 1, aframes, NULL);
2970 				mstate->dtms_caller = caller;
2971 			}
2972 
2973 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
2974 		}
2975 		return (mstate->dtms_caller);
2976 
2977 	case DIF_VAR_UCALLER:
2978 		if (!dtrace_priv_proc(state))
2979 			return (0);
2980 
2981 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
2982 			uint64_t ustack[3];
2983 
2984 			/*
2985 			 * dtrace_getupcstack() fills in the first uint64_t
2986 			 * with the current PID.  The second uint64_t will
2987 			 * be the program counter at user-level.  The third
2988 			 * uint64_t will contain the caller, which is what
2989 			 * we're after.
2990 			 */
2991 			ustack[2] = 0;
2992 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2993 			dtrace_getupcstack(ustack, 3);
2994 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2995 			mstate->dtms_ucaller = ustack[2];
2996 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
2997 		}
2998 
2999 		return (mstate->dtms_ucaller);
3000 
3001 	case DIF_VAR_PROBEPROV:
3002 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3003 		return (dtrace_dif_varstr(
3004 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3005 		    state, mstate));
3006 
3007 	case DIF_VAR_PROBEMOD:
3008 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3009 		return (dtrace_dif_varstr(
3010 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3011 		    state, mstate));
3012 
3013 	case DIF_VAR_PROBEFUNC:
3014 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3015 		return (dtrace_dif_varstr(
3016 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3017 		    state, mstate));
3018 
3019 	case DIF_VAR_PROBENAME:
3020 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3021 		return (dtrace_dif_varstr(
3022 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3023 		    state, mstate));
3024 
3025 	case DIF_VAR_PID:
3026 		if (!dtrace_priv_proc(state))
3027 			return (0);
3028 
3029 #if defined(sun)
3030 		/*
3031 		 * Note that we are assuming that an unanchored probe is
3032 		 * always due to a high-level interrupt.  (And we're assuming
3033 		 * that there is only a single high level interrupt.)
3034 		 */
3035 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3036 			return (pid0.pid_id);
3037 
3038 		/*
3039 		 * It is always safe to dereference one's own t_procp pointer:
3040 		 * it always points to a valid, allocated proc structure.
3041 		 * Further, it is always safe to dereference the p_pidp member
3042 		 * of one's own proc structure.  (These are truisms becuase
3043 		 * threads and processes don't clean up their own state --
3044 		 * they leave that task to whomever reaps them.)
3045 		 */
3046 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3047 #else
3048 		return ((uint64_t)curproc->p_pid);
3049 #endif
3050 
3051 	case DIF_VAR_PPID:
3052 		if (!dtrace_priv_proc(state))
3053 			return (0);
3054 
3055 #if defined(sun)
3056 		/*
3057 		 * See comment in DIF_VAR_PID.
3058 		 */
3059 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3060 			return (pid0.pid_id);
3061 
3062 		/*
3063 		 * It is always safe to dereference one's own t_procp pointer:
3064 		 * it always points to a valid, allocated proc structure.
3065 		 * (This is true because threads don't clean up their own
3066 		 * state -- they leave that task to whomever reaps them.)
3067 		 */
3068 		return ((uint64_t)curthread->t_procp->p_ppid);
3069 #else
3070 		return ((uint64_t)curproc->p_pptr->p_pid);
3071 #endif
3072 
3073 	case DIF_VAR_TID:
3074 #if defined(sun)
3075 		/*
3076 		 * See comment in DIF_VAR_PID.
3077 		 */
3078 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3079 			return (0);
3080 #endif
3081 
3082 		return ((uint64_t)curthread->t_tid);
3083 
3084 	case DIF_VAR_EXECARGS: {
3085 		struct pargs *p_args = curthread->td_proc->p_args;
3086 
3087 		if (p_args == NULL)
3088 			return(0);
3089 
3090 		return (dtrace_dif_varstrz(
3091 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3092 	}
3093 
3094 	case DIF_VAR_EXECNAME:
3095 #if defined(sun)
3096 		if (!dtrace_priv_proc(state))
3097 			return (0);
3098 
3099 		/*
3100 		 * See comment in DIF_VAR_PID.
3101 		 */
3102 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3103 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3104 
3105 		/*
3106 		 * It is always safe to dereference one's own t_procp pointer:
3107 		 * it always points to a valid, allocated proc structure.
3108 		 * (This is true because threads don't clean up their own
3109 		 * state -- they leave that task to whomever reaps them.)
3110 		 */
3111 		return (dtrace_dif_varstr(
3112 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3113 		    state, mstate));
3114 #else
3115 		return (dtrace_dif_varstr(
3116 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3117 #endif
3118 
3119 	case DIF_VAR_ZONENAME:
3120 #if defined(sun)
3121 		if (!dtrace_priv_proc(state))
3122 			return (0);
3123 
3124 		/*
3125 		 * See comment in DIF_VAR_PID.
3126 		 */
3127 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3128 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3129 
3130 		/*
3131 		 * It is always safe to dereference one's own t_procp pointer:
3132 		 * it always points to a valid, allocated proc structure.
3133 		 * (This is true because threads don't clean up their own
3134 		 * state -- they leave that task to whomever reaps them.)
3135 		 */
3136 		return (dtrace_dif_varstr(
3137 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3138 		    state, mstate));
3139 #else
3140 		return (0);
3141 #endif
3142 
3143 	case DIF_VAR_UID:
3144 		if (!dtrace_priv_proc(state))
3145 			return (0);
3146 
3147 #if defined(sun)
3148 		/*
3149 		 * See comment in DIF_VAR_PID.
3150 		 */
3151 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3152 			return ((uint64_t)p0.p_cred->cr_uid);
3153 #endif
3154 
3155 		/*
3156 		 * It is always safe to dereference one's own t_procp pointer:
3157 		 * it always points to a valid, allocated proc structure.
3158 		 * (This is true because threads don't clean up their own
3159 		 * state -- they leave that task to whomever reaps them.)
3160 		 *
3161 		 * Additionally, it is safe to dereference one's own process
3162 		 * credential, since this is never NULL after process birth.
3163 		 */
3164 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3165 
3166 	case DIF_VAR_GID:
3167 		if (!dtrace_priv_proc(state))
3168 			return (0);
3169 
3170 #if defined(sun)
3171 		/*
3172 		 * See comment in DIF_VAR_PID.
3173 		 */
3174 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3175 			return ((uint64_t)p0.p_cred->cr_gid);
3176 #endif
3177 
3178 		/*
3179 		 * It is always safe to dereference one's own t_procp pointer:
3180 		 * it always points to a valid, allocated proc structure.
3181 		 * (This is true because threads don't clean up their own
3182 		 * state -- they leave that task to whomever reaps them.)
3183 		 *
3184 		 * Additionally, it is safe to dereference one's own process
3185 		 * credential, since this is never NULL after process birth.
3186 		 */
3187 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3188 
3189 	case DIF_VAR_ERRNO: {
3190 #if defined(sun)
3191 		klwp_t *lwp;
3192 		if (!dtrace_priv_proc(state))
3193 			return (0);
3194 
3195 		/*
3196 		 * See comment in DIF_VAR_PID.
3197 		 */
3198 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3199 			return (0);
3200 
3201 		/*
3202 		 * It is always safe to dereference one's own t_lwp pointer in
3203 		 * the event that this pointer is non-NULL.  (This is true
3204 		 * because threads and lwps don't clean up their own state --
3205 		 * they leave that task to whomever reaps them.)
3206 		 */
3207 		if ((lwp = curthread->t_lwp) == NULL)
3208 			return (0);
3209 
3210 		return ((uint64_t)lwp->lwp_errno);
3211 #else
3212 		return (curthread->td_errno);
3213 #endif
3214 	}
3215 #if !defined(sun)
3216 	case DIF_VAR_CPU: {
3217 		return curcpu;
3218 	}
3219 #endif
3220 	default:
3221 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3222 		return (0);
3223 	}
3224 }
3225 
3226 /*
3227  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3228  * Notice that we don't bother validating the proper number of arguments or
3229  * their types in the tuple stack.  This isn't needed because all argument
3230  * interpretation is safe because of our load safety -- the worst that can
3231  * happen is that a bogus program can obtain bogus results.
3232  */
3233 static void
3234 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3235     dtrace_key_t *tupregs, int nargs,
3236     dtrace_mstate_t *mstate, dtrace_state_t *state)
3237 {
3238 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3239 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3240 	dtrace_vstate_t *vstate = &state->dts_vstate;
3241 
3242 #if defined(sun)
3243 	union {
3244 		mutex_impl_t mi;
3245 		uint64_t mx;
3246 	} m;
3247 
3248 	union {
3249 		krwlock_t ri;
3250 		uintptr_t rw;
3251 	} r;
3252 #else
3253 	struct thread *lowner;
3254 	union {
3255 		struct lock_object *li;
3256 		uintptr_t lx;
3257 	} l;
3258 #endif
3259 
3260 	switch (subr) {
3261 	case DIF_SUBR_RAND:
3262 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3263 		break;
3264 
3265 #if defined(sun)
3266 	case DIF_SUBR_MUTEX_OWNED:
3267 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3268 		    mstate, vstate)) {
3269 			regs[rd] = 0;
3270 			break;
3271 		}
3272 
3273 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3274 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3275 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3276 		else
3277 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3278 		break;
3279 
3280 	case DIF_SUBR_MUTEX_OWNER:
3281 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3282 		    mstate, vstate)) {
3283 			regs[rd] = 0;
3284 			break;
3285 		}
3286 
3287 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3288 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3289 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3290 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3291 		else
3292 			regs[rd] = 0;
3293 		break;
3294 
3295 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3296 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3297 		    mstate, vstate)) {
3298 			regs[rd] = 0;
3299 			break;
3300 		}
3301 
3302 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3303 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3304 		break;
3305 
3306 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3307 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3308 		    mstate, vstate)) {
3309 			regs[rd] = 0;
3310 			break;
3311 		}
3312 
3313 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3314 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3315 		break;
3316 
3317 	case DIF_SUBR_RW_READ_HELD: {
3318 		uintptr_t tmp;
3319 
3320 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3321 		    mstate, vstate)) {
3322 			regs[rd] = 0;
3323 			break;
3324 		}
3325 
3326 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3327 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3328 		break;
3329 	}
3330 
3331 	case DIF_SUBR_RW_WRITE_HELD:
3332 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3333 		    mstate, vstate)) {
3334 			regs[rd] = 0;
3335 			break;
3336 		}
3337 
3338 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3339 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3340 		break;
3341 
3342 	case DIF_SUBR_RW_ISWRITER:
3343 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3344 		    mstate, vstate)) {
3345 			regs[rd] = 0;
3346 			break;
3347 		}
3348 
3349 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3350 		regs[rd] = _RW_ISWRITER(&r.ri);
3351 		break;
3352 
3353 #else
3354 	case DIF_SUBR_MUTEX_OWNED:
3355 		if (!dtrace_canload(tupregs[0].dttk_value,
3356 			sizeof (struct lock_object), mstate, vstate)) {
3357 			regs[rd] = 0;
3358 			break;
3359 		}
3360 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3361 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3362 		break;
3363 
3364 	case DIF_SUBR_MUTEX_OWNER:
3365 		if (!dtrace_canload(tupregs[0].dttk_value,
3366 			sizeof (struct lock_object), mstate, vstate)) {
3367 			regs[rd] = 0;
3368 			break;
3369 		}
3370 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3371 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3372 		regs[rd] = (uintptr_t)lowner;
3373 		break;
3374 
3375 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3376 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3377 		    mstate, vstate)) {
3378 			regs[rd] = 0;
3379 			break;
3380 		}
3381 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3382 		/* XXX - should be only LC_SLEEPABLE? */
3383 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3384 		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3385 		break;
3386 
3387 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3388 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3389 		    mstate, vstate)) {
3390 			regs[rd] = 0;
3391 			break;
3392 		}
3393 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3394 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3395 		break;
3396 
3397 	case DIF_SUBR_RW_READ_HELD:
3398 	case DIF_SUBR_SX_SHARED_HELD:
3399 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3400 		    mstate, vstate)) {
3401 			regs[rd] = 0;
3402 			break;
3403 		}
3404 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3405 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3406 		    lowner == NULL;
3407 		break;
3408 
3409 	case DIF_SUBR_RW_WRITE_HELD:
3410 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3411 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3412 		    mstate, vstate)) {
3413 			regs[rd] = 0;
3414 			break;
3415 		}
3416 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3417 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3418 		regs[rd] = (lowner == curthread);
3419 		break;
3420 
3421 	case DIF_SUBR_RW_ISWRITER:
3422 	case DIF_SUBR_SX_ISEXCLUSIVE:
3423 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3424 		    mstate, vstate)) {
3425 			regs[rd] = 0;
3426 			break;
3427 		}
3428 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3429 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3430 		    lowner != NULL;
3431 		break;
3432 #endif /* ! defined(sun) */
3433 
3434 	case DIF_SUBR_BCOPY: {
3435 		/*
3436 		 * We need to be sure that the destination is in the scratch
3437 		 * region -- no other region is allowed.
3438 		 */
3439 		uintptr_t src = tupregs[0].dttk_value;
3440 		uintptr_t dest = tupregs[1].dttk_value;
3441 		size_t size = tupregs[2].dttk_value;
3442 
3443 		if (!dtrace_inscratch(dest, size, mstate)) {
3444 			*flags |= CPU_DTRACE_BADADDR;
3445 			*illval = regs[rd];
3446 			break;
3447 		}
3448 
3449 		if (!dtrace_canload(src, size, mstate, vstate)) {
3450 			regs[rd] = 0;
3451 			break;
3452 		}
3453 
3454 		dtrace_bcopy((void *)src, (void *)dest, size);
3455 		break;
3456 	}
3457 
3458 	case DIF_SUBR_ALLOCA:
3459 	case DIF_SUBR_COPYIN: {
3460 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3461 		uint64_t size =
3462 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3463 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3464 
3465 		/*
3466 		 * This action doesn't require any credential checks since
3467 		 * probes will not activate in user contexts to which the
3468 		 * enabling user does not have permissions.
3469 		 */
3470 
3471 		/*
3472 		 * Rounding up the user allocation size could have overflowed
3473 		 * a large, bogus allocation (like -1ULL) to 0.
3474 		 */
3475 		if (scratch_size < size ||
3476 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3477 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3478 			regs[rd] = 0;
3479 			break;
3480 		}
3481 
3482 		if (subr == DIF_SUBR_COPYIN) {
3483 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3484 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3485 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3486 		}
3487 
3488 		mstate->dtms_scratch_ptr += scratch_size;
3489 		regs[rd] = dest;
3490 		break;
3491 	}
3492 
3493 	case DIF_SUBR_COPYINTO: {
3494 		uint64_t size = tupregs[1].dttk_value;
3495 		uintptr_t dest = tupregs[2].dttk_value;
3496 
3497 		/*
3498 		 * This action doesn't require any credential checks since
3499 		 * probes will not activate in user contexts to which the
3500 		 * enabling user does not have permissions.
3501 		 */
3502 		if (!dtrace_inscratch(dest, size, mstate)) {
3503 			*flags |= CPU_DTRACE_BADADDR;
3504 			*illval = regs[rd];
3505 			break;
3506 		}
3507 
3508 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3509 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3510 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3511 		break;
3512 	}
3513 
3514 	case DIF_SUBR_COPYINSTR: {
3515 		uintptr_t dest = mstate->dtms_scratch_ptr;
3516 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3517 
3518 		if (nargs > 1 && tupregs[1].dttk_value < size)
3519 			size = tupregs[1].dttk_value + 1;
3520 
3521 		/*
3522 		 * This action doesn't require any credential checks since
3523 		 * probes will not activate in user contexts to which the
3524 		 * enabling user does not have permissions.
3525 		 */
3526 		if (!DTRACE_INSCRATCH(mstate, size)) {
3527 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3528 			regs[rd] = 0;
3529 			break;
3530 		}
3531 
3532 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3533 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3534 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3535 
3536 		((char *)dest)[size - 1] = '\0';
3537 		mstate->dtms_scratch_ptr += size;
3538 		regs[rd] = dest;
3539 		break;
3540 	}
3541 
3542 #if defined(sun)
3543 	case DIF_SUBR_MSGSIZE:
3544 	case DIF_SUBR_MSGDSIZE: {
3545 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3546 		uintptr_t wptr, rptr;
3547 		size_t count = 0;
3548 		int cont = 0;
3549 
3550 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3551 
3552 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3553 			    vstate)) {
3554 				regs[rd] = 0;
3555 				break;
3556 			}
3557 
3558 			wptr = dtrace_loadptr(baddr +
3559 			    offsetof(mblk_t, b_wptr));
3560 
3561 			rptr = dtrace_loadptr(baddr +
3562 			    offsetof(mblk_t, b_rptr));
3563 
3564 			if (wptr < rptr) {
3565 				*flags |= CPU_DTRACE_BADADDR;
3566 				*illval = tupregs[0].dttk_value;
3567 				break;
3568 			}
3569 
3570 			daddr = dtrace_loadptr(baddr +
3571 			    offsetof(mblk_t, b_datap));
3572 
3573 			baddr = dtrace_loadptr(baddr +
3574 			    offsetof(mblk_t, b_cont));
3575 
3576 			/*
3577 			 * We want to prevent against denial-of-service here,
3578 			 * so we're only going to search the list for
3579 			 * dtrace_msgdsize_max mblks.
3580 			 */
3581 			if (cont++ > dtrace_msgdsize_max) {
3582 				*flags |= CPU_DTRACE_ILLOP;
3583 				break;
3584 			}
3585 
3586 			if (subr == DIF_SUBR_MSGDSIZE) {
3587 				if (dtrace_load8(daddr +
3588 				    offsetof(dblk_t, db_type)) != M_DATA)
3589 					continue;
3590 			}
3591 
3592 			count += wptr - rptr;
3593 		}
3594 
3595 		if (!(*flags & CPU_DTRACE_FAULT))
3596 			regs[rd] = count;
3597 
3598 		break;
3599 	}
3600 #endif
3601 
3602 	case DIF_SUBR_PROGENYOF: {
3603 		pid_t pid = tupregs[0].dttk_value;
3604 		proc_t *p;
3605 		int rval = 0;
3606 
3607 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3608 
3609 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3610 #if defined(sun)
3611 			if (p->p_pidp->pid_id == pid) {
3612 #else
3613 			if (p->p_pid == pid) {
3614 #endif
3615 				rval = 1;
3616 				break;
3617 			}
3618 		}
3619 
3620 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3621 
3622 		regs[rd] = rval;
3623 		break;
3624 	}
3625 
3626 	case DIF_SUBR_SPECULATION:
3627 		regs[rd] = dtrace_speculation(state);
3628 		break;
3629 
3630 	case DIF_SUBR_COPYOUT: {
3631 		uintptr_t kaddr = tupregs[0].dttk_value;
3632 		uintptr_t uaddr = tupregs[1].dttk_value;
3633 		uint64_t size = tupregs[2].dttk_value;
3634 
3635 		if (!dtrace_destructive_disallow &&
3636 		    dtrace_priv_proc_control(state) &&
3637 		    !dtrace_istoxic(kaddr, size)) {
3638 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3639 			dtrace_copyout(kaddr, uaddr, size, flags);
3640 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3641 		}
3642 		break;
3643 	}
3644 
3645 	case DIF_SUBR_COPYOUTSTR: {
3646 		uintptr_t kaddr = tupregs[0].dttk_value;
3647 		uintptr_t uaddr = tupregs[1].dttk_value;
3648 		uint64_t size = tupregs[2].dttk_value;
3649 
3650 		if (!dtrace_destructive_disallow &&
3651 		    dtrace_priv_proc_control(state) &&
3652 		    !dtrace_istoxic(kaddr, size)) {
3653 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3654 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3655 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3656 		}
3657 		break;
3658 	}
3659 
3660 	case DIF_SUBR_STRLEN: {
3661 		size_t sz;
3662 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3663 		sz = dtrace_strlen((char *)addr,
3664 		    state->dts_options[DTRACEOPT_STRSIZE]);
3665 
3666 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3667 			regs[rd] = 0;
3668 			break;
3669 		}
3670 
3671 		regs[rd] = sz;
3672 
3673 		break;
3674 	}
3675 
3676 	case DIF_SUBR_STRCHR:
3677 	case DIF_SUBR_STRRCHR: {
3678 		/*
3679 		 * We're going to iterate over the string looking for the
3680 		 * specified character.  We will iterate until we have reached
3681 		 * the string length or we have found the character.  If this
3682 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3683 		 * of the specified character instead of the first.
3684 		 */
3685 		uintptr_t saddr = tupregs[0].dttk_value;
3686 		uintptr_t addr = tupregs[0].dttk_value;
3687 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3688 		char c, target = (char)tupregs[1].dttk_value;
3689 
3690 		for (regs[rd] = 0; addr < limit; addr++) {
3691 			if ((c = dtrace_load8(addr)) == target) {
3692 				regs[rd] = addr;
3693 
3694 				if (subr == DIF_SUBR_STRCHR)
3695 					break;
3696 			}
3697 
3698 			if (c == '\0')
3699 				break;
3700 		}
3701 
3702 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3703 			regs[rd] = 0;
3704 			break;
3705 		}
3706 
3707 		break;
3708 	}
3709 
3710 	case DIF_SUBR_STRSTR:
3711 	case DIF_SUBR_INDEX:
3712 	case DIF_SUBR_RINDEX: {
3713 		/*
3714 		 * We're going to iterate over the string looking for the
3715 		 * specified string.  We will iterate until we have reached
3716 		 * the string length or we have found the string.  (Yes, this
3717 		 * is done in the most naive way possible -- but considering
3718 		 * that the string we're searching for is likely to be
3719 		 * relatively short, the complexity of Rabin-Karp or similar
3720 		 * hardly seems merited.)
3721 		 */
3722 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3723 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3724 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3725 		size_t len = dtrace_strlen(addr, size);
3726 		size_t sublen = dtrace_strlen(substr, size);
3727 		char *limit = addr + len, *orig = addr;
3728 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3729 		int inc = 1;
3730 
3731 		regs[rd] = notfound;
3732 
3733 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3734 			regs[rd] = 0;
3735 			break;
3736 		}
3737 
3738 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3739 		    vstate)) {
3740 			regs[rd] = 0;
3741 			break;
3742 		}
3743 
3744 		/*
3745 		 * strstr() and index()/rindex() have similar semantics if
3746 		 * both strings are the empty string: strstr() returns a
3747 		 * pointer to the (empty) string, and index() and rindex()
3748 		 * both return index 0 (regardless of any position argument).
3749 		 */
3750 		if (sublen == 0 && len == 0) {
3751 			if (subr == DIF_SUBR_STRSTR)
3752 				regs[rd] = (uintptr_t)addr;
3753 			else
3754 				regs[rd] = 0;
3755 			break;
3756 		}
3757 
3758 		if (subr != DIF_SUBR_STRSTR) {
3759 			if (subr == DIF_SUBR_RINDEX) {
3760 				limit = orig - 1;
3761 				addr += len;
3762 				inc = -1;
3763 			}
3764 
3765 			/*
3766 			 * Both index() and rindex() take an optional position
3767 			 * argument that denotes the starting position.
3768 			 */
3769 			if (nargs == 3) {
3770 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3771 
3772 				/*
3773 				 * If the position argument to index() is
3774 				 * negative, Perl implicitly clamps it at
3775 				 * zero.  This semantic is a little surprising
3776 				 * given the special meaning of negative
3777 				 * positions to similar Perl functions like
3778 				 * substr(), but it appears to reflect a
3779 				 * notion that index() can start from a
3780 				 * negative index and increment its way up to
3781 				 * the string.  Given this notion, Perl's
3782 				 * rindex() is at least self-consistent in
3783 				 * that it implicitly clamps positions greater
3784 				 * than the string length to be the string
3785 				 * length.  Where Perl completely loses
3786 				 * coherence, however, is when the specified
3787 				 * substring is the empty string ("").  In
3788 				 * this case, even if the position is
3789 				 * negative, rindex() returns 0 -- and even if
3790 				 * the position is greater than the length,
3791 				 * index() returns the string length.  These
3792 				 * semantics violate the notion that index()
3793 				 * should never return a value less than the
3794 				 * specified position and that rindex() should
3795 				 * never return a value greater than the
3796 				 * specified position.  (One assumes that
3797 				 * these semantics are artifacts of Perl's
3798 				 * implementation and not the results of
3799 				 * deliberate design -- it beggars belief that
3800 				 * even Larry Wall could desire such oddness.)
3801 				 * While in the abstract one would wish for
3802 				 * consistent position semantics across
3803 				 * substr(), index() and rindex() -- or at the
3804 				 * very least self-consistent position
3805 				 * semantics for index() and rindex() -- we
3806 				 * instead opt to keep with the extant Perl
3807 				 * semantics, in all their broken glory.  (Do
3808 				 * we have more desire to maintain Perl's
3809 				 * semantics than Perl does?  Probably.)
3810 				 */
3811 				if (subr == DIF_SUBR_RINDEX) {
3812 					if (pos < 0) {
3813 						if (sublen == 0)
3814 							regs[rd] = 0;
3815 						break;
3816 					}
3817 
3818 					if (pos > len)
3819 						pos = len;
3820 				} else {
3821 					if (pos < 0)
3822 						pos = 0;
3823 
3824 					if (pos >= len) {
3825 						if (sublen == 0)
3826 							regs[rd] = len;
3827 						break;
3828 					}
3829 				}
3830 
3831 				addr = orig + pos;
3832 			}
3833 		}
3834 
3835 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3836 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3837 				if (subr != DIF_SUBR_STRSTR) {
3838 					/*
3839 					 * As D index() and rindex() are
3840 					 * modeled on Perl (and not on awk),
3841 					 * we return a zero-based (and not a
3842 					 * one-based) index.  (For you Perl
3843 					 * weenies: no, we're not going to add
3844 					 * $[ -- and shouldn't you be at a con
3845 					 * or something?)
3846 					 */
3847 					regs[rd] = (uintptr_t)(addr - orig);
3848 					break;
3849 				}
3850 
3851 				ASSERT(subr == DIF_SUBR_STRSTR);
3852 				regs[rd] = (uintptr_t)addr;
3853 				break;
3854 			}
3855 		}
3856 
3857 		break;
3858 	}
3859 
3860 	case DIF_SUBR_STRTOK: {
3861 		uintptr_t addr = tupregs[0].dttk_value;
3862 		uintptr_t tokaddr = tupregs[1].dttk_value;
3863 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3864 		uintptr_t limit, toklimit = tokaddr + size;
3865 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3866 		char *dest = (char *)mstate->dtms_scratch_ptr;
3867 		int i;
3868 
3869 		/*
3870 		 * Check both the token buffer and (later) the input buffer,
3871 		 * since both could be non-scratch addresses.
3872 		 */
3873 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3874 			regs[rd] = 0;
3875 			break;
3876 		}
3877 
3878 		if (!DTRACE_INSCRATCH(mstate, size)) {
3879 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3880 			regs[rd] = 0;
3881 			break;
3882 		}
3883 
3884 		if (addr == 0) {
3885 			/*
3886 			 * If the address specified is NULL, we use our saved
3887 			 * strtok pointer from the mstate.  Note that this
3888 			 * means that the saved strtok pointer is _only_
3889 			 * valid within multiple enablings of the same probe --
3890 			 * it behaves like an implicit clause-local variable.
3891 			 */
3892 			addr = mstate->dtms_strtok;
3893 		} else {
3894 			/*
3895 			 * If the user-specified address is non-NULL we must
3896 			 * access check it.  This is the only time we have
3897 			 * a chance to do so, since this address may reside
3898 			 * in the string table of this clause-- future calls
3899 			 * (when we fetch addr from mstate->dtms_strtok)
3900 			 * would fail this access check.
3901 			 */
3902 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3903 				regs[rd] = 0;
3904 				break;
3905 			}
3906 		}
3907 
3908 		/*
3909 		 * First, zero the token map, and then process the token
3910 		 * string -- setting a bit in the map for every character
3911 		 * found in the token string.
3912 		 */
3913 		for (i = 0; i < sizeof (tokmap); i++)
3914 			tokmap[i] = 0;
3915 
3916 		for (; tokaddr < toklimit; tokaddr++) {
3917 			if ((c = dtrace_load8(tokaddr)) == '\0')
3918 				break;
3919 
3920 			ASSERT((c >> 3) < sizeof (tokmap));
3921 			tokmap[c >> 3] |= (1 << (c & 0x7));
3922 		}
3923 
3924 		for (limit = addr + size; addr < limit; addr++) {
3925 			/*
3926 			 * We're looking for a character that is _not_ contained
3927 			 * in the token string.
3928 			 */
3929 			if ((c = dtrace_load8(addr)) == '\0')
3930 				break;
3931 
3932 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3933 				break;
3934 		}
3935 
3936 		if (c == '\0') {
3937 			/*
3938 			 * We reached the end of the string without finding
3939 			 * any character that was not in the token string.
3940 			 * We return NULL in this case, and we set the saved
3941 			 * address to NULL as well.
3942 			 */
3943 			regs[rd] = 0;
3944 			mstate->dtms_strtok = 0;
3945 			break;
3946 		}
3947 
3948 		/*
3949 		 * From here on, we're copying into the destination string.
3950 		 */
3951 		for (i = 0; addr < limit && i < size - 1; addr++) {
3952 			if ((c = dtrace_load8(addr)) == '\0')
3953 				break;
3954 
3955 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3956 				break;
3957 
3958 			ASSERT(i < size);
3959 			dest[i++] = c;
3960 		}
3961 
3962 		ASSERT(i < size);
3963 		dest[i] = '\0';
3964 		regs[rd] = (uintptr_t)dest;
3965 		mstate->dtms_scratch_ptr += size;
3966 		mstate->dtms_strtok = addr;
3967 		break;
3968 	}
3969 
3970 	case DIF_SUBR_SUBSTR: {
3971 		uintptr_t s = tupregs[0].dttk_value;
3972 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3973 		char *d = (char *)mstate->dtms_scratch_ptr;
3974 		int64_t index = (int64_t)tupregs[1].dttk_value;
3975 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
3976 		size_t len = dtrace_strlen((char *)s, size);
3977 		int64_t i = 0;
3978 
3979 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
3980 			regs[rd] = 0;
3981 			break;
3982 		}
3983 
3984 		if (!DTRACE_INSCRATCH(mstate, size)) {
3985 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3986 			regs[rd] = 0;
3987 			break;
3988 		}
3989 
3990 		if (nargs <= 2)
3991 			remaining = (int64_t)size;
3992 
3993 		if (index < 0) {
3994 			index += len;
3995 
3996 			if (index < 0 && index + remaining > 0) {
3997 				remaining += index;
3998 				index = 0;
3999 			}
4000 		}
4001 
4002 		if (index >= len || index < 0) {
4003 			remaining = 0;
4004 		} else if (remaining < 0) {
4005 			remaining += len - index;
4006 		} else if (index + remaining > size) {
4007 			remaining = size - index;
4008 		}
4009 
4010 		for (i = 0; i < remaining; i++) {
4011 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4012 				break;
4013 		}
4014 
4015 		d[i] = '\0';
4016 
4017 		mstate->dtms_scratch_ptr += size;
4018 		regs[rd] = (uintptr_t)d;
4019 		break;
4020 	}
4021 
4022 	case DIF_SUBR_TOUPPER:
4023 	case DIF_SUBR_TOLOWER: {
4024 		uintptr_t s = tupregs[0].dttk_value;
4025 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4026 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4027 		size_t len = dtrace_strlen((char *)s, size);
4028 		char lower, upper, convert;
4029 		int64_t i;
4030 
4031 		if (subr == DIF_SUBR_TOUPPER) {
4032 			lower = 'a';
4033 			upper = 'z';
4034 			convert = 'A';
4035 		} else {
4036 			lower = 'A';
4037 			upper = 'Z';
4038 			convert = 'a';
4039 		}
4040 
4041 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4042 			regs[rd] = 0;
4043 			break;
4044 		}
4045 
4046 		if (!DTRACE_INSCRATCH(mstate, size)) {
4047 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4048 			regs[rd] = 0;
4049 			break;
4050 		}
4051 
4052 		for (i = 0; i < size - 1; i++) {
4053 			if ((c = dtrace_load8(s + i)) == '\0')
4054 				break;
4055 
4056 			if (c >= lower && c <= upper)
4057 				c = convert + (c - lower);
4058 
4059 			dest[i] = c;
4060 		}
4061 
4062 		ASSERT(i < size);
4063 		dest[i] = '\0';
4064 		regs[rd] = (uintptr_t)dest;
4065 		mstate->dtms_scratch_ptr += size;
4066 		break;
4067 	}
4068 
4069 #if defined(sun)
4070 	case DIF_SUBR_GETMAJOR:
4071 #ifdef _LP64
4072 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4073 #else
4074 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4075 #endif
4076 		break;
4077 
4078 	case DIF_SUBR_GETMINOR:
4079 #ifdef _LP64
4080 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4081 #else
4082 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4083 #endif
4084 		break;
4085 
4086 	case DIF_SUBR_DDI_PATHNAME: {
4087 		/*
4088 		 * This one is a galactic mess.  We are going to roughly
4089 		 * emulate ddi_pathname(), but it's made more complicated
4090 		 * by the fact that we (a) want to include the minor name and
4091 		 * (b) must proceed iteratively instead of recursively.
4092 		 */
4093 		uintptr_t dest = mstate->dtms_scratch_ptr;
4094 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4095 		char *start = (char *)dest, *end = start + size - 1;
4096 		uintptr_t daddr = tupregs[0].dttk_value;
4097 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4098 		char *s;
4099 		int i, len, depth = 0;
4100 
4101 		/*
4102 		 * Due to all the pointer jumping we do and context we must
4103 		 * rely upon, we just mandate that the user must have kernel
4104 		 * read privileges to use this routine.
4105 		 */
4106 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4107 			*flags |= CPU_DTRACE_KPRIV;
4108 			*illval = daddr;
4109 			regs[rd] = 0;
4110 		}
4111 
4112 		if (!DTRACE_INSCRATCH(mstate, size)) {
4113 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4114 			regs[rd] = 0;
4115 			break;
4116 		}
4117 
4118 		*end = '\0';
4119 
4120 		/*
4121 		 * We want to have a name for the minor.  In order to do this,
4122 		 * we need to walk the minor list from the devinfo.  We want
4123 		 * to be sure that we don't infinitely walk a circular list,
4124 		 * so we check for circularity by sending a scout pointer
4125 		 * ahead two elements for every element that we iterate over;
4126 		 * if the list is circular, these will ultimately point to the
4127 		 * same element.  You may recognize this little trick as the
4128 		 * answer to a stupid interview question -- one that always
4129 		 * seems to be asked by those who had to have it laboriously
4130 		 * explained to them, and who can't even concisely describe
4131 		 * the conditions under which one would be forced to resort to
4132 		 * this technique.  Needless to say, those conditions are
4133 		 * found here -- and probably only here.  Is this the only use
4134 		 * of this infamous trick in shipping, production code?  If it
4135 		 * isn't, it probably should be...
4136 		 */
4137 		if (minor != -1) {
4138 			uintptr_t maddr = dtrace_loadptr(daddr +
4139 			    offsetof(struct dev_info, devi_minor));
4140 
4141 			uintptr_t next = offsetof(struct ddi_minor_data, next);
4142 			uintptr_t name = offsetof(struct ddi_minor_data,
4143 			    d_minor) + offsetof(struct ddi_minor, name);
4144 			uintptr_t dev = offsetof(struct ddi_minor_data,
4145 			    d_minor) + offsetof(struct ddi_minor, dev);
4146 			uintptr_t scout;
4147 
4148 			if (maddr != NULL)
4149 				scout = dtrace_loadptr(maddr + next);
4150 
4151 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4152 				uint64_t m;
4153 #ifdef _LP64
4154 				m = dtrace_load64(maddr + dev) & MAXMIN64;
4155 #else
4156 				m = dtrace_load32(maddr + dev) & MAXMIN;
4157 #endif
4158 				if (m != minor) {
4159 					maddr = dtrace_loadptr(maddr + next);
4160 
4161 					if (scout == NULL)
4162 						continue;
4163 
4164 					scout = dtrace_loadptr(scout + next);
4165 
4166 					if (scout == NULL)
4167 						continue;
4168 
4169 					scout = dtrace_loadptr(scout + next);
4170 
4171 					if (scout == NULL)
4172 						continue;
4173 
4174 					if (scout == maddr) {
4175 						*flags |= CPU_DTRACE_ILLOP;
4176 						break;
4177 					}
4178 
4179 					continue;
4180 				}
4181 
4182 				/*
4183 				 * We have the minor data.  Now we need to
4184 				 * copy the minor's name into the end of the
4185 				 * pathname.
4186 				 */
4187 				s = (char *)dtrace_loadptr(maddr + name);
4188 				len = dtrace_strlen(s, size);
4189 
4190 				if (*flags & CPU_DTRACE_FAULT)
4191 					break;
4192 
4193 				if (len != 0) {
4194 					if ((end -= (len + 1)) < start)
4195 						break;
4196 
4197 					*end = ':';
4198 				}
4199 
4200 				for (i = 1; i <= len; i++)
4201 					end[i] = dtrace_load8((uintptr_t)s++);
4202 				break;
4203 			}
4204 		}
4205 
4206 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4207 			ddi_node_state_t devi_state;
4208 
4209 			devi_state = dtrace_load32(daddr +
4210 			    offsetof(struct dev_info, devi_node_state));
4211 
4212 			if (*flags & CPU_DTRACE_FAULT)
4213 				break;
4214 
4215 			if (devi_state >= DS_INITIALIZED) {
4216 				s = (char *)dtrace_loadptr(daddr +
4217 				    offsetof(struct dev_info, devi_addr));
4218 				len = dtrace_strlen(s, size);
4219 
4220 				if (*flags & CPU_DTRACE_FAULT)
4221 					break;
4222 
4223 				if (len != 0) {
4224 					if ((end -= (len + 1)) < start)
4225 						break;
4226 
4227 					*end = '@';
4228 				}
4229 
4230 				for (i = 1; i <= len; i++)
4231 					end[i] = dtrace_load8((uintptr_t)s++);
4232 			}
4233 
4234 			/*
4235 			 * Now for the node name...
4236 			 */
4237 			s = (char *)dtrace_loadptr(daddr +
4238 			    offsetof(struct dev_info, devi_node_name));
4239 
4240 			daddr = dtrace_loadptr(daddr +
4241 			    offsetof(struct dev_info, devi_parent));
4242 
4243 			/*
4244 			 * If our parent is NULL (that is, if we're the root
4245 			 * node), we're going to use the special path
4246 			 * "devices".
4247 			 */
4248 			if (daddr == 0)
4249 				s = "devices";
4250 
4251 			len = dtrace_strlen(s, size);
4252 			if (*flags & CPU_DTRACE_FAULT)
4253 				break;
4254 
4255 			if ((end -= (len + 1)) < start)
4256 				break;
4257 
4258 			for (i = 1; i <= len; i++)
4259 				end[i] = dtrace_load8((uintptr_t)s++);
4260 			*end = '/';
4261 
4262 			if (depth++ > dtrace_devdepth_max) {
4263 				*flags |= CPU_DTRACE_ILLOP;
4264 				break;
4265 			}
4266 		}
4267 
4268 		if (end < start)
4269 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4270 
4271 		if (daddr == 0) {
4272 			regs[rd] = (uintptr_t)end;
4273 			mstate->dtms_scratch_ptr += size;
4274 		}
4275 
4276 		break;
4277 	}
4278 #endif
4279 
4280 	case DIF_SUBR_STRJOIN: {
4281 		char *d = (char *)mstate->dtms_scratch_ptr;
4282 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4283 		uintptr_t s1 = tupregs[0].dttk_value;
4284 		uintptr_t s2 = tupregs[1].dttk_value;
4285 		int i = 0;
4286 
4287 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4288 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4289 			regs[rd] = 0;
4290 			break;
4291 		}
4292 
4293 		if (!DTRACE_INSCRATCH(mstate, size)) {
4294 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4295 			regs[rd] = 0;
4296 			break;
4297 		}
4298 
4299 		for (;;) {
4300 			if (i >= size) {
4301 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4302 				regs[rd] = 0;
4303 				break;
4304 			}
4305 
4306 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4307 				i--;
4308 				break;
4309 			}
4310 		}
4311 
4312 		for (;;) {
4313 			if (i >= size) {
4314 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4315 				regs[rd] = 0;
4316 				break;
4317 			}
4318 
4319 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4320 				break;
4321 		}
4322 
4323 		if (i < size) {
4324 			mstate->dtms_scratch_ptr += i;
4325 			regs[rd] = (uintptr_t)d;
4326 		}
4327 
4328 		break;
4329 	}
4330 
4331 	case DIF_SUBR_LLTOSTR: {
4332 		int64_t i = (int64_t)tupregs[0].dttk_value;
4333 		uint64_t val, digit;
4334 		uint64_t size = 65;	/* enough room for 2^64 in binary */
4335 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4336 		int base = 10;
4337 
4338 		if (nargs > 1) {
4339 			if ((base = tupregs[1].dttk_value) <= 1 ||
4340 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4341 				*flags |= CPU_DTRACE_ILLOP;
4342 				break;
4343 			}
4344 		}
4345 
4346 		val = (base == 10 && i < 0) ? i * -1 : i;
4347 
4348 		if (!DTRACE_INSCRATCH(mstate, size)) {
4349 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4350 			regs[rd] = 0;
4351 			break;
4352 		}
4353 
4354 		for (*end-- = '\0'; val; val /= base) {
4355 			if ((digit = val % base) <= '9' - '0') {
4356 				*end-- = '0' + digit;
4357 			} else {
4358 				*end-- = 'a' + (digit - ('9' - '0') - 1);
4359 			}
4360 		}
4361 
4362 		if (i == 0 && base == 16)
4363 			*end-- = '0';
4364 
4365 		if (base == 16)
4366 			*end-- = 'x';
4367 
4368 		if (i == 0 || base == 8 || base == 16)
4369 			*end-- = '0';
4370 
4371 		if (i < 0 && base == 10)
4372 			*end-- = '-';
4373 
4374 		regs[rd] = (uintptr_t)end + 1;
4375 		mstate->dtms_scratch_ptr += size;
4376 		break;
4377 	}
4378 
4379 	case DIF_SUBR_HTONS:
4380 	case DIF_SUBR_NTOHS:
4381 #if BYTE_ORDER == BIG_ENDIAN
4382 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4383 #else
4384 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4385 #endif
4386 		break;
4387 
4388 
4389 	case DIF_SUBR_HTONL:
4390 	case DIF_SUBR_NTOHL:
4391 #if BYTE_ORDER == BIG_ENDIAN
4392 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4393 #else
4394 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4395 #endif
4396 		break;
4397 
4398 
4399 	case DIF_SUBR_HTONLL:
4400 	case DIF_SUBR_NTOHLL:
4401 #if BYTE_ORDER == BIG_ENDIAN
4402 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4403 #else
4404 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4405 #endif
4406 		break;
4407 
4408 
4409 	case DIF_SUBR_DIRNAME:
4410 	case DIF_SUBR_BASENAME: {
4411 		char *dest = (char *)mstate->dtms_scratch_ptr;
4412 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4413 		uintptr_t src = tupregs[0].dttk_value;
4414 		int i, j, len = dtrace_strlen((char *)src, size);
4415 		int lastbase = -1, firstbase = -1, lastdir = -1;
4416 		int start, end;
4417 
4418 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4419 			regs[rd] = 0;
4420 			break;
4421 		}
4422 
4423 		if (!DTRACE_INSCRATCH(mstate, size)) {
4424 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4425 			regs[rd] = 0;
4426 			break;
4427 		}
4428 
4429 		/*
4430 		 * The basename and dirname for a zero-length string is
4431 		 * defined to be "."
4432 		 */
4433 		if (len == 0) {
4434 			len = 1;
4435 			src = (uintptr_t)".";
4436 		}
4437 
4438 		/*
4439 		 * Start from the back of the string, moving back toward the
4440 		 * front until we see a character that isn't a slash.  That
4441 		 * character is the last character in the basename.
4442 		 */
4443 		for (i = len - 1; i >= 0; i--) {
4444 			if (dtrace_load8(src + i) != '/')
4445 				break;
4446 		}
4447 
4448 		if (i >= 0)
4449 			lastbase = i;
4450 
4451 		/*
4452 		 * Starting from the last character in the basename, move
4453 		 * towards the front until we find a slash.  The character
4454 		 * that we processed immediately before that is the first
4455 		 * character in the basename.
4456 		 */
4457 		for (; i >= 0; i--) {
4458 			if (dtrace_load8(src + i) == '/')
4459 				break;
4460 		}
4461 
4462 		if (i >= 0)
4463 			firstbase = i + 1;
4464 
4465 		/*
4466 		 * Now keep going until we find a non-slash character.  That
4467 		 * character is the last character in the dirname.
4468 		 */
4469 		for (; i >= 0; i--) {
4470 			if (dtrace_load8(src + i) != '/')
4471 				break;
4472 		}
4473 
4474 		if (i >= 0)
4475 			lastdir = i;
4476 
4477 		ASSERT(!(lastbase == -1 && firstbase != -1));
4478 		ASSERT(!(firstbase == -1 && lastdir != -1));
4479 
4480 		if (lastbase == -1) {
4481 			/*
4482 			 * We didn't find a non-slash character.  We know that
4483 			 * the length is non-zero, so the whole string must be
4484 			 * slashes.  In either the dirname or the basename
4485 			 * case, we return '/'.
4486 			 */
4487 			ASSERT(firstbase == -1);
4488 			firstbase = lastbase = lastdir = 0;
4489 		}
4490 
4491 		if (firstbase == -1) {
4492 			/*
4493 			 * The entire string consists only of a basename
4494 			 * component.  If we're looking for dirname, we need
4495 			 * to change our string to be just "."; if we're
4496 			 * looking for a basename, we'll just set the first
4497 			 * character of the basename to be 0.
4498 			 */
4499 			if (subr == DIF_SUBR_DIRNAME) {
4500 				ASSERT(lastdir == -1);
4501 				src = (uintptr_t)".";
4502 				lastdir = 0;
4503 			} else {
4504 				firstbase = 0;
4505 			}
4506 		}
4507 
4508 		if (subr == DIF_SUBR_DIRNAME) {
4509 			if (lastdir == -1) {
4510 				/*
4511 				 * We know that we have a slash in the name --
4512 				 * or lastdir would be set to 0, above.  And
4513 				 * because lastdir is -1, we know that this
4514 				 * slash must be the first character.  (That
4515 				 * is, the full string must be of the form
4516 				 * "/basename".)  In this case, the last
4517 				 * character of the directory name is 0.
4518 				 */
4519 				lastdir = 0;
4520 			}
4521 
4522 			start = 0;
4523 			end = lastdir;
4524 		} else {
4525 			ASSERT(subr == DIF_SUBR_BASENAME);
4526 			ASSERT(firstbase != -1 && lastbase != -1);
4527 			start = firstbase;
4528 			end = lastbase;
4529 		}
4530 
4531 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4532 			dest[j] = dtrace_load8(src + i);
4533 
4534 		dest[j] = '\0';
4535 		regs[rd] = (uintptr_t)dest;
4536 		mstate->dtms_scratch_ptr += size;
4537 		break;
4538 	}
4539 
4540 	case DIF_SUBR_CLEANPATH: {
4541 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4542 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4543 		uintptr_t src = tupregs[0].dttk_value;
4544 		int i = 0, j = 0;
4545 
4546 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4547 			regs[rd] = 0;
4548 			break;
4549 		}
4550 
4551 		if (!DTRACE_INSCRATCH(mstate, size)) {
4552 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4553 			regs[rd] = 0;
4554 			break;
4555 		}
4556 
4557 		/*
4558 		 * Move forward, loading each character.
4559 		 */
4560 		do {
4561 			c = dtrace_load8(src + i++);
4562 next:
4563 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4564 				break;
4565 
4566 			if (c != '/') {
4567 				dest[j++] = c;
4568 				continue;
4569 			}
4570 
4571 			c = dtrace_load8(src + i++);
4572 
4573 			if (c == '/') {
4574 				/*
4575 				 * We have two slashes -- we can just advance
4576 				 * to the next character.
4577 				 */
4578 				goto next;
4579 			}
4580 
4581 			if (c != '.') {
4582 				/*
4583 				 * This is not "." and it's not ".." -- we can
4584 				 * just store the "/" and this character and
4585 				 * drive on.
4586 				 */
4587 				dest[j++] = '/';
4588 				dest[j++] = c;
4589 				continue;
4590 			}
4591 
4592 			c = dtrace_load8(src + i++);
4593 
4594 			if (c == '/') {
4595 				/*
4596 				 * This is a "/./" component.  We're not going
4597 				 * to store anything in the destination buffer;
4598 				 * we're just going to go to the next component.
4599 				 */
4600 				goto next;
4601 			}
4602 
4603 			if (c != '.') {
4604 				/*
4605 				 * This is not ".." -- we can just store the
4606 				 * "/." and this character and continue
4607 				 * processing.
4608 				 */
4609 				dest[j++] = '/';
4610 				dest[j++] = '.';
4611 				dest[j++] = c;
4612 				continue;
4613 			}
4614 
4615 			c = dtrace_load8(src + i++);
4616 
4617 			if (c != '/' && c != '\0') {
4618 				/*
4619 				 * This is not ".." -- it's "..[mumble]".
4620 				 * We'll store the "/.." and this character
4621 				 * and continue processing.
4622 				 */
4623 				dest[j++] = '/';
4624 				dest[j++] = '.';
4625 				dest[j++] = '.';
4626 				dest[j++] = c;
4627 				continue;
4628 			}
4629 
4630 			/*
4631 			 * This is "/../" or "/..\0".  We need to back up
4632 			 * our destination pointer until we find a "/".
4633 			 */
4634 			i--;
4635 			while (j != 0 && dest[--j] != '/')
4636 				continue;
4637 
4638 			if (c == '\0')
4639 				dest[++j] = '/';
4640 		} while (c != '\0');
4641 
4642 		dest[j] = '\0';
4643 		regs[rd] = (uintptr_t)dest;
4644 		mstate->dtms_scratch_ptr += size;
4645 		break;
4646 	}
4647 
4648 	case DIF_SUBR_INET_NTOA:
4649 	case DIF_SUBR_INET_NTOA6:
4650 	case DIF_SUBR_INET_NTOP: {
4651 		size_t size;
4652 		int af, argi, i;
4653 		char *base, *end;
4654 
4655 		if (subr == DIF_SUBR_INET_NTOP) {
4656 			af = (int)tupregs[0].dttk_value;
4657 			argi = 1;
4658 		} else {
4659 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4660 			argi = 0;
4661 		}
4662 
4663 		if (af == AF_INET) {
4664 			ipaddr_t ip4;
4665 			uint8_t *ptr8, val;
4666 
4667 			/*
4668 			 * Safely load the IPv4 address.
4669 			 */
4670 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4671 
4672 			/*
4673 			 * Check an IPv4 string will fit in scratch.
4674 			 */
4675 			size = INET_ADDRSTRLEN;
4676 			if (!DTRACE_INSCRATCH(mstate, size)) {
4677 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4678 				regs[rd] = 0;
4679 				break;
4680 			}
4681 			base = (char *)mstate->dtms_scratch_ptr;
4682 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4683 
4684 			/*
4685 			 * Stringify as a dotted decimal quad.
4686 			 */
4687 			*end-- = '\0';
4688 			ptr8 = (uint8_t *)&ip4;
4689 			for (i = 3; i >= 0; i--) {
4690 				val = ptr8[i];
4691 
4692 				if (val == 0) {
4693 					*end-- = '0';
4694 				} else {
4695 					for (; val; val /= 10) {
4696 						*end-- = '0' + (val % 10);
4697 					}
4698 				}
4699 
4700 				if (i > 0)
4701 					*end-- = '.';
4702 			}
4703 			ASSERT(end + 1 >= base);
4704 
4705 		} else if (af == AF_INET6) {
4706 			struct in6_addr ip6;
4707 			int firstzero, tryzero, numzero, v6end;
4708 			uint16_t val;
4709 			const char digits[] = "0123456789abcdef";
4710 
4711 			/*
4712 			 * Stringify using RFC 1884 convention 2 - 16 bit
4713 			 * hexadecimal values with a zero-run compression.
4714 			 * Lower case hexadecimal digits are used.
4715 			 * 	eg, fe80::214:4fff:fe0b:76c8.
4716 			 * The IPv4 embedded form is returned for inet_ntop,
4717 			 * just the IPv4 string is returned for inet_ntoa6.
4718 			 */
4719 
4720 			/*
4721 			 * Safely load the IPv6 address.
4722 			 */
4723 			dtrace_bcopy(
4724 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4725 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4726 
4727 			/*
4728 			 * Check an IPv6 string will fit in scratch.
4729 			 */
4730 			size = INET6_ADDRSTRLEN;
4731 			if (!DTRACE_INSCRATCH(mstate, size)) {
4732 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4733 				regs[rd] = 0;
4734 				break;
4735 			}
4736 			base = (char *)mstate->dtms_scratch_ptr;
4737 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4738 			*end-- = '\0';
4739 
4740 			/*
4741 			 * Find the longest run of 16 bit zero values
4742 			 * for the single allowed zero compression - "::".
4743 			 */
4744 			firstzero = -1;
4745 			tryzero = -1;
4746 			numzero = 1;
4747 			for (i = 0; i < sizeof (struct in6_addr); i++) {
4748 #if defined(sun)
4749 				if (ip6._S6_un._S6_u8[i] == 0 &&
4750 #else
4751 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4752 #endif
4753 				    tryzero == -1 && i % 2 == 0) {
4754 					tryzero = i;
4755 					continue;
4756 				}
4757 
4758 				if (tryzero != -1 &&
4759 #if defined(sun)
4760 				    (ip6._S6_un._S6_u8[i] != 0 ||
4761 #else
4762 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4763 #endif
4764 				    i == sizeof (struct in6_addr) - 1)) {
4765 
4766 					if (i - tryzero <= numzero) {
4767 						tryzero = -1;
4768 						continue;
4769 					}
4770 
4771 					firstzero = tryzero;
4772 					numzero = i - i % 2 - tryzero;
4773 					tryzero = -1;
4774 
4775 #if defined(sun)
4776 					if (ip6._S6_un._S6_u8[i] == 0 &&
4777 #else
4778 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4779 #endif
4780 					    i == sizeof (struct in6_addr) - 1)
4781 						numzero += 2;
4782 				}
4783 			}
4784 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4785 
4786 			/*
4787 			 * Check for an IPv4 embedded address.
4788 			 */
4789 			v6end = sizeof (struct in6_addr) - 2;
4790 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4791 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4792 				for (i = sizeof (struct in6_addr) - 1;
4793 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4794 					ASSERT(end >= base);
4795 
4796 #if defined(sun)
4797 					val = ip6._S6_un._S6_u8[i];
4798 #else
4799 					val = ip6.__u6_addr.__u6_addr8[i];
4800 #endif
4801 
4802 					if (val == 0) {
4803 						*end-- = '0';
4804 					} else {
4805 						for (; val; val /= 10) {
4806 							*end-- = '0' + val % 10;
4807 						}
4808 					}
4809 
4810 					if (i > DTRACE_V4MAPPED_OFFSET)
4811 						*end-- = '.';
4812 				}
4813 
4814 				if (subr == DIF_SUBR_INET_NTOA6)
4815 					goto inetout;
4816 
4817 				/*
4818 				 * Set v6end to skip the IPv4 address that
4819 				 * we have already stringified.
4820 				 */
4821 				v6end = 10;
4822 			}
4823 
4824 			/*
4825 			 * Build the IPv6 string by working through the
4826 			 * address in reverse.
4827 			 */
4828 			for (i = v6end; i >= 0; i -= 2) {
4829 				ASSERT(end >= base);
4830 
4831 				if (i == firstzero + numzero - 2) {
4832 					*end-- = ':';
4833 					*end-- = ':';
4834 					i -= numzero - 2;
4835 					continue;
4836 				}
4837 
4838 				if (i < 14 && i != firstzero - 2)
4839 					*end-- = ':';
4840 
4841 #if defined(sun)
4842 				val = (ip6._S6_un._S6_u8[i] << 8) +
4843 				    ip6._S6_un._S6_u8[i + 1];
4844 #else
4845 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4846 				    ip6.__u6_addr.__u6_addr8[i + 1];
4847 #endif
4848 
4849 				if (val == 0) {
4850 					*end-- = '0';
4851 				} else {
4852 					for (; val; val /= 16) {
4853 						*end-- = digits[val % 16];
4854 					}
4855 				}
4856 			}
4857 			ASSERT(end + 1 >= base);
4858 
4859 		} else {
4860 			/*
4861 			 * The user didn't use AH_INET or AH_INET6.
4862 			 */
4863 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4864 			regs[rd] = 0;
4865 			break;
4866 		}
4867 
4868 inetout:	regs[rd] = (uintptr_t)end + 1;
4869 		mstate->dtms_scratch_ptr += size;
4870 		break;
4871 	}
4872 
4873 	case DIF_SUBR_MEMREF: {
4874 		uintptr_t size = 2 * sizeof(uintptr_t);
4875 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4876 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4877 
4878 		/* address and length */
4879 		memref[0] = tupregs[0].dttk_value;
4880 		memref[1] = tupregs[1].dttk_value;
4881 
4882 		regs[rd] = (uintptr_t) memref;
4883 		mstate->dtms_scratch_ptr += scratch_size;
4884 		break;
4885 	}
4886 
4887 	case DIF_SUBR_TYPEREF: {
4888 		uintptr_t size = 4 * sizeof(uintptr_t);
4889 		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4890 		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4891 
4892 		/* address, num_elements, type_str, type_len */
4893 		typeref[0] = tupregs[0].dttk_value;
4894 		typeref[1] = tupregs[1].dttk_value;
4895 		typeref[2] = tupregs[2].dttk_value;
4896 		typeref[3] = tupregs[3].dttk_value;
4897 
4898 		regs[rd] = (uintptr_t) typeref;
4899 		mstate->dtms_scratch_ptr += scratch_size;
4900 		break;
4901 	}
4902 	}
4903 }
4904 
4905 /*
4906  * Emulate the execution of DTrace IR instructions specified by the given
4907  * DIF object.  This function is deliberately void of assertions as all of
4908  * the necessary checks are handled by a call to dtrace_difo_validate().
4909  */
4910 static uint64_t
4911 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4912     dtrace_vstate_t *vstate, dtrace_state_t *state)
4913 {
4914 	const dif_instr_t *text = difo->dtdo_buf;
4915 	const uint_t textlen = difo->dtdo_len;
4916 	const char *strtab = difo->dtdo_strtab;
4917 	const uint64_t *inttab = difo->dtdo_inttab;
4918 
4919 	uint64_t rval = 0;
4920 	dtrace_statvar_t *svar;
4921 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4922 	dtrace_difv_t *v;
4923 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4924 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4925 
4926 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4927 	uint64_t regs[DIF_DIR_NREGS];
4928 	uint64_t *tmp;
4929 
4930 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4931 	int64_t cc_r;
4932 	uint_t pc = 0, id, opc = 0;
4933 	uint8_t ttop = 0;
4934 	dif_instr_t instr;
4935 	uint_t r1, r2, rd;
4936 
4937 	/*
4938 	 * We stash the current DIF object into the machine state: we need it
4939 	 * for subsequent access checking.
4940 	 */
4941 	mstate->dtms_difo = difo;
4942 
4943 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4944 
4945 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4946 		opc = pc;
4947 
4948 		instr = text[pc++];
4949 		r1 = DIF_INSTR_R1(instr);
4950 		r2 = DIF_INSTR_R2(instr);
4951 		rd = DIF_INSTR_RD(instr);
4952 
4953 		switch (DIF_INSTR_OP(instr)) {
4954 		case DIF_OP_OR:
4955 			regs[rd] = regs[r1] | regs[r2];
4956 			break;
4957 		case DIF_OP_XOR:
4958 			regs[rd] = regs[r1] ^ regs[r2];
4959 			break;
4960 		case DIF_OP_AND:
4961 			regs[rd] = regs[r1] & regs[r2];
4962 			break;
4963 		case DIF_OP_SLL:
4964 			regs[rd] = regs[r1] << regs[r2];
4965 			break;
4966 		case DIF_OP_SRL:
4967 			regs[rd] = regs[r1] >> regs[r2];
4968 			break;
4969 		case DIF_OP_SUB:
4970 			regs[rd] = regs[r1] - regs[r2];
4971 			break;
4972 		case DIF_OP_ADD:
4973 			regs[rd] = regs[r1] + regs[r2];
4974 			break;
4975 		case DIF_OP_MUL:
4976 			regs[rd] = regs[r1] * regs[r2];
4977 			break;
4978 		case DIF_OP_SDIV:
4979 			if (regs[r2] == 0) {
4980 				regs[rd] = 0;
4981 				*flags |= CPU_DTRACE_DIVZERO;
4982 			} else {
4983 				regs[rd] = (int64_t)regs[r1] /
4984 				    (int64_t)regs[r2];
4985 			}
4986 			break;
4987 
4988 		case DIF_OP_UDIV:
4989 			if (regs[r2] == 0) {
4990 				regs[rd] = 0;
4991 				*flags |= CPU_DTRACE_DIVZERO;
4992 			} else {
4993 				regs[rd] = regs[r1] / regs[r2];
4994 			}
4995 			break;
4996 
4997 		case DIF_OP_SREM:
4998 			if (regs[r2] == 0) {
4999 				regs[rd] = 0;
5000 				*flags |= CPU_DTRACE_DIVZERO;
5001 			} else {
5002 				regs[rd] = (int64_t)regs[r1] %
5003 				    (int64_t)regs[r2];
5004 			}
5005 			break;
5006 
5007 		case DIF_OP_UREM:
5008 			if (regs[r2] == 0) {
5009 				regs[rd] = 0;
5010 				*flags |= CPU_DTRACE_DIVZERO;
5011 			} else {
5012 				regs[rd] = regs[r1] % regs[r2];
5013 			}
5014 			break;
5015 
5016 		case DIF_OP_NOT:
5017 			regs[rd] = ~regs[r1];
5018 			break;
5019 		case DIF_OP_MOV:
5020 			regs[rd] = regs[r1];
5021 			break;
5022 		case DIF_OP_CMP:
5023 			cc_r = regs[r1] - regs[r2];
5024 			cc_n = cc_r < 0;
5025 			cc_z = cc_r == 0;
5026 			cc_v = 0;
5027 			cc_c = regs[r1] < regs[r2];
5028 			break;
5029 		case DIF_OP_TST:
5030 			cc_n = cc_v = cc_c = 0;
5031 			cc_z = regs[r1] == 0;
5032 			break;
5033 		case DIF_OP_BA:
5034 			pc = DIF_INSTR_LABEL(instr);
5035 			break;
5036 		case DIF_OP_BE:
5037 			if (cc_z)
5038 				pc = DIF_INSTR_LABEL(instr);
5039 			break;
5040 		case DIF_OP_BNE:
5041 			if (cc_z == 0)
5042 				pc = DIF_INSTR_LABEL(instr);
5043 			break;
5044 		case DIF_OP_BG:
5045 			if ((cc_z | (cc_n ^ cc_v)) == 0)
5046 				pc = DIF_INSTR_LABEL(instr);
5047 			break;
5048 		case DIF_OP_BGU:
5049 			if ((cc_c | cc_z) == 0)
5050 				pc = DIF_INSTR_LABEL(instr);
5051 			break;
5052 		case DIF_OP_BGE:
5053 			if ((cc_n ^ cc_v) == 0)
5054 				pc = DIF_INSTR_LABEL(instr);
5055 			break;
5056 		case DIF_OP_BGEU:
5057 			if (cc_c == 0)
5058 				pc = DIF_INSTR_LABEL(instr);
5059 			break;
5060 		case DIF_OP_BL:
5061 			if (cc_n ^ cc_v)
5062 				pc = DIF_INSTR_LABEL(instr);
5063 			break;
5064 		case DIF_OP_BLU:
5065 			if (cc_c)
5066 				pc = DIF_INSTR_LABEL(instr);
5067 			break;
5068 		case DIF_OP_BLE:
5069 			if (cc_z | (cc_n ^ cc_v))
5070 				pc = DIF_INSTR_LABEL(instr);
5071 			break;
5072 		case DIF_OP_BLEU:
5073 			if (cc_c | cc_z)
5074 				pc = DIF_INSTR_LABEL(instr);
5075 			break;
5076 		case DIF_OP_RLDSB:
5077 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5078 				*flags |= CPU_DTRACE_KPRIV;
5079 				*illval = regs[r1];
5080 				break;
5081 			}
5082 			/*FALLTHROUGH*/
5083 		case DIF_OP_LDSB:
5084 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5085 			break;
5086 		case DIF_OP_RLDSH:
5087 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5088 				*flags |= CPU_DTRACE_KPRIV;
5089 				*illval = regs[r1];
5090 				break;
5091 			}
5092 			/*FALLTHROUGH*/
5093 		case DIF_OP_LDSH:
5094 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5095 			break;
5096 		case DIF_OP_RLDSW:
5097 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5098 				*flags |= CPU_DTRACE_KPRIV;
5099 				*illval = regs[r1];
5100 				break;
5101 			}
5102 			/*FALLTHROUGH*/
5103 		case DIF_OP_LDSW:
5104 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5105 			break;
5106 		case DIF_OP_RLDUB:
5107 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5108 				*flags |= CPU_DTRACE_KPRIV;
5109 				*illval = regs[r1];
5110 				break;
5111 			}
5112 			/*FALLTHROUGH*/
5113 		case DIF_OP_LDUB:
5114 			regs[rd] = dtrace_load8(regs[r1]);
5115 			break;
5116 		case DIF_OP_RLDUH:
5117 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5118 				*flags |= CPU_DTRACE_KPRIV;
5119 				*illval = regs[r1];
5120 				break;
5121 			}
5122 			/*FALLTHROUGH*/
5123 		case DIF_OP_LDUH:
5124 			regs[rd] = dtrace_load16(regs[r1]);
5125 			break;
5126 		case DIF_OP_RLDUW:
5127 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5128 				*flags |= CPU_DTRACE_KPRIV;
5129 				*illval = regs[r1];
5130 				break;
5131 			}
5132 			/*FALLTHROUGH*/
5133 		case DIF_OP_LDUW:
5134 			regs[rd] = dtrace_load32(regs[r1]);
5135 			break;
5136 		case DIF_OP_RLDX:
5137 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5138 				*flags |= CPU_DTRACE_KPRIV;
5139 				*illval = regs[r1];
5140 				break;
5141 			}
5142 			/*FALLTHROUGH*/
5143 		case DIF_OP_LDX:
5144 			regs[rd] = dtrace_load64(regs[r1]);
5145 			break;
5146 		case DIF_OP_ULDSB:
5147 			regs[rd] = (int8_t)
5148 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5149 			break;
5150 		case DIF_OP_ULDSH:
5151 			regs[rd] = (int16_t)
5152 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5153 			break;
5154 		case DIF_OP_ULDSW:
5155 			regs[rd] = (int32_t)
5156 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5157 			break;
5158 		case DIF_OP_ULDUB:
5159 			regs[rd] =
5160 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5161 			break;
5162 		case DIF_OP_ULDUH:
5163 			regs[rd] =
5164 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5165 			break;
5166 		case DIF_OP_ULDUW:
5167 			regs[rd] =
5168 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5169 			break;
5170 		case DIF_OP_ULDX:
5171 			regs[rd] =
5172 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5173 			break;
5174 		case DIF_OP_RET:
5175 			rval = regs[rd];
5176 			pc = textlen;
5177 			break;
5178 		case DIF_OP_NOP:
5179 			break;
5180 		case DIF_OP_SETX:
5181 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5182 			break;
5183 		case DIF_OP_SETS:
5184 			regs[rd] = (uint64_t)(uintptr_t)
5185 			    (strtab + DIF_INSTR_STRING(instr));
5186 			break;
5187 		case DIF_OP_SCMP: {
5188 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5189 			uintptr_t s1 = regs[r1];
5190 			uintptr_t s2 = regs[r2];
5191 
5192 			if (s1 != 0 &&
5193 			    !dtrace_strcanload(s1, sz, mstate, vstate))
5194 				break;
5195 			if (s2 != 0 &&
5196 			    !dtrace_strcanload(s2, sz, mstate, vstate))
5197 				break;
5198 
5199 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5200 
5201 			cc_n = cc_r < 0;
5202 			cc_z = cc_r == 0;
5203 			cc_v = cc_c = 0;
5204 			break;
5205 		}
5206 		case DIF_OP_LDGA:
5207 			regs[rd] = dtrace_dif_variable(mstate, state,
5208 			    r1, regs[r2]);
5209 			break;
5210 		case DIF_OP_LDGS:
5211 			id = DIF_INSTR_VAR(instr);
5212 
5213 			if (id >= DIF_VAR_OTHER_UBASE) {
5214 				uintptr_t a;
5215 
5216 				id -= DIF_VAR_OTHER_UBASE;
5217 				svar = vstate->dtvs_globals[id];
5218 				ASSERT(svar != NULL);
5219 				v = &svar->dtsv_var;
5220 
5221 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5222 					regs[rd] = svar->dtsv_data;
5223 					break;
5224 				}
5225 
5226 				a = (uintptr_t)svar->dtsv_data;
5227 
5228 				if (*(uint8_t *)a == UINT8_MAX) {
5229 					/*
5230 					 * If the 0th byte is set to UINT8_MAX
5231 					 * then this is to be treated as a
5232 					 * reference to a NULL variable.
5233 					 */
5234 					regs[rd] = 0;
5235 				} else {
5236 					regs[rd] = a + sizeof (uint64_t);
5237 				}
5238 
5239 				break;
5240 			}
5241 
5242 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5243 			break;
5244 
5245 		case DIF_OP_STGS:
5246 			id = DIF_INSTR_VAR(instr);
5247 
5248 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5249 			id -= DIF_VAR_OTHER_UBASE;
5250 
5251 			svar = vstate->dtvs_globals[id];
5252 			ASSERT(svar != NULL);
5253 			v = &svar->dtsv_var;
5254 
5255 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5256 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5257 
5258 				ASSERT(a != 0);
5259 				ASSERT(svar->dtsv_size != 0);
5260 
5261 				if (regs[rd] == 0) {
5262 					*(uint8_t *)a = UINT8_MAX;
5263 					break;
5264 				} else {
5265 					*(uint8_t *)a = 0;
5266 					a += sizeof (uint64_t);
5267 				}
5268 				if (!dtrace_vcanload(
5269 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5270 				    mstate, vstate))
5271 					break;
5272 
5273 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5274 				    (void *)a, &v->dtdv_type);
5275 				break;
5276 			}
5277 
5278 			svar->dtsv_data = regs[rd];
5279 			break;
5280 
5281 		case DIF_OP_LDTA:
5282 			/*
5283 			 * There are no DTrace built-in thread-local arrays at
5284 			 * present.  This opcode is saved for future work.
5285 			 */
5286 			*flags |= CPU_DTRACE_ILLOP;
5287 			regs[rd] = 0;
5288 			break;
5289 
5290 		case DIF_OP_LDLS:
5291 			id = DIF_INSTR_VAR(instr);
5292 
5293 			if (id < DIF_VAR_OTHER_UBASE) {
5294 				/*
5295 				 * For now, this has no meaning.
5296 				 */
5297 				regs[rd] = 0;
5298 				break;
5299 			}
5300 
5301 			id -= DIF_VAR_OTHER_UBASE;
5302 
5303 			ASSERT(id < vstate->dtvs_nlocals);
5304 			ASSERT(vstate->dtvs_locals != NULL);
5305 
5306 			svar = vstate->dtvs_locals[id];
5307 			ASSERT(svar != NULL);
5308 			v = &svar->dtsv_var;
5309 
5310 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5311 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5312 				size_t sz = v->dtdv_type.dtdt_size;
5313 
5314 				sz += sizeof (uint64_t);
5315 				ASSERT(svar->dtsv_size == NCPU * sz);
5316 				a += curcpu * sz;
5317 
5318 				if (*(uint8_t *)a == UINT8_MAX) {
5319 					/*
5320 					 * If the 0th byte is set to UINT8_MAX
5321 					 * then this is to be treated as a
5322 					 * reference to a NULL variable.
5323 					 */
5324 					regs[rd] = 0;
5325 				} else {
5326 					regs[rd] = a + sizeof (uint64_t);
5327 				}
5328 
5329 				break;
5330 			}
5331 
5332 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5333 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5334 			regs[rd] = tmp[curcpu];
5335 			break;
5336 
5337 		case DIF_OP_STLS:
5338 			id = DIF_INSTR_VAR(instr);
5339 
5340 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5341 			id -= DIF_VAR_OTHER_UBASE;
5342 			ASSERT(id < vstate->dtvs_nlocals);
5343 
5344 			ASSERT(vstate->dtvs_locals != NULL);
5345 			svar = vstate->dtvs_locals[id];
5346 			ASSERT(svar != NULL);
5347 			v = &svar->dtsv_var;
5348 
5349 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5350 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5351 				size_t sz = v->dtdv_type.dtdt_size;
5352 
5353 				sz += sizeof (uint64_t);
5354 				ASSERT(svar->dtsv_size == NCPU * sz);
5355 				a += curcpu * sz;
5356 
5357 				if (regs[rd] == 0) {
5358 					*(uint8_t *)a = UINT8_MAX;
5359 					break;
5360 				} else {
5361 					*(uint8_t *)a = 0;
5362 					a += sizeof (uint64_t);
5363 				}
5364 
5365 				if (!dtrace_vcanload(
5366 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5367 				    mstate, vstate))
5368 					break;
5369 
5370 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5371 				    (void *)a, &v->dtdv_type);
5372 				break;
5373 			}
5374 
5375 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5376 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5377 			tmp[curcpu] = regs[rd];
5378 			break;
5379 
5380 		case DIF_OP_LDTS: {
5381 			dtrace_dynvar_t *dvar;
5382 			dtrace_key_t *key;
5383 
5384 			id = DIF_INSTR_VAR(instr);
5385 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5386 			id -= DIF_VAR_OTHER_UBASE;
5387 			v = &vstate->dtvs_tlocals[id];
5388 
5389 			key = &tupregs[DIF_DTR_NREGS];
5390 			key[0].dttk_value = (uint64_t)id;
5391 			key[0].dttk_size = 0;
5392 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5393 			key[1].dttk_size = 0;
5394 
5395 			dvar = dtrace_dynvar(dstate, 2, key,
5396 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5397 			    mstate, vstate);
5398 
5399 			if (dvar == NULL) {
5400 				regs[rd] = 0;
5401 				break;
5402 			}
5403 
5404 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5405 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5406 			} else {
5407 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5408 			}
5409 
5410 			break;
5411 		}
5412 
5413 		case DIF_OP_STTS: {
5414 			dtrace_dynvar_t *dvar;
5415 			dtrace_key_t *key;
5416 
5417 			id = DIF_INSTR_VAR(instr);
5418 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5419 			id -= DIF_VAR_OTHER_UBASE;
5420 
5421 			key = &tupregs[DIF_DTR_NREGS];
5422 			key[0].dttk_value = (uint64_t)id;
5423 			key[0].dttk_size = 0;
5424 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5425 			key[1].dttk_size = 0;
5426 			v = &vstate->dtvs_tlocals[id];
5427 
5428 			dvar = dtrace_dynvar(dstate, 2, key,
5429 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5430 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5431 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5432 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5433 
5434 			/*
5435 			 * Given that we're storing to thread-local data,
5436 			 * we need to flush our predicate cache.
5437 			 */
5438 			curthread->t_predcache = 0;
5439 
5440 			if (dvar == NULL)
5441 				break;
5442 
5443 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5444 				if (!dtrace_vcanload(
5445 				    (void *)(uintptr_t)regs[rd],
5446 				    &v->dtdv_type, mstate, vstate))
5447 					break;
5448 
5449 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5450 				    dvar->dtdv_data, &v->dtdv_type);
5451 			} else {
5452 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5453 			}
5454 
5455 			break;
5456 		}
5457 
5458 		case DIF_OP_SRA:
5459 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5460 			break;
5461 
5462 		case DIF_OP_CALL:
5463 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5464 			    regs, tupregs, ttop, mstate, state);
5465 			break;
5466 
5467 		case DIF_OP_PUSHTR:
5468 			if (ttop == DIF_DTR_NREGS) {
5469 				*flags |= CPU_DTRACE_TUPOFLOW;
5470 				break;
5471 			}
5472 
5473 			if (r1 == DIF_TYPE_STRING) {
5474 				/*
5475 				 * If this is a string type and the size is 0,
5476 				 * we'll use the system-wide default string
5477 				 * size.  Note that we are _not_ looking at
5478 				 * the value of the DTRACEOPT_STRSIZE option;
5479 				 * had this been set, we would expect to have
5480 				 * a non-zero size value in the "pushtr".
5481 				 */
5482 				tupregs[ttop].dttk_size =
5483 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5484 				    regs[r2] ? regs[r2] :
5485 				    dtrace_strsize_default) + 1;
5486 			} else {
5487 				tupregs[ttop].dttk_size = regs[r2];
5488 			}
5489 
5490 			tupregs[ttop++].dttk_value = regs[rd];
5491 			break;
5492 
5493 		case DIF_OP_PUSHTV:
5494 			if (ttop == DIF_DTR_NREGS) {
5495 				*flags |= CPU_DTRACE_TUPOFLOW;
5496 				break;
5497 			}
5498 
5499 			tupregs[ttop].dttk_value = regs[rd];
5500 			tupregs[ttop++].dttk_size = 0;
5501 			break;
5502 
5503 		case DIF_OP_POPTS:
5504 			if (ttop != 0)
5505 				ttop--;
5506 			break;
5507 
5508 		case DIF_OP_FLUSHTS:
5509 			ttop = 0;
5510 			break;
5511 
5512 		case DIF_OP_LDGAA:
5513 		case DIF_OP_LDTAA: {
5514 			dtrace_dynvar_t *dvar;
5515 			dtrace_key_t *key = tupregs;
5516 			uint_t nkeys = ttop;
5517 
5518 			id = DIF_INSTR_VAR(instr);
5519 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5520 			id -= DIF_VAR_OTHER_UBASE;
5521 
5522 			key[nkeys].dttk_value = (uint64_t)id;
5523 			key[nkeys++].dttk_size = 0;
5524 
5525 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5526 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5527 				key[nkeys++].dttk_size = 0;
5528 				v = &vstate->dtvs_tlocals[id];
5529 			} else {
5530 				v = &vstate->dtvs_globals[id]->dtsv_var;
5531 			}
5532 
5533 			dvar = dtrace_dynvar(dstate, nkeys, key,
5534 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5535 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5536 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5537 
5538 			if (dvar == NULL) {
5539 				regs[rd] = 0;
5540 				break;
5541 			}
5542 
5543 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5544 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5545 			} else {
5546 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5547 			}
5548 
5549 			break;
5550 		}
5551 
5552 		case DIF_OP_STGAA:
5553 		case DIF_OP_STTAA: {
5554 			dtrace_dynvar_t *dvar;
5555 			dtrace_key_t *key = tupregs;
5556 			uint_t nkeys = ttop;
5557 
5558 			id = DIF_INSTR_VAR(instr);
5559 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5560 			id -= DIF_VAR_OTHER_UBASE;
5561 
5562 			key[nkeys].dttk_value = (uint64_t)id;
5563 			key[nkeys++].dttk_size = 0;
5564 
5565 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5566 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5567 				key[nkeys++].dttk_size = 0;
5568 				v = &vstate->dtvs_tlocals[id];
5569 			} else {
5570 				v = &vstate->dtvs_globals[id]->dtsv_var;
5571 			}
5572 
5573 			dvar = dtrace_dynvar(dstate, nkeys, key,
5574 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5575 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5576 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5577 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5578 
5579 			if (dvar == NULL)
5580 				break;
5581 
5582 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5583 				if (!dtrace_vcanload(
5584 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5585 				    mstate, vstate))
5586 					break;
5587 
5588 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5589 				    dvar->dtdv_data, &v->dtdv_type);
5590 			} else {
5591 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5592 			}
5593 
5594 			break;
5595 		}
5596 
5597 		case DIF_OP_ALLOCS: {
5598 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5599 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5600 
5601 			/*
5602 			 * Rounding up the user allocation size could have
5603 			 * overflowed large, bogus allocations (like -1ULL) to
5604 			 * 0.
5605 			 */
5606 			if (size < regs[r1] ||
5607 			    !DTRACE_INSCRATCH(mstate, size)) {
5608 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5609 				regs[rd] = 0;
5610 				break;
5611 			}
5612 
5613 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5614 			mstate->dtms_scratch_ptr += size;
5615 			regs[rd] = ptr;
5616 			break;
5617 		}
5618 
5619 		case DIF_OP_COPYS:
5620 			if (!dtrace_canstore(regs[rd], regs[r2],
5621 			    mstate, vstate)) {
5622 				*flags |= CPU_DTRACE_BADADDR;
5623 				*illval = regs[rd];
5624 				break;
5625 			}
5626 
5627 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5628 				break;
5629 
5630 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5631 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5632 			break;
5633 
5634 		case DIF_OP_STB:
5635 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5636 				*flags |= CPU_DTRACE_BADADDR;
5637 				*illval = regs[rd];
5638 				break;
5639 			}
5640 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5641 			break;
5642 
5643 		case DIF_OP_STH:
5644 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5645 				*flags |= CPU_DTRACE_BADADDR;
5646 				*illval = regs[rd];
5647 				break;
5648 			}
5649 			if (regs[rd] & 1) {
5650 				*flags |= CPU_DTRACE_BADALIGN;
5651 				*illval = regs[rd];
5652 				break;
5653 			}
5654 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5655 			break;
5656 
5657 		case DIF_OP_STW:
5658 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5659 				*flags |= CPU_DTRACE_BADADDR;
5660 				*illval = regs[rd];
5661 				break;
5662 			}
5663 			if (regs[rd] & 3) {
5664 				*flags |= CPU_DTRACE_BADALIGN;
5665 				*illval = regs[rd];
5666 				break;
5667 			}
5668 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5669 			break;
5670 
5671 		case DIF_OP_STX:
5672 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5673 				*flags |= CPU_DTRACE_BADADDR;
5674 				*illval = regs[rd];
5675 				break;
5676 			}
5677 			if (regs[rd] & 7) {
5678 				*flags |= CPU_DTRACE_BADALIGN;
5679 				*illval = regs[rd];
5680 				break;
5681 			}
5682 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5683 			break;
5684 		}
5685 	}
5686 
5687 	if (!(*flags & CPU_DTRACE_FAULT))
5688 		return (rval);
5689 
5690 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5691 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5692 
5693 	return (0);
5694 }
5695 
5696 static void
5697 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5698 {
5699 	dtrace_probe_t *probe = ecb->dte_probe;
5700 	dtrace_provider_t *prov = probe->dtpr_provider;
5701 	char c[DTRACE_FULLNAMELEN + 80], *str;
5702 	char *msg = "dtrace: breakpoint action at probe ";
5703 	char *ecbmsg = " (ecb ";
5704 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5705 	uintptr_t val = (uintptr_t)ecb;
5706 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5707 
5708 	if (dtrace_destructive_disallow)
5709 		return;
5710 
5711 	/*
5712 	 * It's impossible to be taking action on the NULL probe.
5713 	 */
5714 	ASSERT(probe != NULL);
5715 
5716 	/*
5717 	 * This is a poor man's (destitute man's?) sprintf():  we want to
5718 	 * print the provider name, module name, function name and name of
5719 	 * the probe, along with the hex address of the ECB with the breakpoint
5720 	 * action -- all of which we must place in the character buffer by
5721 	 * hand.
5722 	 */
5723 	while (*msg != '\0')
5724 		c[i++] = *msg++;
5725 
5726 	for (str = prov->dtpv_name; *str != '\0'; str++)
5727 		c[i++] = *str;
5728 	c[i++] = ':';
5729 
5730 	for (str = probe->dtpr_mod; *str != '\0'; str++)
5731 		c[i++] = *str;
5732 	c[i++] = ':';
5733 
5734 	for (str = probe->dtpr_func; *str != '\0'; str++)
5735 		c[i++] = *str;
5736 	c[i++] = ':';
5737 
5738 	for (str = probe->dtpr_name; *str != '\0'; str++)
5739 		c[i++] = *str;
5740 
5741 	while (*ecbmsg != '\0')
5742 		c[i++] = *ecbmsg++;
5743 
5744 	while (shift >= 0) {
5745 		mask = (uintptr_t)0xf << shift;
5746 
5747 		if (val >= ((uintptr_t)1 << shift))
5748 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5749 		shift -= 4;
5750 	}
5751 
5752 	c[i++] = ')';
5753 	c[i] = '\0';
5754 
5755 #if defined(sun)
5756 	debug_enter(c);
5757 #else
5758 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5759 #endif
5760 }
5761 
5762 static void
5763 dtrace_action_panic(dtrace_ecb_t *ecb)
5764 {
5765 	dtrace_probe_t *probe = ecb->dte_probe;
5766 
5767 	/*
5768 	 * It's impossible to be taking action on the NULL probe.
5769 	 */
5770 	ASSERT(probe != NULL);
5771 
5772 	if (dtrace_destructive_disallow)
5773 		return;
5774 
5775 	if (dtrace_panicked != NULL)
5776 		return;
5777 
5778 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5779 		return;
5780 
5781 	/*
5782 	 * We won the right to panic.  (We want to be sure that only one
5783 	 * thread calls panic() from dtrace_probe(), and that panic() is
5784 	 * called exactly once.)
5785 	 */
5786 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5787 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5788 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5789 }
5790 
5791 static void
5792 dtrace_action_raise(uint64_t sig)
5793 {
5794 	if (dtrace_destructive_disallow)
5795 		return;
5796 
5797 	if (sig >= NSIG) {
5798 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5799 		return;
5800 	}
5801 
5802 #if defined(sun)
5803 	/*
5804 	 * raise() has a queue depth of 1 -- we ignore all subsequent
5805 	 * invocations of the raise() action.
5806 	 */
5807 	if (curthread->t_dtrace_sig == 0)
5808 		curthread->t_dtrace_sig = (uint8_t)sig;
5809 
5810 	curthread->t_sig_check = 1;
5811 	aston(curthread);
5812 #else
5813 	struct proc *p = curproc;
5814 	PROC_LOCK(p);
5815 	kern_psignal(p, sig);
5816 	PROC_UNLOCK(p);
5817 #endif
5818 }
5819 
5820 static void
5821 dtrace_action_stop(void)
5822 {
5823 	if (dtrace_destructive_disallow)
5824 		return;
5825 
5826 #if defined(sun)
5827 	if (!curthread->t_dtrace_stop) {
5828 		curthread->t_dtrace_stop = 1;
5829 		curthread->t_sig_check = 1;
5830 		aston(curthread);
5831 	}
5832 #else
5833 	struct proc *p = curproc;
5834 	PROC_LOCK(p);
5835 	kern_psignal(p, SIGSTOP);
5836 	PROC_UNLOCK(p);
5837 #endif
5838 }
5839 
5840 static void
5841 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5842 {
5843 	hrtime_t now;
5844 	volatile uint16_t *flags;
5845 #if defined(sun)
5846 	cpu_t *cpu = CPU;
5847 #else
5848 	cpu_t *cpu = &solaris_cpu[curcpu];
5849 #endif
5850 
5851 	if (dtrace_destructive_disallow)
5852 		return;
5853 
5854 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5855 
5856 	now = dtrace_gethrtime();
5857 
5858 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5859 		/*
5860 		 * We need to advance the mark to the current time.
5861 		 */
5862 		cpu->cpu_dtrace_chillmark = now;
5863 		cpu->cpu_dtrace_chilled = 0;
5864 	}
5865 
5866 	/*
5867 	 * Now check to see if the requested chill time would take us over
5868 	 * the maximum amount of time allowed in the chill interval.  (Or
5869 	 * worse, if the calculation itself induces overflow.)
5870 	 */
5871 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5872 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5873 		*flags |= CPU_DTRACE_ILLOP;
5874 		return;
5875 	}
5876 
5877 	while (dtrace_gethrtime() - now < val)
5878 		continue;
5879 
5880 	/*
5881 	 * Normally, we assure that the value of the variable "timestamp" does
5882 	 * not change within an ECB.  The presence of chill() represents an
5883 	 * exception to this rule, however.
5884 	 */
5885 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5886 	cpu->cpu_dtrace_chilled += val;
5887 }
5888 
5889 static void
5890 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5891     uint64_t *buf, uint64_t arg)
5892 {
5893 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5894 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5895 	uint64_t *pcs = &buf[1], *fps;
5896 	char *str = (char *)&pcs[nframes];
5897 	int size, offs = 0, i, j;
5898 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5899 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5900 	char *sym;
5901 
5902 	/*
5903 	 * Should be taking a faster path if string space has not been
5904 	 * allocated.
5905 	 */
5906 	ASSERT(strsize != 0);
5907 
5908 	/*
5909 	 * We will first allocate some temporary space for the frame pointers.
5910 	 */
5911 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5912 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5913 	    (nframes * sizeof (uint64_t));
5914 
5915 	if (!DTRACE_INSCRATCH(mstate, size)) {
5916 		/*
5917 		 * Not enough room for our frame pointers -- need to indicate
5918 		 * that we ran out of scratch space.
5919 		 */
5920 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5921 		return;
5922 	}
5923 
5924 	mstate->dtms_scratch_ptr += size;
5925 	saved = mstate->dtms_scratch_ptr;
5926 
5927 	/*
5928 	 * Now get a stack with both program counters and frame pointers.
5929 	 */
5930 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5931 	dtrace_getufpstack(buf, fps, nframes + 1);
5932 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5933 
5934 	/*
5935 	 * If that faulted, we're cooked.
5936 	 */
5937 	if (*flags & CPU_DTRACE_FAULT)
5938 		goto out;
5939 
5940 	/*
5941 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5942 	 * each iteration, we restore the scratch pointer.
5943 	 */
5944 	for (i = 0; i < nframes; i++) {
5945 		mstate->dtms_scratch_ptr = saved;
5946 
5947 		if (offs >= strsize)
5948 			break;
5949 
5950 		sym = (char *)(uintptr_t)dtrace_helper(
5951 		    DTRACE_HELPER_ACTION_USTACK,
5952 		    mstate, state, pcs[i], fps[i]);
5953 
5954 		/*
5955 		 * If we faulted while running the helper, we're going to
5956 		 * clear the fault and null out the corresponding string.
5957 		 */
5958 		if (*flags & CPU_DTRACE_FAULT) {
5959 			*flags &= ~CPU_DTRACE_FAULT;
5960 			str[offs++] = '\0';
5961 			continue;
5962 		}
5963 
5964 		if (sym == NULL) {
5965 			str[offs++] = '\0';
5966 			continue;
5967 		}
5968 
5969 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5970 
5971 		/*
5972 		 * Now copy in the string that the helper returned to us.
5973 		 */
5974 		for (j = 0; offs + j < strsize; j++) {
5975 			if ((str[offs + j] = sym[j]) == '\0')
5976 				break;
5977 		}
5978 
5979 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5980 
5981 		offs += j + 1;
5982 	}
5983 
5984 	if (offs >= strsize) {
5985 		/*
5986 		 * If we didn't have room for all of the strings, we don't
5987 		 * abort processing -- this needn't be a fatal error -- but we
5988 		 * still want to increment a counter (dts_stkstroverflows) to
5989 		 * allow this condition to be warned about.  (If this is from
5990 		 * a jstack() action, it is easily tuned via jstackstrsize.)
5991 		 */
5992 		dtrace_error(&state->dts_stkstroverflows);
5993 	}
5994 
5995 	while (offs < strsize)
5996 		str[offs++] = '\0';
5997 
5998 out:
5999 	mstate->dtms_scratch_ptr = old;
6000 }
6001 
6002 /*
6003  * If you're looking for the epicenter of DTrace, you just found it.  This
6004  * is the function called by the provider to fire a probe -- from which all
6005  * subsequent probe-context DTrace activity emanates.
6006  */
6007 void
6008 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6009     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6010 {
6011 	processorid_t cpuid;
6012 	dtrace_icookie_t cookie;
6013 	dtrace_probe_t *probe;
6014 	dtrace_mstate_t mstate;
6015 	dtrace_ecb_t *ecb;
6016 	dtrace_action_t *act;
6017 	intptr_t offs;
6018 	size_t size;
6019 	int vtime, onintr;
6020 	volatile uint16_t *flags;
6021 	hrtime_t now;
6022 
6023 	if (panicstr != NULL)
6024 		return;
6025 
6026 #if defined(sun)
6027 	/*
6028 	 * Kick out immediately if this CPU is still being born (in which case
6029 	 * curthread will be set to -1) or the current thread can't allow
6030 	 * probes in its current context.
6031 	 */
6032 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6033 		return;
6034 #endif
6035 
6036 	cookie = dtrace_interrupt_disable();
6037 	probe = dtrace_probes[id - 1];
6038 	cpuid = curcpu;
6039 	onintr = CPU_ON_INTR(CPU);
6040 
6041 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6042 	    probe->dtpr_predcache == curthread->t_predcache) {
6043 		/*
6044 		 * We have hit in the predicate cache; we know that
6045 		 * this predicate would evaluate to be false.
6046 		 */
6047 		dtrace_interrupt_enable(cookie);
6048 		return;
6049 	}
6050 
6051 #if defined(sun)
6052 	if (panic_quiesce) {
6053 #else
6054 	if (panicstr != NULL) {
6055 #endif
6056 		/*
6057 		 * We don't trace anything if we're panicking.
6058 		 */
6059 		dtrace_interrupt_enable(cookie);
6060 		return;
6061 	}
6062 
6063 	now = dtrace_gethrtime();
6064 	vtime = dtrace_vtime_references != 0;
6065 
6066 	if (vtime && curthread->t_dtrace_start)
6067 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6068 
6069 	mstate.dtms_difo = NULL;
6070 	mstate.dtms_probe = probe;
6071 	mstate.dtms_strtok = 0;
6072 	mstate.dtms_arg[0] = arg0;
6073 	mstate.dtms_arg[1] = arg1;
6074 	mstate.dtms_arg[2] = arg2;
6075 	mstate.dtms_arg[3] = arg3;
6076 	mstate.dtms_arg[4] = arg4;
6077 
6078 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6079 
6080 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6081 		dtrace_predicate_t *pred = ecb->dte_predicate;
6082 		dtrace_state_t *state = ecb->dte_state;
6083 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6084 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6085 		dtrace_vstate_t *vstate = &state->dts_vstate;
6086 		dtrace_provider_t *prov = probe->dtpr_provider;
6087 		uint64_t tracememsize = 0;
6088 		int committed = 0;
6089 		caddr_t tomax;
6090 
6091 		/*
6092 		 * A little subtlety with the following (seemingly innocuous)
6093 		 * declaration of the automatic 'val':  by looking at the
6094 		 * code, you might think that it could be declared in the
6095 		 * action processing loop, below.  (That is, it's only used in
6096 		 * the action processing loop.)  However, it must be declared
6097 		 * out of that scope because in the case of DIF expression
6098 		 * arguments to aggregating actions, one iteration of the
6099 		 * action loop will use the last iteration's value.
6100 		 */
6101 		uint64_t val = 0;
6102 
6103 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6104 		*flags &= ~CPU_DTRACE_ERROR;
6105 
6106 		if (prov == dtrace_provider) {
6107 			/*
6108 			 * If dtrace itself is the provider of this probe,
6109 			 * we're only going to continue processing the ECB if
6110 			 * arg0 (the dtrace_state_t) is equal to the ECB's
6111 			 * creating state.  (This prevents disjoint consumers
6112 			 * from seeing one another's metaprobes.)
6113 			 */
6114 			if (arg0 != (uint64_t)(uintptr_t)state)
6115 				continue;
6116 		}
6117 
6118 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6119 			/*
6120 			 * We're not currently active.  If our provider isn't
6121 			 * the dtrace pseudo provider, we're not interested.
6122 			 */
6123 			if (prov != dtrace_provider)
6124 				continue;
6125 
6126 			/*
6127 			 * Now we must further check if we are in the BEGIN
6128 			 * probe.  If we are, we will only continue processing
6129 			 * if we're still in WARMUP -- if one BEGIN enabling
6130 			 * has invoked the exit() action, we don't want to
6131 			 * evaluate subsequent BEGIN enablings.
6132 			 */
6133 			if (probe->dtpr_id == dtrace_probeid_begin &&
6134 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6135 				ASSERT(state->dts_activity ==
6136 				    DTRACE_ACTIVITY_DRAINING);
6137 				continue;
6138 			}
6139 		}
6140 
6141 		if (ecb->dte_cond) {
6142 			/*
6143 			 * If the dte_cond bits indicate that this
6144 			 * consumer is only allowed to see user-mode firings
6145 			 * of this probe, call the provider's dtps_usermode()
6146 			 * entry point to check that the probe was fired
6147 			 * while in a user context. Skip this ECB if that's
6148 			 * not the case.
6149 			 */
6150 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6151 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6152 			    probe->dtpr_id, probe->dtpr_arg) == 0)
6153 				continue;
6154 
6155 #if defined(sun)
6156 			/*
6157 			 * This is more subtle than it looks. We have to be
6158 			 * absolutely certain that CRED() isn't going to
6159 			 * change out from under us so it's only legit to
6160 			 * examine that structure if we're in constrained
6161 			 * situations. Currently, the only times we'll this
6162 			 * check is if a non-super-user has enabled the
6163 			 * profile or syscall providers -- providers that
6164 			 * allow visibility of all processes. For the
6165 			 * profile case, the check above will ensure that
6166 			 * we're examining a user context.
6167 			 */
6168 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6169 				cred_t *cr;
6170 				cred_t *s_cr =
6171 				    ecb->dte_state->dts_cred.dcr_cred;
6172 				proc_t *proc;
6173 
6174 				ASSERT(s_cr != NULL);
6175 
6176 				if ((cr = CRED()) == NULL ||
6177 				    s_cr->cr_uid != cr->cr_uid ||
6178 				    s_cr->cr_uid != cr->cr_ruid ||
6179 				    s_cr->cr_uid != cr->cr_suid ||
6180 				    s_cr->cr_gid != cr->cr_gid ||
6181 				    s_cr->cr_gid != cr->cr_rgid ||
6182 				    s_cr->cr_gid != cr->cr_sgid ||
6183 				    (proc = ttoproc(curthread)) == NULL ||
6184 				    (proc->p_flag & SNOCD))
6185 					continue;
6186 			}
6187 
6188 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6189 				cred_t *cr;
6190 				cred_t *s_cr =
6191 				    ecb->dte_state->dts_cred.dcr_cred;
6192 
6193 				ASSERT(s_cr != NULL);
6194 
6195 				if ((cr = CRED()) == NULL ||
6196 				    s_cr->cr_zone->zone_id !=
6197 				    cr->cr_zone->zone_id)
6198 					continue;
6199 			}
6200 #endif
6201 		}
6202 
6203 		if (now - state->dts_alive > dtrace_deadman_timeout) {
6204 			/*
6205 			 * We seem to be dead.  Unless we (a) have kernel
6206 			 * destructive permissions (b) have expicitly enabled
6207 			 * destructive actions and (c) destructive actions have
6208 			 * not been disabled, we're going to transition into
6209 			 * the KILLED state, from which no further processing
6210 			 * on this state will be performed.
6211 			 */
6212 			if (!dtrace_priv_kernel_destructive(state) ||
6213 			    !state->dts_cred.dcr_destructive ||
6214 			    dtrace_destructive_disallow) {
6215 				void *activity = &state->dts_activity;
6216 				dtrace_activity_t current;
6217 
6218 				do {
6219 					current = state->dts_activity;
6220 				} while (dtrace_cas32(activity, current,
6221 				    DTRACE_ACTIVITY_KILLED) != current);
6222 
6223 				continue;
6224 			}
6225 		}
6226 
6227 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6228 		    ecb->dte_alignment, state, &mstate)) < 0)
6229 			continue;
6230 
6231 		tomax = buf->dtb_tomax;
6232 		ASSERT(tomax != NULL);
6233 
6234 		if (ecb->dte_size != 0)
6235 			DTRACE_STORE(uint32_t, tomax, offs, ecb->dte_epid);
6236 
6237 		mstate.dtms_epid = ecb->dte_epid;
6238 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6239 
6240 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6241 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6242 		else
6243 			mstate.dtms_access = 0;
6244 
6245 		if (pred != NULL) {
6246 			dtrace_difo_t *dp = pred->dtp_difo;
6247 			int rval;
6248 
6249 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6250 
6251 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6252 				dtrace_cacheid_t cid = probe->dtpr_predcache;
6253 
6254 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6255 					/*
6256 					 * Update the predicate cache...
6257 					 */
6258 					ASSERT(cid == pred->dtp_cacheid);
6259 					curthread->t_predcache = cid;
6260 				}
6261 
6262 				continue;
6263 			}
6264 		}
6265 
6266 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6267 		    act != NULL; act = act->dta_next) {
6268 			size_t valoffs;
6269 			dtrace_difo_t *dp;
6270 			dtrace_recdesc_t *rec = &act->dta_rec;
6271 
6272 			size = rec->dtrd_size;
6273 			valoffs = offs + rec->dtrd_offset;
6274 
6275 			if (DTRACEACT_ISAGG(act->dta_kind)) {
6276 				uint64_t v = 0xbad;
6277 				dtrace_aggregation_t *agg;
6278 
6279 				agg = (dtrace_aggregation_t *)act;
6280 
6281 				if ((dp = act->dta_difo) != NULL)
6282 					v = dtrace_dif_emulate(dp,
6283 					    &mstate, vstate, state);
6284 
6285 				if (*flags & CPU_DTRACE_ERROR)
6286 					continue;
6287 
6288 				/*
6289 				 * Note that we always pass the expression
6290 				 * value from the previous iteration of the
6291 				 * action loop.  This value will only be used
6292 				 * if there is an expression argument to the
6293 				 * aggregating action, denoted by the
6294 				 * dtag_hasarg field.
6295 				 */
6296 				dtrace_aggregate(agg, buf,
6297 				    offs, aggbuf, v, val);
6298 				continue;
6299 			}
6300 
6301 			switch (act->dta_kind) {
6302 			case DTRACEACT_STOP:
6303 				if (dtrace_priv_proc_destructive(state))
6304 					dtrace_action_stop();
6305 				continue;
6306 
6307 			case DTRACEACT_BREAKPOINT:
6308 				if (dtrace_priv_kernel_destructive(state))
6309 					dtrace_action_breakpoint(ecb);
6310 				continue;
6311 
6312 			case DTRACEACT_PANIC:
6313 				if (dtrace_priv_kernel_destructive(state))
6314 					dtrace_action_panic(ecb);
6315 				continue;
6316 
6317 			case DTRACEACT_STACK:
6318 				if (!dtrace_priv_kernel(state))
6319 					continue;
6320 
6321 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6322 				    size / sizeof (pc_t), probe->dtpr_aframes,
6323 				    DTRACE_ANCHORED(probe) ? NULL :
6324 				    (uint32_t *)arg0);
6325 				continue;
6326 
6327 			case DTRACEACT_JSTACK:
6328 			case DTRACEACT_USTACK:
6329 				if (!dtrace_priv_proc(state))
6330 					continue;
6331 
6332 				/*
6333 				 * See comment in DIF_VAR_PID.
6334 				 */
6335 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6336 				    CPU_ON_INTR(CPU)) {
6337 					int depth = DTRACE_USTACK_NFRAMES(
6338 					    rec->dtrd_arg) + 1;
6339 
6340 					dtrace_bzero((void *)(tomax + valoffs),
6341 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6342 					    + depth * sizeof (uint64_t));
6343 
6344 					continue;
6345 				}
6346 
6347 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6348 				    curproc->p_dtrace_helpers != NULL) {
6349 					/*
6350 					 * This is the slow path -- we have
6351 					 * allocated string space, and we're
6352 					 * getting the stack of a process that
6353 					 * has helpers.  Call into a separate
6354 					 * routine to perform this processing.
6355 					 */
6356 					dtrace_action_ustack(&mstate, state,
6357 					    (uint64_t *)(tomax + valoffs),
6358 					    rec->dtrd_arg);
6359 					continue;
6360 				}
6361 
6362 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6363 				dtrace_getupcstack((uint64_t *)
6364 				    (tomax + valoffs),
6365 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6366 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6367 				continue;
6368 
6369 			default:
6370 				break;
6371 			}
6372 
6373 			dp = act->dta_difo;
6374 			ASSERT(dp != NULL);
6375 
6376 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6377 
6378 			if (*flags & CPU_DTRACE_ERROR)
6379 				continue;
6380 
6381 			switch (act->dta_kind) {
6382 			case DTRACEACT_SPECULATE:
6383 				ASSERT(buf == &state->dts_buffer[cpuid]);
6384 				buf = dtrace_speculation_buffer(state,
6385 				    cpuid, val);
6386 
6387 				if (buf == NULL) {
6388 					*flags |= CPU_DTRACE_DROP;
6389 					continue;
6390 				}
6391 
6392 				offs = dtrace_buffer_reserve(buf,
6393 				    ecb->dte_needed, ecb->dte_alignment,
6394 				    state, NULL);
6395 
6396 				if (offs < 0) {
6397 					*flags |= CPU_DTRACE_DROP;
6398 					continue;
6399 				}
6400 
6401 				tomax = buf->dtb_tomax;
6402 				ASSERT(tomax != NULL);
6403 
6404 				if (ecb->dte_size != 0)
6405 					DTRACE_STORE(uint32_t, tomax, offs,
6406 					    ecb->dte_epid);
6407 				continue;
6408 
6409 			case DTRACEACT_PRINTM: {
6410 				/* The DIF returns a 'memref'. */
6411 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6412 
6413 				/* Get the size from the memref. */
6414 				size = memref[1];
6415 
6416 				/*
6417 				 * Check if the size exceeds the allocated
6418 				 * buffer size.
6419 				 */
6420 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6421 					/* Flag a drop! */
6422 					*flags |= CPU_DTRACE_DROP;
6423 					continue;
6424 				}
6425 
6426 				/* Store the size in the buffer first. */
6427 				DTRACE_STORE(uintptr_t, tomax,
6428 				    valoffs, size);
6429 
6430 				/*
6431 				 * Offset the buffer address to the start
6432 				 * of the data.
6433 				 */
6434 				valoffs += sizeof(uintptr_t);
6435 
6436 				/*
6437 				 * Reset to the memory address rather than
6438 				 * the memref array, then let the BYREF
6439 				 * code below do the work to store the
6440 				 * memory data in the buffer.
6441 				 */
6442 				val = memref[0];
6443 				break;
6444 			}
6445 
6446 			case DTRACEACT_PRINTT: {
6447 				/* The DIF returns a 'typeref'. */
6448 				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6449 				char c = '\0' + 1;
6450 				size_t s;
6451 
6452 				/*
6453 				 * Get the type string length and round it
6454 				 * up so that the data that follows is
6455 				 * aligned for easy access.
6456 				 */
6457 				size_t typs = strlen((char *) typeref[2]) + 1;
6458 				typs = roundup(typs,  sizeof(uintptr_t));
6459 
6460 				/*
6461 				 *Get the size from the typeref using the
6462 				 * number of elements and the type size.
6463 				 */
6464 				size = typeref[1] * typeref[3];
6465 
6466 				/*
6467 				 * Check if the size exceeds the allocated
6468 				 * buffer size.
6469 				 */
6470 				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6471 					/* Flag a drop! */
6472 					*flags |= CPU_DTRACE_DROP;
6473 
6474 				}
6475 
6476 				/* Store the size in the buffer first. */
6477 				DTRACE_STORE(uintptr_t, tomax,
6478 				    valoffs, size);
6479 				valoffs += sizeof(uintptr_t);
6480 
6481 				/* Store the type size in the buffer. */
6482 				DTRACE_STORE(uintptr_t, tomax,
6483 				    valoffs, typeref[3]);
6484 				valoffs += sizeof(uintptr_t);
6485 
6486 				val = typeref[2];
6487 
6488 				for (s = 0; s < typs; s++) {
6489 					if (c != '\0')
6490 						c = dtrace_load8(val++);
6491 
6492 					DTRACE_STORE(uint8_t, tomax,
6493 					    valoffs++, c);
6494 				}
6495 
6496 				/*
6497 				 * Reset to the memory address rather than
6498 				 * the typeref array, then let the BYREF
6499 				 * code below do the work to store the
6500 				 * memory data in the buffer.
6501 				 */
6502 				val = typeref[0];
6503 				break;
6504 			}
6505 
6506 			case DTRACEACT_CHILL:
6507 				if (dtrace_priv_kernel_destructive(state))
6508 					dtrace_action_chill(&mstate, val);
6509 				continue;
6510 
6511 			case DTRACEACT_RAISE:
6512 				if (dtrace_priv_proc_destructive(state))
6513 					dtrace_action_raise(val);
6514 				continue;
6515 
6516 			case DTRACEACT_COMMIT:
6517 				ASSERT(!committed);
6518 
6519 				/*
6520 				 * We need to commit our buffer state.
6521 				 */
6522 				if (ecb->dte_size)
6523 					buf->dtb_offset = offs + ecb->dte_size;
6524 				buf = &state->dts_buffer[cpuid];
6525 				dtrace_speculation_commit(state, cpuid, val);
6526 				committed = 1;
6527 				continue;
6528 
6529 			case DTRACEACT_DISCARD:
6530 				dtrace_speculation_discard(state, cpuid, val);
6531 				continue;
6532 
6533 			case DTRACEACT_DIFEXPR:
6534 			case DTRACEACT_LIBACT:
6535 			case DTRACEACT_PRINTF:
6536 			case DTRACEACT_PRINTA:
6537 			case DTRACEACT_SYSTEM:
6538 			case DTRACEACT_FREOPEN:
6539 			case DTRACEACT_TRACEMEM:
6540 				break;
6541 
6542 			case DTRACEACT_TRACEMEM_DYNSIZE:
6543 				tracememsize = val;
6544 				break;
6545 
6546 			case DTRACEACT_SYM:
6547 			case DTRACEACT_MOD:
6548 				if (!dtrace_priv_kernel(state))
6549 					continue;
6550 				break;
6551 
6552 			case DTRACEACT_USYM:
6553 			case DTRACEACT_UMOD:
6554 			case DTRACEACT_UADDR: {
6555 #if defined(sun)
6556 				struct pid *pid = curthread->t_procp->p_pidp;
6557 #endif
6558 
6559 				if (!dtrace_priv_proc(state))
6560 					continue;
6561 
6562 				DTRACE_STORE(uint64_t, tomax,
6563 #if defined(sun)
6564 				    valoffs, (uint64_t)pid->pid_id);
6565 #else
6566 				    valoffs, (uint64_t) curproc->p_pid);
6567 #endif
6568 				DTRACE_STORE(uint64_t, tomax,
6569 				    valoffs + sizeof (uint64_t), val);
6570 
6571 				continue;
6572 			}
6573 
6574 			case DTRACEACT_EXIT: {
6575 				/*
6576 				 * For the exit action, we are going to attempt
6577 				 * to atomically set our activity to be
6578 				 * draining.  If this fails (either because
6579 				 * another CPU has beat us to the exit action,
6580 				 * or because our current activity is something
6581 				 * other than ACTIVE or WARMUP), we will
6582 				 * continue.  This assures that the exit action
6583 				 * can be successfully recorded at most once
6584 				 * when we're in the ACTIVE state.  If we're
6585 				 * encountering the exit() action while in
6586 				 * COOLDOWN, however, we want to honor the new
6587 				 * status code.  (We know that we're the only
6588 				 * thread in COOLDOWN, so there is no race.)
6589 				 */
6590 				void *activity = &state->dts_activity;
6591 				dtrace_activity_t current = state->dts_activity;
6592 
6593 				if (current == DTRACE_ACTIVITY_COOLDOWN)
6594 					break;
6595 
6596 				if (current != DTRACE_ACTIVITY_WARMUP)
6597 					current = DTRACE_ACTIVITY_ACTIVE;
6598 
6599 				if (dtrace_cas32(activity, current,
6600 				    DTRACE_ACTIVITY_DRAINING) != current) {
6601 					*flags |= CPU_DTRACE_DROP;
6602 					continue;
6603 				}
6604 
6605 				break;
6606 			}
6607 
6608 			default:
6609 				ASSERT(0);
6610 			}
6611 
6612 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6613 				uintptr_t end = valoffs + size;
6614 
6615 				if (tracememsize != 0 &&
6616 				    valoffs + tracememsize < end) {
6617 					end = valoffs + tracememsize;
6618 					tracememsize = 0;
6619 				}
6620 
6621 				if (!dtrace_vcanload((void *)(uintptr_t)val,
6622 				    &dp->dtdo_rtype, &mstate, vstate))
6623 					continue;
6624 
6625 				/*
6626 				 * If this is a string, we're going to only
6627 				 * load until we find the zero byte -- after
6628 				 * which we'll store zero bytes.
6629 				 */
6630 				if (dp->dtdo_rtype.dtdt_kind ==
6631 				    DIF_TYPE_STRING) {
6632 					char c = '\0' + 1;
6633 					int intuple = act->dta_intuple;
6634 					size_t s;
6635 
6636 					for (s = 0; s < size; s++) {
6637 						if (c != '\0')
6638 							c = dtrace_load8(val++);
6639 
6640 						DTRACE_STORE(uint8_t, tomax,
6641 						    valoffs++, c);
6642 
6643 						if (c == '\0' && intuple)
6644 							break;
6645 					}
6646 
6647 					continue;
6648 				}
6649 
6650 				while (valoffs < end) {
6651 					DTRACE_STORE(uint8_t, tomax, valoffs++,
6652 					    dtrace_load8(val++));
6653 				}
6654 
6655 				continue;
6656 			}
6657 
6658 			switch (size) {
6659 			case 0:
6660 				break;
6661 
6662 			case sizeof (uint8_t):
6663 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6664 				break;
6665 			case sizeof (uint16_t):
6666 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6667 				break;
6668 			case sizeof (uint32_t):
6669 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6670 				break;
6671 			case sizeof (uint64_t):
6672 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6673 				break;
6674 			default:
6675 				/*
6676 				 * Any other size should have been returned by
6677 				 * reference, not by value.
6678 				 */
6679 				ASSERT(0);
6680 				break;
6681 			}
6682 		}
6683 
6684 		if (*flags & CPU_DTRACE_DROP)
6685 			continue;
6686 
6687 		if (*flags & CPU_DTRACE_FAULT) {
6688 			int ndx;
6689 			dtrace_action_t *err;
6690 
6691 			buf->dtb_errors++;
6692 
6693 			if (probe->dtpr_id == dtrace_probeid_error) {
6694 				/*
6695 				 * There's nothing we can do -- we had an
6696 				 * error on the error probe.  We bump an
6697 				 * error counter to at least indicate that
6698 				 * this condition happened.
6699 				 */
6700 				dtrace_error(&state->dts_dblerrors);
6701 				continue;
6702 			}
6703 
6704 			if (vtime) {
6705 				/*
6706 				 * Before recursing on dtrace_probe(), we
6707 				 * need to explicitly clear out our start
6708 				 * time to prevent it from being accumulated
6709 				 * into t_dtrace_vtime.
6710 				 */
6711 				curthread->t_dtrace_start = 0;
6712 			}
6713 
6714 			/*
6715 			 * Iterate over the actions to figure out which action
6716 			 * we were processing when we experienced the error.
6717 			 * Note that act points _past_ the faulting action; if
6718 			 * act is ecb->dte_action, the fault was in the
6719 			 * predicate, if it's ecb->dte_action->dta_next it's
6720 			 * in action #1, and so on.
6721 			 */
6722 			for (err = ecb->dte_action, ndx = 0;
6723 			    err != act; err = err->dta_next, ndx++)
6724 				continue;
6725 
6726 			dtrace_probe_error(state, ecb->dte_epid, ndx,
6727 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6728 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6729 			    cpu_core[cpuid].cpuc_dtrace_illval);
6730 
6731 			continue;
6732 		}
6733 
6734 		if (!committed)
6735 			buf->dtb_offset = offs + ecb->dte_size;
6736 	}
6737 
6738 	if (vtime)
6739 		curthread->t_dtrace_start = dtrace_gethrtime();
6740 
6741 	dtrace_interrupt_enable(cookie);
6742 }
6743 
6744 /*
6745  * DTrace Probe Hashing Functions
6746  *
6747  * The functions in this section (and indeed, the functions in remaining
6748  * sections) are not _called_ from probe context.  (Any exceptions to this are
6749  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6750  * DTrace framework to look-up probes in, add probes to and remove probes from
6751  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6752  * probe tuple -- allowing for fast lookups, regardless of what was
6753  * specified.)
6754  */
6755 static uint_t
6756 dtrace_hash_str(const char *p)
6757 {
6758 	unsigned int g;
6759 	uint_t hval = 0;
6760 
6761 	while (*p) {
6762 		hval = (hval << 4) + *p++;
6763 		if ((g = (hval & 0xf0000000)) != 0)
6764 			hval ^= g >> 24;
6765 		hval &= ~g;
6766 	}
6767 	return (hval);
6768 }
6769 
6770 static dtrace_hash_t *
6771 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6772 {
6773 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6774 
6775 	hash->dth_stroffs = stroffs;
6776 	hash->dth_nextoffs = nextoffs;
6777 	hash->dth_prevoffs = prevoffs;
6778 
6779 	hash->dth_size = 1;
6780 	hash->dth_mask = hash->dth_size - 1;
6781 
6782 	hash->dth_tab = kmem_zalloc(hash->dth_size *
6783 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6784 
6785 	return (hash);
6786 }
6787 
6788 static void
6789 dtrace_hash_destroy(dtrace_hash_t *hash)
6790 {
6791 #ifdef DEBUG
6792 	int i;
6793 
6794 	for (i = 0; i < hash->dth_size; i++)
6795 		ASSERT(hash->dth_tab[i] == NULL);
6796 #endif
6797 
6798 	kmem_free(hash->dth_tab,
6799 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6800 	kmem_free(hash, sizeof (dtrace_hash_t));
6801 }
6802 
6803 static void
6804 dtrace_hash_resize(dtrace_hash_t *hash)
6805 {
6806 	int size = hash->dth_size, i, ndx;
6807 	int new_size = hash->dth_size << 1;
6808 	int new_mask = new_size - 1;
6809 	dtrace_hashbucket_t **new_tab, *bucket, *next;
6810 
6811 	ASSERT((new_size & new_mask) == 0);
6812 
6813 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6814 
6815 	for (i = 0; i < size; i++) {
6816 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6817 			dtrace_probe_t *probe = bucket->dthb_chain;
6818 
6819 			ASSERT(probe != NULL);
6820 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6821 
6822 			next = bucket->dthb_next;
6823 			bucket->dthb_next = new_tab[ndx];
6824 			new_tab[ndx] = bucket;
6825 		}
6826 	}
6827 
6828 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6829 	hash->dth_tab = new_tab;
6830 	hash->dth_size = new_size;
6831 	hash->dth_mask = new_mask;
6832 }
6833 
6834 static void
6835 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6836 {
6837 	int hashval = DTRACE_HASHSTR(hash, new);
6838 	int ndx = hashval & hash->dth_mask;
6839 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6840 	dtrace_probe_t **nextp, **prevp;
6841 
6842 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6843 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6844 			goto add;
6845 	}
6846 
6847 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6848 		dtrace_hash_resize(hash);
6849 		dtrace_hash_add(hash, new);
6850 		return;
6851 	}
6852 
6853 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6854 	bucket->dthb_next = hash->dth_tab[ndx];
6855 	hash->dth_tab[ndx] = bucket;
6856 	hash->dth_nbuckets++;
6857 
6858 add:
6859 	nextp = DTRACE_HASHNEXT(hash, new);
6860 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6861 	*nextp = bucket->dthb_chain;
6862 
6863 	if (bucket->dthb_chain != NULL) {
6864 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6865 		ASSERT(*prevp == NULL);
6866 		*prevp = new;
6867 	}
6868 
6869 	bucket->dthb_chain = new;
6870 	bucket->dthb_len++;
6871 }
6872 
6873 static dtrace_probe_t *
6874 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6875 {
6876 	int hashval = DTRACE_HASHSTR(hash, template);
6877 	int ndx = hashval & hash->dth_mask;
6878 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6879 
6880 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6881 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6882 			return (bucket->dthb_chain);
6883 	}
6884 
6885 	return (NULL);
6886 }
6887 
6888 static int
6889 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6890 {
6891 	int hashval = DTRACE_HASHSTR(hash, template);
6892 	int ndx = hashval & hash->dth_mask;
6893 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6894 
6895 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6896 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6897 			return (bucket->dthb_len);
6898 	}
6899 
6900 	return (0);
6901 }
6902 
6903 static void
6904 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6905 {
6906 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6907 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6908 
6909 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6910 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6911 
6912 	/*
6913 	 * Find the bucket that we're removing this probe from.
6914 	 */
6915 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6916 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6917 			break;
6918 	}
6919 
6920 	ASSERT(bucket != NULL);
6921 
6922 	if (*prevp == NULL) {
6923 		if (*nextp == NULL) {
6924 			/*
6925 			 * The removed probe was the only probe on this
6926 			 * bucket; we need to remove the bucket.
6927 			 */
6928 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6929 
6930 			ASSERT(bucket->dthb_chain == probe);
6931 			ASSERT(b != NULL);
6932 
6933 			if (b == bucket) {
6934 				hash->dth_tab[ndx] = bucket->dthb_next;
6935 			} else {
6936 				while (b->dthb_next != bucket)
6937 					b = b->dthb_next;
6938 				b->dthb_next = bucket->dthb_next;
6939 			}
6940 
6941 			ASSERT(hash->dth_nbuckets > 0);
6942 			hash->dth_nbuckets--;
6943 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
6944 			return;
6945 		}
6946 
6947 		bucket->dthb_chain = *nextp;
6948 	} else {
6949 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
6950 	}
6951 
6952 	if (*nextp != NULL)
6953 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
6954 }
6955 
6956 /*
6957  * DTrace Utility Functions
6958  *
6959  * These are random utility functions that are _not_ called from probe context.
6960  */
6961 static int
6962 dtrace_badattr(const dtrace_attribute_t *a)
6963 {
6964 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
6965 	    a->dtat_data > DTRACE_STABILITY_MAX ||
6966 	    a->dtat_class > DTRACE_CLASS_MAX);
6967 }
6968 
6969 /*
6970  * Return a duplicate copy of a string.  If the specified string is NULL,
6971  * this function returns a zero-length string.
6972  */
6973 static char *
6974 dtrace_strdup(const char *str)
6975 {
6976 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
6977 
6978 	if (str != NULL)
6979 		(void) strcpy(new, str);
6980 
6981 	return (new);
6982 }
6983 
6984 #define	DTRACE_ISALPHA(c)	\
6985 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
6986 
6987 static int
6988 dtrace_badname(const char *s)
6989 {
6990 	char c;
6991 
6992 	if (s == NULL || (c = *s++) == '\0')
6993 		return (0);
6994 
6995 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
6996 		return (1);
6997 
6998 	while ((c = *s++) != '\0') {
6999 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7000 		    c != '-' && c != '_' && c != '.' && c != '`')
7001 			return (1);
7002 	}
7003 
7004 	return (0);
7005 }
7006 
7007 static void
7008 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7009 {
7010 	uint32_t priv;
7011 
7012 #if defined(sun)
7013 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7014 		/*
7015 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7016 		 */
7017 		priv = DTRACE_PRIV_ALL;
7018 	} else {
7019 		*uidp = crgetuid(cr);
7020 		*zoneidp = crgetzoneid(cr);
7021 
7022 		priv = 0;
7023 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7024 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7025 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7026 			priv |= DTRACE_PRIV_USER;
7027 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7028 			priv |= DTRACE_PRIV_PROC;
7029 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7030 			priv |= DTRACE_PRIV_OWNER;
7031 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7032 			priv |= DTRACE_PRIV_ZONEOWNER;
7033 	}
7034 #else
7035 	priv = DTRACE_PRIV_ALL;
7036 #endif
7037 
7038 	*privp = priv;
7039 }
7040 
7041 #ifdef DTRACE_ERRDEBUG
7042 static void
7043 dtrace_errdebug(const char *str)
7044 {
7045 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7046 	int occupied = 0;
7047 
7048 	mutex_enter(&dtrace_errlock);
7049 	dtrace_errlast = str;
7050 	dtrace_errthread = curthread;
7051 
7052 	while (occupied++ < DTRACE_ERRHASHSZ) {
7053 		if (dtrace_errhash[hval].dter_msg == str) {
7054 			dtrace_errhash[hval].dter_count++;
7055 			goto out;
7056 		}
7057 
7058 		if (dtrace_errhash[hval].dter_msg != NULL) {
7059 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
7060 			continue;
7061 		}
7062 
7063 		dtrace_errhash[hval].dter_msg = str;
7064 		dtrace_errhash[hval].dter_count = 1;
7065 		goto out;
7066 	}
7067 
7068 	panic("dtrace: undersized error hash");
7069 out:
7070 	mutex_exit(&dtrace_errlock);
7071 }
7072 #endif
7073 
7074 /*
7075  * DTrace Matching Functions
7076  *
7077  * These functions are used to match groups of probes, given some elements of
7078  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7079  */
7080 static int
7081 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7082     zoneid_t zoneid)
7083 {
7084 	if (priv != DTRACE_PRIV_ALL) {
7085 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7086 		uint32_t match = priv & ppriv;
7087 
7088 		/*
7089 		 * No PRIV_DTRACE_* privileges...
7090 		 */
7091 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7092 		    DTRACE_PRIV_KERNEL)) == 0)
7093 			return (0);
7094 
7095 		/*
7096 		 * No matching bits, but there were bits to match...
7097 		 */
7098 		if (match == 0 && ppriv != 0)
7099 			return (0);
7100 
7101 		/*
7102 		 * Need to have permissions to the process, but don't...
7103 		 */
7104 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7105 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7106 			return (0);
7107 		}
7108 
7109 		/*
7110 		 * Need to be in the same zone unless we possess the
7111 		 * privilege to examine all zones.
7112 		 */
7113 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7114 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7115 			return (0);
7116 		}
7117 	}
7118 
7119 	return (1);
7120 }
7121 
7122 /*
7123  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7124  * consists of input pattern strings and an ops-vector to evaluate them.
7125  * This function returns >0 for match, 0 for no match, and <0 for error.
7126  */
7127 static int
7128 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7129     uint32_t priv, uid_t uid, zoneid_t zoneid)
7130 {
7131 	dtrace_provider_t *pvp = prp->dtpr_provider;
7132 	int rv;
7133 
7134 	if (pvp->dtpv_defunct)
7135 		return (0);
7136 
7137 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7138 		return (rv);
7139 
7140 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7141 		return (rv);
7142 
7143 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7144 		return (rv);
7145 
7146 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7147 		return (rv);
7148 
7149 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7150 		return (0);
7151 
7152 	return (rv);
7153 }
7154 
7155 /*
7156  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7157  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7158  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7159  * In addition, all of the recursion cases except for '*' matching have been
7160  * unwound.  For '*', we still implement recursive evaluation, but a depth
7161  * counter is maintained and matching is aborted if we recurse too deep.
7162  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7163  */
7164 static int
7165 dtrace_match_glob(const char *s, const char *p, int depth)
7166 {
7167 	const char *olds;
7168 	char s1, c;
7169 	int gs;
7170 
7171 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7172 		return (-1);
7173 
7174 	if (s == NULL)
7175 		s = ""; /* treat NULL as empty string */
7176 
7177 top:
7178 	olds = s;
7179 	s1 = *s++;
7180 
7181 	if (p == NULL)
7182 		return (0);
7183 
7184 	if ((c = *p++) == '\0')
7185 		return (s1 == '\0');
7186 
7187 	switch (c) {
7188 	case '[': {
7189 		int ok = 0, notflag = 0;
7190 		char lc = '\0';
7191 
7192 		if (s1 == '\0')
7193 			return (0);
7194 
7195 		if (*p == '!') {
7196 			notflag = 1;
7197 			p++;
7198 		}
7199 
7200 		if ((c = *p++) == '\0')
7201 			return (0);
7202 
7203 		do {
7204 			if (c == '-' && lc != '\0' && *p != ']') {
7205 				if ((c = *p++) == '\0')
7206 					return (0);
7207 				if (c == '\\' && (c = *p++) == '\0')
7208 					return (0);
7209 
7210 				if (notflag) {
7211 					if (s1 < lc || s1 > c)
7212 						ok++;
7213 					else
7214 						return (0);
7215 				} else if (lc <= s1 && s1 <= c)
7216 					ok++;
7217 
7218 			} else if (c == '\\' && (c = *p++) == '\0')
7219 				return (0);
7220 
7221 			lc = c; /* save left-hand 'c' for next iteration */
7222 
7223 			if (notflag) {
7224 				if (s1 != c)
7225 					ok++;
7226 				else
7227 					return (0);
7228 			} else if (s1 == c)
7229 				ok++;
7230 
7231 			if ((c = *p++) == '\0')
7232 				return (0);
7233 
7234 		} while (c != ']');
7235 
7236 		if (ok)
7237 			goto top;
7238 
7239 		return (0);
7240 	}
7241 
7242 	case '\\':
7243 		if ((c = *p++) == '\0')
7244 			return (0);
7245 		/*FALLTHRU*/
7246 
7247 	default:
7248 		if (c != s1)
7249 			return (0);
7250 		/*FALLTHRU*/
7251 
7252 	case '?':
7253 		if (s1 != '\0')
7254 			goto top;
7255 		return (0);
7256 
7257 	case '*':
7258 		while (*p == '*')
7259 			p++; /* consecutive *'s are identical to a single one */
7260 
7261 		if (*p == '\0')
7262 			return (1);
7263 
7264 		for (s = olds; *s != '\0'; s++) {
7265 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7266 				return (gs);
7267 		}
7268 
7269 		return (0);
7270 	}
7271 }
7272 
7273 /*ARGSUSED*/
7274 static int
7275 dtrace_match_string(const char *s, const char *p, int depth)
7276 {
7277 	return (s != NULL && strcmp(s, p) == 0);
7278 }
7279 
7280 /*ARGSUSED*/
7281 static int
7282 dtrace_match_nul(const char *s, const char *p, int depth)
7283 {
7284 	return (1); /* always match the empty pattern */
7285 }
7286 
7287 /*ARGSUSED*/
7288 static int
7289 dtrace_match_nonzero(const char *s, const char *p, int depth)
7290 {
7291 	return (s != NULL && s[0] != '\0');
7292 }
7293 
7294 static int
7295 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7296     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7297 {
7298 	dtrace_probe_t template, *probe;
7299 	dtrace_hash_t *hash = NULL;
7300 	int len, best = INT_MAX, nmatched = 0;
7301 	dtrace_id_t i;
7302 
7303 	ASSERT(MUTEX_HELD(&dtrace_lock));
7304 
7305 	/*
7306 	 * If the probe ID is specified in the key, just lookup by ID and
7307 	 * invoke the match callback once if a matching probe is found.
7308 	 */
7309 	if (pkp->dtpk_id != DTRACE_IDNONE) {
7310 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7311 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7312 			(void) (*matched)(probe, arg);
7313 			nmatched++;
7314 		}
7315 		return (nmatched);
7316 	}
7317 
7318 	template.dtpr_mod = (char *)pkp->dtpk_mod;
7319 	template.dtpr_func = (char *)pkp->dtpk_func;
7320 	template.dtpr_name = (char *)pkp->dtpk_name;
7321 
7322 	/*
7323 	 * We want to find the most distinct of the module name, function
7324 	 * name, and name.  So for each one that is not a glob pattern or
7325 	 * empty string, we perform a lookup in the corresponding hash and
7326 	 * use the hash table with the fewest collisions to do our search.
7327 	 */
7328 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7329 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7330 		best = len;
7331 		hash = dtrace_bymod;
7332 	}
7333 
7334 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7335 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7336 		best = len;
7337 		hash = dtrace_byfunc;
7338 	}
7339 
7340 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7341 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7342 		best = len;
7343 		hash = dtrace_byname;
7344 	}
7345 
7346 	/*
7347 	 * If we did not select a hash table, iterate over every probe and
7348 	 * invoke our callback for each one that matches our input probe key.
7349 	 */
7350 	if (hash == NULL) {
7351 		for (i = 0; i < dtrace_nprobes; i++) {
7352 			if ((probe = dtrace_probes[i]) == NULL ||
7353 			    dtrace_match_probe(probe, pkp, priv, uid,
7354 			    zoneid) <= 0)
7355 				continue;
7356 
7357 			nmatched++;
7358 
7359 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7360 				break;
7361 		}
7362 
7363 		return (nmatched);
7364 	}
7365 
7366 	/*
7367 	 * If we selected a hash table, iterate over each probe of the same key
7368 	 * name and invoke the callback for every probe that matches the other
7369 	 * attributes of our input probe key.
7370 	 */
7371 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7372 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7373 
7374 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7375 			continue;
7376 
7377 		nmatched++;
7378 
7379 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7380 			break;
7381 	}
7382 
7383 	return (nmatched);
7384 }
7385 
7386 /*
7387  * Return the function pointer dtrace_probecmp() should use to compare the
7388  * specified pattern with a string.  For NULL or empty patterns, we select
7389  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7390  * For non-empty non-glob strings, we use dtrace_match_string().
7391  */
7392 static dtrace_probekey_f *
7393 dtrace_probekey_func(const char *p)
7394 {
7395 	char c;
7396 
7397 	if (p == NULL || *p == '\0')
7398 		return (&dtrace_match_nul);
7399 
7400 	while ((c = *p++) != '\0') {
7401 		if (c == '[' || c == '?' || c == '*' || c == '\\')
7402 			return (&dtrace_match_glob);
7403 	}
7404 
7405 	return (&dtrace_match_string);
7406 }
7407 
7408 /*
7409  * Build a probe comparison key for use with dtrace_match_probe() from the
7410  * given probe description.  By convention, a null key only matches anchored
7411  * probes: if each field is the empty string, reset dtpk_fmatch to
7412  * dtrace_match_nonzero().
7413  */
7414 static void
7415 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7416 {
7417 	pkp->dtpk_prov = pdp->dtpd_provider;
7418 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7419 
7420 	pkp->dtpk_mod = pdp->dtpd_mod;
7421 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7422 
7423 	pkp->dtpk_func = pdp->dtpd_func;
7424 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7425 
7426 	pkp->dtpk_name = pdp->dtpd_name;
7427 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7428 
7429 	pkp->dtpk_id = pdp->dtpd_id;
7430 
7431 	if (pkp->dtpk_id == DTRACE_IDNONE &&
7432 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7433 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7434 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7435 	    pkp->dtpk_nmatch == &dtrace_match_nul)
7436 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7437 }
7438 
7439 /*
7440  * DTrace Provider-to-Framework API Functions
7441  *
7442  * These functions implement much of the Provider-to-Framework API, as
7443  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7444  * the functions in the API for probe management (found below), and
7445  * dtrace_probe() itself (found above).
7446  */
7447 
7448 /*
7449  * Register the calling provider with the DTrace framework.  This should
7450  * generally be called by DTrace providers in their attach(9E) entry point.
7451  */
7452 int
7453 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7454     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7455 {
7456 	dtrace_provider_t *provider;
7457 
7458 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7459 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7460 		    "arguments", name ? name : "<NULL>");
7461 		return (EINVAL);
7462 	}
7463 
7464 	if (name[0] == '\0' || dtrace_badname(name)) {
7465 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7466 		    "provider name", name);
7467 		return (EINVAL);
7468 	}
7469 
7470 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7471 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7472 	    pops->dtps_destroy == NULL ||
7473 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7474 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7475 		    "provider ops", name);
7476 		return (EINVAL);
7477 	}
7478 
7479 	if (dtrace_badattr(&pap->dtpa_provider) ||
7480 	    dtrace_badattr(&pap->dtpa_mod) ||
7481 	    dtrace_badattr(&pap->dtpa_func) ||
7482 	    dtrace_badattr(&pap->dtpa_name) ||
7483 	    dtrace_badattr(&pap->dtpa_args)) {
7484 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7485 		    "provider attributes", name);
7486 		return (EINVAL);
7487 	}
7488 
7489 	if (priv & ~DTRACE_PRIV_ALL) {
7490 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7491 		    "privilege attributes", name);
7492 		return (EINVAL);
7493 	}
7494 
7495 	if ((priv & DTRACE_PRIV_KERNEL) &&
7496 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7497 	    pops->dtps_usermode == NULL) {
7498 		cmn_err(CE_WARN, "failed to register provider '%s': need "
7499 		    "dtps_usermode() op for given privilege attributes", name);
7500 		return (EINVAL);
7501 	}
7502 
7503 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7504 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7505 	(void) strcpy(provider->dtpv_name, name);
7506 
7507 	provider->dtpv_attr = *pap;
7508 	provider->dtpv_priv.dtpp_flags = priv;
7509 	if (cr != NULL) {
7510 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7511 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7512 	}
7513 	provider->dtpv_pops = *pops;
7514 
7515 	if (pops->dtps_provide == NULL) {
7516 		ASSERT(pops->dtps_provide_module != NULL);
7517 		provider->dtpv_pops.dtps_provide =
7518 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7519 	}
7520 
7521 	if (pops->dtps_provide_module == NULL) {
7522 		ASSERT(pops->dtps_provide != NULL);
7523 		provider->dtpv_pops.dtps_provide_module =
7524 		    (void (*)(void *, modctl_t *))dtrace_nullop;
7525 	}
7526 
7527 	if (pops->dtps_suspend == NULL) {
7528 		ASSERT(pops->dtps_resume == NULL);
7529 		provider->dtpv_pops.dtps_suspend =
7530 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7531 		provider->dtpv_pops.dtps_resume =
7532 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7533 	}
7534 
7535 	provider->dtpv_arg = arg;
7536 	*idp = (dtrace_provider_id_t)provider;
7537 
7538 	if (pops == &dtrace_provider_ops) {
7539 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7540 		ASSERT(MUTEX_HELD(&dtrace_lock));
7541 		ASSERT(dtrace_anon.dta_enabling == NULL);
7542 
7543 		/*
7544 		 * We make sure that the DTrace provider is at the head of
7545 		 * the provider chain.
7546 		 */
7547 		provider->dtpv_next = dtrace_provider;
7548 		dtrace_provider = provider;
7549 		return (0);
7550 	}
7551 
7552 	mutex_enter(&dtrace_provider_lock);
7553 	mutex_enter(&dtrace_lock);
7554 
7555 	/*
7556 	 * If there is at least one provider registered, we'll add this
7557 	 * provider after the first provider.
7558 	 */
7559 	if (dtrace_provider != NULL) {
7560 		provider->dtpv_next = dtrace_provider->dtpv_next;
7561 		dtrace_provider->dtpv_next = provider;
7562 	} else {
7563 		dtrace_provider = provider;
7564 	}
7565 
7566 	if (dtrace_retained != NULL) {
7567 		dtrace_enabling_provide(provider);
7568 
7569 		/*
7570 		 * Now we need to call dtrace_enabling_matchall() -- which
7571 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7572 		 * to drop all of our locks before calling into it...
7573 		 */
7574 		mutex_exit(&dtrace_lock);
7575 		mutex_exit(&dtrace_provider_lock);
7576 		dtrace_enabling_matchall();
7577 
7578 		return (0);
7579 	}
7580 
7581 	mutex_exit(&dtrace_lock);
7582 	mutex_exit(&dtrace_provider_lock);
7583 
7584 	return (0);
7585 }
7586 
7587 /*
7588  * Unregister the specified provider from the DTrace framework.  This should
7589  * generally be called by DTrace providers in their detach(9E) entry point.
7590  */
7591 int
7592 dtrace_unregister(dtrace_provider_id_t id)
7593 {
7594 	dtrace_provider_t *old = (dtrace_provider_t *)id;
7595 	dtrace_provider_t *prev = NULL;
7596 	int i, self = 0;
7597 	dtrace_probe_t *probe, *first = NULL;
7598 
7599 	if (old->dtpv_pops.dtps_enable ==
7600 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7601 		/*
7602 		 * If DTrace itself is the provider, we're called with locks
7603 		 * already held.
7604 		 */
7605 		ASSERT(old == dtrace_provider);
7606 #if defined(sun)
7607 		ASSERT(dtrace_devi != NULL);
7608 #endif
7609 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7610 		ASSERT(MUTEX_HELD(&dtrace_lock));
7611 		self = 1;
7612 
7613 		if (dtrace_provider->dtpv_next != NULL) {
7614 			/*
7615 			 * There's another provider here; return failure.
7616 			 */
7617 			return (EBUSY);
7618 		}
7619 	} else {
7620 		mutex_enter(&dtrace_provider_lock);
7621 		mutex_enter(&mod_lock);
7622 		mutex_enter(&dtrace_lock);
7623 	}
7624 
7625 	/*
7626 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7627 	 * probes, we refuse to let providers slither away, unless this
7628 	 * provider has already been explicitly invalidated.
7629 	 */
7630 	if (!old->dtpv_defunct &&
7631 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7632 	    dtrace_anon.dta_state->dts_necbs > 0))) {
7633 		if (!self) {
7634 			mutex_exit(&dtrace_lock);
7635 			mutex_exit(&mod_lock);
7636 			mutex_exit(&dtrace_provider_lock);
7637 		}
7638 		return (EBUSY);
7639 	}
7640 
7641 	/*
7642 	 * Attempt to destroy the probes associated with this provider.
7643 	 */
7644 	for (i = 0; i < dtrace_nprobes; i++) {
7645 		if ((probe = dtrace_probes[i]) == NULL)
7646 			continue;
7647 
7648 		if (probe->dtpr_provider != old)
7649 			continue;
7650 
7651 		if (probe->dtpr_ecb == NULL)
7652 			continue;
7653 
7654 		/*
7655 		 * We have at least one ECB; we can't remove this provider.
7656 		 */
7657 		if (!self) {
7658 			mutex_exit(&dtrace_lock);
7659 			mutex_exit(&mod_lock);
7660 			mutex_exit(&dtrace_provider_lock);
7661 		}
7662 		return (EBUSY);
7663 	}
7664 
7665 	/*
7666 	 * All of the probes for this provider are disabled; we can safely
7667 	 * remove all of them from their hash chains and from the probe array.
7668 	 */
7669 	for (i = 0; i < dtrace_nprobes; i++) {
7670 		if ((probe = dtrace_probes[i]) == NULL)
7671 			continue;
7672 
7673 		if (probe->dtpr_provider != old)
7674 			continue;
7675 
7676 		dtrace_probes[i] = NULL;
7677 
7678 		dtrace_hash_remove(dtrace_bymod, probe);
7679 		dtrace_hash_remove(dtrace_byfunc, probe);
7680 		dtrace_hash_remove(dtrace_byname, probe);
7681 
7682 		if (first == NULL) {
7683 			first = probe;
7684 			probe->dtpr_nextmod = NULL;
7685 		} else {
7686 			probe->dtpr_nextmod = first;
7687 			first = probe;
7688 		}
7689 	}
7690 
7691 	/*
7692 	 * The provider's probes have been removed from the hash chains and
7693 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7694 	 * everyone has cleared out from any probe array processing.
7695 	 */
7696 	dtrace_sync();
7697 
7698 	for (probe = first; probe != NULL; probe = first) {
7699 		first = probe->dtpr_nextmod;
7700 
7701 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7702 		    probe->dtpr_arg);
7703 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7704 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7705 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7706 #if defined(sun)
7707 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7708 #else
7709 		free_unr(dtrace_arena, probe->dtpr_id);
7710 #endif
7711 		kmem_free(probe, sizeof (dtrace_probe_t));
7712 	}
7713 
7714 	if ((prev = dtrace_provider) == old) {
7715 #if defined(sun)
7716 		ASSERT(self || dtrace_devi == NULL);
7717 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7718 #endif
7719 		dtrace_provider = old->dtpv_next;
7720 	} else {
7721 		while (prev != NULL && prev->dtpv_next != old)
7722 			prev = prev->dtpv_next;
7723 
7724 		if (prev == NULL) {
7725 			panic("attempt to unregister non-existent "
7726 			    "dtrace provider %p\n", (void *)id);
7727 		}
7728 
7729 		prev->dtpv_next = old->dtpv_next;
7730 	}
7731 
7732 	if (!self) {
7733 		mutex_exit(&dtrace_lock);
7734 		mutex_exit(&mod_lock);
7735 		mutex_exit(&dtrace_provider_lock);
7736 	}
7737 
7738 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7739 	kmem_free(old, sizeof (dtrace_provider_t));
7740 
7741 	return (0);
7742 }
7743 
7744 /*
7745  * Invalidate the specified provider.  All subsequent probe lookups for the
7746  * specified provider will fail, but its probes will not be removed.
7747  */
7748 void
7749 dtrace_invalidate(dtrace_provider_id_t id)
7750 {
7751 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7752 
7753 	ASSERT(pvp->dtpv_pops.dtps_enable !=
7754 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7755 
7756 	mutex_enter(&dtrace_provider_lock);
7757 	mutex_enter(&dtrace_lock);
7758 
7759 	pvp->dtpv_defunct = 1;
7760 
7761 	mutex_exit(&dtrace_lock);
7762 	mutex_exit(&dtrace_provider_lock);
7763 }
7764 
7765 /*
7766  * Indicate whether or not DTrace has attached.
7767  */
7768 int
7769 dtrace_attached(void)
7770 {
7771 	/*
7772 	 * dtrace_provider will be non-NULL iff the DTrace driver has
7773 	 * attached.  (It's non-NULL because DTrace is always itself a
7774 	 * provider.)
7775 	 */
7776 	return (dtrace_provider != NULL);
7777 }
7778 
7779 /*
7780  * Remove all the unenabled probes for the given provider.  This function is
7781  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7782  * -- just as many of its associated probes as it can.
7783  */
7784 int
7785 dtrace_condense(dtrace_provider_id_t id)
7786 {
7787 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7788 	int i;
7789 	dtrace_probe_t *probe;
7790 
7791 	/*
7792 	 * Make sure this isn't the dtrace provider itself.
7793 	 */
7794 	ASSERT(prov->dtpv_pops.dtps_enable !=
7795 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7796 
7797 	mutex_enter(&dtrace_provider_lock);
7798 	mutex_enter(&dtrace_lock);
7799 
7800 	/*
7801 	 * Attempt to destroy the probes associated with this provider.
7802 	 */
7803 	for (i = 0; i < dtrace_nprobes; i++) {
7804 		if ((probe = dtrace_probes[i]) == NULL)
7805 			continue;
7806 
7807 		if (probe->dtpr_provider != prov)
7808 			continue;
7809 
7810 		if (probe->dtpr_ecb != NULL)
7811 			continue;
7812 
7813 		dtrace_probes[i] = NULL;
7814 
7815 		dtrace_hash_remove(dtrace_bymod, probe);
7816 		dtrace_hash_remove(dtrace_byfunc, probe);
7817 		dtrace_hash_remove(dtrace_byname, probe);
7818 
7819 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7820 		    probe->dtpr_arg);
7821 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7822 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7823 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7824 		kmem_free(probe, sizeof (dtrace_probe_t));
7825 #if defined(sun)
7826 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7827 #else
7828 		free_unr(dtrace_arena, i + 1);
7829 #endif
7830 	}
7831 
7832 	mutex_exit(&dtrace_lock);
7833 	mutex_exit(&dtrace_provider_lock);
7834 
7835 	return (0);
7836 }
7837 
7838 /*
7839  * DTrace Probe Management Functions
7840  *
7841  * The functions in this section perform the DTrace probe management,
7842  * including functions to create probes, look-up probes, and call into the
7843  * providers to request that probes be provided.  Some of these functions are
7844  * in the Provider-to-Framework API; these functions can be identified by the
7845  * fact that they are not declared "static".
7846  */
7847 
7848 /*
7849  * Create a probe with the specified module name, function name, and name.
7850  */
7851 dtrace_id_t
7852 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7853     const char *func, const char *name, int aframes, void *arg)
7854 {
7855 	dtrace_probe_t *probe, **probes;
7856 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7857 	dtrace_id_t id;
7858 
7859 	if (provider == dtrace_provider) {
7860 		ASSERT(MUTEX_HELD(&dtrace_lock));
7861 	} else {
7862 		mutex_enter(&dtrace_lock);
7863 	}
7864 
7865 #if defined(sun)
7866 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7867 	    VM_BESTFIT | VM_SLEEP);
7868 #else
7869 	id = alloc_unr(dtrace_arena);
7870 #endif
7871 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7872 
7873 	probe->dtpr_id = id;
7874 	probe->dtpr_gen = dtrace_probegen++;
7875 	probe->dtpr_mod = dtrace_strdup(mod);
7876 	probe->dtpr_func = dtrace_strdup(func);
7877 	probe->dtpr_name = dtrace_strdup(name);
7878 	probe->dtpr_arg = arg;
7879 	probe->dtpr_aframes = aframes;
7880 	probe->dtpr_provider = provider;
7881 
7882 	dtrace_hash_add(dtrace_bymod, probe);
7883 	dtrace_hash_add(dtrace_byfunc, probe);
7884 	dtrace_hash_add(dtrace_byname, probe);
7885 
7886 	if (id - 1 >= dtrace_nprobes) {
7887 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7888 		size_t nsize = osize << 1;
7889 
7890 		if (nsize == 0) {
7891 			ASSERT(osize == 0);
7892 			ASSERT(dtrace_probes == NULL);
7893 			nsize = sizeof (dtrace_probe_t *);
7894 		}
7895 
7896 		probes = kmem_zalloc(nsize, KM_SLEEP);
7897 
7898 		if (dtrace_probes == NULL) {
7899 			ASSERT(osize == 0);
7900 			dtrace_probes = probes;
7901 			dtrace_nprobes = 1;
7902 		} else {
7903 			dtrace_probe_t **oprobes = dtrace_probes;
7904 
7905 			bcopy(oprobes, probes, osize);
7906 			dtrace_membar_producer();
7907 			dtrace_probes = probes;
7908 
7909 			dtrace_sync();
7910 
7911 			/*
7912 			 * All CPUs are now seeing the new probes array; we can
7913 			 * safely free the old array.
7914 			 */
7915 			kmem_free(oprobes, osize);
7916 			dtrace_nprobes <<= 1;
7917 		}
7918 
7919 		ASSERT(id - 1 < dtrace_nprobes);
7920 	}
7921 
7922 	ASSERT(dtrace_probes[id - 1] == NULL);
7923 	dtrace_probes[id - 1] = probe;
7924 
7925 	if (provider != dtrace_provider)
7926 		mutex_exit(&dtrace_lock);
7927 
7928 	return (id);
7929 }
7930 
7931 static dtrace_probe_t *
7932 dtrace_probe_lookup_id(dtrace_id_t id)
7933 {
7934 	ASSERT(MUTEX_HELD(&dtrace_lock));
7935 
7936 	if (id == 0 || id > dtrace_nprobes)
7937 		return (NULL);
7938 
7939 	return (dtrace_probes[id - 1]);
7940 }
7941 
7942 static int
7943 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
7944 {
7945 	*((dtrace_id_t *)arg) = probe->dtpr_id;
7946 
7947 	return (DTRACE_MATCH_DONE);
7948 }
7949 
7950 /*
7951  * Look up a probe based on provider and one or more of module name, function
7952  * name and probe name.
7953  */
7954 dtrace_id_t
7955 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
7956     char *func, char *name)
7957 {
7958 	dtrace_probekey_t pkey;
7959 	dtrace_id_t id;
7960 	int match;
7961 
7962 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
7963 	pkey.dtpk_pmatch = &dtrace_match_string;
7964 	pkey.dtpk_mod = mod;
7965 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
7966 	pkey.dtpk_func = func;
7967 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
7968 	pkey.dtpk_name = name;
7969 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
7970 	pkey.dtpk_id = DTRACE_IDNONE;
7971 
7972 	mutex_enter(&dtrace_lock);
7973 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
7974 	    dtrace_probe_lookup_match, &id);
7975 	mutex_exit(&dtrace_lock);
7976 
7977 	ASSERT(match == 1 || match == 0);
7978 	return (match ? id : 0);
7979 }
7980 
7981 /*
7982  * Returns the probe argument associated with the specified probe.
7983  */
7984 void *
7985 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
7986 {
7987 	dtrace_probe_t *probe;
7988 	void *rval = NULL;
7989 
7990 	mutex_enter(&dtrace_lock);
7991 
7992 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
7993 	    probe->dtpr_provider == (dtrace_provider_t *)id)
7994 		rval = probe->dtpr_arg;
7995 
7996 	mutex_exit(&dtrace_lock);
7997 
7998 	return (rval);
7999 }
8000 
8001 /*
8002  * Copy a probe into a probe description.
8003  */
8004 static void
8005 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8006 {
8007 	bzero(pdp, sizeof (dtrace_probedesc_t));
8008 	pdp->dtpd_id = prp->dtpr_id;
8009 
8010 	(void) strncpy(pdp->dtpd_provider,
8011 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8012 
8013 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8014 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8015 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8016 }
8017 
8018 #if !defined(sun)
8019 static int
8020 dtrace_probe_provide_cb(linker_file_t lf, void *arg)
8021 {
8022 	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
8023 
8024 	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
8025 
8026 	return(0);
8027 }
8028 #endif
8029 
8030 
8031 /*
8032  * Called to indicate that a probe -- or probes -- should be provided by a
8033  * specfied provider.  If the specified description is NULL, the provider will
8034  * be told to provide all of its probes.  (This is done whenever a new
8035  * consumer comes along, or whenever a retained enabling is to be matched.) If
8036  * the specified description is non-NULL, the provider is given the
8037  * opportunity to dynamically provide the specified probe, allowing providers
8038  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8039  * probes.)  If the provider is NULL, the operations will be applied to all
8040  * providers; if the provider is non-NULL the operations will only be applied
8041  * to the specified provider.  The dtrace_provider_lock must be held, and the
8042  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8043  * will need to grab the dtrace_lock when it reenters the framework through
8044  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8045  */
8046 static void
8047 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8048 {
8049 #if defined(sun)
8050 	modctl_t *ctl;
8051 #endif
8052 	int all = 0;
8053 
8054 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8055 
8056 	if (prv == NULL) {
8057 		all = 1;
8058 		prv = dtrace_provider;
8059 	}
8060 
8061 	do {
8062 		/*
8063 		 * First, call the blanket provide operation.
8064 		 */
8065 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8066 
8067 		/*
8068 		 * Now call the per-module provide operation.  We will grab
8069 		 * mod_lock to prevent the list from being modified.  Note
8070 		 * that this also prevents the mod_busy bits from changing.
8071 		 * (mod_busy can only be changed with mod_lock held.)
8072 		 */
8073 		mutex_enter(&mod_lock);
8074 
8075 #if defined(sun)
8076 		ctl = &modules;
8077 		do {
8078 			if (ctl->mod_busy || ctl->mod_mp == NULL)
8079 				continue;
8080 
8081 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8082 
8083 		} while ((ctl = ctl->mod_next) != &modules);
8084 #else
8085 		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
8086 #endif
8087 
8088 		mutex_exit(&mod_lock);
8089 	} while (all && (prv = prv->dtpv_next) != NULL);
8090 }
8091 
8092 #if defined(sun)
8093 /*
8094  * Iterate over each probe, and call the Framework-to-Provider API function
8095  * denoted by offs.
8096  */
8097 static void
8098 dtrace_probe_foreach(uintptr_t offs)
8099 {
8100 	dtrace_provider_t *prov;
8101 	void (*func)(void *, dtrace_id_t, void *);
8102 	dtrace_probe_t *probe;
8103 	dtrace_icookie_t cookie;
8104 	int i;
8105 
8106 	/*
8107 	 * We disable interrupts to walk through the probe array.  This is
8108 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8109 	 * won't see stale data.
8110 	 */
8111 	cookie = dtrace_interrupt_disable();
8112 
8113 	for (i = 0; i < dtrace_nprobes; i++) {
8114 		if ((probe = dtrace_probes[i]) == NULL)
8115 			continue;
8116 
8117 		if (probe->dtpr_ecb == NULL) {
8118 			/*
8119 			 * This probe isn't enabled -- don't call the function.
8120 			 */
8121 			continue;
8122 		}
8123 
8124 		prov = probe->dtpr_provider;
8125 		func = *((void(**)(void *, dtrace_id_t, void *))
8126 		    ((uintptr_t)&prov->dtpv_pops + offs));
8127 
8128 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8129 	}
8130 
8131 	dtrace_interrupt_enable(cookie);
8132 }
8133 #endif
8134 
8135 static int
8136 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8137 {
8138 	dtrace_probekey_t pkey;
8139 	uint32_t priv;
8140 	uid_t uid;
8141 	zoneid_t zoneid;
8142 
8143 	ASSERT(MUTEX_HELD(&dtrace_lock));
8144 	dtrace_ecb_create_cache = NULL;
8145 
8146 	if (desc == NULL) {
8147 		/*
8148 		 * If we're passed a NULL description, we're being asked to
8149 		 * create an ECB with a NULL probe.
8150 		 */
8151 		(void) dtrace_ecb_create_enable(NULL, enab);
8152 		return (0);
8153 	}
8154 
8155 	dtrace_probekey(desc, &pkey);
8156 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8157 	    &priv, &uid, &zoneid);
8158 
8159 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8160 	    enab));
8161 }
8162 
8163 /*
8164  * DTrace Helper Provider Functions
8165  */
8166 static void
8167 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8168 {
8169 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8170 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8171 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8172 }
8173 
8174 static void
8175 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8176     const dof_provider_t *dofprov, char *strtab)
8177 {
8178 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8179 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8180 	    dofprov->dofpv_provattr);
8181 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8182 	    dofprov->dofpv_modattr);
8183 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8184 	    dofprov->dofpv_funcattr);
8185 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8186 	    dofprov->dofpv_nameattr);
8187 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8188 	    dofprov->dofpv_argsattr);
8189 }
8190 
8191 static void
8192 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8193 {
8194 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8195 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8196 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8197 	dof_provider_t *provider;
8198 	dof_probe_t *probe;
8199 	uint32_t *off, *enoff;
8200 	uint8_t *arg;
8201 	char *strtab;
8202 	uint_t i, nprobes;
8203 	dtrace_helper_provdesc_t dhpv;
8204 	dtrace_helper_probedesc_t dhpb;
8205 	dtrace_meta_t *meta = dtrace_meta_pid;
8206 	dtrace_mops_t *mops = &meta->dtm_mops;
8207 	void *parg;
8208 
8209 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8210 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8211 	    provider->dofpv_strtab * dof->dofh_secsize);
8212 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8213 	    provider->dofpv_probes * dof->dofh_secsize);
8214 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8215 	    provider->dofpv_prargs * dof->dofh_secsize);
8216 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8217 	    provider->dofpv_proffs * dof->dofh_secsize);
8218 
8219 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8220 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8221 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8222 	enoff = NULL;
8223 
8224 	/*
8225 	 * See dtrace_helper_provider_validate().
8226 	 */
8227 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8228 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8229 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8230 		    provider->dofpv_prenoffs * dof->dofh_secsize);
8231 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8232 	}
8233 
8234 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8235 
8236 	/*
8237 	 * Create the provider.
8238 	 */
8239 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8240 
8241 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8242 		return;
8243 
8244 	meta->dtm_count++;
8245 
8246 	/*
8247 	 * Create the probes.
8248 	 */
8249 	for (i = 0; i < nprobes; i++) {
8250 		probe = (dof_probe_t *)(uintptr_t)(daddr +
8251 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8252 
8253 		dhpb.dthpb_mod = dhp->dofhp_mod;
8254 		dhpb.dthpb_func = strtab + probe->dofpr_func;
8255 		dhpb.dthpb_name = strtab + probe->dofpr_name;
8256 		dhpb.dthpb_base = probe->dofpr_addr;
8257 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8258 		dhpb.dthpb_noffs = probe->dofpr_noffs;
8259 		if (enoff != NULL) {
8260 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8261 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8262 		} else {
8263 			dhpb.dthpb_enoffs = NULL;
8264 			dhpb.dthpb_nenoffs = 0;
8265 		}
8266 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8267 		dhpb.dthpb_nargc = probe->dofpr_nargc;
8268 		dhpb.dthpb_xargc = probe->dofpr_xargc;
8269 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8270 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8271 
8272 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8273 	}
8274 }
8275 
8276 static void
8277 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8278 {
8279 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8280 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8281 	int i;
8282 
8283 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8284 
8285 	for (i = 0; i < dof->dofh_secnum; i++) {
8286 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8287 		    dof->dofh_secoff + i * dof->dofh_secsize);
8288 
8289 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8290 			continue;
8291 
8292 		dtrace_helper_provide_one(dhp, sec, pid);
8293 	}
8294 
8295 	/*
8296 	 * We may have just created probes, so we must now rematch against
8297 	 * any retained enablings.  Note that this call will acquire both
8298 	 * cpu_lock and dtrace_lock; the fact that we are holding
8299 	 * dtrace_meta_lock now is what defines the ordering with respect to
8300 	 * these three locks.
8301 	 */
8302 	dtrace_enabling_matchall();
8303 }
8304 
8305 static void
8306 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8307 {
8308 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8309 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8310 	dof_sec_t *str_sec;
8311 	dof_provider_t *provider;
8312 	char *strtab;
8313 	dtrace_helper_provdesc_t dhpv;
8314 	dtrace_meta_t *meta = dtrace_meta_pid;
8315 	dtrace_mops_t *mops = &meta->dtm_mops;
8316 
8317 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8318 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8319 	    provider->dofpv_strtab * dof->dofh_secsize);
8320 
8321 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8322 
8323 	/*
8324 	 * Create the provider.
8325 	 */
8326 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8327 
8328 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8329 
8330 	meta->dtm_count--;
8331 }
8332 
8333 static void
8334 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8335 {
8336 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8337 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8338 	int i;
8339 
8340 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8341 
8342 	for (i = 0; i < dof->dofh_secnum; i++) {
8343 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8344 		    dof->dofh_secoff + i * dof->dofh_secsize);
8345 
8346 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8347 			continue;
8348 
8349 		dtrace_helper_provider_remove_one(dhp, sec, pid);
8350 	}
8351 }
8352 
8353 /*
8354  * DTrace Meta Provider-to-Framework API Functions
8355  *
8356  * These functions implement the Meta Provider-to-Framework API, as described
8357  * in <sys/dtrace.h>.
8358  */
8359 int
8360 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8361     dtrace_meta_provider_id_t *idp)
8362 {
8363 	dtrace_meta_t *meta;
8364 	dtrace_helpers_t *help, *next;
8365 	int i;
8366 
8367 	*idp = DTRACE_METAPROVNONE;
8368 
8369 	/*
8370 	 * We strictly don't need the name, but we hold onto it for
8371 	 * debuggability. All hail error queues!
8372 	 */
8373 	if (name == NULL) {
8374 		cmn_err(CE_WARN, "failed to register meta-provider: "
8375 		    "invalid name");
8376 		return (EINVAL);
8377 	}
8378 
8379 	if (mops == NULL ||
8380 	    mops->dtms_create_probe == NULL ||
8381 	    mops->dtms_provide_pid == NULL ||
8382 	    mops->dtms_remove_pid == NULL) {
8383 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8384 		    "invalid ops", name);
8385 		return (EINVAL);
8386 	}
8387 
8388 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8389 	meta->dtm_mops = *mops;
8390 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8391 	(void) strcpy(meta->dtm_name, name);
8392 	meta->dtm_arg = arg;
8393 
8394 	mutex_enter(&dtrace_meta_lock);
8395 	mutex_enter(&dtrace_lock);
8396 
8397 	if (dtrace_meta_pid != NULL) {
8398 		mutex_exit(&dtrace_lock);
8399 		mutex_exit(&dtrace_meta_lock);
8400 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8401 		    "user-land meta-provider exists", name);
8402 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8403 		kmem_free(meta, sizeof (dtrace_meta_t));
8404 		return (EINVAL);
8405 	}
8406 
8407 	dtrace_meta_pid = meta;
8408 	*idp = (dtrace_meta_provider_id_t)meta;
8409 
8410 	/*
8411 	 * If there are providers and probes ready to go, pass them
8412 	 * off to the new meta provider now.
8413 	 */
8414 
8415 	help = dtrace_deferred_pid;
8416 	dtrace_deferred_pid = NULL;
8417 
8418 	mutex_exit(&dtrace_lock);
8419 
8420 	while (help != NULL) {
8421 		for (i = 0; i < help->dthps_nprovs; i++) {
8422 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8423 			    help->dthps_pid);
8424 		}
8425 
8426 		next = help->dthps_next;
8427 		help->dthps_next = NULL;
8428 		help->dthps_prev = NULL;
8429 		help->dthps_deferred = 0;
8430 		help = next;
8431 	}
8432 
8433 	mutex_exit(&dtrace_meta_lock);
8434 
8435 	return (0);
8436 }
8437 
8438 int
8439 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8440 {
8441 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8442 
8443 	mutex_enter(&dtrace_meta_lock);
8444 	mutex_enter(&dtrace_lock);
8445 
8446 	if (old == dtrace_meta_pid) {
8447 		pp = &dtrace_meta_pid;
8448 	} else {
8449 		panic("attempt to unregister non-existent "
8450 		    "dtrace meta-provider %p\n", (void *)old);
8451 	}
8452 
8453 	if (old->dtm_count != 0) {
8454 		mutex_exit(&dtrace_lock);
8455 		mutex_exit(&dtrace_meta_lock);
8456 		return (EBUSY);
8457 	}
8458 
8459 	*pp = NULL;
8460 
8461 	mutex_exit(&dtrace_lock);
8462 	mutex_exit(&dtrace_meta_lock);
8463 
8464 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8465 	kmem_free(old, sizeof (dtrace_meta_t));
8466 
8467 	return (0);
8468 }
8469 
8470 
8471 /*
8472  * DTrace DIF Object Functions
8473  */
8474 static int
8475 dtrace_difo_err(uint_t pc, const char *format, ...)
8476 {
8477 	if (dtrace_err_verbose) {
8478 		va_list alist;
8479 
8480 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8481 		va_start(alist, format);
8482 		(void) vuprintf(format, alist);
8483 		va_end(alist);
8484 	}
8485 
8486 #ifdef DTRACE_ERRDEBUG
8487 	dtrace_errdebug(format);
8488 #endif
8489 	return (1);
8490 }
8491 
8492 /*
8493  * Validate a DTrace DIF object by checking the IR instructions.  The following
8494  * rules are currently enforced by dtrace_difo_validate():
8495  *
8496  * 1. Each instruction must have a valid opcode
8497  * 2. Each register, string, variable, or subroutine reference must be valid
8498  * 3. No instruction can modify register %r0 (must be zero)
8499  * 4. All instruction reserved bits must be set to zero
8500  * 5. The last instruction must be a "ret" instruction
8501  * 6. All branch targets must reference a valid instruction _after_ the branch
8502  */
8503 static int
8504 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8505     cred_t *cr)
8506 {
8507 	int err = 0, i;
8508 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8509 	int kcheckload;
8510 	uint_t pc;
8511 
8512 	kcheckload = cr == NULL ||
8513 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8514 
8515 	dp->dtdo_destructive = 0;
8516 
8517 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8518 		dif_instr_t instr = dp->dtdo_buf[pc];
8519 
8520 		uint_t r1 = DIF_INSTR_R1(instr);
8521 		uint_t r2 = DIF_INSTR_R2(instr);
8522 		uint_t rd = DIF_INSTR_RD(instr);
8523 		uint_t rs = DIF_INSTR_RS(instr);
8524 		uint_t label = DIF_INSTR_LABEL(instr);
8525 		uint_t v = DIF_INSTR_VAR(instr);
8526 		uint_t subr = DIF_INSTR_SUBR(instr);
8527 		uint_t type = DIF_INSTR_TYPE(instr);
8528 		uint_t op = DIF_INSTR_OP(instr);
8529 
8530 		switch (op) {
8531 		case DIF_OP_OR:
8532 		case DIF_OP_XOR:
8533 		case DIF_OP_AND:
8534 		case DIF_OP_SLL:
8535 		case DIF_OP_SRL:
8536 		case DIF_OP_SRA:
8537 		case DIF_OP_SUB:
8538 		case DIF_OP_ADD:
8539 		case DIF_OP_MUL:
8540 		case DIF_OP_SDIV:
8541 		case DIF_OP_UDIV:
8542 		case DIF_OP_SREM:
8543 		case DIF_OP_UREM:
8544 		case DIF_OP_COPYS:
8545 			if (r1 >= nregs)
8546 				err += efunc(pc, "invalid register %u\n", r1);
8547 			if (r2 >= nregs)
8548 				err += efunc(pc, "invalid register %u\n", r2);
8549 			if (rd >= nregs)
8550 				err += efunc(pc, "invalid register %u\n", rd);
8551 			if (rd == 0)
8552 				err += efunc(pc, "cannot write to %r0\n");
8553 			break;
8554 		case DIF_OP_NOT:
8555 		case DIF_OP_MOV:
8556 		case DIF_OP_ALLOCS:
8557 			if (r1 >= nregs)
8558 				err += efunc(pc, "invalid register %u\n", r1);
8559 			if (r2 != 0)
8560 				err += efunc(pc, "non-zero reserved bits\n");
8561 			if (rd >= nregs)
8562 				err += efunc(pc, "invalid register %u\n", rd);
8563 			if (rd == 0)
8564 				err += efunc(pc, "cannot write to %r0\n");
8565 			break;
8566 		case DIF_OP_LDSB:
8567 		case DIF_OP_LDSH:
8568 		case DIF_OP_LDSW:
8569 		case DIF_OP_LDUB:
8570 		case DIF_OP_LDUH:
8571 		case DIF_OP_LDUW:
8572 		case DIF_OP_LDX:
8573 			if (r1 >= nregs)
8574 				err += efunc(pc, "invalid register %u\n", r1);
8575 			if (r2 != 0)
8576 				err += efunc(pc, "non-zero reserved bits\n");
8577 			if (rd >= nregs)
8578 				err += efunc(pc, "invalid register %u\n", rd);
8579 			if (rd == 0)
8580 				err += efunc(pc, "cannot write to %r0\n");
8581 			if (kcheckload)
8582 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8583 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8584 			break;
8585 		case DIF_OP_RLDSB:
8586 		case DIF_OP_RLDSH:
8587 		case DIF_OP_RLDSW:
8588 		case DIF_OP_RLDUB:
8589 		case DIF_OP_RLDUH:
8590 		case DIF_OP_RLDUW:
8591 		case DIF_OP_RLDX:
8592 			if (r1 >= nregs)
8593 				err += efunc(pc, "invalid register %u\n", r1);
8594 			if (r2 != 0)
8595 				err += efunc(pc, "non-zero reserved bits\n");
8596 			if (rd >= nregs)
8597 				err += efunc(pc, "invalid register %u\n", rd);
8598 			if (rd == 0)
8599 				err += efunc(pc, "cannot write to %r0\n");
8600 			break;
8601 		case DIF_OP_ULDSB:
8602 		case DIF_OP_ULDSH:
8603 		case DIF_OP_ULDSW:
8604 		case DIF_OP_ULDUB:
8605 		case DIF_OP_ULDUH:
8606 		case DIF_OP_ULDUW:
8607 		case DIF_OP_ULDX:
8608 			if (r1 >= nregs)
8609 				err += efunc(pc, "invalid register %u\n", r1);
8610 			if (r2 != 0)
8611 				err += efunc(pc, "non-zero reserved bits\n");
8612 			if (rd >= nregs)
8613 				err += efunc(pc, "invalid register %u\n", rd);
8614 			if (rd == 0)
8615 				err += efunc(pc, "cannot write to %r0\n");
8616 			break;
8617 		case DIF_OP_STB:
8618 		case DIF_OP_STH:
8619 		case DIF_OP_STW:
8620 		case DIF_OP_STX:
8621 			if (r1 >= nregs)
8622 				err += efunc(pc, "invalid register %u\n", r1);
8623 			if (r2 != 0)
8624 				err += efunc(pc, "non-zero reserved bits\n");
8625 			if (rd >= nregs)
8626 				err += efunc(pc, "invalid register %u\n", rd);
8627 			if (rd == 0)
8628 				err += efunc(pc, "cannot write to 0 address\n");
8629 			break;
8630 		case DIF_OP_CMP:
8631 		case DIF_OP_SCMP:
8632 			if (r1 >= nregs)
8633 				err += efunc(pc, "invalid register %u\n", r1);
8634 			if (r2 >= nregs)
8635 				err += efunc(pc, "invalid register %u\n", r2);
8636 			if (rd != 0)
8637 				err += efunc(pc, "non-zero reserved bits\n");
8638 			break;
8639 		case DIF_OP_TST:
8640 			if (r1 >= nregs)
8641 				err += efunc(pc, "invalid register %u\n", r1);
8642 			if (r2 != 0 || rd != 0)
8643 				err += efunc(pc, "non-zero reserved bits\n");
8644 			break;
8645 		case DIF_OP_BA:
8646 		case DIF_OP_BE:
8647 		case DIF_OP_BNE:
8648 		case DIF_OP_BG:
8649 		case DIF_OP_BGU:
8650 		case DIF_OP_BGE:
8651 		case DIF_OP_BGEU:
8652 		case DIF_OP_BL:
8653 		case DIF_OP_BLU:
8654 		case DIF_OP_BLE:
8655 		case DIF_OP_BLEU:
8656 			if (label >= dp->dtdo_len) {
8657 				err += efunc(pc, "invalid branch target %u\n",
8658 				    label);
8659 			}
8660 			if (label <= pc) {
8661 				err += efunc(pc, "backward branch to %u\n",
8662 				    label);
8663 			}
8664 			break;
8665 		case DIF_OP_RET:
8666 			if (r1 != 0 || r2 != 0)
8667 				err += efunc(pc, "non-zero reserved bits\n");
8668 			if (rd >= nregs)
8669 				err += efunc(pc, "invalid register %u\n", rd);
8670 			break;
8671 		case DIF_OP_NOP:
8672 		case DIF_OP_POPTS:
8673 		case DIF_OP_FLUSHTS:
8674 			if (r1 != 0 || r2 != 0 || rd != 0)
8675 				err += efunc(pc, "non-zero reserved bits\n");
8676 			break;
8677 		case DIF_OP_SETX:
8678 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8679 				err += efunc(pc, "invalid integer ref %u\n",
8680 				    DIF_INSTR_INTEGER(instr));
8681 			}
8682 			if (rd >= nregs)
8683 				err += efunc(pc, "invalid register %u\n", rd);
8684 			if (rd == 0)
8685 				err += efunc(pc, "cannot write to %r0\n");
8686 			break;
8687 		case DIF_OP_SETS:
8688 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8689 				err += efunc(pc, "invalid string ref %u\n",
8690 				    DIF_INSTR_STRING(instr));
8691 			}
8692 			if (rd >= nregs)
8693 				err += efunc(pc, "invalid register %u\n", rd);
8694 			if (rd == 0)
8695 				err += efunc(pc, "cannot write to %r0\n");
8696 			break;
8697 		case DIF_OP_LDGA:
8698 		case DIF_OP_LDTA:
8699 			if (r1 > DIF_VAR_ARRAY_MAX)
8700 				err += efunc(pc, "invalid array %u\n", r1);
8701 			if (r2 >= nregs)
8702 				err += efunc(pc, "invalid register %u\n", r2);
8703 			if (rd >= nregs)
8704 				err += efunc(pc, "invalid register %u\n", rd);
8705 			if (rd == 0)
8706 				err += efunc(pc, "cannot write to %r0\n");
8707 			break;
8708 		case DIF_OP_LDGS:
8709 		case DIF_OP_LDTS:
8710 		case DIF_OP_LDLS:
8711 		case DIF_OP_LDGAA:
8712 		case DIF_OP_LDTAA:
8713 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8714 				err += efunc(pc, "invalid variable %u\n", v);
8715 			if (rd >= nregs)
8716 				err += efunc(pc, "invalid register %u\n", rd);
8717 			if (rd == 0)
8718 				err += efunc(pc, "cannot write to %r0\n");
8719 			break;
8720 		case DIF_OP_STGS:
8721 		case DIF_OP_STTS:
8722 		case DIF_OP_STLS:
8723 		case DIF_OP_STGAA:
8724 		case DIF_OP_STTAA:
8725 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8726 				err += efunc(pc, "invalid variable %u\n", v);
8727 			if (rs >= nregs)
8728 				err += efunc(pc, "invalid register %u\n", rd);
8729 			break;
8730 		case DIF_OP_CALL:
8731 			if (subr > DIF_SUBR_MAX)
8732 				err += efunc(pc, "invalid subr %u\n", subr);
8733 			if (rd >= nregs)
8734 				err += efunc(pc, "invalid register %u\n", rd);
8735 			if (rd == 0)
8736 				err += efunc(pc, "cannot write to %r0\n");
8737 
8738 			if (subr == DIF_SUBR_COPYOUT ||
8739 			    subr == DIF_SUBR_COPYOUTSTR) {
8740 				dp->dtdo_destructive = 1;
8741 			}
8742 			break;
8743 		case DIF_OP_PUSHTR:
8744 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8745 				err += efunc(pc, "invalid ref type %u\n", type);
8746 			if (r2 >= nregs)
8747 				err += efunc(pc, "invalid register %u\n", r2);
8748 			if (rs >= nregs)
8749 				err += efunc(pc, "invalid register %u\n", rs);
8750 			break;
8751 		case DIF_OP_PUSHTV:
8752 			if (type != DIF_TYPE_CTF)
8753 				err += efunc(pc, "invalid val type %u\n", type);
8754 			if (r2 >= nregs)
8755 				err += efunc(pc, "invalid register %u\n", r2);
8756 			if (rs >= nregs)
8757 				err += efunc(pc, "invalid register %u\n", rs);
8758 			break;
8759 		default:
8760 			err += efunc(pc, "invalid opcode %u\n",
8761 			    DIF_INSTR_OP(instr));
8762 		}
8763 	}
8764 
8765 	if (dp->dtdo_len != 0 &&
8766 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8767 		err += efunc(dp->dtdo_len - 1,
8768 		    "expected 'ret' as last DIF instruction\n");
8769 	}
8770 
8771 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8772 		/*
8773 		 * If we're not returning by reference, the size must be either
8774 		 * 0 or the size of one of the base types.
8775 		 */
8776 		switch (dp->dtdo_rtype.dtdt_size) {
8777 		case 0:
8778 		case sizeof (uint8_t):
8779 		case sizeof (uint16_t):
8780 		case sizeof (uint32_t):
8781 		case sizeof (uint64_t):
8782 			break;
8783 
8784 		default:
8785 			err += efunc(dp->dtdo_len - 1, "bad return size");
8786 		}
8787 	}
8788 
8789 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8790 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8791 		dtrace_diftype_t *vt, *et;
8792 		uint_t id, ndx;
8793 
8794 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8795 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8796 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8797 			err += efunc(i, "unrecognized variable scope %d\n",
8798 			    v->dtdv_scope);
8799 			break;
8800 		}
8801 
8802 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8803 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8804 			err += efunc(i, "unrecognized variable type %d\n",
8805 			    v->dtdv_kind);
8806 			break;
8807 		}
8808 
8809 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8810 			err += efunc(i, "%d exceeds variable id limit\n", id);
8811 			break;
8812 		}
8813 
8814 		if (id < DIF_VAR_OTHER_UBASE)
8815 			continue;
8816 
8817 		/*
8818 		 * For user-defined variables, we need to check that this
8819 		 * definition is identical to any previous definition that we
8820 		 * encountered.
8821 		 */
8822 		ndx = id - DIF_VAR_OTHER_UBASE;
8823 
8824 		switch (v->dtdv_scope) {
8825 		case DIFV_SCOPE_GLOBAL:
8826 			if (ndx < vstate->dtvs_nglobals) {
8827 				dtrace_statvar_t *svar;
8828 
8829 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8830 					existing = &svar->dtsv_var;
8831 			}
8832 
8833 			break;
8834 
8835 		case DIFV_SCOPE_THREAD:
8836 			if (ndx < vstate->dtvs_ntlocals)
8837 				existing = &vstate->dtvs_tlocals[ndx];
8838 			break;
8839 
8840 		case DIFV_SCOPE_LOCAL:
8841 			if (ndx < vstate->dtvs_nlocals) {
8842 				dtrace_statvar_t *svar;
8843 
8844 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8845 					existing = &svar->dtsv_var;
8846 			}
8847 
8848 			break;
8849 		}
8850 
8851 		vt = &v->dtdv_type;
8852 
8853 		if (vt->dtdt_flags & DIF_TF_BYREF) {
8854 			if (vt->dtdt_size == 0) {
8855 				err += efunc(i, "zero-sized variable\n");
8856 				break;
8857 			}
8858 
8859 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8860 			    vt->dtdt_size > dtrace_global_maxsize) {
8861 				err += efunc(i, "oversized by-ref global\n");
8862 				break;
8863 			}
8864 		}
8865 
8866 		if (existing == NULL || existing->dtdv_id == 0)
8867 			continue;
8868 
8869 		ASSERT(existing->dtdv_id == v->dtdv_id);
8870 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8871 
8872 		if (existing->dtdv_kind != v->dtdv_kind)
8873 			err += efunc(i, "%d changed variable kind\n", id);
8874 
8875 		et = &existing->dtdv_type;
8876 
8877 		if (vt->dtdt_flags != et->dtdt_flags) {
8878 			err += efunc(i, "%d changed variable type flags\n", id);
8879 			break;
8880 		}
8881 
8882 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8883 			err += efunc(i, "%d changed variable type size\n", id);
8884 			break;
8885 		}
8886 	}
8887 
8888 	return (err);
8889 }
8890 
8891 /*
8892  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8893  * are much more constrained than normal DIFOs.  Specifically, they may
8894  * not:
8895  *
8896  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8897  *    miscellaneous string routines
8898  * 2. Access DTrace variables other than the args[] array, and the
8899  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8900  * 3. Have thread-local variables.
8901  * 4. Have dynamic variables.
8902  */
8903 static int
8904 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8905 {
8906 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8907 	int err = 0;
8908 	uint_t pc;
8909 
8910 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8911 		dif_instr_t instr = dp->dtdo_buf[pc];
8912 
8913 		uint_t v = DIF_INSTR_VAR(instr);
8914 		uint_t subr = DIF_INSTR_SUBR(instr);
8915 		uint_t op = DIF_INSTR_OP(instr);
8916 
8917 		switch (op) {
8918 		case DIF_OP_OR:
8919 		case DIF_OP_XOR:
8920 		case DIF_OP_AND:
8921 		case DIF_OP_SLL:
8922 		case DIF_OP_SRL:
8923 		case DIF_OP_SRA:
8924 		case DIF_OP_SUB:
8925 		case DIF_OP_ADD:
8926 		case DIF_OP_MUL:
8927 		case DIF_OP_SDIV:
8928 		case DIF_OP_UDIV:
8929 		case DIF_OP_SREM:
8930 		case DIF_OP_UREM:
8931 		case DIF_OP_COPYS:
8932 		case DIF_OP_NOT:
8933 		case DIF_OP_MOV:
8934 		case DIF_OP_RLDSB:
8935 		case DIF_OP_RLDSH:
8936 		case DIF_OP_RLDSW:
8937 		case DIF_OP_RLDUB:
8938 		case DIF_OP_RLDUH:
8939 		case DIF_OP_RLDUW:
8940 		case DIF_OP_RLDX:
8941 		case DIF_OP_ULDSB:
8942 		case DIF_OP_ULDSH:
8943 		case DIF_OP_ULDSW:
8944 		case DIF_OP_ULDUB:
8945 		case DIF_OP_ULDUH:
8946 		case DIF_OP_ULDUW:
8947 		case DIF_OP_ULDX:
8948 		case DIF_OP_STB:
8949 		case DIF_OP_STH:
8950 		case DIF_OP_STW:
8951 		case DIF_OP_STX:
8952 		case DIF_OP_ALLOCS:
8953 		case DIF_OP_CMP:
8954 		case DIF_OP_SCMP:
8955 		case DIF_OP_TST:
8956 		case DIF_OP_BA:
8957 		case DIF_OP_BE:
8958 		case DIF_OP_BNE:
8959 		case DIF_OP_BG:
8960 		case DIF_OP_BGU:
8961 		case DIF_OP_BGE:
8962 		case DIF_OP_BGEU:
8963 		case DIF_OP_BL:
8964 		case DIF_OP_BLU:
8965 		case DIF_OP_BLE:
8966 		case DIF_OP_BLEU:
8967 		case DIF_OP_RET:
8968 		case DIF_OP_NOP:
8969 		case DIF_OP_POPTS:
8970 		case DIF_OP_FLUSHTS:
8971 		case DIF_OP_SETX:
8972 		case DIF_OP_SETS:
8973 		case DIF_OP_LDGA:
8974 		case DIF_OP_LDLS:
8975 		case DIF_OP_STGS:
8976 		case DIF_OP_STLS:
8977 		case DIF_OP_PUSHTR:
8978 		case DIF_OP_PUSHTV:
8979 			break;
8980 
8981 		case DIF_OP_LDGS:
8982 			if (v >= DIF_VAR_OTHER_UBASE)
8983 				break;
8984 
8985 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
8986 				break;
8987 
8988 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
8989 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
8990 			    v == DIF_VAR_EXECARGS ||
8991 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
8992 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
8993 				break;
8994 
8995 			err += efunc(pc, "illegal variable %u\n", v);
8996 			break;
8997 
8998 		case DIF_OP_LDTA:
8999 		case DIF_OP_LDTS:
9000 		case DIF_OP_LDGAA:
9001 		case DIF_OP_LDTAA:
9002 			err += efunc(pc, "illegal dynamic variable load\n");
9003 			break;
9004 
9005 		case DIF_OP_STTS:
9006 		case DIF_OP_STGAA:
9007 		case DIF_OP_STTAA:
9008 			err += efunc(pc, "illegal dynamic variable store\n");
9009 			break;
9010 
9011 		case DIF_OP_CALL:
9012 			if (subr == DIF_SUBR_ALLOCA ||
9013 			    subr == DIF_SUBR_BCOPY ||
9014 			    subr == DIF_SUBR_COPYIN ||
9015 			    subr == DIF_SUBR_COPYINTO ||
9016 			    subr == DIF_SUBR_COPYINSTR ||
9017 			    subr == DIF_SUBR_INDEX ||
9018 			    subr == DIF_SUBR_INET_NTOA ||
9019 			    subr == DIF_SUBR_INET_NTOA6 ||
9020 			    subr == DIF_SUBR_INET_NTOP ||
9021 			    subr == DIF_SUBR_LLTOSTR ||
9022 			    subr == DIF_SUBR_RINDEX ||
9023 			    subr == DIF_SUBR_STRCHR ||
9024 			    subr == DIF_SUBR_STRJOIN ||
9025 			    subr == DIF_SUBR_STRRCHR ||
9026 			    subr == DIF_SUBR_STRSTR ||
9027 			    subr == DIF_SUBR_HTONS ||
9028 			    subr == DIF_SUBR_HTONL ||
9029 			    subr == DIF_SUBR_HTONLL ||
9030 			    subr == DIF_SUBR_NTOHS ||
9031 			    subr == DIF_SUBR_NTOHL ||
9032 			    subr == DIF_SUBR_NTOHLL ||
9033 			    subr == DIF_SUBR_MEMREF ||
9034 			    subr == DIF_SUBR_TYPEREF)
9035 				break;
9036 
9037 			err += efunc(pc, "invalid subr %u\n", subr);
9038 			break;
9039 
9040 		default:
9041 			err += efunc(pc, "invalid opcode %u\n",
9042 			    DIF_INSTR_OP(instr));
9043 		}
9044 	}
9045 
9046 	return (err);
9047 }
9048 
9049 /*
9050  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9051  * basis; 0 if not.
9052  */
9053 static int
9054 dtrace_difo_cacheable(dtrace_difo_t *dp)
9055 {
9056 	int i;
9057 
9058 	if (dp == NULL)
9059 		return (0);
9060 
9061 	for (i = 0; i < dp->dtdo_varlen; i++) {
9062 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9063 
9064 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9065 			continue;
9066 
9067 		switch (v->dtdv_id) {
9068 		case DIF_VAR_CURTHREAD:
9069 		case DIF_VAR_PID:
9070 		case DIF_VAR_TID:
9071 		case DIF_VAR_EXECARGS:
9072 		case DIF_VAR_EXECNAME:
9073 		case DIF_VAR_ZONENAME:
9074 			break;
9075 
9076 		default:
9077 			return (0);
9078 		}
9079 	}
9080 
9081 	/*
9082 	 * This DIF object may be cacheable.  Now we need to look for any
9083 	 * array loading instructions, any memory loading instructions, or
9084 	 * any stores to thread-local variables.
9085 	 */
9086 	for (i = 0; i < dp->dtdo_len; i++) {
9087 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9088 
9089 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9090 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9091 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9092 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9093 			return (0);
9094 	}
9095 
9096 	return (1);
9097 }
9098 
9099 static void
9100 dtrace_difo_hold(dtrace_difo_t *dp)
9101 {
9102 	int i;
9103 
9104 	ASSERT(MUTEX_HELD(&dtrace_lock));
9105 
9106 	dp->dtdo_refcnt++;
9107 	ASSERT(dp->dtdo_refcnt != 0);
9108 
9109 	/*
9110 	 * We need to check this DIF object for references to the variable
9111 	 * DIF_VAR_VTIMESTAMP.
9112 	 */
9113 	for (i = 0; i < dp->dtdo_varlen; i++) {
9114 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9115 
9116 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9117 			continue;
9118 
9119 		if (dtrace_vtime_references++ == 0)
9120 			dtrace_vtime_enable();
9121 	}
9122 }
9123 
9124 /*
9125  * This routine calculates the dynamic variable chunksize for a given DIF
9126  * object.  The calculation is not fool-proof, and can probably be tricked by
9127  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9128  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9129  * if a dynamic variable size exceeds the chunksize.
9130  */
9131 static void
9132 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9133 {
9134 	uint64_t sval = 0;
9135 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9136 	const dif_instr_t *text = dp->dtdo_buf;
9137 	uint_t pc, srd = 0;
9138 	uint_t ttop = 0;
9139 	size_t size, ksize;
9140 	uint_t id, i;
9141 
9142 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9143 		dif_instr_t instr = text[pc];
9144 		uint_t op = DIF_INSTR_OP(instr);
9145 		uint_t rd = DIF_INSTR_RD(instr);
9146 		uint_t r1 = DIF_INSTR_R1(instr);
9147 		uint_t nkeys = 0;
9148 		uchar_t scope = 0;
9149 
9150 		dtrace_key_t *key = tupregs;
9151 
9152 		switch (op) {
9153 		case DIF_OP_SETX:
9154 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9155 			srd = rd;
9156 			continue;
9157 
9158 		case DIF_OP_STTS:
9159 			key = &tupregs[DIF_DTR_NREGS];
9160 			key[0].dttk_size = 0;
9161 			key[1].dttk_size = 0;
9162 			nkeys = 2;
9163 			scope = DIFV_SCOPE_THREAD;
9164 			break;
9165 
9166 		case DIF_OP_STGAA:
9167 		case DIF_OP_STTAA:
9168 			nkeys = ttop;
9169 
9170 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9171 				key[nkeys++].dttk_size = 0;
9172 
9173 			key[nkeys++].dttk_size = 0;
9174 
9175 			if (op == DIF_OP_STTAA) {
9176 				scope = DIFV_SCOPE_THREAD;
9177 			} else {
9178 				scope = DIFV_SCOPE_GLOBAL;
9179 			}
9180 
9181 			break;
9182 
9183 		case DIF_OP_PUSHTR:
9184 			if (ttop == DIF_DTR_NREGS)
9185 				return;
9186 
9187 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9188 				/*
9189 				 * If the register for the size of the "pushtr"
9190 				 * is %r0 (or the value is 0) and the type is
9191 				 * a string, we'll use the system-wide default
9192 				 * string size.
9193 				 */
9194 				tupregs[ttop++].dttk_size =
9195 				    dtrace_strsize_default;
9196 			} else {
9197 				if (srd == 0)
9198 					return;
9199 
9200 				tupregs[ttop++].dttk_size = sval;
9201 			}
9202 
9203 			break;
9204 
9205 		case DIF_OP_PUSHTV:
9206 			if (ttop == DIF_DTR_NREGS)
9207 				return;
9208 
9209 			tupregs[ttop++].dttk_size = 0;
9210 			break;
9211 
9212 		case DIF_OP_FLUSHTS:
9213 			ttop = 0;
9214 			break;
9215 
9216 		case DIF_OP_POPTS:
9217 			if (ttop != 0)
9218 				ttop--;
9219 			break;
9220 		}
9221 
9222 		sval = 0;
9223 		srd = 0;
9224 
9225 		if (nkeys == 0)
9226 			continue;
9227 
9228 		/*
9229 		 * We have a dynamic variable allocation; calculate its size.
9230 		 */
9231 		for (ksize = 0, i = 0; i < nkeys; i++)
9232 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9233 
9234 		size = sizeof (dtrace_dynvar_t);
9235 		size += sizeof (dtrace_key_t) * (nkeys - 1);
9236 		size += ksize;
9237 
9238 		/*
9239 		 * Now we need to determine the size of the stored data.
9240 		 */
9241 		id = DIF_INSTR_VAR(instr);
9242 
9243 		for (i = 0; i < dp->dtdo_varlen; i++) {
9244 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9245 
9246 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9247 				size += v->dtdv_type.dtdt_size;
9248 				break;
9249 			}
9250 		}
9251 
9252 		if (i == dp->dtdo_varlen)
9253 			return;
9254 
9255 		/*
9256 		 * We have the size.  If this is larger than the chunk size
9257 		 * for our dynamic variable state, reset the chunk size.
9258 		 */
9259 		size = P2ROUNDUP(size, sizeof (uint64_t));
9260 
9261 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9262 			vstate->dtvs_dynvars.dtds_chunksize = size;
9263 	}
9264 }
9265 
9266 static void
9267 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9268 {
9269 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9270 	uint_t id;
9271 
9272 	ASSERT(MUTEX_HELD(&dtrace_lock));
9273 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9274 
9275 	for (i = 0; i < dp->dtdo_varlen; i++) {
9276 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9277 		dtrace_statvar_t *svar, ***svarp = NULL;
9278 		size_t dsize = 0;
9279 		uint8_t scope = v->dtdv_scope;
9280 		int *np = NULL;
9281 
9282 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9283 			continue;
9284 
9285 		id -= DIF_VAR_OTHER_UBASE;
9286 
9287 		switch (scope) {
9288 		case DIFV_SCOPE_THREAD:
9289 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9290 				dtrace_difv_t *tlocals;
9291 
9292 				if ((ntlocals = (otlocals << 1)) == 0)
9293 					ntlocals = 1;
9294 
9295 				osz = otlocals * sizeof (dtrace_difv_t);
9296 				nsz = ntlocals * sizeof (dtrace_difv_t);
9297 
9298 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9299 
9300 				if (osz != 0) {
9301 					bcopy(vstate->dtvs_tlocals,
9302 					    tlocals, osz);
9303 					kmem_free(vstate->dtvs_tlocals, osz);
9304 				}
9305 
9306 				vstate->dtvs_tlocals = tlocals;
9307 				vstate->dtvs_ntlocals = ntlocals;
9308 			}
9309 
9310 			vstate->dtvs_tlocals[id] = *v;
9311 			continue;
9312 
9313 		case DIFV_SCOPE_LOCAL:
9314 			np = &vstate->dtvs_nlocals;
9315 			svarp = &vstate->dtvs_locals;
9316 
9317 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9318 				dsize = NCPU * (v->dtdv_type.dtdt_size +
9319 				    sizeof (uint64_t));
9320 			else
9321 				dsize = NCPU * sizeof (uint64_t);
9322 
9323 			break;
9324 
9325 		case DIFV_SCOPE_GLOBAL:
9326 			np = &vstate->dtvs_nglobals;
9327 			svarp = &vstate->dtvs_globals;
9328 
9329 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9330 				dsize = v->dtdv_type.dtdt_size +
9331 				    sizeof (uint64_t);
9332 
9333 			break;
9334 
9335 		default:
9336 			ASSERT(0);
9337 		}
9338 
9339 		while (id >= (oldsvars = *np)) {
9340 			dtrace_statvar_t **statics;
9341 			int newsvars, oldsize, newsize;
9342 
9343 			if ((newsvars = (oldsvars << 1)) == 0)
9344 				newsvars = 1;
9345 
9346 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9347 			newsize = newsvars * sizeof (dtrace_statvar_t *);
9348 
9349 			statics = kmem_zalloc(newsize, KM_SLEEP);
9350 
9351 			if (oldsize != 0) {
9352 				bcopy(*svarp, statics, oldsize);
9353 				kmem_free(*svarp, oldsize);
9354 			}
9355 
9356 			*svarp = statics;
9357 			*np = newsvars;
9358 		}
9359 
9360 		if ((svar = (*svarp)[id]) == NULL) {
9361 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9362 			svar->dtsv_var = *v;
9363 
9364 			if ((svar->dtsv_size = dsize) != 0) {
9365 				svar->dtsv_data = (uint64_t)(uintptr_t)
9366 				    kmem_zalloc(dsize, KM_SLEEP);
9367 			}
9368 
9369 			(*svarp)[id] = svar;
9370 		}
9371 
9372 		svar->dtsv_refcnt++;
9373 	}
9374 
9375 	dtrace_difo_chunksize(dp, vstate);
9376 	dtrace_difo_hold(dp);
9377 }
9378 
9379 static dtrace_difo_t *
9380 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9381 {
9382 	dtrace_difo_t *new;
9383 	size_t sz;
9384 
9385 	ASSERT(dp->dtdo_buf != NULL);
9386 	ASSERT(dp->dtdo_refcnt != 0);
9387 
9388 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9389 
9390 	ASSERT(dp->dtdo_buf != NULL);
9391 	sz = dp->dtdo_len * sizeof (dif_instr_t);
9392 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9393 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9394 	new->dtdo_len = dp->dtdo_len;
9395 
9396 	if (dp->dtdo_strtab != NULL) {
9397 		ASSERT(dp->dtdo_strlen != 0);
9398 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9399 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9400 		new->dtdo_strlen = dp->dtdo_strlen;
9401 	}
9402 
9403 	if (dp->dtdo_inttab != NULL) {
9404 		ASSERT(dp->dtdo_intlen != 0);
9405 		sz = dp->dtdo_intlen * sizeof (uint64_t);
9406 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9407 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9408 		new->dtdo_intlen = dp->dtdo_intlen;
9409 	}
9410 
9411 	if (dp->dtdo_vartab != NULL) {
9412 		ASSERT(dp->dtdo_varlen != 0);
9413 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9414 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9415 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9416 		new->dtdo_varlen = dp->dtdo_varlen;
9417 	}
9418 
9419 	dtrace_difo_init(new, vstate);
9420 	return (new);
9421 }
9422 
9423 static void
9424 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9425 {
9426 	int i;
9427 
9428 	ASSERT(dp->dtdo_refcnt == 0);
9429 
9430 	for (i = 0; i < dp->dtdo_varlen; i++) {
9431 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9432 		dtrace_statvar_t *svar, **svarp = NULL;
9433 		uint_t id;
9434 		uint8_t scope = v->dtdv_scope;
9435 		int *np = NULL;
9436 
9437 		switch (scope) {
9438 		case DIFV_SCOPE_THREAD:
9439 			continue;
9440 
9441 		case DIFV_SCOPE_LOCAL:
9442 			np = &vstate->dtvs_nlocals;
9443 			svarp = vstate->dtvs_locals;
9444 			break;
9445 
9446 		case DIFV_SCOPE_GLOBAL:
9447 			np = &vstate->dtvs_nglobals;
9448 			svarp = vstate->dtvs_globals;
9449 			break;
9450 
9451 		default:
9452 			ASSERT(0);
9453 		}
9454 
9455 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9456 			continue;
9457 
9458 		id -= DIF_VAR_OTHER_UBASE;
9459 		ASSERT(id < *np);
9460 
9461 		svar = svarp[id];
9462 		ASSERT(svar != NULL);
9463 		ASSERT(svar->dtsv_refcnt > 0);
9464 
9465 		if (--svar->dtsv_refcnt > 0)
9466 			continue;
9467 
9468 		if (svar->dtsv_size != 0) {
9469 			ASSERT(svar->dtsv_data != 0);
9470 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9471 			    svar->dtsv_size);
9472 		}
9473 
9474 		kmem_free(svar, sizeof (dtrace_statvar_t));
9475 		svarp[id] = NULL;
9476 	}
9477 
9478 	if (dp->dtdo_buf != NULL)
9479 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9480 	if (dp->dtdo_inttab != NULL)
9481 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9482 	if (dp->dtdo_strtab != NULL)
9483 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9484 	if (dp->dtdo_vartab != NULL)
9485 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9486 
9487 	kmem_free(dp, sizeof (dtrace_difo_t));
9488 }
9489 
9490 static void
9491 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9492 {
9493 	int i;
9494 
9495 	ASSERT(MUTEX_HELD(&dtrace_lock));
9496 	ASSERT(dp->dtdo_refcnt != 0);
9497 
9498 	for (i = 0; i < dp->dtdo_varlen; i++) {
9499 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9500 
9501 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9502 			continue;
9503 
9504 		ASSERT(dtrace_vtime_references > 0);
9505 		if (--dtrace_vtime_references == 0)
9506 			dtrace_vtime_disable();
9507 	}
9508 
9509 	if (--dp->dtdo_refcnt == 0)
9510 		dtrace_difo_destroy(dp, vstate);
9511 }
9512 
9513 /*
9514  * DTrace Format Functions
9515  */
9516 static uint16_t
9517 dtrace_format_add(dtrace_state_t *state, char *str)
9518 {
9519 	char *fmt, **new;
9520 	uint16_t ndx, len = strlen(str) + 1;
9521 
9522 	fmt = kmem_zalloc(len, KM_SLEEP);
9523 	bcopy(str, fmt, len);
9524 
9525 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9526 		if (state->dts_formats[ndx] == NULL) {
9527 			state->dts_formats[ndx] = fmt;
9528 			return (ndx + 1);
9529 		}
9530 	}
9531 
9532 	if (state->dts_nformats == USHRT_MAX) {
9533 		/*
9534 		 * This is only likely if a denial-of-service attack is being
9535 		 * attempted.  As such, it's okay to fail silently here.
9536 		 */
9537 		kmem_free(fmt, len);
9538 		return (0);
9539 	}
9540 
9541 	/*
9542 	 * For simplicity, we always resize the formats array to be exactly the
9543 	 * number of formats.
9544 	 */
9545 	ndx = state->dts_nformats++;
9546 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9547 
9548 	if (state->dts_formats != NULL) {
9549 		ASSERT(ndx != 0);
9550 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9551 		kmem_free(state->dts_formats, ndx * sizeof (char *));
9552 	}
9553 
9554 	state->dts_formats = new;
9555 	state->dts_formats[ndx] = fmt;
9556 
9557 	return (ndx + 1);
9558 }
9559 
9560 static void
9561 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9562 {
9563 	char *fmt;
9564 
9565 	ASSERT(state->dts_formats != NULL);
9566 	ASSERT(format <= state->dts_nformats);
9567 	ASSERT(state->dts_formats[format - 1] != NULL);
9568 
9569 	fmt = state->dts_formats[format - 1];
9570 	kmem_free(fmt, strlen(fmt) + 1);
9571 	state->dts_formats[format - 1] = NULL;
9572 }
9573 
9574 static void
9575 dtrace_format_destroy(dtrace_state_t *state)
9576 {
9577 	int i;
9578 
9579 	if (state->dts_nformats == 0) {
9580 		ASSERT(state->dts_formats == NULL);
9581 		return;
9582 	}
9583 
9584 	ASSERT(state->dts_formats != NULL);
9585 
9586 	for (i = 0; i < state->dts_nformats; i++) {
9587 		char *fmt = state->dts_formats[i];
9588 
9589 		if (fmt == NULL)
9590 			continue;
9591 
9592 		kmem_free(fmt, strlen(fmt) + 1);
9593 	}
9594 
9595 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9596 	state->dts_nformats = 0;
9597 	state->dts_formats = NULL;
9598 }
9599 
9600 /*
9601  * DTrace Predicate Functions
9602  */
9603 static dtrace_predicate_t *
9604 dtrace_predicate_create(dtrace_difo_t *dp)
9605 {
9606 	dtrace_predicate_t *pred;
9607 
9608 	ASSERT(MUTEX_HELD(&dtrace_lock));
9609 	ASSERT(dp->dtdo_refcnt != 0);
9610 
9611 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9612 	pred->dtp_difo = dp;
9613 	pred->dtp_refcnt = 1;
9614 
9615 	if (!dtrace_difo_cacheable(dp))
9616 		return (pred);
9617 
9618 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9619 		/*
9620 		 * This is only theoretically possible -- we have had 2^32
9621 		 * cacheable predicates on this machine.  We cannot allow any
9622 		 * more predicates to become cacheable:  as unlikely as it is,
9623 		 * there may be a thread caching a (now stale) predicate cache
9624 		 * ID. (N.B.: the temptation is being successfully resisted to
9625 		 * have this cmn_err() "Holy shit -- we executed this code!")
9626 		 */
9627 		return (pred);
9628 	}
9629 
9630 	pred->dtp_cacheid = dtrace_predcache_id++;
9631 
9632 	return (pred);
9633 }
9634 
9635 static void
9636 dtrace_predicate_hold(dtrace_predicate_t *pred)
9637 {
9638 	ASSERT(MUTEX_HELD(&dtrace_lock));
9639 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9640 	ASSERT(pred->dtp_refcnt > 0);
9641 
9642 	pred->dtp_refcnt++;
9643 }
9644 
9645 static void
9646 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9647 {
9648 	dtrace_difo_t *dp = pred->dtp_difo;
9649 
9650 	ASSERT(MUTEX_HELD(&dtrace_lock));
9651 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9652 	ASSERT(pred->dtp_refcnt > 0);
9653 
9654 	if (--pred->dtp_refcnt == 0) {
9655 		dtrace_difo_release(pred->dtp_difo, vstate);
9656 		kmem_free(pred, sizeof (dtrace_predicate_t));
9657 	}
9658 }
9659 
9660 /*
9661  * DTrace Action Description Functions
9662  */
9663 static dtrace_actdesc_t *
9664 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9665     uint64_t uarg, uint64_t arg)
9666 {
9667 	dtrace_actdesc_t *act;
9668 
9669 #if defined(sun)
9670 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9671 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9672 #endif
9673 
9674 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9675 	act->dtad_kind = kind;
9676 	act->dtad_ntuple = ntuple;
9677 	act->dtad_uarg = uarg;
9678 	act->dtad_arg = arg;
9679 	act->dtad_refcnt = 1;
9680 
9681 	return (act);
9682 }
9683 
9684 static void
9685 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9686 {
9687 	ASSERT(act->dtad_refcnt >= 1);
9688 	act->dtad_refcnt++;
9689 }
9690 
9691 static void
9692 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9693 {
9694 	dtrace_actkind_t kind = act->dtad_kind;
9695 	dtrace_difo_t *dp;
9696 
9697 	ASSERT(act->dtad_refcnt >= 1);
9698 
9699 	if (--act->dtad_refcnt != 0)
9700 		return;
9701 
9702 	if ((dp = act->dtad_difo) != NULL)
9703 		dtrace_difo_release(dp, vstate);
9704 
9705 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9706 		char *str = (char *)(uintptr_t)act->dtad_arg;
9707 
9708 #if defined(sun)
9709 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9710 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9711 #endif
9712 
9713 		if (str != NULL)
9714 			kmem_free(str, strlen(str) + 1);
9715 	}
9716 
9717 	kmem_free(act, sizeof (dtrace_actdesc_t));
9718 }
9719 
9720 /*
9721  * DTrace ECB Functions
9722  */
9723 static dtrace_ecb_t *
9724 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9725 {
9726 	dtrace_ecb_t *ecb;
9727 	dtrace_epid_t epid;
9728 
9729 	ASSERT(MUTEX_HELD(&dtrace_lock));
9730 
9731 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9732 	ecb->dte_predicate = NULL;
9733 	ecb->dte_probe = probe;
9734 
9735 	/*
9736 	 * The default size is the size of the default action: recording
9737 	 * the epid.
9738 	 */
9739 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9740 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9741 
9742 	epid = state->dts_epid++;
9743 
9744 	if (epid - 1 >= state->dts_necbs) {
9745 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9746 		int necbs = state->dts_necbs << 1;
9747 
9748 		ASSERT(epid == state->dts_necbs + 1);
9749 
9750 		if (necbs == 0) {
9751 			ASSERT(oecbs == NULL);
9752 			necbs = 1;
9753 		}
9754 
9755 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9756 
9757 		if (oecbs != NULL)
9758 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9759 
9760 		dtrace_membar_producer();
9761 		state->dts_ecbs = ecbs;
9762 
9763 		if (oecbs != NULL) {
9764 			/*
9765 			 * If this state is active, we must dtrace_sync()
9766 			 * before we can free the old dts_ecbs array:  we're
9767 			 * coming in hot, and there may be active ring
9768 			 * buffer processing (which indexes into the dts_ecbs
9769 			 * array) on another CPU.
9770 			 */
9771 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9772 				dtrace_sync();
9773 
9774 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9775 		}
9776 
9777 		dtrace_membar_producer();
9778 		state->dts_necbs = necbs;
9779 	}
9780 
9781 	ecb->dte_state = state;
9782 
9783 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9784 	dtrace_membar_producer();
9785 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9786 
9787 	return (ecb);
9788 }
9789 
9790 static void
9791 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9792 {
9793 	dtrace_probe_t *probe = ecb->dte_probe;
9794 
9795 	ASSERT(MUTEX_HELD(&cpu_lock));
9796 	ASSERT(MUTEX_HELD(&dtrace_lock));
9797 	ASSERT(ecb->dte_next == NULL);
9798 
9799 	if (probe == NULL) {
9800 		/*
9801 		 * This is the NULL probe -- there's nothing to do.
9802 		 */
9803 		return;
9804 	}
9805 
9806 	if (probe->dtpr_ecb == NULL) {
9807 		dtrace_provider_t *prov = probe->dtpr_provider;
9808 
9809 		/*
9810 		 * We're the first ECB on this probe.
9811 		 */
9812 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9813 
9814 		if (ecb->dte_predicate != NULL)
9815 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9816 
9817 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9818 		    probe->dtpr_id, probe->dtpr_arg);
9819 	} else {
9820 		/*
9821 		 * This probe is already active.  Swing the last pointer to
9822 		 * point to the new ECB, and issue a dtrace_sync() to assure
9823 		 * that all CPUs have seen the change.
9824 		 */
9825 		ASSERT(probe->dtpr_ecb_last != NULL);
9826 		probe->dtpr_ecb_last->dte_next = ecb;
9827 		probe->dtpr_ecb_last = ecb;
9828 		probe->dtpr_predcache = 0;
9829 
9830 		dtrace_sync();
9831 	}
9832 }
9833 
9834 static void
9835 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9836 {
9837 	uint32_t maxalign = sizeof (dtrace_epid_t);
9838 	uint32_t align = sizeof (uint8_t), offs, diff;
9839 	dtrace_action_t *act;
9840 	int wastuple = 0;
9841 	uint32_t aggbase = UINT32_MAX;
9842 	dtrace_state_t *state = ecb->dte_state;
9843 
9844 	/*
9845 	 * If we record anything, we always record the epid.  (And we always
9846 	 * record it first.)
9847 	 */
9848 	offs = sizeof (dtrace_epid_t);
9849 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_epid_t);
9850 
9851 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9852 		dtrace_recdesc_t *rec = &act->dta_rec;
9853 
9854 		if ((align = rec->dtrd_alignment) > maxalign)
9855 			maxalign = align;
9856 
9857 		if (!wastuple && act->dta_intuple) {
9858 			/*
9859 			 * This is the first record in a tuple.  Align the
9860 			 * offset to be at offset 4 in an 8-byte aligned
9861 			 * block.
9862 			 */
9863 			diff = offs + sizeof (dtrace_aggid_t);
9864 
9865 			if ((diff = (diff & (sizeof (uint64_t) - 1))))
9866 				offs += sizeof (uint64_t) - diff;
9867 
9868 			aggbase = offs - sizeof (dtrace_aggid_t);
9869 			ASSERT(!(aggbase & (sizeof (uint64_t) - 1)));
9870 		}
9871 
9872 		/*LINTED*/
9873 		if (rec->dtrd_size != 0 && (diff = (offs & (align - 1)))) {
9874 			/*
9875 			 * The current offset is not properly aligned; align it.
9876 			 */
9877 			offs += align - diff;
9878 		}
9879 
9880 		rec->dtrd_offset = offs;
9881 
9882 		if (offs + rec->dtrd_size > ecb->dte_needed) {
9883 			ecb->dte_needed = offs + rec->dtrd_size;
9884 
9885 			if (ecb->dte_needed > state->dts_needed)
9886 				state->dts_needed = ecb->dte_needed;
9887 		}
9888 
9889 		if (DTRACEACT_ISAGG(act->dta_kind)) {
9890 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9891 			dtrace_action_t *first = agg->dtag_first, *prev;
9892 
9893 			ASSERT(rec->dtrd_size != 0 && first != NULL);
9894 			ASSERT(wastuple);
9895 			ASSERT(aggbase != UINT32_MAX);
9896 
9897 			agg->dtag_base = aggbase;
9898 
9899 			while ((prev = first->dta_prev) != NULL &&
9900 			    DTRACEACT_ISAGG(prev->dta_kind)) {
9901 				agg = (dtrace_aggregation_t *)prev;
9902 				first = agg->dtag_first;
9903 			}
9904 
9905 			if (prev != NULL) {
9906 				offs = prev->dta_rec.dtrd_offset +
9907 				    prev->dta_rec.dtrd_size;
9908 			} else {
9909 				offs = sizeof (dtrace_epid_t);
9910 			}
9911 			wastuple = 0;
9912 		} else {
9913 			if (!act->dta_intuple)
9914 				ecb->dte_size = offs + rec->dtrd_size;
9915 
9916 			offs += rec->dtrd_size;
9917 		}
9918 
9919 		wastuple = act->dta_intuple;
9920 	}
9921 
9922 	if ((act = ecb->dte_action) != NULL &&
9923 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9924 	    ecb->dte_size == sizeof (dtrace_epid_t)) {
9925 		/*
9926 		 * If the size is still sizeof (dtrace_epid_t), then all
9927 		 * actions store no data; set the size to 0.
9928 		 */
9929 		ecb->dte_alignment = maxalign;
9930 		ecb->dte_size = 0;
9931 
9932 		/*
9933 		 * If the needed space is still sizeof (dtrace_epid_t), then
9934 		 * all actions need no additional space; set the needed
9935 		 * size to 0.
9936 		 */
9937 		if (ecb->dte_needed == sizeof (dtrace_epid_t))
9938 			ecb->dte_needed = 0;
9939 
9940 		return;
9941 	}
9942 
9943 	/*
9944 	 * Set our alignment, and make sure that the dte_size and dte_needed
9945 	 * are aligned to the size of an EPID.
9946 	 */
9947 	ecb->dte_alignment = maxalign;
9948 	ecb->dte_size = (ecb->dte_size + (sizeof (dtrace_epid_t) - 1)) &
9949 	    ~(sizeof (dtrace_epid_t) - 1);
9950 	ecb->dte_needed = (ecb->dte_needed + (sizeof (dtrace_epid_t) - 1)) &
9951 	    ~(sizeof (dtrace_epid_t) - 1);
9952 	ASSERT(ecb->dte_size <= ecb->dte_needed);
9953 }
9954 
9955 static dtrace_action_t *
9956 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
9957 {
9958 	dtrace_aggregation_t *agg;
9959 	size_t size = sizeof (uint64_t);
9960 	int ntuple = desc->dtad_ntuple;
9961 	dtrace_action_t *act;
9962 	dtrace_recdesc_t *frec;
9963 	dtrace_aggid_t aggid;
9964 	dtrace_state_t *state = ecb->dte_state;
9965 
9966 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
9967 	agg->dtag_ecb = ecb;
9968 
9969 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
9970 
9971 	switch (desc->dtad_kind) {
9972 	case DTRACEAGG_MIN:
9973 		agg->dtag_initial = INT64_MAX;
9974 		agg->dtag_aggregate = dtrace_aggregate_min;
9975 		break;
9976 
9977 	case DTRACEAGG_MAX:
9978 		agg->dtag_initial = INT64_MIN;
9979 		agg->dtag_aggregate = dtrace_aggregate_max;
9980 		break;
9981 
9982 	case DTRACEAGG_COUNT:
9983 		agg->dtag_aggregate = dtrace_aggregate_count;
9984 		break;
9985 
9986 	case DTRACEAGG_QUANTIZE:
9987 		agg->dtag_aggregate = dtrace_aggregate_quantize;
9988 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
9989 		    sizeof (uint64_t);
9990 		break;
9991 
9992 	case DTRACEAGG_LQUANTIZE: {
9993 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
9994 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
9995 
9996 		agg->dtag_initial = desc->dtad_arg;
9997 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
9998 
9999 		if (step == 0 || levels == 0)
10000 			goto err;
10001 
10002 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10003 		break;
10004 	}
10005 
10006 	case DTRACEAGG_LLQUANTIZE: {
10007 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10008 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10009 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10010 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10011 		int64_t v;
10012 
10013 		agg->dtag_initial = desc->dtad_arg;
10014 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10015 
10016 		if (factor < 2 || low >= high || nsteps < factor)
10017 			goto err;
10018 
10019 		/*
10020 		 * Now check that the number of steps evenly divides a power
10021 		 * of the factor.  (This assures both integer bucket size and
10022 		 * linearity within each magnitude.)
10023 		 */
10024 		for (v = factor; v < nsteps; v *= factor)
10025 			continue;
10026 
10027 		if ((v % nsteps) || (nsteps % factor))
10028 			goto err;
10029 
10030 		size = (dtrace_aggregate_llquantize_bucket(factor,
10031 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10032 		break;
10033 	}
10034 
10035 	case DTRACEAGG_AVG:
10036 		agg->dtag_aggregate = dtrace_aggregate_avg;
10037 		size = sizeof (uint64_t) * 2;
10038 		break;
10039 
10040 	case DTRACEAGG_STDDEV:
10041 		agg->dtag_aggregate = dtrace_aggregate_stddev;
10042 		size = sizeof (uint64_t) * 4;
10043 		break;
10044 
10045 	case DTRACEAGG_SUM:
10046 		agg->dtag_aggregate = dtrace_aggregate_sum;
10047 		break;
10048 
10049 	default:
10050 		goto err;
10051 	}
10052 
10053 	agg->dtag_action.dta_rec.dtrd_size = size;
10054 
10055 	if (ntuple == 0)
10056 		goto err;
10057 
10058 	/*
10059 	 * We must make sure that we have enough actions for the n-tuple.
10060 	 */
10061 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10062 		if (DTRACEACT_ISAGG(act->dta_kind))
10063 			break;
10064 
10065 		if (--ntuple == 0) {
10066 			/*
10067 			 * This is the action with which our n-tuple begins.
10068 			 */
10069 			agg->dtag_first = act;
10070 			goto success;
10071 		}
10072 	}
10073 
10074 	/*
10075 	 * This n-tuple is short by ntuple elements.  Return failure.
10076 	 */
10077 	ASSERT(ntuple != 0);
10078 err:
10079 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10080 	return (NULL);
10081 
10082 success:
10083 	/*
10084 	 * If the last action in the tuple has a size of zero, it's actually
10085 	 * an expression argument for the aggregating action.
10086 	 */
10087 	ASSERT(ecb->dte_action_last != NULL);
10088 	act = ecb->dte_action_last;
10089 
10090 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10091 		ASSERT(act->dta_difo != NULL);
10092 
10093 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10094 			agg->dtag_hasarg = 1;
10095 	}
10096 
10097 	/*
10098 	 * We need to allocate an id for this aggregation.
10099 	 */
10100 #if defined(sun)
10101 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10102 	    VM_BESTFIT | VM_SLEEP);
10103 #else
10104 	aggid = alloc_unr(state->dts_aggid_arena);
10105 #endif
10106 
10107 	if (aggid - 1 >= state->dts_naggregations) {
10108 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10109 		dtrace_aggregation_t **aggs;
10110 		int naggs = state->dts_naggregations << 1;
10111 		int onaggs = state->dts_naggregations;
10112 
10113 		ASSERT(aggid == state->dts_naggregations + 1);
10114 
10115 		if (naggs == 0) {
10116 			ASSERT(oaggs == NULL);
10117 			naggs = 1;
10118 		}
10119 
10120 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10121 
10122 		if (oaggs != NULL) {
10123 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10124 			kmem_free(oaggs, onaggs * sizeof (*aggs));
10125 		}
10126 
10127 		state->dts_aggregations = aggs;
10128 		state->dts_naggregations = naggs;
10129 	}
10130 
10131 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10132 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10133 
10134 	frec = &agg->dtag_first->dta_rec;
10135 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10136 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10137 
10138 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10139 		ASSERT(!act->dta_intuple);
10140 		act->dta_intuple = 1;
10141 	}
10142 
10143 	return (&agg->dtag_action);
10144 }
10145 
10146 static void
10147 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10148 {
10149 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10150 	dtrace_state_t *state = ecb->dte_state;
10151 	dtrace_aggid_t aggid = agg->dtag_id;
10152 
10153 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10154 #if defined(sun)
10155 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10156 #else
10157 	free_unr(state->dts_aggid_arena, aggid);
10158 #endif
10159 
10160 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10161 	state->dts_aggregations[aggid - 1] = NULL;
10162 
10163 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10164 }
10165 
10166 static int
10167 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10168 {
10169 	dtrace_action_t *action, *last;
10170 	dtrace_difo_t *dp = desc->dtad_difo;
10171 	uint32_t size = 0, align = sizeof (uint8_t), mask;
10172 	uint16_t format = 0;
10173 	dtrace_recdesc_t *rec;
10174 	dtrace_state_t *state = ecb->dte_state;
10175 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10176 	uint64_t arg = desc->dtad_arg;
10177 
10178 	ASSERT(MUTEX_HELD(&dtrace_lock));
10179 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10180 
10181 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10182 		/*
10183 		 * If this is an aggregating action, there must be neither
10184 		 * a speculate nor a commit on the action chain.
10185 		 */
10186 		dtrace_action_t *act;
10187 
10188 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10189 			if (act->dta_kind == DTRACEACT_COMMIT)
10190 				return (EINVAL);
10191 
10192 			if (act->dta_kind == DTRACEACT_SPECULATE)
10193 				return (EINVAL);
10194 		}
10195 
10196 		action = dtrace_ecb_aggregation_create(ecb, desc);
10197 
10198 		if (action == NULL)
10199 			return (EINVAL);
10200 	} else {
10201 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10202 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10203 		    dp != NULL && dp->dtdo_destructive)) {
10204 			state->dts_destructive = 1;
10205 		}
10206 
10207 		switch (desc->dtad_kind) {
10208 		case DTRACEACT_PRINTF:
10209 		case DTRACEACT_PRINTA:
10210 		case DTRACEACT_SYSTEM:
10211 		case DTRACEACT_FREOPEN:
10212 		case DTRACEACT_DIFEXPR:
10213 			/*
10214 			 * We know that our arg is a string -- turn it into a
10215 			 * format.
10216 			 */
10217 			if (arg == 0) {
10218 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10219 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
10220 				format = 0;
10221 			} else {
10222 				ASSERT(arg != 0);
10223 #if defined(sun)
10224 				ASSERT(arg > KERNELBASE);
10225 #endif
10226 				format = dtrace_format_add(state,
10227 				    (char *)(uintptr_t)arg);
10228 			}
10229 
10230 			/*FALLTHROUGH*/
10231 		case DTRACEACT_LIBACT:
10232 		case DTRACEACT_TRACEMEM:
10233 		case DTRACEACT_TRACEMEM_DYNSIZE:
10234 			if (dp == NULL)
10235 				return (EINVAL);
10236 
10237 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10238 				break;
10239 
10240 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10241 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10242 					return (EINVAL);
10243 
10244 				size = opt[DTRACEOPT_STRSIZE];
10245 			}
10246 
10247 			break;
10248 
10249 		case DTRACEACT_STACK:
10250 			if ((nframes = arg) == 0) {
10251 				nframes = opt[DTRACEOPT_STACKFRAMES];
10252 				ASSERT(nframes > 0);
10253 				arg = nframes;
10254 			}
10255 
10256 			size = nframes * sizeof (pc_t);
10257 			break;
10258 
10259 		case DTRACEACT_JSTACK:
10260 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10261 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10262 
10263 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10264 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10265 
10266 			arg = DTRACE_USTACK_ARG(nframes, strsize);
10267 
10268 			/*FALLTHROUGH*/
10269 		case DTRACEACT_USTACK:
10270 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10271 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10272 				strsize = DTRACE_USTACK_STRSIZE(arg);
10273 				nframes = opt[DTRACEOPT_USTACKFRAMES];
10274 				ASSERT(nframes > 0);
10275 				arg = DTRACE_USTACK_ARG(nframes, strsize);
10276 			}
10277 
10278 			/*
10279 			 * Save a slot for the pid.
10280 			 */
10281 			size = (nframes + 1) * sizeof (uint64_t);
10282 			size += DTRACE_USTACK_STRSIZE(arg);
10283 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10284 
10285 			break;
10286 
10287 		case DTRACEACT_SYM:
10288 		case DTRACEACT_MOD:
10289 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10290 			    sizeof (uint64_t)) ||
10291 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10292 				return (EINVAL);
10293 			break;
10294 
10295 		case DTRACEACT_USYM:
10296 		case DTRACEACT_UMOD:
10297 		case DTRACEACT_UADDR:
10298 			if (dp == NULL ||
10299 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10300 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10301 				return (EINVAL);
10302 
10303 			/*
10304 			 * We have a slot for the pid, plus a slot for the
10305 			 * argument.  To keep things simple (aligned with
10306 			 * bitness-neutral sizing), we store each as a 64-bit
10307 			 * quantity.
10308 			 */
10309 			size = 2 * sizeof (uint64_t);
10310 			break;
10311 
10312 		case DTRACEACT_STOP:
10313 		case DTRACEACT_BREAKPOINT:
10314 		case DTRACEACT_PANIC:
10315 			break;
10316 
10317 		case DTRACEACT_CHILL:
10318 		case DTRACEACT_DISCARD:
10319 		case DTRACEACT_RAISE:
10320 			if (dp == NULL)
10321 				return (EINVAL);
10322 			break;
10323 
10324 		case DTRACEACT_EXIT:
10325 			if (dp == NULL ||
10326 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10327 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10328 				return (EINVAL);
10329 			break;
10330 
10331 		case DTRACEACT_SPECULATE:
10332 			if (ecb->dte_size > sizeof (dtrace_epid_t))
10333 				return (EINVAL);
10334 
10335 			if (dp == NULL)
10336 				return (EINVAL);
10337 
10338 			state->dts_speculates = 1;
10339 			break;
10340 
10341 		case DTRACEACT_PRINTM:
10342 		    	size = dp->dtdo_rtype.dtdt_size;
10343 			break;
10344 
10345 		case DTRACEACT_PRINTT:
10346 		    	size = dp->dtdo_rtype.dtdt_size;
10347 			break;
10348 
10349 		case DTRACEACT_COMMIT: {
10350 			dtrace_action_t *act = ecb->dte_action;
10351 
10352 			for (; act != NULL; act = act->dta_next) {
10353 				if (act->dta_kind == DTRACEACT_COMMIT)
10354 					return (EINVAL);
10355 			}
10356 
10357 			if (dp == NULL)
10358 				return (EINVAL);
10359 			break;
10360 		}
10361 
10362 		default:
10363 			return (EINVAL);
10364 		}
10365 
10366 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10367 			/*
10368 			 * If this is a data-storing action or a speculate,
10369 			 * we must be sure that there isn't a commit on the
10370 			 * action chain.
10371 			 */
10372 			dtrace_action_t *act = ecb->dte_action;
10373 
10374 			for (; act != NULL; act = act->dta_next) {
10375 				if (act->dta_kind == DTRACEACT_COMMIT)
10376 					return (EINVAL);
10377 			}
10378 		}
10379 
10380 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10381 		action->dta_rec.dtrd_size = size;
10382 	}
10383 
10384 	action->dta_refcnt = 1;
10385 	rec = &action->dta_rec;
10386 	size = rec->dtrd_size;
10387 
10388 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10389 		if (!(size & mask)) {
10390 			align = mask + 1;
10391 			break;
10392 		}
10393 	}
10394 
10395 	action->dta_kind = desc->dtad_kind;
10396 
10397 	if ((action->dta_difo = dp) != NULL)
10398 		dtrace_difo_hold(dp);
10399 
10400 	rec->dtrd_action = action->dta_kind;
10401 	rec->dtrd_arg = arg;
10402 	rec->dtrd_uarg = desc->dtad_uarg;
10403 	rec->dtrd_alignment = (uint16_t)align;
10404 	rec->dtrd_format = format;
10405 
10406 	if ((last = ecb->dte_action_last) != NULL) {
10407 		ASSERT(ecb->dte_action != NULL);
10408 		action->dta_prev = last;
10409 		last->dta_next = action;
10410 	} else {
10411 		ASSERT(ecb->dte_action == NULL);
10412 		ecb->dte_action = action;
10413 	}
10414 
10415 	ecb->dte_action_last = action;
10416 
10417 	return (0);
10418 }
10419 
10420 static void
10421 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10422 {
10423 	dtrace_action_t *act = ecb->dte_action, *next;
10424 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10425 	dtrace_difo_t *dp;
10426 	uint16_t format;
10427 
10428 	if (act != NULL && act->dta_refcnt > 1) {
10429 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10430 		act->dta_refcnt--;
10431 	} else {
10432 		for (; act != NULL; act = next) {
10433 			next = act->dta_next;
10434 			ASSERT(next != NULL || act == ecb->dte_action_last);
10435 			ASSERT(act->dta_refcnt == 1);
10436 
10437 			if ((format = act->dta_rec.dtrd_format) != 0)
10438 				dtrace_format_remove(ecb->dte_state, format);
10439 
10440 			if ((dp = act->dta_difo) != NULL)
10441 				dtrace_difo_release(dp, vstate);
10442 
10443 			if (DTRACEACT_ISAGG(act->dta_kind)) {
10444 				dtrace_ecb_aggregation_destroy(ecb, act);
10445 			} else {
10446 				kmem_free(act, sizeof (dtrace_action_t));
10447 			}
10448 		}
10449 	}
10450 
10451 	ecb->dte_action = NULL;
10452 	ecb->dte_action_last = NULL;
10453 	ecb->dte_size = sizeof (dtrace_epid_t);
10454 }
10455 
10456 static void
10457 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10458 {
10459 	/*
10460 	 * We disable the ECB by removing it from its probe.
10461 	 */
10462 	dtrace_ecb_t *pecb, *prev = NULL;
10463 	dtrace_probe_t *probe = ecb->dte_probe;
10464 
10465 	ASSERT(MUTEX_HELD(&dtrace_lock));
10466 
10467 	if (probe == NULL) {
10468 		/*
10469 		 * This is the NULL probe; there is nothing to disable.
10470 		 */
10471 		return;
10472 	}
10473 
10474 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10475 		if (pecb == ecb)
10476 			break;
10477 		prev = pecb;
10478 	}
10479 
10480 	ASSERT(pecb != NULL);
10481 
10482 	if (prev == NULL) {
10483 		probe->dtpr_ecb = ecb->dte_next;
10484 	} else {
10485 		prev->dte_next = ecb->dte_next;
10486 	}
10487 
10488 	if (ecb == probe->dtpr_ecb_last) {
10489 		ASSERT(ecb->dte_next == NULL);
10490 		probe->dtpr_ecb_last = prev;
10491 	}
10492 
10493 	/*
10494 	 * The ECB has been disconnected from the probe; now sync to assure
10495 	 * that all CPUs have seen the change before returning.
10496 	 */
10497 	dtrace_sync();
10498 
10499 	if (probe->dtpr_ecb == NULL) {
10500 		/*
10501 		 * That was the last ECB on the probe; clear the predicate
10502 		 * cache ID for the probe, disable it and sync one more time
10503 		 * to assure that we'll never hit it again.
10504 		 */
10505 		dtrace_provider_t *prov = probe->dtpr_provider;
10506 
10507 		ASSERT(ecb->dte_next == NULL);
10508 		ASSERT(probe->dtpr_ecb_last == NULL);
10509 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10510 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10511 		    probe->dtpr_id, probe->dtpr_arg);
10512 		dtrace_sync();
10513 	} else {
10514 		/*
10515 		 * There is at least one ECB remaining on the probe.  If there
10516 		 * is _exactly_ one, set the probe's predicate cache ID to be
10517 		 * the predicate cache ID of the remaining ECB.
10518 		 */
10519 		ASSERT(probe->dtpr_ecb_last != NULL);
10520 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10521 
10522 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10523 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10524 
10525 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10526 
10527 			if (p != NULL)
10528 				probe->dtpr_predcache = p->dtp_cacheid;
10529 		}
10530 
10531 		ecb->dte_next = NULL;
10532 	}
10533 }
10534 
10535 static void
10536 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10537 {
10538 	dtrace_state_t *state = ecb->dte_state;
10539 	dtrace_vstate_t *vstate = &state->dts_vstate;
10540 	dtrace_predicate_t *pred;
10541 	dtrace_epid_t epid = ecb->dte_epid;
10542 
10543 	ASSERT(MUTEX_HELD(&dtrace_lock));
10544 	ASSERT(ecb->dte_next == NULL);
10545 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10546 
10547 	if ((pred = ecb->dte_predicate) != NULL)
10548 		dtrace_predicate_release(pred, vstate);
10549 
10550 	dtrace_ecb_action_remove(ecb);
10551 
10552 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10553 	state->dts_ecbs[epid - 1] = NULL;
10554 
10555 	kmem_free(ecb, sizeof (dtrace_ecb_t));
10556 }
10557 
10558 static dtrace_ecb_t *
10559 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10560     dtrace_enabling_t *enab)
10561 {
10562 	dtrace_ecb_t *ecb;
10563 	dtrace_predicate_t *pred;
10564 	dtrace_actdesc_t *act;
10565 	dtrace_provider_t *prov;
10566 	dtrace_ecbdesc_t *desc = enab->dten_current;
10567 
10568 	ASSERT(MUTEX_HELD(&dtrace_lock));
10569 	ASSERT(state != NULL);
10570 
10571 	ecb = dtrace_ecb_add(state, probe);
10572 	ecb->dte_uarg = desc->dted_uarg;
10573 
10574 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10575 		dtrace_predicate_hold(pred);
10576 		ecb->dte_predicate = pred;
10577 	}
10578 
10579 	if (probe != NULL) {
10580 		/*
10581 		 * If the provider shows more leg than the consumer is old
10582 		 * enough to see, we need to enable the appropriate implicit
10583 		 * predicate bits to prevent the ecb from activating at
10584 		 * revealing times.
10585 		 *
10586 		 * Providers specifying DTRACE_PRIV_USER at register time
10587 		 * are stating that they need the /proc-style privilege
10588 		 * model to be enforced, and this is what DTRACE_COND_OWNER
10589 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10590 		 */
10591 		prov = probe->dtpr_provider;
10592 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10593 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10594 			ecb->dte_cond |= DTRACE_COND_OWNER;
10595 
10596 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10597 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10598 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10599 
10600 		/*
10601 		 * If the provider shows us kernel innards and the user
10602 		 * is lacking sufficient privilege, enable the
10603 		 * DTRACE_COND_USERMODE implicit predicate.
10604 		 */
10605 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10606 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10607 			ecb->dte_cond |= DTRACE_COND_USERMODE;
10608 	}
10609 
10610 	if (dtrace_ecb_create_cache != NULL) {
10611 		/*
10612 		 * If we have a cached ecb, we'll use its action list instead
10613 		 * of creating our own (saving both time and space).
10614 		 */
10615 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10616 		dtrace_action_t *act = cached->dte_action;
10617 
10618 		if (act != NULL) {
10619 			ASSERT(act->dta_refcnt > 0);
10620 			act->dta_refcnt++;
10621 			ecb->dte_action = act;
10622 			ecb->dte_action_last = cached->dte_action_last;
10623 			ecb->dte_needed = cached->dte_needed;
10624 			ecb->dte_size = cached->dte_size;
10625 			ecb->dte_alignment = cached->dte_alignment;
10626 		}
10627 
10628 		return (ecb);
10629 	}
10630 
10631 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10632 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10633 			dtrace_ecb_destroy(ecb);
10634 			return (NULL);
10635 		}
10636 	}
10637 
10638 	dtrace_ecb_resize(ecb);
10639 
10640 	return (dtrace_ecb_create_cache = ecb);
10641 }
10642 
10643 static int
10644 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10645 {
10646 	dtrace_ecb_t *ecb;
10647 	dtrace_enabling_t *enab = arg;
10648 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10649 
10650 	ASSERT(state != NULL);
10651 
10652 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10653 		/*
10654 		 * This probe was created in a generation for which this
10655 		 * enabling has previously created ECBs; we don't want to
10656 		 * enable it again, so just kick out.
10657 		 */
10658 		return (DTRACE_MATCH_NEXT);
10659 	}
10660 
10661 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10662 		return (DTRACE_MATCH_DONE);
10663 
10664 	dtrace_ecb_enable(ecb);
10665 	return (DTRACE_MATCH_NEXT);
10666 }
10667 
10668 static dtrace_ecb_t *
10669 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10670 {
10671 	dtrace_ecb_t *ecb;
10672 
10673 	ASSERT(MUTEX_HELD(&dtrace_lock));
10674 
10675 	if (id == 0 || id > state->dts_necbs)
10676 		return (NULL);
10677 
10678 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10679 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10680 
10681 	return (state->dts_ecbs[id - 1]);
10682 }
10683 
10684 static dtrace_aggregation_t *
10685 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10686 {
10687 	dtrace_aggregation_t *agg;
10688 
10689 	ASSERT(MUTEX_HELD(&dtrace_lock));
10690 
10691 	if (id == 0 || id > state->dts_naggregations)
10692 		return (NULL);
10693 
10694 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10695 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10696 	    agg->dtag_id == id);
10697 
10698 	return (state->dts_aggregations[id - 1]);
10699 }
10700 
10701 /*
10702  * DTrace Buffer Functions
10703  *
10704  * The following functions manipulate DTrace buffers.  Most of these functions
10705  * are called in the context of establishing or processing consumer state;
10706  * exceptions are explicitly noted.
10707  */
10708 
10709 /*
10710  * Note:  called from cross call context.  This function switches the two
10711  * buffers on a given CPU.  The atomicity of this operation is assured by
10712  * disabling interrupts while the actual switch takes place; the disabling of
10713  * interrupts serializes the execution with any execution of dtrace_probe() on
10714  * the same CPU.
10715  */
10716 static void
10717 dtrace_buffer_switch(dtrace_buffer_t *buf)
10718 {
10719 	caddr_t tomax = buf->dtb_tomax;
10720 	caddr_t xamot = buf->dtb_xamot;
10721 	dtrace_icookie_t cookie;
10722 
10723 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10724 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10725 
10726 	cookie = dtrace_interrupt_disable();
10727 	buf->dtb_tomax = xamot;
10728 	buf->dtb_xamot = tomax;
10729 	buf->dtb_xamot_drops = buf->dtb_drops;
10730 	buf->dtb_xamot_offset = buf->dtb_offset;
10731 	buf->dtb_xamot_errors = buf->dtb_errors;
10732 	buf->dtb_xamot_flags = buf->dtb_flags;
10733 	buf->dtb_offset = 0;
10734 	buf->dtb_drops = 0;
10735 	buf->dtb_errors = 0;
10736 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10737 	dtrace_interrupt_enable(cookie);
10738 }
10739 
10740 /*
10741  * Note:  called from cross call context.  This function activates a buffer
10742  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10743  * is guaranteed by the disabling of interrupts.
10744  */
10745 static void
10746 dtrace_buffer_activate(dtrace_state_t *state)
10747 {
10748 	dtrace_buffer_t *buf;
10749 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10750 
10751 	buf = &state->dts_buffer[curcpu];
10752 
10753 	if (buf->dtb_tomax != NULL) {
10754 		/*
10755 		 * We might like to assert that the buffer is marked inactive,
10756 		 * but this isn't necessarily true:  the buffer for the CPU
10757 		 * that processes the BEGIN probe has its buffer activated
10758 		 * manually.  In this case, we take the (harmless) action
10759 		 * re-clearing the bit INACTIVE bit.
10760 		 */
10761 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10762 	}
10763 
10764 	dtrace_interrupt_enable(cookie);
10765 }
10766 
10767 static int
10768 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10769     processorid_t cpu)
10770 {
10771 #if defined(sun)
10772 	cpu_t *cp;
10773 #endif
10774 	dtrace_buffer_t *buf;
10775 
10776 #if defined(sun)
10777 	ASSERT(MUTEX_HELD(&cpu_lock));
10778 	ASSERT(MUTEX_HELD(&dtrace_lock));
10779 
10780 	if (size > dtrace_nonroot_maxsize &&
10781 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10782 		return (EFBIG);
10783 
10784 	cp = cpu_list;
10785 
10786 	do {
10787 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10788 			continue;
10789 
10790 		buf = &bufs[cp->cpu_id];
10791 
10792 		/*
10793 		 * If there is already a buffer allocated for this CPU, it
10794 		 * is only possible that this is a DR event.  In this case,
10795 		 */
10796 		if (buf->dtb_tomax != NULL) {
10797 			ASSERT(buf->dtb_size == size);
10798 			continue;
10799 		}
10800 
10801 		ASSERT(buf->dtb_xamot == NULL);
10802 
10803 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10804 			goto err;
10805 
10806 		buf->dtb_size = size;
10807 		buf->dtb_flags = flags;
10808 		buf->dtb_offset = 0;
10809 		buf->dtb_drops = 0;
10810 
10811 		if (flags & DTRACEBUF_NOSWITCH)
10812 			continue;
10813 
10814 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10815 			goto err;
10816 	} while ((cp = cp->cpu_next) != cpu_list);
10817 
10818 	return (0);
10819 
10820 err:
10821 	cp = cpu_list;
10822 
10823 	do {
10824 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10825 			continue;
10826 
10827 		buf = &bufs[cp->cpu_id];
10828 
10829 		if (buf->dtb_xamot != NULL) {
10830 			ASSERT(buf->dtb_tomax != NULL);
10831 			ASSERT(buf->dtb_size == size);
10832 			kmem_free(buf->dtb_xamot, size);
10833 		}
10834 
10835 		if (buf->dtb_tomax != NULL) {
10836 			ASSERT(buf->dtb_size == size);
10837 			kmem_free(buf->dtb_tomax, size);
10838 		}
10839 
10840 		buf->dtb_tomax = NULL;
10841 		buf->dtb_xamot = NULL;
10842 		buf->dtb_size = 0;
10843 	} while ((cp = cp->cpu_next) != cpu_list);
10844 
10845 	return (ENOMEM);
10846 #else
10847 	int i;
10848 
10849 #if defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
10850 	/*
10851 	 * FreeBSD isn't good at limiting the amount of memory we
10852 	 * ask to malloc, so let's place a limit here before trying
10853 	 * to do something that might well end in tears at bedtime.
10854 	 */
10855 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10856 		return(ENOMEM);
10857 #endif
10858 
10859 	ASSERT(MUTEX_HELD(&dtrace_lock));
10860 	CPU_FOREACH(i) {
10861 		if (cpu != DTRACE_CPUALL && cpu != i)
10862 			continue;
10863 
10864 		buf = &bufs[i];
10865 
10866 		/*
10867 		 * If there is already a buffer allocated for this CPU, it
10868 		 * is only possible that this is a DR event.  In this case,
10869 		 * the buffer size must match our specified size.
10870 		 */
10871 		if (buf->dtb_tomax != NULL) {
10872 			ASSERT(buf->dtb_size == size);
10873 			continue;
10874 		}
10875 
10876 		ASSERT(buf->dtb_xamot == NULL);
10877 
10878 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10879 			goto err;
10880 
10881 		buf->dtb_size = size;
10882 		buf->dtb_flags = flags;
10883 		buf->dtb_offset = 0;
10884 		buf->dtb_drops = 0;
10885 
10886 		if (flags & DTRACEBUF_NOSWITCH)
10887 			continue;
10888 
10889 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10890 			goto err;
10891 	}
10892 
10893 	return (0);
10894 
10895 err:
10896 	/*
10897 	 * Error allocating memory, so free the buffers that were
10898 	 * allocated before the failed allocation.
10899 	 */
10900 	CPU_FOREACH(i) {
10901 		if (cpu != DTRACE_CPUALL && cpu != i)
10902 			continue;
10903 
10904 		buf = &bufs[i];
10905 
10906 		if (buf->dtb_xamot != NULL) {
10907 			ASSERT(buf->dtb_tomax != NULL);
10908 			ASSERT(buf->dtb_size == size);
10909 			kmem_free(buf->dtb_xamot, size);
10910 		}
10911 
10912 		if (buf->dtb_tomax != NULL) {
10913 			ASSERT(buf->dtb_size == size);
10914 			kmem_free(buf->dtb_tomax, size);
10915 		}
10916 
10917 		buf->dtb_tomax = NULL;
10918 		buf->dtb_xamot = NULL;
10919 		buf->dtb_size = 0;
10920 
10921 	}
10922 
10923 	return (ENOMEM);
10924 #endif
10925 }
10926 
10927 /*
10928  * Note:  called from probe context.  This function just increments the drop
10929  * count on a buffer.  It has been made a function to allow for the
10930  * possibility of understanding the source of mysterious drop counts.  (A
10931  * problem for which one may be particularly disappointed that DTrace cannot
10932  * be used to understand DTrace.)
10933  */
10934 static void
10935 dtrace_buffer_drop(dtrace_buffer_t *buf)
10936 {
10937 	buf->dtb_drops++;
10938 }
10939 
10940 /*
10941  * Note:  called from probe context.  This function is called to reserve space
10942  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10943  * mstate.  Returns the new offset in the buffer, or a negative value if an
10944  * error has occurred.
10945  */
10946 static intptr_t
10947 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
10948     dtrace_state_t *state, dtrace_mstate_t *mstate)
10949 {
10950 	intptr_t offs = buf->dtb_offset, soffs;
10951 	intptr_t woffs;
10952 	caddr_t tomax;
10953 	size_t total;
10954 
10955 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
10956 		return (-1);
10957 
10958 	if ((tomax = buf->dtb_tomax) == NULL) {
10959 		dtrace_buffer_drop(buf);
10960 		return (-1);
10961 	}
10962 
10963 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
10964 		while (offs & (align - 1)) {
10965 			/*
10966 			 * Assert that our alignment is off by a number which
10967 			 * is itself sizeof (uint32_t) aligned.
10968 			 */
10969 			ASSERT(!((align - (offs & (align - 1))) &
10970 			    (sizeof (uint32_t) - 1)));
10971 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
10972 			offs += sizeof (uint32_t);
10973 		}
10974 
10975 		if ((soffs = offs + needed) > buf->dtb_size) {
10976 			dtrace_buffer_drop(buf);
10977 			return (-1);
10978 		}
10979 
10980 		if (mstate == NULL)
10981 			return (offs);
10982 
10983 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
10984 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
10985 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
10986 
10987 		return (offs);
10988 	}
10989 
10990 	if (buf->dtb_flags & DTRACEBUF_FILL) {
10991 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
10992 		    (buf->dtb_flags & DTRACEBUF_FULL))
10993 			return (-1);
10994 		goto out;
10995 	}
10996 
10997 	total = needed + (offs & (align - 1));
10998 
10999 	/*
11000 	 * For a ring buffer, life is quite a bit more complicated.  Before
11001 	 * we can store any padding, we need to adjust our wrapping offset.
11002 	 * (If we've never before wrapped or we're not about to, no adjustment
11003 	 * is required.)
11004 	 */
11005 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11006 	    offs + total > buf->dtb_size) {
11007 		woffs = buf->dtb_xamot_offset;
11008 
11009 		if (offs + total > buf->dtb_size) {
11010 			/*
11011 			 * We can't fit in the end of the buffer.  First, a
11012 			 * sanity check that we can fit in the buffer at all.
11013 			 */
11014 			if (total > buf->dtb_size) {
11015 				dtrace_buffer_drop(buf);
11016 				return (-1);
11017 			}
11018 
11019 			/*
11020 			 * We're going to be storing at the top of the buffer,
11021 			 * so now we need to deal with the wrapped offset.  We
11022 			 * only reset our wrapped offset to 0 if it is
11023 			 * currently greater than the current offset.  If it
11024 			 * is less than the current offset, it is because a
11025 			 * previous allocation induced a wrap -- but the
11026 			 * allocation didn't subsequently take the space due
11027 			 * to an error or false predicate evaluation.  In this
11028 			 * case, we'll just leave the wrapped offset alone: if
11029 			 * the wrapped offset hasn't been advanced far enough
11030 			 * for this allocation, it will be adjusted in the
11031 			 * lower loop.
11032 			 */
11033 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11034 				if (woffs >= offs)
11035 					woffs = 0;
11036 			} else {
11037 				woffs = 0;
11038 			}
11039 
11040 			/*
11041 			 * Now we know that we're going to be storing to the
11042 			 * top of the buffer and that there is room for us
11043 			 * there.  We need to clear the buffer from the current
11044 			 * offset to the end (there may be old gunk there).
11045 			 */
11046 			while (offs < buf->dtb_size)
11047 				tomax[offs++] = 0;
11048 
11049 			/*
11050 			 * We need to set our offset to zero.  And because we
11051 			 * are wrapping, we need to set the bit indicating as
11052 			 * much.  We can also adjust our needed space back
11053 			 * down to the space required by the ECB -- we know
11054 			 * that the top of the buffer is aligned.
11055 			 */
11056 			offs = 0;
11057 			total = needed;
11058 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
11059 		} else {
11060 			/*
11061 			 * There is room for us in the buffer, so we simply
11062 			 * need to check the wrapped offset.
11063 			 */
11064 			if (woffs < offs) {
11065 				/*
11066 				 * The wrapped offset is less than the offset.
11067 				 * This can happen if we allocated buffer space
11068 				 * that induced a wrap, but then we didn't
11069 				 * subsequently take the space due to an error
11070 				 * or false predicate evaluation.  This is
11071 				 * okay; we know that _this_ allocation isn't
11072 				 * going to induce a wrap.  We still can't
11073 				 * reset the wrapped offset to be zero,
11074 				 * however: the space may have been trashed in
11075 				 * the previous failed probe attempt.  But at
11076 				 * least the wrapped offset doesn't need to
11077 				 * be adjusted at all...
11078 				 */
11079 				goto out;
11080 			}
11081 		}
11082 
11083 		while (offs + total > woffs) {
11084 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11085 			size_t size;
11086 
11087 			if (epid == DTRACE_EPIDNONE) {
11088 				size = sizeof (uint32_t);
11089 			} else {
11090 				ASSERT(epid <= state->dts_necbs);
11091 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11092 
11093 				size = state->dts_ecbs[epid - 1]->dte_size;
11094 			}
11095 
11096 			ASSERT(woffs + size <= buf->dtb_size);
11097 			ASSERT(size != 0);
11098 
11099 			if (woffs + size == buf->dtb_size) {
11100 				/*
11101 				 * We've reached the end of the buffer; we want
11102 				 * to set the wrapped offset to 0 and break
11103 				 * out.  However, if the offs is 0, then we're
11104 				 * in a strange edge-condition:  the amount of
11105 				 * space that we want to reserve plus the size
11106 				 * of the record that we're overwriting is
11107 				 * greater than the size of the buffer.  This
11108 				 * is problematic because if we reserve the
11109 				 * space but subsequently don't consume it (due
11110 				 * to a failed predicate or error) the wrapped
11111 				 * offset will be 0 -- yet the EPID at offset 0
11112 				 * will not be committed.  This situation is
11113 				 * relatively easy to deal with:  if we're in
11114 				 * this case, the buffer is indistinguishable
11115 				 * from one that hasn't wrapped; we need only
11116 				 * finish the job by clearing the wrapped bit,
11117 				 * explicitly setting the offset to be 0, and
11118 				 * zero'ing out the old data in the buffer.
11119 				 */
11120 				if (offs == 0) {
11121 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11122 					buf->dtb_offset = 0;
11123 					woffs = total;
11124 
11125 					while (woffs < buf->dtb_size)
11126 						tomax[woffs++] = 0;
11127 				}
11128 
11129 				woffs = 0;
11130 				break;
11131 			}
11132 
11133 			woffs += size;
11134 		}
11135 
11136 		/*
11137 		 * We have a wrapped offset.  It may be that the wrapped offset
11138 		 * has become zero -- that's okay.
11139 		 */
11140 		buf->dtb_xamot_offset = woffs;
11141 	}
11142 
11143 out:
11144 	/*
11145 	 * Now we can plow the buffer with any necessary padding.
11146 	 */
11147 	while (offs & (align - 1)) {
11148 		/*
11149 		 * Assert that our alignment is off by a number which
11150 		 * is itself sizeof (uint32_t) aligned.
11151 		 */
11152 		ASSERT(!((align - (offs & (align - 1))) &
11153 		    (sizeof (uint32_t) - 1)));
11154 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11155 		offs += sizeof (uint32_t);
11156 	}
11157 
11158 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11159 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11160 			buf->dtb_flags |= DTRACEBUF_FULL;
11161 			return (-1);
11162 		}
11163 	}
11164 
11165 	if (mstate == NULL)
11166 		return (offs);
11167 
11168 	/*
11169 	 * For ring buffers and fill buffers, the scratch space is always
11170 	 * the inactive buffer.
11171 	 */
11172 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11173 	mstate->dtms_scratch_size = buf->dtb_size;
11174 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11175 
11176 	return (offs);
11177 }
11178 
11179 static void
11180 dtrace_buffer_polish(dtrace_buffer_t *buf)
11181 {
11182 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11183 	ASSERT(MUTEX_HELD(&dtrace_lock));
11184 
11185 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11186 		return;
11187 
11188 	/*
11189 	 * We need to polish the ring buffer.  There are three cases:
11190 	 *
11191 	 * - The first (and presumably most common) is that there is no gap
11192 	 *   between the buffer offset and the wrapped offset.  In this case,
11193 	 *   there is nothing in the buffer that isn't valid data; we can
11194 	 *   mark the buffer as polished and return.
11195 	 *
11196 	 * - The second (less common than the first but still more common
11197 	 *   than the third) is that there is a gap between the buffer offset
11198 	 *   and the wrapped offset, and the wrapped offset is larger than the
11199 	 *   buffer offset.  This can happen because of an alignment issue, or
11200 	 *   can happen because of a call to dtrace_buffer_reserve() that
11201 	 *   didn't subsequently consume the buffer space.  In this case,
11202 	 *   we need to zero the data from the buffer offset to the wrapped
11203 	 *   offset.
11204 	 *
11205 	 * - The third (and least common) is that there is a gap between the
11206 	 *   buffer offset and the wrapped offset, but the wrapped offset is
11207 	 *   _less_ than the buffer offset.  This can only happen because a
11208 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11209 	 *   was not subsequently consumed.  In this case, we need to zero the
11210 	 *   space from the offset to the end of the buffer _and_ from the
11211 	 *   top of the buffer to the wrapped offset.
11212 	 */
11213 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11214 		bzero(buf->dtb_tomax + buf->dtb_offset,
11215 		    buf->dtb_xamot_offset - buf->dtb_offset);
11216 	}
11217 
11218 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11219 		bzero(buf->dtb_tomax + buf->dtb_offset,
11220 		    buf->dtb_size - buf->dtb_offset);
11221 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11222 	}
11223 }
11224 
11225 static void
11226 dtrace_buffer_free(dtrace_buffer_t *bufs)
11227 {
11228 	int i;
11229 
11230 	for (i = 0; i < NCPU; i++) {
11231 		dtrace_buffer_t *buf = &bufs[i];
11232 
11233 		if (buf->dtb_tomax == NULL) {
11234 			ASSERT(buf->dtb_xamot == NULL);
11235 			ASSERT(buf->dtb_size == 0);
11236 			continue;
11237 		}
11238 
11239 		if (buf->dtb_xamot != NULL) {
11240 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11241 			kmem_free(buf->dtb_xamot, buf->dtb_size);
11242 		}
11243 
11244 		kmem_free(buf->dtb_tomax, buf->dtb_size);
11245 		buf->dtb_size = 0;
11246 		buf->dtb_tomax = NULL;
11247 		buf->dtb_xamot = NULL;
11248 	}
11249 }
11250 
11251 /*
11252  * DTrace Enabling Functions
11253  */
11254 static dtrace_enabling_t *
11255 dtrace_enabling_create(dtrace_vstate_t *vstate)
11256 {
11257 	dtrace_enabling_t *enab;
11258 
11259 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11260 	enab->dten_vstate = vstate;
11261 
11262 	return (enab);
11263 }
11264 
11265 static void
11266 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11267 {
11268 	dtrace_ecbdesc_t **ndesc;
11269 	size_t osize, nsize;
11270 
11271 	/*
11272 	 * We can't add to enablings after we've enabled them, or after we've
11273 	 * retained them.
11274 	 */
11275 	ASSERT(enab->dten_probegen == 0);
11276 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11277 
11278 	if (enab->dten_ndesc < enab->dten_maxdesc) {
11279 		enab->dten_desc[enab->dten_ndesc++] = ecb;
11280 		return;
11281 	}
11282 
11283 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11284 
11285 	if (enab->dten_maxdesc == 0) {
11286 		enab->dten_maxdesc = 1;
11287 	} else {
11288 		enab->dten_maxdesc <<= 1;
11289 	}
11290 
11291 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11292 
11293 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11294 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11295 	bcopy(enab->dten_desc, ndesc, osize);
11296 	if (enab->dten_desc != NULL)
11297 		kmem_free(enab->dten_desc, osize);
11298 
11299 	enab->dten_desc = ndesc;
11300 	enab->dten_desc[enab->dten_ndesc++] = ecb;
11301 }
11302 
11303 static void
11304 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11305     dtrace_probedesc_t *pd)
11306 {
11307 	dtrace_ecbdesc_t *new;
11308 	dtrace_predicate_t *pred;
11309 	dtrace_actdesc_t *act;
11310 
11311 	/*
11312 	 * We're going to create a new ECB description that matches the
11313 	 * specified ECB in every way, but has the specified probe description.
11314 	 */
11315 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11316 
11317 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11318 		dtrace_predicate_hold(pred);
11319 
11320 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11321 		dtrace_actdesc_hold(act);
11322 
11323 	new->dted_action = ecb->dted_action;
11324 	new->dted_pred = ecb->dted_pred;
11325 	new->dted_probe = *pd;
11326 	new->dted_uarg = ecb->dted_uarg;
11327 
11328 	dtrace_enabling_add(enab, new);
11329 }
11330 
11331 static void
11332 dtrace_enabling_dump(dtrace_enabling_t *enab)
11333 {
11334 	int i;
11335 
11336 	for (i = 0; i < enab->dten_ndesc; i++) {
11337 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11338 
11339 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11340 		    desc->dtpd_provider, desc->dtpd_mod,
11341 		    desc->dtpd_func, desc->dtpd_name);
11342 	}
11343 }
11344 
11345 static void
11346 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11347 {
11348 	int i;
11349 	dtrace_ecbdesc_t *ep;
11350 	dtrace_vstate_t *vstate = enab->dten_vstate;
11351 
11352 	ASSERT(MUTEX_HELD(&dtrace_lock));
11353 
11354 	for (i = 0; i < enab->dten_ndesc; i++) {
11355 		dtrace_actdesc_t *act, *next;
11356 		dtrace_predicate_t *pred;
11357 
11358 		ep = enab->dten_desc[i];
11359 
11360 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11361 			dtrace_predicate_release(pred, vstate);
11362 
11363 		for (act = ep->dted_action; act != NULL; act = next) {
11364 			next = act->dtad_next;
11365 			dtrace_actdesc_release(act, vstate);
11366 		}
11367 
11368 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11369 	}
11370 
11371 	if (enab->dten_desc != NULL)
11372 		kmem_free(enab->dten_desc,
11373 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11374 
11375 	/*
11376 	 * If this was a retained enabling, decrement the dts_nretained count
11377 	 * and take it off of the dtrace_retained list.
11378 	 */
11379 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11380 	    dtrace_retained == enab) {
11381 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11382 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11383 		enab->dten_vstate->dtvs_state->dts_nretained--;
11384 	}
11385 
11386 	if (enab->dten_prev == NULL) {
11387 		if (dtrace_retained == enab) {
11388 			dtrace_retained = enab->dten_next;
11389 
11390 			if (dtrace_retained != NULL)
11391 				dtrace_retained->dten_prev = NULL;
11392 		}
11393 	} else {
11394 		ASSERT(enab != dtrace_retained);
11395 		ASSERT(dtrace_retained != NULL);
11396 		enab->dten_prev->dten_next = enab->dten_next;
11397 	}
11398 
11399 	if (enab->dten_next != NULL) {
11400 		ASSERT(dtrace_retained != NULL);
11401 		enab->dten_next->dten_prev = enab->dten_prev;
11402 	}
11403 
11404 	kmem_free(enab, sizeof (dtrace_enabling_t));
11405 }
11406 
11407 static int
11408 dtrace_enabling_retain(dtrace_enabling_t *enab)
11409 {
11410 	dtrace_state_t *state;
11411 
11412 	ASSERT(MUTEX_HELD(&dtrace_lock));
11413 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11414 	ASSERT(enab->dten_vstate != NULL);
11415 
11416 	state = enab->dten_vstate->dtvs_state;
11417 	ASSERT(state != NULL);
11418 
11419 	/*
11420 	 * We only allow each state to retain dtrace_retain_max enablings.
11421 	 */
11422 	if (state->dts_nretained >= dtrace_retain_max)
11423 		return (ENOSPC);
11424 
11425 	state->dts_nretained++;
11426 
11427 	if (dtrace_retained == NULL) {
11428 		dtrace_retained = enab;
11429 		return (0);
11430 	}
11431 
11432 	enab->dten_next = dtrace_retained;
11433 	dtrace_retained->dten_prev = enab;
11434 	dtrace_retained = enab;
11435 
11436 	return (0);
11437 }
11438 
11439 static int
11440 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11441     dtrace_probedesc_t *create)
11442 {
11443 	dtrace_enabling_t *new, *enab;
11444 	int found = 0, err = ENOENT;
11445 
11446 	ASSERT(MUTEX_HELD(&dtrace_lock));
11447 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11448 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11449 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11450 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11451 
11452 	new = dtrace_enabling_create(&state->dts_vstate);
11453 
11454 	/*
11455 	 * Iterate over all retained enablings, looking for enablings that
11456 	 * match the specified state.
11457 	 */
11458 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11459 		int i;
11460 
11461 		/*
11462 		 * dtvs_state can only be NULL for helper enablings -- and
11463 		 * helper enablings can't be retained.
11464 		 */
11465 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11466 
11467 		if (enab->dten_vstate->dtvs_state != state)
11468 			continue;
11469 
11470 		/*
11471 		 * Now iterate over each probe description; we're looking for
11472 		 * an exact match to the specified probe description.
11473 		 */
11474 		for (i = 0; i < enab->dten_ndesc; i++) {
11475 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11476 			dtrace_probedesc_t *pd = &ep->dted_probe;
11477 
11478 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11479 				continue;
11480 
11481 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11482 				continue;
11483 
11484 			if (strcmp(pd->dtpd_func, match->dtpd_func))
11485 				continue;
11486 
11487 			if (strcmp(pd->dtpd_name, match->dtpd_name))
11488 				continue;
11489 
11490 			/*
11491 			 * We have a winning probe!  Add it to our growing
11492 			 * enabling.
11493 			 */
11494 			found = 1;
11495 			dtrace_enabling_addlike(new, ep, create);
11496 		}
11497 	}
11498 
11499 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11500 		dtrace_enabling_destroy(new);
11501 		return (err);
11502 	}
11503 
11504 	return (0);
11505 }
11506 
11507 static void
11508 dtrace_enabling_retract(dtrace_state_t *state)
11509 {
11510 	dtrace_enabling_t *enab, *next;
11511 
11512 	ASSERT(MUTEX_HELD(&dtrace_lock));
11513 
11514 	/*
11515 	 * Iterate over all retained enablings, destroy the enablings retained
11516 	 * for the specified state.
11517 	 */
11518 	for (enab = dtrace_retained; enab != NULL; enab = next) {
11519 		next = enab->dten_next;
11520 
11521 		/*
11522 		 * dtvs_state can only be NULL for helper enablings -- and
11523 		 * helper enablings can't be retained.
11524 		 */
11525 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11526 
11527 		if (enab->dten_vstate->dtvs_state == state) {
11528 			ASSERT(state->dts_nretained > 0);
11529 			dtrace_enabling_destroy(enab);
11530 		}
11531 	}
11532 
11533 	ASSERT(state->dts_nretained == 0);
11534 }
11535 
11536 static int
11537 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11538 {
11539 	int i = 0;
11540 	int matched = 0;
11541 
11542 	ASSERT(MUTEX_HELD(&cpu_lock));
11543 	ASSERT(MUTEX_HELD(&dtrace_lock));
11544 
11545 	for (i = 0; i < enab->dten_ndesc; i++) {
11546 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11547 
11548 		enab->dten_current = ep;
11549 		enab->dten_error = 0;
11550 
11551 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11552 
11553 		if (enab->dten_error != 0) {
11554 			/*
11555 			 * If we get an error half-way through enabling the
11556 			 * probes, we kick out -- perhaps with some number of
11557 			 * them enabled.  Leaving enabled probes enabled may
11558 			 * be slightly confusing for user-level, but we expect
11559 			 * that no one will attempt to actually drive on in
11560 			 * the face of such errors.  If this is an anonymous
11561 			 * enabling (indicated with a NULL nmatched pointer),
11562 			 * we cmn_err() a message.  We aren't expecting to
11563 			 * get such an error -- such as it can exist at all,
11564 			 * it would be a result of corrupted DOF in the driver
11565 			 * properties.
11566 			 */
11567 			if (nmatched == NULL) {
11568 				cmn_err(CE_WARN, "dtrace_enabling_match() "
11569 				    "error on %p: %d", (void *)ep,
11570 				    enab->dten_error);
11571 			}
11572 
11573 			return (enab->dten_error);
11574 		}
11575 	}
11576 
11577 	enab->dten_probegen = dtrace_probegen;
11578 	if (nmatched != NULL)
11579 		*nmatched = matched;
11580 
11581 	return (0);
11582 }
11583 
11584 static void
11585 dtrace_enabling_matchall(void)
11586 {
11587 	dtrace_enabling_t *enab;
11588 
11589 	mutex_enter(&cpu_lock);
11590 	mutex_enter(&dtrace_lock);
11591 
11592 	/*
11593 	 * Iterate over all retained enablings to see if any probes match
11594 	 * against them.  We only perform this operation on enablings for which
11595 	 * we have sufficient permissions by virtue of being in the global zone
11596 	 * or in the same zone as the DTrace client.  Because we can be called
11597 	 * after dtrace_detach() has been called, we cannot assert that there
11598 	 * are retained enablings.  We can safely load from dtrace_retained,
11599 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11600 	 * block pending our completion.
11601 	 */
11602 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11603 #if defined(sun)
11604 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11605 
11606 		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11607 #endif
11608 			(void) dtrace_enabling_match(enab, NULL);
11609 	}
11610 
11611 	mutex_exit(&dtrace_lock);
11612 	mutex_exit(&cpu_lock);
11613 }
11614 
11615 /*
11616  * If an enabling is to be enabled without having matched probes (that is, if
11617  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11618  * enabling must be _primed_ by creating an ECB for every ECB description.
11619  * This must be done to assure that we know the number of speculations, the
11620  * number of aggregations, the minimum buffer size needed, etc. before we
11621  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11622  * enabling any probes, we create ECBs for every ECB decription, but with a
11623  * NULL probe -- which is exactly what this function does.
11624  */
11625 static void
11626 dtrace_enabling_prime(dtrace_state_t *state)
11627 {
11628 	dtrace_enabling_t *enab;
11629 	int i;
11630 
11631 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11632 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11633 
11634 		if (enab->dten_vstate->dtvs_state != state)
11635 			continue;
11636 
11637 		/*
11638 		 * We don't want to prime an enabling more than once, lest
11639 		 * we allow a malicious user to induce resource exhaustion.
11640 		 * (The ECBs that result from priming an enabling aren't
11641 		 * leaked -- but they also aren't deallocated until the
11642 		 * consumer state is destroyed.)
11643 		 */
11644 		if (enab->dten_primed)
11645 			continue;
11646 
11647 		for (i = 0; i < enab->dten_ndesc; i++) {
11648 			enab->dten_current = enab->dten_desc[i];
11649 			(void) dtrace_probe_enable(NULL, enab);
11650 		}
11651 
11652 		enab->dten_primed = 1;
11653 	}
11654 }
11655 
11656 /*
11657  * Called to indicate that probes should be provided due to retained
11658  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11659  * must take an initial lap through the enabling calling the dtps_provide()
11660  * entry point explicitly to allow for autocreated probes.
11661  */
11662 static void
11663 dtrace_enabling_provide(dtrace_provider_t *prv)
11664 {
11665 	int i, all = 0;
11666 	dtrace_probedesc_t desc;
11667 
11668 	ASSERT(MUTEX_HELD(&dtrace_lock));
11669 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11670 
11671 	if (prv == NULL) {
11672 		all = 1;
11673 		prv = dtrace_provider;
11674 	}
11675 
11676 	do {
11677 		dtrace_enabling_t *enab = dtrace_retained;
11678 		void *parg = prv->dtpv_arg;
11679 
11680 		for (; enab != NULL; enab = enab->dten_next) {
11681 			for (i = 0; i < enab->dten_ndesc; i++) {
11682 				desc = enab->dten_desc[i]->dted_probe;
11683 				mutex_exit(&dtrace_lock);
11684 				prv->dtpv_pops.dtps_provide(parg, &desc);
11685 				mutex_enter(&dtrace_lock);
11686 			}
11687 		}
11688 	} while (all && (prv = prv->dtpv_next) != NULL);
11689 
11690 	mutex_exit(&dtrace_lock);
11691 	dtrace_probe_provide(NULL, all ? NULL : prv);
11692 	mutex_enter(&dtrace_lock);
11693 }
11694 
11695 /*
11696  * DTrace DOF Functions
11697  */
11698 /*ARGSUSED*/
11699 static void
11700 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11701 {
11702 	if (dtrace_err_verbose)
11703 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11704 
11705 #ifdef DTRACE_ERRDEBUG
11706 	dtrace_errdebug(str);
11707 #endif
11708 }
11709 
11710 /*
11711  * Create DOF out of a currently enabled state.  Right now, we only create
11712  * DOF containing the run-time options -- but this could be expanded to create
11713  * complete DOF representing the enabled state.
11714  */
11715 static dof_hdr_t *
11716 dtrace_dof_create(dtrace_state_t *state)
11717 {
11718 	dof_hdr_t *dof;
11719 	dof_sec_t *sec;
11720 	dof_optdesc_t *opt;
11721 	int i, len = sizeof (dof_hdr_t) +
11722 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11723 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11724 
11725 	ASSERT(MUTEX_HELD(&dtrace_lock));
11726 
11727 	dof = kmem_zalloc(len, KM_SLEEP);
11728 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11729 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11730 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11731 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11732 
11733 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11734 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11735 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11736 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11737 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11738 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11739 
11740 	dof->dofh_flags = 0;
11741 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11742 	dof->dofh_secsize = sizeof (dof_sec_t);
11743 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11744 	dof->dofh_secoff = sizeof (dof_hdr_t);
11745 	dof->dofh_loadsz = len;
11746 	dof->dofh_filesz = len;
11747 	dof->dofh_pad = 0;
11748 
11749 	/*
11750 	 * Fill in the option section header...
11751 	 */
11752 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11753 	sec->dofs_type = DOF_SECT_OPTDESC;
11754 	sec->dofs_align = sizeof (uint64_t);
11755 	sec->dofs_flags = DOF_SECF_LOAD;
11756 	sec->dofs_entsize = sizeof (dof_optdesc_t);
11757 
11758 	opt = (dof_optdesc_t *)((uintptr_t)sec +
11759 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11760 
11761 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11762 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11763 
11764 	for (i = 0; i < DTRACEOPT_MAX; i++) {
11765 		opt[i].dofo_option = i;
11766 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11767 		opt[i].dofo_value = state->dts_options[i];
11768 	}
11769 
11770 	return (dof);
11771 }
11772 
11773 static dof_hdr_t *
11774 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11775 {
11776 	dof_hdr_t hdr, *dof;
11777 
11778 	ASSERT(!MUTEX_HELD(&dtrace_lock));
11779 
11780 	/*
11781 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11782 	 */
11783 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11784 		dtrace_dof_error(NULL, "failed to copyin DOF header");
11785 		*errp = EFAULT;
11786 		return (NULL);
11787 	}
11788 
11789 	/*
11790 	 * Now we'll allocate the entire DOF and copy it in -- provided
11791 	 * that the length isn't outrageous.
11792 	 */
11793 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11794 		dtrace_dof_error(&hdr, "load size exceeds maximum");
11795 		*errp = E2BIG;
11796 		return (NULL);
11797 	}
11798 
11799 	if (hdr.dofh_loadsz < sizeof (hdr)) {
11800 		dtrace_dof_error(&hdr, "invalid load size");
11801 		*errp = EINVAL;
11802 		return (NULL);
11803 	}
11804 
11805 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11806 
11807 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11808 		kmem_free(dof, hdr.dofh_loadsz);
11809 		*errp = EFAULT;
11810 		return (NULL);
11811 	}
11812 
11813 	return (dof);
11814 }
11815 
11816 #if !defined(sun)
11817 static __inline uchar_t
11818 dtrace_dof_char(char c) {
11819 	switch (c) {
11820 	case '0':
11821 	case '1':
11822 	case '2':
11823 	case '3':
11824 	case '4':
11825 	case '5':
11826 	case '6':
11827 	case '7':
11828 	case '8':
11829 	case '9':
11830 		return (c - '0');
11831 	case 'A':
11832 	case 'B':
11833 	case 'C':
11834 	case 'D':
11835 	case 'E':
11836 	case 'F':
11837 		return (c - 'A' + 10);
11838 	case 'a':
11839 	case 'b':
11840 	case 'c':
11841 	case 'd':
11842 	case 'e':
11843 	case 'f':
11844 		return (c - 'a' + 10);
11845 	}
11846 	/* Should not reach here. */
11847 	return (0);
11848 }
11849 #endif
11850 
11851 static dof_hdr_t *
11852 dtrace_dof_property(const char *name)
11853 {
11854 	uchar_t *buf;
11855 	uint64_t loadsz;
11856 	unsigned int len, i;
11857 	dof_hdr_t *dof;
11858 
11859 #if defined(sun)
11860 	/*
11861 	 * Unfortunately, array of values in .conf files are always (and
11862 	 * only) interpreted to be integer arrays.  We must read our DOF
11863 	 * as an integer array, and then squeeze it into a byte array.
11864 	 */
11865 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
11866 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
11867 		return (NULL);
11868 
11869 	for (i = 0; i < len; i++)
11870 		buf[i] = (uchar_t)(((int *)buf)[i]);
11871 
11872 	if (len < sizeof (dof_hdr_t)) {
11873 		ddi_prop_free(buf);
11874 		dtrace_dof_error(NULL, "truncated header");
11875 		return (NULL);
11876 	}
11877 
11878 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
11879 		ddi_prop_free(buf);
11880 		dtrace_dof_error(NULL, "truncated DOF");
11881 		return (NULL);
11882 	}
11883 
11884 	if (loadsz >= dtrace_dof_maxsize) {
11885 		ddi_prop_free(buf);
11886 		dtrace_dof_error(NULL, "oversized DOF");
11887 		return (NULL);
11888 	}
11889 
11890 	dof = kmem_alloc(loadsz, KM_SLEEP);
11891 	bcopy(buf, dof, loadsz);
11892 	ddi_prop_free(buf);
11893 #else
11894 	char *p;
11895 	char *p_env;
11896 
11897 	if ((p_env = getenv(name)) == NULL)
11898 		return (NULL);
11899 
11900 	len = strlen(p_env) / 2;
11901 
11902 	buf = kmem_alloc(len, KM_SLEEP);
11903 
11904 	dof = (dof_hdr_t *) buf;
11905 
11906 	p = p_env;
11907 
11908 	for (i = 0; i < len; i++) {
11909 		buf[i] = (dtrace_dof_char(p[0]) << 4) |
11910 		     dtrace_dof_char(p[1]);
11911 		p += 2;
11912 	}
11913 
11914 	freeenv(p_env);
11915 
11916 	if (len < sizeof (dof_hdr_t)) {
11917 		kmem_free(buf, 0);
11918 		dtrace_dof_error(NULL, "truncated header");
11919 		return (NULL);
11920 	}
11921 
11922 	if (len < (loadsz = dof->dofh_loadsz)) {
11923 		kmem_free(buf, 0);
11924 		dtrace_dof_error(NULL, "truncated DOF");
11925 		return (NULL);
11926 	}
11927 
11928 	if (loadsz >= dtrace_dof_maxsize) {
11929 		kmem_free(buf, 0);
11930 		dtrace_dof_error(NULL, "oversized DOF");
11931 		return (NULL);
11932 	}
11933 #endif
11934 
11935 	return (dof);
11936 }
11937 
11938 static void
11939 dtrace_dof_destroy(dof_hdr_t *dof)
11940 {
11941 	kmem_free(dof, dof->dofh_loadsz);
11942 }
11943 
11944 /*
11945  * Return the dof_sec_t pointer corresponding to a given section index.  If the
11946  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
11947  * a type other than DOF_SECT_NONE is specified, the header is checked against
11948  * this type and NULL is returned if the types do not match.
11949  */
11950 static dof_sec_t *
11951 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
11952 {
11953 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
11954 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
11955 
11956 	if (i >= dof->dofh_secnum) {
11957 		dtrace_dof_error(dof, "referenced section index is invalid");
11958 		return (NULL);
11959 	}
11960 
11961 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
11962 		dtrace_dof_error(dof, "referenced section is not loadable");
11963 		return (NULL);
11964 	}
11965 
11966 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
11967 		dtrace_dof_error(dof, "referenced section is the wrong type");
11968 		return (NULL);
11969 	}
11970 
11971 	return (sec);
11972 }
11973 
11974 static dtrace_probedesc_t *
11975 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
11976 {
11977 	dof_probedesc_t *probe;
11978 	dof_sec_t *strtab;
11979 	uintptr_t daddr = (uintptr_t)dof;
11980 	uintptr_t str;
11981 	size_t size;
11982 
11983 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
11984 		dtrace_dof_error(dof, "invalid probe section");
11985 		return (NULL);
11986 	}
11987 
11988 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
11989 		dtrace_dof_error(dof, "bad alignment in probe description");
11990 		return (NULL);
11991 	}
11992 
11993 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
11994 		dtrace_dof_error(dof, "truncated probe description");
11995 		return (NULL);
11996 	}
11997 
11998 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
11999 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12000 
12001 	if (strtab == NULL)
12002 		return (NULL);
12003 
12004 	str = daddr + strtab->dofs_offset;
12005 	size = strtab->dofs_size;
12006 
12007 	if (probe->dofp_provider >= strtab->dofs_size) {
12008 		dtrace_dof_error(dof, "corrupt probe provider");
12009 		return (NULL);
12010 	}
12011 
12012 	(void) strncpy(desc->dtpd_provider,
12013 	    (char *)(str + probe->dofp_provider),
12014 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12015 
12016 	if (probe->dofp_mod >= strtab->dofs_size) {
12017 		dtrace_dof_error(dof, "corrupt probe module");
12018 		return (NULL);
12019 	}
12020 
12021 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12022 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12023 
12024 	if (probe->dofp_func >= strtab->dofs_size) {
12025 		dtrace_dof_error(dof, "corrupt probe function");
12026 		return (NULL);
12027 	}
12028 
12029 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12030 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12031 
12032 	if (probe->dofp_name >= strtab->dofs_size) {
12033 		dtrace_dof_error(dof, "corrupt probe name");
12034 		return (NULL);
12035 	}
12036 
12037 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12038 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12039 
12040 	return (desc);
12041 }
12042 
12043 static dtrace_difo_t *
12044 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12045     cred_t *cr)
12046 {
12047 	dtrace_difo_t *dp;
12048 	size_t ttl = 0;
12049 	dof_difohdr_t *dofd;
12050 	uintptr_t daddr = (uintptr_t)dof;
12051 	size_t max = dtrace_difo_maxsize;
12052 	int i, l, n;
12053 
12054 	static const struct {
12055 		int section;
12056 		int bufoffs;
12057 		int lenoffs;
12058 		int entsize;
12059 		int align;
12060 		const char *msg;
12061 	} difo[] = {
12062 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12063 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12064 		sizeof (dif_instr_t), "multiple DIF sections" },
12065 
12066 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12067 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12068 		sizeof (uint64_t), "multiple integer tables" },
12069 
12070 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12071 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12072 		sizeof (char), "multiple string tables" },
12073 
12074 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12075 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12076 		sizeof (uint_t), "multiple variable tables" },
12077 
12078 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12079 	};
12080 
12081 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12082 		dtrace_dof_error(dof, "invalid DIFO header section");
12083 		return (NULL);
12084 	}
12085 
12086 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12087 		dtrace_dof_error(dof, "bad alignment in DIFO header");
12088 		return (NULL);
12089 	}
12090 
12091 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12092 	    sec->dofs_size % sizeof (dof_secidx_t)) {
12093 		dtrace_dof_error(dof, "bad size in DIFO header");
12094 		return (NULL);
12095 	}
12096 
12097 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12098 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12099 
12100 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12101 	dp->dtdo_rtype = dofd->dofd_rtype;
12102 
12103 	for (l = 0; l < n; l++) {
12104 		dof_sec_t *subsec;
12105 		void **bufp;
12106 		uint32_t *lenp;
12107 
12108 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12109 		    dofd->dofd_links[l])) == NULL)
12110 			goto err; /* invalid section link */
12111 
12112 		if (ttl + subsec->dofs_size > max) {
12113 			dtrace_dof_error(dof, "exceeds maximum size");
12114 			goto err;
12115 		}
12116 
12117 		ttl += subsec->dofs_size;
12118 
12119 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12120 			if (subsec->dofs_type != difo[i].section)
12121 				continue;
12122 
12123 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12124 				dtrace_dof_error(dof, "section not loaded");
12125 				goto err;
12126 			}
12127 
12128 			if (subsec->dofs_align != difo[i].align) {
12129 				dtrace_dof_error(dof, "bad alignment");
12130 				goto err;
12131 			}
12132 
12133 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12134 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12135 
12136 			if (*bufp != NULL) {
12137 				dtrace_dof_error(dof, difo[i].msg);
12138 				goto err;
12139 			}
12140 
12141 			if (difo[i].entsize != subsec->dofs_entsize) {
12142 				dtrace_dof_error(dof, "entry size mismatch");
12143 				goto err;
12144 			}
12145 
12146 			if (subsec->dofs_entsize != 0 &&
12147 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12148 				dtrace_dof_error(dof, "corrupt entry size");
12149 				goto err;
12150 			}
12151 
12152 			*lenp = subsec->dofs_size;
12153 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12154 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12155 			    *bufp, subsec->dofs_size);
12156 
12157 			if (subsec->dofs_entsize != 0)
12158 				*lenp /= subsec->dofs_entsize;
12159 
12160 			break;
12161 		}
12162 
12163 		/*
12164 		 * If we encounter a loadable DIFO sub-section that is not
12165 		 * known to us, assume this is a broken program and fail.
12166 		 */
12167 		if (difo[i].section == DOF_SECT_NONE &&
12168 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12169 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12170 			goto err;
12171 		}
12172 	}
12173 
12174 	if (dp->dtdo_buf == NULL) {
12175 		/*
12176 		 * We can't have a DIF object without DIF text.
12177 		 */
12178 		dtrace_dof_error(dof, "missing DIF text");
12179 		goto err;
12180 	}
12181 
12182 	/*
12183 	 * Before we validate the DIF object, run through the variable table
12184 	 * looking for the strings -- if any of their size are under, we'll set
12185 	 * their size to be the system-wide default string size.  Note that
12186 	 * this should _not_ happen if the "strsize" option has been set --
12187 	 * in this case, the compiler should have set the size to reflect the
12188 	 * setting of the option.
12189 	 */
12190 	for (i = 0; i < dp->dtdo_varlen; i++) {
12191 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12192 		dtrace_diftype_t *t = &v->dtdv_type;
12193 
12194 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12195 			continue;
12196 
12197 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12198 			t->dtdt_size = dtrace_strsize_default;
12199 	}
12200 
12201 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12202 		goto err;
12203 
12204 	dtrace_difo_init(dp, vstate);
12205 	return (dp);
12206 
12207 err:
12208 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12209 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12210 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12211 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12212 
12213 	kmem_free(dp, sizeof (dtrace_difo_t));
12214 	return (NULL);
12215 }
12216 
12217 static dtrace_predicate_t *
12218 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12219     cred_t *cr)
12220 {
12221 	dtrace_difo_t *dp;
12222 
12223 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12224 		return (NULL);
12225 
12226 	return (dtrace_predicate_create(dp));
12227 }
12228 
12229 static dtrace_actdesc_t *
12230 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12231     cred_t *cr)
12232 {
12233 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12234 	dof_actdesc_t *desc;
12235 	dof_sec_t *difosec;
12236 	size_t offs;
12237 	uintptr_t daddr = (uintptr_t)dof;
12238 	uint64_t arg;
12239 	dtrace_actkind_t kind;
12240 
12241 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12242 		dtrace_dof_error(dof, "invalid action section");
12243 		return (NULL);
12244 	}
12245 
12246 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12247 		dtrace_dof_error(dof, "truncated action description");
12248 		return (NULL);
12249 	}
12250 
12251 	if (sec->dofs_align != sizeof (uint64_t)) {
12252 		dtrace_dof_error(dof, "bad alignment in action description");
12253 		return (NULL);
12254 	}
12255 
12256 	if (sec->dofs_size < sec->dofs_entsize) {
12257 		dtrace_dof_error(dof, "section entry size exceeds total size");
12258 		return (NULL);
12259 	}
12260 
12261 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12262 		dtrace_dof_error(dof, "bad entry size in action description");
12263 		return (NULL);
12264 	}
12265 
12266 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12267 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12268 		return (NULL);
12269 	}
12270 
12271 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12272 		desc = (dof_actdesc_t *)(daddr +
12273 		    (uintptr_t)sec->dofs_offset + offs);
12274 		kind = (dtrace_actkind_t)desc->dofa_kind;
12275 
12276 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12277 		    (kind != DTRACEACT_PRINTA ||
12278 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12279 		    (kind == DTRACEACT_DIFEXPR &&
12280 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12281 			dof_sec_t *strtab;
12282 			char *str, *fmt;
12283 			uint64_t i;
12284 
12285 			/*
12286 			 * The argument to these actions is an index into the
12287 			 * DOF string table.  For printf()-like actions, this
12288 			 * is the format string.  For print(), this is the
12289 			 * CTF type of the expression result.
12290 			 */
12291 			if ((strtab = dtrace_dof_sect(dof,
12292 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12293 				goto err;
12294 
12295 			str = (char *)((uintptr_t)dof +
12296 			    (uintptr_t)strtab->dofs_offset);
12297 
12298 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12299 				if (str[i] == '\0')
12300 					break;
12301 			}
12302 
12303 			if (i >= strtab->dofs_size) {
12304 				dtrace_dof_error(dof, "bogus format string");
12305 				goto err;
12306 			}
12307 
12308 			if (i == desc->dofa_arg) {
12309 				dtrace_dof_error(dof, "empty format string");
12310 				goto err;
12311 			}
12312 
12313 			i -= desc->dofa_arg;
12314 			fmt = kmem_alloc(i + 1, KM_SLEEP);
12315 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12316 			arg = (uint64_t)(uintptr_t)fmt;
12317 		} else {
12318 			if (kind == DTRACEACT_PRINTA) {
12319 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12320 				arg = 0;
12321 			} else {
12322 				arg = desc->dofa_arg;
12323 			}
12324 		}
12325 
12326 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12327 		    desc->dofa_uarg, arg);
12328 
12329 		if (last != NULL) {
12330 			last->dtad_next = act;
12331 		} else {
12332 			first = act;
12333 		}
12334 
12335 		last = act;
12336 
12337 		if (desc->dofa_difo == DOF_SECIDX_NONE)
12338 			continue;
12339 
12340 		if ((difosec = dtrace_dof_sect(dof,
12341 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12342 			goto err;
12343 
12344 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12345 
12346 		if (act->dtad_difo == NULL)
12347 			goto err;
12348 	}
12349 
12350 	ASSERT(first != NULL);
12351 	return (first);
12352 
12353 err:
12354 	for (act = first; act != NULL; act = next) {
12355 		next = act->dtad_next;
12356 		dtrace_actdesc_release(act, vstate);
12357 	}
12358 
12359 	return (NULL);
12360 }
12361 
12362 static dtrace_ecbdesc_t *
12363 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12364     cred_t *cr)
12365 {
12366 	dtrace_ecbdesc_t *ep;
12367 	dof_ecbdesc_t *ecb;
12368 	dtrace_probedesc_t *desc;
12369 	dtrace_predicate_t *pred = NULL;
12370 
12371 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12372 		dtrace_dof_error(dof, "truncated ECB description");
12373 		return (NULL);
12374 	}
12375 
12376 	if (sec->dofs_align != sizeof (uint64_t)) {
12377 		dtrace_dof_error(dof, "bad alignment in ECB description");
12378 		return (NULL);
12379 	}
12380 
12381 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12382 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12383 
12384 	if (sec == NULL)
12385 		return (NULL);
12386 
12387 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12388 	ep->dted_uarg = ecb->dofe_uarg;
12389 	desc = &ep->dted_probe;
12390 
12391 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12392 		goto err;
12393 
12394 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12395 		if ((sec = dtrace_dof_sect(dof,
12396 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12397 			goto err;
12398 
12399 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12400 			goto err;
12401 
12402 		ep->dted_pred.dtpdd_predicate = pred;
12403 	}
12404 
12405 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12406 		if ((sec = dtrace_dof_sect(dof,
12407 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12408 			goto err;
12409 
12410 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12411 
12412 		if (ep->dted_action == NULL)
12413 			goto err;
12414 	}
12415 
12416 	return (ep);
12417 
12418 err:
12419 	if (pred != NULL)
12420 		dtrace_predicate_release(pred, vstate);
12421 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12422 	return (NULL);
12423 }
12424 
12425 /*
12426  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12427  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12428  * site of any user SETX relocations to account for load object base address.
12429  * In the future, if we need other relocations, this function can be extended.
12430  */
12431 static int
12432 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12433 {
12434 	uintptr_t daddr = (uintptr_t)dof;
12435 	dof_relohdr_t *dofr =
12436 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12437 	dof_sec_t *ss, *rs, *ts;
12438 	dof_relodesc_t *r;
12439 	uint_t i, n;
12440 
12441 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12442 	    sec->dofs_align != sizeof (dof_secidx_t)) {
12443 		dtrace_dof_error(dof, "invalid relocation header");
12444 		return (-1);
12445 	}
12446 
12447 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12448 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12449 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12450 
12451 	if (ss == NULL || rs == NULL || ts == NULL)
12452 		return (-1); /* dtrace_dof_error() has been called already */
12453 
12454 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12455 	    rs->dofs_align != sizeof (uint64_t)) {
12456 		dtrace_dof_error(dof, "invalid relocation section");
12457 		return (-1);
12458 	}
12459 
12460 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12461 	n = rs->dofs_size / rs->dofs_entsize;
12462 
12463 	for (i = 0; i < n; i++) {
12464 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12465 
12466 		switch (r->dofr_type) {
12467 		case DOF_RELO_NONE:
12468 			break;
12469 		case DOF_RELO_SETX:
12470 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12471 			    sizeof (uint64_t) > ts->dofs_size) {
12472 				dtrace_dof_error(dof, "bad relocation offset");
12473 				return (-1);
12474 			}
12475 
12476 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12477 				dtrace_dof_error(dof, "misaligned setx relo");
12478 				return (-1);
12479 			}
12480 
12481 			*(uint64_t *)taddr += ubase;
12482 			break;
12483 		default:
12484 			dtrace_dof_error(dof, "invalid relocation type");
12485 			return (-1);
12486 		}
12487 
12488 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12489 	}
12490 
12491 	return (0);
12492 }
12493 
12494 /*
12495  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12496  * header:  it should be at the front of a memory region that is at least
12497  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12498  * size.  It need not be validated in any other way.
12499  */
12500 static int
12501 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12502     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12503 {
12504 	uint64_t len = dof->dofh_loadsz, seclen;
12505 	uintptr_t daddr = (uintptr_t)dof;
12506 	dtrace_ecbdesc_t *ep;
12507 	dtrace_enabling_t *enab;
12508 	uint_t i;
12509 
12510 	ASSERT(MUTEX_HELD(&dtrace_lock));
12511 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12512 
12513 	/*
12514 	 * Check the DOF header identification bytes.  In addition to checking
12515 	 * valid settings, we also verify that unused bits/bytes are zeroed so
12516 	 * we can use them later without fear of regressing existing binaries.
12517 	 */
12518 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12519 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12520 		dtrace_dof_error(dof, "DOF magic string mismatch");
12521 		return (-1);
12522 	}
12523 
12524 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12525 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12526 		dtrace_dof_error(dof, "DOF has invalid data model");
12527 		return (-1);
12528 	}
12529 
12530 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12531 		dtrace_dof_error(dof, "DOF encoding mismatch");
12532 		return (-1);
12533 	}
12534 
12535 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12536 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12537 		dtrace_dof_error(dof, "DOF version mismatch");
12538 		return (-1);
12539 	}
12540 
12541 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12542 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12543 		return (-1);
12544 	}
12545 
12546 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12547 		dtrace_dof_error(dof, "DOF uses too many integer registers");
12548 		return (-1);
12549 	}
12550 
12551 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12552 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12553 		return (-1);
12554 	}
12555 
12556 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12557 		if (dof->dofh_ident[i] != 0) {
12558 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12559 			return (-1);
12560 		}
12561 	}
12562 
12563 	if (dof->dofh_flags & ~DOF_FL_VALID) {
12564 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12565 		return (-1);
12566 	}
12567 
12568 	if (dof->dofh_secsize == 0) {
12569 		dtrace_dof_error(dof, "zero section header size");
12570 		return (-1);
12571 	}
12572 
12573 	/*
12574 	 * Check that the section headers don't exceed the amount of DOF
12575 	 * data.  Note that we cast the section size and number of sections
12576 	 * to uint64_t's to prevent possible overflow in the multiplication.
12577 	 */
12578 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12579 
12580 	if (dof->dofh_secoff > len || seclen > len ||
12581 	    dof->dofh_secoff + seclen > len) {
12582 		dtrace_dof_error(dof, "truncated section headers");
12583 		return (-1);
12584 	}
12585 
12586 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12587 		dtrace_dof_error(dof, "misaligned section headers");
12588 		return (-1);
12589 	}
12590 
12591 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12592 		dtrace_dof_error(dof, "misaligned section size");
12593 		return (-1);
12594 	}
12595 
12596 	/*
12597 	 * Take an initial pass through the section headers to be sure that
12598 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12599 	 * set, do not permit sections relating to providers, probes, or args.
12600 	 */
12601 	for (i = 0; i < dof->dofh_secnum; i++) {
12602 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12603 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12604 
12605 		if (noprobes) {
12606 			switch (sec->dofs_type) {
12607 			case DOF_SECT_PROVIDER:
12608 			case DOF_SECT_PROBES:
12609 			case DOF_SECT_PRARGS:
12610 			case DOF_SECT_PROFFS:
12611 				dtrace_dof_error(dof, "illegal sections "
12612 				    "for enabling");
12613 				return (-1);
12614 			}
12615 		}
12616 
12617 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12618 			continue; /* just ignore non-loadable sections */
12619 
12620 		if (sec->dofs_align & (sec->dofs_align - 1)) {
12621 			dtrace_dof_error(dof, "bad section alignment");
12622 			return (-1);
12623 		}
12624 
12625 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12626 			dtrace_dof_error(dof, "misaligned section");
12627 			return (-1);
12628 		}
12629 
12630 		if (sec->dofs_offset > len || sec->dofs_size > len ||
12631 		    sec->dofs_offset + sec->dofs_size > len) {
12632 			dtrace_dof_error(dof, "corrupt section header");
12633 			return (-1);
12634 		}
12635 
12636 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12637 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12638 			dtrace_dof_error(dof, "non-terminating string table");
12639 			return (-1);
12640 		}
12641 	}
12642 
12643 	/*
12644 	 * Take a second pass through the sections and locate and perform any
12645 	 * relocations that are present.  We do this after the first pass to
12646 	 * be sure that all sections have had their headers validated.
12647 	 */
12648 	for (i = 0; i < dof->dofh_secnum; i++) {
12649 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12650 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12651 
12652 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12653 			continue; /* skip sections that are not loadable */
12654 
12655 		switch (sec->dofs_type) {
12656 		case DOF_SECT_URELHDR:
12657 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12658 				return (-1);
12659 			break;
12660 		}
12661 	}
12662 
12663 	if ((enab = *enabp) == NULL)
12664 		enab = *enabp = dtrace_enabling_create(vstate);
12665 
12666 	for (i = 0; i < dof->dofh_secnum; i++) {
12667 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12668 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12669 
12670 		if (sec->dofs_type != DOF_SECT_ECBDESC)
12671 			continue;
12672 
12673 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12674 			dtrace_enabling_destroy(enab);
12675 			*enabp = NULL;
12676 			return (-1);
12677 		}
12678 
12679 		dtrace_enabling_add(enab, ep);
12680 	}
12681 
12682 	return (0);
12683 }
12684 
12685 /*
12686  * Process DOF for any options.  This routine assumes that the DOF has been
12687  * at least processed by dtrace_dof_slurp().
12688  */
12689 static int
12690 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12691 {
12692 	int i, rval;
12693 	uint32_t entsize;
12694 	size_t offs;
12695 	dof_optdesc_t *desc;
12696 
12697 	for (i = 0; i < dof->dofh_secnum; i++) {
12698 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12699 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12700 
12701 		if (sec->dofs_type != DOF_SECT_OPTDESC)
12702 			continue;
12703 
12704 		if (sec->dofs_align != sizeof (uint64_t)) {
12705 			dtrace_dof_error(dof, "bad alignment in "
12706 			    "option description");
12707 			return (EINVAL);
12708 		}
12709 
12710 		if ((entsize = sec->dofs_entsize) == 0) {
12711 			dtrace_dof_error(dof, "zeroed option entry size");
12712 			return (EINVAL);
12713 		}
12714 
12715 		if (entsize < sizeof (dof_optdesc_t)) {
12716 			dtrace_dof_error(dof, "bad option entry size");
12717 			return (EINVAL);
12718 		}
12719 
12720 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12721 			desc = (dof_optdesc_t *)((uintptr_t)dof +
12722 			    (uintptr_t)sec->dofs_offset + offs);
12723 
12724 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12725 				dtrace_dof_error(dof, "non-zero option string");
12726 				return (EINVAL);
12727 			}
12728 
12729 			if (desc->dofo_value == DTRACEOPT_UNSET) {
12730 				dtrace_dof_error(dof, "unset option");
12731 				return (EINVAL);
12732 			}
12733 
12734 			if ((rval = dtrace_state_option(state,
12735 			    desc->dofo_option, desc->dofo_value)) != 0) {
12736 				dtrace_dof_error(dof, "rejected option");
12737 				return (rval);
12738 			}
12739 		}
12740 	}
12741 
12742 	return (0);
12743 }
12744 
12745 /*
12746  * DTrace Consumer State Functions
12747  */
12748 static int
12749 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12750 {
12751 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12752 	void *base;
12753 	uintptr_t limit;
12754 	dtrace_dynvar_t *dvar, *next, *start;
12755 	int i;
12756 
12757 	ASSERT(MUTEX_HELD(&dtrace_lock));
12758 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12759 
12760 	bzero(dstate, sizeof (dtrace_dstate_t));
12761 
12762 	if ((dstate->dtds_chunksize = chunksize) == 0)
12763 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12764 
12765 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12766 		size = min;
12767 
12768 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12769 		return (ENOMEM);
12770 
12771 	dstate->dtds_size = size;
12772 	dstate->dtds_base = base;
12773 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12774 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12775 
12776 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12777 
12778 	if (hashsize != 1 && (hashsize & 1))
12779 		hashsize--;
12780 
12781 	dstate->dtds_hashsize = hashsize;
12782 	dstate->dtds_hash = dstate->dtds_base;
12783 
12784 	/*
12785 	 * Set all of our hash buckets to point to the single sink, and (if
12786 	 * it hasn't already been set), set the sink's hash value to be the
12787 	 * sink sentinel value.  The sink is needed for dynamic variable
12788 	 * lookups to know that they have iterated over an entire, valid hash
12789 	 * chain.
12790 	 */
12791 	for (i = 0; i < hashsize; i++)
12792 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12793 
12794 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12795 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12796 
12797 	/*
12798 	 * Determine number of active CPUs.  Divide free list evenly among
12799 	 * active CPUs.
12800 	 */
12801 	start = (dtrace_dynvar_t *)
12802 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12803 	limit = (uintptr_t)base + size;
12804 
12805 	maxper = (limit - (uintptr_t)start) / NCPU;
12806 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12807 
12808 #if !defined(sun)
12809 	CPU_FOREACH(i) {
12810 #else
12811 	for (i = 0; i < NCPU; i++) {
12812 #endif
12813 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12814 
12815 		/*
12816 		 * If we don't even have enough chunks to make it once through
12817 		 * NCPUs, we're just going to allocate everything to the first
12818 		 * CPU.  And if we're on the last CPU, we're going to allocate
12819 		 * whatever is left over.  In either case, we set the limit to
12820 		 * be the limit of the dynamic variable space.
12821 		 */
12822 		if (maxper == 0 || i == NCPU - 1) {
12823 			limit = (uintptr_t)base + size;
12824 			start = NULL;
12825 		} else {
12826 			limit = (uintptr_t)start + maxper;
12827 			start = (dtrace_dynvar_t *)limit;
12828 		}
12829 
12830 		ASSERT(limit <= (uintptr_t)base + size);
12831 
12832 		for (;;) {
12833 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12834 			    dstate->dtds_chunksize);
12835 
12836 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
12837 				break;
12838 
12839 			dvar->dtdv_next = next;
12840 			dvar = next;
12841 		}
12842 
12843 		if (maxper == 0)
12844 			break;
12845 	}
12846 
12847 	return (0);
12848 }
12849 
12850 static void
12851 dtrace_dstate_fini(dtrace_dstate_t *dstate)
12852 {
12853 	ASSERT(MUTEX_HELD(&cpu_lock));
12854 
12855 	if (dstate->dtds_base == NULL)
12856 		return;
12857 
12858 	kmem_free(dstate->dtds_base, dstate->dtds_size);
12859 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
12860 }
12861 
12862 static void
12863 dtrace_vstate_fini(dtrace_vstate_t *vstate)
12864 {
12865 	/*
12866 	 * Logical XOR, where are you?
12867 	 */
12868 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
12869 
12870 	if (vstate->dtvs_nglobals > 0) {
12871 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
12872 		    sizeof (dtrace_statvar_t *));
12873 	}
12874 
12875 	if (vstate->dtvs_ntlocals > 0) {
12876 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
12877 		    sizeof (dtrace_difv_t));
12878 	}
12879 
12880 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
12881 
12882 	if (vstate->dtvs_nlocals > 0) {
12883 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
12884 		    sizeof (dtrace_statvar_t *));
12885 	}
12886 }
12887 
12888 #if defined(sun)
12889 static void
12890 dtrace_state_clean(dtrace_state_t *state)
12891 {
12892 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12893 		return;
12894 
12895 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12896 	dtrace_speculation_clean(state);
12897 }
12898 
12899 static void
12900 dtrace_state_deadman(dtrace_state_t *state)
12901 {
12902 	hrtime_t now;
12903 
12904 	dtrace_sync();
12905 
12906 	now = dtrace_gethrtime();
12907 
12908 	if (state != dtrace_anon.dta_state &&
12909 	    now - state->dts_laststatus >= dtrace_deadman_user)
12910 		return;
12911 
12912 	/*
12913 	 * We must be sure that dts_alive never appears to be less than the
12914 	 * value upon entry to dtrace_state_deadman(), and because we lack a
12915 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12916 	 * store INT64_MAX to it, followed by a memory barrier, followed by
12917 	 * the new value.  This assures that dts_alive never appears to be
12918 	 * less than its true value, regardless of the order in which the
12919 	 * stores to the underlying storage are issued.
12920 	 */
12921 	state->dts_alive = INT64_MAX;
12922 	dtrace_membar_producer();
12923 	state->dts_alive = now;
12924 }
12925 #else
12926 static void
12927 dtrace_state_clean(void *arg)
12928 {
12929 	dtrace_state_t *state = arg;
12930 	dtrace_optval_t *opt = state->dts_options;
12931 
12932 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
12933 		return;
12934 
12935 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
12936 	dtrace_speculation_clean(state);
12937 
12938 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
12939 	    dtrace_state_clean, state);
12940 }
12941 
12942 static void
12943 dtrace_state_deadman(void *arg)
12944 {
12945 	dtrace_state_t *state = arg;
12946 	hrtime_t now;
12947 
12948 	dtrace_sync();
12949 
12950 	dtrace_debug_output();
12951 
12952 	now = dtrace_gethrtime();
12953 
12954 	if (state != dtrace_anon.dta_state &&
12955 	    now - state->dts_laststatus >= dtrace_deadman_user)
12956 		return;
12957 
12958 	/*
12959 	 * We must be sure that dts_alive never appears to be less than the
12960 	 * value upon entry to dtrace_state_deadman(), and because we lack a
12961 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
12962 	 * store INT64_MAX to it, followed by a memory barrier, followed by
12963 	 * the new value.  This assures that dts_alive never appears to be
12964 	 * less than its true value, regardless of the order in which the
12965 	 * stores to the underlying storage are issued.
12966 	 */
12967 	state->dts_alive = INT64_MAX;
12968 	dtrace_membar_producer();
12969 	state->dts_alive = now;
12970 
12971 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
12972 	    dtrace_state_deadman, state);
12973 }
12974 #endif
12975 
12976 static dtrace_state_t *
12977 #if defined(sun)
12978 dtrace_state_create(dev_t *devp, cred_t *cr)
12979 #else
12980 dtrace_state_create(struct cdev *dev)
12981 #endif
12982 {
12983 #if defined(sun)
12984 	minor_t minor;
12985 	major_t major;
12986 #else
12987 	cred_t *cr = NULL;
12988 	int m = 0;
12989 #endif
12990 	char c[30];
12991 	dtrace_state_t *state;
12992 	dtrace_optval_t *opt;
12993 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
12994 
12995 	ASSERT(MUTEX_HELD(&dtrace_lock));
12996 	ASSERT(MUTEX_HELD(&cpu_lock));
12997 
12998 #if defined(sun)
12999 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13000 	    VM_BESTFIT | VM_SLEEP);
13001 
13002 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13003 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13004 		return (NULL);
13005 	}
13006 
13007 	state = ddi_get_soft_state(dtrace_softstate, minor);
13008 #else
13009 	if (dev != NULL) {
13010 		cr = dev->si_cred;
13011 		m = dev2unit(dev);
13012 		}
13013 
13014 	/* Allocate memory for the state. */
13015 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13016 #endif
13017 
13018 	state->dts_epid = DTRACE_EPIDNONE + 1;
13019 
13020 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13021 #if defined(sun)
13022 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13023 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13024 
13025 	if (devp != NULL) {
13026 		major = getemajor(*devp);
13027 	} else {
13028 		major = ddi_driver_major(dtrace_devi);
13029 	}
13030 
13031 	state->dts_dev = makedevice(major, minor);
13032 
13033 	if (devp != NULL)
13034 		*devp = state->dts_dev;
13035 #else
13036 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13037 	state->dts_dev = dev;
13038 #endif
13039 
13040 	/*
13041 	 * We allocate NCPU buffers.  On the one hand, this can be quite
13042 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
13043 	 * other hand, it saves an additional memory reference in the probe
13044 	 * path.
13045 	 */
13046 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13047 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13048 
13049 #if defined(sun)
13050 	state->dts_cleaner = CYCLIC_NONE;
13051 	state->dts_deadman = CYCLIC_NONE;
13052 #else
13053 	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13054 	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13055 #endif
13056 	state->dts_vstate.dtvs_state = state;
13057 
13058 	for (i = 0; i < DTRACEOPT_MAX; i++)
13059 		state->dts_options[i] = DTRACEOPT_UNSET;
13060 
13061 	/*
13062 	 * Set the default options.
13063 	 */
13064 	opt = state->dts_options;
13065 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13066 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13067 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13068 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13069 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13070 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13071 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13072 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13073 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13074 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13075 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13076 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13077 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13078 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13079 
13080 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13081 
13082 	/*
13083 	 * Depending on the user credentials, we set flag bits which alter probe
13084 	 * visibility or the amount of destructiveness allowed.  In the case of
13085 	 * actual anonymous tracing, or the possession of all privileges, all of
13086 	 * the normal checks are bypassed.
13087 	 */
13088 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13089 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13090 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13091 	} else {
13092 		/*
13093 		 * Set up the credentials for this instantiation.  We take a
13094 		 * hold on the credential to prevent it from disappearing on
13095 		 * us; this in turn prevents the zone_t referenced by this
13096 		 * credential from disappearing.  This means that we can
13097 		 * examine the credential and the zone from probe context.
13098 		 */
13099 		crhold(cr);
13100 		state->dts_cred.dcr_cred = cr;
13101 
13102 		/*
13103 		 * CRA_PROC means "we have *some* privilege for dtrace" and
13104 		 * unlocks the use of variables like pid, zonename, etc.
13105 		 */
13106 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13107 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13108 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13109 		}
13110 
13111 		/*
13112 		 * dtrace_user allows use of syscall and profile providers.
13113 		 * If the user also has proc_owner and/or proc_zone, we
13114 		 * extend the scope to include additional visibility and
13115 		 * destructive power.
13116 		 */
13117 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13118 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13119 				state->dts_cred.dcr_visible |=
13120 				    DTRACE_CRV_ALLPROC;
13121 
13122 				state->dts_cred.dcr_action |=
13123 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13124 			}
13125 
13126 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13127 				state->dts_cred.dcr_visible |=
13128 				    DTRACE_CRV_ALLZONE;
13129 
13130 				state->dts_cred.dcr_action |=
13131 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13132 			}
13133 
13134 			/*
13135 			 * If we have all privs in whatever zone this is,
13136 			 * we can do destructive things to processes which
13137 			 * have altered credentials.
13138 			 */
13139 #if defined(sun)
13140 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13141 			    cr->cr_zone->zone_privset)) {
13142 				state->dts_cred.dcr_action |=
13143 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13144 			}
13145 #endif
13146 		}
13147 
13148 		/*
13149 		 * Holding the dtrace_kernel privilege also implies that
13150 		 * the user has the dtrace_user privilege from a visibility
13151 		 * perspective.  But without further privileges, some
13152 		 * destructive actions are not available.
13153 		 */
13154 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13155 			/*
13156 			 * Make all probes in all zones visible.  However,
13157 			 * this doesn't mean that all actions become available
13158 			 * to all zones.
13159 			 */
13160 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13161 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13162 
13163 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13164 			    DTRACE_CRA_PROC;
13165 			/*
13166 			 * Holding proc_owner means that destructive actions
13167 			 * for *this* zone are allowed.
13168 			 */
13169 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13170 				state->dts_cred.dcr_action |=
13171 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13172 
13173 			/*
13174 			 * Holding proc_zone means that destructive actions
13175 			 * for this user/group ID in all zones is allowed.
13176 			 */
13177 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13178 				state->dts_cred.dcr_action |=
13179 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13180 
13181 #if defined(sun)
13182 			/*
13183 			 * If we have all privs in whatever zone this is,
13184 			 * we can do destructive things to processes which
13185 			 * have altered credentials.
13186 			 */
13187 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13188 			    cr->cr_zone->zone_privset)) {
13189 				state->dts_cred.dcr_action |=
13190 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13191 			}
13192 #endif
13193 		}
13194 
13195 		/*
13196 		 * Holding the dtrace_proc privilege gives control over fasttrap
13197 		 * and pid providers.  We need to grant wider destructive
13198 		 * privileges in the event that the user has proc_owner and/or
13199 		 * proc_zone.
13200 		 */
13201 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13202 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13203 				state->dts_cred.dcr_action |=
13204 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13205 
13206 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13207 				state->dts_cred.dcr_action |=
13208 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13209 		}
13210 	}
13211 
13212 	return (state);
13213 }
13214 
13215 static int
13216 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13217 {
13218 	dtrace_optval_t *opt = state->dts_options, size;
13219 	processorid_t cpu = 0;;
13220 	int flags = 0, rval;
13221 
13222 	ASSERT(MUTEX_HELD(&dtrace_lock));
13223 	ASSERT(MUTEX_HELD(&cpu_lock));
13224 	ASSERT(which < DTRACEOPT_MAX);
13225 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13226 	    (state == dtrace_anon.dta_state &&
13227 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13228 
13229 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13230 		return (0);
13231 
13232 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13233 		cpu = opt[DTRACEOPT_CPU];
13234 
13235 	if (which == DTRACEOPT_SPECSIZE)
13236 		flags |= DTRACEBUF_NOSWITCH;
13237 
13238 	if (which == DTRACEOPT_BUFSIZE) {
13239 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13240 			flags |= DTRACEBUF_RING;
13241 
13242 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13243 			flags |= DTRACEBUF_FILL;
13244 
13245 		if (state != dtrace_anon.dta_state ||
13246 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13247 			flags |= DTRACEBUF_INACTIVE;
13248 	}
13249 
13250 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13251 		/*
13252 		 * The size must be 8-byte aligned.  If the size is not 8-byte
13253 		 * aligned, drop it down by the difference.
13254 		 */
13255 		if (size & (sizeof (uint64_t) - 1))
13256 			size -= size & (sizeof (uint64_t) - 1);
13257 
13258 		if (size < state->dts_reserve) {
13259 			/*
13260 			 * Buffers always must be large enough to accommodate
13261 			 * their prereserved space.  We return E2BIG instead
13262 			 * of ENOMEM in this case to allow for user-level
13263 			 * software to differentiate the cases.
13264 			 */
13265 			return (E2BIG);
13266 		}
13267 
13268 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13269 
13270 		if (rval != ENOMEM) {
13271 			opt[which] = size;
13272 			return (rval);
13273 		}
13274 
13275 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13276 			return (rval);
13277 	}
13278 
13279 	return (ENOMEM);
13280 }
13281 
13282 static int
13283 dtrace_state_buffers(dtrace_state_t *state)
13284 {
13285 	dtrace_speculation_t *spec = state->dts_speculations;
13286 	int rval, i;
13287 
13288 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13289 	    DTRACEOPT_BUFSIZE)) != 0)
13290 		return (rval);
13291 
13292 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13293 	    DTRACEOPT_AGGSIZE)) != 0)
13294 		return (rval);
13295 
13296 	for (i = 0; i < state->dts_nspeculations; i++) {
13297 		if ((rval = dtrace_state_buffer(state,
13298 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13299 			return (rval);
13300 	}
13301 
13302 	return (0);
13303 }
13304 
13305 static void
13306 dtrace_state_prereserve(dtrace_state_t *state)
13307 {
13308 	dtrace_ecb_t *ecb;
13309 	dtrace_probe_t *probe;
13310 
13311 	state->dts_reserve = 0;
13312 
13313 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13314 		return;
13315 
13316 	/*
13317 	 * If our buffer policy is a "fill" buffer policy, we need to set the
13318 	 * prereserved space to be the space required by the END probes.
13319 	 */
13320 	probe = dtrace_probes[dtrace_probeid_end - 1];
13321 	ASSERT(probe != NULL);
13322 
13323 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13324 		if (ecb->dte_state != state)
13325 			continue;
13326 
13327 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13328 	}
13329 }
13330 
13331 static int
13332 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13333 {
13334 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13335 	dtrace_speculation_t *spec;
13336 	dtrace_buffer_t *buf;
13337 #if defined(sun)
13338 	cyc_handler_t hdlr;
13339 	cyc_time_t when;
13340 #endif
13341 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13342 	dtrace_icookie_t cookie;
13343 
13344 	mutex_enter(&cpu_lock);
13345 	mutex_enter(&dtrace_lock);
13346 
13347 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13348 		rval = EBUSY;
13349 		goto out;
13350 	}
13351 
13352 	/*
13353 	 * Before we can perform any checks, we must prime all of the
13354 	 * retained enablings that correspond to this state.
13355 	 */
13356 	dtrace_enabling_prime(state);
13357 
13358 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13359 		rval = EACCES;
13360 		goto out;
13361 	}
13362 
13363 	dtrace_state_prereserve(state);
13364 
13365 	/*
13366 	 * Now we want to do is try to allocate our speculations.
13367 	 * We do not automatically resize the number of speculations; if
13368 	 * this fails, we will fail the operation.
13369 	 */
13370 	nspec = opt[DTRACEOPT_NSPEC];
13371 	ASSERT(nspec != DTRACEOPT_UNSET);
13372 
13373 	if (nspec > INT_MAX) {
13374 		rval = ENOMEM;
13375 		goto out;
13376 	}
13377 
13378 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13379 
13380 	if (spec == NULL) {
13381 		rval = ENOMEM;
13382 		goto out;
13383 	}
13384 
13385 	state->dts_speculations = spec;
13386 	state->dts_nspeculations = (int)nspec;
13387 
13388 	for (i = 0; i < nspec; i++) {
13389 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13390 			rval = ENOMEM;
13391 			goto err;
13392 		}
13393 
13394 		spec[i].dtsp_buffer = buf;
13395 	}
13396 
13397 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13398 		if (dtrace_anon.dta_state == NULL) {
13399 			rval = ENOENT;
13400 			goto out;
13401 		}
13402 
13403 		if (state->dts_necbs != 0) {
13404 			rval = EALREADY;
13405 			goto out;
13406 		}
13407 
13408 		state->dts_anon = dtrace_anon_grab();
13409 		ASSERT(state->dts_anon != NULL);
13410 		state = state->dts_anon;
13411 
13412 		/*
13413 		 * We want "grabanon" to be set in the grabbed state, so we'll
13414 		 * copy that option value from the grabbing state into the
13415 		 * grabbed state.
13416 		 */
13417 		state->dts_options[DTRACEOPT_GRABANON] =
13418 		    opt[DTRACEOPT_GRABANON];
13419 
13420 		*cpu = dtrace_anon.dta_beganon;
13421 
13422 		/*
13423 		 * If the anonymous state is active (as it almost certainly
13424 		 * is if the anonymous enabling ultimately matched anything),
13425 		 * we don't allow any further option processing -- but we
13426 		 * don't return failure.
13427 		 */
13428 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13429 			goto out;
13430 	}
13431 
13432 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13433 	    opt[DTRACEOPT_AGGSIZE] != 0) {
13434 		if (state->dts_aggregations == NULL) {
13435 			/*
13436 			 * We're not going to create an aggregation buffer
13437 			 * because we don't have any ECBs that contain
13438 			 * aggregations -- set this option to 0.
13439 			 */
13440 			opt[DTRACEOPT_AGGSIZE] = 0;
13441 		} else {
13442 			/*
13443 			 * If we have an aggregation buffer, we must also have
13444 			 * a buffer to use as scratch.
13445 			 */
13446 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13447 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13448 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13449 			}
13450 		}
13451 	}
13452 
13453 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13454 	    opt[DTRACEOPT_SPECSIZE] != 0) {
13455 		if (!state->dts_speculates) {
13456 			/*
13457 			 * We're not going to create speculation buffers
13458 			 * because we don't have any ECBs that actually
13459 			 * speculate -- set the speculation size to 0.
13460 			 */
13461 			opt[DTRACEOPT_SPECSIZE] = 0;
13462 		}
13463 	}
13464 
13465 	/*
13466 	 * The bare minimum size for any buffer that we're actually going to
13467 	 * do anything to is sizeof (uint64_t).
13468 	 */
13469 	sz = sizeof (uint64_t);
13470 
13471 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13472 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13473 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13474 		/*
13475 		 * A buffer size has been explicitly set to 0 (or to a size
13476 		 * that will be adjusted to 0) and we need the space -- we
13477 		 * need to return failure.  We return ENOSPC to differentiate
13478 		 * it from failing to allocate a buffer due to failure to meet
13479 		 * the reserve (for which we return E2BIG).
13480 		 */
13481 		rval = ENOSPC;
13482 		goto out;
13483 	}
13484 
13485 	if ((rval = dtrace_state_buffers(state)) != 0)
13486 		goto err;
13487 
13488 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13489 		sz = dtrace_dstate_defsize;
13490 
13491 	do {
13492 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13493 
13494 		if (rval == 0)
13495 			break;
13496 
13497 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13498 			goto err;
13499 	} while (sz >>= 1);
13500 
13501 	opt[DTRACEOPT_DYNVARSIZE] = sz;
13502 
13503 	if (rval != 0)
13504 		goto err;
13505 
13506 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13507 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13508 
13509 	if (opt[DTRACEOPT_CLEANRATE] == 0)
13510 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13511 
13512 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13513 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13514 
13515 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13516 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13517 
13518 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13519 #if defined(sun)
13520 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13521 	hdlr.cyh_arg = state;
13522 	hdlr.cyh_level = CY_LOW_LEVEL;
13523 
13524 	when.cyt_when = 0;
13525 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13526 
13527 	state->dts_cleaner = cyclic_add(&hdlr, &when);
13528 
13529 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13530 	hdlr.cyh_arg = state;
13531 	hdlr.cyh_level = CY_LOW_LEVEL;
13532 
13533 	when.cyt_when = 0;
13534 	when.cyt_interval = dtrace_deadman_interval;
13535 
13536 	state->dts_deadman = cyclic_add(&hdlr, &when);
13537 #else
13538 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13539 	    dtrace_state_clean, state);
13540 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13541 	    dtrace_state_deadman, state);
13542 #endif
13543 
13544 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13545 
13546 	/*
13547 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13548 	 * interrupts here both to record the CPU on which we fired the BEGIN
13549 	 * probe (the data from this CPU will be processed first at user
13550 	 * level) and to manually activate the buffer for this CPU.
13551 	 */
13552 	cookie = dtrace_interrupt_disable();
13553 	*cpu = curcpu;
13554 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13555 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13556 
13557 	dtrace_probe(dtrace_probeid_begin,
13558 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13559 	dtrace_interrupt_enable(cookie);
13560 	/*
13561 	 * We may have had an exit action from a BEGIN probe; only change our
13562 	 * state to ACTIVE if we're still in WARMUP.
13563 	 */
13564 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13565 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13566 
13567 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13568 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13569 
13570 	/*
13571 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13572 	 * want each CPU to transition its principal buffer out of the
13573 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13574 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13575 	 * atomically transition from processing none of a state's ECBs to
13576 	 * processing all of them.
13577 	 */
13578 	dtrace_xcall(DTRACE_CPUALL,
13579 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13580 	goto out;
13581 
13582 err:
13583 	dtrace_buffer_free(state->dts_buffer);
13584 	dtrace_buffer_free(state->dts_aggbuffer);
13585 
13586 	if ((nspec = state->dts_nspeculations) == 0) {
13587 		ASSERT(state->dts_speculations == NULL);
13588 		goto out;
13589 	}
13590 
13591 	spec = state->dts_speculations;
13592 	ASSERT(spec != NULL);
13593 
13594 	for (i = 0; i < state->dts_nspeculations; i++) {
13595 		if ((buf = spec[i].dtsp_buffer) == NULL)
13596 			break;
13597 
13598 		dtrace_buffer_free(buf);
13599 		kmem_free(buf, bufsize);
13600 	}
13601 
13602 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13603 	state->dts_nspeculations = 0;
13604 	state->dts_speculations = NULL;
13605 
13606 out:
13607 	mutex_exit(&dtrace_lock);
13608 	mutex_exit(&cpu_lock);
13609 
13610 	return (rval);
13611 }
13612 
13613 static int
13614 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13615 {
13616 	dtrace_icookie_t cookie;
13617 
13618 	ASSERT(MUTEX_HELD(&dtrace_lock));
13619 
13620 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13621 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13622 		return (EINVAL);
13623 
13624 	/*
13625 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13626 	 * to be sure that every CPU has seen it.  See below for the details
13627 	 * on why this is done.
13628 	 */
13629 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13630 	dtrace_sync();
13631 
13632 	/*
13633 	 * By this point, it is impossible for any CPU to be still processing
13634 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13635 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13636 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13637 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13638 	 * iff we're in the END probe.
13639 	 */
13640 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13641 	dtrace_sync();
13642 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13643 
13644 	/*
13645 	 * Finally, we can release the reserve and call the END probe.  We
13646 	 * disable interrupts across calling the END probe to allow us to
13647 	 * return the CPU on which we actually called the END probe.  This
13648 	 * allows user-land to be sure that this CPU's principal buffer is
13649 	 * processed last.
13650 	 */
13651 	state->dts_reserve = 0;
13652 
13653 	cookie = dtrace_interrupt_disable();
13654 	*cpu = curcpu;
13655 	dtrace_probe(dtrace_probeid_end,
13656 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13657 	dtrace_interrupt_enable(cookie);
13658 
13659 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13660 	dtrace_sync();
13661 
13662 	return (0);
13663 }
13664 
13665 static int
13666 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13667     dtrace_optval_t val)
13668 {
13669 	ASSERT(MUTEX_HELD(&dtrace_lock));
13670 
13671 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13672 		return (EBUSY);
13673 
13674 	if (option >= DTRACEOPT_MAX)
13675 		return (EINVAL);
13676 
13677 	if (option != DTRACEOPT_CPU && val < 0)
13678 		return (EINVAL);
13679 
13680 	switch (option) {
13681 	case DTRACEOPT_DESTRUCTIVE:
13682 		if (dtrace_destructive_disallow)
13683 			return (EACCES);
13684 
13685 		state->dts_cred.dcr_destructive = 1;
13686 		break;
13687 
13688 	case DTRACEOPT_BUFSIZE:
13689 	case DTRACEOPT_DYNVARSIZE:
13690 	case DTRACEOPT_AGGSIZE:
13691 	case DTRACEOPT_SPECSIZE:
13692 	case DTRACEOPT_STRSIZE:
13693 		if (val < 0)
13694 			return (EINVAL);
13695 
13696 		if (val >= LONG_MAX) {
13697 			/*
13698 			 * If this is an otherwise negative value, set it to
13699 			 * the highest multiple of 128m less than LONG_MAX.
13700 			 * Technically, we're adjusting the size without
13701 			 * regard to the buffer resizing policy, but in fact,
13702 			 * this has no effect -- if we set the buffer size to
13703 			 * ~LONG_MAX and the buffer policy is ultimately set to
13704 			 * be "manual", the buffer allocation is guaranteed to
13705 			 * fail, if only because the allocation requires two
13706 			 * buffers.  (We set the the size to the highest
13707 			 * multiple of 128m because it ensures that the size
13708 			 * will remain a multiple of a megabyte when
13709 			 * repeatedly halved -- all the way down to 15m.)
13710 			 */
13711 			val = LONG_MAX - (1 << 27) + 1;
13712 		}
13713 	}
13714 
13715 	state->dts_options[option] = val;
13716 
13717 	return (0);
13718 }
13719 
13720 static void
13721 dtrace_state_destroy(dtrace_state_t *state)
13722 {
13723 	dtrace_ecb_t *ecb;
13724 	dtrace_vstate_t *vstate = &state->dts_vstate;
13725 #if defined(sun)
13726 	minor_t minor = getminor(state->dts_dev);
13727 #endif
13728 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13729 	dtrace_speculation_t *spec = state->dts_speculations;
13730 	int nspec = state->dts_nspeculations;
13731 	uint32_t match;
13732 
13733 	ASSERT(MUTEX_HELD(&dtrace_lock));
13734 	ASSERT(MUTEX_HELD(&cpu_lock));
13735 
13736 	/*
13737 	 * First, retract any retained enablings for this state.
13738 	 */
13739 	dtrace_enabling_retract(state);
13740 	ASSERT(state->dts_nretained == 0);
13741 
13742 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13743 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13744 		/*
13745 		 * We have managed to come into dtrace_state_destroy() on a
13746 		 * hot enabling -- almost certainly because of a disorderly
13747 		 * shutdown of a consumer.  (That is, a consumer that is
13748 		 * exiting without having called dtrace_stop().) In this case,
13749 		 * we're going to set our activity to be KILLED, and then
13750 		 * issue a sync to be sure that everyone is out of probe
13751 		 * context before we start blowing away ECBs.
13752 		 */
13753 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13754 		dtrace_sync();
13755 	}
13756 
13757 	/*
13758 	 * Release the credential hold we took in dtrace_state_create().
13759 	 */
13760 	if (state->dts_cred.dcr_cred != NULL)
13761 		crfree(state->dts_cred.dcr_cred);
13762 
13763 	/*
13764 	 * Now we can safely disable and destroy any enabled probes.  Because
13765 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13766 	 * (especially if they're all enabled), we take two passes through the
13767 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13768 	 * in the second we disable whatever is left over.
13769 	 */
13770 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13771 		for (i = 0; i < state->dts_necbs; i++) {
13772 			if ((ecb = state->dts_ecbs[i]) == NULL)
13773 				continue;
13774 
13775 			if (match && ecb->dte_probe != NULL) {
13776 				dtrace_probe_t *probe = ecb->dte_probe;
13777 				dtrace_provider_t *prov = probe->dtpr_provider;
13778 
13779 				if (!(prov->dtpv_priv.dtpp_flags & match))
13780 					continue;
13781 			}
13782 
13783 			dtrace_ecb_disable(ecb);
13784 			dtrace_ecb_destroy(ecb);
13785 		}
13786 
13787 		if (!match)
13788 			break;
13789 	}
13790 
13791 	/*
13792 	 * Before we free the buffers, perform one more sync to assure that
13793 	 * every CPU is out of probe context.
13794 	 */
13795 	dtrace_sync();
13796 
13797 	dtrace_buffer_free(state->dts_buffer);
13798 	dtrace_buffer_free(state->dts_aggbuffer);
13799 
13800 	for (i = 0; i < nspec; i++)
13801 		dtrace_buffer_free(spec[i].dtsp_buffer);
13802 
13803 #if defined(sun)
13804 	if (state->dts_cleaner != CYCLIC_NONE)
13805 		cyclic_remove(state->dts_cleaner);
13806 
13807 	if (state->dts_deadman != CYCLIC_NONE)
13808 		cyclic_remove(state->dts_deadman);
13809 #else
13810 	callout_stop(&state->dts_cleaner);
13811 	callout_drain(&state->dts_cleaner);
13812 	callout_stop(&state->dts_deadman);
13813 	callout_drain(&state->dts_deadman);
13814 #endif
13815 
13816 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13817 	dtrace_vstate_fini(vstate);
13818 	if (state->dts_ecbs != NULL)
13819 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13820 
13821 	if (state->dts_aggregations != NULL) {
13822 #ifdef DEBUG
13823 		for (i = 0; i < state->dts_naggregations; i++)
13824 			ASSERT(state->dts_aggregations[i] == NULL);
13825 #endif
13826 		ASSERT(state->dts_naggregations > 0);
13827 		kmem_free(state->dts_aggregations,
13828 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13829 	}
13830 
13831 	kmem_free(state->dts_buffer, bufsize);
13832 	kmem_free(state->dts_aggbuffer, bufsize);
13833 
13834 	for (i = 0; i < nspec; i++)
13835 		kmem_free(spec[i].dtsp_buffer, bufsize);
13836 
13837 	if (spec != NULL)
13838 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13839 
13840 	dtrace_format_destroy(state);
13841 
13842 	if (state->dts_aggid_arena != NULL) {
13843 #if defined(sun)
13844 		vmem_destroy(state->dts_aggid_arena);
13845 #else
13846 		delete_unrhdr(state->dts_aggid_arena);
13847 #endif
13848 		state->dts_aggid_arena = NULL;
13849 	}
13850 #if defined(sun)
13851 	ddi_soft_state_free(dtrace_softstate, minor);
13852 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13853 #endif
13854 }
13855 
13856 /*
13857  * DTrace Anonymous Enabling Functions
13858  */
13859 static dtrace_state_t *
13860 dtrace_anon_grab(void)
13861 {
13862 	dtrace_state_t *state;
13863 
13864 	ASSERT(MUTEX_HELD(&dtrace_lock));
13865 
13866 	if ((state = dtrace_anon.dta_state) == NULL) {
13867 		ASSERT(dtrace_anon.dta_enabling == NULL);
13868 		return (NULL);
13869 	}
13870 
13871 	ASSERT(dtrace_anon.dta_enabling != NULL);
13872 	ASSERT(dtrace_retained != NULL);
13873 
13874 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
13875 	dtrace_anon.dta_enabling = NULL;
13876 	dtrace_anon.dta_state = NULL;
13877 
13878 	return (state);
13879 }
13880 
13881 static void
13882 dtrace_anon_property(void)
13883 {
13884 	int i, rv;
13885 	dtrace_state_t *state;
13886 	dof_hdr_t *dof;
13887 	char c[32];		/* enough for "dof-data-" + digits */
13888 
13889 	ASSERT(MUTEX_HELD(&dtrace_lock));
13890 	ASSERT(MUTEX_HELD(&cpu_lock));
13891 
13892 	for (i = 0; ; i++) {
13893 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
13894 
13895 		dtrace_err_verbose = 1;
13896 
13897 		if ((dof = dtrace_dof_property(c)) == NULL) {
13898 			dtrace_err_verbose = 0;
13899 			break;
13900 		}
13901 
13902 #if defined(sun)
13903 		/*
13904 		 * We want to create anonymous state, so we need to transition
13905 		 * the kernel debugger to indicate that DTrace is active.  If
13906 		 * this fails (e.g. because the debugger has modified text in
13907 		 * some way), we won't continue with the processing.
13908 		 */
13909 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
13910 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
13911 			    "enabling ignored.");
13912 			dtrace_dof_destroy(dof);
13913 			break;
13914 		}
13915 #endif
13916 
13917 		/*
13918 		 * If we haven't allocated an anonymous state, we'll do so now.
13919 		 */
13920 		if ((state = dtrace_anon.dta_state) == NULL) {
13921 #if defined(sun)
13922 			state = dtrace_state_create(NULL, NULL);
13923 #else
13924 			state = dtrace_state_create(NULL);
13925 #endif
13926 			dtrace_anon.dta_state = state;
13927 
13928 			if (state == NULL) {
13929 				/*
13930 				 * This basically shouldn't happen:  the only
13931 				 * failure mode from dtrace_state_create() is a
13932 				 * failure of ddi_soft_state_zalloc() that
13933 				 * itself should never happen.  Still, the
13934 				 * interface allows for a failure mode, and
13935 				 * we want to fail as gracefully as possible:
13936 				 * we'll emit an error message and cease
13937 				 * processing anonymous state in this case.
13938 				 */
13939 				cmn_err(CE_WARN, "failed to create "
13940 				    "anonymous state");
13941 				dtrace_dof_destroy(dof);
13942 				break;
13943 			}
13944 		}
13945 
13946 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
13947 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
13948 
13949 		if (rv == 0)
13950 			rv = dtrace_dof_options(dof, state);
13951 
13952 		dtrace_err_verbose = 0;
13953 		dtrace_dof_destroy(dof);
13954 
13955 		if (rv != 0) {
13956 			/*
13957 			 * This is malformed DOF; chuck any anonymous state
13958 			 * that we created.
13959 			 */
13960 			ASSERT(dtrace_anon.dta_enabling == NULL);
13961 			dtrace_state_destroy(state);
13962 			dtrace_anon.dta_state = NULL;
13963 			break;
13964 		}
13965 
13966 		ASSERT(dtrace_anon.dta_enabling != NULL);
13967 	}
13968 
13969 	if (dtrace_anon.dta_enabling != NULL) {
13970 		int rval;
13971 
13972 		/*
13973 		 * dtrace_enabling_retain() can only fail because we are
13974 		 * trying to retain more enablings than are allowed -- but
13975 		 * we only have one anonymous enabling, and we are guaranteed
13976 		 * to be allowed at least one retained enabling; we assert
13977 		 * that dtrace_enabling_retain() returns success.
13978 		 */
13979 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
13980 		ASSERT(rval == 0);
13981 
13982 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
13983 	}
13984 }
13985 
13986 /*
13987  * DTrace Helper Functions
13988  */
13989 static void
13990 dtrace_helper_trace(dtrace_helper_action_t *helper,
13991     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
13992 {
13993 	uint32_t size, next, nnext, i;
13994 	dtrace_helptrace_t *ent;
13995 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
13996 
13997 	if (!dtrace_helptrace_enabled)
13998 		return;
13999 
14000 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14001 
14002 	/*
14003 	 * What would a tracing framework be without its own tracing
14004 	 * framework?  (Well, a hell of a lot simpler, for starters...)
14005 	 */
14006 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14007 	    sizeof (uint64_t) - sizeof (uint64_t);
14008 
14009 	/*
14010 	 * Iterate until we can allocate a slot in the trace buffer.
14011 	 */
14012 	do {
14013 		next = dtrace_helptrace_next;
14014 
14015 		if (next + size < dtrace_helptrace_bufsize) {
14016 			nnext = next + size;
14017 		} else {
14018 			nnext = size;
14019 		}
14020 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14021 
14022 	/*
14023 	 * We have our slot; fill it in.
14024 	 */
14025 	if (nnext == size)
14026 		next = 0;
14027 
14028 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14029 	ent->dtht_helper = helper;
14030 	ent->dtht_where = where;
14031 	ent->dtht_nlocals = vstate->dtvs_nlocals;
14032 
14033 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14034 	    mstate->dtms_fltoffs : -1;
14035 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14036 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14037 
14038 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
14039 		dtrace_statvar_t *svar;
14040 
14041 		if ((svar = vstate->dtvs_locals[i]) == NULL)
14042 			continue;
14043 
14044 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14045 		ent->dtht_locals[i] =
14046 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14047 	}
14048 }
14049 
14050 static uint64_t
14051 dtrace_helper(int which, dtrace_mstate_t *mstate,
14052     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14053 {
14054 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14055 	uint64_t sarg0 = mstate->dtms_arg[0];
14056 	uint64_t sarg1 = mstate->dtms_arg[1];
14057 	uint64_t rval = 0;
14058 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14059 	dtrace_helper_action_t *helper;
14060 	dtrace_vstate_t *vstate;
14061 	dtrace_difo_t *pred;
14062 	int i, trace = dtrace_helptrace_enabled;
14063 
14064 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14065 
14066 	if (helpers == NULL)
14067 		return (0);
14068 
14069 	if ((helper = helpers->dthps_actions[which]) == NULL)
14070 		return (0);
14071 
14072 	vstate = &helpers->dthps_vstate;
14073 	mstate->dtms_arg[0] = arg0;
14074 	mstate->dtms_arg[1] = arg1;
14075 
14076 	/*
14077 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
14078 	 * we'll call the corresponding actions.  Note that the below calls
14079 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
14080 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14081 	 * the stored DIF offset with its own (which is the desired behavior).
14082 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14083 	 * from machine state; this is okay, too.
14084 	 */
14085 	for (; helper != NULL; helper = helper->dtha_next) {
14086 		if ((pred = helper->dtha_predicate) != NULL) {
14087 			if (trace)
14088 				dtrace_helper_trace(helper, mstate, vstate, 0);
14089 
14090 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14091 				goto next;
14092 
14093 			if (*flags & CPU_DTRACE_FAULT)
14094 				goto err;
14095 		}
14096 
14097 		for (i = 0; i < helper->dtha_nactions; i++) {
14098 			if (trace)
14099 				dtrace_helper_trace(helper,
14100 				    mstate, vstate, i + 1);
14101 
14102 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14103 			    mstate, vstate, state);
14104 
14105 			if (*flags & CPU_DTRACE_FAULT)
14106 				goto err;
14107 		}
14108 
14109 next:
14110 		if (trace)
14111 			dtrace_helper_trace(helper, mstate, vstate,
14112 			    DTRACE_HELPTRACE_NEXT);
14113 	}
14114 
14115 	if (trace)
14116 		dtrace_helper_trace(helper, mstate, vstate,
14117 		    DTRACE_HELPTRACE_DONE);
14118 
14119 	/*
14120 	 * Restore the arg0 that we saved upon entry.
14121 	 */
14122 	mstate->dtms_arg[0] = sarg0;
14123 	mstate->dtms_arg[1] = sarg1;
14124 
14125 	return (rval);
14126 
14127 err:
14128 	if (trace)
14129 		dtrace_helper_trace(helper, mstate, vstate,
14130 		    DTRACE_HELPTRACE_ERR);
14131 
14132 	/*
14133 	 * Restore the arg0 that we saved upon entry.
14134 	 */
14135 	mstate->dtms_arg[0] = sarg0;
14136 	mstate->dtms_arg[1] = sarg1;
14137 
14138 	return (0);
14139 }
14140 
14141 static void
14142 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14143     dtrace_vstate_t *vstate)
14144 {
14145 	int i;
14146 
14147 	if (helper->dtha_predicate != NULL)
14148 		dtrace_difo_release(helper->dtha_predicate, vstate);
14149 
14150 	for (i = 0; i < helper->dtha_nactions; i++) {
14151 		ASSERT(helper->dtha_actions[i] != NULL);
14152 		dtrace_difo_release(helper->dtha_actions[i], vstate);
14153 	}
14154 
14155 	kmem_free(helper->dtha_actions,
14156 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14157 	kmem_free(helper, sizeof (dtrace_helper_action_t));
14158 }
14159 
14160 static int
14161 dtrace_helper_destroygen(int gen)
14162 {
14163 	proc_t *p = curproc;
14164 	dtrace_helpers_t *help = p->p_dtrace_helpers;
14165 	dtrace_vstate_t *vstate;
14166 	int i;
14167 
14168 	ASSERT(MUTEX_HELD(&dtrace_lock));
14169 
14170 	if (help == NULL || gen > help->dthps_generation)
14171 		return (EINVAL);
14172 
14173 	vstate = &help->dthps_vstate;
14174 
14175 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14176 		dtrace_helper_action_t *last = NULL, *h, *next;
14177 
14178 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14179 			next = h->dtha_next;
14180 
14181 			if (h->dtha_generation == gen) {
14182 				if (last != NULL) {
14183 					last->dtha_next = next;
14184 				} else {
14185 					help->dthps_actions[i] = next;
14186 				}
14187 
14188 				dtrace_helper_action_destroy(h, vstate);
14189 			} else {
14190 				last = h;
14191 			}
14192 		}
14193 	}
14194 
14195 	/*
14196 	 * Interate until we've cleared out all helper providers with the
14197 	 * given generation number.
14198 	 */
14199 	for (;;) {
14200 		dtrace_helper_provider_t *prov;
14201 
14202 		/*
14203 		 * Look for a helper provider with the right generation. We
14204 		 * have to start back at the beginning of the list each time
14205 		 * because we drop dtrace_lock. It's unlikely that we'll make
14206 		 * more than two passes.
14207 		 */
14208 		for (i = 0; i < help->dthps_nprovs; i++) {
14209 			prov = help->dthps_provs[i];
14210 
14211 			if (prov->dthp_generation == gen)
14212 				break;
14213 		}
14214 
14215 		/*
14216 		 * If there were no matches, we're done.
14217 		 */
14218 		if (i == help->dthps_nprovs)
14219 			break;
14220 
14221 		/*
14222 		 * Move the last helper provider into this slot.
14223 		 */
14224 		help->dthps_nprovs--;
14225 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14226 		help->dthps_provs[help->dthps_nprovs] = NULL;
14227 
14228 		mutex_exit(&dtrace_lock);
14229 
14230 		/*
14231 		 * If we have a meta provider, remove this helper provider.
14232 		 */
14233 		mutex_enter(&dtrace_meta_lock);
14234 		if (dtrace_meta_pid != NULL) {
14235 			ASSERT(dtrace_deferred_pid == NULL);
14236 			dtrace_helper_provider_remove(&prov->dthp_prov,
14237 			    p->p_pid);
14238 		}
14239 		mutex_exit(&dtrace_meta_lock);
14240 
14241 		dtrace_helper_provider_destroy(prov);
14242 
14243 		mutex_enter(&dtrace_lock);
14244 	}
14245 
14246 	return (0);
14247 }
14248 
14249 static int
14250 dtrace_helper_validate(dtrace_helper_action_t *helper)
14251 {
14252 	int err = 0, i;
14253 	dtrace_difo_t *dp;
14254 
14255 	if ((dp = helper->dtha_predicate) != NULL)
14256 		err += dtrace_difo_validate_helper(dp);
14257 
14258 	for (i = 0; i < helper->dtha_nactions; i++)
14259 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14260 
14261 	return (err == 0);
14262 }
14263 
14264 static int
14265 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14266 {
14267 	dtrace_helpers_t *help;
14268 	dtrace_helper_action_t *helper, *last;
14269 	dtrace_actdesc_t *act;
14270 	dtrace_vstate_t *vstate;
14271 	dtrace_predicate_t *pred;
14272 	int count = 0, nactions = 0, i;
14273 
14274 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14275 		return (EINVAL);
14276 
14277 	help = curproc->p_dtrace_helpers;
14278 	last = help->dthps_actions[which];
14279 	vstate = &help->dthps_vstate;
14280 
14281 	for (count = 0; last != NULL; last = last->dtha_next) {
14282 		count++;
14283 		if (last->dtha_next == NULL)
14284 			break;
14285 	}
14286 
14287 	/*
14288 	 * If we already have dtrace_helper_actions_max helper actions for this
14289 	 * helper action type, we'll refuse to add a new one.
14290 	 */
14291 	if (count >= dtrace_helper_actions_max)
14292 		return (ENOSPC);
14293 
14294 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14295 	helper->dtha_generation = help->dthps_generation;
14296 
14297 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14298 		ASSERT(pred->dtp_difo != NULL);
14299 		dtrace_difo_hold(pred->dtp_difo);
14300 		helper->dtha_predicate = pred->dtp_difo;
14301 	}
14302 
14303 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14304 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14305 			goto err;
14306 
14307 		if (act->dtad_difo == NULL)
14308 			goto err;
14309 
14310 		nactions++;
14311 	}
14312 
14313 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14314 	    (helper->dtha_nactions = nactions), KM_SLEEP);
14315 
14316 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14317 		dtrace_difo_hold(act->dtad_difo);
14318 		helper->dtha_actions[i++] = act->dtad_difo;
14319 	}
14320 
14321 	if (!dtrace_helper_validate(helper))
14322 		goto err;
14323 
14324 	if (last == NULL) {
14325 		help->dthps_actions[which] = helper;
14326 	} else {
14327 		last->dtha_next = helper;
14328 	}
14329 
14330 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14331 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14332 		dtrace_helptrace_next = 0;
14333 	}
14334 
14335 	return (0);
14336 err:
14337 	dtrace_helper_action_destroy(helper, vstate);
14338 	return (EINVAL);
14339 }
14340 
14341 static void
14342 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14343     dof_helper_t *dofhp)
14344 {
14345 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14346 
14347 	mutex_enter(&dtrace_meta_lock);
14348 	mutex_enter(&dtrace_lock);
14349 
14350 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14351 		/*
14352 		 * If the dtrace module is loaded but not attached, or if
14353 		 * there aren't isn't a meta provider registered to deal with
14354 		 * these provider descriptions, we need to postpone creating
14355 		 * the actual providers until later.
14356 		 */
14357 
14358 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14359 		    dtrace_deferred_pid != help) {
14360 			help->dthps_deferred = 1;
14361 			help->dthps_pid = p->p_pid;
14362 			help->dthps_next = dtrace_deferred_pid;
14363 			help->dthps_prev = NULL;
14364 			if (dtrace_deferred_pid != NULL)
14365 				dtrace_deferred_pid->dthps_prev = help;
14366 			dtrace_deferred_pid = help;
14367 		}
14368 
14369 		mutex_exit(&dtrace_lock);
14370 
14371 	} else if (dofhp != NULL) {
14372 		/*
14373 		 * If the dtrace module is loaded and we have a particular
14374 		 * helper provider description, pass that off to the
14375 		 * meta provider.
14376 		 */
14377 
14378 		mutex_exit(&dtrace_lock);
14379 
14380 		dtrace_helper_provide(dofhp, p->p_pid);
14381 
14382 	} else {
14383 		/*
14384 		 * Otherwise, just pass all the helper provider descriptions
14385 		 * off to the meta provider.
14386 		 */
14387 
14388 		int i;
14389 		mutex_exit(&dtrace_lock);
14390 
14391 		for (i = 0; i < help->dthps_nprovs; i++) {
14392 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14393 			    p->p_pid);
14394 		}
14395 	}
14396 
14397 	mutex_exit(&dtrace_meta_lock);
14398 }
14399 
14400 static int
14401 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14402 {
14403 	dtrace_helpers_t *help;
14404 	dtrace_helper_provider_t *hprov, **tmp_provs;
14405 	uint_t tmp_maxprovs, i;
14406 
14407 	ASSERT(MUTEX_HELD(&dtrace_lock));
14408 
14409 	help = curproc->p_dtrace_helpers;
14410 	ASSERT(help != NULL);
14411 
14412 	/*
14413 	 * If we already have dtrace_helper_providers_max helper providers,
14414 	 * we're refuse to add a new one.
14415 	 */
14416 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14417 		return (ENOSPC);
14418 
14419 	/*
14420 	 * Check to make sure this isn't a duplicate.
14421 	 */
14422 	for (i = 0; i < help->dthps_nprovs; i++) {
14423 		if (dofhp->dofhp_addr ==
14424 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14425 			return (EALREADY);
14426 	}
14427 
14428 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14429 	hprov->dthp_prov = *dofhp;
14430 	hprov->dthp_ref = 1;
14431 	hprov->dthp_generation = gen;
14432 
14433 	/*
14434 	 * Allocate a bigger table for helper providers if it's already full.
14435 	 */
14436 	if (help->dthps_maxprovs == help->dthps_nprovs) {
14437 		tmp_maxprovs = help->dthps_maxprovs;
14438 		tmp_provs = help->dthps_provs;
14439 
14440 		if (help->dthps_maxprovs == 0)
14441 			help->dthps_maxprovs = 2;
14442 		else
14443 			help->dthps_maxprovs *= 2;
14444 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14445 			help->dthps_maxprovs = dtrace_helper_providers_max;
14446 
14447 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14448 
14449 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14450 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14451 
14452 		if (tmp_provs != NULL) {
14453 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14454 			    sizeof (dtrace_helper_provider_t *));
14455 			kmem_free(tmp_provs, tmp_maxprovs *
14456 			    sizeof (dtrace_helper_provider_t *));
14457 		}
14458 	}
14459 
14460 	help->dthps_provs[help->dthps_nprovs] = hprov;
14461 	help->dthps_nprovs++;
14462 
14463 	return (0);
14464 }
14465 
14466 static void
14467 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14468 {
14469 	mutex_enter(&dtrace_lock);
14470 
14471 	if (--hprov->dthp_ref == 0) {
14472 		dof_hdr_t *dof;
14473 		mutex_exit(&dtrace_lock);
14474 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14475 		dtrace_dof_destroy(dof);
14476 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14477 	} else {
14478 		mutex_exit(&dtrace_lock);
14479 	}
14480 }
14481 
14482 static int
14483 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14484 {
14485 	uintptr_t daddr = (uintptr_t)dof;
14486 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14487 	dof_provider_t *provider;
14488 	dof_probe_t *probe;
14489 	uint8_t *arg;
14490 	char *strtab, *typestr;
14491 	dof_stridx_t typeidx;
14492 	size_t typesz;
14493 	uint_t nprobes, j, k;
14494 
14495 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14496 
14497 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14498 		dtrace_dof_error(dof, "misaligned section offset");
14499 		return (-1);
14500 	}
14501 
14502 	/*
14503 	 * The section needs to be large enough to contain the DOF provider
14504 	 * structure appropriate for the given version.
14505 	 */
14506 	if (sec->dofs_size <
14507 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14508 	    offsetof(dof_provider_t, dofpv_prenoffs) :
14509 	    sizeof (dof_provider_t))) {
14510 		dtrace_dof_error(dof, "provider section too small");
14511 		return (-1);
14512 	}
14513 
14514 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14515 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14516 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14517 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14518 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14519 
14520 	if (str_sec == NULL || prb_sec == NULL ||
14521 	    arg_sec == NULL || off_sec == NULL)
14522 		return (-1);
14523 
14524 	enoff_sec = NULL;
14525 
14526 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14527 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14528 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14529 	    provider->dofpv_prenoffs)) == NULL)
14530 		return (-1);
14531 
14532 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14533 
14534 	if (provider->dofpv_name >= str_sec->dofs_size ||
14535 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14536 		dtrace_dof_error(dof, "invalid provider name");
14537 		return (-1);
14538 	}
14539 
14540 	if (prb_sec->dofs_entsize == 0 ||
14541 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14542 		dtrace_dof_error(dof, "invalid entry size");
14543 		return (-1);
14544 	}
14545 
14546 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14547 		dtrace_dof_error(dof, "misaligned entry size");
14548 		return (-1);
14549 	}
14550 
14551 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14552 		dtrace_dof_error(dof, "invalid entry size");
14553 		return (-1);
14554 	}
14555 
14556 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14557 		dtrace_dof_error(dof, "misaligned section offset");
14558 		return (-1);
14559 	}
14560 
14561 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14562 		dtrace_dof_error(dof, "invalid entry size");
14563 		return (-1);
14564 	}
14565 
14566 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14567 
14568 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14569 
14570 	/*
14571 	 * Take a pass through the probes to check for errors.
14572 	 */
14573 	for (j = 0; j < nprobes; j++) {
14574 		probe = (dof_probe_t *)(uintptr_t)(daddr +
14575 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14576 
14577 		if (probe->dofpr_func >= str_sec->dofs_size) {
14578 			dtrace_dof_error(dof, "invalid function name");
14579 			return (-1);
14580 		}
14581 
14582 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14583 			dtrace_dof_error(dof, "function name too long");
14584 			return (-1);
14585 		}
14586 
14587 		if (probe->dofpr_name >= str_sec->dofs_size ||
14588 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14589 			dtrace_dof_error(dof, "invalid probe name");
14590 			return (-1);
14591 		}
14592 
14593 		/*
14594 		 * The offset count must not wrap the index, and the offsets
14595 		 * must also not overflow the section's data.
14596 		 */
14597 		if (probe->dofpr_offidx + probe->dofpr_noffs <
14598 		    probe->dofpr_offidx ||
14599 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14600 		    off_sec->dofs_entsize > off_sec->dofs_size) {
14601 			dtrace_dof_error(dof, "invalid probe offset");
14602 			return (-1);
14603 		}
14604 
14605 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14606 			/*
14607 			 * If there's no is-enabled offset section, make sure
14608 			 * there aren't any is-enabled offsets. Otherwise
14609 			 * perform the same checks as for probe offsets
14610 			 * (immediately above).
14611 			 */
14612 			if (enoff_sec == NULL) {
14613 				if (probe->dofpr_enoffidx != 0 ||
14614 				    probe->dofpr_nenoffs != 0) {
14615 					dtrace_dof_error(dof, "is-enabled "
14616 					    "offsets with null section");
14617 					return (-1);
14618 				}
14619 			} else if (probe->dofpr_enoffidx +
14620 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14621 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14622 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14623 				dtrace_dof_error(dof, "invalid is-enabled "
14624 				    "offset");
14625 				return (-1);
14626 			}
14627 
14628 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14629 				dtrace_dof_error(dof, "zero probe and "
14630 				    "is-enabled offsets");
14631 				return (-1);
14632 			}
14633 		} else if (probe->dofpr_noffs == 0) {
14634 			dtrace_dof_error(dof, "zero probe offsets");
14635 			return (-1);
14636 		}
14637 
14638 		if (probe->dofpr_argidx + probe->dofpr_xargc <
14639 		    probe->dofpr_argidx ||
14640 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14641 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14642 			dtrace_dof_error(dof, "invalid args");
14643 			return (-1);
14644 		}
14645 
14646 		typeidx = probe->dofpr_nargv;
14647 		typestr = strtab + probe->dofpr_nargv;
14648 		for (k = 0; k < probe->dofpr_nargc; k++) {
14649 			if (typeidx >= str_sec->dofs_size) {
14650 				dtrace_dof_error(dof, "bad "
14651 				    "native argument type");
14652 				return (-1);
14653 			}
14654 
14655 			typesz = strlen(typestr) + 1;
14656 			if (typesz > DTRACE_ARGTYPELEN) {
14657 				dtrace_dof_error(dof, "native "
14658 				    "argument type too long");
14659 				return (-1);
14660 			}
14661 			typeidx += typesz;
14662 			typestr += typesz;
14663 		}
14664 
14665 		typeidx = probe->dofpr_xargv;
14666 		typestr = strtab + probe->dofpr_xargv;
14667 		for (k = 0; k < probe->dofpr_xargc; k++) {
14668 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14669 				dtrace_dof_error(dof, "bad "
14670 				    "native argument index");
14671 				return (-1);
14672 			}
14673 
14674 			if (typeidx >= str_sec->dofs_size) {
14675 				dtrace_dof_error(dof, "bad "
14676 				    "translated argument type");
14677 				return (-1);
14678 			}
14679 
14680 			typesz = strlen(typestr) + 1;
14681 			if (typesz > DTRACE_ARGTYPELEN) {
14682 				dtrace_dof_error(dof, "translated argument "
14683 				    "type too long");
14684 				return (-1);
14685 			}
14686 
14687 			typeidx += typesz;
14688 			typestr += typesz;
14689 		}
14690 	}
14691 
14692 	return (0);
14693 }
14694 
14695 static int
14696 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14697 {
14698 	dtrace_helpers_t *help;
14699 	dtrace_vstate_t *vstate;
14700 	dtrace_enabling_t *enab = NULL;
14701 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14702 	uintptr_t daddr = (uintptr_t)dof;
14703 
14704 	ASSERT(MUTEX_HELD(&dtrace_lock));
14705 
14706 	if ((help = curproc->p_dtrace_helpers) == NULL)
14707 		help = dtrace_helpers_create(curproc);
14708 
14709 	vstate = &help->dthps_vstate;
14710 
14711 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14712 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14713 		dtrace_dof_destroy(dof);
14714 		return (rv);
14715 	}
14716 
14717 	/*
14718 	 * Look for helper providers and validate their descriptions.
14719 	 */
14720 	if (dhp != NULL) {
14721 		for (i = 0; i < dof->dofh_secnum; i++) {
14722 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14723 			    dof->dofh_secoff + i * dof->dofh_secsize);
14724 
14725 			if (sec->dofs_type != DOF_SECT_PROVIDER)
14726 				continue;
14727 
14728 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14729 				dtrace_enabling_destroy(enab);
14730 				dtrace_dof_destroy(dof);
14731 				return (-1);
14732 			}
14733 
14734 			nprovs++;
14735 		}
14736 	}
14737 
14738 	/*
14739 	 * Now we need to walk through the ECB descriptions in the enabling.
14740 	 */
14741 	for (i = 0; i < enab->dten_ndesc; i++) {
14742 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14743 		dtrace_probedesc_t *desc = &ep->dted_probe;
14744 
14745 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14746 			continue;
14747 
14748 		if (strcmp(desc->dtpd_mod, "helper") != 0)
14749 			continue;
14750 
14751 		if (strcmp(desc->dtpd_func, "ustack") != 0)
14752 			continue;
14753 
14754 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14755 		    ep)) != 0) {
14756 			/*
14757 			 * Adding this helper action failed -- we are now going
14758 			 * to rip out the entire generation and return failure.
14759 			 */
14760 			(void) dtrace_helper_destroygen(help->dthps_generation);
14761 			dtrace_enabling_destroy(enab);
14762 			dtrace_dof_destroy(dof);
14763 			return (-1);
14764 		}
14765 
14766 		nhelpers++;
14767 	}
14768 
14769 	if (nhelpers < enab->dten_ndesc)
14770 		dtrace_dof_error(dof, "unmatched helpers");
14771 
14772 	gen = help->dthps_generation++;
14773 	dtrace_enabling_destroy(enab);
14774 
14775 	if (dhp != NULL && nprovs > 0) {
14776 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14777 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14778 			mutex_exit(&dtrace_lock);
14779 			dtrace_helper_provider_register(curproc, help, dhp);
14780 			mutex_enter(&dtrace_lock);
14781 
14782 			destroy = 0;
14783 		}
14784 	}
14785 
14786 	if (destroy)
14787 		dtrace_dof_destroy(dof);
14788 
14789 	return (gen);
14790 }
14791 
14792 static dtrace_helpers_t *
14793 dtrace_helpers_create(proc_t *p)
14794 {
14795 	dtrace_helpers_t *help;
14796 
14797 	ASSERT(MUTEX_HELD(&dtrace_lock));
14798 	ASSERT(p->p_dtrace_helpers == NULL);
14799 
14800 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14801 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14802 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14803 
14804 	p->p_dtrace_helpers = help;
14805 	dtrace_helpers++;
14806 
14807 	return (help);
14808 }
14809 
14810 #if defined(sun)
14811 static
14812 #endif
14813 void
14814 dtrace_helpers_destroy(proc_t *p)
14815 {
14816 	dtrace_helpers_t *help;
14817 	dtrace_vstate_t *vstate;
14818 #if defined(sun)
14819 	proc_t *p = curproc;
14820 #endif
14821 	int i;
14822 
14823 	mutex_enter(&dtrace_lock);
14824 
14825 	ASSERT(p->p_dtrace_helpers != NULL);
14826 	ASSERT(dtrace_helpers > 0);
14827 
14828 	help = p->p_dtrace_helpers;
14829 	vstate = &help->dthps_vstate;
14830 
14831 	/*
14832 	 * We're now going to lose the help from this process.
14833 	 */
14834 	p->p_dtrace_helpers = NULL;
14835 	dtrace_sync();
14836 
14837 	/*
14838 	 * Destory the helper actions.
14839 	 */
14840 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14841 		dtrace_helper_action_t *h, *next;
14842 
14843 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14844 			next = h->dtha_next;
14845 			dtrace_helper_action_destroy(h, vstate);
14846 			h = next;
14847 		}
14848 	}
14849 
14850 	mutex_exit(&dtrace_lock);
14851 
14852 	/*
14853 	 * Destroy the helper providers.
14854 	 */
14855 	if (help->dthps_maxprovs > 0) {
14856 		mutex_enter(&dtrace_meta_lock);
14857 		if (dtrace_meta_pid != NULL) {
14858 			ASSERT(dtrace_deferred_pid == NULL);
14859 
14860 			for (i = 0; i < help->dthps_nprovs; i++) {
14861 				dtrace_helper_provider_remove(
14862 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
14863 			}
14864 		} else {
14865 			mutex_enter(&dtrace_lock);
14866 			ASSERT(help->dthps_deferred == 0 ||
14867 			    help->dthps_next != NULL ||
14868 			    help->dthps_prev != NULL ||
14869 			    help == dtrace_deferred_pid);
14870 
14871 			/*
14872 			 * Remove the helper from the deferred list.
14873 			 */
14874 			if (help->dthps_next != NULL)
14875 				help->dthps_next->dthps_prev = help->dthps_prev;
14876 			if (help->dthps_prev != NULL)
14877 				help->dthps_prev->dthps_next = help->dthps_next;
14878 			if (dtrace_deferred_pid == help) {
14879 				dtrace_deferred_pid = help->dthps_next;
14880 				ASSERT(help->dthps_prev == NULL);
14881 			}
14882 
14883 			mutex_exit(&dtrace_lock);
14884 		}
14885 
14886 		mutex_exit(&dtrace_meta_lock);
14887 
14888 		for (i = 0; i < help->dthps_nprovs; i++) {
14889 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
14890 		}
14891 
14892 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
14893 		    sizeof (dtrace_helper_provider_t *));
14894 	}
14895 
14896 	mutex_enter(&dtrace_lock);
14897 
14898 	dtrace_vstate_fini(&help->dthps_vstate);
14899 	kmem_free(help->dthps_actions,
14900 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
14901 	kmem_free(help, sizeof (dtrace_helpers_t));
14902 
14903 	--dtrace_helpers;
14904 	mutex_exit(&dtrace_lock);
14905 }
14906 
14907 #if defined(sun)
14908 static
14909 #endif
14910 void
14911 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
14912 {
14913 	dtrace_helpers_t *help, *newhelp;
14914 	dtrace_helper_action_t *helper, *new, *last;
14915 	dtrace_difo_t *dp;
14916 	dtrace_vstate_t *vstate;
14917 	int i, j, sz, hasprovs = 0;
14918 
14919 	mutex_enter(&dtrace_lock);
14920 	ASSERT(from->p_dtrace_helpers != NULL);
14921 	ASSERT(dtrace_helpers > 0);
14922 
14923 	help = from->p_dtrace_helpers;
14924 	newhelp = dtrace_helpers_create(to);
14925 	ASSERT(to->p_dtrace_helpers != NULL);
14926 
14927 	newhelp->dthps_generation = help->dthps_generation;
14928 	vstate = &newhelp->dthps_vstate;
14929 
14930 	/*
14931 	 * Duplicate the helper actions.
14932 	 */
14933 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14934 		if ((helper = help->dthps_actions[i]) == NULL)
14935 			continue;
14936 
14937 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
14938 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
14939 			    KM_SLEEP);
14940 			new->dtha_generation = helper->dtha_generation;
14941 
14942 			if ((dp = helper->dtha_predicate) != NULL) {
14943 				dp = dtrace_difo_duplicate(dp, vstate);
14944 				new->dtha_predicate = dp;
14945 			}
14946 
14947 			new->dtha_nactions = helper->dtha_nactions;
14948 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
14949 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
14950 
14951 			for (j = 0; j < new->dtha_nactions; j++) {
14952 				dtrace_difo_t *dp = helper->dtha_actions[j];
14953 
14954 				ASSERT(dp != NULL);
14955 				dp = dtrace_difo_duplicate(dp, vstate);
14956 				new->dtha_actions[j] = dp;
14957 			}
14958 
14959 			if (last != NULL) {
14960 				last->dtha_next = new;
14961 			} else {
14962 				newhelp->dthps_actions[i] = new;
14963 			}
14964 
14965 			last = new;
14966 		}
14967 	}
14968 
14969 	/*
14970 	 * Duplicate the helper providers and register them with the
14971 	 * DTrace framework.
14972 	 */
14973 	if (help->dthps_nprovs > 0) {
14974 		newhelp->dthps_nprovs = help->dthps_nprovs;
14975 		newhelp->dthps_maxprovs = help->dthps_nprovs;
14976 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
14977 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14978 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
14979 			newhelp->dthps_provs[i] = help->dthps_provs[i];
14980 			newhelp->dthps_provs[i]->dthp_ref++;
14981 		}
14982 
14983 		hasprovs = 1;
14984 	}
14985 
14986 	mutex_exit(&dtrace_lock);
14987 
14988 	if (hasprovs)
14989 		dtrace_helper_provider_register(to, newhelp, NULL);
14990 }
14991 
14992 #if defined(sun)
14993 /*
14994  * DTrace Hook Functions
14995  */
14996 static void
14997 dtrace_module_loaded(modctl_t *ctl)
14998 {
14999 	dtrace_provider_t *prv;
15000 
15001 	mutex_enter(&dtrace_provider_lock);
15002 	mutex_enter(&mod_lock);
15003 
15004 	ASSERT(ctl->mod_busy);
15005 
15006 	/*
15007 	 * We're going to call each providers per-module provide operation
15008 	 * specifying only this module.
15009 	 */
15010 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15011 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15012 
15013 	mutex_exit(&mod_lock);
15014 	mutex_exit(&dtrace_provider_lock);
15015 
15016 	/*
15017 	 * If we have any retained enablings, we need to match against them.
15018 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15019 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15020 	 * module.  (In particular, this happens when loading scheduling
15021 	 * classes.)  So if we have any retained enablings, we need to dispatch
15022 	 * our task queue to do the match for us.
15023 	 */
15024 	mutex_enter(&dtrace_lock);
15025 
15026 	if (dtrace_retained == NULL) {
15027 		mutex_exit(&dtrace_lock);
15028 		return;
15029 	}
15030 
15031 	(void) taskq_dispatch(dtrace_taskq,
15032 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15033 
15034 	mutex_exit(&dtrace_lock);
15035 
15036 	/*
15037 	 * And now, for a little heuristic sleaze:  in general, we want to
15038 	 * match modules as soon as they load.  However, we cannot guarantee
15039 	 * this, because it would lead us to the lock ordering violation
15040 	 * outlined above.  The common case, of course, is that cpu_lock is
15041 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
15042 	 * long enough for the task queue to do its work.  If it's not, it's
15043 	 * not a serious problem -- it just means that the module that we
15044 	 * just loaded may not be immediately instrumentable.
15045 	 */
15046 	delay(1);
15047 }
15048 
15049 static void
15050 dtrace_module_unloaded(modctl_t *ctl)
15051 {
15052 	dtrace_probe_t template, *probe, *first, *next;
15053 	dtrace_provider_t *prov;
15054 
15055 	template.dtpr_mod = ctl->mod_modname;
15056 
15057 	mutex_enter(&dtrace_provider_lock);
15058 	mutex_enter(&mod_lock);
15059 	mutex_enter(&dtrace_lock);
15060 
15061 	if (dtrace_bymod == NULL) {
15062 		/*
15063 		 * The DTrace module is loaded (obviously) but not attached;
15064 		 * we don't have any work to do.
15065 		 */
15066 		mutex_exit(&dtrace_provider_lock);
15067 		mutex_exit(&mod_lock);
15068 		mutex_exit(&dtrace_lock);
15069 		return;
15070 	}
15071 
15072 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15073 	    probe != NULL; probe = probe->dtpr_nextmod) {
15074 		if (probe->dtpr_ecb != NULL) {
15075 			mutex_exit(&dtrace_provider_lock);
15076 			mutex_exit(&mod_lock);
15077 			mutex_exit(&dtrace_lock);
15078 
15079 			/*
15080 			 * This shouldn't _actually_ be possible -- we're
15081 			 * unloading a module that has an enabled probe in it.
15082 			 * (It's normally up to the provider to make sure that
15083 			 * this can't happen.)  However, because dtps_enable()
15084 			 * doesn't have a failure mode, there can be an
15085 			 * enable/unload race.  Upshot:  we don't want to
15086 			 * assert, but we're not going to disable the
15087 			 * probe, either.
15088 			 */
15089 			if (dtrace_err_verbose) {
15090 				cmn_err(CE_WARN, "unloaded module '%s' had "
15091 				    "enabled probes", ctl->mod_modname);
15092 			}
15093 
15094 			return;
15095 		}
15096 	}
15097 
15098 	probe = first;
15099 
15100 	for (first = NULL; probe != NULL; probe = next) {
15101 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15102 
15103 		dtrace_probes[probe->dtpr_id - 1] = NULL;
15104 
15105 		next = probe->dtpr_nextmod;
15106 		dtrace_hash_remove(dtrace_bymod, probe);
15107 		dtrace_hash_remove(dtrace_byfunc, probe);
15108 		dtrace_hash_remove(dtrace_byname, probe);
15109 
15110 		if (first == NULL) {
15111 			first = probe;
15112 			probe->dtpr_nextmod = NULL;
15113 		} else {
15114 			probe->dtpr_nextmod = first;
15115 			first = probe;
15116 		}
15117 	}
15118 
15119 	/*
15120 	 * We've removed all of the module's probes from the hash chains and
15121 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15122 	 * everyone has cleared out from any probe array processing.
15123 	 */
15124 	dtrace_sync();
15125 
15126 	for (probe = first; probe != NULL; probe = first) {
15127 		first = probe->dtpr_nextmod;
15128 		prov = probe->dtpr_provider;
15129 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15130 		    probe->dtpr_arg);
15131 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15132 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15133 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15134 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15135 		kmem_free(probe, sizeof (dtrace_probe_t));
15136 	}
15137 
15138 	mutex_exit(&dtrace_lock);
15139 	mutex_exit(&mod_lock);
15140 	mutex_exit(&dtrace_provider_lock);
15141 }
15142 
15143 static void
15144 dtrace_suspend(void)
15145 {
15146 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15147 }
15148 
15149 static void
15150 dtrace_resume(void)
15151 {
15152 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15153 }
15154 #endif
15155 
15156 static int
15157 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15158 {
15159 	ASSERT(MUTEX_HELD(&cpu_lock));
15160 	mutex_enter(&dtrace_lock);
15161 
15162 	switch (what) {
15163 	case CPU_CONFIG: {
15164 		dtrace_state_t *state;
15165 		dtrace_optval_t *opt, rs, c;
15166 
15167 		/*
15168 		 * For now, we only allocate a new buffer for anonymous state.
15169 		 */
15170 		if ((state = dtrace_anon.dta_state) == NULL)
15171 			break;
15172 
15173 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15174 			break;
15175 
15176 		opt = state->dts_options;
15177 		c = opt[DTRACEOPT_CPU];
15178 
15179 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15180 			break;
15181 
15182 		/*
15183 		 * Regardless of what the actual policy is, we're going to
15184 		 * temporarily set our resize policy to be manual.  We're
15185 		 * also going to temporarily set our CPU option to denote
15186 		 * the newly configured CPU.
15187 		 */
15188 		rs = opt[DTRACEOPT_BUFRESIZE];
15189 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15190 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15191 
15192 		(void) dtrace_state_buffers(state);
15193 
15194 		opt[DTRACEOPT_BUFRESIZE] = rs;
15195 		opt[DTRACEOPT_CPU] = c;
15196 
15197 		break;
15198 	}
15199 
15200 	case CPU_UNCONFIG:
15201 		/*
15202 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15203 		 * buffer will be freed when the consumer exits.)
15204 		 */
15205 		break;
15206 
15207 	default:
15208 		break;
15209 	}
15210 
15211 	mutex_exit(&dtrace_lock);
15212 	return (0);
15213 }
15214 
15215 #if defined(sun)
15216 static void
15217 dtrace_cpu_setup_initial(processorid_t cpu)
15218 {
15219 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15220 }
15221 #endif
15222 
15223 static void
15224 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15225 {
15226 	if (dtrace_toxranges >= dtrace_toxranges_max) {
15227 		int osize, nsize;
15228 		dtrace_toxrange_t *range;
15229 
15230 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15231 
15232 		if (osize == 0) {
15233 			ASSERT(dtrace_toxrange == NULL);
15234 			ASSERT(dtrace_toxranges_max == 0);
15235 			dtrace_toxranges_max = 1;
15236 		} else {
15237 			dtrace_toxranges_max <<= 1;
15238 		}
15239 
15240 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15241 		range = kmem_zalloc(nsize, KM_SLEEP);
15242 
15243 		if (dtrace_toxrange != NULL) {
15244 			ASSERT(osize != 0);
15245 			bcopy(dtrace_toxrange, range, osize);
15246 			kmem_free(dtrace_toxrange, osize);
15247 		}
15248 
15249 		dtrace_toxrange = range;
15250 	}
15251 
15252 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15253 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15254 
15255 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15256 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15257 	dtrace_toxranges++;
15258 }
15259 
15260 /*
15261  * DTrace Driver Cookbook Functions
15262  */
15263 #if defined(sun)
15264 /*ARGSUSED*/
15265 static int
15266 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15267 {
15268 	dtrace_provider_id_t id;
15269 	dtrace_state_t *state = NULL;
15270 	dtrace_enabling_t *enab;
15271 
15272 	mutex_enter(&cpu_lock);
15273 	mutex_enter(&dtrace_provider_lock);
15274 	mutex_enter(&dtrace_lock);
15275 
15276 	if (ddi_soft_state_init(&dtrace_softstate,
15277 	    sizeof (dtrace_state_t), 0) != 0) {
15278 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15279 		mutex_exit(&cpu_lock);
15280 		mutex_exit(&dtrace_provider_lock);
15281 		mutex_exit(&dtrace_lock);
15282 		return (DDI_FAILURE);
15283 	}
15284 
15285 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15286 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15287 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15288 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15289 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15290 		ddi_remove_minor_node(devi, NULL);
15291 		ddi_soft_state_fini(&dtrace_softstate);
15292 		mutex_exit(&cpu_lock);
15293 		mutex_exit(&dtrace_provider_lock);
15294 		mutex_exit(&dtrace_lock);
15295 		return (DDI_FAILURE);
15296 	}
15297 
15298 	ddi_report_dev(devi);
15299 	dtrace_devi = devi;
15300 
15301 	dtrace_modload = dtrace_module_loaded;
15302 	dtrace_modunload = dtrace_module_unloaded;
15303 	dtrace_cpu_init = dtrace_cpu_setup_initial;
15304 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15305 	dtrace_helpers_fork = dtrace_helpers_duplicate;
15306 	dtrace_cpustart_init = dtrace_suspend;
15307 	dtrace_cpustart_fini = dtrace_resume;
15308 	dtrace_debugger_init = dtrace_suspend;
15309 	dtrace_debugger_fini = dtrace_resume;
15310 
15311 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15312 
15313 	ASSERT(MUTEX_HELD(&cpu_lock));
15314 
15315 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15316 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15317 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15318 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15319 	    VM_SLEEP | VMC_IDENTIFIER);
15320 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15321 	    1, INT_MAX, 0);
15322 
15323 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15324 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15325 	    NULL, NULL, NULL, NULL, NULL, 0);
15326 
15327 	ASSERT(MUTEX_HELD(&cpu_lock));
15328 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15329 	    offsetof(dtrace_probe_t, dtpr_nextmod),
15330 	    offsetof(dtrace_probe_t, dtpr_prevmod));
15331 
15332 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15333 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15334 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15335 
15336 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15337 	    offsetof(dtrace_probe_t, dtpr_nextname),
15338 	    offsetof(dtrace_probe_t, dtpr_prevname));
15339 
15340 	if (dtrace_retain_max < 1) {
15341 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15342 		    "setting to 1", dtrace_retain_max);
15343 		dtrace_retain_max = 1;
15344 	}
15345 
15346 	/*
15347 	 * Now discover our toxic ranges.
15348 	 */
15349 	dtrace_toxic_ranges(dtrace_toxrange_add);
15350 
15351 	/*
15352 	 * Before we register ourselves as a provider to our own framework,
15353 	 * we would like to assert that dtrace_provider is NULL -- but that's
15354 	 * not true if we were loaded as a dependency of a DTrace provider.
15355 	 * Once we've registered, we can assert that dtrace_provider is our
15356 	 * pseudo provider.
15357 	 */
15358 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15359 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15360 
15361 	ASSERT(dtrace_provider != NULL);
15362 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15363 
15364 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15365 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15366 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15367 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15368 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15369 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15370 
15371 	dtrace_anon_property();
15372 	mutex_exit(&cpu_lock);
15373 
15374 	/*
15375 	 * If DTrace helper tracing is enabled, we need to allocate the
15376 	 * trace buffer and initialize the values.
15377 	 */
15378 	if (dtrace_helptrace_enabled) {
15379 		ASSERT(dtrace_helptrace_buffer == NULL);
15380 		dtrace_helptrace_buffer =
15381 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15382 		dtrace_helptrace_next = 0;
15383 	}
15384 
15385 	/*
15386 	 * If there are already providers, we must ask them to provide their
15387 	 * probes, and then match any anonymous enabling against them.  Note
15388 	 * that there should be no other retained enablings at this time:
15389 	 * the only retained enablings at this time should be the anonymous
15390 	 * enabling.
15391 	 */
15392 	if (dtrace_anon.dta_enabling != NULL) {
15393 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15394 
15395 		dtrace_enabling_provide(NULL);
15396 		state = dtrace_anon.dta_state;
15397 
15398 		/*
15399 		 * We couldn't hold cpu_lock across the above call to
15400 		 * dtrace_enabling_provide(), but we must hold it to actually
15401 		 * enable the probes.  We have to drop all of our locks, pick
15402 		 * up cpu_lock, and regain our locks before matching the
15403 		 * retained anonymous enabling.
15404 		 */
15405 		mutex_exit(&dtrace_lock);
15406 		mutex_exit(&dtrace_provider_lock);
15407 
15408 		mutex_enter(&cpu_lock);
15409 		mutex_enter(&dtrace_provider_lock);
15410 		mutex_enter(&dtrace_lock);
15411 
15412 		if ((enab = dtrace_anon.dta_enabling) != NULL)
15413 			(void) dtrace_enabling_match(enab, NULL);
15414 
15415 		mutex_exit(&cpu_lock);
15416 	}
15417 
15418 	mutex_exit(&dtrace_lock);
15419 	mutex_exit(&dtrace_provider_lock);
15420 
15421 	if (state != NULL) {
15422 		/*
15423 		 * If we created any anonymous state, set it going now.
15424 		 */
15425 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15426 	}
15427 
15428 	return (DDI_SUCCESS);
15429 }
15430 #endif
15431 
15432 #if !defined(sun)
15433 #if __FreeBSD_version >= 800039
15434 static void dtrace_dtr(void *);
15435 #endif
15436 #endif
15437 
15438 /*ARGSUSED*/
15439 static int
15440 #if defined(sun)
15441 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15442 #else
15443 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15444 #endif
15445 {
15446 	dtrace_state_t *state;
15447 	uint32_t priv;
15448 	uid_t uid;
15449 	zoneid_t zoneid;
15450 
15451 #if defined(sun)
15452 	if (getminor(*devp) == DTRACEMNRN_HELPER)
15453 		return (0);
15454 
15455 	/*
15456 	 * If this wasn't an open with the "helper" minor, then it must be
15457 	 * the "dtrace" minor.
15458 	 */
15459 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15460 #else
15461 	cred_t *cred_p = NULL;
15462 
15463 #if __FreeBSD_version < 800039
15464 	/*
15465 	 * The first minor device is the one that is cloned so there is
15466 	 * nothing more to do here.
15467 	 */
15468 	if (dev2unit(dev) == 0)
15469 		return 0;
15470 
15471 	/*
15472 	 * Devices are cloned, so if the DTrace state has already
15473 	 * been allocated, that means this device belongs to a
15474 	 * different client. Each client should open '/dev/dtrace'
15475 	 * to get a cloned device.
15476 	 */
15477 	if (dev->si_drv1 != NULL)
15478 		return (EBUSY);
15479 #endif
15480 
15481 	cred_p = dev->si_cred;
15482 #endif
15483 
15484 	/*
15485 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15486 	 * caller lacks sufficient permission to do anything with DTrace.
15487 	 */
15488 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15489 	if (priv == DTRACE_PRIV_NONE) {
15490 #if !defined(sun)
15491 #if __FreeBSD_version < 800039
15492 		/* Destroy the cloned device. */
15493                 destroy_dev(dev);
15494 #endif
15495 #endif
15496 
15497 		return (EACCES);
15498 	}
15499 
15500 	/*
15501 	 * Ask all providers to provide all their probes.
15502 	 */
15503 	mutex_enter(&dtrace_provider_lock);
15504 	dtrace_probe_provide(NULL, NULL);
15505 	mutex_exit(&dtrace_provider_lock);
15506 
15507 	mutex_enter(&cpu_lock);
15508 	mutex_enter(&dtrace_lock);
15509 	dtrace_opens++;
15510 	dtrace_membar_producer();
15511 
15512 #if defined(sun)
15513 	/*
15514 	 * If the kernel debugger is active (that is, if the kernel debugger
15515 	 * modified text in some way), we won't allow the open.
15516 	 */
15517 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15518 		dtrace_opens--;
15519 		mutex_exit(&cpu_lock);
15520 		mutex_exit(&dtrace_lock);
15521 		return (EBUSY);
15522 	}
15523 
15524 	state = dtrace_state_create(devp, cred_p);
15525 #else
15526 	state = dtrace_state_create(dev);
15527 #if __FreeBSD_version < 800039
15528 	dev->si_drv1 = state;
15529 #else
15530 	devfs_set_cdevpriv(state, dtrace_dtr);
15531 #endif
15532 #endif
15533 
15534 	mutex_exit(&cpu_lock);
15535 
15536 	if (state == NULL) {
15537 #if defined(sun)
15538 		if (--dtrace_opens == 0)
15539 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15540 #else
15541 		--dtrace_opens;
15542 #endif
15543 		mutex_exit(&dtrace_lock);
15544 #if !defined(sun)
15545 #if __FreeBSD_version < 800039
15546 		/* Destroy the cloned device. */
15547                 destroy_dev(dev);
15548 #endif
15549 #endif
15550 		return (EAGAIN);
15551 	}
15552 
15553 	mutex_exit(&dtrace_lock);
15554 
15555 	return (0);
15556 }
15557 
15558 /*ARGSUSED*/
15559 #if defined(sun)
15560 static int
15561 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15562 #elif __FreeBSD_version < 800039
15563 static int
15564 dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15565 #else
15566 static void
15567 dtrace_dtr(void *data)
15568 #endif
15569 {
15570 #if defined(sun)
15571 	minor_t minor = getminor(dev);
15572 	dtrace_state_t *state;
15573 
15574 	if (minor == DTRACEMNRN_HELPER)
15575 		return (0);
15576 
15577 	state = ddi_get_soft_state(dtrace_softstate, minor);
15578 #else
15579 #if __FreeBSD_version < 800039
15580 	dtrace_state_t *state = dev->si_drv1;
15581 
15582 	/* Check if this is not a cloned device. */
15583 	if (dev2unit(dev) == 0)
15584 		return (0);
15585 #else
15586 	dtrace_state_t *state = data;
15587 #endif
15588 
15589 #endif
15590 
15591 	mutex_enter(&cpu_lock);
15592 	mutex_enter(&dtrace_lock);
15593 
15594 	if (state != NULL) {
15595 		if (state->dts_anon) {
15596 			/*
15597 			 * There is anonymous state. Destroy that first.
15598 			 */
15599 			ASSERT(dtrace_anon.dta_state == NULL);
15600 			dtrace_state_destroy(state->dts_anon);
15601 		}
15602 
15603 		dtrace_state_destroy(state);
15604 
15605 #if !defined(sun)
15606 		kmem_free(state, 0);
15607 #if __FreeBSD_version < 800039
15608 		dev->si_drv1 = NULL;
15609 #endif
15610 #endif
15611 	}
15612 
15613 	ASSERT(dtrace_opens > 0);
15614 #if defined(sun)
15615 	if (--dtrace_opens == 0)
15616 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15617 #else
15618 	--dtrace_opens;
15619 #endif
15620 
15621 	mutex_exit(&dtrace_lock);
15622 	mutex_exit(&cpu_lock);
15623 
15624 #if __FreeBSD_version < 800039
15625 	/* Schedule this cloned device to be destroyed. */
15626 	destroy_dev_sched(dev);
15627 #endif
15628 
15629 #if defined(sun) || __FreeBSD_version < 800039
15630 	return (0);
15631 #endif
15632 }
15633 
15634 #if defined(sun)
15635 /*ARGSUSED*/
15636 static int
15637 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15638 {
15639 	int rval;
15640 	dof_helper_t help, *dhp = NULL;
15641 
15642 	switch (cmd) {
15643 	case DTRACEHIOC_ADDDOF:
15644 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15645 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15646 			return (EFAULT);
15647 		}
15648 
15649 		dhp = &help;
15650 		arg = (intptr_t)help.dofhp_dof;
15651 		/*FALLTHROUGH*/
15652 
15653 	case DTRACEHIOC_ADD: {
15654 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15655 
15656 		if (dof == NULL)
15657 			return (rval);
15658 
15659 		mutex_enter(&dtrace_lock);
15660 
15661 		/*
15662 		 * dtrace_helper_slurp() takes responsibility for the dof --
15663 		 * it may free it now or it may save it and free it later.
15664 		 */
15665 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15666 			*rv = rval;
15667 			rval = 0;
15668 		} else {
15669 			rval = EINVAL;
15670 		}
15671 
15672 		mutex_exit(&dtrace_lock);
15673 		return (rval);
15674 	}
15675 
15676 	case DTRACEHIOC_REMOVE: {
15677 		mutex_enter(&dtrace_lock);
15678 		rval = dtrace_helper_destroygen(arg);
15679 		mutex_exit(&dtrace_lock);
15680 
15681 		return (rval);
15682 	}
15683 
15684 	default:
15685 		break;
15686 	}
15687 
15688 	return (ENOTTY);
15689 }
15690 
15691 /*ARGSUSED*/
15692 static int
15693 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15694 {
15695 	minor_t minor = getminor(dev);
15696 	dtrace_state_t *state;
15697 	int rval;
15698 
15699 	if (minor == DTRACEMNRN_HELPER)
15700 		return (dtrace_ioctl_helper(cmd, arg, rv));
15701 
15702 	state = ddi_get_soft_state(dtrace_softstate, minor);
15703 
15704 	if (state->dts_anon) {
15705 		ASSERT(dtrace_anon.dta_state == NULL);
15706 		state = state->dts_anon;
15707 	}
15708 
15709 	switch (cmd) {
15710 	case DTRACEIOC_PROVIDER: {
15711 		dtrace_providerdesc_t pvd;
15712 		dtrace_provider_t *pvp;
15713 
15714 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15715 			return (EFAULT);
15716 
15717 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15718 		mutex_enter(&dtrace_provider_lock);
15719 
15720 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15721 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15722 				break;
15723 		}
15724 
15725 		mutex_exit(&dtrace_provider_lock);
15726 
15727 		if (pvp == NULL)
15728 			return (ESRCH);
15729 
15730 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15731 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15732 
15733 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15734 			return (EFAULT);
15735 
15736 		return (0);
15737 	}
15738 
15739 	case DTRACEIOC_EPROBE: {
15740 		dtrace_eprobedesc_t epdesc;
15741 		dtrace_ecb_t *ecb;
15742 		dtrace_action_t *act;
15743 		void *buf;
15744 		size_t size;
15745 		uintptr_t dest;
15746 		int nrecs;
15747 
15748 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15749 			return (EFAULT);
15750 
15751 		mutex_enter(&dtrace_lock);
15752 
15753 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15754 			mutex_exit(&dtrace_lock);
15755 			return (EINVAL);
15756 		}
15757 
15758 		if (ecb->dte_probe == NULL) {
15759 			mutex_exit(&dtrace_lock);
15760 			return (EINVAL);
15761 		}
15762 
15763 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15764 		epdesc.dtepd_uarg = ecb->dte_uarg;
15765 		epdesc.dtepd_size = ecb->dte_size;
15766 
15767 		nrecs = epdesc.dtepd_nrecs;
15768 		epdesc.dtepd_nrecs = 0;
15769 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15770 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15771 				continue;
15772 
15773 			epdesc.dtepd_nrecs++;
15774 		}
15775 
15776 		/*
15777 		 * Now that we have the size, we need to allocate a temporary
15778 		 * buffer in which to store the complete description.  We need
15779 		 * the temporary buffer to be able to drop dtrace_lock()
15780 		 * across the copyout(), below.
15781 		 */
15782 		size = sizeof (dtrace_eprobedesc_t) +
15783 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15784 
15785 		buf = kmem_alloc(size, KM_SLEEP);
15786 		dest = (uintptr_t)buf;
15787 
15788 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15789 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15790 
15791 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15792 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15793 				continue;
15794 
15795 			if (nrecs-- == 0)
15796 				break;
15797 
15798 			bcopy(&act->dta_rec, (void *)dest,
15799 			    sizeof (dtrace_recdesc_t));
15800 			dest += sizeof (dtrace_recdesc_t);
15801 		}
15802 
15803 		mutex_exit(&dtrace_lock);
15804 
15805 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15806 			kmem_free(buf, size);
15807 			return (EFAULT);
15808 		}
15809 
15810 		kmem_free(buf, size);
15811 		return (0);
15812 	}
15813 
15814 	case DTRACEIOC_AGGDESC: {
15815 		dtrace_aggdesc_t aggdesc;
15816 		dtrace_action_t *act;
15817 		dtrace_aggregation_t *agg;
15818 		int nrecs;
15819 		uint32_t offs;
15820 		dtrace_recdesc_t *lrec;
15821 		void *buf;
15822 		size_t size;
15823 		uintptr_t dest;
15824 
15825 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
15826 			return (EFAULT);
15827 
15828 		mutex_enter(&dtrace_lock);
15829 
15830 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
15831 			mutex_exit(&dtrace_lock);
15832 			return (EINVAL);
15833 		}
15834 
15835 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
15836 
15837 		nrecs = aggdesc.dtagd_nrecs;
15838 		aggdesc.dtagd_nrecs = 0;
15839 
15840 		offs = agg->dtag_base;
15841 		lrec = &agg->dtag_action.dta_rec;
15842 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
15843 
15844 		for (act = agg->dtag_first; ; act = act->dta_next) {
15845 			ASSERT(act->dta_intuple ||
15846 			    DTRACEACT_ISAGG(act->dta_kind));
15847 
15848 			/*
15849 			 * If this action has a record size of zero, it
15850 			 * denotes an argument to the aggregating action.
15851 			 * Because the presence of this record doesn't (or
15852 			 * shouldn't) affect the way the data is interpreted,
15853 			 * we don't copy it out to save user-level the
15854 			 * confusion of dealing with a zero-length record.
15855 			 */
15856 			if (act->dta_rec.dtrd_size == 0) {
15857 				ASSERT(agg->dtag_hasarg);
15858 				continue;
15859 			}
15860 
15861 			aggdesc.dtagd_nrecs++;
15862 
15863 			if (act == &agg->dtag_action)
15864 				break;
15865 		}
15866 
15867 		/*
15868 		 * Now that we have the size, we need to allocate a temporary
15869 		 * buffer in which to store the complete description.  We need
15870 		 * the temporary buffer to be able to drop dtrace_lock()
15871 		 * across the copyout(), below.
15872 		 */
15873 		size = sizeof (dtrace_aggdesc_t) +
15874 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
15875 
15876 		buf = kmem_alloc(size, KM_SLEEP);
15877 		dest = (uintptr_t)buf;
15878 
15879 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
15880 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
15881 
15882 		for (act = agg->dtag_first; ; act = act->dta_next) {
15883 			dtrace_recdesc_t rec = act->dta_rec;
15884 
15885 			/*
15886 			 * See the comment in the above loop for why we pass
15887 			 * over zero-length records.
15888 			 */
15889 			if (rec.dtrd_size == 0) {
15890 				ASSERT(agg->dtag_hasarg);
15891 				continue;
15892 			}
15893 
15894 			if (nrecs-- == 0)
15895 				break;
15896 
15897 			rec.dtrd_offset -= offs;
15898 			bcopy(&rec, (void *)dest, sizeof (rec));
15899 			dest += sizeof (dtrace_recdesc_t);
15900 
15901 			if (act == &agg->dtag_action)
15902 				break;
15903 		}
15904 
15905 		mutex_exit(&dtrace_lock);
15906 
15907 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15908 			kmem_free(buf, size);
15909 			return (EFAULT);
15910 		}
15911 
15912 		kmem_free(buf, size);
15913 		return (0);
15914 	}
15915 
15916 	case DTRACEIOC_ENABLE: {
15917 		dof_hdr_t *dof;
15918 		dtrace_enabling_t *enab = NULL;
15919 		dtrace_vstate_t *vstate;
15920 		int err = 0;
15921 
15922 		*rv = 0;
15923 
15924 		/*
15925 		 * If a NULL argument has been passed, we take this as our
15926 		 * cue to reevaluate our enablings.
15927 		 */
15928 		if (arg == NULL) {
15929 			dtrace_enabling_matchall();
15930 
15931 			return (0);
15932 		}
15933 
15934 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
15935 			return (rval);
15936 
15937 		mutex_enter(&cpu_lock);
15938 		mutex_enter(&dtrace_lock);
15939 		vstate = &state->dts_vstate;
15940 
15941 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
15942 			mutex_exit(&dtrace_lock);
15943 			mutex_exit(&cpu_lock);
15944 			dtrace_dof_destroy(dof);
15945 			return (EBUSY);
15946 		}
15947 
15948 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
15949 			mutex_exit(&dtrace_lock);
15950 			mutex_exit(&cpu_lock);
15951 			dtrace_dof_destroy(dof);
15952 			return (EINVAL);
15953 		}
15954 
15955 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
15956 			dtrace_enabling_destroy(enab);
15957 			mutex_exit(&dtrace_lock);
15958 			mutex_exit(&cpu_lock);
15959 			dtrace_dof_destroy(dof);
15960 			return (rval);
15961 		}
15962 
15963 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
15964 			err = dtrace_enabling_retain(enab);
15965 		} else {
15966 			dtrace_enabling_destroy(enab);
15967 		}
15968 
15969 		mutex_exit(&cpu_lock);
15970 		mutex_exit(&dtrace_lock);
15971 		dtrace_dof_destroy(dof);
15972 
15973 		return (err);
15974 	}
15975 
15976 	case DTRACEIOC_REPLICATE: {
15977 		dtrace_repldesc_t desc;
15978 		dtrace_probedesc_t *match = &desc.dtrpd_match;
15979 		dtrace_probedesc_t *create = &desc.dtrpd_create;
15980 		int err;
15981 
15982 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
15983 			return (EFAULT);
15984 
15985 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15986 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15987 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15988 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15989 
15990 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
15991 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
15992 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
15993 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
15994 
15995 		mutex_enter(&dtrace_lock);
15996 		err = dtrace_enabling_replicate(state, match, create);
15997 		mutex_exit(&dtrace_lock);
15998 
15999 		return (err);
16000 	}
16001 
16002 	case DTRACEIOC_PROBEMATCH:
16003 	case DTRACEIOC_PROBES: {
16004 		dtrace_probe_t *probe = NULL;
16005 		dtrace_probedesc_t desc;
16006 		dtrace_probekey_t pkey;
16007 		dtrace_id_t i;
16008 		int m = 0;
16009 		uint32_t priv;
16010 		uid_t uid;
16011 		zoneid_t zoneid;
16012 
16013 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16014 			return (EFAULT);
16015 
16016 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16017 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16018 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16019 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16020 
16021 		/*
16022 		 * Before we attempt to match this probe, we want to give
16023 		 * all providers the opportunity to provide it.
16024 		 */
16025 		if (desc.dtpd_id == DTRACE_IDNONE) {
16026 			mutex_enter(&dtrace_provider_lock);
16027 			dtrace_probe_provide(&desc, NULL);
16028 			mutex_exit(&dtrace_provider_lock);
16029 			desc.dtpd_id++;
16030 		}
16031 
16032 		if (cmd == DTRACEIOC_PROBEMATCH)  {
16033 			dtrace_probekey(&desc, &pkey);
16034 			pkey.dtpk_id = DTRACE_IDNONE;
16035 		}
16036 
16037 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16038 
16039 		mutex_enter(&dtrace_lock);
16040 
16041 		if (cmd == DTRACEIOC_PROBEMATCH) {
16042 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16043 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16044 				    (m = dtrace_match_probe(probe, &pkey,
16045 				    priv, uid, zoneid)) != 0)
16046 					break;
16047 			}
16048 
16049 			if (m < 0) {
16050 				mutex_exit(&dtrace_lock);
16051 				return (EINVAL);
16052 			}
16053 
16054 		} else {
16055 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16056 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16057 				    dtrace_match_priv(probe, priv, uid, zoneid))
16058 					break;
16059 			}
16060 		}
16061 
16062 		if (probe == NULL) {
16063 			mutex_exit(&dtrace_lock);
16064 			return (ESRCH);
16065 		}
16066 
16067 		dtrace_probe_description(probe, &desc);
16068 		mutex_exit(&dtrace_lock);
16069 
16070 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16071 			return (EFAULT);
16072 
16073 		return (0);
16074 	}
16075 
16076 	case DTRACEIOC_PROBEARG: {
16077 		dtrace_argdesc_t desc;
16078 		dtrace_probe_t *probe;
16079 		dtrace_provider_t *prov;
16080 
16081 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16082 			return (EFAULT);
16083 
16084 		if (desc.dtargd_id == DTRACE_IDNONE)
16085 			return (EINVAL);
16086 
16087 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16088 			return (EINVAL);
16089 
16090 		mutex_enter(&dtrace_provider_lock);
16091 		mutex_enter(&mod_lock);
16092 		mutex_enter(&dtrace_lock);
16093 
16094 		if (desc.dtargd_id > dtrace_nprobes) {
16095 			mutex_exit(&dtrace_lock);
16096 			mutex_exit(&mod_lock);
16097 			mutex_exit(&dtrace_provider_lock);
16098 			return (EINVAL);
16099 		}
16100 
16101 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16102 			mutex_exit(&dtrace_lock);
16103 			mutex_exit(&mod_lock);
16104 			mutex_exit(&dtrace_provider_lock);
16105 			return (EINVAL);
16106 		}
16107 
16108 		mutex_exit(&dtrace_lock);
16109 
16110 		prov = probe->dtpr_provider;
16111 
16112 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16113 			/*
16114 			 * There isn't any typed information for this probe.
16115 			 * Set the argument number to DTRACE_ARGNONE.
16116 			 */
16117 			desc.dtargd_ndx = DTRACE_ARGNONE;
16118 		} else {
16119 			desc.dtargd_native[0] = '\0';
16120 			desc.dtargd_xlate[0] = '\0';
16121 			desc.dtargd_mapping = desc.dtargd_ndx;
16122 
16123 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16124 			    probe->dtpr_id, probe->dtpr_arg, &desc);
16125 		}
16126 
16127 		mutex_exit(&mod_lock);
16128 		mutex_exit(&dtrace_provider_lock);
16129 
16130 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16131 			return (EFAULT);
16132 
16133 		return (0);
16134 	}
16135 
16136 	case DTRACEIOC_GO: {
16137 		processorid_t cpuid;
16138 		rval = dtrace_state_go(state, &cpuid);
16139 
16140 		if (rval != 0)
16141 			return (rval);
16142 
16143 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16144 			return (EFAULT);
16145 
16146 		return (0);
16147 	}
16148 
16149 	case DTRACEIOC_STOP: {
16150 		processorid_t cpuid;
16151 
16152 		mutex_enter(&dtrace_lock);
16153 		rval = dtrace_state_stop(state, &cpuid);
16154 		mutex_exit(&dtrace_lock);
16155 
16156 		if (rval != 0)
16157 			return (rval);
16158 
16159 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16160 			return (EFAULT);
16161 
16162 		return (0);
16163 	}
16164 
16165 	case DTRACEIOC_DOFGET: {
16166 		dof_hdr_t hdr, *dof;
16167 		uint64_t len;
16168 
16169 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16170 			return (EFAULT);
16171 
16172 		mutex_enter(&dtrace_lock);
16173 		dof = dtrace_dof_create(state);
16174 		mutex_exit(&dtrace_lock);
16175 
16176 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16177 		rval = copyout(dof, (void *)arg, len);
16178 		dtrace_dof_destroy(dof);
16179 
16180 		return (rval == 0 ? 0 : EFAULT);
16181 	}
16182 
16183 	case DTRACEIOC_AGGSNAP:
16184 	case DTRACEIOC_BUFSNAP: {
16185 		dtrace_bufdesc_t desc;
16186 		caddr_t cached;
16187 		dtrace_buffer_t *buf;
16188 
16189 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16190 			return (EFAULT);
16191 
16192 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16193 			return (EINVAL);
16194 
16195 		mutex_enter(&dtrace_lock);
16196 
16197 		if (cmd == DTRACEIOC_BUFSNAP) {
16198 			buf = &state->dts_buffer[desc.dtbd_cpu];
16199 		} else {
16200 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16201 		}
16202 
16203 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16204 			size_t sz = buf->dtb_offset;
16205 
16206 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16207 				mutex_exit(&dtrace_lock);
16208 				return (EBUSY);
16209 			}
16210 
16211 			/*
16212 			 * If this buffer has already been consumed, we're
16213 			 * going to indicate that there's nothing left here
16214 			 * to consume.
16215 			 */
16216 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16217 				mutex_exit(&dtrace_lock);
16218 
16219 				desc.dtbd_size = 0;
16220 				desc.dtbd_drops = 0;
16221 				desc.dtbd_errors = 0;
16222 				desc.dtbd_oldest = 0;
16223 				sz = sizeof (desc);
16224 
16225 				if (copyout(&desc, (void *)arg, sz) != 0)
16226 					return (EFAULT);
16227 
16228 				return (0);
16229 			}
16230 
16231 			/*
16232 			 * If this is a ring buffer that has wrapped, we want
16233 			 * to copy the whole thing out.
16234 			 */
16235 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16236 				dtrace_buffer_polish(buf);
16237 				sz = buf->dtb_size;
16238 			}
16239 
16240 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16241 				mutex_exit(&dtrace_lock);
16242 				return (EFAULT);
16243 			}
16244 
16245 			desc.dtbd_size = sz;
16246 			desc.dtbd_drops = buf->dtb_drops;
16247 			desc.dtbd_errors = buf->dtb_errors;
16248 			desc.dtbd_oldest = buf->dtb_xamot_offset;
16249 
16250 			mutex_exit(&dtrace_lock);
16251 
16252 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16253 				return (EFAULT);
16254 
16255 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16256 
16257 			return (0);
16258 		}
16259 
16260 		if (buf->dtb_tomax == NULL) {
16261 			ASSERT(buf->dtb_xamot == NULL);
16262 			mutex_exit(&dtrace_lock);
16263 			return (ENOENT);
16264 		}
16265 
16266 		cached = buf->dtb_tomax;
16267 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16268 
16269 		dtrace_xcall(desc.dtbd_cpu,
16270 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16271 
16272 		state->dts_errors += buf->dtb_xamot_errors;
16273 
16274 		/*
16275 		 * If the buffers did not actually switch, then the cross call
16276 		 * did not take place -- presumably because the given CPU is
16277 		 * not in the ready set.  If this is the case, we'll return
16278 		 * ENOENT.
16279 		 */
16280 		if (buf->dtb_tomax == cached) {
16281 			ASSERT(buf->dtb_xamot != cached);
16282 			mutex_exit(&dtrace_lock);
16283 			return (ENOENT);
16284 		}
16285 
16286 		ASSERT(cached == buf->dtb_xamot);
16287 
16288 		/*
16289 		 * We have our snapshot; now copy it out.
16290 		 */
16291 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16292 		    buf->dtb_xamot_offset) != 0) {
16293 			mutex_exit(&dtrace_lock);
16294 			return (EFAULT);
16295 		}
16296 
16297 		desc.dtbd_size = buf->dtb_xamot_offset;
16298 		desc.dtbd_drops = buf->dtb_xamot_drops;
16299 		desc.dtbd_errors = buf->dtb_xamot_errors;
16300 		desc.dtbd_oldest = 0;
16301 
16302 		mutex_exit(&dtrace_lock);
16303 
16304 		/*
16305 		 * Finally, copy out the buffer description.
16306 		 */
16307 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16308 			return (EFAULT);
16309 
16310 		return (0);
16311 	}
16312 
16313 	case DTRACEIOC_CONF: {
16314 		dtrace_conf_t conf;
16315 
16316 		bzero(&conf, sizeof (conf));
16317 		conf.dtc_difversion = DIF_VERSION;
16318 		conf.dtc_difintregs = DIF_DIR_NREGS;
16319 		conf.dtc_diftupregs = DIF_DTR_NREGS;
16320 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16321 
16322 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16323 			return (EFAULT);
16324 
16325 		return (0);
16326 	}
16327 
16328 	case DTRACEIOC_STATUS: {
16329 		dtrace_status_t stat;
16330 		dtrace_dstate_t *dstate;
16331 		int i, j;
16332 		uint64_t nerrs;
16333 
16334 		/*
16335 		 * See the comment in dtrace_state_deadman() for the reason
16336 		 * for setting dts_laststatus to INT64_MAX before setting
16337 		 * it to the correct value.
16338 		 */
16339 		state->dts_laststatus = INT64_MAX;
16340 		dtrace_membar_producer();
16341 		state->dts_laststatus = dtrace_gethrtime();
16342 
16343 		bzero(&stat, sizeof (stat));
16344 
16345 		mutex_enter(&dtrace_lock);
16346 
16347 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16348 			mutex_exit(&dtrace_lock);
16349 			return (ENOENT);
16350 		}
16351 
16352 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16353 			stat.dtst_exiting = 1;
16354 
16355 		nerrs = state->dts_errors;
16356 		dstate = &state->dts_vstate.dtvs_dynvars;
16357 
16358 		for (i = 0; i < NCPU; i++) {
16359 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16360 
16361 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16362 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16363 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16364 
16365 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16366 				stat.dtst_filled++;
16367 
16368 			nerrs += state->dts_buffer[i].dtb_errors;
16369 
16370 			for (j = 0; j < state->dts_nspeculations; j++) {
16371 				dtrace_speculation_t *spec;
16372 				dtrace_buffer_t *buf;
16373 
16374 				spec = &state->dts_speculations[j];
16375 				buf = &spec->dtsp_buffer[i];
16376 				stat.dtst_specdrops += buf->dtb_xamot_drops;
16377 			}
16378 		}
16379 
16380 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16381 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16382 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16383 		stat.dtst_dblerrors = state->dts_dblerrors;
16384 		stat.dtst_killed =
16385 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16386 		stat.dtst_errors = nerrs;
16387 
16388 		mutex_exit(&dtrace_lock);
16389 
16390 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16391 			return (EFAULT);
16392 
16393 		return (0);
16394 	}
16395 
16396 	case DTRACEIOC_FORMAT: {
16397 		dtrace_fmtdesc_t fmt;
16398 		char *str;
16399 		int len;
16400 
16401 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16402 			return (EFAULT);
16403 
16404 		mutex_enter(&dtrace_lock);
16405 
16406 		if (fmt.dtfd_format == 0 ||
16407 		    fmt.dtfd_format > state->dts_nformats) {
16408 			mutex_exit(&dtrace_lock);
16409 			return (EINVAL);
16410 		}
16411 
16412 		/*
16413 		 * Format strings are allocated contiguously and they are
16414 		 * never freed; if a format index is less than the number
16415 		 * of formats, we can assert that the format map is non-NULL
16416 		 * and that the format for the specified index is non-NULL.
16417 		 */
16418 		ASSERT(state->dts_formats != NULL);
16419 		str = state->dts_formats[fmt.dtfd_format - 1];
16420 		ASSERT(str != NULL);
16421 
16422 		len = strlen(str) + 1;
16423 
16424 		if (len > fmt.dtfd_length) {
16425 			fmt.dtfd_length = len;
16426 
16427 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16428 				mutex_exit(&dtrace_lock);
16429 				return (EINVAL);
16430 			}
16431 		} else {
16432 			if (copyout(str, fmt.dtfd_string, len) != 0) {
16433 				mutex_exit(&dtrace_lock);
16434 				return (EINVAL);
16435 			}
16436 		}
16437 
16438 		mutex_exit(&dtrace_lock);
16439 		return (0);
16440 	}
16441 
16442 	default:
16443 		break;
16444 	}
16445 
16446 	return (ENOTTY);
16447 }
16448 
16449 /*ARGSUSED*/
16450 static int
16451 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16452 {
16453 	dtrace_state_t *state;
16454 
16455 	switch (cmd) {
16456 	case DDI_DETACH:
16457 		break;
16458 
16459 	case DDI_SUSPEND:
16460 		return (DDI_SUCCESS);
16461 
16462 	default:
16463 		return (DDI_FAILURE);
16464 	}
16465 
16466 	mutex_enter(&cpu_lock);
16467 	mutex_enter(&dtrace_provider_lock);
16468 	mutex_enter(&dtrace_lock);
16469 
16470 	ASSERT(dtrace_opens == 0);
16471 
16472 	if (dtrace_helpers > 0) {
16473 		mutex_exit(&dtrace_provider_lock);
16474 		mutex_exit(&dtrace_lock);
16475 		mutex_exit(&cpu_lock);
16476 		return (DDI_FAILURE);
16477 	}
16478 
16479 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16480 		mutex_exit(&dtrace_provider_lock);
16481 		mutex_exit(&dtrace_lock);
16482 		mutex_exit(&cpu_lock);
16483 		return (DDI_FAILURE);
16484 	}
16485 
16486 	dtrace_provider = NULL;
16487 
16488 	if ((state = dtrace_anon_grab()) != NULL) {
16489 		/*
16490 		 * If there were ECBs on this state, the provider should
16491 		 * have not been allowed to detach; assert that there is
16492 		 * none.
16493 		 */
16494 		ASSERT(state->dts_necbs == 0);
16495 		dtrace_state_destroy(state);
16496 
16497 		/*
16498 		 * If we're being detached with anonymous state, we need to
16499 		 * indicate to the kernel debugger that DTrace is now inactive.
16500 		 */
16501 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16502 	}
16503 
16504 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16505 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16506 	dtrace_cpu_init = NULL;
16507 	dtrace_helpers_cleanup = NULL;
16508 	dtrace_helpers_fork = NULL;
16509 	dtrace_cpustart_init = NULL;
16510 	dtrace_cpustart_fini = NULL;
16511 	dtrace_debugger_init = NULL;
16512 	dtrace_debugger_fini = NULL;
16513 	dtrace_modload = NULL;
16514 	dtrace_modunload = NULL;
16515 
16516 	mutex_exit(&cpu_lock);
16517 
16518 	if (dtrace_helptrace_enabled) {
16519 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16520 		dtrace_helptrace_buffer = NULL;
16521 	}
16522 
16523 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16524 	dtrace_probes = NULL;
16525 	dtrace_nprobes = 0;
16526 
16527 	dtrace_hash_destroy(dtrace_bymod);
16528 	dtrace_hash_destroy(dtrace_byfunc);
16529 	dtrace_hash_destroy(dtrace_byname);
16530 	dtrace_bymod = NULL;
16531 	dtrace_byfunc = NULL;
16532 	dtrace_byname = NULL;
16533 
16534 	kmem_cache_destroy(dtrace_state_cache);
16535 	vmem_destroy(dtrace_minor);
16536 	vmem_destroy(dtrace_arena);
16537 
16538 	if (dtrace_toxrange != NULL) {
16539 		kmem_free(dtrace_toxrange,
16540 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16541 		dtrace_toxrange = NULL;
16542 		dtrace_toxranges = 0;
16543 		dtrace_toxranges_max = 0;
16544 	}
16545 
16546 	ddi_remove_minor_node(dtrace_devi, NULL);
16547 	dtrace_devi = NULL;
16548 
16549 	ddi_soft_state_fini(&dtrace_softstate);
16550 
16551 	ASSERT(dtrace_vtime_references == 0);
16552 	ASSERT(dtrace_opens == 0);
16553 	ASSERT(dtrace_retained == NULL);
16554 
16555 	mutex_exit(&dtrace_lock);
16556 	mutex_exit(&dtrace_provider_lock);
16557 
16558 	/*
16559 	 * We don't destroy the task queue until after we have dropped our
16560 	 * locks (taskq_destroy() may block on running tasks).  To prevent
16561 	 * attempting to do work after we have effectively detached but before
16562 	 * the task queue has been destroyed, all tasks dispatched via the
16563 	 * task queue must check that DTrace is still attached before
16564 	 * performing any operation.
16565 	 */
16566 	taskq_destroy(dtrace_taskq);
16567 	dtrace_taskq = NULL;
16568 
16569 	return (DDI_SUCCESS);
16570 }
16571 #endif
16572 
16573 #if defined(sun)
16574 /*ARGSUSED*/
16575 static int
16576 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16577 {
16578 	int error;
16579 
16580 	switch (infocmd) {
16581 	case DDI_INFO_DEVT2DEVINFO:
16582 		*result = (void *)dtrace_devi;
16583 		error = DDI_SUCCESS;
16584 		break;
16585 	case DDI_INFO_DEVT2INSTANCE:
16586 		*result = (void *)0;
16587 		error = DDI_SUCCESS;
16588 		break;
16589 	default:
16590 		error = DDI_FAILURE;
16591 	}
16592 	return (error);
16593 }
16594 #endif
16595 
16596 #if defined(sun)
16597 static struct cb_ops dtrace_cb_ops = {
16598 	dtrace_open,		/* open */
16599 	dtrace_close,		/* close */
16600 	nulldev,		/* strategy */
16601 	nulldev,		/* print */
16602 	nodev,			/* dump */
16603 	nodev,			/* read */
16604 	nodev,			/* write */
16605 	dtrace_ioctl,		/* ioctl */
16606 	nodev,			/* devmap */
16607 	nodev,			/* mmap */
16608 	nodev,			/* segmap */
16609 	nochpoll,		/* poll */
16610 	ddi_prop_op,		/* cb_prop_op */
16611 	0,			/* streamtab  */
16612 	D_NEW | D_MP		/* Driver compatibility flag */
16613 };
16614 
16615 static struct dev_ops dtrace_ops = {
16616 	DEVO_REV,		/* devo_rev */
16617 	0,			/* refcnt */
16618 	dtrace_info,		/* get_dev_info */
16619 	nulldev,		/* identify */
16620 	nulldev,		/* probe */
16621 	dtrace_attach,		/* attach */
16622 	dtrace_detach,		/* detach */
16623 	nodev,			/* reset */
16624 	&dtrace_cb_ops,		/* driver operations */
16625 	NULL,			/* bus operations */
16626 	nodev			/* dev power */
16627 };
16628 
16629 static struct modldrv modldrv = {
16630 	&mod_driverops,		/* module type (this is a pseudo driver) */
16631 	"Dynamic Tracing",	/* name of module */
16632 	&dtrace_ops,		/* driver ops */
16633 };
16634 
16635 static struct modlinkage modlinkage = {
16636 	MODREV_1,
16637 	(void *)&modldrv,
16638 	NULL
16639 };
16640 
16641 int
16642 _init(void)
16643 {
16644 	return (mod_install(&modlinkage));
16645 }
16646 
16647 int
16648 _info(struct modinfo *modinfop)
16649 {
16650 	return (mod_info(&modlinkage, modinfop));
16651 }
16652 
16653 int
16654 _fini(void)
16655 {
16656 	return (mod_remove(&modlinkage));
16657 }
16658 #else
16659 
16660 static d_ioctl_t	dtrace_ioctl;
16661 static d_ioctl_t	dtrace_ioctl_helper;
16662 static void		dtrace_load(void *);
16663 static int		dtrace_unload(void);
16664 #if __FreeBSD_version < 800039
16665 static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16666 static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16667 static eventhandler_tag	eh_tag;			/* Event handler tag. */
16668 #else
16669 static struct cdev	*dtrace_dev;
16670 static struct cdev	*helper_dev;
16671 #endif
16672 
16673 void dtrace_invop_init(void);
16674 void dtrace_invop_uninit(void);
16675 
16676 static struct cdevsw dtrace_cdevsw = {
16677 	.d_version	= D_VERSION,
16678 #if __FreeBSD_version < 800039
16679 	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16680 	.d_close	= dtrace_close,
16681 #endif
16682 	.d_ioctl	= dtrace_ioctl,
16683 	.d_open		= dtrace_open,
16684 	.d_name		= "dtrace",
16685 };
16686 
16687 static struct cdevsw helper_cdevsw = {
16688 	.d_version	= D_VERSION,
16689 	.d_ioctl	= dtrace_ioctl_helper,
16690 	.d_name		= "helper",
16691 };
16692 
16693 #include <dtrace_anon.c>
16694 #if __FreeBSD_version < 800039
16695 #include <dtrace_clone.c>
16696 #endif
16697 #include <dtrace_ioctl.c>
16698 #include <dtrace_load.c>
16699 #include <dtrace_modevent.c>
16700 #include <dtrace_sysctl.c>
16701 #include <dtrace_unload.c>
16702 #include <dtrace_vtime.c>
16703 #include <dtrace_hacks.c>
16704 #include <dtrace_isa.c>
16705 
16706 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16707 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16708 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16709 
16710 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16711 MODULE_VERSION(dtrace, 1);
16712 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16713 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16714 #endif
16715