xref: /freebsd-src/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision 63d1fd5970ec814904aa0f4580b10a0d302d08b2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
26  * Copyright (c) 2016, Joyent, Inc. All rights reserved.
27  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28  */
29 
30 /*
31  * DTrace - Dynamic Tracing for Solaris
32  *
33  * This is the implementation of the Solaris Dynamic Tracing framework
34  * (DTrace).  The user-visible interface to DTrace is described at length in
35  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
36  * library, the in-kernel DTrace framework, and the DTrace providers are
37  * described in the block comments in the <sys/dtrace.h> header file.  The
38  * internal architecture of DTrace is described in the block comments in the
39  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
40  * implementation very much assume mastery of all of these sources; if one has
41  * an unanswered question about the implementation, one should consult them
42  * first.
43  *
44  * The functions here are ordered roughly as follows:
45  *
46  *   - Probe context functions
47  *   - Probe hashing functions
48  *   - Non-probe context utility functions
49  *   - Matching functions
50  *   - Provider-to-Framework API functions
51  *   - Probe management functions
52  *   - DIF object functions
53  *   - Format functions
54  *   - Predicate functions
55  *   - ECB functions
56  *   - Buffer functions
57  *   - Enabling functions
58  *   - DOF functions
59  *   - Anonymous enabling functions
60  *   - Consumer state functions
61  *   - Helper functions
62  *   - Hook functions
63  *   - Driver cookbook functions
64  *
65  * Each group of functions begins with a block comment labelled the "DTrace
66  * [Group] Functions", allowing one to find each block by searching forward
67  * on capital-f functions.
68  */
69 #include <sys/errno.h>
70 #ifndef illumos
71 #include <sys/time.h>
72 #endif
73 #include <sys/stat.h>
74 #include <sys/modctl.h>
75 #include <sys/conf.h>
76 #include <sys/systm.h>
77 #ifdef illumos
78 #include <sys/ddi.h>
79 #include <sys/sunddi.h>
80 #endif
81 #include <sys/cpuvar.h>
82 #include <sys/kmem.h>
83 #ifdef illumos
84 #include <sys/strsubr.h>
85 #endif
86 #include <sys/sysmacros.h>
87 #include <sys/dtrace_impl.h>
88 #include <sys/atomic.h>
89 #include <sys/cmn_err.h>
90 #ifdef illumos
91 #include <sys/mutex_impl.h>
92 #include <sys/rwlock_impl.h>
93 #endif
94 #include <sys/ctf_api.h>
95 #ifdef illumos
96 #include <sys/panic.h>
97 #include <sys/priv_impl.h>
98 #endif
99 #include <sys/policy.h>
100 #ifdef illumos
101 #include <sys/cred_impl.h>
102 #include <sys/procfs_isa.h>
103 #endif
104 #include <sys/taskq.h>
105 #ifdef illumos
106 #include <sys/mkdev.h>
107 #include <sys/kdi.h>
108 #endif
109 #include <sys/zone.h>
110 #include <sys/socket.h>
111 #include <netinet/in.h>
112 #include "strtolctype.h"
113 
114 /* FreeBSD includes: */
115 #ifndef illumos
116 #include <sys/callout.h>
117 #include <sys/ctype.h>
118 #include <sys/eventhandler.h>
119 #include <sys/limits.h>
120 #include <sys/linker.h>
121 #include <sys/kdb.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/ptrace.h>
127 #include <sys/rwlock.h>
128 #include <sys/sx.h>
129 #include <sys/sysctl.h>
130 
131 #include <sys/dtrace_bsd.h>
132 
133 #include <netinet/in.h>
134 
135 #include "dtrace_cddl.h"
136 #include "dtrace_debug.c"
137 #endif
138 
139 /*
140  * DTrace Tunable Variables
141  *
142  * The following variables may be tuned by adding a line to /etc/system that
143  * includes both the name of the DTrace module ("dtrace") and the name of the
144  * variable.  For example:
145  *
146  *   set dtrace:dtrace_destructive_disallow = 1
147  *
148  * In general, the only variables that one should be tuning this way are those
149  * that affect system-wide DTrace behavior, and for which the default behavior
150  * is undesirable.  Most of these variables are tunable on a per-consumer
151  * basis using DTrace options, and need not be tuned on a system-wide basis.
152  * When tuning these variables, avoid pathological values; while some attempt
153  * is made to verify the integrity of these variables, they are not considered
154  * part of the supported interface to DTrace, and they are therefore not
155  * checked comprehensively.  Further, these variables should not be tuned
156  * dynamically via "mdb -kw" or other means; they should only be tuned via
157  * /etc/system.
158  */
159 int		dtrace_destructive_disallow = 0;
160 #ifndef illumos
161 /* Positive logic version of dtrace_destructive_disallow for loader tunable */
162 int		dtrace_allow_destructive = 1;
163 #endif
164 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
165 size_t		dtrace_difo_maxsize = (256 * 1024);
166 dtrace_optval_t	dtrace_dof_maxsize = (8 * 1024 * 1024);
167 size_t		dtrace_statvar_maxsize = (16 * 1024);
168 size_t		dtrace_actions_max = (16 * 1024);
169 size_t		dtrace_retain_max = 1024;
170 dtrace_optval_t	dtrace_helper_actions_max = 128;
171 dtrace_optval_t	dtrace_helper_providers_max = 32;
172 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
173 size_t		dtrace_strsize_default = 256;
174 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
175 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
176 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
177 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
178 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
179 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
180 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
181 dtrace_optval_t	dtrace_nspec_default = 1;
182 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
183 dtrace_optval_t dtrace_stackframes_default = 20;
184 dtrace_optval_t dtrace_ustackframes_default = 20;
185 dtrace_optval_t dtrace_jstackframes_default = 50;
186 dtrace_optval_t dtrace_jstackstrsize_default = 512;
187 int		dtrace_msgdsize_max = 128;
188 hrtime_t	dtrace_chill_max = MSEC2NSEC(500);		/* 500 ms */
189 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
190 int		dtrace_devdepth_max = 32;
191 int		dtrace_err_verbose;
192 hrtime_t	dtrace_deadman_interval = NANOSEC;
193 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
194 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
195 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
196 #ifndef illumos
197 int		dtrace_memstr_max = 4096;
198 #endif
199 
200 /*
201  * DTrace External Variables
202  *
203  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
204  * available to DTrace consumers via the backtick (`) syntax.  One of these,
205  * dtrace_zero, is made deliberately so:  it is provided as a source of
206  * well-known, zero-filled memory.  While this variable is not documented,
207  * it is used by some translators as an implementation detail.
208  */
209 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
210 
211 /*
212  * DTrace Internal Variables
213  */
214 #ifdef illumos
215 static dev_info_t	*dtrace_devi;		/* device info */
216 #endif
217 #ifdef illumos
218 static vmem_t		*dtrace_arena;		/* probe ID arena */
219 static vmem_t		*dtrace_minor;		/* minor number arena */
220 #else
221 static taskq_t		*dtrace_taskq;		/* task queue */
222 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
223 #endif
224 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
225 static int		dtrace_nprobes;		/* number of probes */
226 static dtrace_provider_t *dtrace_provider;	/* provider list */
227 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
228 static int		dtrace_opens;		/* number of opens */
229 static int		dtrace_helpers;		/* number of helpers */
230 static int		dtrace_getf;		/* number of unpriv getf()s */
231 #ifdef illumos
232 static void		*dtrace_softstate;	/* softstate pointer */
233 #endif
234 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
235 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
236 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
237 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
238 static int		dtrace_toxranges;	/* number of toxic ranges */
239 static int		dtrace_toxranges_max;	/* size of toxic range array */
240 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
241 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
242 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
243 static kthread_t	*dtrace_panicked;	/* panicking thread */
244 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
245 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
246 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
247 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
248 static dtrace_genid_t	dtrace_retained_gen;	/* current retained enab gen */
249 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
250 static int		dtrace_dynvar_failclean; /* dynvars failed to clean */
251 #ifndef illumos
252 static struct mtx	dtrace_unr_mtx;
253 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
254 static eventhandler_tag	dtrace_kld_load_tag;
255 static eventhandler_tag	dtrace_kld_unload_try_tag;
256 #endif
257 
258 /*
259  * DTrace Locking
260  * DTrace is protected by three (relatively coarse-grained) locks:
261  *
262  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
263  *     including enabling state, probes, ECBs, consumer state, helper state,
264  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
265  *     probe context is lock-free -- synchronization is handled via the
266  *     dtrace_sync() cross call mechanism.
267  *
268  * (2) dtrace_provider_lock is required when manipulating provider state, or
269  *     when provider state must be held constant.
270  *
271  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
272  *     when meta provider state must be held constant.
273  *
274  * The lock ordering between these three locks is dtrace_meta_lock before
275  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
276  * several places where dtrace_provider_lock is held by the framework as it
277  * calls into the providers -- which then call back into the framework,
278  * grabbing dtrace_lock.)
279  *
280  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
281  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
282  * role as a coarse-grained lock; it is acquired before both of these locks.
283  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
284  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
285  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
286  * acquired _between_ dtrace_provider_lock and dtrace_lock.
287  */
288 static kmutex_t		dtrace_lock;		/* probe state lock */
289 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
290 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
291 
292 #ifndef illumos
293 /* XXX FreeBSD hacks. */
294 #define cr_suid		cr_svuid
295 #define cr_sgid		cr_svgid
296 #define	ipaddr_t	in_addr_t
297 #define mod_modname	pathname
298 #define vuprintf	vprintf
299 #define ttoproc(_a)	((_a)->td_proc)
300 #define crgetzoneid(_a)	0
301 #define	NCPU		MAXCPU
302 #define SNOCD		0
303 #define CPU_ON_INTR(_a)	0
304 
305 #define PRIV_EFFECTIVE		(1 << 0)
306 #define PRIV_DTRACE_KERNEL	(1 << 1)
307 #define PRIV_DTRACE_PROC	(1 << 2)
308 #define PRIV_DTRACE_USER	(1 << 3)
309 #define PRIV_PROC_OWNER		(1 << 4)
310 #define PRIV_PROC_ZONE		(1 << 5)
311 #define PRIV_ALL		~0
312 
313 SYSCTL_DECL(_debug_dtrace);
314 SYSCTL_DECL(_kern_dtrace);
315 #endif
316 
317 #ifdef illumos
318 #define curcpu	CPU->cpu_id
319 #endif
320 
321 
322 /*
323  * DTrace Provider Variables
324  *
325  * These are the variables relating to DTrace as a provider (that is, the
326  * provider of the BEGIN, END, and ERROR probes).
327  */
328 static dtrace_pattr_t	dtrace_provider_attr = {
329 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
330 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
331 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
332 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
333 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
334 };
335 
336 static void
337 dtrace_nullop(void)
338 {}
339 
340 static dtrace_pops_t	dtrace_provider_ops = {
341 	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
342 	(void (*)(void *, modctl_t *))dtrace_nullop,
343 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
344 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
345 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
346 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
347 	NULL,
348 	NULL,
349 	NULL,
350 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
351 };
352 
353 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
354 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
355 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
356 
357 /*
358  * DTrace Helper Tracing Variables
359  *
360  * These variables should be set dynamically to enable helper tracing.  The
361  * only variables that should be set are dtrace_helptrace_enable (which should
362  * be set to a non-zero value to allocate helper tracing buffers on the next
363  * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
364  * non-zero value to deallocate helper tracing buffers on the next close of
365  * /dev/dtrace).  When (and only when) helper tracing is disabled, the
366  * buffer size may also be set via dtrace_helptrace_bufsize.
367  */
368 int			dtrace_helptrace_enable = 0;
369 int			dtrace_helptrace_disable = 0;
370 int			dtrace_helptrace_bufsize = 16 * 1024 * 1024;
371 uint32_t		dtrace_helptrace_nlocals;
372 static dtrace_helptrace_t *dtrace_helptrace_buffer;
373 static uint32_t		dtrace_helptrace_next = 0;
374 static int		dtrace_helptrace_wrapped = 0;
375 
376 /*
377  * DTrace Error Hashing
378  *
379  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
380  * table.  This is very useful for checking coverage of tests that are
381  * expected to induce DIF or DOF processing errors, and may be useful for
382  * debugging problems in the DIF code generator or in DOF generation .  The
383  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
384  */
385 #ifdef DEBUG
386 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
387 static const char *dtrace_errlast;
388 static kthread_t *dtrace_errthread;
389 static kmutex_t dtrace_errlock;
390 #endif
391 
392 /*
393  * DTrace Macros and Constants
394  *
395  * These are various macros that are useful in various spots in the
396  * implementation, along with a few random constants that have no meaning
397  * outside of the implementation.  There is no real structure to this cpp
398  * mishmash -- but is there ever?
399  */
400 #define	DTRACE_HASHSTR(hash, probe)	\
401 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
402 
403 #define	DTRACE_HASHNEXT(hash, probe)	\
404 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
405 
406 #define	DTRACE_HASHPREV(hash, probe)	\
407 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
408 
409 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
410 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
411 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
412 
413 #define	DTRACE_AGGHASHSIZE_SLEW		17
414 
415 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
416 
417 /*
418  * The key for a thread-local variable consists of the lower 61 bits of the
419  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
420  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
421  * equal to a variable identifier.  This is necessary (but not sufficient) to
422  * assure that global associative arrays never collide with thread-local
423  * variables.  To guarantee that they cannot collide, we must also define the
424  * order for keying dynamic variables.  That order is:
425  *
426  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
427  *
428  * Because the variable-key and the tls-key are in orthogonal spaces, there is
429  * no way for a global variable key signature to match a thread-local key
430  * signature.
431  */
432 #ifdef illumos
433 #define	DTRACE_TLS_THRKEY(where) { \
434 	uint_t intr = 0; \
435 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
436 	for (; actv; actv >>= 1) \
437 		intr++; \
438 	ASSERT(intr < (1 << 3)); \
439 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
440 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
441 }
442 #else
443 #define	DTRACE_TLS_THRKEY(where) { \
444 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
445 	uint_t intr = 0; \
446 	uint_t actv = _c->cpu_intr_actv; \
447 	for (; actv; actv >>= 1) \
448 		intr++; \
449 	ASSERT(intr < (1 << 3)); \
450 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
451 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
452 }
453 #endif
454 
455 #define	DT_BSWAP_8(x)	((x) & 0xff)
456 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
457 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
458 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
459 
460 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
461 
462 #define	DTRACE_STORE(type, tomax, offset, what) \
463 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
464 
465 #ifndef __x86
466 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
467 	if (addr & (size - 1)) {					\
468 		*flags |= CPU_DTRACE_BADALIGN;				\
469 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
470 		return (0);						\
471 	}
472 #else
473 #define	DTRACE_ALIGNCHECK(addr, size, flags)
474 #endif
475 
476 /*
477  * Test whether a range of memory starting at testaddr of size testsz falls
478  * within the range of memory described by addr, sz.  We take care to avoid
479  * problems with overflow and underflow of the unsigned quantities, and
480  * disallow all negative sizes.  Ranges of size 0 are allowed.
481  */
482 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
483 	((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
484 	(testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
485 	(testaddr) + (testsz) >= (testaddr))
486 
487 #define	DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz)		\
488 do {									\
489 	if ((remp) != NULL) {						\
490 		*(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr);	\
491 	}								\
492 _NOTE(CONSTCOND) } while (0)
493 
494 
495 /*
496  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
497  * alloc_sz on the righthand side of the comparison in order to avoid overflow
498  * or underflow in the comparison with it.  This is simpler than the INRANGE
499  * check above, because we know that the dtms_scratch_ptr is valid in the
500  * range.  Allocations of size zero are allowed.
501  */
502 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
503 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
504 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
505 
506 #define	DTRACE_LOADFUNC(bits)						\
507 /*CSTYLED*/								\
508 uint##bits##_t								\
509 dtrace_load##bits(uintptr_t addr)					\
510 {									\
511 	size_t size = bits / NBBY;					\
512 	/*CSTYLED*/							\
513 	uint##bits##_t rval;						\
514 	int i;								\
515 	volatile uint16_t *flags = (volatile uint16_t *)		\
516 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
517 									\
518 	DTRACE_ALIGNCHECK(addr, size, flags);				\
519 									\
520 	for (i = 0; i < dtrace_toxranges; i++) {			\
521 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
522 			continue;					\
523 									\
524 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
525 			continue;					\
526 									\
527 		/*							\
528 		 * This address falls within a toxic region; return 0.	\
529 		 */							\
530 		*flags |= CPU_DTRACE_BADADDR;				\
531 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
532 		return (0);						\
533 	}								\
534 									\
535 	*flags |= CPU_DTRACE_NOFAULT;					\
536 	/*CSTYLED*/							\
537 	rval = *((volatile uint##bits##_t *)addr);			\
538 	*flags &= ~CPU_DTRACE_NOFAULT;					\
539 									\
540 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
541 }
542 
543 #ifdef _LP64
544 #define	dtrace_loadptr	dtrace_load64
545 #else
546 #define	dtrace_loadptr	dtrace_load32
547 #endif
548 
549 #define	DTRACE_DYNHASH_FREE	0
550 #define	DTRACE_DYNHASH_SINK	1
551 #define	DTRACE_DYNHASH_VALID	2
552 
553 #define	DTRACE_MATCH_NEXT	0
554 #define	DTRACE_MATCH_DONE	1
555 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
556 #define	DTRACE_STATE_ALIGN	64
557 
558 #define	DTRACE_FLAGS2FLT(flags)						\
559 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
560 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
561 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
562 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
563 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
564 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
565 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
566 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
567 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
568 	DTRACEFLT_UNKNOWN)
569 
570 #define	DTRACEACT_ISSTRING(act)						\
571 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
572 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
573 
574 /* Function prototype definitions: */
575 static size_t dtrace_strlen(const char *, size_t);
576 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
577 static void dtrace_enabling_provide(dtrace_provider_t *);
578 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
579 static void dtrace_enabling_matchall(void);
580 static void dtrace_enabling_reap(void);
581 static dtrace_state_t *dtrace_anon_grab(void);
582 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
583     dtrace_state_t *, uint64_t, uint64_t);
584 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
585 static void dtrace_buffer_drop(dtrace_buffer_t *);
586 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
587 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
588     dtrace_state_t *, dtrace_mstate_t *);
589 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
590     dtrace_optval_t);
591 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
592 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
593 uint16_t dtrace_load16(uintptr_t);
594 uint32_t dtrace_load32(uintptr_t);
595 uint64_t dtrace_load64(uintptr_t);
596 uint8_t dtrace_load8(uintptr_t);
597 void dtrace_dynvar_clean(dtrace_dstate_t *);
598 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
599     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
600 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
601 static int dtrace_priv_proc(dtrace_state_t *);
602 static void dtrace_getf_barrier(void);
603 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
604     dtrace_mstate_t *, dtrace_vstate_t *);
605 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
606     dtrace_mstate_t *, dtrace_vstate_t *);
607 
608 /*
609  * DTrace Probe Context Functions
610  *
611  * These functions are called from probe context.  Because probe context is
612  * any context in which C may be called, arbitrarily locks may be held,
613  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
614  * As a result, functions called from probe context may only call other DTrace
615  * support functions -- they may not interact at all with the system at large.
616  * (Note that the ASSERT macro is made probe-context safe by redefining it in
617  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
618  * loads are to be performed from probe context, they _must_ be in terms of
619  * the safe dtrace_load*() variants.
620  *
621  * Some functions in this block are not actually called from probe context;
622  * for these functions, there will be a comment above the function reading
623  * "Note:  not called from probe context."
624  */
625 void
626 dtrace_panic(const char *format, ...)
627 {
628 	va_list alist;
629 
630 	va_start(alist, format);
631 #ifdef __FreeBSD__
632 	vpanic(format, alist);
633 #else
634 	dtrace_vpanic(format, alist);
635 #endif
636 	va_end(alist);
637 }
638 
639 int
640 dtrace_assfail(const char *a, const char *f, int l)
641 {
642 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
643 
644 	/*
645 	 * We just need something here that even the most clever compiler
646 	 * cannot optimize away.
647 	 */
648 	return (a[(uintptr_t)f]);
649 }
650 
651 /*
652  * Atomically increment a specified error counter from probe context.
653  */
654 static void
655 dtrace_error(uint32_t *counter)
656 {
657 	/*
658 	 * Most counters stored to in probe context are per-CPU counters.
659 	 * However, there are some error conditions that are sufficiently
660 	 * arcane that they don't merit per-CPU storage.  If these counters
661 	 * are incremented concurrently on different CPUs, scalability will be
662 	 * adversely affected -- but we don't expect them to be white-hot in a
663 	 * correctly constructed enabling...
664 	 */
665 	uint32_t oval, nval;
666 
667 	do {
668 		oval = *counter;
669 
670 		if ((nval = oval + 1) == 0) {
671 			/*
672 			 * If the counter would wrap, set it to 1 -- assuring
673 			 * that the counter is never zero when we have seen
674 			 * errors.  (The counter must be 32-bits because we
675 			 * aren't guaranteed a 64-bit compare&swap operation.)
676 			 * To save this code both the infamy of being fingered
677 			 * by a priggish news story and the indignity of being
678 			 * the target of a neo-puritan witch trial, we're
679 			 * carefully avoiding any colorful description of the
680 			 * likelihood of this condition -- but suffice it to
681 			 * say that it is only slightly more likely than the
682 			 * overflow of predicate cache IDs, as discussed in
683 			 * dtrace_predicate_create().
684 			 */
685 			nval = 1;
686 		}
687 	} while (dtrace_cas32(counter, oval, nval) != oval);
688 }
689 
690 /*
691  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
692  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
693  */
694 /* BEGIN CSTYLED */
695 DTRACE_LOADFUNC(8)
696 DTRACE_LOADFUNC(16)
697 DTRACE_LOADFUNC(32)
698 DTRACE_LOADFUNC(64)
699 /* END CSTYLED */
700 
701 static int
702 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
703 {
704 	if (dest < mstate->dtms_scratch_base)
705 		return (0);
706 
707 	if (dest + size < dest)
708 		return (0);
709 
710 	if (dest + size > mstate->dtms_scratch_ptr)
711 		return (0);
712 
713 	return (1);
714 }
715 
716 static int
717 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
718     dtrace_statvar_t **svars, int nsvars)
719 {
720 	int i;
721 	size_t maxglobalsize, maxlocalsize;
722 
723 	if (nsvars == 0)
724 		return (0);
725 
726 	maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
727 	maxlocalsize = maxglobalsize * NCPU;
728 
729 	for (i = 0; i < nsvars; i++) {
730 		dtrace_statvar_t *svar = svars[i];
731 		uint8_t scope;
732 		size_t size;
733 
734 		if (svar == NULL || (size = svar->dtsv_size) == 0)
735 			continue;
736 
737 		scope = svar->dtsv_var.dtdv_scope;
738 
739 		/*
740 		 * We verify that our size is valid in the spirit of providing
741 		 * defense in depth:  we want to prevent attackers from using
742 		 * DTrace to escalate an orthogonal kernel heap corruption bug
743 		 * into the ability to store to arbitrary locations in memory.
744 		 */
745 		VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
746 		    (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
747 
748 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
749 		    svar->dtsv_size)) {
750 			DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
751 			    svar->dtsv_size);
752 			return (1);
753 		}
754 	}
755 
756 	return (0);
757 }
758 
759 /*
760  * Check to see if the address is within a memory region to which a store may
761  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
762  * region.  The caller of dtrace_canstore() is responsible for performing any
763  * alignment checks that are needed before stores are actually executed.
764  */
765 static int
766 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
767     dtrace_vstate_t *vstate)
768 {
769 	return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
770 }
771 
772 /*
773  * Implementation of dtrace_canstore which communicates the upper bound of the
774  * allowed memory region.
775  */
776 static int
777 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
778     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
779 {
780 	/*
781 	 * First, check to see if the address is in scratch space...
782 	 */
783 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
784 	    mstate->dtms_scratch_size)) {
785 		DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
786 		    mstate->dtms_scratch_size);
787 		return (1);
788 	}
789 
790 	/*
791 	 * Now check to see if it's a dynamic variable.  This check will pick
792 	 * up both thread-local variables and any global dynamically-allocated
793 	 * variables.
794 	 */
795 	if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
796 	    vstate->dtvs_dynvars.dtds_size)) {
797 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
798 		uintptr_t base = (uintptr_t)dstate->dtds_base +
799 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
800 		uintptr_t chunkoffs;
801 		dtrace_dynvar_t *dvar;
802 
803 		/*
804 		 * Before we assume that we can store here, we need to make
805 		 * sure that it isn't in our metadata -- storing to our
806 		 * dynamic variable metadata would corrupt our state.  For
807 		 * the range to not include any dynamic variable metadata,
808 		 * it must:
809 		 *
810 		 *	(1) Start above the hash table that is at the base of
811 		 *	the dynamic variable space
812 		 *
813 		 *	(2) Have a starting chunk offset that is beyond the
814 		 *	dtrace_dynvar_t that is at the base of every chunk
815 		 *
816 		 *	(3) Not span a chunk boundary
817 		 *
818 		 *	(4) Not be in the tuple space of a dynamic variable
819 		 *
820 		 */
821 		if (addr < base)
822 			return (0);
823 
824 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
825 
826 		if (chunkoffs < sizeof (dtrace_dynvar_t))
827 			return (0);
828 
829 		if (chunkoffs + sz > dstate->dtds_chunksize)
830 			return (0);
831 
832 		dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
833 
834 		if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
835 			return (0);
836 
837 		if (chunkoffs < sizeof (dtrace_dynvar_t) +
838 		    ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
839 			return (0);
840 
841 		DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
842 		return (1);
843 	}
844 
845 	/*
846 	 * Finally, check the static local and global variables.  These checks
847 	 * take the longest, so we perform them last.
848 	 */
849 	if (dtrace_canstore_statvar(addr, sz, remain,
850 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
851 		return (1);
852 
853 	if (dtrace_canstore_statvar(addr, sz, remain,
854 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
855 		return (1);
856 
857 	return (0);
858 }
859 
860 
861 /*
862  * Convenience routine to check to see if the address is within a memory
863  * region in which a load may be issued given the user's privilege level;
864  * if not, it sets the appropriate error flags and loads 'addr' into the
865  * illegal value slot.
866  *
867  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
868  * appropriate memory access protection.
869  */
870 static int
871 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
872     dtrace_vstate_t *vstate)
873 {
874 	return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
875 }
876 
877 /*
878  * Implementation of dtrace_canload which communicates the uppoer bound of the
879  * allowed memory region.
880  */
881 static int
882 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
883     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
884 {
885 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
886 	file_t *fp;
887 
888 	/*
889 	 * If we hold the privilege to read from kernel memory, then
890 	 * everything is readable.
891 	 */
892 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
893 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
894 		return (1);
895 	}
896 
897 	/*
898 	 * You can obviously read that which you can store.
899 	 */
900 	if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
901 		return (1);
902 
903 	/*
904 	 * We're allowed to read from our own string table.
905 	 */
906 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
907 	    mstate->dtms_difo->dtdo_strlen)) {
908 		DTRACE_RANGE_REMAIN(remain, addr,
909 		    mstate->dtms_difo->dtdo_strtab,
910 		    mstate->dtms_difo->dtdo_strlen);
911 		return (1);
912 	}
913 
914 	if (vstate->dtvs_state != NULL &&
915 	    dtrace_priv_proc(vstate->dtvs_state)) {
916 		proc_t *p;
917 
918 		/*
919 		 * When we have privileges to the current process, there are
920 		 * several context-related kernel structures that are safe to
921 		 * read, even absent the privilege to read from kernel memory.
922 		 * These reads are safe because these structures contain only
923 		 * state that (1) we're permitted to read, (2) is harmless or
924 		 * (3) contains pointers to additional kernel state that we're
925 		 * not permitted to read (and as such, do not present an
926 		 * opportunity for privilege escalation).  Finally (and
927 		 * critically), because of the nature of their relation with
928 		 * the current thread context, the memory associated with these
929 		 * structures cannot change over the duration of probe context,
930 		 * and it is therefore impossible for this memory to be
931 		 * deallocated and reallocated as something else while it's
932 		 * being operated upon.
933 		 */
934 		if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
935 			DTRACE_RANGE_REMAIN(remain, addr, curthread,
936 			    sizeof (kthread_t));
937 			return (1);
938 		}
939 
940 		if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
941 		    sz, curthread->t_procp, sizeof (proc_t))) {
942 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
943 			    sizeof (proc_t));
944 			return (1);
945 		}
946 
947 		if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
948 		    curthread->t_cred, sizeof (cred_t))) {
949 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
950 			    sizeof (cred_t));
951 			return (1);
952 		}
953 
954 #ifdef illumos
955 		if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
956 		    &(p->p_pidp->pid_id), sizeof (pid_t))) {
957 			DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
958 			    sizeof (pid_t));
959 			return (1);
960 		}
961 
962 		if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
963 		    curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
964 			DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
965 			    offsetof(cpu_t, cpu_pause_thread));
966 			return (1);
967 		}
968 #endif
969 	}
970 
971 	if ((fp = mstate->dtms_getf) != NULL) {
972 		uintptr_t psz = sizeof (void *);
973 		vnode_t *vp;
974 		vnodeops_t *op;
975 
976 		/*
977 		 * When getf() returns a file_t, the enabling is implicitly
978 		 * granted the (transient) right to read the returned file_t
979 		 * as well as the v_path and v_op->vnop_name of the underlying
980 		 * vnode.  These accesses are allowed after a successful
981 		 * getf() because the members that they refer to cannot change
982 		 * once set -- and the barrier logic in the kernel's closef()
983 		 * path assures that the file_t and its referenced vode_t
984 		 * cannot themselves be stale (that is, it impossible for
985 		 * either dtms_getf itself or its f_vnode member to reference
986 		 * freed memory).
987 		 */
988 		if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
989 			DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
990 			return (1);
991 		}
992 
993 		if ((vp = fp->f_vnode) != NULL) {
994 			size_t slen;
995 #ifdef illumos
996 			if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
997 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
998 				    psz);
999 				return (1);
1000 			}
1001 			slen = strlen(vp->v_path) + 1;
1002 			if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
1003 				DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
1004 				    slen);
1005 				return (1);
1006 			}
1007 #endif
1008 
1009 			if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
1010 				DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
1011 				    psz);
1012 				return (1);
1013 			}
1014 
1015 #ifdef illumos
1016 			if ((op = vp->v_op) != NULL &&
1017 			    DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
1018 				DTRACE_RANGE_REMAIN(remain, addr,
1019 				    &op->vnop_name, psz);
1020 				return (1);
1021 			}
1022 
1023 			if (op != NULL && op->vnop_name != NULL &&
1024 			    DTRACE_INRANGE(addr, sz, op->vnop_name,
1025 			    (slen = strlen(op->vnop_name) + 1))) {
1026 				DTRACE_RANGE_REMAIN(remain, addr,
1027 				    op->vnop_name, slen);
1028 				return (1);
1029 			}
1030 #endif
1031 		}
1032 	}
1033 
1034 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1035 	*illval = addr;
1036 	return (0);
1037 }
1038 
1039 /*
1040  * Convenience routine to check to see if a given string is within a memory
1041  * region in which a load may be issued given the user's privilege level;
1042  * this exists so that we don't need to issue unnecessary dtrace_strlen()
1043  * calls in the event that the user has all privileges.
1044  */
1045 static int
1046 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
1047     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1048 {
1049 	size_t rsize;
1050 
1051 	/*
1052 	 * If we hold the privilege to read from kernel memory, then
1053 	 * everything is readable.
1054 	 */
1055 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1056 		DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
1057 		return (1);
1058 	}
1059 
1060 	/*
1061 	 * Even if the caller is uninterested in querying the remaining valid
1062 	 * range, it is required to ensure that the access is allowed.
1063 	 */
1064 	if (remain == NULL) {
1065 		remain = &rsize;
1066 	}
1067 	if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
1068 		size_t strsz;
1069 		/*
1070 		 * Perform the strlen after determining the length of the
1071 		 * memory region which is accessible.  This prevents timing
1072 		 * information from being used to find NULs in memory which is
1073 		 * not accessible to the caller.
1074 		 */
1075 		strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
1076 		    MIN(sz, *remain));
1077 		if (strsz <= *remain) {
1078 			return (1);
1079 		}
1080 	}
1081 
1082 	return (0);
1083 }
1084 
1085 /*
1086  * Convenience routine to check to see if a given variable is within a memory
1087  * region in which a load may be issued given the user's privilege level.
1088  */
1089 static int
1090 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
1091     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1092 {
1093 	size_t sz;
1094 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1095 
1096 	/*
1097 	 * Calculate the max size before performing any checks since even
1098 	 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1099 	 * return the max length via 'remain'.
1100 	 */
1101 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1102 		dtrace_state_t *state = vstate->dtvs_state;
1103 
1104 		if (state != NULL) {
1105 			sz = state->dts_options[DTRACEOPT_STRSIZE];
1106 		} else {
1107 			/*
1108 			 * In helper context, we have a NULL state; fall back
1109 			 * to using the system-wide default for the string size
1110 			 * in this case.
1111 			 */
1112 			sz = dtrace_strsize_default;
1113 		}
1114 	} else {
1115 		sz = type->dtdt_size;
1116 	}
1117 
1118 	/*
1119 	 * If we hold the privilege to read from kernel memory, then
1120 	 * everything is readable.
1121 	 */
1122 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1123 		DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1124 		return (1);
1125 	}
1126 
1127 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1128 		return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1129 		    vstate));
1130 	}
1131 	return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1132 	    vstate));
1133 }
1134 
1135 /*
1136  * Convert a string to a signed integer using safe loads.
1137  *
1138  * NOTE: This function uses various macros from strtolctype.h to manipulate
1139  * digit values, etc -- these have all been checked to ensure they make
1140  * no additional function calls.
1141  */
1142 static int64_t
1143 dtrace_strtoll(char *input, int base, size_t limit)
1144 {
1145 	uintptr_t pos = (uintptr_t)input;
1146 	int64_t val = 0;
1147 	int x;
1148 	boolean_t neg = B_FALSE;
1149 	char c, cc, ccc;
1150 	uintptr_t end = pos + limit;
1151 
1152 	/*
1153 	 * Consume any whitespace preceding digits.
1154 	 */
1155 	while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1156 		pos++;
1157 
1158 	/*
1159 	 * Handle an explicit sign if one is present.
1160 	 */
1161 	if (c == '-' || c == '+') {
1162 		if (c == '-')
1163 			neg = B_TRUE;
1164 		c = dtrace_load8(++pos);
1165 	}
1166 
1167 	/*
1168 	 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1169 	 * if present.
1170 	 */
1171 	if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1172 	    cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1173 		pos += 2;
1174 		c = ccc;
1175 	}
1176 
1177 	/*
1178 	 * Read in contiguous digits until the first non-digit character.
1179 	 */
1180 	for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1181 	    c = dtrace_load8(++pos))
1182 		val = val * base + x;
1183 
1184 	return (neg ? -val : val);
1185 }
1186 
1187 /*
1188  * Compare two strings using safe loads.
1189  */
1190 static int
1191 dtrace_strncmp(char *s1, char *s2, size_t limit)
1192 {
1193 	uint8_t c1, c2;
1194 	volatile uint16_t *flags;
1195 
1196 	if (s1 == s2 || limit == 0)
1197 		return (0);
1198 
1199 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1200 
1201 	do {
1202 		if (s1 == NULL) {
1203 			c1 = '\0';
1204 		} else {
1205 			c1 = dtrace_load8((uintptr_t)s1++);
1206 		}
1207 
1208 		if (s2 == NULL) {
1209 			c2 = '\0';
1210 		} else {
1211 			c2 = dtrace_load8((uintptr_t)s2++);
1212 		}
1213 
1214 		if (c1 != c2)
1215 			return (c1 - c2);
1216 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1217 
1218 	return (0);
1219 }
1220 
1221 /*
1222  * Compute strlen(s) for a string using safe memory accesses.  The additional
1223  * len parameter is used to specify a maximum length to ensure completion.
1224  */
1225 static size_t
1226 dtrace_strlen(const char *s, size_t lim)
1227 {
1228 	uint_t len;
1229 
1230 	for (len = 0; len != lim; len++) {
1231 		if (dtrace_load8((uintptr_t)s++) == '\0')
1232 			break;
1233 	}
1234 
1235 	return (len);
1236 }
1237 
1238 /*
1239  * Check if an address falls within a toxic region.
1240  */
1241 static int
1242 dtrace_istoxic(uintptr_t kaddr, size_t size)
1243 {
1244 	uintptr_t taddr, tsize;
1245 	int i;
1246 
1247 	for (i = 0; i < dtrace_toxranges; i++) {
1248 		taddr = dtrace_toxrange[i].dtt_base;
1249 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
1250 
1251 		if (kaddr - taddr < tsize) {
1252 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1253 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1254 			return (1);
1255 		}
1256 
1257 		if (taddr - kaddr < size) {
1258 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1259 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1260 			return (1);
1261 		}
1262 	}
1263 
1264 	return (0);
1265 }
1266 
1267 /*
1268  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
1269  * memory specified by the DIF program.  The dst is assumed to be safe memory
1270  * that we can store to directly because it is managed by DTrace.  As with
1271  * standard bcopy, overlapping copies are handled properly.
1272  */
1273 static void
1274 dtrace_bcopy(const void *src, void *dst, size_t len)
1275 {
1276 	if (len != 0) {
1277 		uint8_t *s1 = dst;
1278 		const uint8_t *s2 = src;
1279 
1280 		if (s1 <= s2) {
1281 			do {
1282 				*s1++ = dtrace_load8((uintptr_t)s2++);
1283 			} while (--len != 0);
1284 		} else {
1285 			s2 += len;
1286 			s1 += len;
1287 
1288 			do {
1289 				*--s1 = dtrace_load8((uintptr_t)--s2);
1290 			} while (--len != 0);
1291 		}
1292 	}
1293 }
1294 
1295 /*
1296  * Copy src to dst using safe memory accesses, up to either the specified
1297  * length, or the point that a nul byte is encountered.  The src is assumed to
1298  * be unsafe memory specified by the DIF program.  The dst is assumed to be
1299  * safe memory that we can store to directly because it is managed by DTrace.
1300  * Unlike dtrace_bcopy(), overlapping regions are not handled.
1301  */
1302 static void
1303 dtrace_strcpy(const void *src, void *dst, size_t len)
1304 {
1305 	if (len != 0) {
1306 		uint8_t *s1 = dst, c;
1307 		const uint8_t *s2 = src;
1308 
1309 		do {
1310 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
1311 		} while (--len != 0 && c != '\0');
1312 	}
1313 }
1314 
1315 /*
1316  * Copy src to dst, deriving the size and type from the specified (BYREF)
1317  * variable type.  The src is assumed to be unsafe memory specified by the DIF
1318  * program.  The dst is assumed to be DTrace variable memory that is of the
1319  * specified type; we assume that we can store to directly.
1320  */
1321 static void
1322 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1323 {
1324 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1325 
1326 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1327 		dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1328 	} else {
1329 		dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1330 	}
1331 }
1332 
1333 /*
1334  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1335  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1336  * safe memory that we can access directly because it is managed by DTrace.
1337  */
1338 static int
1339 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1340 {
1341 	volatile uint16_t *flags;
1342 
1343 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1344 
1345 	if (s1 == s2)
1346 		return (0);
1347 
1348 	if (s1 == NULL || s2 == NULL)
1349 		return (1);
1350 
1351 	if (s1 != s2 && len != 0) {
1352 		const uint8_t *ps1 = s1;
1353 		const uint8_t *ps2 = s2;
1354 
1355 		do {
1356 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1357 				return (1);
1358 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1359 	}
1360 	return (0);
1361 }
1362 
1363 /*
1364  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1365  * is for safe DTrace-managed memory only.
1366  */
1367 static void
1368 dtrace_bzero(void *dst, size_t len)
1369 {
1370 	uchar_t *cp;
1371 
1372 	for (cp = dst; len != 0; len--)
1373 		*cp++ = 0;
1374 }
1375 
1376 static void
1377 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1378 {
1379 	uint64_t result[2];
1380 
1381 	result[0] = addend1[0] + addend2[0];
1382 	result[1] = addend1[1] + addend2[1] +
1383 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1384 
1385 	sum[0] = result[0];
1386 	sum[1] = result[1];
1387 }
1388 
1389 /*
1390  * Shift the 128-bit value in a by b. If b is positive, shift left.
1391  * If b is negative, shift right.
1392  */
1393 static void
1394 dtrace_shift_128(uint64_t *a, int b)
1395 {
1396 	uint64_t mask;
1397 
1398 	if (b == 0)
1399 		return;
1400 
1401 	if (b < 0) {
1402 		b = -b;
1403 		if (b >= 64) {
1404 			a[0] = a[1] >> (b - 64);
1405 			a[1] = 0;
1406 		} else {
1407 			a[0] >>= b;
1408 			mask = 1LL << (64 - b);
1409 			mask -= 1;
1410 			a[0] |= ((a[1] & mask) << (64 - b));
1411 			a[1] >>= b;
1412 		}
1413 	} else {
1414 		if (b >= 64) {
1415 			a[1] = a[0] << (b - 64);
1416 			a[0] = 0;
1417 		} else {
1418 			a[1] <<= b;
1419 			mask = a[0] >> (64 - b);
1420 			a[1] |= mask;
1421 			a[0] <<= b;
1422 		}
1423 	}
1424 }
1425 
1426 /*
1427  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1428  * use native multiplication on those, and then re-combine into the
1429  * resulting 128-bit value.
1430  *
1431  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1432  *     hi1 * hi2 << 64 +
1433  *     hi1 * lo2 << 32 +
1434  *     hi2 * lo1 << 32 +
1435  *     lo1 * lo2
1436  */
1437 static void
1438 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1439 {
1440 	uint64_t hi1, hi2, lo1, lo2;
1441 	uint64_t tmp[2];
1442 
1443 	hi1 = factor1 >> 32;
1444 	hi2 = factor2 >> 32;
1445 
1446 	lo1 = factor1 & DT_MASK_LO;
1447 	lo2 = factor2 & DT_MASK_LO;
1448 
1449 	product[0] = lo1 * lo2;
1450 	product[1] = hi1 * hi2;
1451 
1452 	tmp[0] = hi1 * lo2;
1453 	tmp[1] = 0;
1454 	dtrace_shift_128(tmp, 32);
1455 	dtrace_add_128(product, tmp, product);
1456 
1457 	tmp[0] = hi2 * lo1;
1458 	tmp[1] = 0;
1459 	dtrace_shift_128(tmp, 32);
1460 	dtrace_add_128(product, tmp, product);
1461 }
1462 
1463 /*
1464  * This privilege check should be used by actions and subroutines to
1465  * verify that the user credentials of the process that enabled the
1466  * invoking ECB match the target credentials
1467  */
1468 static int
1469 dtrace_priv_proc_common_user(dtrace_state_t *state)
1470 {
1471 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1472 
1473 	/*
1474 	 * We should always have a non-NULL state cred here, since if cred
1475 	 * is null (anonymous tracing), we fast-path bypass this routine.
1476 	 */
1477 	ASSERT(s_cr != NULL);
1478 
1479 	if ((cr = CRED()) != NULL &&
1480 	    s_cr->cr_uid == cr->cr_uid &&
1481 	    s_cr->cr_uid == cr->cr_ruid &&
1482 	    s_cr->cr_uid == cr->cr_suid &&
1483 	    s_cr->cr_gid == cr->cr_gid &&
1484 	    s_cr->cr_gid == cr->cr_rgid &&
1485 	    s_cr->cr_gid == cr->cr_sgid)
1486 		return (1);
1487 
1488 	return (0);
1489 }
1490 
1491 /*
1492  * This privilege check should be used by actions and subroutines to
1493  * verify that the zone of the process that enabled the invoking ECB
1494  * matches the target credentials
1495  */
1496 static int
1497 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1498 {
1499 #ifdef illumos
1500 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1501 
1502 	/*
1503 	 * We should always have a non-NULL state cred here, since if cred
1504 	 * is null (anonymous tracing), we fast-path bypass this routine.
1505 	 */
1506 	ASSERT(s_cr != NULL);
1507 
1508 	if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1509 		return (1);
1510 
1511 	return (0);
1512 #else
1513 	return (1);
1514 #endif
1515 }
1516 
1517 /*
1518  * This privilege check should be used by actions and subroutines to
1519  * verify that the process has not setuid or changed credentials.
1520  */
1521 static int
1522 dtrace_priv_proc_common_nocd(void)
1523 {
1524 	proc_t *proc;
1525 
1526 	if ((proc = ttoproc(curthread)) != NULL &&
1527 	    !(proc->p_flag & SNOCD))
1528 		return (1);
1529 
1530 	return (0);
1531 }
1532 
1533 static int
1534 dtrace_priv_proc_destructive(dtrace_state_t *state)
1535 {
1536 	int action = state->dts_cred.dcr_action;
1537 
1538 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1539 	    dtrace_priv_proc_common_zone(state) == 0)
1540 		goto bad;
1541 
1542 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1543 	    dtrace_priv_proc_common_user(state) == 0)
1544 		goto bad;
1545 
1546 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1547 	    dtrace_priv_proc_common_nocd() == 0)
1548 		goto bad;
1549 
1550 	return (1);
1551 
1552 bad:
1553 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1554 
1555 	return (0);
1556 }
1557 
1558 static int
1559 dtrace_priv_proc_control(dtrace_state_t *state)
1560 {
1561 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1562 		return (1);
1563 
1564 	if (dtrace_priv_proc_common_zone(state) &&
1565 	    dtrace_priv_proc_common_user(state) &&
1566 	    dtrace_priv_proc_common_nocd())
1567 		return (1);
1568 
1569 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1570 
1571 	return (0);
1572 }
1573 
1574 static int
1575 dtrace_priv_proc(dtrace_state_t *state)
1576 {
1577 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1578 		return (1);
1579 
1580 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1581 
1582 	return (0);
1583 }
1584 
1585 static int
1586 dtrace_priv_kernel(dtrace_state_t *state)
1587 {
1588 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1589 		return (1);
1590 
1591 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1592 
1593 	return (0);
1594 }
1595 
1596 static int
1597 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1598 {
1599 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1600 		return (1);
1601 
1602 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1603 
1604 	return (0);
1605 }
1606 
1607 /*
1608  * Determine if the dte_cond of the specified ECB allows for processing of
1609  * the current probe to continue.  Note that this routine may allow continued
1610  * processing, but with access(es) stripped from the mstate's dtms_access
1611  * field.
1612  */
1613 static int
1614 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1615     dtrace_ecb_t *ecb)
1616 {
1617 	dtrace_probe_t *probe = ecb->dte_probe;
1618 	dtrace_provider_t *prov = probe->dtpr_provider;
1619 	dtrace_pops_t *pops = &prov->dtpv_pops;
1620 	int mode = DTRACE_MODE_NOPRIV_DROP;
1621 
1622 	ASSERT(ecb->dte_cond);
1623 
1624 #ifdef illumos
1625 	if (pops->dtps_mode != NULL) {
1626 		mode = pops->dtps_mode(prov->dtpv_arg,
1627 		    probe->dtpr_id, probe->dtpr_arg);
1628 
1629 		ASSERT((mode & DTRACE_MODE_USER) ||
1630 		    (mode & DTRACE_MODE_KERNEL));
1631 		ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1632 		    (mode & DTRACE_MODE_NOPRIV_DROP));
1633 	}
1634 
1635 	/*
1636 	 * If the dte_cond bits indicate that this consumer is only allowed to
1637 	 * see user-mode firings of this probe, call the provider's dtps_mode()
1638 	 * entry point to check that the probe was fired while in a user
1639 	 * context.  If that's not the case, use the policy specified by the
1640 	 * provider to determine if we drop the probe or merely restrict
1641 	 * operation.
1642 	 */
1643 	if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1644 		ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1645 
1646 		if (!(mode & DTRACE_MODE_USER)) {
1647 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1648 				return (0);
1649 
1650 			mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1651 		}
1652 	}
1653 #endif
1654 
1655 	/*
1656 	 * This is more subtle than it looks. We have to be absolutely certain
1657 	 * that CRED() isn't going to change out from under us so it's only
1658 	 * legit to examine that structure if we're in constrained situations.
1659 	 * Currently, the only times we'll this check is if a non-super-user
1660 	 * has enabled the profile or syscall providers -- providers that
1661 	 * allow visibility of all processes. For the profile case, the check
1662 	 * above will ensure that we're examining a user context.
1663 	 */
1664 	if (ecb->dte_cond & DTRACE_COND_OWNER) {
1665 		cred_t *cr;
1666 		cred_t *s_cr = state->dts_cred.dcr_cred;
1667 		proc_t *proc;
1668 
1669 		ASSERT(s_cr != NULL);
1670 
1671 		if ((cr = CRED()) == NULL ||
1672 		    s_cr->cr_uid != cr->cr_uid ||
1673 		    s_cr->cr_uid != cr->cr_ruid ||
1674 		    s_cr->cr_uid != cr->cr_suid ||
1675 		    s_cr->cr_gid != cr->cr_gid ||
1676 		    s_cr->cr_gid != cr->cr_rgid ||
1677 		    s_cr->cr_gid != cr->cr_sgid ||
1678 		    (proc = ttoproc(curthread)) == NULL ||
1679 		    (proc->p_flag & SNOCD)) {
1680 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1681 				return (0);
1682 
1683 #ifdef illumos
1684 			mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1685 #endif
1686 		}
1687 	}
1688 
1689 #ifdef illumos
1690 	/*
1691 	 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1692 	 * in our zone, check to see if our mode policy is to restrict rather
1693 	 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1694 	 * and DTRACE_ACCESS_ARGS
1695 	 */
1696 	if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1697 		cred_t *cr;
1698 		cred_t *s_cr = state->dts_cred.dcr_cred;
1699 
1700 		ASSERT(s_cr != NULL);
1701 
1702 		if ((cr = CRED()) == NULL ||
1703 		    s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1704 			if (mode & DTRACE_MODE_NOPRIV_DROP)
1705 				return (0);
1706 
1707 			mstate->dtms_access &=
1708 			    ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1709 		}
1710 	}
1711 #endif
1712 
1713 	return (1);
1714 }
1715 
1716 /*
1717  * Note:  not called from probe context.  This function is called
1718  * asynchronously (and at a regular interval) from outside of probe context to
1719  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1720  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1721  */
1722 void
1723 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1724 {
1725 	dtrace_dynvar_t *dirty;
1726 	dtrace_dstate_percpu_t *dcpu;
1727 	dtrace_dynvar_t **rinsep;
1728 	int i, j, work = 0;
1729 
1730 	for (i = 0; i < NCPU; i++) {
1731 		dcpu = &dstate->dtds_percpu[i];
1732 		rinsep = &dcpu->dtdsc_rinsing;
1733 
1734 		/*
1735 		 * If the dirty list is NULL, there is no dirty work to do.
1736 		 */
1737 		if (dcpu->dtdsc_dirty == NULL)
1738 			continue;
1739 
1740 		if (dcpu->dtdsc_rinsing != NULL) {
1741 			/*
1742 			 * If the rinsing list is non-NULL, then it is because
1743 			 * this CPU was selected to accept another CPU's
1744 			 * dirty list -- and since that time, dirty buffers
1745 			 * have accumulated.  This is a highly unlikely
1746 			 * condition, but we choose to ignore the dirty
1747 			 * buffers -- they'll be picked up a future cleanse.
1748 			 */
1749 			continue;
1750 		}
1751 
1752 		if (dcpu->dtdsc_clean != NULL) {
1753 			/*
1754 			 * If the clean list is non-NULL, then we're in a
1755 			 * situation where a CPU has done deallocations (we
1756 			 * have a non-NULL dirty list) but no allocations (we
1757 			 * also have a non-NULL clean list).  We can't simply
1758 			 * move the dirty list into the clean list on this
1759 			 * CPU, yet we also don't want to allow this condition
1760 			 * to persist, lest a short clean list prevent a
1761 			 * massive dirty list from being cleaned (which in
1762 			 * turn could lead to otherwise avoidable dynamic
1763 			 * drops).  To deal with this, we look for some CPU
1764 			 * with a NULL clean list, NULL dirty list, and NULL
1765 			 * rinsing list -- and then we borrow this CPU to
1766 			 * rinse our dirty list.
1767 			 */
1768 			for (j = 0; j < NCPU; j++) {
1769 				dtrace_dstate_percpu_t *rinser;
1770 
1771 				rinser = &dstate->dtds_percpu[j];
1772 
1773 				if (rinser->dtdsc_rinsing != NULL)
1774 					continue;
1775 
1776 				if (rinser->dtdsc_dirty != NULL)
1777 					continue;
1778 
1779 				if (rinser->dtdsc_clean != NULL)
1780 					continue;
1781 
1782 				rinsep = &rinser->dtdsc_rinsing;
1783 				break;
1784 			}
1785 
1786 			if (j == NCPU) {
1787 				/*
1788 				 * We were unable to find another CPU that
1789 				 * could accept this dirty list -- we are
1790 				 * therefore unable to clean it now.
1791 				 */
1792 				dtrace_dynvar_failclean++;
1793 				continue;
1794 			}
1795 		}
1796 
1797 		work = 1;
1798 
1799 		/*
1800 		 * Atomically move the dirty list aside.
1801 		 */
1802 		do {
1803 			dirty = dcpu->dtdsc_dirty;
1804 
1805 			/*
1806 			 * Before we zap the dirty list, set the rinsing list.
1807 			 * (This allows for a potential assertion in
1808 			 * dtrace_dynvar():  if a free dynamic variable appears
1809 			 * on a hash chain, either the dirty list or the
1810 			 * rinsing list for some CPU must be non-NULL.)
1811 			 */
1812 			*rinsep = dirty;
1813 			dtrace_membar_producer();
1814 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1815 		    dirty, NULL) != dirty);
1816 	}
1817 
1818 	if (!work) {
1819 		/*
1820 		 * We have no work to do; we can simply return.
1821 		 */
1822 		return;
1823 	}
1824 
1825 	dtrace_sync();
1826 
1827 	for (i = 0; i < NCPU; i++) {
1828 		dcpu = &dstate->dtds_percpu[i];
1829 
1830 		if (dcpu->dtdsc_rinsing == NULL)
1831 			continue;
1832 
1833 		/*
1834 		 * We are now guaranteed that no hash chain contains a pointer
1835 		 * into this dirty list; we can make it clean.
1836 		 */
1837 		ASSERT(dcpu->dtdsc_clean == NULL);
1838 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1839 		dcpu->dtdsc_rinsing = NULL;
1840 	}
1841 
1842 	/*
1843 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1844 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1845 	 * This prevents a race whereby a CPU incorrectly decides that
1846 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1847 	 * after dtrace_dynvar_clean() has completed.
1848 	 */
1849 	dtrace_sync();
1850 
1851 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1852 }
1853 
1854 /*
1855  * Depending on the value of the op parameter, this function looks-up,
1856  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1857  * allocation is requested, this function will return a pointer to a
1858  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1859  * variable can be allocated.  If NULL is returned, the appropriate counter
1860  * will be incremented.
1861  */
1862 dtrace_dynvar_t *
1863 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1864     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1865     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1866 {
1867 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1868 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1869 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1870 	processorid_t me = curcpu, cpu = me;
1871 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1872 	size_t bucket, ksize;
1873 	size_t chunksize = dstate->dtds_chunksize;
1874 	uintptr_t kdata, lock, nstate;
1875 	uint_t i;
1876 
1877 	ASSERT(nkeys != 0);
1878 
1879 	/*
1880 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1881 	 * algorithm.  For the by-value portions, we perform the algorithm in
1882 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1883 	 * bit, and seems to have only a minute effect on distribution.  For
1884 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1885 	 * over each referenced byte.  It's painful to do this, but it's much
1886 	 * better than pathological hash distribution.  The efficacy of the
1887 	 * hashing algorithm (and a comparison with other algorithms) may be
1888 	 * found by running the ::dtrace_dynstat MDB dcmd.
1889 	 */
1890 	for (i = 0; i < nkeys; i++) {
1891 		if (key[i].dttk_size == 0) {
1892 			uint64_t val = key[i].dttk_value;
1893 
1894 			hashval += (val >> 48) & 0xffff;
1895 			hashval += (hashval << 10);
1896 			hashval ^= (hashval >> 6);
1897 
1898 			hashval += (val >> 32) & 0xffff;
1899 			hashval += (hashval << 10);
1900 			hashval ^= (hashval >> 6);
1901 
1902 			hashval += (val >> 16) & 0xffff;
1903 			hashval += (hashval << 10);
1904 			hashval ^= (hashval >> 6);
1905 
1906 			hashval += val & 0xffff;
1907 			hashval += (hashval << 10);
1908 			hashval ^= (hashval >> 6);
1909 		} else {
1910 			/*
1911 			 * This is incredibly painful, but it beats the hell
1912 			 * out of the alternative.
1913 			 */
1914 			uint64_t j, size = key[i].dttk_size;
1915 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1916 
1917 			if (!dtrace_canload(base, size, mstate, vstate))
1918 				break;
1919 
1920 			for (j = 0; j < size; j++) {
1921 				hashval += dtrace_load8(base + j);
1922 				hashval += (hashval << 10);
1923 				hashval ^= (hashval >> 6);
1924 			}
1925 		}
1926 	}
1927 
1928 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1929 		return (NULL);
1930 
1931 	hashval += (hashval << 3);
1932 	hashval ^= (hashval >> 11);
1933 	hashval += (hashval << 15);
1934 
1935 	/*
1936 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1937 	 * comes out to be one of our two sentinel hash values.  If this
1938 	 * actually happens, we set the hashval to be a value known to be a
1939 	 * non-sentinel value.
1940 	 */
1941 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1942 		hashval = DTRACE_DYNHASH_VALID;
1943 
1944 	/*
1945 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1946 	 * important here, tricks can be pulled to reduce it.  (However, it's
1947 	 * critical that hash collisions be kept to an absolute minimum;
1948 	 * they're much more painful than a divide.)  It's better to have a
1949 	 * solution that generates few collisions and still keeps things
1950 	 * relatively simple.
1951 	 */
1952 	bucket = hashval % dstate->dtds_hashsize;
1953 
1954 	if (op == DTRACE_DYNVAR_DEALLOC) {
1955 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1956 
1957 		for (;;) {
1958 			while ((lock = *lockp) & 1)
1959 				continue;
1960 
1961 			if (dtrace_casptr((volatile void *)lockp,
1962 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1963 				break;
1964 		}
1965 
1966 		dtrace_membar_producer();
1967 	}
1968 
1969 top:
1970 	prev = NULL;
1971 	lock = hash[bucket].dtdh_lock;
1972 
1973 	dtrace_membar_consumer();
1974 
1975 	start = hash[bucket].dtdh_chain;
1976 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1977 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1978 	    op != DTRACE_DYNVAR_DEALLOC));
1979 
1980 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1981 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1982 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1983 
1984 		if (dvar->dtdv_hashval != hashval) {
1985 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1986 				/*
1987 				 * We've reached the sink, and therefore the
1988 				 * end of the hash chain; we can kick out of
1989 				 * the loop knowing that we have seen a valid
1990 				 * snapshot of state.
1991 				 */
1992 				ASSERT(dvar->dtdv_next == NULL);
1993 				ASSERT(dvar == &dtrace_dynhash_sink);
1994 				break;
1995 			}
1996 
1997 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1998 				/*
1999 				 * We've gone off the rails:  somewhere along
2000 				 * the line, one of the members of this hash
2001 				 * chain was deleted.  Note that we could also
2002 				 * detect this by simply letting this loop run
2003 				 * to completion, as we would eventually hit
2004 				 * the end of the dirty list.  However, we
2005 				 * want to avoid running the length of the
2006 				 * dirty list unnecessarily (it might be quite
2007 				 * long), so we catch this as early as
2008 				 * possible by detecting the hash marker.  In
2009 				 * this case, we simply set dvar to NULL and
2010 				 * break; the conditional after the loop will
2011 				 * send us back to top.
2012 				 */
2013 				dvar = NULL;
2014 				break;
2015 			}
2016 
2017 			goto next;
2018 		}
2019 
2020 		if (dtuple->dtt_nkeys != nkeys)
2021 			goto next;
2022 
2023 		for (i = 0; i < nkeys; i++, dkey++) {
2024 			if (dkey->dttk_size != key[i].dttk_size)
2025 				goto next; /* size or type mismatch */
2026 
2027 			if (dkey->dttk_size != 0) {
2028 				if (dtrace_bcmp(
2029 				    (void *)(uintptr_t)key[i].dttk_value,
2030 				    (void *)(uintptr_t)dkey->dttk_value,
2031 				    dkey->dttk_size))
2032 					goto next;
2033 			} else {
2034 				if (dkey->dttk_value != key[i].dttk_value)
2035 					goto next;
2036 			}
2037 		}
2038 
2039 		if (op != DTRACE_DYNVAR_DEALLOC)
2040 			return (dvar);
2041 
2042 		ASSERT(dvar->dtdv_next == NULL ||
2043 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
2044 
2045 		if (prev != NULL) {
2046 			ASSERT(hash[bucket].dtdh_chain != dvar);
2047 			ASSERT(start != dvar);
2048 			ASSERT(prev->dtdv_next == dvar);
2049 			prev->dtdv_next = dvar->dtdv_next;
2050 		} else {
2051 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
2052 			    start, dvar->dtdv_next) != start) {
2053 				/*
2054 				 * We have failed to atomically swing the
2055 				 * hash table head pointer, presumably because
2056 				 * of a conflicting allocation on another CPU.
2057 				 * We need to reread the hash chain and try
2058 				 * again.
2059 				 */
2060 				goto top;
2061 			}
2062 		}
2063 
2064 		dtrace_membar_producer();
2065 
2066 		/*
2067 		 * Now set the hash value to indicate that it's free.
2068 		 */
2069 		ASSERT(hash[bucket].dtdh_chain != dvar);
2070 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2071 
2072 		dtrace_membar_producer();
2073 
2074 		/*
2075 		 * Set the next pointer to point at the dirty list, and
2076 		 * atomically swing the dirty pointer to the newly freed dvar.
2077 		 */
2078 		do {
2079 			next = dcpu->dtdsc_dirty;
2080 			dvar->dtdv_next = next;
2081 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
2082 
2083 		/*
2084 		 * Finally, unlock this hash bucket.
2085 		 */
2086 		ASSERT(hash[bucket].dtdh_lock == lock);
2087 		ASSERT(lock & 1);
2088 		hash[bucket].dtdh_lock++;
2089 
2090 		return (NULL);
2091 next:
2092 		prev = dvar;
2093 		continue;
2094 	}
2095 
2096 	if (dvar == NULL) {
2097 		/*
2098 		 * If dvar is NULL, it is because we went off the rails:
2099 		 * one of the elements that we traversed in the hash chain
2100 		 * was deleted while we were traversing it.  In this case,
2101 		 * we assert that we aren't doing a dealloc (deallocs lock
2102 		 * the hash bucket to prevent themselves from racing with
2103 		 * one another), and retry the hash chain traversal.
2104 		 */
2105 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2106 		goto top;
2107 	}
2108 
2109 	if (op != DTRACE_DYNVAR_ALLOC) {
2110 		/*
2111 		 * If we are not to allocate a new variable, we want to
2112 		 * return NULL now.  Before we return, check that the value
2113 		 * of the lock word hasn't changed.  If it has, we may have
2114 		 * seen an inconsistent snapshot.
2115 		 */
2116 		if (op == DTRACE_DYNVAR_NOALLOC) {
2117 			if (hash[bucket].dtdh_lock != lock)
2118 				goto top;
2119 		} else {
2120 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2121 			ASSERT(hash[bucket].dtdh_lock == lock);
2122 			ASSERT(lock & 1);
2123 			hash[bucket].dtdh_lock++;
2124 		}
2125 
2126 		return (NULL);
2127 	}
2128 
2129 	/*
2130 	 * We need to allocate a new dynamic variable.  The size we need is the
2131 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2132 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2133 	 * the size of any referred-to data (dsize).  We then round the final
2134 	 * size up to the chunksize for allocation.
2135 	 */
2136 	for (ksize = 0, i = 0; i < nkeys; i++)
2137 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2138 
2139 	/*
2140 	 * This should be pretty much impossible, but could happen if, say,
2141 	 * strange DIF specified the tuple.  Ideally, this should be an
2142 	 * assertion and not an error condition -- but that requires that the
2143 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2144 	 * bullet-proof.  (That is, it must not be able to be fooled by
2145 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
2146 	 * solving this would presumably not amount to solving the Halting
2147 	 * Problem -- but it still seems awfully hard.
2148 	 */
2149 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2150 	    ksize + dsize > chunksize) {
2151 		dcpu->dtdsc_drops++;
2152 		return (NULL);
2153 	}
2154 
2155 	nstate = DTRACE_DSTATE_EMPTY;
2156 
2157 	do {
2158 retry:
2159 		free = dcpu->dtdsc_free;
2160 
2161 		if (free == NULL) {
2162 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2163 			void *rval;
2164 
2165 			if (clean == NULL) {
2166 				/*
2167 				 * We're out of dynamic variable space on
2168 				 * this CPU.  Unless we have tried all CPUs,
2169 				 * we'll try to allocate from a different
2170 				 * CPU.
2171 				 */
2172 				switch (dstate->dtds_state) {
2173 				case DTRACE_DSTATE_CLEAN: {
2174 					void *sp = &dstate->dtds_state;
2175 
2176 					if (++cpu >= NCPU)
2177 						cpu = 0;
2178 
2179 					if (dcpu->dtdsc_dirty != NULL &&
2180 					    nstate == DTRACE_DSTATE_EMPTY)
2181 						nstate = DTRACE_DSTATE_DIRTY;
2182 
2183 					if (dcpu->dtdsc_rinsing != NULL)
2184 						nstate = DTRACE_DSTATE_RINSING;
2185 
2186 					dcpu = &dstate->dtds_percpu[cpu];
2187 
2188 					if (cpu != me)
2189 						goto retry;
2190 
2191 					(void) dtrace_cas32(sp,
2192 					    DTRACE_DSTATE_CLEAN, nstate);
2193 
2194 					/*
2195 					 * To increment the correct bean
2196 					 * counter, take another lap.
2197 					 */
2198 					goto retry;
2199 				}
2200 
2201 				case DTRACE_DSTATE_DIRTY:
2202 					dcpu->dtdsc_dirty_drops++;
2203 					break;
2204 
2205 				case DTRACE_DSTATE_RINSING:
2206 					dcpu->dtdsc_rinsing_drops++;
2207 					break;
2208 
2209 				case DTRACE_DSTATE_EMPTY:
2210 					dcpu->dtdsc_drops++;
2211 					break;
2212 				}
2213 
2214 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2215 				return (NULL);
2216 			}
2217 
2218 			/*
2219 			 * The clean list appears to be non-empty.  We want to
2220 			 * move the clean list to the free list; we start by
2221 			 * moving the clean pointer aside.
2222 			 */
2223 			if (dtrace_casptr(&dcpu->dtdsc_clean,
2224 			    clean, NULL) != clean) {
2225 				/*
2226 				 * We are in one of two situations:
2227 				 *
2228 				 *  (a)	The clean list was switched to the
2229 				 *	free list by another CPU.
2230 				 *
2231 				 *  (b)	The clean list was added to by the
2232 				 *	cleansing cyclic.
2233 				 *
2234 				 * In either of these situations, we can
2235 				 * just reattempt the free list allocation.
2236 				 */
2237 				goto retry;
2238 			}
2239 
2240 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2241 
2242 			/*
2243 			 * Now we'll move the clean list to our free list.
2244 			 * It's impossible for this to fail:  the only way
2245 			 * the free list can be updated is through this
2246 			 * code path, and only one CPU can own the clean list.
2247 			 * Thus, it would only be possible for this to fail if
2248 			 * this code were racing with dtrace_dynvar_clean().
2249 			 * (That is, if dtrace_dynvar_clean() updated the clean
2250 			 * list, and we ended up racing to update the free
2251 			 * list.)  This race is prevented by the dtrace_sync()
2252 			 * in dtrace_dynvar_clean() -- which flushes the
2253 			 * owners of the clean lists out before resetting
2254 			 * the clean lists.
2255 			 */
2256 			dcpu = &dstate->dtds_percpu[me];
2257 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2258 			ASSERT(rval == NULL);
2259 			goto retry;
2260 		}
2261 
2262 		dvar = free;
2263 		new_free = dvar->dtdv_next;
2264 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2265 
2266 	/*
2267 	 * We have now allocated a new chunk.  We copy the tuple keys into the
2268 	 * tuple array and copy any referenced key data into the data space
2269 	 * following the tuple array.  As we do this, we relocate dttk_value
2270 	 * in the final tuple to point to the key data address in the chunk.
2271 	 */
2272 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2273 	dvar->dtdv_data = (void *)(kdata + ksize);
2274 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
2275 
2276 	for (i = 0; i < nkeys; i++) {
2277 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2278 		size_t kesize = key[i].dttk_size;
2279 
2280 		if (kesize != 0) {
2281 			dtrace_bcopy(
2282 			    (const void *)(uintptr_t)key[i].dttk_value,
2283 			    (void *)kdata, kesize);
2284 			dkey->dttk_value = kdata;
2285 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2286 		} else {
2287 			dkey->dttk_value = key[i].dttk_value;
2288 		}
2289 
2290 		dkey->dttk_size = kesize;
2291 	}
2292 
2293 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2294 	dvar->dtdv_hashval = hashval;
2295 	dvar->dtdv_next = start;
2296 
2297 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2298 		return (dvar);
2299 
2300 	/*
2301 	 * The cas has failed.  Either another CPU is adding an element to
2302 	 * this hash chain, or another CPU is deleting an element from this
2303 	 * hash chain.  The simplest way to deal with both of these cases
2304 	 * (though not necessarily the most efficient) is to free our
2305 	 * allocated block and re-attempt it all.  Note that the free is
2306 	 * to the dirty list and _not_ to the free list.  This is to prevent
2307 	 * races with allocators, above.
2308 	 */
2309 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2310 
2311 	dtrace_membar_producer();
2312 
2313 	do {
2314 		free = dcpu->dtdsc_dirty;
2315 		dvar->dtdv_next = free;
2316 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2317 
2318 	goto top;
2319 }
2320 
2321 /*ARGSUSED*/
2322 static void
2323 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2324 {
2325 	if ((int64_t)nval < (int64_t)*oval)
2326 		*oval = nval;
2327 }
2328 
2329 /*ARGSUSED*/
2330 static void
2331 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2332 {
2333 	if ((int64_t)nval > (int64_t)*oval)
2334 		*oval = nval;
2335 }
2336 
2337 static void
2338 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2339 {
2340 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2341 	int64_t val = (int64_t)nval;
2342 
2343 	if (val < 0) {
2344 		for (i = 0; i < zero; i++) {
2345 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2346 				quanta[i] += incr;
2347 				return;
2348 			}
2349 		}
2350 	} else {
2351 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2352 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2353 				quanta[i - 1] += incr;
2354 				return;
2355 			}
2356 		}
2357 
2358 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2359 		return;
2360 	}
2361 
2362 	ASSERT(0);
2363 }
2364 
2365 static void
2366 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2367 {
2368 	uint64_t arg = *lquanta++;
2369 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2370 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2371 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2372 	int32_t val = (int32_t)nval, level;
2373 
2374 	ASSERT(step != 0);
2375 	ASSERT(levels != 0);
2376 
2377 	if (val < base) {
2378 		/*
2379 		 * This is an underflow.
2380 		 */
2381 		lquanta[0] += incr;
2382 		return;
2383 	}
2384 
2385 	level = (val - base) / step;
2386 
2387 	if (level < levels) {
2388 		lquanta[level + 1] += incr;
2389 		return;
2390 	}
2391 
2392 	/*
2393 	 * This is an overflow.
2394 	 */
2395 	lquanta[levels + 1] += incr;
2396 }
2397 
2398 static int
2399 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2400     uint16_t high, uint16_t nsteps, int64_t value)
2401 {
2402 	int64_t this = 1, last, next;
2403 	int base = 1, order;
2404 
2405 	ASSERT(factor <= nsteps);
2406 	ASSERT(nsteps % factor == 0);
2407 
2408 	for (order = 0; order < low; order++)
2409 		this *= factor;
2410 
2411 	/*
2412 	 * If our value is less than our factor taken to the power of the
2413 	 * low order of magnitude, it goes into the zeroth bucket.
2414 	 */
2415 	if (value < (last = this))
2416 		return (0);
2417 
2418 	for (this *= factor; order <= high; order++) {
2419 		int nbuckets = this > nsteps ? nsteps : this;
2420 
2421 		if ((next = this * factor) < this) {
2422 			/*
2423 			 * We should not generally get log/linear quantizations
2424 			 * with a high magnitude that allows 64-bits to
2425 			 * overflow, but we nonetheless protect against this
2426 			 * by explicitly checking for overflow, and clamping
2427 			 * our value accordingly.
2428 			 */
2429 			value = this - 1;
2430 		}
2431 
2432 		if (value < this) {
2433 			/*
2434 			 * If our value lies within this order of magnitude,
2435 			 * determine its position by taking the offset within
2436 			 * the order of magnitude, dividing by the bucket
2437 			 * width, and adding to our (accumulated) base.
2438 			 */
2439 			return (base + (value - last) / (this / nbuckets));
2440 		}
2441 
2442 		base += nbuckets - (nbuckets / factor);
2443 		last = this;
2444 		this = next;
2445 	}
2446 
2447 	/*
2448 	 * Our value is greater than or equal to our factor taken to the
2449 	 * power of one plus the high magnitude -- return the top bucket.
2450 	 */
2451 	return (base);
2452 }
2453 
2454 static void
2455 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2456 {
2457 	uint64_t arg = *llquanta++;
2458 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2459 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2460 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2461 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2462 
2463 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
2464 	    low, high, nsteps, nval)] += incr;
2465 }
2466 
2467 /*ARGSUSED*/
2468 static void
2469 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2470 {
2471 	data[0]++;
2472 	data[1] += nval;
2473 }
2474 
2475 /*ARGSUSED*/
2476 static void
2477 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2478 {
2479 	int64_t snval = (int64_t)nval;
2480 	uint64_t tmp[2];
2481 
2482 	data[0]++;
2483 	data[1] += nval;
2484 
2485 	/*
2486 	 * What we want to say here is:
2487 	 *
2488 	 * data[2] += nval * nval;
2489 	 *
2490 	 * But given that nval is 64-bit, we could easily overflow, so
2491 	 * we do this as 128-bit arithmetic.
2492 	 */
2493 	if (snval < 0)
2494 		snval = -snval;
2495 
2496 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2497 	dtrace_add_128(data + 2, tmp, data + 2);
2498 }
2499 
2500 /*ARGSUSED*/
2501 static void
2502 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2503 {
2504 	*oval = *oval + 1;
2505 }
2506 
2507 /*ARGSUSED*/
2508 static void
2509 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2510 {
2511 	*oval += nval;
2512 }
2513 
2514 /*
2515  * Aggregate given the tuple in the principal data buffer, and the aggregating
2516  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2517  * buffer is specified as the buf parameter.  This routine does not return
2518  * failure; if there is no space in the aggregation buffer, the data will be
2519  * dropped, and a corresponding counter incremented.
2520  */
2521 static void
2522 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2523     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2524 {
2525 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2526 	uint32_t i, ndx, size, fsize;
2527 	uint32_t align = sizeof (uint64_t) - 1;
2528 	dtrace_aggbuffer_t *agb;
2529 	dtrace_aggkey_t *key;
2530 	uint32_t hashval = 0, limit, isstr;
2531 	caddr_t tomax, data, kdata;
2532 	dtrace_actkind_t action;
2533 	dtrace_action_t *act;
2534 	uintptr_t offs;
2535 
2536 	if (buf == NULL)
2537 		return;
2538 
2539 	if (!agg->dtag_hasarg) {
2540 		/*
2541 		 * Currently, only quantize() and lquantize() take additional
2542 		 * arguments, and they have the same semantics:  an increment
2543 		 * value that defaults to 1 when not present.  If additional
2544 		 * aggregating actions take arguments, the setting of the
2545 		 * default argument value will presumably have to become more
2546 		 * sophisticated...
2547 		 */
2548 		arg = 1;
2549 	}
2550 
2551 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2552 	size = rec->dtrd_offset - agg->dtag_base;
2553 	fsize = size + rec->dtrd_size;
2554 
2555 	ASSERT(dbuf->dtb_tomax != NULL);
2556 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2557 
2558 	if ((tomax = buf->dtb_tomax) == NULL) {
2559 		dtrace_buffer_drop(buf);
2560 		return;
2561 	}
2562 
2563 	/*
2564 	 * The metastructure is always at the bottom of the buffer.
2565 	 */
2566 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2567 	    sizeof (dtrace_aggbuffer_t));
2568 
2569 	if (buf->dtb_offset == 0) {
2570 		/*
2571 		 * We just kludge up approximately 1/8th of the size to be
2572 		 * buckets.  If this guess ends up being routinely
2573 		 * off-the-mark, we may need to dynamically readjust this
2574 		 * based on past performance.
2575 		 */
2576 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2577 
2578 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2579 		    (uintptr_t)tomax || hashsize == 0) {
2580 			/*
2581 			 * We've been given a ludicrously small buffer;
2582 			 * increment our drop count and leave.
2583 			 */
2584 			dtrace_buffer_drop(buf);
2585 			return;
2586 		}
2587 
2588 		/*
2589 		 * And now, a pathetic attempt to try to get a an odd (or
2590 		 * perchance, a prime) hash size for better hash distribution.
2591 		 */
2592 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2593 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2594 
2595 		agb->dtagb_hashsize = hashsize;
2596 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2597 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2598 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2599 
2600 		for (i = 0; i < agb->dtagb_hashsize; i++)
2601 			agb->dtagb_hash[i] = NULL;
2602 	}
2603 
2604 	ASSERT(agg->dtag_first != NULL);
2605 	ASSERT(agg->dtag_first->dta_intuple);
2606 
2607 	/*
2608 	 * Calculate the hash value based on the key.  Note that we _don't_
2609 	 * include the aggid in the hashing (but we will store it as part of
2610 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2611 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2612 	 * gets good distribution in practice.  The efficacy of the hashing
2613 	 * algorithm (and a comparison with other algorithms) may be found by
2614 	 * running the ::dtrace_aggstat MDB dcmd.
2615 	 */
2616 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2617 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2618 		limit = i + act->dta_rec.dtrd_size;
2619 		ASSERT(limit <= size);
2620 		isstr = DTRACEACT_ISSTRING(act);
2621 
2622 		for (; i < limit; i++) {
2623 			hashval += data[i];
2624 			hashval += (hashval << 10);
2625 			hashval ^= (hashval >> 6);
2626 
2627 			if (isstr && data[i] == '\0')
2628 				break;
2629 		}
2630 	}
2631 
2632 	hashval += (hashval << 3);
2633 	hashval ^= (hashval >> 11);
2634 	hashval += (hashval << 15);
2635 
2636 	/*
2637 	 * Yes, the divide here is expensive -- but it's generally the least
2638 	 * of the performance issues given the amount of data that we iterate
2639 	 * over to compute hash values, compare data, etc.
2640 	 */
2641 	ndx = hashval % agb->dtagb_hashsize;
2642 
2643 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2644 		ASSERT((caddr_t)key >= tomax);
2645 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2646 
2647 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2648 			continue;
2649 
2650 		kdata = key->dtak_data;
2651 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2652 
2653 		for (act = agg->dtag_first; act->dta_intuple;
2654 		    act = act->dta_next) {
2655 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2656 			limit = i + act->dta_rec.dtrd_size;
2657 			ASSERT(limit <= size);
2658 			isstr = DTRACEACT_ISSTRING(act);
2659 
2660 			for (; i < limit; i++) {
2661 				if (kdata[i] != data[i])
2662 					goto next;
2663 
2664 				if (isstr && data[i] == '\0')
2665 					break;
2666 			}
2667 		}
2668 
2669 		if (action != key->dtak_action) {
2670 			/*
2671 			 * We are aggregating on the same value in the same
2672 			 * aggregation with two different aggregating actions.
2673 			 * (This should have been picked up in the compiler,
2674 			 * so we may be dealing with errant or devious DIF.)
2675 			 * This is an error condition; we indicate as much,
2676 			 * and return.
2677 			 */
2678 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2679 			return;
2680 		}
2681 
2682 		/*
2683 		 * This is a hit:  we need to apply the aggregator to
2684 		 * the value at this key.
2685 		 */
2686 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2687 		return;
2688 next:
2689 		continue;
2690 	}
2691 
2692 	/*
2693 	 * We didn't find it.  We need to allocate some zero-filled space,
2694 	 * link it into the hash table appropriately, and apply the aggregator
2695 	 * to the (zero-filled) value.
2696 	 */
2697 	offs = buf->dtb_offset;
2698 	while (offs & (align - 1))
2699 		offs += sizeof (uint32_t);
2700 
2701 	/*
2702 	 * If we don't have enough room to both allocate a new key _and_
2703 	 * its associated data, increment the drop count and return.
2704 	 */
2705 	if ((uintptr_t)tomax + offs + fsize >
2706 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2707 		dtrace_buffer_drop(buf);
2708 		return;
2709 	}
2710 
2711 	/*CONSTCOND*/
2712 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2713 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2714 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2715 
2716 	key->dtak_data = kdata = tomax + offs;
2717 	buf->dtb_offset = offs + fsize;
2718 
2719 	/*
2720 	 * Now copy the data across.
2721 	 */
2722 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2723 
2724 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2725 		kdata[i] = data[i];
2726 
2727 	/*
2728 	 * Because strings are not zeroed out by default, we need to iterate
2729 	 * looking for actions that store strings, and we need to explicitly
2730 	 * pad these strings out with zeroes.
2731 	 */
2732 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2733 		int nul;
2734 
2735 		if (!DTRACEACT_ISSTRING(act))
2736 			continue;
2737 
2738 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2739 		limit = i + act->dta_rec.dtrd_size;
2740 		ASSERT(limit <= size);
2741 
2742 		for (nul = 0; i < limit; i++) {
2743 			if (nul) {
2744 				kdata[i] = '\0';
2745 				continue;
2746 			}
2747 
2748 			if (data[i] != '\0')
2749 				continue;
2750 
2751 			nul = 1;
2752 		}
2753 	}
2754 
2755 	for (i = size; i < fsize; i++)
2756 		kdata[i] = 0;
2757 
2758 	key->dtak_hashval = hashval;
2759 	key->dtak_size = size;
2760 	key->dtak_action = action;
2761 	key->dtak_next = agb->dtagb_hash[ndx];
2762 	agb->dtagb_hash[ndx] = key;
2763 
2764 	/*
2765 	 * Finally, apply the aggregator.
2766 	 */
2767 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2768 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2769 }
2770 
2771 /*
2772  * Given consumer state, this routine finds a speculation in the INACTIVE
2773  * state and transitions it into the ACTIVE state.  If there is no speculation
2774  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2775  * incremented -- it is up to the caller to take appropriate action.
2776  */
2777 static int
2778 dtrace_speculation(dtrace_state_t *state)
2779 {
2780 	int i = 0;
2781 	dtrace_speculation_state_t current;
2782 	uint32_t *stat = &state->dts_speculations_unavail, count;
2783 
2784 	while (i < state->dts_nspeculations) {
2785 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2786 
2787 		current = spec->dtsp_state;
2788 
2789 		if (current != DTRACESPEC_INACTIVE) {
2790 			if (current == DTRACESPEC_COMMITTINGMANY ||
2791 			    current == DTRACESPEC_COMMITTING ||
2792 			    current == DTRACESPEC_DISCARDING)
2793 				stat = &state->dts_speculations_busy;
2794 			i++;
2795 			continue;
2796 		}
2797 
2798 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2799 		    current, DTRACESPEC_ACTIVE) == current)
2800 			return (i + 1);
2801 	}
2802 
2803 	/*
2804 	 * We couldn't find a speculation.  If we found as much as a single
2805 	 * busy speculation buffer, we'll attribute this failure as "busy"
2806 	 * instead of "unavail".
2807 	 */
2808 	do {
2809 		count = *stat;
2810 	} while (dtrace_cas32(stat, count, count + 1) != count);
2811 
2812 	return (0);
2813 }
2814 
2815 /*
2816  * This routine commits an active speculation.  If the specified speculation
2817  * is not in a valid state to perform a commit(), this routine will silently do
2818  * nothing.  The state of the specified speculation is transitioned according
2819  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2820  */
2821 static void
2822 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2823     dtrace_specid_t which)
2824 {
2825 	dtrace_speculation_t *spec;
2826 	dtrace_buffer_t *src, *dest;
2827 	uintptr_t daddr, saddr, dlimit, slimit;
2828 	dtrace_speculation_state_t current, new = 0;
2829 	intptr_t offs;
2830 	uint64_t timestamp;
2831 
2832 	if (which == 0)
2833 		return;
2834 
2835 	if (which > state->dts_nspeculations) {
2836 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2837 		return;
2838 	}
2839 
2840 	spec = &state->dts_speculations[which - 1];
2841 	src = &spec->dtsp_buffer[cpu];
2842 	dest = &state->dts_buffer[cpu];
2843 
2844 	do {
2845 		current = spec->dtsp_state;
2846 
2847 		if (current == DTRACESPEC_COMMITTINGMANY)
2848 			break;
2849 
2850 		switch (current) {
2851 		case DTRACESPEC_INACTIVE:
2852 		case DTRACESPEC_DISCARDING:
2853 			return;
2854 
2855 		case DTRACESPEC_COMMITTING:
2856 			/*
2857 			 * This is only possible if we are (a) commit()'ing
2858 			 * without having done a prior speculate() on this CPU
2859 			 * and (b) racing with another commit() on a different
2860 			 * CPU.  There's nothing to do -- we just assert that
2861 			 * our offset is 0.
2862 			 */
2863 			ASSERT(src->dtb_offset == 0);
2864 			return;
2865 
2866 		case DTRACESPEC_ACTIVE:
2867 			new = DTRACESPEC_COMMITTING;
2868 			break;
2869 
2870 		case DTRACESPEC_ACTIVEONE:
2871 			/*
2872 			 * This speculation is active on one CPU.  If our
2873 			 * buffer offset is non-zero, we know that the one CPU
2874 			 * must be us.  Otherwise, we are committing on a
2875 			 * different CPU from the speculate(), and we must
2876 			 * rely on being asynchronously cleaned.
2877 			 */
2878 			if (src->dtb_offset != 0) {
2879 				new = DTRACESPEC_COMMITTING;
2880 				break;
2881 			}
2882 			/*FALLTHROUGH*/
2883 
2884 		case DTRACESPEC_ACTIVEMANY:
2885 			new = DTRACESPEC_COMMITTINGMANY;
2886 			break;
2887 
2888 		default:
2889 			ASSERT(0);
2890 		}
2891 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2892 	    current, new) != current);
2893 
2894 	/*
2895 	 * We have set the state to indicate that we are committing this
2896 	 * speculation.  Now reserve the necessary space in the destination
2897 	 * buffer.
2898 	 */
2899 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2900 	    sizeof (uint64_t), state, NULL)) < 0) {
2901 		dtrace_buffer_drop(dest);
2902 		goto out;
2903 	}
2904 
2905 	/*
2906 	 * We have sufficient space to copy the speculative buffer into the
2907 	 * primary buffer.  First, modify the speculative buffer, filling
2908 	 * in the timestamp of all entries with the current time.  The data
2909 	 * must have the commit() time rather than the time it was traced,
2910 	 * so that all entries in the primary buffer are in timestamp order.
2911 	 */
2912 	timestamp = dtrace_gethrtime();
2913 	saddr = (uintptr_t)src->dtb_tomax;
2914 	slimit = saddr + src->dtb_offset;
2915 	while (saddr < slimit) {
2916 		size_t size;
2917 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2918 
2919 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2920 			saddr += sizeof (dtrace_epid_t);
2921 			continue;
2922 		}
2923 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2924 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2925 
2926 		ASSERT3U(saddr + size, <=, slimit);
2927 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2928 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2929 
2930 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2931 
2932 		saddr += size;
2933 	}
2934 
2935 	/*
2936 	 * Copy the buffer across.  (Note that this is a
2937 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2938 	 * a serious performance issue, a high-performance DTrace-specific
2939 	 * bcopy() should obviously be invented.)
2940 	 */
2941 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2942 	dlimit = daddr + src->dtb_offset;
2943 	saddr = (uintptr_t)src->dtb_tomax;
2944 
2945 	/*
2946 	 * First, the aligned portion.
2947 	 */
2948 	while (dlimit - daddr >= sizeof (uint64_t)) {
2949 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2950 
2951 		daddr += sizeof (uint64_t);
2952 		saddr += sizeof (uint64_t);
2953 	}
2954 
2955 	/*
2956 	 * Now any left-over bit...
2957 	 */
2958 	while (dlimit - daddr)
2959 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2960 
2961 	/*
2962 	 * Finally, commit the reserved space in the destination buffer.
2963 	 */
2964 	dest->dtb_offset = offs + src->dtb_offset;
2965 
2966 out:
2967 	/*
2968 	 * If we're lucky enough to be the only active CPU on this speculation
2969 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2970 	 */
2971 	if (current == DTRACESPEC_ACTIVE ||
2972 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2973 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2974 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2975 
2976 		ASSERT(rval == DTRACESPEC_COMMITTING);
2977 	}
2978 
2979 	src->dtb_offset = 0;
2980 	src->dtb_xamot_drops += src->dtb_drops;
2981 	src->dtb_drops = 0;
2982 }
2983 
2984 /*
2985  * This routine discards an active speculation.  If the specified speculation
2986  * is not in a valid state to perform a discard(), this routine will silently
2987  * do nothing.  The state of the specified speculation is transitioned
2988  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2989  */
2990 static void
2991 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2992     dtrace_specid_t which)
2993 {
2994 	dtrace_speculation_t *spec;
2995 	dtrace_speculation_state_t current, new = 0;
2996 	dtrace_buffer_t *buf;
2997 
2998 	if (which == 0)
2999 		return;
3000 
3001 	if (which > state->dts_nspeculations) {
3002 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3003 		return;
3004 	}
3005 
3006 	spec = &state->dts_speculations[which - 1];
3007 	buf = &spec->dtsp_buffer[cpu];
3008 
3009 	do {
3010 		current = spec->dtsp_state;
3011 
3012 		switch (current) {
3013 		case DTRACESPEC_INACTIVE:
3014 		case DTRACESPEC_COMMITTINGMANY:
3015 		case DTRACESPEC_COMMITTING:
3016 		case DTRACESPEC_DISCARDING:
3017 			return;
3018 
3019 		case DTRACESPEC_ACTIVE:
3020 		case DTRACESPEC_ACTIVEMANY:
3021 			new = DTRACESPEC_DISCARDING;
3022 			break;
3023 
3024 		case DTRACESPEC_ACTIVEONE:
3025 			if (buf->dtb_offset != 0) {
3026 				new = DTRACESPEC_INACTIVE;
3027 			} else {
3028 				new = DTRACESPEC_DISCARDING;
3029 			}
3030 			break;
3031 
3032 		default:
3033 			ASSERT(0);
3034 		}
3035 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3036 	    current, new) != current);
3037 
3038 	buf->dtb_offset = 0;
3039 	buf->dtb_drops = 0;
3040 }
3041 
3042 /*
3043  * Note:  not called from probe context.  This function is called
3044  * asynchronously from cross call context to clean any speculations that are
3045  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
3046  * transitioned back to the INACTIVE state until all CPUs have cleaned the
3047  * speculation.
3048  */
3049 static void
3050 dtrace_speculation_clean_here(dtrace_state_t *state)
3051 {
3052 	dtrace_icookie_t cookie;
3053 	processorid_t cpu = curcpu;
3054 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
3055 	dtrace_specid_t i;
3056 
3057 	cookie = dtrace_interrupt_disable();
3058 
3059 	if (dest->dtb_tomax == NULL) {
3060 		dtrace_interrupt_enable(cookie);
3061 		return;
3062 	}
3063 
3064 	for (i = 0; i < state->dts_nspeculations; i++) {
3065 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3066 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
3067 
3068 		if (src->dtb_tomax == NULL)
3069 			continue;
3070 
3071 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
3072 			src->dtb_offset = 0;
3073 			continue;
3074 		}
3075 
3076 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3077 			continue;
3078 
3079 		if (src->dtb_offset == 0)
3080 			continue;
3081 
3082 		dtrace_speculation_commit(state, cpu, i + 1);
3083 	}
3084 
3085 	dtrace_interrupt_enable(cookie);
3086 }
3087 
3088 /*
3089  * Note:  not called from probe context.  This function is called
3090  * asynchronously (and at a regular interval) to clean any speculations that
3091  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
3092  * is work to be done, it cross calls all CPUs to perform that work;
3093  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3094  * INACTIVE state until they have been cleaned by all CPUs.
3095  */
3096 static void
3097 dtrace_speculation_clean(dtrace_state_t *state)
3098 {
3099 	int work = 0, rv;
3100 	dtrace_specid_t i;
3101 
3102 	for (i = 0; i < state->dts_nspeculations; i++) {
3103 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3104 
3105 		ASSERT(!spec->dtsp_cleaning);
3106 
3107 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3108 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3109 			continue;
3110 
3111 		work++;
3112 		spec->dtsp_cleaning = 1;
3113 	}
3114 
3115 	if (!work)
3116 		return;
3117 
3118 	dtrace_xcall(DTRACE_CPUALL,
3119 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3120 
3121 	/*
3122 	 * We now know that all CPUs have committed or discarded their
3123 	 * speculation buffers, as appropriate.  We can now set the state
3124 	 * to inactive.
3125 	 */
3126 	for (i = 0; i < state->dts_nspeculations; i++) {
3127 		dtrace_speculation_t *spec = &state->dts_speculations[i];
3128 		dtrace_speculation_state_t current, new;
3129 
3130 		if (!spec->dtsp_cleaning)
3131 			continue;
3132 
3133 		current = spec->dtsp_state;
3134 		ASSERT(current == DTRACESPEC_DISCARDING ||
3135 		    current == DTRACESPEC_COMMITTINGMANY);
3136 
3137 		new = DTRACESPEC_INACTIVE;
3138 
3139 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3140 		ASSERT(rv == current);
3141 		spec->dtsp_cleaning = 0;
3142 	}
3143 }
3144 
3145 /*
3146  * Called as part of a speculate() to get the speculative buffer associated
3147  * with a given speculation.  Returns NULL if the specified speculation is not
3148  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
3149  * the active CPU is not the specified CPU -- the speculation will be
3150  * atomically transitioned into the ACTIVEMANY state.
3151  */
3152 static dtrace_buffer_t *
3153 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3154     dtrace_specid_t which)
3155 {
3156 	dtrace_speculation_t *spec;
3157 	dtrace_speculation_state_t current, new = 0;
3158 	dtrace_buffer_t *buf;
3159 
3160 	if (which == 0)
3161 		return (NULL);
3162 
3163 	if (which > state->dts_nspeculations) {
3164 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3165 		return (NULL);
3166 	}
3167 
3168 	spec = &state->dts_speculations[which - 1];
3169 	buf = &spec->dtsp_buffer[cpuid];
3170 
3171 	do {
3172 		current = spec->dtsp_state;
3173 
3174 		switch (current) {
3175 		case DTRACESPEC_INACTIVE:
3176 		case DTRACESPEC_COMMITTINGMANY:
3177 		case DTRACESPEC_DISCARDING:
3178 			return (NULL);
3179 
3180 		case DTRACESPEC_COMMITTING:
3181 			ASSERT(buf->dtb_offset == 0);
3182 			return (NULL);
3183 
3184 		case DTRACESPEC_ACTIVEONE:
3185 			/*
3186 			 * This speculation is currently active on one CPU.
3187 			 * Check the offset in the buffer; if it's non-zero,
3188 			 * that CPU must be us (and we leave the state alone).
3189 			 * If it's zero, assume that we're starting on a new
3190 			 * CPU -- and change the state to indicate that the
3191 			 * speculation is active on more than one CPU.
3192 			 */
3193 			if (buf->dtb_offset != 0)
3194 				return (buf);
3195 
3196 			new = DTRACESPEC_ACTIVEMANY;
3197 			break;
3198 
3199 		case DTRACESPEC_ACTIVEMANY:
3200 			return (buf);
3201 
3202 		case DTRACESPEC_ACTIVE:
3203 			new = DTRACESPEC_ACTIVEONE;
3204 			break;
3205 
3206 		default:
3207 			ASSERT(0);
3208 		}
3209 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3210 	    current, new) != current);
3211 
3212 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3213 	return (buf);
3214 }
3215 
3216 /*
3217  * Return a string.  In the event that the user lacks the privilege to access
3218  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3219  * don't fail access checking.
3220  *
3221  * dtrace_dif_variable() uses this routine as a helper for various
3222  * builtin values such as 'execname' and 'probefunc.'
3223  */
3224 uintptr_t
3225 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3226     dtrace_mstate_t *mstate)
3227 {
3228 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3229 	uintptr_t ret;
3230 	size_t strsz;
3231 
3232 	/*
3233 	 * The easy case: this probe is allowed to read all of memory, so
3234 	 * we can just return this as a vanilla pointer.
3235 	 */
3236 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3237 		return (addr);
3238 
3239 	/*
3240 	 * This is the tougher case: we copy the string in question from
3241 	 * kernel memory into scratch memory and return it that way: this
3242 	 * ensures that we won't trip up when access checking tests the
3243 	 * BYREF return value.
3244 	 */
3245 	strsz = dtrace_strlen((char *)addr, size) + 1;
3246 
3247 	if (mstate->dtms_scratch_ptr + strsz >
3248 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3249 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3250 		return (0);
3251 	}
3252 
3253 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3254 	    strsz);
3255 	ret = mstate->dtms_scratch_ptr;
3256 	mstate->dtms_scratch_ptr += strsz;
3257 	return (ret);
3258 }
3259 
3260 /*
3261  * Return a string from a memoy address which is known to have one or
3262  * more concatenated, individually zero terminated, sub-strings.
3263  * In the event that the user lacks the privilege to access
3264  * arbitrary kernel memory, we copy the string out to scratch memory so that we
3265  * don't fail access checking.
3266  *
3267  * dtrace_dif_variable() uses this routine as a helper for various
3268  * builtin values such as 'execargs'.
3269  */
3270 static uintptr_t
3271 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3272     dtrace_mstate_t *mstate)
3273 {
3274 	char *p;
3275 	size_t i;
3276 	uintptr_t ret;
3277 
3278 	if (mstate->dtms_scratch_ptr + strsz >
3279 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3280 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3281 		return (0);
3282 	}
3283 
3284 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3285 	    strsz);
3286 
3287 	/* Replace sub-string termination characters with a space. */
3288 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3289 	    p++, i++)
3290 		if (*p == '\0')
3291 			*p = ' ';
3292 
3293 	ret = mstate->dtms_scratch_ptr;
3294 	mstate->dtms_scratch_ptr += strsz;
3295 	return (ret);
3296 }
3297 
3298 /*
3299  * This function implements the DIF emulator's variable lookups.  The emulator
3300  * passes a reserved variable identifier and optional built-in array index.
3301  */
3302 static uint64_t
3303 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3304     uint64_t ndx)
3305 {
3306 	/*
3307 	 * If we're accessing one of the uncached arguments, we'll turn this
3308 	 * into a reference in the args array.
3309 	 */
3310 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3311 		ndx = v - DIF_VAR_ARG0;
3312 		v = DIF_VAR_ARGS;
3313 	}
3314 
3315 	switch (v) {
3316 	case DIF_VAR_ARGS:
3317 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3318 		if (ndx >= sizeof (mstate->dtms_arg) /
3319 		    sizeof (mstate->dtms_arg[0])) {
3320 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3321 			dtrace_provider_t *pv;
3322 			uint64_t val;
3323 
3324 			pv = mstate->dtms_probe->dtpr_provider;
3325 			if (pv->dtpv_pops.dtps_getargval != NULL)
3326 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3327 				    mstate->dtms_probe->dtpr_id,
3328 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
3329 			else
3330 				val = dtrace_getarg(ndx, aframes);
3331 
3332 			/*
3333 			 * This is regrettably required to keep the compiler
3334 			 * from tail-optimizing the call to dtrace_getarg().
3335 			 * The condition always evaluates to true, but the
3336 			 * compiler has no way of figuring that out a priori.
3337 			 * (None of this would be necessary if the compiler
3338 			 * could be relied upon to _always_ tail-optimize
3339 			 * the call to dtrace_getarg() -- but it can't.)
3340 			 */
3341 			if (mstate->dtms_probe != NULL)
3342 				return (val);
3343 
3344 			ASSERT(0);
3345 		}
3346 
3347 		return (mstate->dtms_arg[ndx]);
3348 
3349 #ifdef illumos
3350 	case DIF_VAR_UREGS: {
3351 		klwp_t *lwp;
3352 
3353 		if (!dtrace_priv_proc(state))
3354 			return (0);
3355 
3356 		if ((lwp = curthread->t_lwp) == NULL) {
3357 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3358 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
3359 			return (0);
3360 		}
3361 
3362 		return (dtrace_getreg(lwp->lwp_regs, ndx));
3363 		return (0);
3364 	}
3365 #else
3366 	case DIF_VAR_UREGS: {
3367 		struct trapframe *tframe;
3368 
3369 		if (!dtrace_priv_proc(state))
3370 			return (0);
3371 
3372 		if ((tframe = curthread->td_frame) == NULL) {
3373 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3374 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
3375 			return (0);
3376 		}
3377 
3378 		return (dtrace_getreg(tframe, ndx));
3379 	}
3380 #endif
3381 
3382 	case DIF_VAR_CURTHREAD:
3383 		if (!dtrace_priv_proc(state))
3384 			return (0);
3385 		return ((uint64_t)(uintptr_t)curthread);
3386 
3387 	case DIF_VAR_TIMESTAMP:
3388 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3389 			mstate->dtms_timestamp = dtrace_gethrtime();
3390 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3391 		}
3392 		return (mstate->dtms_timestamp);
3393 
3394 	case DIF_VAR_VTIMESTAMP:
3395 		ASSERT(dtrace_vtime_references != 0);
3396 		return (curthread->t_dtrace_vtime);
3397 
3398 	case DIF_VAR_WALLTIMESTAMP:
3399 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3400 			mstate->dtms_walltimestamp = dtrace_gethrestime();
3401 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3402 		}
3403 		return (mstate->dtms_walltimestamp);
3404 
3405 #ifdef illumos
3406 	case DIF_VAR_IPL:
3407 		if (!dtrace_priv_kernel(state))
3408 			return (0);
3409 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3410 			mstate->dtms_ipl = dtrace_getipl();
3411 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
3412 		}
3413 		return (mstate->dtms_ipl);
3414 #endif
3415 
3416 	case DIF_VAR_EPID:
3417 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3418 		return (mstate->dtms_epid);
3419 
3420 	case DIF_VAR_ID:
3421 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3422 		return (mstate->dtms_probe->dtpr_id);
3423 
3424 	case DIF_VAR_STACKDEPTH:
3425 		if (!dtrace_priv_kernel(state))
3426 			return (0);
3427 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3428 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3429 
3430 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3431 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3432 		}
3433 		return (mstate->dtms_stackdepth);
3434 
3435 	case DIF_VAR_USTACKDEPTH:
3436 		if (!dtrace_priv_proc(state))
3437 			return (0);
3438 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3439 			/*
3440 			 * See comment in DIF_VAR_PID.
3441 			 */
3442 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3443 			    CPU_ON_INTR(CPU)) {
3444 				mstate->dtms_ustackdepth = 0;
3445 			} else {
3446 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3447 				mstate->dtms_ustackdepth =
3448 				    dtrace_getustackdepth();
3449 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3450 			}
3451 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3452 		}
3453 		return (mstate->dtms_ustackdepth);
3454 
3455 	case DIF_VAR_CALLER:
3456 		if (!dtrace_priv_kernel(state))
3457 			return (0);
3458 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3459 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3460 
3461 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3462 				/*
3463 				 * If this is an unanchored probe, we are
3464 				 * required to go through the slow path:
3465 				 * dtrace_caller() only guarantees correct
3466 				 * results for anchored probes.
3467 				 */
3468 				pc_t caller[2] = {0, 0};
3469 
3470 				dtrace_getpcstack(caller, 2, aframes,
3471 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3472 				mstate->dtms_caller = caller[1];
3473 			} else if ((mstate->dtms_caller =
3474 			    dtrace_caller(aframes)) == -1) {
3475 				/*
3476 				 * We have failed to do this the quick way;
3477 				 * we must resort to the slower approach of
3478 				 * calling dtrace_getpcstack().
3479 				 */
3480 				pc_t caller = 0;
3481 
3482 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3483 				mstate->dtms_caller = caller;
3484 			}
3485 
3486 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3487 		}
3488 		return (mstate->dtms_caller);
3489 
3490 	case DIF_VAR_UCALLER:
3491 		if (!dtrace_priv_proc(state))
3492 			return (0);
3493 
3494 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3495 			uint64_t ustack[3];
3496 
3497 			/*
3498 			 * dtrace_getupcstack() fills in the first uint64_t
3499 			 * with the current PID.  The second uint64_t will
3500 			 * be the program counter at user-level.  The third
3501 			 * uint64_t will contain the caller, which is what
3502 			 * we're after.
3503 			 */
3504 			ustack[2] = 0;
3505 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3506 			dtrace_getupcstack(ustack, 3);
3507 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3508 			mstate->dtms_ucaller = ustack[2];
3509 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3510 		}
3511 
3512 		return (mstate->dtms_ucaller);
3513 
3514 	case DIF_VAR_PROBEPROV:
3515 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3516 		return (dtrace_dif_varstr(
3517 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3518 		    state, mstate));
3519 
3520 	case DIF_VAR_PROBEMOD:
3521 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3522 		return (dtrace_dif_varstr(
3523 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3524 		    state, mstate));
3525 
3526 	case DIF_VAR_PROBEFUNC:
3527 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3528 		return (dtrace_dif_varstr(
3529 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3530 		    state, mstate));
3531 
3532 	case DIF_VAR_PROBENAME:
3533 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3534 		return (dtrace_dif_varstr(
3535 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3536 		    state, mstate));
3537 
3538 	case DIF_VAR_PID:
3539 		if (!dtrace_priv_proc(state))
3540 			return (0);
3541 
3542 #ifdef illumos
3543 		/*
3544 		 * Note that we are assuming that an unanchored probe is
3545 		 * always due to a high-level interrupt.  (And we're assuming
3546 		 * that there is only a single high level interrupt.)
3547 		 */
3548 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3549 			return (pid0.pid_id);
3550 
3551 		/*
3552 		 * It is always safe to dereference one's own t_procp pointer:
3553 		 * it always points to a valid, allocated proc structure.
3554 		 * Further, it is always safe to dereference the p_pidp member
3555 		 * of one's own proc structure.  (These are truisms becuase
3556 		 * threads and processes don't clean up their own state --
3557 		 * they leave that task to whomever reaps them.)
3558 		 */
3559 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3560 #else
3561 		return ((uint64_t)curproc->p_pid);
3562 #endif
3563 
3564 	case DIF_VAR_PPID:
3565 		if (!dtrace_priv_proc(state))
3566 			return (0);
3567 
3568 #ifdef illumos
3569 		/*
3570 		 * See comment in DIF_VAR_PID.
3571 		 */
3572 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3573 			return (pid0.pid_id);
3574 
3575 		/*
3576 		 * It is always safe to dereference one's own t_procp pointer:
3577 		 * it always points to a valid, allocated proc structure.
3578 		 * (This is true because threads don't clean up their own
3579 		 * state -- they leave that task to whomever reaps them.)
3580 		 */
3581 		return ((uint64_t)curthread->t_procp->p_ppid);
3582 #else
3583 		if (curproc->p_pid == proc0.p_pid)
3584 			return (curproc->p_pid);
3585 		else
3586 			return (curproc->p_pptr->p_pid);
3587 #endif
3588 
3589 	case DIF_VAR_TID:
3590 #ifdef illumos
3591 		/*
3592 		 * See comment in DIF_VAR_PID.
3593 		 */
3594 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3595 			return (0);
3596 #endif
3597 
3598 		return ((uint64_t)curthread->t_tid);
3599 
3600 	case DIF_VAR_EXECARGS: {
3601 		struct pargs *p_args = curthread->td_proc->p_args;
3602 
3603 		if (p_args == NULL)
3604 			return(0);
3605 
3606 		return (dtrace_dif_varstrz(
3607 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3608 	}
3609 
3610 	case DIF_VAR_EXECNAME:
3611 #ifdef illumos
3612 		if (!dtrace_priv_proc(state))
3613 			return (0);
3614 
3615 		/*
3616 		 * See comment in DIF_VAR_PID.
3617 		 */
3618 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3619 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3620 
3621 		/*
3622 		 * It is always safe to dereference one's own t_procp pointer:
3623 		 * it always points to a valid, allocated proc structure.
3624 		 * (This is true because threads don't clean up their own
3625 		 * state -- they leave that task to whomever reaps them.)
3626 		 */
3627 		return (dtrace_dif_varstr(
3628 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3629 		    state, mstate));
3630 #else
3631 		return (dtrace_dif_varstr(
3632 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3633 #endif
3634 
3635 	case DIF_VAR_ZONENAME:
3636 #ifdef illumos
3637 		if (!dtrace_priv_proc(state))
3638 			return (0);
3639 
3640 		/*
3641 		 * See comment in DIF_VAR_PID.
3642 		 */
3643 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3644 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3645 
3646 		/*
3647 		 * It is always safe to dereference one's own t_procp pointer:
3648 		 * it always points to a valid, allocated proc structure.
3649 		 * (This is true because threads don't clean up their own
3650 		 * state -- they leave that task to whomever reaps them.)
3651 		 */
3652 		return (dtrace_dif_varstr(
3653 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3654 		    state, mstate));
3655 #else
3656 		return (0);
3657 #endif
3658 
3659 	case DIF_VAR_UID:
3660 		if (!dtrace_priv_proc(state))
3661 			return (0);
3662 
3663 #ifdef illumos
3664 		/*
3665 		 * See comment in DIF_VAR_PID.
3666 		 */
3667 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3668 			return ((uint64_t)p0.p_cred->cr_uid);
3669 
3670 		/*
3671 		 * It is always safe to dereference one's own t_procp pointer:
3672 		 * it always points to a valid, allocated proc structure.
3673 		 * (This is true because threads don't clean up their own
3674 		 * state -- they leave that task to whomever reaps them.)
3675 		 *
3676 		 * Additionally, it is safe to dereference one's own process
3677 		 * credential, since this is never NULL after process birth.
3678 		 */
3679 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3680 #else
3681 		return ((uint64_t)curthread->td_ucred->cr_uid);
3682 #endif
3683 
3684 	case DIF_VAR_GID:
3685 		if (!dtrace_priv_proc(state))
3686 			return (0);
3687 
3688 #ifdef illumos
3689 		/*
3690 		 * See comment in DIF_VAR_PID.
3691 		 */
3692 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3693 			return ((uint64_t)p0.p_cred->cr_gid);
3694 
3695 		/*
3696 		 * It is always safe to dereference one's own t_procp pointer:
3697 		 * it always points to a valid, allocated proc structure.
3698 		 * (This is true because threads don't clean up their own
3699 		 * state -- they leave that task to whomever reaps them.)
3700 		 *
3701 		 * Additionally, it is safe to dereference one's own process
3702 		 * credential, since this is never NULL after process birth.
3703 		 */
3704 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3705 #else
3706 		return ((uint64_t)curthread->td_ucred->cr_gid);
3707 #endif
3708 
3709 	case DIF_VAR_ERRNO: {
3710 #ifdef illumos
3711 		klwp_t *lwp;
3712 		if (!dtrace_priv_proc(state))
3713 			return (0);
3714 
3715 		/*
3716 		 * See comment in DIF_VAR_PID.
3717 		 */
3718 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3719 			return (0);
3720 
3721 		/*
3722 		 * It is always safe to dereference one's own t_lwp pointer in
3723 		 * the event that this pointer is non-NULL.  (This is true
3724 		 * because threads and lwps don't clean up their own state --
3725 		 * they leave that task to whomever reaps them.)
3726 		 */
3727 		if ((lwp = curthread->t_lwp) == NULL)
3728 			return (0);
3729 
3730 		return ((uint64_t)lwp->lwp_errno);
3731 #else
3732 		return (curthread->td_errno);
3733 #endif
3734 	}
3735 #ifndef illumos
3736 	case DIF_VAR_CPU: {
3737 		return curcpu;
3738 	}
3739 #endif
3740 	default:
3741 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3742 		return (0);
3743 	}
3744 }
3745 
3746 
3747 typedef enum dtrace_json_state {
3748 	DTRACE_JSON_REST = 1,
3749 	DTRACE_JSON_OBJECT,
3750 	DTRACE_JSON_STRING,
3751 	DTRACE_JSON_STRING_ESCAPE,
3752 	DTRACE_JSON_STRING_ESCAPE_UNICODE,
3753 	DTRACE_JSON_COLON,
3754 	DTRACE_JSON_COMMA,
3755 	DTRACE_JSON_VALUE,
3756 	DTRACE_JSON_IDENTIFIER,
3757 	DTRACE_JSON_NUMBER,
3758 	DTRACE_JSON_NUMBER_FRAC,
3759 	DTRACE_JSON_NUMBER_EXP,
3760 	DTRACE_JSON_COLLECT_OBJECT
3761 } dtrace_json_state_t;
3762 
3763 /*
3764  * This function possesses just enough knowledge about JSON to extract a single
3765  * value from a JSON string and store it in the scratch buffer.  It is able
3766  * to extract nested object values, and members of arrays by index.
3767  *
3768  * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3769  * be looked up as we descend into the object tree.  e.g.
3770  *
3771  *    foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3772  *       with nelems = 5.
3773  *
3774  * The run time of this function must be bounded above by strsize to limit the
3775  * amount of work done in probe context.  As such, it is implemented as a
3776  * simple state machine, reading one character at a time using safe loads
3777  * until we find the requested element, hit a parsing error or run off the
3778  * end of the object or string.
3779  *
3780  * As there is no way for a subroutine to return an error without interrupting
3781  * clause execution, we simply return NULL in the event of a missing key or any
3782  * other error condition.  Each NULL return in this function is commented with
3783  * the error condition it represents -- parsing or otherwise.
3784  *
3785  * The set of states for the state machine closely matches the JSON
3786  * specification (http://json.org/).  Briefly:
3787  *
3788  *   DTRACE_JSON_REST:
3789  *     Skip whitespace until we find either a top-level Object, moving
3790  *     to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3791  *
3792  *   DTRACE_JSON_OBJECT:
3793  *     Locate the next key String in an Object.  Sets a flag to denote
3794  *     the next String as a key string and moves to DTRACE_JSON_STRING.
3795  *
3796  *   DTRACE_JSON_COLON:
3797  *     Skip whitespace until we find the colon that separates key Strings
3798  *     from their values.  Once found, move to DTRACE_JSON_VALUE.
3799  *
3800  *   DTRACE_JSON_VALUE:
3801  *     Detects the type of the next value (String, Number, Identifier, Object
3802  *     or Array) and routes to the states that process that type.  Here we also
3803  *     deal with the element selector list if we are requested to traverse down
3804  *     into the object tree.
3805  *
3806  *   DTRACE_JSON_COMMA:
3807  *     Skip whitespace until we find the comma that separates key-value pairs
3808  *     in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3809  *     (similarly DTRACE_JSON_VALUE).  All following literal value processing
3810  *     states return to this state at the end of their value, unless otherwise
3811  *     noted.
3812  *
3813  *   DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3814  *     Processes a Number literal from the JSON, including any exponent
3815  *     component that may be present.  Numbers are returned as strings, which
3816  *     may be passed to strtoll() if an integer is required.
3817  *
3818  *   DTRACE_JSON_IDENTIFIER:
3819  *     Processes a "true", "false" or "null" literal in the JSON.
3820  *
3821  *   DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3822  *   DTRACE_JSON_STRING_ESCAPE_UNICODE:
3823  *     Processes a String literal from the JSON, whether the String denotes
3824  *     a key, a value or part of a larger Object.  Handles all escape sequences
3825  *     present in the specification, including four-digit unicode characters,
3826  *     but merely includes the escape sequence without converting it to the
3827  *     actual escaped character.  If the String is flagged as a key, we
3828  *     move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3829  *
3830  *   DTRACE_JSON_COLLECT_OBJECT:
3831  *     This state collects an entire Object (or Array), correctly handling
3832  *     embedded strings.  If the full element selector list matches this nested
3833  *     object, we return the Object in full as a string.  If not, we use this
3834  *     state to skip to the next value at this level and continue processing.
3835  *
3836  * NOTE: This function uses various macros from strtolctype.h to manipulate
3837  * digit values, etc -- these have all been checked to ensure they make
3838  * no additional function calls.
3839  */
3840 static char *
3841 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3842     char *dest)
3843 {
3844 	dtrace_json_state_t state = DTRACE_JSON_REST;
3845 	int64_t array_elem = INT64_MIN;
3846 	int64_t array_pos = 0;
3847 	uint8_t escape_unicount = 0;
3848 	boolean_t string_is_key = B_FALSE;
3849 	boolean_t collect_object = B_FALSE;
3850 	boolean_t found_key = B_FALSE;
3851 	boolean_t in_array = B_FALSE;
3852 	uint32_t braces = 0, brackets = 0;
3853 	char *elem = elemlist;
3854 	char *dd = dest;
3855 	uintptr_t cur;
3856 
3857 	for (cur = json; cur < json + size; cur++) {
3858 		char cc = dtrace_load8(cur);
3859 		if (cc == '\0')
3860 			return (NULL);
3861 
3862 		switch (state) {
3863 		case DTRACE_JSON_REST:
3864 			if (isspace(cc))
3865 				break;
3866 
3867 			if (cc == '{') {
3868 				state = DTRACE_JSON_OBJECT;
3869 				break;
3870 			}
3871 
3872 			if (cc == '[') {
3873 				in_array = B_TRUE;
3874 				array_pos = 0;
3875 				array_elem = dtrace_strtoll(elem, 10, size);
3876 				found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3877 				state = DTRACE_JSON_VALUE;
3878 				break;
3879 			}
3880 
3881 			/*
3882 			 * ERROR: expected to find a top-level object or array.
3883 			 */
3884 			return (NULL);
3885 		case DTRACE_JSON_OBJECT:
3886 			if (isspace(cc))
3887 				break;
3888 
3889 			if (cc == '"') {
3890 				state = DTRACE_JSON_STRING;
3891 				string_is_key = B_TRUE;
3892 				break;
3893 			}
3894 
3895 			/*
3896 			 * ERROR: either the object did not start with a key
3897 			 * string, or we've run off the end of the object
3898 			 * without finding the requested key.
3899 			 */
3900 			return (NULL);
3901 		case DTRACE_JSON_STRING:
3902 			if (cc == '\\') {
3903 				*dd++ = '\\';
3904 				state = DTRACE_JSON_STRING_ESCAPE;
3905 				break;
3906 			}
3907 
3908 			if (cc == '"') {
3909 				if (collect_object) {
3910 					/*
3911 					 * We don't reset the dest here, as
3912 					 * the string is part of a larger
3913 					 * object being collected.
3914 					 */
3915 					*dd++ = cc;
3916 					collect_object = B_FALSE;
3917 					state = DTRACE_JSON_COLLECT_OBJECT;
3918 					break;
3919 				}
3920 				*dd = '\0';
3921 				dd = dest; /* reset string buffer */
3922 				if (string_is_key) {
3923 					if (dtrace_strncmp(dest, elem,
3924 					    size) == 0)
3925 						found_key = B_TRUE;
3926 				} else if (found_key) {
3927 					if (nelems > 1) {
3928 						/*
3929 						 * We expected an object, not
3930 						 * this string.
3931 						 */
3932 						return (NULL);
3933 					}
3934 					return (dest);
3935 				}
3936 				state = string_is_key ? DTRACE_JSON_COLON :
3937 				    DTRACE_JSON_COMMA;
3938 				string_is_key = B_FALSE;
3939 				break;
3940 			}
3941 
3942 			*dd++ = cc;
3943 			break;
3944 		case DTRACE_JSON_STRING_ESCAPE:
3945 			*dd++ = cc;
3946 			if (cc == 'u') {
3947 				escape_unicount = 0;
3948 				state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3949 			} else {
3950 				state = DTRACE_JSON_STRING;
3951 			}
3952 			break;
3953 		case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3954 			if (!isxdigit(cc)) {
3955 				/*
3956 				 * ERROR: invalid unicode escape, expected
3957 				 * four valid hexidecimal digits.
3958 				 */
3959 				return (NULL);
3960 			}
3961 
3962 			*dd++ = cc;
3963 			if (++escape_unicount == 4)
3964 				state = DTRACE_JSON_STRING;
3965 			break;
3966 		case DTRACE_JSON_COLON:
3967 			if (isspace(cc))
3968 				break;
3969 
3970 			if (cc == ':') {
3971 				state = DTRACE_JSON_VALUE;
3972 				break;
3973 			}
3974 
3975 			/*
3976 			 * ERROR: expected a colon.
3977 			 */
3978 			return (NULL);
3979 		case DTRACE_JSON_COMMA:
3980 			if (isspace(cc))
3981 				break;
3982 
3983 			if (cc == ',') {
3984 				if (in_array) {
3985 					state = DTRACE_JSON_VALUE;
3986 					if (++array_pos == array_elem)
3987 						found_key = B_TRUE;
3988 				} else {
3989 					state = DTRACE_JSON_OBJECT;
3990 				}
3991 				break;
3992 			}
3993 
3994 			/*
3995 			 * ERROR: either we hit an unexpected character, or
3996 			 * we reached the end of the object or array without
3997 			 * finding the requested key.
3998 			 */
3999 			return (NULL);
4000 		case DTRACE_JSON_IDENTIFIER:
4001 			if (islower(cc)) {
4002 				*dd++ = cc;
4003 				break;
4004 			}
4005 
4006 			*dd = '\0';
4007 			dd = dest; /* reset string buffer */
4008 
4009 			if (dtrace_strncmp(dest, "true", 5) == 0 ||
4010 			    dtrace_strncmp(dest, "false", 6) == 0 ||
4011 			    dtrace_strncmp(dest, "null", 5) == 0) {
4012 				if (found_key) {
4013 					if (nelems > 1) {
4014 						/*
4015 						 * ERROR: We expected an object,
4016 						 * not this identifier.
4017 						 */
4018 						return (NULL);
4019 					}
4020 					return (dest);
4021 				} else {
4022 					cur--;
4023 					state = DTRACE_JSON_COMMA;
4024 					break;
4025 				}
4026 			}
4027 
4028 			/*
4029 			 * ERROR: we did not recognise the identifier as one
4030 			 * of those in the JSON specification.
4031 			 */
4032 			return (NULL);
4033 		case DTRACE_JSON_NUMBER:
4034 			if (cc == '.') {
4035 				*dd++ = cc;
4036 				state = DTRACE_JSON_NUMBER_FRAC;
4037 				break;
4038 			}
4039 
4040 			if (cc == 'x' || cc == 'X') {
4041 				/*
4042 				 * ERROR: specification explicitly excludes
4043 				 * hexidecimal or octal numbers.
4044 				 */
4045 				return (NULL);
4046 			}
4047 
4048 			/* FALLTHRU */
4049 		case DTRACE_JSON_NUMBER_FRAC:
4050 			if (cc == 'e' || cc == 'E') {
4051 				*dd++ = cc;
4052 				state = DTRACE_JSON_NUMBER_EXP;
4053 				break;
4054 			}
4055 
4056 			if (cc == '+' || cc == '-') {
4057 				/*
4058 				 * ERROR: expect sign as part of exponent only.
4059 				 */
4060 				return (NULL);
4061 			}
4062 			/* FALLTHRU */
4063 		case DTRACE_JSON_NUMBER_EXP:
4064 			if (isdigit(cc) || cc == '+' || cc == '-') {
4065 				*dd++ = cc;
4066 				break;
4067 			}
4068 
4069 			*dd = '\0';
4070 			dd = dest; /* reset string buffer */
4071 			if (found_key) {
4072 				if (nelems > 1) {
4073 					/*
4074 					 * ERROR: We expected an object, not
4075 					 * this number.
4076 					 */
4077 					return (NULL);
4078 				}
4079 				return (dest);
4080 			}
4081 
4082 			cur--;
4083 			state = DTRACE_JSON_COMMA;
4084 			break;
4085 		case DTRACE_JSON_VALUE:
4086 			if (isspace(cc))
4087 				break;
4088 
4089 			if (cc == '{' || cc == '[') {
4090 				if (nelems > 1 && found_key) {
4091 					in_array = cc == '[' ? B_TRUE : B_FALSE;
4092 					/*
4093 					 * If our element selector directs us
4094 					 * to descend into this nested object,
4095 					 * then move to the next selector
4096 					 * element in the list and restart the
4097 					 * state machine.
4098 					 */
4099 					while (*elem != '\0')
4100 						elem++;
4101 					elem++; /* skip the inter-element NUL */
4102 					nelems--;
4103 					dd = dest;
4104 					if (in_array) {
4105 						state = DTRACE_JSON_VALUE;
4106 						array_pos = 0;
4107 						array_elem = dtrace_strtoll(
4108 						    elem, 10, size);
4109 						found_key = array_elem == 0 ?
4110 						    B_TRUE : B_FALSE;
4111 					} else {
4112 						found_key = B_FALSE;
4113 						state = DTRACE_JSON_OBJECT;
4114 					}
4115 					break;
4116 				}
4117 
4118 				/*
4119 				 * Otherwise, we wish to either skip this
4120 				 * nested object or return it in full.
4121 				 */
4122 				if (cc == '[')
4123 					brackets = 1;
4124 				else
4125 					braces = 1;
4126 				*dd++ = cc;
4127 				state = DTRACE_JSON_COLLECT_OBJECT;
4128 				break;
4129 			}
4130 
4131 			if (cc == '"') {
4132 				state = DTRACE_JSON_STRING;
4133 				break;
4134 			}
4135 
4136 			if (islower(cc)) {
4137 				/*
4138 				 * Here we deal with true, false and null.
4139 				 */
4140 				*dd++ = cc;
4141 				state = DTRACE_JSON_IDENTIFIER;
4142 				break;
4143 			}
4144 
4145 			if (cc == '-' || isdigit(cc)) {
4146 				*dd++ = cc;
4147 				state = DTRACE_JSON_NUMBER;
4148 				break;
4149 			}
4150 
4151 			/*
4152 			 * ERROR: unexpected character at start of value.
4153 			 */
4154 			return (NULL);
4155 		case DTRACE_JSON_COLLECT_OBJECT:
4156 			if (cc == '\0')
4157 				/*
4158 				 * ERROR: unexpected end of input.
4159 				 */
4160 				return (NULL);
4161 
4162 			*dd++ = cc;
4163 			if (cc == '"') {
4164 				collect_object = B_TRUE;
4165 				state = DTRACE_JSON_STRING;
4166 				break;
4167 			}
4168 
4169 			if (cc == ']') {
4170 				if (brackets-- == 0) {
4171 					/*
4172 					 * ERROR: unbalanced brackets.
4173 					 */
4174 					return (NULL);
4175 				}
4176 			} else if (cc == '}') {
4177 				if (braces-- == 0) {
4178 					/*
4179 					 * ERROR: unbalanced braces.
4180 					 */
4181 					return (NULL);
4182 				}
4183 			} else if (cc == '{') {
4184 				braces++;
4185 			} else if (cc == '[') {
4186 				brackets++;
4187 			}
4188 
4189 			if (brackets == 0 && braces == 0) {
4190 				if (found_key) {
4191 					*dd = '\0';
4192 					return (dest);
4193 				}
4194 				dd = dest; /* reset string buffer */
4195 				state = DTRACE_JSON_COMMA;
4196 			}
4197 			break;
4198 		}
4199 	}
4200 	return (NULL);
4201 }
4202 
4203 /*
4204  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4205  * Notice that we don't bother validating the proper number of arguments or
4206  * their types in the tuple stack.  This isn't needed because all argument
4207  * interpretation is safe because of our load safety -- the worst that can
4208  * happen is that a bogus program can obtain bogus results.
4209  */
4210 static void
4211 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4212     dtrace_key_t *tupregs, int nargs,
4213     dtrace_mstate_t *mstate, dtrace_state_t *state)
4214 {
4215 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4216 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4217 	dtrace_vstate_t *vstate = &state->dts_vstate;
4218 
4219 #ifdef illumos
4220 	union {
4221 		mutex_impl_t mi;
4222 		uint64_t mx;
4223 	} m;
4224 
4225 	union {
4226 		krwlock_t ri;
4227 		uintptr_t rw;
4228 	} r;
4229 #else
4230 	struct thread *lowner;
4231 	union {
4232 		struct lock_object *li;
4233 		uintptr_t lx;
4234 	} l;
4235 #endif
4236 
4237 	switch (subr) {
4238 	case DIF_SUBR_RAND:
4239 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4240 		break;
4241 
4242 #ifdef illumos
4243 	case DIF_SUBR_MUTEX_OWNED:
4244 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4245 		    mstate, vstate)) {
4246 			regs[rd] = 0;
4247 			break;
4248 		}
4249 
4250 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4251 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4252 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4253 		else
4254 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4255 		break;
4256 
4257 	case DIF_SUBR_MUTEX_OWNER:
4258 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4259 		    mstate, vstate)) {
4260 			regs[rd] = 0;
4261 			break;
4262 		}
4263 
4264 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4265 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4266 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4267 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4268 		else
4269 			regs[rd] = 0;
4270 		break;
4271 
4272 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4273 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4274 		    mstate, vstate)) {
4275 			regs[rd] = 0;
4276 			break;
4277 		}
4278 
4279 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4280 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4281 		break;
4282 
4283 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4284 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4285 		    mstate, vstate)) {
4286 			regs[rd] = 0;
4287 			break;
4288 		}
4289 
4290 		m.mx = dtrace_load64(tupregs[0].dttk_value);
4291 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4292 		break;
4293 
4294 	case DIF_SUBR_RW_READ_HELD: {
4295 		uintptr_t tmp;
4296 
4297 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4298 		    mstate, vstate)) {
4299 			regs[rd] = 0;
4300 			break;
4301 		}
4302 
4303 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4304 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4305 		break;
4306 	}
4307 
4308 	case DIF_SUBR_RW_WRITE_HELD:
4309 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4310 		    mstate, vstate)) {
4311 			regs[rd] = 0;
4312 			break;
4313 		}
4314 
4315 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4316 		regs[rd] = _RW_WRITE_HELD(&r.ri);
4317 		break;
4318 
4319 	case DIF_SUBR_RW_ISWRITER:
4320 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4321 		    mstate, vstate)) {
4322 			regs[rd] = 0;
4323 			break;
4324 		}
4325 
4326 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4327 		regs[rd] = _RW_ISWRITER(&r.ri);
4328 		break;
4329 
4330 #else /* !illumos */
4331 	case DIF_SUBR_MUTEX_OWNED:
4332 		if (!dtrace_canload(tupregs[0].dttk_value,
4333 			sizeof (struct lock_object), mstate, vstate)) {
4334 			regs[rd] = 0;
4335 			break;
4336 		}
4337 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4338 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4339 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4340 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4341 		break;
4342 
4343 	case DIF_SUBR_MUTEX_OWNER:
4344 		if (!dtrace_canload(tupregs[0].dttk_value,
4345 			sizeof (struct lock_object), mstate, vstate)) {
4346 			regs[rd] = 0;
4347 			break;
4348 		}
4349 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4350 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4351 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4352 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4353 		regs[rd] = (uintptr_t)lowner;
4354 		break;
4355 
4356 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4357 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4358 		    mstate, vstate)) {
4359 			regs[rd] = 0;
4360 			break;
4361 		}
4362 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4363 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4364 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0;
4365 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4366 		break;
4367 
4368 	case DIF_SUBR_MUTEX_TYPE_SPIN:
4369 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4370 		    mstate, vstate)) {
4371 			regs[rd] = 0;
4372 			break;
4373 		}
4374 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4375 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4376 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4377 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4378 		break;
4379 
4380 	case DIF_SUBR_RW_READ_HELD:
4381 	case DIF_SUBR_SX_SHARED_HELD:
4382 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4383 		    mstate, vstate)) {
4384 			regs[rd] = 0;
4385 			break;
4386 		}
4387 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4388 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4389 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4390 		    lowner == NULL;
4391 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4392 		break;
4393 
4394 	case DIF_SUBR_RW_WRITE_HELD:
4395 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
4396 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4397 		    mstate, vstate)) {
4398 			regs[rd] = 0;
4399 			break;
4400 		}
4401 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4402 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4403 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4404 		    lowner != NULL;
4405 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4406 		break;
4407 
4408 	case DIF_SUBR_RW_ISWRITER:
4409 	case DIF_SUBR_SX_ISEXCLUSIVE:
4410 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4411 		    mstate, vstate)) {
4412 			regs[rd] = 0;
4413 			break;
4414 		}
4415 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4416 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4417 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4418 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4419 		regs[rd] = (lowner == curthread);
4420 		break;
4421 #endif /* illumos */
4422 
4423 	case DIF_SUBR_BCOPY: {
4424 		/*
4425 		 * We need to be sure that the destination is in the scratch
4426 		 * region -- no other region is allowed.
4427 		 */
4428 		uintptr_t src = tupregs[0].dttk_value;
4429 		uintptr_t dest = tupregs[1].dttk_value;
4430 		size_t size = tupregs[2].dttk_value;
4431 
4432 		if (!dtrace_inscratch(dest, size, mstate)) {
4433 			*flags |= CPU_DTRACE_BADADDR;
4434 			*illval = regs[rd];
4435 			break;
4436 		}
4437 
4438 		if (!dtrace_canload(src, size, mstate, vstate)) {
4439 			regs[rd] = 0;
4440 			break;
4441 		}
4442 
4443 		dtrace_bcopy((void *)src, (void *)dest, size);
4444 		break;
4445 	}
4446 
4447 	case DIF_SUBR_ALLOCA:
4448 	case DIF_SUBR_COPYIN: {
4449 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4450 		uint64_t size =
4451 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4452 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4453 
4454 		/*
4455 		 * This action doesn't require any credential checks since
4456 		 * probes will not activate in user contexts to which the
4457 		 * enabling user does not have permissions.
4458 		 */
4459 
4460 		/*
4461 		 * Rounding up the user allocation size could have overflowed
4462 		 * a large, bogus allocation (like -1ULL) to 0.
4463 		 */
4464 		if (scratch_size < size ||
4465 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
4466 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4467 			regs[rd] = 0;
4468 			break;
4469 		}
4470 
4471 		if (subr == DIF_SUBR_COPYIN) {
4472 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4473 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4474 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4475 		}
4476 
4477 		mstate->dtms_scratch_ptr += scratch_size;
4478 		regs[rd] = dest;
4479 		break;
4480 	}
4481 
4482 	case DIF_SUBR_COPYINTO: {
4483 		uint64_t size = tupregs[1].dttk_value;
4484 		uintptr_t dest = tupregs[2].dttk_value;
4485 
4486 		/*
4487 		 * This action doesn't require any credential checks since
4488 		 * probes will not activate in user contexts to which the
4489 		 * enabling user does not have permissions.
4490 		 */
4491 		if (!dtrace_inscratch(dest, size, mstate)) {
4492 			*flags |= CPU_DTRACE_BADADDR;
4493 			*illval = regs[rd];
4494 			break;
4495 		}
4496 
4497 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4498 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4499 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4500 		break;
4501 	}
4502 
4503 	case DIF_SUBR_COPYINSTR: {
4504 		uintptr_t dest = mstate->dtms_scratch_ptr;
4505 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4506 
4507 		if (nargs > 1 && tupregs[1].dttk_value < size)
4508 			size = tupregs[1].dttk_value + 1;
4509 
4510 		/*
4511 		 * This action doesn't require any credential checks since
4512 		 * probes will not activate in user contexts to which the
4513 		 * enabling user does not have permissions.
4514 		 */
4515 		if (!DTRACE_INSCRATCH(mstate, size)) {
4516 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4517 			regs[rd] = 0;
4518 			break;
4519 		}
4520 
4521 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4522 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4523 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4524 
4525 		((char *)dest)[size - 1] = '\0';
4526 		mstate->dtms_scratch_ptr += size;
4527 		regs[rd] = dest;
4528 		break;
4529 	}
4530 
4531 #ifdef illumos
4532 	case DIF_SUBR_MSGSIZE:
4533 	case DIF_SUBR_MSGDSIZE: {
4534 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
4535 		uintptr_t wptr, rptr;
4536 		size_t count = 0;
4537 		int cont = 0;
4538 
4539 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4540 
4541 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4542 			    vstate)) {
4543 				regs[rd] = 0;
4544 				break;
4545 			}
4546 
4547 			wptr = dtrace_loadptr(baddr +
4548 			    offsetof(mblk_t, b_wptr));
4549 
4550 			rptr = dtrace_loadptr(baddr +
4551 			    offsetof(mblk_t, b_rptr));
4552 
4553 			if (wptr < rptr) {
4554 				*flags |= CPU_DTRACE_BADADDR;
4555 				*illval = tupregs[0].dttk_value;
4556 				break;
4557 			}
4558 
4559 			daddr = dtrace_loadptr(baddr +
4560 			    offsetof(mblk_t, b_datap));
4561 
4562 			baddr = dtrace_loadptr(baddr +
4563 			    offsetof(mblk_t, b_cont));
4564 
4565 			/*
4566 			 * We want to prevent against denial-of-service here,
4567 			 * so we're only going to search the list for
4568 			 * dtrace_msgdsize_max mblks.
4569 			 */
4570 			if (cont++ > dtrace_msgdsize_max) {
4571 				*flags |= CPU_DTRACE_ILLOP;
4572 				break;
4573 			}
4574 
4575 			if (subr == DIF_SUBR_MSGDSIZE) {
4576 				if (dtrace_load8(daddr +
4577 				    offsetof(dblk_t, db_type)) != M_DATA)
4578 					continue;
4579 			}
4580 
4581 			count += wptr - rptr;
4582 		}
4583 
4584 		if (!(*flags & CPU_DTRACE_FAULT))
4585 			regs[rd] = count;
4586 
4587 		break;
4588 	}
4589 #endif
4590 
4591 	case DIF_SUBR_PROGENYOF: {
4592 		pid_t pid = tupregs[0].dttk_value;
4593 		proc_t *p;
4594 		int rval = 0;
4595 
4596 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4597 
4598 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4599 #ifdef illumos
4600 			if (p->p_pidp->pid_id == pid) {
4601 #else
4602 			if (p->p_pid == pid) {
4603 #endif
4604 				rval = 1;
4605 				break;
4606 			}
4607 		}
4608 
4609 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4610 
4611 		regs[rd] = rval;
4612 		break;
4613 	}
4614 
4615 	case DIF_SUBR_SPECULATION:
4616 		regs[rd] = dtrace_speculation(state);
4617 		break;
4618 
4619 	case DIF_SUBR_COPYOUT: {
4620 		uintptr_t kaddr = tupregs[0].dttk_value;
4621 		uintptr_t uaddr = tupregs[1].dttk_value;
4622 		uint64_t size = tupregs[2].dttk_value;
4623 
4624 		if (!dtrace_destructive_disallow &&
4625 		    dtrace_priv_proc_control(state) &&
4626 		    !dtrace_istoxic(kaddr, size) &&
4627 		    dtrace_canload(kaddr, size, mstate, vstate)) {
4628 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4629 			dtrace_copyout(kaddr, uaddr, size, flags);
4630 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4631 		}
4632 		break;
4633 	}
4634 
4635 	case DIF_SUBR_COPYOUTSTR: {
4636 		uintptr_t kaddr = tupregs[0].dttk_value;
4637 		uintptr_t uaddr = tupregs[1].dttk_value;
4638 		uint64_t size = tupregs[2].dttk_value;
4639 		size_t lim;
4640 
4641 		if (!dtrace_destructive_disallow &&
4642 		    dtrace_priv_proc_control(state) &&
4643 		    !dtrace_istoxic(kaddr, size) &&
4644 		    dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4645 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4646 			dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4647 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4648 		}
4649 		break;
4650 	}
4651 
4652 	case DIF_SUBR_STRLEN: {
4653 		size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4654 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4655 		size_t lim;
4656 
4657 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4658 			regs[rd] = 0;
4659 			break;
4660 		}
4661 
4662 		regs[rd] = dtrace_strlen((char *)addr, lim);
4663 		break;
4664 	}
4665 
4666 	case DIF_SUBR_STRCHR:
4667 	case DIF_SUBR_STRRCHR: {
4668 		/*
4669 		 * We're going to iterate over the string looking for the
4670 		 * specified character.  We will iterate until we have reached
4671 		 * the string length or we have found the character.  If this
4672 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4673 		 * of the specified character instead of the first.
4674 		 */
4675 		uintptr_t addr = tupregs[0].dttk_value;
4676 		uintptr_t addr_limit;
4677 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4678 		size_t lim;
4679 		char c, target = (char)tupregs[1].dttk_value;
4680 
4681 		if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4682 			regs[rd] = 0;
4683 			break;
4684 		}
4685 		addr_limit = addr + lim;
4686 
4687 		for (regs[rd] = 0; addr < addr_limit; addr++) {
4688 			if ((c = dtrace_load8(addr)) == target) {
4689 				regs[rd] = addr;
4690 
4691 				if (subr == DIF_SUBR_STRCHR)
4692 					break;
4693 			}
4694 
4695 			if (c == '\0')
4696 				break;
4697 		}
4698 		break;
4699 	}
4700 
4701 	case DIF_SUBR_STRSTR:
4702 	case DIF_SUBR_INDEX:
4703 	case DIF_SUBR_RINDEX: {
4704 		/*
4705 		 * We're going to iterate over the string looking for the
4706 		 * specified string.  We will iterate until we have reached
4707 		 * the string length or we have found the string.  (Yes, this
4708 		 * is done in the most naive way possible -- but considering
4709 		 * that the string we're searching for is likely to be
4710 		 * relatively short, the complexity of Rabin-Karp or similar
4711 		 * hardly seems merited.)
4712 		 */
4713 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4714 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4715 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4716 		size_t len = dtrace_strlen(addr, size);
4717 		size_t sublen = dtrace_strlen(substr, size);
4718 		char *limit = addr + len, *orig = addr;
4719 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4720 		int inc = 1;
4721 
4722 		regs[rd] = notfound;
4723 
4724 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4725 			regs[rd] = 0;
4726 			break;
4727 		}
4728 
4729 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4730 		    vstate)) {
4731 			regs[rd] = 0;
4732 			break;
4733 		}
4734 
4735 		/*
4736 		 * strstr() and index()/rindex() have similar semantics if
4737 		 * both strings are the empty string: strstr() returns a
4738 		 * pointer to the (empty) string, and index() and rindex()
4739 		 * both return index 0 (regardless of any position argument).
4740 		 */
4741 		if (sublen == 0 && len == 0) {
4742 			if (subr == DIF_SUBR_STRSTR)
4743 				regs[rd] = (uintptr_t)addr;
4744 			else
4745 				regs[rd] = 0;
4746 			break;
4747 		}
4748 
4749 		if (subr != DIF_SUBR_STRSTR) {
4750 			if (subr == DIF_SUBR_RINDEX) {
4751 				limit = orig - 1;
4752 				addr += len;
4753 				inc = -1;
4754 			}
4755 
4756 			/*
4757 			 * Both index() and rindex() take an optional position
4758 			 * argument that denotes the starting position.
4759 			 */
4760 			if (nargs == 3) {
4761 				int64_t pos = (int64_t)tupregs[2].dttk_value;
4762 
4763 				/*
4764 				 * If the position argument to index() is
4765 				 * negative, Perl implicitly clamps it at
4766 				 * zero.  This semantic is a little surprising
4767 				 * given the special meaning of negative
4768 				 * positions to similar Perl functions like
4769 				 * substr(), but it appears to reflect a
4770 				 * notion that index() can start from a
4771 				 * negative index and increment its way up to
4772 				 * the string.  Given this notion, Perl's
4773 				 * rindex() is at least self-consistent in
4774 				 * that it implicitly clamps positions greater
4775 				 * than the string length to be the string
4776 				 * length.  Where Perl completely loses
4777 				 * coherence, however, is when the specified
4778 				 * substring is the empty string ("").  In
4779 				 * this case, even if the position is
4780 				 * negative, rindex() returns 0 -- and even if
4781 				 * the position is greater than the length,
4782 				 * index() returns the string length.  These
4783 				 * semantics violate the notion that index()
4784 				 * should never return a value less than the
4785 				 * specified position and that rindex() should
4786 				 * never return a value greater than the
4787 				 * specified position.  (One assumes that
4788 				 * these semantics are artifacts of Perl's
4789 				 * implementation and not the results of
4790 				 * deliberate design -- it beggars belief that
4791 				 * even Larry Wall could desire such oddness.)
4792 				 * While in the abstract one would wish for
4793 				 * consistent position semantics across
4794 				 * substr(), index() and rindex() -- or at the
4795 				 * very least self-consistent position
4796 				 * semantics for index() and rindex() -- we
4797 				 * instead opt to keep with the extant Perl
4798 				 * semantics, in all their broken glory.  (Do
4799 				 * we have more desire to maintain Perl's
4800 				 * semantics than Perl does?  Probably.)
4801 				 */
4802 				if (subr == DIF_SUBR_RINDEX) {
4803 					if (pos < 0) {
4804 						if (sublen == 0)
4805 							regs[rd] = 0;
4806 						break;
4807 					}
4808 
4809 					if (pos > len)
4810 						pos = len;
4811 				} else {
4812 					if (pos < 0)
4813 						pos = 0;
4814 
4815 					if (pos >= len) {
4816 						if (sublen == 0)
4817 							regs[rd] = len;
4818 						break;
4819 					}
4820 				}
4821 
4822 				addr = orig + pos;
4823 			}
4824 		}
4825 
4826 		for (regs[rd] = notfound; addr != limit; addr += inc) {
4827 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
4828 				if (subr != DIF_SUBR_STRSTR) {
4829 					/*
4830 					 * As D index() and rindex() are
4831 					 * modeled on Perl (and not on awk),
4832 					 * we return a zero-based (and not a
4833 					 * one-based) index.  (For you Perl
4834 					 * weenies: no, we're not going to add
4835 					 * $[ -- and shouldn't you be at a con
4836 					 * or something?)
4837 					 */
4838 					regs[rd] = (uintptr_t)(addr - orig);
4839 					break;
4840 				}
4841 
4842 				ASSERT(subr == DIF_SUBR_STRSTR);
4843 				regs[rd] = (uintptr_t)addr;
4844 				break;
4845 			}
4846 		}
4847 
4848 		break;
4849 	}
4850 
4851 	case DIF_SUBR_STRTOK: {
4852 		uintptr_t addr = tupregs[0].dttk_value;
4853 		uintptr_t tokaddr = tupregs[1].dttk_value;
4854 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4855 		uintptr_t limit, toklimit;
4856 		size_t clim;
4857 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
4858 		char *dest = (char *)mstate->dtms_scratch_ptr;
4859 		int i;
4860 
4861 		/*
4862 		 * Check both the token buffer and (later) the input buffer,
4863 		 * since both could be non-scratch addresses.
4864 		 */
4865 		if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4866 			regs[rd] = 0;
4867 			break;
4868 		}
4869 		toklimit = tokaddr + clim;
4870 
4871 		if (!DTRACE_INSCRATCH(mstate, size)) {
4872 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4873 			regs[rd] = 0;
4874 			break;
4875 		}
4876 
4877 		if (addr == 0) {
4878 			/*
4879 			 * If the address specified is NULL, we use our saved
4880 			 * strtok pointer from the mstate.  Note that this
4881 			 * means that the saved strtok pointer is _only_
4882 			 * valid within multiple enablings of the same probe --
4883 			 * it behaves like an implicit clause-local variable.
4884 			 */
4885 			addr = mstate->dtms_strtok;
4886 			limit = mstate->dtms_strtok_limit;
4887 		} else {
4888 			/*
4889 			 * If the user-specified address is non-NULL we must
4890 			 * access check it.  This is the only time we have
4891 			 * a chance to do so, since this address may reside
4892 			 * in the string table of this clause-- future calls
4893 			 * (when we fetch addr from mstate->dtms_strtok)
4894 			 * would fail this access check.
4895 			 */
4896 			if (!dtrace_strcanload(addr, size, &clim, mstate,
4897 			    vstate)) {
4898 				regs[rd] = 0;
4899 				break;
4900 			}
4901 			limit = addr + clim;
4902 		}
4903 
4904 		/*
4905 		 * First, zero the token map, and then process the token
4906 		 * string -- setting a bit in the map for every character
4907 		 * found in the token string.
4908 		 */
4909 		for (i = 0; i < sizeof (tokmap); i++)
4910 			tokmap[i] = 0;
4911 
4912 		for (; tokaddr < toklimit; tokaddr++) {
4913 			if ((c = dtrace_load8(tokaddr)) == '\0')
4914 				break;
4915 
4916 			ASSERT((c >> 3) < sizeof (tokmap));
4917 			tokmap[c >> 3] |= (1 << (c & 0x7));
4918 		}
4919 
4920 		for (; addr < limit; addr++) {
4921 			/*
4922 			 * We're looking for a character that is _not_
4923 			 * contained in the token string.
4924 			 */
4925 			if ((c = dtrace_load8(addr)) == '\0')
4926 				break;
4927 
4928 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4929 				break;
4930 		}
4931 
4932 		if (c == '\0') {
4933 			/*
4934 			 * We reached the end of the string without finding
4935 			 * any character that was not in the token string.
4936 			 * We return NULL in this case, and we set the saved
4937 			 * address to NULL as well.
4938 			 */
4939 			regs[rd] = 0;
4940 			mstate->dtms_strtok = 0;
4941 			mstate->dtms_strtok_limit = 0;
4942 			break;
4943 		}
4944 
4945 		/*
4946 		 * From here on, we're copying into the destination string.
4947 		 */
4948 		for (i = 0; addr < limit && i < size - 1; addr++) {
4949 			if ((c = dtrace_load8(addr)) == '\0')
4950 				break;
4951 
4952 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
4953 				break;
4954 
4955 			ASSERT(i < size);
4956 			dest[i++] = c;
4957 		}
4958 
4959 		ASSERT(i < size);
4960 		dest[i] = '\0';
4961 		regs[rd] = (uintptr_t)dest;
4962 		mstate->dtms_scratch_ptr += size;
4963 		mstate->dtms_strtok = addr;
4964 		mstate->dtms_strtok_limit = limit;
4965 		break;
4966 	}
4967 
4968 	case DIF_SUBR_SUBSTR: {
4969 		uintptr_t s = tupregs[0].dttk_value;
4970 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4971 		char *d = (char *)mstate->dtms_scratch_ptr;
4972 		int64_t index = (int64_t)tupregs[1].dttk_value;
4973 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4974 		size_t len = dtrace_strlen((char *)s, size);
4975 		int64_t i;
4976 
4977 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4978 			regs[rd] = 0;
4979 			break;
4980 		}
4981 
4982 		if (!DTRACE_INSCRATCH(mstate, size)) {
4983 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4984 			regs[rd] = 0;
4985 			break;
4986 		}
4987 
4988 		if (nargs <= 2)
4989 			remaining = (int64_t)size;
4990 
4991 		if (index < 0) {
4992 			index += len;
4993 
4994 			if (index < 0 && index + remaining > 0) {
4995 				remaining += index;
4996 				index = 0;
4997 			}
4998 		}
4999 
5000 		if (index >= len || index < 0) {
5001 			remaining = 0;
5002 		} else if (remaining < 0) {
5003 			remaining += len - index;
5004 		} else if (index + remaining > size) {
5005 			remaining = size - index;
5006 		}
5007 
5008 		for (i = 0; i < remaining; i++) {
5009 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
5010 				break;
5011 		}
5012 
5013 		d[i] = '\0';
5014 
5015 		mstate->dtms_scratch_ptr += size;
5016 		regs[rd] = (uintptr_t)d;
5017 		break;
5018 	}
5019 
5020 	case DIF_SUBR_JSON: {
5021 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5022 		uintptr_t json = tupregs[0].dttk_value;
5023 		size_t jsonlen = dtrace_strlen((char *)json, size);
5024 		uintptr_t elem = tupregs[1].dttk_value;
5025 		size_t elemlen = dtrace_strlen((char *)elem, size);
5026 
5027 		char *dest = (char *)mstate->dtms_scratch_ptr;
5028 		char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
5029 		char *ee = elemlist;
5030 		int nelems = 1;
5031 		uintptr_t cur;
5032 
5033 		if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
5034 		    !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
5035 			regs[rd] = 0;
5036 			break;
5037 		}
5038 
5039 		if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
5040 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5041 			regs[rd] = 0;
5042 			break;
5043 		}
5044 
5045 		/*
5046 		 * Read the element selector and split it up into a packed list
5047 		 * of strings.
5048 		 */
5049 		for (cur = elem; cur < elem + elemlen; cur++) {
5050 			char cc = dtrace_load8(cur);
5051 
5052 			if (cur == elem && cc == '[') {
5053 				/*
5054 				 * If the first element selector key is
5055 				 * actually an array index then ignore the
5056 				 * bracket.
5057 				 */
5058 				continue;
5059 			}
5060 
5061 			if (cc == ']')
5062 				continue;
5063 
5064 			if (cc == '.' || cc == '[') {
5065 				nelems++;
5066 				cc = '\0';
5067 			}
5068 
5069 			*ee++ = cc;
5070 		}
5071 		*ee++ = '\0';
5072 
5073 		if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
5074 		    nelems, dest)) != 0)
5075 			mstate->dtms_scratch_ptr += jsonlen + 1;
5076 		break;
5077 	}
5078 
5079 	case DIF_SUBR_TOUPPER:
5080 	case DIF_SUBR_TOLOWER: {
5081 		uintptr_t s = tupregs[0].dttk_value;
5082 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5083 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5084 		size_t len = dtrace_strlen((char *)s, size);
5085 		char lower, upper, convert;
5086 		int64_t i;
5087 
5088 		if (subr == DIF_SUBR_TOUPPER) {
5089 			lower = 'a';
5090 			upper = 'z';
5091 			convert = 'A';
5092 		} else {
5093 			lower = 'A';
5094 			upper = 'Z';
5095 			convert = 'a';
5096 		}
5097 
5098 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5099 			regs[rd] = 0;
5100 			break;
5101 		}
5102 
5103 		if (!DTRACE_INSCRATCH(mstate, size)) {
5104 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5105 			regs[rd] = 0;
5106 			break;
5107 		}
5108 
5109 		for (i = 0; i < size - 1; i++) {
5110 			if ((c = dtrace_load8(s + i)) == '\0')
5111 				break;
5112 
5113 			if (c >= lower && c <= upper)
5114 				c = convert + (c - lower);
5115 
5116 			dest[i] = c;
5117 		}
5118 
5119 		ASSERT(i < size);
5120 		dest[i] = '\0';
5121 		regs[rd] = (uintptr_t)dest;
5122 		mstate->dtms_scratch_ptr += size;
5123 		break;
5124 	}
5125 
5126 #ifdef illumos
5127 	case DIF_SUBR_GETMAJOR:
5128 #ifdef _LP64
5129 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
5130 #else
5131 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
5132 #endif
5133 		break;
5134 
5135 	case DIF_SUBR_GETMINOR:
5136 #ifdef _LP64
5137 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
5138 #else
5139 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
5140 #endif
5141 		break;
5142 
5143 	case DIF_SUBR_DDI_PATHNAME: {
5144 		/*
5145 		 * This one is a galactic mess.  We are going to roughly
5146 		 * emulate ddi_pathname(), but it's made more complicated
5147 		 * by the fact that we (a) want to include the minor name and
5148 		 * (b) must proceed iteratively instead of recursively.
5149 		 */
5150 		uintptr_t dest = mstate->dtms_scratch_ptr;
5151 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5152 		char *start = (char *)dest, *end = start + size - 1;
5153 		uintptr_t daddr = tupregs[0].dttk_value;
5154 		int64_t minor = (int64_t)tupregs[1].dttk_value;
5155 		char *s;
5156 		int i, len, depth = 0;
5157 
5158 		/*
5159 		 * Due to all the pointer jumping we do and context we must
5160 		 * rely upon, we just mandate that the user must have kernel
5161 		 * read privileges to use this routine.
5162 		 */
5163 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5164 			*flags |= CPU_DTRACE_KPRIV;
5165 			*illval = daddr;
5166 			regs[rd] = 0;
5167 		}
5168 
5169 		if (!DTRACE_INSCRATCH(mstate, size)) {
5170 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5171 			regs[rd] = 0;
5172 			break;
5173 		}
5174 
5175 		*end = '\0';
5176 
5177 		/*
5178 		 * We want to have a name for the minor.  In order to do this,
5179 		 * we need to walk the minor list from the devinfo.  We want
5180 		 * to be sure that we don't infinitely walk a circular list,
5181 		 * so we check for circularity by sending a scout pointer
5182 		 * ahead two elements for every element that we iterate over;
5183 		 * if the list is circular, these will ultimately point to the
5184 		 * same element.  You may recognize this little trick as the
5185 		 * answer to a stupid interview question -- one that always
5186 		 * seems to be asked by those who had to have it laboriously
5187 		 * explained to them, and who can't even concisely describe
5188 		 * the conditions under which one would be forced to resort to
5189 		 * this technique.  Needless to say, those conditions are
5190 		 * found here -- and probably only here.  Is this the only use
5191 		 * of this infamous trick in shipping, production code?  If it
5192 		 * isn't, it probably should be...
5193 		 */
5194 		if (minor != -1) {
5195 			uintptr_t maddr = dtrace_loadptr(daddr +
5196 			    offsetof(struct dev_info, devi_minor));
5197 
5198 			uintptr_t next = offsetof(struct ddi_minor_data, next);
5199 			uintptr_t name = offsetof(struct ddi_minor_data,
5200 			    d_minor) + offsetof(struct ddi_minor, name);
5201 			uintptr_t dev = offsetof(struct ddi_minor_data,
5202 			    d_minor) + offsetof(struct ddi_minor, dev);
5203 			uintptr_t scout;
5204 
5205 			if (maddr != NULL)
5206 				scout = dtrace_loadptr(maddr + next);
5207 
5208 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5209 				uint64_t m;
5210 #ifdef _LP64
5211 				m = dtrace_load64(maddr + dev) & MAXMIN64;
5212 #else
5213 				m = dtrace_load32(maddr + dev) & MAXMIN;
5214 #endif
5215 				if (m != minor) {
5216 					maddr = dtrace_loadptr(maddr + next);
5217 
5218 					if (scout == NULL)
5219 						continue;
5220 
5221 					scout = dtrace_loadptr(scout + next);
5222 
5223 					if (scout == NULL)
5224 						continue;
5225 
5226 					scout = dtrace_loadptr(scout + next);
5227 
5228 					if (scout == NULL)
5229 						continue;
5230 
5231 					if (scout == maddr) {
5232 						*flags |= CPU_DTRACE_ILLOP;
5233 						break;
5234 					}
5235 
5236 					continue;
5237 				}
5238 
5239 				/*
5240 				 * We have the minor data.  Now we need to
5241 				 * copy the minor's name into the end of the
5242 				 * pathname.
5243 				 */
5244 				s = (char *)dtrace_loadptr(maddr + name);
5245 				len = dtrace_strlen(s, size);
5246 
5247 				if (*flags & CPU_DTRACE_FAULT)
5248 					break;
5249 
5250 				if (len != 0) {
5251 					if ((end -= (len + 1)) < start)
5252 						break;
5253 
5254 					*end = ':';
5255 				}
5256 
5257 				for (i = 1; i <= len; i++)
5258 					end[i] = dtrace_load8((uintptr_t)s++);
5259 				break;
5260 			}
5261 		}
5262 
5263 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5264 			ddi_node_state_t devi_state;
5265 
5266 			devi_state = dtrace_load32(daddr +
5267 			    offsetof(struct dev_info, devi_node_state));
5268 
5269 			if (*flags & CPU_DTRACE_FAULT)
5270 				break;
5271 
5272 			if (devi_state >= DS_INITIALIZED) {
5273 				s = (char *)dtrace_loadptr(daddr +
5274 				    offsetof(struct dev_info, devi_addr));
5275 				len = dtrace_strlen(s, size);
5276 
5277 				if (*flags & CPU_DTRACE_FAULT)
5278 					break;
5279 
5280 				if (len != 0) {
5281 					if ((end -= (len + 1)) < start)
5282 						break;
5283 
5284 					*end = '@';
5285 				}
5286 
5287 				for (i = 1; i <= len; i++)
5288 					end[i] = dtrace_load8((uintptr_t)s++);
5289 			}
5290 
5291 			/*
5292 			 * Now for the node name...
5293 			 */
5294 			s = (char *)dtrace_loadptr(daddr +
5295 			    offsetof(struct dev_info, devi_node_name));
5296 
5297 			daddr = dtrace_loadptr(daddr +
5298 			    offsetof(struct dev_info, devi_parent));
5299 
5300 			/*
5301 			 * If our parent is NULL (that is, if we're the root
5302 			 * node), we're going to use the special path
5303 			 * "devices".
5304 			 */
5305 			if (daddr == 0)
5306 				s = "devices";
5307 
5308 			len = dtrace_strlen(s, size);
5309 			if (*flags & CPU_DTRACE_FAULT)
5310 				break;
5311 
5312 			if ((end -= (len + 1)) < start)
5313 				break;
5314 
5315 			for (i = 1; i <= len; i++)
5316 				end[i] = dtrace_load8((uintptr_t)s++);
5317 			*end = '/';
5318 
5319 			if (depth++ > dtrace_devdepth_max) {
5320 				*flags |= CPU_DTRACE_ILLOP;
5321 				break;
5322 			}
5323 		}
5324 
5325 		if (end < start)
5326 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5327 
5328 		if (daddr == 0) {
5329 			regs[rd] = (uintptr_t)end;
5330 			mstate->dtms_scratch_ptr += size;
5331 		}
5332 
5333 		break;
5334 	}
5335 #endif
5336 
5337 	case DIF_SUBR_STRJOIN: {
5338 		char *d = (char *)mstate->dtms_scratch_ptr;
5339 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5340 		uintptr_t s1 = tupregs[0].dttk_value;
5341 		uintptr_t s2 = tupregs[1].dttk_value;
5342 		int i = 0, j = 0;
5343 		size_t lim1, lim2;
5344 		char c;
5345 
5346 		if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5347 		    !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5348 			regs[rd] = 0;
5349 			break;
5350 		}
5351 
5352 		if (!DTRACE_INSCRATCH(mstate, size)) {
5353 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5354 			regs[rd] = 0;
5355 			break;
5356 		}
5357 
5358 		for (;;) {
5359 			if (i >= size) {
5360 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5361 				regs[rd] = 0;
5362 				break;
5363 			}
5364 			c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5365 			if ((d[i++] = c) == '\0') {
5366 				i--;
5367 				break;
5368 			}
5369 		}
5370 
5371 		for (;;) {
5372 			if (i >= size) {
5373 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5374 				regs[rd] = 0;
5375 				break;
5376 			}
5377 
5378 			c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5379 			if ((d[i++] = c) == '\0')
5380 				break;
5381 		}
5382 
5383 		if (i < size) {
5384 			mstate->dtms_scratch_ptr += i;
5385 			regs[rd] = (uintptr_t)d;
5386 		}
5387 
5388 		break;
5389 	}
5390 
5391 	case DIF_SUBR_STRTOLL: {
5392 		uintptr_t s = tupregs[0].dttk_value;
5393 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5394 		size_t lim;
5395 		int base = 10;
5396 
5397 		if (nargs > 1) {
5398 			if ((base = tupregs[1].dttk_value) <= 1 ||
5399 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5400 				*flags |= CPU_DTRACE_ILLOP;
5401 				break;
5402 			}
5403 		}
5404 
5405 		if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5406 			regs[rd] = INT64_MIN;
5407 			break;
5408 		}
5409 
5410 		regs[rd] = dtrace_strtoll((char *)s, base, lim);
5411 		break;
5412 	}
5413 
5414 	case DIF_SUBR_LLTOSTR: {
5415 		int64_t i = (int64_t)tupregs[0].dttk_value;
5416 		uint64_t val, digit;
5417 		uint64_t size = 65;	/* enough room for 2^64 in binary */
5418 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5419 		int base = 10;
5420 
5421 		if (nargs > 1) {
5422 			if ((base = tupregs[1].dttk_value) <= 1 ||
5423 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5424 				*flags |= CPU_DTRACE_ILLOP;
5425 				break;
5426 			}
5427 		}
5428 
5429 		val = (base == 10 && i < 0) ? i * -1 : i;
5430 
5431 		if (!DTRACE_INSCRATCH(mstate, size)) {
5432 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5433 			regs[rd] = 0;
5434 			break;
5435 		}
5436 
5437 		for (*end-- = '\0'; val; val /= base) {
5438 			if ((digit = val % base) <= '9' - '0') {
5439 				*end-- = '0' + digit;
5440 			} else {
5441 				*end-- = 'a' + (digit - ('9' - '0') - 1);
5442 			}
5443 		}
5444 
5445 		if (i == 0 && base == 16)
5446 			*end-- = '0';
5447 
5448 		if (base == 16)
5449 			*end-- = 'x';
5450 
5451 		if (i == 0 || base == 8 || base == 16)
5452 			*end-- = '0';
5453 
5454 		if (i < 0 && base == 10)
5455 			*end-- = '-';
5456 
5457 		regs[rd] = (uintptr_t)end + 1;
5458 		mstate->dtms_scratch_ptr += size;
5459 		break;
5460 	}
5461 
5462 	case DIF_SUBR_HTONS:
5463 	case DIF_SUBR_NTOHS:
5464 #if BYTE_ORDER == BIG_ENDIAN
5465 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
5466 #else
5467 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5468 #endif
5469 		break;
5470 
5471 
5472 	case DIF_SUBR_HTONL:
5473 	case DIF_SUBR_NTOHL:
5474 #if BYTE_ORDER == BIG_ENDIAN
5475 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
5476 #else
5477 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5478 #endif
5479 		break;
5480 
5481 
5482 	case DIF_SUBR_HTONLL:
5483 	case DIF_SUBR_NTOHLL:
5484 #if BYTE_ORDER == BIG_ENDIAN
5485 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
5486 #else
5487 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5488 #endif
5489 		break;
5490 
5491 
5492 	case DIF_SUBR_DIRNAME:
5493 	case DIF_SUBR_BASENAME: {
5494 		char *dest = (char *)mstate->dtms_scratch_ptr;
5495 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5496 		uintptr_t src = tupregs[0].dttk_value;
5497 		int i, j, len = dtrace_strlen((char *)src, size);
5498 		int lastbase = -1, firstbase = -1, lastdir = -1;
5499 		int start, end;
5500 
5501 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5502 			regs[rd] = 0;
5503 			break;
5504 		}
5505 
5506 		if (!DTRACE_INSCRATCH(mstate, size)) {
5507 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5508 			regs[rd] = 0;
5509 			break;
5510 		}
5511 
5512 		/*
5513 		 * The basename and dirname for a zero-length string is
5514 		 * defined to be "."
5515 		 */
5516 		if (len == 0) {
5517 			len = 1;
5518 			src = (uintptr_t)".";
5519 		}
5520 
5521 		/*
5522 		 * Start from the back of the string, moving back toward the
5523 		 * front until we see a character that isn't a slash.  That
5524 		 * character is the last character in the basename.
5525 		 */
5526 		for (i = len - 1; i >= 0; i--) {
5527 			if (dtrace_load8(src + i) != '/')
5528 				break;
5529 		}
5530 
5531 		if (i >= 0)
5532 			lastbase = i;
5533 
5534 		/*
5535 		 * Starting from the last character in the basename, move
5536 		 * towards the front until we find a slash.  The character
5537 		 * that we processed immediately before that is the first
5538 		 * character in the basename.
5539 		 */
5540 		for (; i >= 0; i--) {
5541 			if (dtrace_load8(src + i) == '/')
5542 				break;
5543 		}
5544 
5545 		if (i >= 0)
5546 			firstbase = i + 1;
5547 
5548 		/*
5549 		 * Now keep going until we find a non-slash character.  That
5550 		 * character is the last character in the dirname.
5551 		 */
5552 		for (; i >= 0; i--) {
5553 			if (dtrace_load8(src + i) != '/')
5554 				break;
5555 		}
5556 
5557 		if (i >= 0)
5558 			lastdir = i;
5559 
5560 		ASSERT(!(lastbase == -1 && firstbase != -1));
5561 		ASSERT(!(firstbase == -1 && lastdir != -1));
5562 
5563 		if (lastbase == -1) {
5564 			/*
5565 			 * We didn't find a non-slash character.  We know that
5566 			 * the length is non-zero, so the whole string must be
5567 			 * slashes.  In either the dirname or the basename
5568 			 * case, we return '/'.
5569 			 */
5570 			ASSERT(firstbase == -1);
5571 			firstbase = lastbase = lastdir = 0;
5572 		}
5573 
5574 		if (firstbase == -1) {
5575 			/*
5576 			 * The entire string consists only of a basename
5577 			 * component.  If we're looking for dirname, we need
5578 			 * to change our string to be just "."; if we're
5579 			 * looking for a basename, we'll just set the first
5580 			 * character of the basename to be 0.
5581 			 */
5582 			if (subr == DIF_SUBR_DIRNAME) {
5583 				ASSERT(lastdir == -1);
5584 				src = (uintptr_t)".";
5585 				lastdir = 0;
5586 			} else {
5587 				firstbase = 0;
5588 			}
5589 		}
5590 
5591 		if (subr == DIF_SUBR_DIRNAME) {
5592 			if (lastdir == -1) {
5593 				/*
5594 				 * We know that we have a slash in the name --
5595 				 * or lastdir would be set to 0, above.  And
5596 				 * because lastdir is -1, we know that this
5597 				 * slash must be the first character.  (That
5598 				 * is, the full string must be of the form
5599 				 * "/basename".)  In this case, the last
5600 				 * character of the directory name is 0.
5601 				 */
5602 				lastdir = 0;
5603 			}
5604 
5605 			start = 0;
5606 			end = lastdir;
5607 		} else {
5608 			ASSERT(subr == DIF_SUBR_BASENAME);
5609 			ASSERT(firstbase != -1 && lastbase != -1);
5610 			start = firstbase;
5611 			end = lastbase;
5612 		}
5613 
5614 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5615 			dest[j] = dtrace_load8(src + i);
5616 
5617 		dest[j] = '\0';
5618 		regs[rd] = (uintptr_t)dest;
5619 		mstate->dtms_scratch_ptr += size;
5620 		break;
5621 	}
5622 
5623 	case DIF_SUBR_GETF: {
5624 		uintptr_t fd = tupregs[0].dttk_value;
5625 		struct filedesc *fdp;
5626 		file_t *fp;
5627 
5628 		if (!dtrace_priv_proc(state)) {
5629 			regs[rd] = 0;
5630 			break;
5631 		}
5632 		fdp = curproc->p_fd;
5633 		FILEDESC_SLOCK(fdp);
5634 		fp = fget_locked(fdp, fd);
5635 		mstate->dtms_getf = fp;
5636 		regs[rd] = (uintptr_t)fp;
5637 		FILEDESC_SUNLOCK(fdp);
5638 		break;
5639 	}
5640 
5641 	case DIF_SUBR_CLEANPATH: {
5642 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
5643 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5644 		uintptr_t src = tupregs[0].dttk_value;
5645 		size_t lim;
5646 		int i = 0, j = 0;
5647 #ifdef illumos
5648 		zone_t *z;
5649 #endif
5650 
5651 		if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5652 			regs[rd] = 0;
5653 			break;
5654 		}
5655 
5656 		if (!DTRACE_INSCRATCH(mstate, size)) {
5657 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5658 			regs[rd] = 0;
5659 			break;
5660 		}
5661 
5662 		/*
5663 		 * Move forward, loading each character.
5664 		 */
5665 		do {
5666 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5667 next:
5668 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
5669 				break;
5670 
5671 			if (c != '/') {
5672 				dest[j++] = c;
5673 				continue;
5674 			}
5675 
5676 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5677 
5678 			if (c == '/') {
5679 				/*
5680 				 * We have two slashes -- we can just advance
5681 				 * to the next character.
5682 				 */
5683 				goto next;
5684 			}
5685 
5686 			if (c != '.') {
5687 				/*
5688 				 * This is not "." and it's not ".." -- we can
5689 				 * just store the "/" and this character and
5690 				 * drive on.
5691 				 */
5692 				dest[j++] = '/';
5693 				dest[j++] = c;
5694 				continue;
5695 			}
5696 
5697 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5698 
5699 			if (c == '/') {
5700 				/*
5701 				 * This is a "/./" component.  We're not going
5702 				 * to store anything in the destination buffer;
5703 				 * we're just going to go to the next component.
5704 				 */
5705 				goto next;
5706 			}
5707 
5708 			if (c != '.') {
5709 				/*
5710 				 * This is not ".." -- we can just store the
5711 				 * "/." and this character and continue
5712 				 * processing.
5713 				 */
5714 				dest[j++] = '/';
5715 				dest[j++] = '.';
5716 				dest[j++] = c;
5717 				continue;
5718 			}
5719 
5720 			c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5721 
5722 			if (c != '/' && c != '\0') {
5723 				/*
5724 				 * This is not ".." -- it's "..[mumble]".
5725 				 * We'll store the "/.." and this character
5726 				 * and continue processing.
5727 				 */
5728 				dest[j++] = '/';
5729 				dest[j++] = '.';
5730 				dest[j++] = '.';
5731 				dest[j++] = c;
5732 				continue;
5733 			}
5734 
5735 			/*
5736 			 * This is "/../" or "/..\0".  We need to back up
5737 			 * our destination pointer until we find a "/".
5738 			 */
5739 			i--;
5740 			while (j != 0 && dest[--j] != '/')
5741 				continue;
5742 
5743 			if (c == '\0')
5744 				dest[++j] = '/';
5745 		} while (c != '\0');
5746 
5747 		dest[j] = '\0';
5748 
5749 #ifdef illumos
5750 		if (mstate->dtms_getf != NULL &&
5751 		    !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5752 		    (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5753 			/*
5754 			 * If we've done a getf() as a part of this ECB and we
5755 			 * don't have kernel access (and we're not in the global
5756 			 * zone), check if the path we cleaned up begins with
5757 			 * the zone's root path, and trim it off if so.  Note
5758 			 * that this is an output cleanliness issue, not a
5759 			 * security issue: knowing one's zone root path does
5760 			 * not enable privilege escalation.
5761 			 */
5762 			if (strstr(dest, z->zone_rootpath) == dest)
5763 				dest += strlen(z->zone_rootpath) - 1;
5764 		}
5765 #endif
5766 
5767 		regs[rd] = (uintptr_t)dest;
5768 		mstate->dtms_scratch_ptr += size;
5769 		break;
5770 	}
5771 
5772 	case DIF_SUBR_INET_NTOA:
5773 	case DIF_SUBR_INET_NTOA6:
5774 	case DIF_SUBR_INET_NTOP: {
5775 		size_t size;
5776 		int af, argi, i;
5777 		char *base, *end;
5778 
5779 		if (subr == DIF_SUBR_INET_NTOP) {
5780 			af = (int)tupregs[0].dttk_value;
5781 			argi = 1;
5782 		} else {
5783 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5784 			argi = 0;
5785 		}
5786 
5787 		if (af == AF_INET) {
5788 			ipaddr_t ip4;
5789 			uint8_t *ptr8, val;
5790 
5791 			if (!dtrace_canload(tupregs[argi].dttk_value,
5792 			    sizeof (ipaddr_t), mstate, vstate)) {
5793 				regs[rd] = 0;
5794 				break;
5795 			}
5796 
5797 			/*
5798 			 * Safely load the IPv4 address.
5799 			 */
5800 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
5801 
5802 			/*
5803 			 * Check an IPv4 string will fit in scratch.
5804 			 */
5805 			size = INET_ADDRSTRLEN;
5806 			if (!DTRACE_INSCRATCH(mstate, size)) {
5807 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5808 				regs[rd] = 0;
5809 				break;
5810 			}
5811 			base = (char *)mstate->dtms_scratch_ptr;
5812 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5813 
5814 			/*
5815 			 * Stringify as a dotted decimal quad.
5816 			 */
5817 			*end-- = '\0';
5818 			ptr8 = (uint8_t *)&ip4;
5819 			for (i = 3; i >= 0; i--) {
5820 				val = ptr8[i];
5821 
5822 				if (val == 0) {
5823 					*end-- = '0';
5824 				} else {
5825 					for (; val; val /= 10) {
5826 						*end-- = '0' + (val % 10);
5827 					}
5828 				}
5829 
5830 				if (i > 0)
5831 					*end-- = '.';
5832 			}
5833 			ASSERT(end + 1 >= base);
5834 
5835 		} else if (af == AF_INET6) {
5836 			struct in6_addr ip6;
5837 			int firstzero, tryzero, numzero, v6end;
5838 			uint16_t val;
5839 			const char digits[] = "0123456789abcdef";
5840 
5841 			/*
5842 			 * Stringify using RFC 1884 convention 2 - 16 bit
5843 			 * hexadecimal values with a zero-run compression.
5844 			 * Lower case hexadecimal digits are used.
5845 			 * 	eg, fe80::214:4fff:fe0b:76c8.
5846 			 * The IPv4 embedded form is returned for inet_ntop,
5847 			 * just the IPv4 string is returned for inet_ntoa6.
5848 			 */
5849 
5850 			if (!dtrace_canload(tupregs[argi].dttk_value,
5851 			    sizeof (struct in6_addr), mstate, vstate)) {
5852 				regs[rd] = 0;
5853 				break;
5854 			}
5855 
5856 			/*
5857 			 * Safely load the IPv6 address.
5858 			 */
5859 			dtrace_bcopy(
5860 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
5861 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5862 
5863 			/*
5864 			 * Check an IPv6 string will fit in scratch.
5865 			 */
5866 			size = INET6_ADDRSTRLEN;
5867 			if (!DTRACE_INSCRATCH(mstate, size)) {
5868 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5869 				regs[rd] = 0;
5870 				break;
5871 			}
5872 			base = (char *)mstate->dtms_scratch_ptr;
5873 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
5874 			*end-- = '\0';
5875 
5876 			/*
5877 			 * Find the longest run of 16 bit zero values
5878 			 * for the single allowed zero compression - "::".
5879 			 */
5880 			firstzero = -1;
5881 			tryzero = -1;
5882 			numzero = 1;
5883 			for (i = 0; i < sizeof (struct in6_addr); i++) {
5884 #ifdef illumos
5885 				if (ip6._S6_un._S6_u8[i] == 0 &&
5886 #else
5887 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5888 #endif
5889 				    tryzero == -1 && i % 2 == 0) {
5890 					tryzero = i;
5891 					continue;
5892 				}
5893 
5894 				if (tryzero != -1 &&
5895 #ifdef illumos
5896 				    (ip6._S6_un._S6_u8[i] != 0 ||
5897 #else
5898 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5899 #endif
5900 				    i == sizeof (struct in6_addr) - 1)) {
5901 
5902 					if (i - tryzero <= numzero) {
5903 						tryzero = -1;
5904 						continue;
5905 					}
5906 
5907 					firstzero = tryzero;
5908 					numzero = i - i % 2 - tryzero;
5909 					tryzero = -1;
5910 
5911 #ifdef illumos
5912 					if (ip6._S6_un._S6_u8[i] == 0 &&
5913 #else
5914 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5915 #endif
5916 					    i == sizeof (struct in6_addr) - 1)
5917 						numzero += 2;
5918 				}
5919 			}
5920 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5921 
5922 			/*
5923 			 * Check for an IPv4 embedded address.
5924 			 */
5925 			v6end = sizeof (struct in6_addr) - 2;
5926 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5927 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
5928 				for (i = sizeof (struct in6_addr) - 1;
5929 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
5930 					ASSERT(end >= base);
5931 
5932 #ifdef illumos
5933 					val = ip6._S6_un._S6_u8[i];
5934 #else
5935 					val = ip6.__u6_addr.__u6_addr8[i];
5936 #endif
5937 
5938 					if (val == 0) {
5939 						*end-- = '0';
5940 					} else {
5941 						for (; val; val /= 10) {
5942 							*end-- = '0' + val % 10;
5943 						}
5944 					}
5945 
5946 					if (i > DTRACE_V4MAPPED_OFFSET)
5947 						*end-- = '.';
5948 				}
5949 
5950 				if (subr == DIF_SUBR_INET_NTOA6)
5951 					goto inetout;
5952 
5953 				/*
5954 				 * Set v6end to skip the IPv4 address that
5955 				 * we have already stringified.
5956 				 */
5957 				v6end = 10;
5958 			}
5959 
5960 			/*
5961 			 * Build the IPv6 string by working through the
5962 			 * address in reverse.
5963 			 */
5964 			for (i = v6end; i >= 0; i -= 2) {
5965 				ASSERT(end >= base);
5966 
5967 				if (i == firstzero + numzero - 2) {
5968 					*end-- = ':';
5969 					*end-- = ':';
5970 					i -= numzero - 2;
5971 					continue;
5972 				}
5973 
5974 				if (i < 14 && i != firstzero - 2)
5975 					*end-- = ':';
5976 
5977 #ifdef illumos
5978 				val = (ip6._S6_un._S6_u8[i] << 8) +
5979 				    ip6._S6_un._S6_u8[i + 1];
5980 #else
5981 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
5982 				    ip6.__u6_addr.__u6_addr8[i + 1];
5983 #endif
5984 
5985 				if (val == 0) {
5986 					*end-- = '0';
5987 				} else {
5988 					for (; val; val /= 16) {
5989 						*end-- = digits[val % 16];
5990 					}
5991 				}
5992 			}
5993 			ASSERT(end + 1 >= base);
5994 
5995 		} else {
5996 			/*
5997 			 * The user didn't use AH_INET or AH_INET6.
5998 			 */
5999 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6000 			regs[rd] = 0;
6001 			break;
6002 		}
6003 
6004 inetout:	regs[rd] = (uintptr_t)end + 1;
6005 		mstate->dtms_scratch_ptr += size;
6006 		break;
6007 	}
6008 
6009 	case DIF_SUBR_MEMREF: {
6010 		uintptr_t size = 2 * sizeof(uintptr_t);
6011 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
6012 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
6013 
6014 		/* address and length */
6015 		memref[0] = tupregs[0].dttk_value;
6016 		memref[1] = tupregs[1].dttk_value;
6017 
6018 		regs[rd] = (uintptr_t) memref;
6019 		mstate->dtms_scratch_ptr += scratch_size;
6020 		break;
6021 	}
6022 
6023 #ifndef illumos
6024 	case DIF_SUBR_MEMSTR: {
6025 		char *str = (char *)mstate->dtms_scratch_ptr;
6026 		uintptr_t mem = tupregs[0].dttk_value;
6027 		char c = tupregs[1].dttk_value;
6028 		size_t size = tupregs[2].dttk_value;
6029 		uint8_t n;
6030 		int i;
6031 
6032 		regs[rd] = 0;
6033 
6034 		if (size == 0)
6035 			break;
6036 
6037 		if (!dtrace_canload(mem, size - 1, mstate, vstate))
6038 			break;
6039 
6040 		if (!DTRACE_INSCRATCH(mstate, size)) {
6041 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6042 			break;
6043 		}
6044 
6045 		if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
6046 			*flags |= CPU_DTRACE_ILLOP;
6047 			break;
6048 		}
6049 
6050 		for (i = 0; i < size - 1; i++) {
6051 			n = dtrace_load8(mem++);
6052 			str[i] = (n == 0) ? c : n;
6053 		}
6054 		str[size - 1] = 0;
6055 
6056 		regs[rd] = (uintptr_t)str;
6057 		mstate->dtms_scratch_ptr += size;
6058 		break;
6059 	}
6060 #endif
6061 	}
6062 }
6063 
6064 /*
6065  * Emulate the execution of DTrace IR instructions specified by the given
6066  * DIF object.  This function is deliberately void of assertions as all of
6067  * the necessary checks are handled by a call to dtrace_difo_validate().
6068  */
6069 static uint64_t
6070 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
6071     dtrace_vstate_t *vstate, dtrace_state_t *state)
6072 {
6073 	const dif_instr_t *text = difo->dtdo_buf;
6074 	const uint_t textlen = difo->dtdo_len;
6075 	const char *strtab = difo->dtdo_strtab;
6076 	const uint64_t *inttab = difo->dtdo_inttab;
6077 
6078 	uint64_t rval = 0;
6079 	dtrace_statvar_t *svar;
6080 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
6081 	dtrace_difv_t *v;
6082 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6083 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
6084 
6085 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
6086 	uint64_t regs[DIF_DIR_NREGS];
6087 	uint64_t *tmp;
6088 
6089 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
6090 	int64_t cc_r;
6091 	uint_t pc = 0, id, opc = 0;
6092 	uint8_t ttop = 0;
6093 	dif_instr_t instr;
6094 	uint_t r1, r2, rd;
6095 
6096 	/*
6097 	 * We stash the current DIF object into the machine state: we need it
6098 	 * for subsequent access checking.
6099 	 */
6100 	mstate->dtms_difo = difo;
6101 
6102 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
6103 
6104 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
6105 		opc = pc;
6106 
6107 		instr = text[pc++];
6108 		r1 = DIF_INSTR_R1(instr);
6109 		r2 = DIF_INSTR_R2(instr);
6110 		rd = DIF_INSTR_RD(instr);
6111 
6112 		switch (DIF_INSTR_OP(instr)) {
6113 		case DIF_OP_OR:
6114 			regs[rd] = regs[r1] | regs[r2];
6115 			break;
6116 		case DIF_OP_XOR:
6117 			regs[rd] = regs[r1] ^ regs[r2];
6118 			break;
6119 		case DIF_OP_AND:
6120 			regs[rd] = regs[r1] & regs[r2];
6121 			break;
6122 		case DIF_OP_SLL:
6123 			regs[rd] = regs[r1] << regs[r2];
6124 			break;
6125 		case DIF_OP_SRL:
6126 			regs[rd] = regs[r1] >> regs[r2];
6127 			break;
6128 		case DIF_OP_SUB:
6129 			regs[rd] = regs[r1] - regs[r2];
6130 			break;
6131 		case DIF_OP_ADD:
6132 			regs[rd] = regs[r1] + regs[r2];
6133 			break;
6134 		case DIF_OP_MUL:
6135 			regs[rd] = regs[r1] * regs[r2];
6136 			break;
6137 		case DIF_OP_SDIV:
6138 			if (regs[r2] == 0) {
6139 				regs[rd] = 0;
6140 				*flags |= CPU_DTRACE_DIVZERO;
6141 			} else {
6142 				regs[rd] = (int64_t)regs[r1] /
6143 				    (int64_t)regs[r2];
6144 			}
6145 			break;
6146 
6147 		case DIF_OP_UDIV:
6148 			if (regs[r2] == 0) {
6149 				regs[rd] = 0;
6150 				*flags |= CPU_DTRACE_DIVZERO;
6151 			} else {
6152 				regs[rd] = regs[r1] / regs[r2];
6153 			}
6154 			break;
6155 
6156 		case DIF_OP_SREM:
6157 			if (regs[r2] == 0) {
6158 				regs[rd] = 0;
6159 				*flags |= CPU_DTRACE_DIVZERO;
6160 			} else {
6161 				regs[rd] = (int64_t)regs[r1] %
6162 				    (int64_t)regs[r2];
6163 			}
6164 			break;
6165 
6166 		case DIF_OP_UREM:
6167 			if (regs[r2] == 0) {
6168 				regs[rd] = 0;
6169 				*flags |= CPU_DTRACE_DIVZERO;
6170 			} else {
6171 				regs[rd] = regs[r1] % regs[r2];
6172 			}
6173 			break;
6174 
6175 		case DIF_OP_NOT:
6176 			regs[rd] = ~regs[r1];
6177 			break;
6178 		case DIF_OP_MOV:
6179 			regs[rd] = regs[r1];
6180 			break;
6181 		case DIF_OP_CMP:
6182 			cc_r = regs[r1] - regs[r2];
6183 			cc_n = cc_r < 0;
6184 			cc_z = cc_r == 0;
6185 			cc_v = 0;
6186 			cc_c = regs[r1] < regs[r2];
6187 			break;
6188 		case DIF_OP_TST:
6189 			cc_n = cc_v = cc_c = 0;
6190 			cc_z = regs[r1] == 0;
6191 			break;
6192 		case DIF_OP_BA:
6193 			pc = DIF_INSTR_LABEL(instr);
6194 			break;
6195 		case DIF_OP_BE:
6196 			if (cc_z)
6197 				pc = DIF_INSTR_LABEL(instr);
6198 			break;
6199 		case DIF_OP_BNE:
6200 			if (cc_z == 0)
6201 				pc = DIF_INSTR_LABEL(instr);
6202 			break;
6203 		case DIF_OP_BG:
6204 			if ((cc_z | (cc_n ^ cc_v)) == 0)
6205 				pc = DIF_INSTR_LABEL(instr);
6206 			break;
6207 		case DIF_OP_BGU:
6208 			if ((cc_c | cc_z) == 0)
6209 				pc = DIF_INSTR_LABEL(instr);
6210 			break;
6211 		case DIF_OP_BGE:
6212 			if ((cc_n ^ cc_v) == 0)
6213 				pc = DIF_INSTR_LABEL(instr);
6214 			break;
6215 		case DIF_OP_BGEU:
6216 			if (cc_c == 0)
6217 				pc = DIF_INSTR_LABEL(instr);
6218 			break;
6219 		case DIF_OP_BL:
6220 			if (cc_n ^ cc_v)
6221 				pc = DIF_INSTR_LABEL(instr);
6222 			break;
6223 		case DIF_OP_BLU:
6224 			if (cc_c)
6225 				pc = DIF_INSTR_LABEL(instr);
6226 			break;
6227 		case DIF_OP_BLE:
6228 			if (cc_z | (cc_n ^ cc_v))
6229 				pc = DIF_INSTR_LABEL(instr);
6230 			break;
6231 		case DIF_OP_BLEU:
6232 			if (cc_c | cc_z)
6233 				pc = DIF_INSTR_LABEL(instr);
6234 			break;
6235 		case DIF_OP_RLDSB:
6236 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6237 				break;
6238 			/*FALLTHROUGH*/
6239 		case DIF_OP_LDSB:
6240 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6241 			break;
6242 		case DIF_OP_RLDSH:
6243 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6244 				break;
6245 			/*FALLTHROUGH*/
6246 		case DIF_OP_LDSH:
6247 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6248 			break;
6249 		case DIF_OP_RLDSW:
6250 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6251 				break;
6252 			/*FALLTHROUGH*/
6253 		case DIF_OP_LDSW:
6254 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6255 			break;
6256 		case DIF_OP_RLDUB:
6257 			if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6258 				break;
6259 			/*FALLTHROUGH*/
6260 		case DIF_OP_LDUB:
6261 			regs[rd] = dtrace_load8(regs[r1]);
6262 			break;
6263 		case DIF_OP_RLDUH:
6264 			if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6265 				break;
6266 			/*FALLTHROUGH*/
6267 		case DIF_OP_LDUH:
6268 			regs[rd] = dtrace_load16(regs[r1]);
6269 			break;
6270 		case DIF_OP_RLDUW:
6271 			if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6272 				break;
6273 			/*FALLTHROUGH*/
6274 		case DIF_OP_LDUW:
6275 			regs[rd] = dtrace_load32(regs[r1]);
6276 			break;
6277 		case DIF_OP_RLDX:
6278 			if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6279 				break;
6280 			/*FALLTHROUGH*/
6281 		case DIF_OP_LDX:
6282 			regs[rd] = dtrace_load64(regs[r1]);
6283 			break;
6284 		case DIF_OP_ULDSB:
6285 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6286 			regs[rd] = (int8_t)
6287 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6288 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6289 			break;
6290 		case DIF_OP_ULDSH:
6291 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6292 			regs[rd] = (int16_t)
6293 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6294 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6295 			break;
6296 		case DIF_OP_ULDSW:
6297 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6298 			regs[rd] = (int32_t)
6299 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6300 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6301 			break;
6302 		case DIF_OP_ULDUB:
6303 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6304 			regs[rd] =
6305 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6306 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6307 			break;
6308 		case DIF_OP_ULDUH:
6309 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6310 			regs[rd] =
6311 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6312 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6313 			break;
6314 		case DIF_OP_ULDUW:
6315 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6316 			regs[rd] =
6317 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6318 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6319 			break;
6320 		case DIF_OP_ULDX:
6321 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6322 			regs[rd] =
6323 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6324 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6325 			break;
6326 		case DIF_OP_RET:
6327 			rval = regs[rd];
6328 			pc = textlen;
6329 			break;
6330 		case DIF_OP_NOP:
6331 			break;
6332 		case DIF_OP_SETX:
6333 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6334 			break;
6335 		case DIF_OP_SETS:
6336 			regs[rd] = (uint64_t)(uintptr_t)
6337 			    (strtab + DIF_INSTR_STRING(instr));
6338 			break;
6339 		case DIF_OP_SCMP: {
6340 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6341 			uintptr_t s1 = regs[r1];
6342 			uintptr_t s2 = regs[r2];
6343 			size_t lim1, lim2;
6344 
6345 			if (s1 != 0 &&
6346 			    !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6347 				break;
6348 			if (s2 != 0 &&
6349 			    !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6350 				break;
6351 
6352 			cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6353 			    MIN(lim1, lim2));
6354 
6355 			cc_n = cc_r < 0;
6356 			cc_z = cc_r == 0;
6357 			cc_v = cc_c = 0;
6358 			break;
6359 		}
6360 		case DIF_OP_LDGA:
6361 			regs[rd] = dtrace_dif_variable(mstate, state,
6362 			    r1, regs[r2]);
6363 			break;
6364 		case DIF_OP_LDGS:
6365 			id = DIF_INSTR_VAR(instr);
6366 
6367 			if (id >= DIF_VAR_OTHER_UBASE) {
6368 				uintptr_t a;
6369 
6370 				id -= DIF_VAR_OTHER_UBASE;
6371 				svar = vstate->dtvs_globals[id];
6372 				ASSERT(svar != NULL);
6373 				v = &svar->dtsv_var;
6374 
6375 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6376 					regs[rd] = svar->dtsv_data;
6377 					break;
6378 				}
6379 
6380 				a = (uintptr_t)svar->dtsv_data;
6381 
6382 				if (*(uint8_t *)a == UINT8_MAX) {
6383 					/*
6384 					 * If the 0th byte is set to UINT8_MAX
6385 					 * then this is to be treated as a
6386 					 * reference to a NULL variable.
6387 					 */
6388 					regs[rd] = 0;
6389 				} else {
6390 					regs[rd] = a + sizeof (uint64_t);
6391 				}
6392 
6393 				break;
6394 			}
6395 
6396 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6397 			break;
6398 
6399 		case DIF_OP_STGS:
6400 			id = DIF_INSTR_VAR(instr);
6401 
6402 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6403 			id -= DIF_VAR_OTHER_UBASE;
6404 
6405 			VERIFY(id < vstate->dtvs_nglobals);
6406 			svar = vstate->dtvs_globals[id];
6407 			ASSERT(svar != NULL);
6408 			v = &svar->dtsv_var;
6409 
6410 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6411 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6412 				size_t lim;
6413 
6414 				ASSERT(a != 0);
6415 				ASSERT(svar->dtsv_size != 0);
6416 
6417 				if (regs[rd] == 0) {
6418 					*(uint8_t *)a = UINT8_MAX;
6419 					break;
6420 				} else {
6421 					*(uint8_t *)a = 0;
6422 					a += sizeof (uint64_t);
6423 				}
6424 				if (!dtrace_vcanload(
6425 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6426 				    &lim, mstate, vstate))
6427 					break;
6428 
6429 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6430 				    (void *)a, &v->dtdv_type, lim);
6431 				break;
6432 			}
6433 
6434 			svar->dtsv_data = regs[rd];
6435 			break;
6436 
6437 		case DIF_OP_LDTA:
6438 			/*
6439 			 * There are no DTrace built-in thread-local arrays at
6440 			 * present.  This opcode is saved for future work.
6441 			 */
6442 			*flags |= CPU_DTRACE_ILLOP;
6443 			regs[rd] = 0;
6444 			break;
6445 
6446 		case DIF_OP_LDLS:
6447 			id = DIF_INSTR_VAR(instr);
6448 
6449 			if (id < DIF_VAR_OTHER_UBASE) {
6450 				/*
6451 				 * For now, this has no meaning.
6452 				 */
6453 				regs[rd] = 0;
6454 				break;
6455 			}
6456 
6457 			id -= DIF_VAR_OTHER_UBASE;
6458 
6459 			ASSERT(id < vstate->dtvs_nlocals);
6460 			ASSERT(vstate->dtvs_locals != NULL);
6461 
6462 			svar = vstate->dtvs_locals[id];
6463 			ASSERT(svar != NULL);
6464 			v = &svar->dtsv_var;
6465 
6466 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6467 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6468 				size_t sz = v->dtdv_type.dtdt_size;
6469 				size_t lim;
6470 
6471 				sz += sizeof (uint64_t);
6472 				ASSERT(svar->dtsv_size == NCPU * sz);
6473 				a += curcpu * sz;
6474 
6475 				if (*(uint8_t *)a == UINT8_MAX) {
6476 					/*
6477 					 * If the 0th byte is set to UINT8_MAX
6478 					 * then this is to be treated as a
6479 					 * reference to a NULL variable.
6480 					 */
6481 					regs[rd] = 0;
6482 				} else {
6483 					regs[rd] = a + sizeof (uint64_t);
6484 				}
6485 
6486 				break;
6487 			}
6488 
6489 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6490 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6491 			regs[rd] = tmp[curcpu];
6492 			break;
6493 
6494 		case DIF_OP_STLS:
6495 			id = DIF_INSTR_VAR(instr);
6496 
6497 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6498 			id -= DIF_VAR_OTHER_UBASE;
6499 			VERIFY(id < vstate->dtvs_nlocals);
6500 
6501 			ASSERT(vstate->dtvs_locals != NULL);
6502 			svar = vstate->dtvs_locals[id];
6503 			ASSERT(svar != NULL);
6504 			v = &svar->dtsv_var;
6505 
6506 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6507 				uintptr_t a = (uintptr_t)svar->dtsv_data;
6508 				size_t sz = v->dtdv_type.dtdt_size;
6509 				size_t lim;
6510 
6511 				sz += sizeof (uint64_t);
6512 				ASSERT(svar->dtsv_size == NCPU * sz);
6513 				a += curcpu * sz;
6514 
6515 				if (regs[rd] == 0) {
6516 					*(uint8_t *)a = UINT8_MAX;
6517 					break;
6518 				} else {
6519 					*(uint8_t *)a = 0;
6520 					a += sizeof (uint64_t);
6521 				}
6522 
6523 				if (!dtrace_vcanload(
6524 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6525 				    &lim, mstate, vstate))
6526 					break;
6527 
6528 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6529 				    (void *)a, &v->dtdv_type, lim);
6530 				break;
6531 			}
6532 
6533 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6534 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6535 			tmp[curcpu] = regs[rd];
6536 			break;
6537 
6538 		case DIF_OP_LDTS: {
6539 			dtrace_dynvar_t *dvar;
6540 			dtrace_key_t *key;
6541 
6542 			id = DIF_INSTR_VAR(instr);
6543 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6544 			id -= DIF_VAR_OTHER_UBASE;
6545 			v = &vstate->dtvs_tlocals[id];
6546 
6547 			key = &tupregs[DIF_DTR_NREGS];
6548 			key[0].dttk_value = (uint64_t)id;
6549 			key[0].dttk_size = 0;
6550 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6551 			key[1].dttk_size = 0;
6552 
6553 			dvar = dtrace_dynvar(dstate, 2, key,
6554 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6555 			    mstate, vstate);
6556 
6557 			if (dvar == NULL) {
6558 				regs[rd] = 0;
6559 				break;
6560 			}
6561 
6562 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6563 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6564 			} else {
6565 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6566 			}
6567 
6568 			break;
6569 		}
6570 
6571 		case DIF_OP_STTS: {
6572 			dtrace_dynvar_t *dvar;
6573 			dtrace_key_t *key;
6574 
6575 			id = DIF_INSTR_VAR(instr);
6576 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6577 			id -= DIF_VAR_OTHER_UBASE;
6578 			VERIFY(id < vstate->dtvs_ntlocals);
6579 
6580 			key = &tupregs[DIF_DTR_NREGS];
6581 			key[0].dttk_value = (uint64_t)id;
6582 			key[0].dttk_size = 0;
6583 			DTRACE_TLS_THRKEY(key[1].dttk_value);
6584 			key[1].dttk_size = 0;
6585 			v = &vstate->dtvs_tlocals[id];
6586 
6587 			dvar = dtrace_dynvar(dstate, 2, key,
6588 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6589 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6590 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6591 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6592 
6593 			/*
6594 			 * Given that we're storing to thread-local data,
6595 			 * we need to flush our predicate cache.
6596 			 */
6597 			curthread->t_predcache = 0;
6598 
6599 			if (dvar == NULL)
6600 				break;
6601 
6602 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6603 				size_t lim;
6604 
6605 				if (!dtrace_vcanload(
6606 				    (void *)(uintptr_t)regs[rd],
6607 				    &v->dtdv_type, &lim, mstate, vstate))
6608 					break;
6609 
6610 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6611 				    dvar->dtdv_data, &v->dtdv_type, lim);
6612 			} else {
6613 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6614 			}
6615 
6616 			break;
6617 		}
6618 
6619 		case DIF_OP_SRA:
6620 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
6621 			break;
6622 
6623 		case DIF_OP_CALL:
6624 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6625 			    regs, tupregs, ttop, mstate, state);
6626 			break;
6627 
6628 		case DIF_OP_PUSHTR:
6629 			if (ttop == DIF_DTR_NREGS) {
6630 				*flags |= CPU_DTRACE_TUPOFLOW;
6631 				break;
6632 			}
6633 
6634 			if (r1 == DIF_TYPE_STRING) {
6635 				/*
6636 				 * If this is a string type and the size is 0,
6637 				 * we'll use the system-wide default string
6638 				 * size.  Note that we are _not_ looking at
6639 				 * the value of the DTRACEOPT_STRSIZE option;
6640 				 * had this been set, we would expect to have
6641 				 * a non-zero size value in the "pushtr".
6642 				 */
6643 				tupregs[ttop].dttk_size =
6644 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
6645 				    regs[r2] ? regs[r2] :
6646 				    dtrace_strsize_default) + 1;
6647 			} else {
6648 				if (regs[r2] > LONG_MAX) {
6649 					*flags |= CPU_DTRACE_ILLOP;
6650 					break;
6651 				}
6652 
6653 				tupregs[ttop].dttk_size = regs[r2];
6654 			}
6655 
6656 			tupregs[ttop++].dttk_value = regs[rd];
6657 			break;
6658 
6659 		case DIF_OP_PUSHTV:
6660 			if (ttop == DIF_DTR_NREGS) {
6661 				*flags |= CPU_DTRACE_TUPOFLOW;
6662 				break;
6663 			}
6664 
6665 			tupregs[ttop].dttk_value = regs[rd];
6666 			tupregs[ttop++].dttk_size = 0;
6667 			break;
6668 
6669 		case DIF_OP_POPTS:
6670 			if (ttop != 0)
6671 				ttop--;
6672 			break;
6673 
6674 		case DIF_OP_FLUSHTS:
6675 			ttop = 0;
6676 			break;
6677 
6678 		case DIF_OP_LDGAA:
6679 		case DIF_OP_LDTAA: {
6680 			dtrace_dynvar_t *dvar;
6681 			dtrace_key_t *key = tupregs;
6682 			uint_t nkeys = ttop;
6683 
6684 			id = DIF_INSTR_VAR(instr);
6685 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6686 			id -= DIF_VAR_OTHER_UBASE;
6687 
6688 			key[nkeys].dttk_value = (uint64_t)id;
6689 			key[nkeys++].dttk_size = 0;
6690 
6691 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6692 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6693 				key[nkeys++].dttk_size = 0;
6694 				VERIFY(id < vstate->dtvs_ntlocals);
6695 				v = &vstate->dtvs_tlocals[id];
6696 			} else {
6697 				VERIFY(id < vstate->dtvs_nglobals);
6698 				v = &vstate->dtvs_globals[id]->dtsv_var;
6699 			}
6700 
6701 			dvar = dtrace_dynvar(dstate, nkeys, key,
6702 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6703 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6704 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6705 
6706 			if (dvar == NULL) {
6707 				regs[rd] = 0;
6708 				break;
6709 			}
6710 
6711 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6712 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6713 			} else {
6714 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
6715 			}
6716 
6717 			break;
6718 		}
6719 
6720 		case DIF_OP_STGAA:
6721 		case DIF_OP_STTAA: {
6722 			dtrace_dynvar_t *dvar;
6723 			dtrace_key_t *key = tupregs;
6724 			uint_t nkeys = ttop;
6725 
6726 			id = DIF_INSTR_VAR(instr);
6727 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
6728 			id -= DIF_VAR_OTHER_UBASE;
6729 
6730 			key[nkeys].dttk_value = (uint64_t)id;
6731 			key[nkeys++].dttk_size = 0;
6732 
6733 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6734 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6735 				key[nkeys++].dttk_size = 0;
6736 				VERIFY(id < vstate->dtvs_ntlocals);
6737 				v = &vstate->dtvs_tlocals[id];
6738 			} else {
6739 				VERIFY(id < vstate->dtvs_nglobals);
6740 				v = &vstate->dtvs_globals[id]->dtsv_var;
6741 			}
6742 
6743 			dvar = dtrace_dynvar(dstate, nkeys, key,
6744 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6745 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
6746 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
6747 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6748 
6749 			if (dvar == NULL)
6750 				break;
6751 
6752 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6753 				size_t lim;
6754 
6755 				if (!dtrace_vcanload(
6756 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6757 				    &lim, mstate, vstate))
6758 					break;
6759 
6760 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
6761 				    dvar->dtdv_data, &v->dtdv_type, lim);
6762 			} else {
6763 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
6764 			}
6765 
6766 			break;
6767 		}
6768 
6769 		case DIF_OP_ALLOCS: {
6770 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6771 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6772 
6773 			/*
6774 			 * Rounding up the user allocation size could have
6775 			 * overflowed large, bogus allocations (like -1ULL) to
6776 			 * 0.
6777 			 */
6778 			if (size < regs[r1] ||
6779 			    !DTRACE_INSCRATCH(mstate, size)) {
6780 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6781 				regs[rd] = 0;
6782 				break;
6783 			}
6784 
6785 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6786 			mstate->dtms_scratch_ptr += size;
6787 			regs[rd] = ptr;
6788 			break;
6789 		}
6790 
6791 		case DIF_OP_COPYS:
6792 			if (!dtrace_canstore(regs[rd], regs[r2],
6793 			    mstate, vstate)) {
6794 				*flags |= CPU_DTRACE_BADADDR;
6795 				*illval = regs[rd];
6796 				break;
6797 			}
6798 
6799 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6800 				break;
6801 
6802 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
6803 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6804 			break;
6805 
6806 		case DIF_OP_STB:
6807 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6808 				*flags |= CPU_DTRACE_BADADDR;
6809 				*illval = regs[rd];
6810 				break;
6811 			}
6812 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6813 			break;
6814 
6815 		case DIF_OP_STH:
6816 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6817 				*flags |= CPU_DTRACE_BADADDR;
6818 				*illval = regs[rd];
6819 				break;
6820 			}
6821 			if (regs[rd] & 1) {
6822 				*flags |= CPU_DTRACE_BADALIGN;
6823 				*illval = regs[rd];
6824 				break;
6825 			}
6826 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6827 			break;
6828 
6829 		case DIF_OP_STW:
6830 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6831 				*flags |= CPU_DTRACE_BADADDR;
6832 				*illval = regs[rd];
6833 				break;
6834 			}
6835 			if (regs[rd] & 3) {
6836 				*flags |= CPU_DTRACE_BADALIGN;
6837 				*illval = regs[rd];
6838 				break;
6839 			}
6840 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6841 			break;
6842 
6843 		case DIF_OP_STX:
6844 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6845 				*flags |= CPU_DTRACE_BADADDR;
6846 				*illval = regs[rd];
6847 				break;
6848 			}
6849 			if (regs[rd] & 7) {
6850 				*flags |= CPU_DTRACE_BADALIGN;
6851 				*illval = regs[rd];
6852 				break;
6853 			}
6854 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6855 			break;
6856 		}
6857 	}
6858 
6859 	if (!(*flags & CPU_DTRACE_FAULT))
6860 		return (rval);
6861 
6862 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6863 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6864 
6865 	return (0);
6866 }
6867 
6868 static void
6869 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6870 {
6871 	dtrace_probe_t *probe = ecb->dte_probe;
6872 	dtrace_provider_t *prov = probe->dtpr_provider;
6873 	char c[DTRACE_FULLNAMELEN + 80], *str;
6874 	char *msg = "dtrace: breakpoint action at probe ";
6875 	char *ecbmsg = " (ecb ";
6876 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6877 	uintptr_t val = (uintptr_t)ecb;
6878 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6879 
6880 	if (dtrace_destructive_disallow)
6881 		return;
6882 
6883 	/*
6884 	 * It's impossible to be taking action on the NULL probe.
6885 	 */
6886 	ASSERT(probe != NULL);
6887 
6888 	/*
6889 	 * This is a poor man's (destitute man's?) sprintf():  we want to
6890 	 * print the provider name, module name, function name and name of
6891 	 * the probe, along with the hex address of the ECB with the breakpoint
6892 	 * action -- all of which we must place in the character buffer by
6893 	 * hand.
6894 	 */
6895 	while (*msg != '\0')
6896 		c[i++] = *msg++;
6897 
6898 	for (str = prov->dtpv_name; *str != '\0'; str++)
6899 		c[i++] = *str;
6900 	c[i++] = ':';
6901 
6902 	for (str = probe->dtpr_mod; *str != '\0'; str++)
6903 		c[i++] = *str;
6904 	c[i++] = ':';
6905 
6906 	for (str = probe->dtpr_func; *str != '\0'; str++)
6907 		c[i++] = *str;
6908 	c[i++] = ':';
6909 
6910 	for (str = probe->dtpr_name; *str != '\0'; str++)
6911 		c[i++] = *str;
6912 
6913 	while (*ecbmsg != '\0')
6914 		c[i++] = *ecbmsg++;
6915 
6916 	while (shift >= 0) {
6917 		mask = (uintptr_t)0xf << shift;
6918 
6919 		if (val >= ((uintptr_t)1 << shift))
6920 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6921 		shift -= 4;
6922 	}
6923 
6924 	c[i++] = ')';
6925 	c[i] = '\0';
6926 
6927 #ifdef illumos
6928 	debug_enter(c);
6929 #else
6930 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6931 #endif
6932 }
6933 
6934 static void
6935 dtrace_action_panic(dtrace_ecb_t *ecb)
6936 {
6937 	dtrace_probe_t *probe = ecb->dte_probe;
6938 
6939 	/*
6940 	 * It's impossible to be taking action on the NULL probe.
6941 	 */
6942 	ASSERT(probe != NULL);
6943 
6944 	if (dtrace_destructive_disallow)
6945 		return;
6946 
6947 	if (dtrace_panicked != NULL)
6948 		return;
6949 
6950 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6951 		return;
6952 
6953 	/*
6954 	 * We won the right to panic.  (We want to be sure that only one
6955 	 * thread calls panic() from dtrace_probe(), and that panic() is
6956 	 * called exactly once.)
6957 	 */
6958 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6959 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6960 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6961 }
6962 
6963 static void
6964 dtrace_action_raise(uint64_t sig)
6965 {
6966 	if (dtrace_destructive_disallow)
6967 		return;
6968 
6969 	if (sig >= NSIG) {
6970 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6971 		return;
6972 	}
6973 
6974 #ifdef illumos
6975 	/*
6976 	 * raise() has a queue depth of 1 -- we ignore all subsequent
6977 	 * invocations of the raise() action.
6978 	 */
6979 	if (curthread->t_dtrace_sig == 0)
6980 		curthread->t_dtrace_sig = (uint8_t)sig;
6981 
6982 	curthread->t_sig_check = 1;
6983 	aston(curthread);
6984 #else
6985 	struct proc *p = curproc;
6986 	PROC_LOCK(p);
6987 	kern_psignal(p, sig);
6988 	PROC_UNLOCK(p);
6989 #endif
6990 }
6991 
6992 static void
6993 dtrace_action_stop(void)
6994 {
6995 	if (dtrace_destructive_disallow)
6996 		return;
6997 
6998 #ifdef illumos
6999 	if (!curthread->t_dtrace_stop) {
7000 		curthread->t_dtrace_stop = 1;
7001 		curthread->t_sig_check = 1;
7002 		aston(curthread);
7003 	}
7004 #else
7005 	struct proc *p = curproc;
7006 	PROC_LOCK(p);
7007 	kern_psignal(p, SIGSTOP);
7008 	PROC_UNLOCK(p);
7009 #endif
7010 }
7011 
7012 static void
7013 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
7014 {
7015 	hrtime_t now;
7016 	volatile uint16_t *flags;
7017 #ifdef illumos
7018 	cpu_t *cpu = CPU;
7019 #else
7020 	cpu_t *cpu = &solaris_cpu[curcpu];
7021 #endif
7022 
7023 	if (dtrace_destructive_disallow)
7024 		return;
7025 
7026 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7027 
7028 	now = dtrace_gethrtime();
7029 
7030 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
7031 		/*
7032 		 * We need to advance the mark to the current time.
7033 		 */
7034 		cpu->cpu_dtrace_chillmark = now;
7035 		cpu->cpu_dtrace_chilled = 0;
7036 	}
7037 
7038 	/*
7039 	 * Now check to see if the requested chill time would take us over
7040 	 * the maximum amount of time allowed in the chill interval.  (Or
7041 	 * worse, if the calculation itself induces overflow.)
7042 	 */
7043 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
7044 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
7045 		*flags |= CPU_DTRACE_ILLOP;
7046 		return;
7047 	}
7048 
7049 	while (dtrace_gethrtime() - now < val)
7050 		continue;
7051 
7052 	/*
7053 	 * Normally, we assure that the value of the variable "timestamp" does
7054 	 * not change within an ECB.  The presence of chill() represents an
7055 	 * exception to this rule, however.
7056 	 */
7057 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
7058 	cpu->cpu_dtrace_chilled += val;
7059 }
7060 
7061 static void
7062 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
7063     uint64_t *buf, uint64_t arg)
7064 {
7065 	int nframes = DTRACE_USTACK_NFRAMES(arg);
7066 	int strsize = DTRACE_USTACK_STRSIZE(arg);
7067 	uint64_t *pcs = &buf[1], *fps;
7068 	char *str = (char *)&pcs[nframes];
7069 	int size, offs = 0, i, j;
7070 	size_t rem;
7071 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
7072 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
7073 	char *sym;
7074 
7075 	/*
7076 	 * Should be taking a faster path if string space has not been
7077 	 * allocated.
7078 	 */
7079 	ASSERT(strsize != 0);
7080 
7081 	/*
7082 	 * We will first allocate some temporary space for the frame pointers.
7083 	 */
7084 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
7085 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
7086 	    (nframes * sizeof (uint64_t));
7087 
7088 	if (!DTRACE_INSCRATCH(mstate, size)) {
7089 		/*
7090 		 * Not enough room for our frame pointers -- need to indicate
7091 		 * that we ran out of scratch space.
7092 		 */
7093 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
7094 		return;
7095 	}
7096 
7097 	mstate->dtms_scratch_ptr += size;
7098 	saved = mstate->dtms_scratch_ptr;
7099 
7100 	/*
7101 	 * Now get a stack with both program counters and frame pointers.
7102 	 */
7103 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7104 	dtrace_getufpstack(buf, fps, nframes + 1);
7105 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7106 
7107 	/*
7108 	 * If that faulted, we're cooked.
7109 	 */
7110 	if (*flags & CPU_DTRACE_FAULT)
7111 		goto out;
7112 
7113 	/*
7114 	 * Now we want to walk up the stack, calling the USTACK helper.  For
7115 	 * each iteration, we restore the scratch pointer.
7116 	 */
7117 	for (i = 0; i < nframes; i++) {
7118 		mstate->dtms_scratch_ptr = saved;
7119 
7120 		if (offs >= strsize)
7121 			break;
7122 
7123 		sym = (char *)(uintptr_t)dtrace_helper(
7124 		    DTRACE_HELPER_ACTION_USTACK,
7125 		    mstate, state, pcs[i], fps[i]);
7126 
7127 		/*
7128 		 * If we faulted while running the helper, we're going to
7129 		 * clear the fault and null out the corresponding string.
7130 		 */
7131 		if (*flags & CPU_DTRACE_FAULT) {
7132 			*flags &= ~CPU_DTRACE_FAULT;
7133 			str[offs++] = '\0';
7134 			continue;
7135 		}
7136 
7137 		if (sym == NULL) {
7138 			str[offs++] = '\0';
7139 			continue;
7140 		}
7141 
7142 		if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
7143 		    &(state->dts_vstate))) {
7144 			str[offs++] = '\0';
7145 			continue;
7146 		}
7147 
7148 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7149 
7150 		/*
7151 		 * Now copy in the string that the helper returned to us.
7152 		 */
7153 		for (j = 0; offs + j < strsize && j < rem; j++) {
7154 			if ((str[offs + j] = sym[j]) == '\0')
7155 				break;
7156 		}
7157 
7158 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7159 
7160 		offs += j + 1;
7161 	}
7162 
7163 	if (offs >= strsize) {
7164 		/*
7165 		 * If we didn't have room for all of the strings, we don't
7166 		 * abort processing -- this needn't be a fatal error -- but we
7167 		 * still want to increment a counter (dts_stkstroverflows) to
7168 		 * allow this condition to be warned about.  (If this is from
7169 		 * a jstack() action, it is easily tuned via jstackstrsize.)
7170 		 */
7171 		dtrace_error(&state->dts_stkstroverflows);
7172 	}
7173 
7174 	while (offs < strsize)
7175 		str[offs++] = '\0';
7176 
7177 out:
7178 	mstate->dtms_scratch_ptr = old;
7179 }
7180 
7181 static void
7182 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7183     size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7184 {
7185 	volatile uint16_t *flags;
7186 	uint64_t val = *valp;
7187 	size_t valoffs = *valoffsp;
7188 
7189 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7190 	ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7191 
7192 	/*
7193 	 * If this is a string, we're going to only load until we find the zero
7194 	 * byte -- after which we'll store zero bytes.
7195 	 */
7196 	if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7197 		char c = '\0' + 1;
7198 		size_t s;
7199 
7200 		for (s = 0; s < size; s++) {
7201 			if (c != '\0' && dtkind == DIF_TF_BYREF) {
7202 				c = dtrace_load8(val++);
7203 			} else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7204 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7205 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7206 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7207 				if (*flags & CPU_DTRACE_FAULT)
7208 					break;
7209 			}
7210 
7211 			DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7212 
7213 			if (c == '\0' && intuple)
7214 				break;
7215 		}
7216 	} else {
7217 		uint8_t c;
7218 		while (valoffs < end) {
7219 			if (dtkind == DIF_TF_BYREF) {
7220 				c = dtrace_load8(val++);
7221 			} else if (dtkind == DIF_TF_BYUREF) {
7222 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7223 				c = dtrace_fuword8((void *)(uintptr_t)val++);
7224 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7225 				if (*flags & CPU_DTRACE_FAULT)
7226 					break;
7227 			}
7228 
7229 			DTRACE_STORE(uint8_t, tomax,
7230 			    valoffs++, c);
7231 		}
7232 	}
7233 
7234 	*valp = val;
7235 	*valoffsp = valoffs;
7236 }
7237 
7238 /*
7239  * If you're looking for the epicenter of DTrace, you just found it.  This
7240  * is the function called by the provider to fire a probe -- from which all
7241  * subsequent probe-context DTrace activity emanates.
7242  */
7243 void
7244 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7245     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7246 {
7247 	processorid_t cpuid;
7248 	dtrace_icookie_t cookie;
7249 	dtrace_probe_t *probe;
7250 	dtrace_mstate_t mstate;
7251 	dtrace_ecb_t *ecb;
7252 	dtrace_action_t *act;
7253 	intptr_t offs;
7254 	size_t size;
7255 	int vtime, onintr;
7256 	volatile uint16_t *flags;
7257 	hrtime_t now;
7258 
7259 	if (panicstr != NULL)
7260 		return;
7261 
7262 #ifdef illumos
7263 	/*
7264 	 * Kick out immediately if this CPU is still being born (in which case
7265 	 * curthread will be set to -1) or the current thread can't allow
7266 	 * probes in its current context.
7267 	 */
7268 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7269 		return;
7270 #endif
7271 
7272 	cookie = dtrace_interrupt_disable();
7273 	probe = dtrace_probes[id - 1];
7274 	cpuid = curcpu;
7275 	onintr = CPU_ON_INTR(CPU);
7276 
7277 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7278 	    probe->dtpr_predcache == curthread->t_predcache) {
7279 		/*
7280 		 * We have hit in the predicate cache; we know that
7281 		 * this predicate would evaluate to be false.
7282 		 */
7283 		dtrace_interrupt_enable(cookie);
7284 		return;
7285 	}
7286 
7287 #ifdef illumos
7288 	if (panic_quiesce) {
7289 #else
7290 	if (panicstr != NULL) {
7291 #endif
7292 		/*
7293 		 * We don't trace anything if we're panicking.
7294 		 */
7295 		dtrace_interrupt_enable(cookie);
7296 		return;
7297 	}
7298 
7299 	now = mstate.dtms_timestamp = dtrace_gethrtime();
7300 	mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7301 	vtime = dtrace_vtime_references != 0;
7302 
7303 	if (vtime && curthread->t_dtrace_start)
7304 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7305 
7306 	mstate.dtms_difo = NULL;
7307 	mstate.dtms_probe = probe;
7308 	mstate.dtms_strtok = 0;
7309 	mstate.dtms_arg[0] = arg0;
7310 	mstate.dtms_arg[1] = arg1;
7311 	mstate.dtms_arg[2] = arg2;
7312 	mstate.dtms_arg[3] = arg3;
7313 	mstate.dtms_arg[4] = arg4;
7314 
7315 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7316 
7317 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7318 		dtrace_predicate_t *pred = ecb->dte_predicate;
7319 		dtrace_state_t *state = ecb->dte_state;
7320 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7321 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7322 		dtrace_vstate_t *vstate = &state->dts_vstate;
7323 		dtrace_provider_t *prov = probe->dtpr_provider;
7324 		uint64_t tracememsize = 0;
7325 		int committed = 0;
7326 		caddr_t tomax;
7327 
7328 		/*
7329 		 * A little subtlety with the following (seemingly innocuous)
7330 		 * declaration of the automatic 'val':  by looking at the
7331 		 * code, you might think that it could be declared in the
7332 		 * action processing loop, below.  (That is, it's only used in
7333 		 * the action processing loop.)  However, it must be declared
7334 		 * out of that scope because in the case of DIF expression
7335 		 * arguments to aggregating actions, one iteration of the
7336 		 * action loop will use the last iteration's value.
7337 		 */
7338 		uint64_t val = 0;
7339 
7340 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7341 		mstate.dtms_getf = NULL;
7342 
7343 		*flags &= ~CPU_DTRACE_ERROR;
7344 
7345 		if (prov == dtrace_provider) {
7346 			/*
7347 			 * If dtrace itself is the provider of this probe,
7348 			 * we're only going to continue processing the ECB if
7349 			 * arg0 (the dtrace_state_t) is equal to the ECB's
7350 			 * creating state.  (This prevents disjoint consumers
7351 			 * from seeing one another's metaprobes.)
7352 			 */
7353 			if (arg0 != (uint64_t)(uintptr_t)state)
7354 				continue;
7355 		}
7356 
7357 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7358 			/*
7359 			 * We're not currently active.  If our provider isn't
7360 			 * the dtrace pseudo provider, we're not interested.
7361 			 */
7362 			if (prov != dtrace_provider)
7363 				continue;
7364 
7365 			/*
7366 			 * Now we must further check if we are in the BEGIN
7367 			 * probe.  If we are, we will only continue processing
7368 			 * if we're still in WARMUP -- if one BEGIN enabling
7369 			 * has invoked the exit() action, we don't want to
7370 			 * evaluate subsequent BEGIN enablings.
7371 			 */
7372 			if (probe->dtpr_id == dtrace_probeid_begin &&
7373 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7374 				ASSERT(state->dts_activity ==
7375 				    DTRACE_ACTIVITY_DRAINING);
7376 				continue;
7377 			}
7378 		}
7379 
7380 		if (ecb->dte_cond) {
7381 			/*
7382 			 * If the dte_cond bits indicate that this
7383 			 * consumer is only allowed to see user-mode firings
7384 			 * of this probe, call the provider's dtps_usermode()
7385 			 * entry point to check that the probe was fired
7386 			 * while in a user context. Skip this ECB if that's
7387 			 * not the case.
7388 			 */
7389 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7390 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7391 			    probe->dtpr_id, probe->dtpr_arg) == 0)
7392 				continue;
7393 
7394 #ifdef illumos
7395 			/*
7396 			 * This is more subtle than it looks. We have to be
7397 			 * absolutely certain that CRED() isn't going to
7398 			 * change out from under us so it's only legit to
7399 			 * examine that structure if we're in constrained
7400 			 * situations. Currently, the only times we'll this
7401 			 * check is if a non-super-user has enabled the
7402 			 * profile or syscall providers -- providers that
7403 			 * allow visibility of all processes. For the
7404 			 * profile case, the check above will ensure that
7405 			 * we're examining a user context.
7406 			 */
7407 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
7408 				cred_t *cr;
7409 				cred_t *s_cr =
7410 				    ecb->dte_state->dts_cred.dcr_cred;
7411 				proc_t *proc;
7412 
7413 				ASSERT(s_cr != NULL);
7414 
7415 				if ((cr = CRED()) == NULL ||
7416 				    s_cr->cr_uid != cr->cr_uid ||
7417 				    s_cr->cr_uid != cr->cr_ruid ||
7418 				    s_cr->cr_uid != cr->cr_suid ||
7419 				    s_cr->cr_gid != cr->cr_gid ||
7420 				    s_cr->cr_gid != cr->cr_rgid ||
7421 				    s_cr->cr_gid != cr->cr_sgid ||
7422 				    (proc = ttoproc(curthread)) == NULL ||
7423 				    (proc->p_flag & SNOCD))
7424 					continue;
7425 			}
7426 
7427 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7428 				cred_t *cr;
7429 				cred_t *s_cr =
7430 				    ecb->dte_state->dts_cred.dcr_cred;
7431 
7432 				ASSERT(s_cr != NULL);
7433 
7434 				if ((cr = CRED()) == NULL ||
7435 				    s_cr->cr_zone->zone_id !=
7436 				    cr->cr_zone->zone_id)
7437 					continue;
7438 			}
7439 #endif
7440 		}
7441 
7442 		if (now - state->dts_alive > dtrace_deadman_timeout) {
7443 			/*
7444 			 * We seem to be dead.  Unless we (a) have kernel
7445 			 * destructive permissions (b) have explicitly enabled
7446 			 * destructive actions and (c) destructive actions have
7447 			 * not been disabled, we're going to transition into
7448 			 * the KILLED state, from which no further processing
7449 			 * on this state will be performed.
7450 			 */
7451 			if (!dtrace_priv_kernel_destructive(state) ||
7452 			    !state->dts_cred.dcr_destructive ||
7453 			    dtrace_destructive_disallow) {
7454 				void *activity = &state->dts_activity;
7455 				dtrace_activity_t current;
7456 
7457 				do {
7458 					current = state->dts_activity;
7459 				} while (dtrace_cas32(activity, current,
7460 				    DTRACE_ACTIVITY_KILLED) != current);
7461 
7462 				continue;
7463 			}
7464 		}
7465 
7466 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7467 		    ecb->dte_alignment, state, &mstate)) < 0)
7468 			continue;
7469 
7470 		tomax = buf->dtb_tomax;
7471 		ASSERT(tomax != NULL);
7472 
7473 		if (ecb->dte_size != 0) {
7474 			dtrace_rechdr_t dtrh;
7475 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7476 				mstate.dtms_timestamp = dtrace_gethrtime();
7477 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7478 			}
7479 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7480 			dtrh.dtrh_epid = ecb->dte_epid;
7481 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7482 			    mstate.dtms_timestamp);
7483 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7484 		}
7485 
7486 		mstate.dtms_epid = ecb->dte_epid;
7487 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
7488 
7489 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7490 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7491 		else
7492 			mstate.dtms_access = 0;
7493 
7494 		if (pred != NULL) {
7495 			dtrace_difo_t *dp = pred->dtp_difo;
7496 			uint64_t rval;
7497 
7498 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7499 
7500 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7501 				dtrace_cacheid_t cid = probe->dtpr_predcache;
7502 
7503 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
7504 					/*
7505 					 * Update the predicate cache...
7506 					 */
7507 					ASSERT(cid == pred->dtp_cacheid);
7508 					curthread->t_predcache = cid;
7509 				}
7510 
7511 				continue;
7512 			}
7513 		}
7514 
7515 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7516 		    act != NULL; act = act->dta_next) {
7517 			size_t valoffs;
7518 			dtrace_difo_t *dp;
7519 			dtrace_recdesc_t *rec = &act->dta_rec;
7520 
7521 			size = rec->dtrd_size;
7522 			valoffs = offs + rec->dtrd_offset;
7523 
7524 			if (DTRACEACT_ISAGG(act->dta_kind)) {
7525 				uint64_t v = 0xbad;
7526 				dtrace_aggregation_t *agg;
7527 
7528 				agg = (dtrace_aggregation_t *)act;
7529 
7530 				if ((dp = act->dta_difo) != NULL)
7531 					v = dtrace_dif_emulate(dp,
7532 					    &mstate, vstate, state);
7533 
7534 				if (*flags & CPU_DTRACE_ERROR)
7535 					continue;
7536 
7537 				/*
7538 				 * Note that we always pass the expression
7539 				 * value from the previous iteration of the
7540 				 * action loop.  This value will only be used
7541 				 * if there is an expression argument to the
7542 				 * aggregating action, denoted by the
7543 				 * dtag_hasarg field.
7544 				 */
7545 				dtrace_aggregate(agg, buf,
7546 				    offs, aggbuf, v, val);
7547 				continue;
7548 			}
7549 
7550 			switch (act->dta_kind) {
7551 			case DTRACEACT_STOP:
7552 				if (dtrace_priv_proc_destructive(state))
7553 					dtrace_action_stop();
7554 				continue;
7555 
7556 			case DTRACEACT_BREAKPOINT:
7557 				if (dtrace_priv_kernel_destructive(state))
7558 					dtrace_action_breakpoint(ecb);
7559 				continue;
7560 
7561 			case DTRACEACT_PANIC:
7562 				if (dtrace_priv_kernel_destructive(state))
7563 					dtrace_action_panic(ecb);
7564 				continue;
7565 
7566 			case DTRACEACT_STACK:
7567 				if (!dtrace_priv_kernel(state))
7568 					continue;
7569 
7570 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
7571 				    size / sizeof (pc_t), probe->dtpr_aframes,
7572 				    DTRACE_ANCHORED(probe) ? NULL :
7573 				    (uint32_t *)arg0);
7574 				continue;
7575 
7576 			case DTRACEACT_JSTACK:
7577 			case DTRACEACT_USTACK:
7578 				if (!dtrace_priv_proc(state))
7579 					continue;
7580 
7581 				/*
7582 				 * See comment in DIF_VAR_PID.
7583 				 */
7584 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7585 				    CPU_ON_INTR(CPU)) {
7586 					int depth = DTRACE_USTACK_NFRAMES(
7587 					    rec->dtrd_arg) + 1;
7588 
7589 					dtrace_bzero((void *)(tomax + valoffs),
7590 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7591 					    + depth * sizeof (uint64_t));
7592 
7593 					continue;
7594 				}
7595 
7596 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7597 				    curproc->p_dtrace_helpers != NULL) {
7598 					/*
7599 					 * This is the slow path -- we have
7600 					 * allocated string space, and we're
7601 					 * getting the stack of a process that
7602 					 * has helpers.  Call into a separate
7603 					 * routine to perform this processing.
7604 					 */
7605 					dtrace_action_ustack(&mstate, state,
7606 					    (uint64_t *)(tomax + valoffs),
7607 					    rec->dtrd_arg);
7608 					continue;
7609 				}
7610 
7611 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7612 				dtrace_getupcstack((uint64_t *)
7613 				    (tomax + valoffs),
7614 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7615 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7616 				continue;
7617 
7618 			default:
7619 				break;
7620 			}
7621 
7622 			dp = act->dta_difo;
7623 			ASSERT(dp != NULL);
7624 
7625 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7626 
7627 			if (*flags & CPU_DTRACE_ERROR)
7628 				continue;
7629 
7630 			switch (act->dta_kind) {
7631 			case DTRACEACT_SPECULATE: {
7632 				dtrace_rechdr_t *dtrh;
7633 
7634 				ASSERT(buf == &state->dts_buffer[cpuid]);
7635 				buf = dtrace_speculation_buffer(state,
7636 				    cpuid, val);
7637 
7638 				if (buf == NULL) {
7639 					*flags |= CPU_DTRACE_DROP;
7640 					continue;
7641 				}
7642 
7643 				offs = dtrace_buffer_reserve(buf,
7644 				    ecb->dte_needed, ecb->dte_alignment,
7645 				    state, NULL);
7646 
7647 				if (offs < 0) {
7648 					*flags |= CPU_DTRACE_DROP;
7649 					continue;
7650 				}
7651 
7652 				tomax = buf->dtb_tomax;
7653 				ASSERT(tomax != NULL);
7654 
7655 				if (ecb->dte_size == 0)
7656 					continue;
7657 
7658 				ASSERT3U(ecb->dte_size, >=,
7659 				    sizeof (dtrace_rechdr_t));
7660 				dtrh = ((void *)(tomax + offs));
7661 				dtrh->dtrh_epid = ecb->dte_epid;
7662 				/*
7663 				 * When the speculation is committed, all of
7664 				 * the records in the speculative buffer will
7665 				 * have their timestamps set to the commit
7666 				 * time.  Until then, it is set to a sentinel
7667 				 * value, for debugability.
7668 				 */
7669 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7670 				continue;
7671 			}
7672 
7673 			case DTRACEACT_PRINTM: {
7674 				/* The DIF returns a 'memref'. */
7675 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7676 
7677 				/* Get the size from the memref. */
7678 				size = memref[1];
7679 
7680 				/*
7681 				 * Check if the size exceeds the allocated
7682 				 * buffer size.
7683 				 */
7684 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7685 					/* Flag a drop! */
7686 					*flags |= CPU_DTRACE_DROP;
7687 					continue;
7688 				}
7689 
7690 				/* Store the size in the buffer first. */
7691 				DTRACE_STORE(uintptr_t, tomax,
7692 				    valoffs, size);
7693 
7694 				/*
7695 				 * Offset the buffer address to the start
7696 				 * of the data.
7697 				 */
7698 				valoffs += sizeof(uintptr_t);
7699 
7700 				/*
7701 				 * Reset to the memory address rather than
7702 				 * the memref array, then let the BYREF
7703 				 * code below do the work to store the
7704 				 * memory data in the buffer.
7705 				 */
7706 				val = memref[0];
7707 				break;
7708 			}
7709 
7710 			case DTRACEACT_CHILL:
7711 				if (dtrace_priv_kernel_destructive(state))
7712 					dtrace_action_chill(&mstate, val);
7713 				continue;
7714 
7715 			case DTRACEACT_RAISE:
7716 				if (dtrace_priv_proc_destructive(state))
7717 					dtrace_action_raise(val);
7718 				continue;
7719 
7720 			case DTRACEACT_COMMIT:
7721 				ASSERT(!committed);
7722 
7723 				/*
7724 				 * We need to commit our buffer state.
7725 				 */
7726 				if (ecb->dte_size)
7727 					buf->dtb_offset = offs + ecb->dte_size;
7728 				buf = &state->dts_buffer[cpuid];
7729 				dtrace_speculation_commit(state, cpuid, val);
7730 				committed = 1;
7731 				continue;
7732 
7733 			case DTRACEACT_DISCARD:
7734 				dtrace_speculation_discard(state, cpuid, val);
7735 				continue;
7736 
7737 			case DTRACEACT_DIFEXPR:
7738 			case DTRACEACT_LIBACT:
7739 			case DTRACEACT_PRINTF:
7740 			case DTRACEACT_PRINTA:
7741 			case DTRACEACT_SYSTEM:
7742 			case DTRACEACT_FREOPEN:
7743 			case DTRACEACT_TRACEMEM:
7744 				break;
7745 
7746 			case DTRACEACT_TRACEMEM_DYNSIZE:
7747 				tracememsize = val;
7748 				break;
7749 
7750 			case DTRACEACT_SYM:
7751 			case DTRACEACT_MOD:
7752 				if (!dtrace_priv_kernel(state))
7753 					continue;
7754 				break;
7755 
7756 			case DTRACEACT_USYM:
7757 			case DTRACEACT_UMOD:
7758 			case DTRACEACT_UADDR: {
7759 #ifdef illumos
7760 				struct pid *pid = curthread->t_procp->p_pidp;
7761 #endif
7762 
7763 				if (!dtrace_priv_proc(state))
7764 					continue;
7765 
7766 				DTRACE_STORE(uint64_t, tomax,
7767 #ifdef illumos
7768 				    valoffs, (uint64_t)pid->pid_id);
7769 #else
7770 				    valoffs, (uint64_t) curproc->p_pid);
7771 #endif
7772 				DTRACE_STORE(uint64_t, tomax,
7773 				    valoffs + sizeof (uint64_t), val);
7774 
7775 				continue;
7776 			}
7777 
7778 			case DTRACEACT_EXIT: {
7779 				/*
7780 				 * For the exit action, we are going to attempt
7781 				 * to atomically set our activity to be
7782 				 * draining.  If this fails (either because
7783 				 * another CPU has beat us to the exit action,
7784 				 * or because our current activity is something
7785 				 * other than ACTIVE or WARMUP), we will
7786 				 * continue.  This assures that the exit action
7787 				 * can be successfully recorded at most once
7788 				 * when we're in the ACTIVE state.  If we're
7789 				 * encountering the exit() action while in
7790 				 * COOLDOWN, however, we want to honor the new
7791 				 * status code.  (We know that we're the only
7792 				 * thread in COOLDOWN, so there is no race.)
7793 				 */
7794 				void *activity = &state->dts_activity;
7795 				dtrace_activity_t current = state->dts_activity;
7796 
7797 				if (current == DTRACE_ACTIVITY_COOLDOWN)
7798 					break;
7799 
7800 				if (current != DTRACE_ACTIVITY_WARMUP)
7801 					current = DTRACE_ACTIVITY_ACTIVE;
7802 
7803 				if (dtrace_cas32(activity, current,
7804 				    DTRACE_ACTIVITY_DRAINING) != current) {
7805 					*flags |= CPU_DTRACE_DROP;
7806 					continue;
7807 				}
7808 
7809 				break;
7810 			}
7811 
7812 			default:
7813 				ASSERT(0);
7814 			}
7815 
7816 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7817 			    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7818 				uintptr_t end = valoffs + size;
7819 
7820 				if (tracememsize != 0 &&
7821 				    valoffs + tracememsize < end) {
7822 					end = valoffs + tracememsize;
7823 					tracememsize = 0;
7824 				}
7825 
7826 				if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7827 				    !dtrace_vcanload((void *)(uintptr_t)val,
7828 				    &dp->dtdo_rtype, NULL, &mstate, vstate))
7829 					continue;
7830 
7831 				dtrace_store_by_ref(dp, tomax, size, &valoffs,
7832 				    &val, end, act->dta_intuple,
7833 				    dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7834 				    DIF_TF_BYREF: DIF_TF_BYUREF);
7835 				continue;
7836 			}
7837 
7838 			switch (size) {
7839 			case 0:
7840 				break;
7841 
7842 			case sizeof (uint8_t):
7843 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
7844 				break;
7845 			case sizeof (uint16_t):
7846 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
7847 				break;
7848 			case sizeof (uint32_t):
7849 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
7850 				break;
7851 			case sizeof (uint64_t):
7852 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
7853 				break;
7854 			default:
7855 				/*
7856 				 * Any other size should have been returned by
7857 				 * reference, not by value.
7858 				 */
7859 				ASSERT(0);
7860 				break;
7861 			}
7862 		}
7863 
7864 		if (*flags & CPU_DTRACE_DROP)
7865 			continue;
7866 
7867 		if (*flags & CPU_DTRACE_FAULT) {
7868 			int ndx;
7869 			dtrace_action_t *err;
7870 
7871 			buf->dtb_errors++;
7872 
7873 			if (probe->dtpr_id == dtrace_probeid_error) {
7874 				/*
7875 				 * There's nothing we can do -- we had an
7876 				 * error on the error probe.  We bump an
7877 				 * error counter to at least indicate that
7878 				 * this condition happened.
7879 				 */
7880 				dtrace_error(&state->dts_dblerrors);
7881 				continue;
7882 			}
7883 
7884 			if (vtime) {
7885 				/*
7886 				 * Before recursing on dtrace_probe(), we
7887 				 * need to explicitly clear out our start
7888 				 * time to prevent it from being accumulated
7889 				 * into t_dtrace_vtime.
7890 				 */
7891 				curthread->t_dtrace_start = 0;
7892 			}
7893 
7894 			/*
7895 			 * Iterate over the actions to figure out which action
7896 			 * we were processing when we experienced the error.
7897 			 * Note that act points _past_ the faulting action; if
7898 			 * act is ecb->dte_action, the fault was in the
7899 			 * predicate, if it's ecb->dte_action->dta_next it's
7900 			 * in action #1, and so on.
7901 			 */
7902 			for (err = ecb->dte_action, ndx = 0;
7903 			    err != act; err = err->dta_next, ndx++)
7904 				continue;
7905 
7906 			dtrace_probe_error(state, ecb->dte_epid, ndx,
7907 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7908 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7909 			    cpu_core[cpuid].cpuc_dtrace_illval);
7910 
7911 			continue;
7912 		}
7913 
7914 		if (!committed)
7915 			buf->dtb_offset = offs + ecb->dte_size;
7916 	}
7917 
7918 	if (vtime)
7919 		curthread->t_dtrace_start = dtrace_gethrtime();
7920 
7921 	dtrace_interrupt_enable(cookie);
7922 }
7923 
7924 /*
7925  * DTrace Probe Hashing Functions
7926  *
7927  * The functions in this section (and indeed, the functions in remaining
7928  * sections) are not _called_ from probe context.  (Any exceptions to this are
7929  * marked with a "Note:".)  Rather, they are called from elsewhere in the
7930  * DTrace framework to look-up probes in, add probes to and remove probes from
7931  * the DTrace probe hashes.  (Each probe is hashed by each element of the
7932  * probe tuple -- allowing for fast lookups, regardless of what was
7933  * specified.)
7934  */
7935 static uint_t
7936 dtrace_hash_str(const char *p)
7937 {
7938 	unsigned int g;
7939 	uint_t hval = 0;
7940 
7941 	while (*p) {
7942 		hval = (hval << 4) + *p++;
7943 		if ((g = (hval & 0xf0000000)) != 0)
7944 			hval ^= g >> 24;
7945 		hval &= ~g;
7946 	}
7947 	return (hval);
7948 }
7949 
7950 static dtrace_hash_t *
7951 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7952 {
7953 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7954 
7955 	hash->dth_stroffs = stroffs;
7956 	hash->dth_nextoffs = nextoffs;
7957 	hash->dth_prevoffs = prevoffs;
7958 
7959 	hash->dth_size = 1;
7960 	hash->dth_mask = hash->dth_size - 1;
7961 
7962 	hash->dth_tab = kmem_zalloc(hash->dth_size *
7963 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7964 
7965 	return (hash);
7966 }
7967 
7968 static void
7969 dtrace_hash_destroy(dtrace_hash_t *hash)
7970 {
7971 #ifdef DEBUG
7972 	int i;
7973 
7974 	for (i = 0; i < hash->dth_size; i++)
7975 		ASSERT(hash->dth_tab[i] == NULL);
7976 #endif
7977 
7978 	kmem_free(hash->dth_tab,
7979 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
7980 	kmem_free(hash, sizeof (dtrace_hash_t));
7981 }
7982 
7983 static void
7984 dtrace_hash_resize(dtrace_hash_t *hash)
7985 {
7986 	int size = hash->dth_size, i, ndx;
7987 	int new_size = hash->dth_size << 1;
7988 	int new_mask = new_size - 1;
7989 	dtrace_hashbucket_t **new_tab, *bucket, *next;
7990 
7991 	ASSERT((new_size & new_mask) == 0);
7992 
7993 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7994 
7995 	for (i = 0; i < size; i++) {
7996 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7997 			dtrace_probe_t *probe = bucket->dthb_chain;
7998 
7999 			ASSERT(probe != NULL);
8000 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
8001 
8002 			next = bucket->dthb_next;
8003 			bucket->dthb_next = new_tab[ndx];
8004 			new_tab[ndx] = bucket;
8005 		}
8006 	}
8007 
8008 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
8009 	hash->dth_tab = new_tab;
8010 	hash->dth_size = new_size;
8011 	hash->dth_mask = new_mask;
8012 }
8013 
8014 static void
8015 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
8016 {
8017 	int hashval = DTRACE_HASHSTR(hash, new);
8018 	int ndx = hashval & hash->dth_mask;
8019 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8020 	dtrace_probe_t **nextp, **prevp;
8021 
8022 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8023 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
8024 			goto add;
8025 	}
8026 
8027 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
8028 		dtrace_hash_resize(hash);
8029 		dtrace_hash_add(hash, new);
8030 		return;
8031 	}
8032 
8033 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
8034 	bucket->dthb_next = hash->dth_tab[ndx];
8035 	hash->dth_tab[ndx] = bucket;
8036 	hash->dth_nbuckets++;
8037 
8038 add:
8039 	nextp = DTRACE_HASHNEXT(hash, new);
8040 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
8041 	*nextp = bucket->dthb_chain;
8042 
8043 	if (bucket->dthb_chain != NULL) {
8044 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
8045 		ASSERT(*prevp == NULL);
8046 		*prevp = new;
8047 	}
8048 
8049 	bucket->dthb_chain = new;
8050 	bucket->dthb_len++;
8051 }
8052 
8053 static dtrace_probe_t *
8054 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
8055 {
8056 	int hashval = DTRACE_HASHSTR(hash, template);
8057 	int ndx = hashval & hash->dth_mask;
8058 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8059 
8060 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8061 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8062 			return (bucket->dthb_chain);
8063 	}
8064 
8065 	return (NULL);
8066 }
8067 
8068 static int
8069 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
8070 {
8071 	int hashval = DTRACE_HASHSTR(hash, template);
8072 	int ndx = hashval & hash->dth_mask;
8073 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8074 
8075 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8076 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8077 			return (bucket->dthb_len);
8078 	}
8079 
8080 	return (0);
8081 }
8082 
8083 static void
8084 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
8085 {
8086 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
8087 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8088 
8089 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
8090 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
8091 
8092 	/*
8093 	 * Find the bucket that we're removing this probe from.
8094 	 */
8095 	for (; bucket != NULL; bucket = bucket->dthb_next) {
8096 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
8097 			break;
8098 	}
8099 
8100 	ASSERT(bucket != NULL);
8101 
8102 	if (*prevp == NULL) {
8103 		if (*nextp == NULL) {
8104 			/*
8105 			 * The removed probe was the only probe on this
8106 			 * bucket; we need to remove the bucket.
8107 			 */
8108 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
8109 
8110 			ASSERT(bucket->dthb_chain == probe);
8111 			ASSERT(b != NULL);
8112 
8113 			if (b == bucket) {
8114 				hash->dth_tab[ndx] = bucket->dthb_next;
8115 			} else {
8116 				while (b->dthb_next != bucket)
8117 					b = b->dthb_next;
8118 				b->dthb_next = bucket->dthb_next;
8119 			}
8120 
8121 			ASSERT(hash->dth_nbuckets > 0);
8122 			hash->dth_nbuckets--;
8123 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8124 			return;
8125 		}
8126 
8127 		bucket->dthb_chain = *nextp;
8128 	} else {
8129 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8130 	}
8131 
8132 	if (*nextp != NULL)
8133 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8134 }
8135 
8136 /*
8137  * DTrace Utility Functions
8138  *
8139  * These are random utility functions that are _not_ called from probe context.
8140  */
8141 static int
8142 dtrace_badattr(const dtrace_attribute_t *a)
8143 {
8144 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
8145 	    a->dtat_data > DTRACE_STABILITY_MAX ||
8146 	    a->dtat_class > DTRACE_CLASS_MAX);
8147 }
8148 
8149 /*
8150  * Return a duplicate copy of a string.  If the specified string is NULL,
8151  * this function returns a zero-length string.
8152  */
8153 static char *
8154 dtrace_strdup(const char *str)
8155 {
8156 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8157 
8158 	if (str != NULL)
8159 		(void) strcpy(new, str);
8160 
8161 	return (new);
8162 }
8163 
8164 #define	DTRACE_ISALPHA(c)	\
8165 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8166 
8167 static int
8168 dtrace_badname(const char *s)
8169 {
8170 	char c;
8171 
8172 	if (s == NULL || (c = *s++) == '\0')
8173 		return (0);
8174 
8175 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8176 		return (1);
8177 
8178 	while ((c = *s++) != '\0') {
8179 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8180 		    c != '-' && c != '_' && c != '.' && c != '`')
8181 			return (1);
8182 	}
8183 
8184 	return (0);
8185 }
8186 
8187 static void
8188 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8189 {
8190 	uint32_t priv;
8191 
8192 #ifdef illumos
8193 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8194 		/*
8195 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8196 		 */
8197 		priv = DTRACE_PRIV_ALL;
8198 	} else {
8199 		*uidp = crgetuid(cr);
8200 		*zoneidp = crgetzoneid(cr);
8201 
8202 		priv = 0;
8203 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8204 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8205 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8206 			priv |= DTRACE_PRIV_USER;
8207 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8208 			priv |= DTRACE_PRIV_PROC;
8209 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8210 			priv |= DTRACE_PRIV_OWNER;
8211 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8212 			priv |= DTRACE_PRIV_ZONEOWNER;
8213 	}
8214 #else
8215 	priv = DTRACE_PRIV_ALL;
8216 #endif
8217 
8218 	*privp = priv;
8219 }
8220 
8221 #ifdef DTRACE_ERRDEBUG
8222 static void
8223 dtrace_errdebug(const char *str)
8224 {
8225 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8226 	int occupied = 0;
8227 
8228 	mutex_enter(&dtrace_errlock);
8229 	dtrace_errlast = str;
8230 	dtrace_errthread = curthread;
8231 
8232 	while (occupied++ < DTRACE_ERRHASHSZ) {
8233 		if (dtrace_errhash[hval].dter_msg == str) {
8234 			dtrace_errhash[hval].dter_count++;
8235 			goto out;
8236 		}
8237 
8238 		if (dtrace_errhash[hval].dter_msg != NULL) {
8239 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
8240 			continue;
8241 		}
8242 
8243 		dtrace_errhash[hval].dter_msg = str;
8244 		dtrace_errhash[hval].dter_count = 1;
8245 		goto out;
8246 	}
8247 
8248 	panic("dtrace: undersized error hash");
8249 out:
8250 	mutex_exit(&dtrace_errlock);
8251 }
8252 #endif
8253 
8254 /*
8255  * DTrace Matching Functions
8256  *
8257  * These functions are used to match groups of probes, given some elements of
8258  * a probe tuple, or some globbed expressions for elements of a probe tuple.
8259  */
8260 static int
8261 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8262     zoneid_t zoneid)
8263 {
8264 	if (priv != DTRACE_PRIV_ALL) {
8265 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8266 		uint32_t match = priv & ppriv;
8267 
8268 		/*
8269 		 * No PRIV_DTRACE_* privileges...
8270 		 */
8271 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8272 		    DTRACE_PRIV_KERNEL)) == 0)
8273 			return (0);
8274 
8275 		/*
8276 		 * No matching bits, but there were bits to match...
8277 		 */
8278 		if (match == 0 && ppriv != 0)
8279 			return (0);
8280 
8281 		/*
8282 		 * Need to have permissions to the process, but don't...
8283 		 */
8284 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8285 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8286 			return (0);
8287 		}
8288 
8289 		/*
8290 		 * Need to be in the same zone unless we possess the
8291 		 * privilege to examine all zones.
8292 		 */
8293 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8294 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8295 			return (0);
8296 		}
8297 	}
8298 
8299 	return (1);
8300 }
8301 
8302 /*
8303  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8304  * consists of input pattern strings and an ops-vector to evaluate them.
8305  * This function returns >0 for match, 0 for no match, and <0 for error.
8306  */
8307 static int
8308 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8309     uint32_t priv, uid_t uid, zoneid_t zoneid)
8310 {
8311 	dtrace_provider_t *pvp = prp->dtpr_provider;
8312 	int rv;
8313 
8314 	if (pvp->dtpv_defunct)
8315 		return (0);
8316 
8317 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8318 		return (rv);
8319 
8320 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8321 		return (rv);
8322 
8323 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8324 		return (rv);
8325 
8326 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8327 		return (rv);
8328 
8329 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8330 		return (0);
8331 
8332 	return (rv);
8333 }
8334 
8335 /*
8336  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8337  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
8338  * libc's version, the kernel version only applies to 8-bit ASCII strings.
8339  * In addition, all of the recursion cases except for '*' matching have been
8340  * unwound.  For '*', we still implement recursive evaluation, but a depth
8341  * counter is maintained and matching is aborted if we recurse too deep.
8342  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8343  */
8344 static int
8345 dtrace_match_glob(const char *s, const char *p, int depth)
8346 {
8347 	const char *olds;
8348 	char s1, c;
8349 	int gs;
8350 
8351 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8352 		return (-1);
8353 
8354 	if (s == NULL)
8355 		s = ""; /* treat NULL as empty string */
8356 
8357 top:
8358 	olds = s;
8359 	s1 = *s++;
8360 
8361 	if (p == NULL)
8362 		return (0);
8363 
8364 	if ((c = *p++) == '\0')
8365 		return (s1 == '\0');
8366 
8367 	switch (c) {
8368 	case '[': {
8369 		int ok = 0, notflag = 0;
8370 		char lc = '\0';
8371 
8372 		if (s1 == '\0')
8373 			return (0);
8374 
8375 		if (*p == '!') {
8376 			notflag = 1;
8377 			p++;
8378 		}
8379 
8380 		if ((c = *p++) == '\0')
8381 			return (0);
8382 
8383 		do {
8384 			if (c == '-' && lc != '\0' && *p != ']') {
8385 				if ((c = *p++) == '\0')
8386 					return (0);
8387 				if (c == '\\' && (c = *p++) == '\0')
8388 					return (0);
8389 
8390 				if (notflag) {
8391 					if (s1 < lc || s1 > c)
8392 						ok++;
8393 					else
8394 						return (0);
8395 				} else if (lc <= s1 && s1 <= c)
8396 					ok++;
8397 
8398 			} else if (c == '\\' && (c = *p++) == '\0')
8399 				return (0);
8400 
8401 			lc = c; /* save left-hand 'c' for next iteration */
8402 
8403 			if (notflag) {
8404 				if (s1 != c)
8405 					ok++;
8406 				else
8407 					return (0);
8408 			} else if (s1 == c)
8409 				ok++;
8410 
8411 			if ((c = *p++) == '\0')
8412 				return (0);
8413 
8414 		} while (c != ']');
8415 
8416 		if (ok)
8417 			goto top;
8418 
8419 		return (0);
8420 	}
8421 
8422 	case '\\':
8423 		if ((c = *p++) == '\0')
8424 			return (0);
8425 		/*FALLTHRU*/
8426 
8427 	default:
8428 		if (c != s1)
8429 			return (0);
8430 		/*FALLTHRU*/
8431 
8432 	case '?':
8433 		if (s1 != '\0')
8434 			goto top;
8435 		return (0);
8436 
8437 	case '*':
8438 		while (*p == '*')
8439 			p++; /* consecutive *'s are identical to a single one */
8440 
8441 		if (*p == '\0')
8442 			return (1);
8443 
8444 		for (s = olds; *s != '\0'; s++) {
8445 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8446 				return (gs);
8447 		}
8448 
8449 		return (0);
8450 	}
8451 }
8452 
8453 /*ARGSUSED*/
8454 static int
8455 dtrace_match_string(const char *s, const char *p, int depth)
8456 {
8457 	return (s != NULL && strcmp(s, p) == 0);
8458 }
8459 
8460 /*ARGSUSED*/
8461 static int
8462 dtrace_match_nul(const char *s, const char *p, int depth)
8463 {
8464 	return (1); /* always match the empty pattern */
8465 }
8466 
8467 /*ARGSUSED*/
8468 static int
8469 dtrace_match_nonzero(const char *s, const char *p, int depth)
8470 {
8471 	return (s != NULL && s[0] != '\0');
8472 }
8473 
8474 static int
8475 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8476     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8477 {
8478 	dtrace_probe_t template, *probe;
8479 	dtrace_hash_t *hash = NULL;
8480 	int len, best = INT_MAX, nmatched = 0;
8481 	dtrace_id_t i;
8482 
8483 	ASSERT(MUTEX_HELD(&dtrace_lock));
8484 
8485 	/*
8486 	 * If the probe ID is specified in the key, just lookup by ID and
8487 	 * invoke the match callback once if a matching probe is found.
8488 	 */
8489 	if (pkp->dtpk_id != DTRACE_IDNONE) {
8490 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8491 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8492 			(void) (*matched)(probe, arg);
8493 			nmatched++;
8494 		}
8495 		return (nmatched);
8496 	}
8497 
8498 	template.dtpr_mod = (char *)pkp->dtpk_mod;
8499 	template.dtpr_func = (char *)pkp->dtpk_func;
8500 	template.dtpr_name = (char *)pkp->dtpk_name;
8501 
8502 	/*
8503 	 * We want to find the most distinct of the module name, function
8504 	 * name, and name.  So for each one that is not a glob pattern or
8505 	 * empty string, we perform a lookup in the corresponding hash and
8506 	 * use the hash table with the fewest collisions to do our search.
8507 	 */
8508 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
8509 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8510 		best = len;
8511 		hash = dtrace_bymod;
8512 	}
8513 
8514 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
8515 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8516 		best = len;
8517 		hash = dtrace_byfunc;
8518 	}
8519 
8520 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
8521 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8522 		best = len;
8523 		hash = dtrace_byname;
8524 	}
8525 
8526 	/*
8527 	 * If we did not select a hash table, iterate over every probe and
8528 	 * invoke our callback for each one that matches our input probe key.
8529 	 */
8530 	if (hash == NULL) {
8531 		for (i = 0; i < dtrace_nprobes; i++) {
8532 			if ((probe = dtrace_probes[i]) == NULL ||
8533 			    dtrace_match_probe(probe, pkp, priv, uid,
8534 			    zoneid) <= 0)
8535 				continue;
8536 
8537 			nmatched++;
8538 
8539 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8540 				break;
8541 		}
8542 
8543 		return (nmatched);
8544 	}
8545 
8546 	/*
8547 	 * If we selected a hash table, iterate over each probe of the same key
8548 	 * name and invoke the callback for every probe that matches the other
8549 	 * attributes of our input probe key.
8550 	 */
8551 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8552 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
8553 
8554 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8555 			continue;
8556 
8557 		nmatched++;
8558 
8559 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8560 			break;
8561 	}
8562 
8563 	return (nmatched);
8564 }
8565 
8566 /*
8567  * Return the function pointer dtrace_probecmp() should use to compare the
8568  * specified pattern with a string.  For NULL or empty patterns, we select
8569  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
8570  * For non-empty non-glob strings, we use dtrace_match_string().
8571  */
8572 static dtrace_probekey_f *
8573 dtrace_probekey_func(const char *p)
8574 {
8575 	char c;
8576 
8577 	if (p == NULL || *p == '\0')
8578 		return (&dtrace_match_nul);
8579 
8580 	while ((c = *p++) != '\0') {
8581 		if (c == '[' || c == '?' || c == '*' || c == '\\')
8582 			return (&dtrace_match_glob);
8583 	}
8584 
8585 	return (&dtrace_match_string);
8586 }
8587 
8588 /*
8589  * Build a probe comparison key for use with dtrace_match_probe() from the
8590  * given probe description.  By convention, a null key only matches anchored
8591  * probes: if each field is the empty string, reset dtpk_fmatch to
8592  * dtrace_match_nonzero().
8593  */
8594 static void
8595 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8596 {
8597 	pkp->dtpk_prov = pdp->dtpd_provider;
8598 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8599 
8600 	pkp->dtpk_mod = pdp->dtpd_mod;
8601 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8602 
8603 	pkp->dtpk_func = pdp->dtpd_func;
8604 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8605 
8606 	pkp->dtpk_name = pdp->dtpd_name;
8607 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8608 
8609 	pkp->dtpk_id = pdp->dtpd_id;
8610 
8611 	if (pkp->dtpk_id == DTRACE_IDNONE &&
8612 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
8613 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
8614 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
8615 	    pkp->dtpk_nmatch == &dtrace_match_nul)
8616 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
8617 }
8618 
8619 /*
8620  * DTrace Provider-to-Framework API Functions
8621  *
8622  * These functions implement much of the Provider-to-Framework API, as
8623  * described in <sys/dtrace.h>.  The parts of the API not in this section are
8624  * the functions in the API for probe management (found below), and
8625  * dtrace_probe() itself (found above).
8626  */
8627 
8628 /*
8629  * Register the calling provider with the DTrace framework.  This should
8630  * generally be called by DTrace providers in their attach(9E) entry point.
8631  */
8632 int
8633 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8634     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8635 {
8636 	dtrace_provider_t *provider;
8637 
8638 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8639 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8640 		    "arguments", name ? name : "<NULL>");
8641 		return (EINVAL);
8642 	}
8643 
8644 	if (name[0] == '\0' || dtrace_badname(name)) {
8645 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8646 		    "provider name", name);
8647 		return (EINVAL);
8648 	}
8649 
8650 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8651 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8652 	    pops->dtps_destroy == NULL ||
8653 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8654 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8655 		    "provider ops", name);
8656 		return (EINVAL);
8657 	}
8658 
8659 	if (dtrace_badattr(&pap->dtpa_provider) ||
8660 	    dtrace_badattr(&pap->dtpa_mod) ||
8661 	    dtrace_badattr(&pap->dtpa_func) ||
8662 	    dtrace_badattr(&pap->dtpa_name) ||
8663 	    dtrace_badattr(&pap->dtpa_args)) {
8664 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8665 		    "provider attributes", name);
8666 		return (EINVAL);
8667 	}
8668 
8669 	if (priv & ~DTRACE_PRIV_ALL) {
8670 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8671 		    "privilege attributes", name);
8672 		return (EINVAL);
8673 	}
8674 
8675 	if ((priv & DTRACE_PRIV_KERNEL) &&
8676 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8677 	    pops->dtps_usermode == NULL) {
8678 		cmn_err(CE_WARN, "failed to register provider '%s': need "
8679 		    "dtps_usermode() op for given privilege attributes", name);
8680 		return (EINVAL);
8681 	}
8682 
8683 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8684 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8685 	(void) strcpy(provider->dtpv_name, name);
8686 
8687 	provider->dtpv_attr = *pap;
8688 	provider->dtpv_priv.dtpp_flags = priv;
8689 	if (cr != NULL) {
8690 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8691 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8692 	}
8693 	provider->dtpv_pops = *pops;
8694 
8695 	if (pops->dtps_provide == NULL) {
8696 		ASSERT(pops->dtps_provide_module != NULL);
8697 		provider->dtpv_pops.dtps_provide =
8698 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8699 	}
8700 
8701 	if (pops->dtps_provide_module == NULL) {
8702 		ASSERT(pops->dtps_provide != NULL);
8703 		provider->dtpv_pops.dtps_provide_module =
8704 		    (void (*)(void *, modctl_t *))dtrace_nullop;
8705 	}
8706 
8707 	if (pops->dtps_suspend == NULL) {
8708 		ASSERT(pops->dtps_resume == NULL);
8709 		provider->dtpv_pops.dtps_suspend =
8710 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8711 		provider->dtpv_pops.dtps_resume =
8712 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8713 	}
8714 
8715 	provider->dtpv_arg = arg;
8716 	*idp = (dtrace_provider_id_t)provider;
8717 
8718 	if (pops == &dtrace_provider_ops) {
8719 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8720 		ASSERT(MUTEX_HELD(&dtrace_lock));
8721 		ASSERT(dtrace_anon.dta_enabling == NULL);
8722 
8723 		/*
8724 		 * We make sure that the DTrace provider is at the head of
8725 		 * the provider chain.
8726 		 */
8727 		provider->dtpv_next = dtrace_provider;
8728 		dtrace_provider = provider;
8729 		return (0);
8730 	}
8731 
8732 	mutex_enter(&dtrace_provider_lock);
8733 	mutex_enter(&dtrace_lock);
8734 
8735 	/*
8736 	 * If there is at least one provider registered, we'll add this
8737 	 * provider after the first provider.
8738 	 */
8739 	if (dtrace_provider != NULL) {
8740 		provider->dtpv_next = dtrace_provider->dtpv_next;
8741 		dtrace_provider->dtpv_next = provider;
8742 	} else {
8743 		dtrace_provider = provider;
8744 	}
8745 
8746 	if (dtrace_retained != NULL) {
8747 		dtrace_enabling_provide(provider);
8748 
8749 		/*
8750 		 * Now we need to call dtrace_enabling_matchall() -- which
8751 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
8752 		 * to drop all of our locks before calling into it...
8753 		 */
8754 		mutex_exit(&dtrace_lock);
8755 		mutex_exit(&dtrace_provider_lock);
8756 		dtrace_enabling_matchall();
8757 
8758 		return (0);
8759 	}
8760 
8761 	mutex_exit(&dtrace_lock);
8762 	mutex_exit(&dtrace_provider_lock);
8763 
8764 	return (0);
8765 }
8766 
8767 /*
8768  * Unregister the specified provider from the DTrace framework.  This should
8769  * generally be called by DTrace providers in their detach(9E) entry point.
8770  */
8771 int
8772 dtrace_unregister(dtrace_provider_id_t id)
8773 {
8774 	dtrace_provider_t *old = (dtrace_provider_t *)id;
8775 	dtrace_provider_t *prev = NULL;
8776 	int i, self = 0, noreap = 0;
8777 	dtrace_probe_t *probe, *first = NULL;
8778 
8779 	if (old->dtpv_pops.dtps_enable ==
8780 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8781 		/*
8782 		 * If DTrace itself is the provider, we're called with locks
8783 		 * already held.
8784 		 */
8785 		ASSERT(old == dtrace_provider);
8786 #ifdef illumos
8787 		ASSERT(dtrace_devi != NULL);
8788 #endif
8789 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8790 		ASSERT(MUTEX_HELD(&dtrace_lock));
8791 		self = 1;
8792 
8793 		if (dtrace_provider->dtpv_next != NULL) {
8794 			/*
8795 			 * There's another provider here; return failure.
8796 			 */
8797 			return (EBUSY);
8798 		}
8799 	} else {
8800 		mutex_enter(&dtrace_provider_lock);
8801 #ifdef illumos
8802 		mutex_enter(&mod_lock);
8803 #endif
8804 		mutex_enter(&dtrace_lock);
8805 	}
8806 
8807 	/*
8808 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8809 	 * probes, we refuse to let providers slither away, unless this
8810 	 * provider has already been explicitly invalidated.
8811 	 */
8812 	if (!old->dtpv_defunct &&
8813 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8814 	    dtrace_anon.dta_state->dts_necbs > 0))) {
8815 		if (!self) {
8816 			mutex_exit(&dtrace_lock);
8817 #ifdef illumos
8818 			mutex_exit(&mod_lock);
8819 #endif
8820 			mutex_exit(&dtrace_provider_lock);
8821 		}
8822 		return (EBUSY);
8823 	}
8824 
8825 	/*
8826 	 * Attempt to destroy the probes associated with this provider.
8827 	 */
8828 	for (i = 0; i < dtrace_nprobes; i++) {
8829 		if ((probe = dtrace_probes[i]) == NULL)
8830 			continue;
8831 
8832 		if (probe->dtpr_provider != old)
8833 			continue;
8834 
8835 		if (probe->dtpr_ecb == NULL)
8836 			continue;
8837 
8838 		/*
8839 		 * If we are trying to unregister a defunct provider, and the
8840 		 * provider was made defunct within the interval dictated by
8841 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8842 		 * attempt to reap our enablings.  To denote that the provider
8843 		 * should reattempt to unregister itself at some point in the
8844 		 * future, we will return a differentiable error code (EAGAIN
8845 		 * instead of EBUSY) in this case.
8846 		 */
8847 		if (dtrace_gethrtime() - old->dtpv_defunct >
8848 		    dtrace_unregister_defunct_reap)
8849 			noreap = 1;
8850 
8851 		if (!self) {
8852 			mutex_exit(&dtrace_lock);
8853 #ifdef illumos
8854 			mutex_exit(&mod_lock);
8855 #endif
8856 			mutex_exit(&dtrace_provider_lock);
8857 		}
8858 
8859 		if (noreap)
8860 			return (EBUSY);
8861 
8862 		(void) taskq_dispatch(dtrace_taskq,
8863 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8864 
8865 		return (EAGAIN);
8866 	}
8867 
8868 	/*
8869 	 * All of the probes for this provider are disabled; we can safely
8870 	 * remove all of them from their hash chains and from the probe array.
8871 	 */
8872 	for (i = 0; i < dtrace_nprobes; i++) {
8873 		if ((probe = dtrace_probes[i]) == NULL)
8874 			continue;
8875 
8876 		if (probe->dtpr_provider != old)
8877 			continue;
8878 
8879 		dtrace_probes[i] = NULL;
8880 
8881 		dtrace_hash_remove(dtrace_bymod, probe);
8882 		dtrace_hash_remove(dtrace_byfunc, probe);
8883 		dtrace_hash_remove(dtrace_byname, probe);
8884 
8885 		if (first == NULL) {
8886 			first = probe;
8887 			probe->dtpr_nextmod = NULL;
8888 		} else {
8889 			probe->dtpr_nextmod = first;
8890 			first = probe;
8891 		}
8892 	}
8893 
8894 	/*
8895 	 * The provider's probes have been removed from the hash chains and
8896 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
8897 	 * everyone has cleared out from any probe array processing.
8898 	 */
8899 	dtrace_sync();
8900 
8901 	for (probe = first; probe != NULL; probe = first) {
8902 		first = probe->dtpr_nextmod;
8903 
8904 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8905 		    probe->dtpr_arg);
8906 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8907 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8908 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8909 #ifdef illumos
8910 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8911 #else
8912 		free_unr(dtrace_arena, probe->dtpr_id);
8913 #endif
8914 		kmem_free(probe, sizeof (dtrace_probe_t));
8915 	}
8916 
8917 	if ((prev = dtrace_provider) == old) {
8918 #ifdef illumos
8919 		ASSERT(self || dtrace_devi == NULL);
8920 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8921 #endif
8922 		dtrace_provider = old->dtpv_next;
8923 	} else {
8924 		while (prev != NULL && prev->dtpv_next != old)
8925 			prev = prev->dtpv_next;
8926 
8927 		if (prev == NULL) {
8928 			panic("attempt to unregister non-existent "
8929 			    "dtrace provider %p\n", (void *)id);
8930 		}
8931 
8932 		prev->dtpv_next = old->dtpv_next;
8933 	}
8934 
8935 	if (!self) {
8936 		mutex_exit(&dtrace_lock);
8937 #ifdef illumos
8938 		mutex_exit(&mod_lock);
8939 #endif
8940 		mutex_exit(&dtrace_provider_lock);
8941 	}
8942 
8943 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8944 	kmem_free(old, sizeof (dtrace_provider_t));
8945 
8946 	return (0);
8947 }
8948 
8949 /*
8950  * Invalidate the specified provider.  All subsequent probe lookups for the
8951  * specified provider will fail, but its probes will not be removed.
8952  */
8953 void
8954 dtrace_invalidate(dtrace_provider_id_t id)
8955 {
8956 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8957 
8958 	ASSERT(pvp->dtpv_pops.dtps_enable !=
8959 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
8960 
8961 	mutex_enter(&dtrace_provider_lock);
8962 	mutex_enter(&dtrace_lock);
8963 
8964 	pvp->dtpv_defunct = dtrace_gethrtime();
8965 
8966 	mutex_exit(&dtrace_lock);
8967 	mutex_exit(&dtrace_provider_lock);
8968 }
8969 
8970 /*
8971  * Indicate whether or not DTrace has attached.
8972  */
8973 int
8974 dtrace_attached(void)
8975 {
8976 	/*
8977 	 * dtrace_provider will be non-NULL iff the DTrace driver has
8978 	 * attached.  (It's non-NULL because DTrace is always itself a
8979 	 * provider.)
8980 	 */
8981 	return (dtrace_provider != NULL);
8982 }
8983 
8984 /*
8985  * Remove all the unenabled probes for the given provider.  This function is
8986  * not unlike dtrace_unregister(), except that it doesn't remove the provider
8987  * -- just as many of its associated probes as it can.
8988  */
8989 int
8990 dtrace_condense(dtrace_provider_id_t id)
8991 {
8992 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
8993 	int i;
8994 	dtrace_probe_t *probe;
8995 
8996 	/*
8997 	 * Make sure this isn't the dtrace provider itself.
8998 	 */
8999 	ASSERT(prov->dtpv_pops.dtps_enable !=
9000 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9001 
9002 	mutex_enter(&dtrace_provider_lock);
9003 	mutex_enter(&dtrace_lock);
9004 
9005 	/*
9006 	 * Attempt to destroy the probes associated with this provider.
9007 	 */
9008 	for (i = 0; i < dtrace_nprobes; i++) {
9009 		if ((probe = dtrace_probes[i]) == NULL)
9010 			continue;
9011 
9012 		if (probe->dtpr_provider != prov)
9013 			continue;
9014 
9015 		if (probe->dtpr_ecb != NULL)
9016 			continue;
9017 
9018 		dtrace_probes[i] = NULL;
9019 
9020 		dtrace_hash_remove(dtrace_bymod, probe);
9021 		dtrace_hash_remove(dtrace_byfunc, probe);
9022 		dtrace_hash_remove(dtrace_byname, probe);
9023 
9024 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
9025 		    probe->dtpr_arg);
9026 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9027 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9028 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9029 		kmem_free(probe, sizeof (dtrace_probe_t));
9030 #ifdef illumos
9031 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
9032 #else
9033 		free_unr(dtrace_arena, i + 1);
9034 #endif
9035 	}
9036 
9037 	mutex_exit(&dtrace_lock);
9038 	mutex_exit(&dtrace_provider_lock);
9039 
9040 	return (0);
9041 }
9042 
9043 /*
9044  * DTrace Probe Management Functions
9045  *
9046  * The functions in this section perform the DTrace probe management,
9047  * including functions to create probes, look-up probes, and call into the
9048  * providers to request that probes be provided.  Some of these functions are
9049  * in the Provider-to-Framework API; these functions can be identified by the
9050  * fact that they are not declared "static".
9051  */
9052 
9053 /*
9054  * Create a probe with the specified module name, function name, and name.
9055  */
9056 dtrace_id_t
9057 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
9058     const char *func, const char *name, int aframes, void *arg)
9059 {
9060 	dtrace_probe_t *probe, **probes;
9061 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
9062 	dtrace_id_t id;
9063 
9064 	if (provider == dtrace_provider) {
9065 		ASSERT(MUTEX_HELD(&dtrace_lock));
9066 	} else {
9067 		mutex_enter(&dtrace_lock);
9068 	}
9069 
9070 #ifdef illumos
9071 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
9072 	    VM_BESTFIT | VM_SLEEP);
9073 #else
9074 	id = alloc_unr(dtrace_arena);
9075 #endif
9076 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
9077 
9078 	probe->dtpr_id = id;
9079 	probe->dtpr_gen = dtrace_probegen++;
9080 	probe->dtpr_mod = dtrace_strdup(mod);
9081 	probe->dtpr_func = dtrace_strdup(func);
9082 	probe->dtpr_name = dtrace_strdup(name);
9083 	probe->dtpr_arg = arg;
9084 	probe->dtpr_aframes = aframes;
9085 	probe->dtpr_provider = provider;
9086 
9087 	dtrace_hash_add(dtrace_bymod, probe);
9088 	dtrace_hash_add(dtrace_byfunc, probe);
9089 	dtrace_hash_add(dtrace_byname, probe);
9090 
9091 	if (id - 1 >= dtrace_nprobes) {
9092 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
9093 		size_t nsize = osize << 1;
9094 
9095 		if (nsize == 0) {
9096 			ASSERT(osize == 0);
9097 			ASSERT(dtrace_probes == NULL);
9098 			nsize = sizeof (dtrace_probe_t *);
9099 		}
9100 
9101 		probes = kmem_zalloc(nsize, KM_SLEEP);
9102 
9103 		if (dtrace_probes == NULL) {
9104 			ASSERT(osize == 0);
9105 			dtrace_probes = probes;
9106 			dtrace_nprobes = 1;
9107 		} else {
9108 			dtrace_probe_t **oprobes = dtrace_probes;
9109 
9110 			bcopy(oprobes, probes, osize);
9111 			dtrace_membar_producer();
9112 			dtrace_probes = probes;
9113 
9114 			dtrace_sync();
9115 
9116 			/*
9117 			 * All CPUs are now seeing the new probes array; we can
9118 			 * safely free the old array.
9119 			 */
9120 			kmem_free(oprobes, osize);
9121 			dtrace_nprobes <<= 1;
9122 		}
9123 
9124 		ASSERT(id - 1 < dtrace_nprobes);
9125 	}
9126 
9127 	ASSERT(dtrace_probes[id - 1] == NULL);
9128 	dtrace_probes[id - 1] = probe;
9129 
9130 	if (provider != dtrace_provider)
9131 		mutex_exit(&dtrace_lock);
9132 
9133 	return (id);
9134 }
9135 
9136 static dtrace_probe_t *
9137 dtrace_probe_lookup_id(dtrace_id_t id)
9138 {
9139 	ASSERT(MUTEX_HELD(&dtrace_lock));
9140 
9141 	if (id == 0 || id > dtrace_nprobes)
9142 		return (NULL);
9143 
9144 	return (dtrace_probes[id - 1]);
9145 }
9146 
9147 static int
9148 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9149 {
9150 	*((dtrace_id_t *)arg) = probe->dtpr_id;
9151 
9152 	return (DTRACE_MATCH_DONE);
9153 }
9154 
9155 /*
9156  * Look up a probe based on provider and one or more of module name, function
9157  * name and probe name.
9158  */
9159 dtrace_id_t
9160 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9161     char *func, char *name)
9162 {
9163 	dtrace_probekey_t pkey;
9164 	dtrace_id_t id;
9165 	int match;
9166 
9167 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9168 	pkey.dtpk_pmatch = &dtrace_match_string;
9169 	pkey.dtpk_mod = mod;
9170 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9171 	pkey.dtpk_func = func;
9172 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9173 	pkey.dtpk_name = name;
9174 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9175 	pkey.dtpk_id = DTRACE_IDNONE;
9176 
9177 	mutex_enter(&dtrace_lock);
9178 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9179 	    dtrace_probe_lookup_match, &id);
9180 	mutex_exit(&dtrace_lock);
9181 
9182 	ASSERT(match == 1 || match == 0);
9183 	return (match ? id : 0);
9184 }
9185 
9186 /*
9187  * Returns the probe argument associated with the specified probe.
9188  */
9189 void *
9190 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9191 {
9192 	dtrace_probe_t *probe;
9193 	void *rval = NULL;
9194 
9195 	mutex_enter(&dtrace_lock);
9196 
9197 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9198 	    probe->dtpr_provider == (dtrace_provider_t *)id)
9199 		rval = probe->dtpr_arg;
9200 
9201 	mutex_exit(&dtrace_lock);
9202 
9203 	return (rval);
9204 }
9205 
9206 /*
9207  * Copy a probe into a probe description.
9208  */
9209 static void
9210 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9211 {
9212 	bzero(pdp, sizeof (dtrace_probedesc_t));
9213 	pdp->dtpd_id = prp->dtpr_id;
9214 
9215 	(void) strncpy(pdp->dtpd_provider,
9216 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9217 
9218 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9219 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9220 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9221 }
9222 
9223 /*
9224  * Called to indicate that a probe -- or probes -- should be provided by a
9225  * specfied provider.  If the specified description is NULL, the provider will
9226  * be told to provide all of its probes.  (This is done whenever a new
9227  * consumer comes along, or whenever a retained enabling is to be matched.) If
9228  * the specified description is non-NULL, the provider is given the
9229  * opportunity to dynamically provide the specified probe, allowing providers
9230  * to support the creation of probes on-the-fly.  (So-called _autocreated_
9231  * probes.)  If the provider is NULL, the operations will be applied to all
9232  * providers; if the provider is non-NULL the operations will only be applied
9233  * to the specified provider.  The dtrace_provider_lock must be held, and the
9234  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9235  * will need to grab the dtrace_lock when it reenters the framework through
9236  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9237  */
9238 static void
9239 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9240 {
9241 #ifdef illumos
9242 	modctl_t *ctl;
9243 #endif
9244 	int all = 0;
9245 
9246 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9247 
9248 	if (prv == NULL) {
9249 		all = 1;
9250 		prv = dtrace_provider;
9251 	}
9252 
9253 	do {
9254 		/*
9255 		 * First, call the blanket provide operation.
9256 		 */
9257 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9258 
9259 #ifdef illumos
9260 		/*
9261 		 * Now call the per-module provide operation.  We will grab
9262 		 * mod_lock to prevent the list from being modified.  Note
9263 		 * that this also prevents the mod_busy bits from changing.
9264 		 * (mod_busy can only be changed with mod_lock held.)
9265 		 */
9266 		mutex_enter(&mod_lock);
9267 
9268 		ctl = &modules;
9269 		do {
9270 			if (ctl->mod_busy || ctl->mod_mp == NULL)
9271 				continue;
9272 
9273 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9274 
9275 		} while ((ctl = ctl->mod_next) != &modules);
9276 
9277 		mutex_exit(&mod_lock);
9278 #endif
9279 	} while (all && (prv = prv->dtpv_next) != NULL);
9280 }
9281 
9282 #ifdef illumos
9283 /*
9284  * Iterate over each probe, and call the Framework-to-Provider API function
9285  * denoted by offs.
9286  */
9287 static void
9288 dtrace_probe_foreach(uintptr_t offs)
9289 {
9290 	dtrace_provider_t *prov;
9291 	void (*func)(void *, dtrace_id_t, void *);
9292 	dtrace_probe_t *probe;
9293 	dtrace_icookie_t cookie;
9294 	int i;
9295 
9296 	/*
9297 	 * We disable interrupts to walk through the probe array.  This is
9298 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9299 	 * won't see stale data.
9300 	 */
9301 	cookie = dtrace_interrupt_disable();
9302 
9303 	for (i = 0; i < dtrace_nprobes; i++) {
9304 		if ((probe = dtrace_probes[i]) == NULL)
9305 			continue;
9306 
9307 		if (probe->dtpr_ecb == NULL) {
9308 			/*
9309 			 * This probe isn't enabled -- don't call the function.
9310 			 */
9311 			continue;
9312 		}
9313 
9314 		prov = probe->dtpr_provider;
9315 		func = *((void(**)(void *, dtrace_id_t, void *))
9316 		    ((uintptr_t)&prov->dtpv_pops + offs));
9317 
9318 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9319 	}
9320 
9321 	dtrace_interrupt_enable(cookie);
9322 }
9323 #endif
9324 
9325 static int
9326 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9327 {
9328 	dtrace_probekey_t pkey;
9329 	uint32_t priv;
9330 	uid_t uid;
9331 	zoneid_t zoneid;
9332 
9333 	ASSERT(MUTEX_HELD(&dtrace_lock));
9334 	dtrace_ecb_create_cache = NULL;
9335 
9336 	if (desc == NULL) {
9337 		/*
9338 		 * If we're passed a NULL description, we're being asked to
9339 		 * create an ECB with a NULL probe.
9340 		 */
9341 		(void) dtrace_ecb_create_enable(NULL, enab);
9342 		return (0);
9343 	}
9344 
9345 	dtrace_probekey(desc, &pkey);
9346 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9347 	    &priv, &uid, &zoneid);
9348 
9349 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9350 	    enab));
9351 }
9352 
9353 /*
9354  * DTrace Helper Provider Functions
9355  */
9356 static void
9357 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9358 {
9359 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
9360 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
9361 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9362 }
9363 
9364 static void
9365 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9366     const dof_provider_t *dofprov, char *strtab)
9367 {
9368 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9369 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9370 	    dofprov->dofpv_provattr);
9371 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9372 	    dofprov->dofpv_modattr);
9373 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9374 	    dofprov->dofpv_funcattr);
9375 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9376 	    dofprov->dofpv_nameattr);
9377 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9378 	    dofprov->dofpv_argsattr);
9379 }
9380 
9381 static void
9382 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9383 {
9384 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9385 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9386 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9387 	dof_provider_t *provider;
9388 	dof_probe_t *probe;
9389 	uint32_t *off, *enoff;
9390 	uint8_t *arg;
9391 	char *strtab;
9392 	uint_t i, nprobes;
9393 	dtrace_helper_provdesc_t dhpv;
9394 	dtrace_helper_probedesc_t dhpb;
9395 	dtrace_meta_t *meta = dtrace_meta_pid;
9396 	dtrace_mops_t *mops = &meta->dtm_mops;
9397 	void *parg;
9398 
9399 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9400 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9401 	    provider->dofpv_strtab * dof->dofh_secsize);
9402 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9403 	    provider->dofpv_probes * dof->dofh_secsize);
9404 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9405 	    provider->dofpv_prargs * dof->dofh_secsize);
9406 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9407 	    provider->dofpv_proffs * dof->dofh_secsize);
9408 
9409 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9410 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9411 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9412 	enoff = NULL;
9413 
9414 	/*
9415 	 * See dtrace_helper_provider_validate().
9416 	 */
9417 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9418 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
9419 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9420 		    provider->dofpv_prenoffs * dof->dofh_secsize);
9421 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9422 	}
9423 
9424 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9425 
9426 	/*
9427 	 * Create the provider.
9428 	 */
9429 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9430 
9431 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9432 		return;
9433 
9434 	meta->dtm_count++;
9435 
9436 	/*
9437 	 * Create the probes.
9438 	 */
9439 	for (i = 0; i < nprobes; i++) {
9440 		probe = (dof_probe_t *)(uintptr_t)(daddr +
9441 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9442 
9443 		/* See the check in dtrace_helper_provider_validate(). */
9444 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9445 			continue;
9446 
9447 		dhpb.dthpb_mod = dhp->dofhp_mod;
9448 		dhpb.dthpb_func = strtab + probe->dofpr_func;
9449 		dhpb.dthpb_name = strtab + probe->dofpr_name;
9450 		dhpb.dthpb_base = probe->dofpr_addr;
9451 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
9452 		dhpb.dthpb_noffs = probe->dofpr_noffs;
9453 		if (enoff != NULL) {
9454 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9455 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9456 		} else {
9457 			dhpb.dthpb_enoffs = NULL;
9458 			dhpb.dthpb_nenoffs = 0;
9459 		}
9460 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
9461 		dhpb.dthpb_nargc = probe->dofpr_nargc;
9462 		dhpb.dthpb_xargc = probe->dofpr_xargc;
9463 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9464 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9465 
9466 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9467 	}
9468 }
9469 
9470 static void
9471 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9472 {
9473 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9474 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9475 	int i;
9476 
9477 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9478 
9479 	for (i = 0; i < dof->dofh_secnum; i++) {
9480 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9481 		    dof->dofh_secoff + i * dof->dofh_secsize);
9482 
9483 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9484 			continue;
9485 
9486 		dtrace_helper_provide_one(dhp, sec, pid);
9487 	}
9488 
9489 	/*
9490 	 * We may have just created probes, so we must now rematch against
9491 	 * any retained enablings.  Note that this call will acquire both
9492 	 * cpu_lock and dtrace_lock; the fact that we are holding
9493 	 * dtrace_meta_lock now is what defines the ordering with respect to
9494 	 * these three locks.
9495 	 */
9496 	dtrace_enabling_matchall();
9497 }
9498 
9499 static void
9500 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9501 {
9502 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9503 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9504 	dof_sec_t *str_sec;
9505 	dof_provider_t *provider;
9506 	char *strtab;
9507 	dtrace_helper_provdesc_t dhpv;
9508 	dtrace_meta_t *meta = dtrace_meta_pid;
9509 	dtrace_mops_t *mops = &meta->dtm_mops;
9510 
9511 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9512 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9513 	    provider->dofpv_strtab * dof->dofh_secsize);
9514 
9515 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9516 
9517 	/*
9518 	 * Create the provider.
9519 	 */
9520 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
9521 
9522 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9523 
9524 	meta->dtm_count--;
9525 }
9526 
9527 static void
9528 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9529 {
9530 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9531 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
9532 	int i;
9533 
9534 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9535 
9536 	for (i = 0; i < dof->dofh_secnum; i++) {
9537 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9538 		    dof->dofh_secoff + i * dof->dofh_secsize);
9539 
9540 		if (sec->dofs_type != DOF_SECT_PROVIDER)
9541 			continue;
9542 
9543 		dtrace_helper_provider_remove_one(dhp, sec, pid);
9544 	}
9545 }
9546 
9547 /*
9548  * DTrace Meta Provider-to-Framework API Functions
9549  *
9550  * These functions implement the Meta Provider-to-Framework API, as described
9551  * in <sys/dtrace.h>.
9552  */
9553 int
9554 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9555     dtrace_meta_provider_id_t *idp)
9556 {
9557 	dtrace_meta_t *meta;
9558 	dtrace_helpers_t *help, *next;
9559 	int i;
9560 
9561 	*idp = DTRACE_METAPROVNONE;
9562 
9563 	/*
9564 	 * We strictly don't need the name, but we hold onto it for
9565 	 * debuggability. All hail error queues!
9566 	 */
9567 	if (name == NULL) {
9568 		cmn_err(CE_WARN, "failed to register meta-provider: "
9569 		    "invalid name");
9570 		return (EINVAL);
9571 	}
9572 
9573 	if (mops == NULL ||
9574 	    mops->dtms_create_probe == NULL ||
9575 	    mops->dtms_provide_pid == NULL ||
9576 	    mops->dtms_remove_pid == NULL) {
9577 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9578 		    "invalid ops", name);
9579 		return (EINVAL);
9580 	}
9581 
9582 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9583 	meta->dtm_mops = *mops;
9584 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9585 	(void) strcpy(meta->dtm_name, name);
9586 	meta->dtm_arg = arg;
9587 
9588 	mutex_enter(&dtrace_meta_lock);
9589 	mutex_enter(&dtrace_lock);
9590 
9591 	if (dtrace_meta_pid != NULL) {
9592 		mutex_exit(&dtrace_lock);
9593 		mutex_exit(&dtrace_meta_lock);
9594 		cmn_err(CE_WARN, "failed to register meta-register %s: "
9595 		    "user-land meta-provider exists", name);
9596 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9597 		kmem_free(meta, sizeof (dtrace_meta_t));
9598 		return (EINVAL);
9599 	}
9600 
9601 	dtrace_meta_pid = meta;
9602 	*idp = (dtrace_meta_provider_id_t)meta;
9603 
9604 	/*
9605 	 * If there are providers and probes ready to go, pass them
9606 	 * off to the new meta provider now.
9607 	 */
9608 
9609 	help = dtrace_deferred_pid;
9610 	dtrace_deferred_pid = NULL;
9611 
9612 	mutex_exit(&dtrace_lock);
9613 
9614 	while (help != NULL) {
9615 		for (i = 0; i < help->dthps_nprovs; i++) {
9616 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9617 			    help->dthps_pid);
9618 		}
9619 
9620 		next = help->dthps_next;
9621 		help->dthps_next = NULL;
9622 		help->dthps_prev = NULL;
9623 		help->dthps_deferred = 0;
9624 		help = next;
9625 	}
9626 
9627 	mutex_exit(&dtrace_meta_lock);
9628 
9629 	return (0);
9630 }
9631 
9632 int
9633 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9634 {
9635 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9636 
9637 	mutex_enter(&dtrace_meta_lock);
9638 	mutex_enter(&dtrace_lock);
9639 
9640 	if (old == dtrace_meta_pid) {
9641 		pp = &dtrace_meta_pid;
9642 	} else {
9643 		panic("attempt to unregister non-existent "
9644 		    "dtrace meta-provider %p\n", (void *)old);
9645 	}
9646 
9647 	if (old->dtm_count != 0) {
9648 		mutex_exit(&dtrace_lock);
9649 		mutex_exit(&dtrace_meta_lock);
9650 		return (EBUSY);
9651 	}
9652 
9653 	*pp = NULL;
9654 
9655 	mutex_exit(&dtrace_lock);
9656 	mutex_exit(&dtrace_meta_lock);
9657 
9658 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9659 	kmem_free(old, sizeof (dtrace_meta_t));
9660 
9661 	return (0);
9662 }
9663 
9664 
9665 /*
9666  * DTrace DIF Object Functions
9667  */
9668 static int
9669 dtrace_difo_err(uint_t pc, const char *format, ...)
9670 {
9671 	if (dtrace_err_verbose) {
9672 		va_list alist;
9673 
9674 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
9675 		va_start(alist, format);
9676 		(void) vuprintf(format, alist);
9677 		va_end(alist);
9678 	}
9679 
9680 #ifdef DTRACE_ERRDEBUG
9681 	dtrace_errdebug(format);
9682 #endif
9683 	return (1);
9684 }
9685 
9686 /*
9687  * Validate a DTrace DIF object by checking the IR instructions.  The following
9688  * rules are currently enforced by dtrace_difo_validate():
9689  *
9690  * 1. Each instruction must have a valid opcode
9691  * 2. Each register, string, variable, or subroutine reference must be valid
9692  * 3. No instruction can modify register %r0 (must be zero)
9693  * 4. All instruction reserved bits must be set to zero
9694  * 5. The last instruction must be a "ret" instruction
9695  * 6. All branch targets must reference a valid instruction _after_ the branch
9696  */
9697 static int
9698 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9699     cred_t *cr)
9700 {
9701 	int err = 0, i;
9702 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9703 	int kcheckload;
9704 	uint_t pc;
9705 	int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9706 
9707 	kcheckload = cr == NULL ||
9708 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9709 
9710 	dp->dtdo_destructive = 0;
9711 
9712 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9713 		dif_instr_t instr = dp->dtdo_buf[pc];
9714 
9715 		uint_t r1 = DIF_INSTR_R1(instr);
9716 		uint_t r2 = DIF_INSTR_R2(instr);
9717 		uint_t rd = DIF_INSTR_RD(instr);
9718 		uint_t rs = DIF_INSTR_RS(instr);
9719 		uint_t label = DIF_INSTR_LABEL(instr);
9720 		uint_t v = DIF_INSTR_VAR(instr);
9721 		uint_t subr = DIF_INSTR_SUBR(instr);
9722 		uint_t type = DIF_INSTR_TYPE(instr);
9723 		uint_t op = DIF_INSTR_OP(instr);
9724 
9725 		switch (op) {
9726 		case DIF_OP_OR:
9727 		case DIF_OP_XOR:
9728 		case DIF_OP_AND:
9729 		case DIF_OP_SLL:
9730 		case DIF_OP_SRL:
9731 		case DIF_OP_SRA:
9732 		case DIF_OP_SUB:
9733 		case DIF_OP_ADD:
9734 		case DIF_OP_MUL:
9735 		case DIF_OP_SDIV:
9736 		case DIF_OP_UDIV:
9737 		case DIF_OP_SREM:
9738 		case DIF_OP_UREM:
9739 		case DIF_OP_COPYS:
9740 			if (r1 >= nregs)
9741 				err += efunc(pc, "invalid register %u\n", r1);
9742 			if (r2 >= nregs)
9743 				err += efunc(pc, "invalid register %u\n", r2);
9744 			if (rd >= nregs)
9745 				err += efunc(pc, "invalid register %u\n", rd);
9746 			if (rd == 0)
9747 				err += efunc(pc, "cannot write to %r0\n");
9748 			break;
9749 		case DIF_OP_NOT:
9750 		case DIF_OP_MOV:
9751 		case DIF_OP_ALLOCS:
9752 			if (r1 >= nregs)
9753 				err += efunc(pc, "invalid register %u\n", r1);
9754 			if (r2 != 0)
9755 				err += efunc(pc, "non-zero reserved bits\n");
9756 			if (rd >= nregs)
9757 				err += efunc(pc, "invalid register %u\n", rd);
9758 			if (rd == 0)
9759 				err += efunc(pc, "cannot write to %r0\n");
9760 			break;
9761 		case DIF_OP_LDSB:
9762 		case DIF_OP_LDSH:
9763 		case DIF_OP_LDSW:
9764 		case DIF_OP_LDUB:
9765 		case DIF_OP_LDUH:
9766 		case DIF_OP_LDUW:
9767 		case DIF_OP_LDX:
9768 			if (r1 >= nregs)
9769 				err += efunc(pc, "invalid register %u\n", r1);
9770 			if (r2 != 0)
9771 				err += efunc(pc, "non-zero reserved bits\n");
9772 			if (rd >= nregs)
9773 				err += efunc(pc, "invalid register %u\n", rd);
9774 			if (rd == 0)
9775 				err += efunc(pc, "cannot write to %r0\n");
9776 			if (kcheckload)
9777 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9778 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9779 			break;
9780 		case DIF_OP_RLDSB:
9781 		case DIF_OP_RLDSH:
9782 		case DIF_OP_RLDSW:
9783 		case DIF_OP_RLDUB:
9784 		case DIF_OP_RLDUH:
9785 		case DIF_OP_RLDUW:
9786 		case DIF_OP_RLDX:
9787 			if (r1 >= nregs)
9788 				err += efunc(pc, "invalid register %u\n", r1);
9789 			if (r2 != 0)
9790 				err += efunc(pc, "non-zero reserved bits\n");
9791 			if (rd >= nregs)
9792 				err += efunc(pc, "invalid register %u\n", rd);
9793 			if (rd == 0)
9794 				err += efunc(pc, "cannot write to %r0\n");
9795 			break;
9796 		case DIF_OP_ULDSB:
9797 		case DIF_OP_ULDSH:
9798 		case DIF_OP_ULDSW:
9799 		case DIF_OP_ULDUB:
9800 		case DIF_OP_ULDUH:
9801 		case DIF_OP_ULDUW:
9802 		case DIF_OP_ULDX:
9803 			if (r1 >= nregs)
9804 				err += efunc(pc, "invalid register %u\n", r1);
9805 			if (r2 != 0)
9806 				err += efunc(pc, "non-zero reserved bits\n");
9807 			if (rd >= nregs)
9808 				err += efunc(pc, "invalid register %u\n", rd);
9809 			if (rd == 0)
9810 				err += efunc(pc, "cannot write to %r0\n");
9811 			break;
9812 		case DIF_OP_STB:
9813 		case DIF_OP_STH:
9814 		case DIF_OP_STW:
9815 		case DIF_OP_STX:
9816 			if (r1 >= nregs)
9817 				err += efunc(pc, "invalid register %u\n", r1);
9818 			if (r2 != 0)
9819 				err += efunc(pc, "non-zero reserved bits\n");
9820 			if (rd >= nregs)
9821 				err += efunc(pc, "invalid register %u\n", rd);
9822 			if (rd == 0)
9823 				err += efunc(pc, "cannot write to 0 address\n");
9824 			break;
9825 		case DIF_OP_CMP:
9826 		case DIF_OP_SCMP:
9827 			if (r1 >= nregs)
9828 				err += efunc(pc, "invalid register %u\n", r1);
9829 			if (r2 >= nregs)
9830 				err += efunc(pc, "invalid register %u\n", r2);
9831 			if (rd != 0)
9832 				err += efunc(pc, "non-zero reserved bits\n");
9833 			break;
9834 		case DIF_OP_TST:
9835 			if (r1 >= nregs)
9836 				err += efunc(pc, "invalid register %u\n", r1);
9837 			if (r2 != 0 || rd != 0)
9838 				err += efunc(pc, "non-zero reserved bits\n");
9839 			break;
9840 		case DIF_OP_BA:
9841 		case DIF_OP_BE:
9842 		case DIF_OP_BNE:
9843 		case DIF_OP_BG:
9844 		case DIF_OP_BGU:
9845 		case DIF_OP_BGE:
9846 		case DIF_OP_BGEU:
9847 		case DIF_OP_BL:
9848 		case DIF_OP_BLU:
9849 		case DIF_OP_BLE:
9850 		case DIF_OP_BLEU:
9851 			if (label >= dp->dtdo_len) {
9852 				err += efunc(pc, "invalid branch target %u\n",
9853 				    label);
9854 			}
9855 			if (label <= pc) {
9856 				err += efunc(pc, "backward branch to %u\n",
9857 				    label);
9858 			}
9859 			break;
9860 		case DIF_OP_RET:
9861 			if (r1 != 0 || r2 != 0)
9862 				err += efunc(pc, "non-zero reserved bits\n");
9863 			if (rd >= nregs)
9864 				err += efunc(pc, "invalid register %u\n", rd);
9865 			break;
9866 		case DIF_OP_NOP:
9867 		case DIF_OP_POPTS:
9868 		case DIF_OP_FLUSHTS:
9869 			if (r1 != 0 || r2 != 0 || rd != 0)
9870 				err += efunc(pc, "non-zero reserved bits\n");
9871 			break;
9872 		case DIF_OP_SETX:
9873 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9874 				err += efunc(pc, "invalid integer ref %u\n",
9875 				    DIF_INSTR_INTEGER(instr));
9876 			}
9877 			if (rd >= nregs)
9878 				err += efunc(pc, "invalid register %u\n", rd);
9879 			if (rd == 0)
9880 				err += efunc(pc, "cannot write to %r0\n");
9881 			break;
9882 		case DIF_OP_SETS:
9883 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9884 				err += efunc(pc, "invalid string ref %u\n",
9885 				    DIF_INSTR_STRING(instr));
9886 			}
9887 			if (rd >= nregs)
9888 				err += efunc(pc, "invalid register %u\n", rd);
9889 			if (rd == 0)
9890 				err += efunc(pc, "cannot write to %r0\n");
9891 			break;
9892 		case DIF_OP_LDGA:
9893 		case DIF_OP_LDTA:
9894 			if (r1 > DIF_VAR_ARRAY_MAX)
9895 				err += efunc(pc, "invalid array %u\n", r1);
9896 			if (r2 >= nregs)
9897 				err += efunc(pc, "invalid register %u\n", r2);
9898 			if (rd >= nregs)
9899 				err += efunc(pc, "invalid register %u\n", rd);
9900 			if (rd == 0)
9901 				err += efunc(pc, "cannot write to %r0\n");
9902 			break;
9903 		case DIF_OP_LDGS:
9904 		case DIF_OP_LDTS:
9905 		case DIF_OP_LDLS:
9906 		case DIF_OP_LDGAA:
9907 		case DIF_OP_LDTAA:
9908 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9909 				err += efunc(pc, "invalid variable %u\n", v);
9910 			if (rd >= nregs)
9911 				err += efunc(pc, "invalid register %u\n", rd);
9912 			if (rd == 0)
9913 				err += efunc(pc, "cannot write to %r0\n");
9914 			break;
9915 		case DIF_OP_STGS:
9916 		case DIF_OP_STTS:
9917 		case DIF_OP_STLS:
9918 		case DIF_OP_STGAA:
9919 		case DIF_OP_STTAA:
9920 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9921 				err += efunc(pc, "invalid variable %u\n", v);
9922 			if (rs >= nregs)
9923 				err += efunc(pc, "invalid register %u\n", rd);
9924 			break;
9925 		case DIF_OP_CALL:
9926 			if (subr > DIF_SUBR_MAX)
9927 				err += efunc(pc, "invalid subr %u\n", subr);
9928 			if (rd >= nregs)
9929 				err += efunc(pc, "invalid register %u\n", rd);
9930 			if (rd == 0)
9931 				err += efunc(pc, "cannot write to %r0\n");
9932 
9933 			if (subr == DIF_SUBR_COPYOUT ||
9934 			    subr == DIF_SUBR_COPYOUTSTR) {
9935 				dp->dtdo_destructive = 1;
9936 			}
9937 
9938 			if (subr == DIF_SUBR_GETF) {
9939 				/*
9940 				 * If we have a getf() we need to record that
9941 				 * in our state.  Note that our state can be
9942 				 * NULL if this is a helper -- but in that
9943 				 * case, the call to getf() is itself illegal,
9944 				 * and will be caught (slightly later) when
9945 				 * the helper is validated.
9946 				 */
9947 				if (vstate->dtvs_state != NULL)
9948 					vstate->dtvs_state->dts_getf++;
9949 			}
9950 
9951 			break;
9952 		case DIF_OP_PUSHTR:
9953 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9954 				err += efunc(pc, "invalid ref type %u\n", type);
9955 			if (r2 >= nregs)
9956 				err += efunc(pc, "invalid register %u\n", r2);
9957 			if (rs >= nregs)
9958 				err += efunc(pc, "invalid register %u\n", rs);
9959 			break;
9960 		case DIF_OP_PUSHTV:
9961 			if (type != DIF_TYPE_CTF)
9962 				err += efunc(pc, "invalid val type %u\n", type);
9963 			if (r2 >= nregs)
9964 				err += efunc(pc, "invalid register %u\n", r2);
9965 			if (rs >= nregs)
9966 				err += efunc(pc, "invalid register %u\n", rs);
9967 			break;
9968 		default:
9969 			err += efunc(pc, "invalid opcode %u\n",
9970 			    DIF_INSTR_OP(instr));
9971 		}
9972 	}
9973 
9974 	if (dp->dtdo_len != 0 &&
9975 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9976 		err += efunc(dp->dtdo_len - 1,
9977 		    "expected 'ret' as last DIF instruction\n");
9978 	}
9979 
9980 	if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9981 		/*
9982 		 * If we're not returning by reference, the size must be either
9983 		 * 0 or the size of one of the base types.
9984 		 */
9985 		switch (dp->dtdo_rtype.dtdt_size) {
9986 		case 0:
9987 		case sizeof (uint8_t):
9988 		case sizeof (uint16_t):
9989 		case sizeof (uint32_t):
9990 		case sizeof (uint64_t):
9991 			break;
9992 
9993 		default:
9994 			err += efunc(dp->dtdo_len - 1, "bad return size\n");
9995 		}
9996 	}
9997 
9998 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9999 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
10000 		dtrace_diftype_t *vt, *et;
10001 		uint_t id, ndx;
10002 
10003 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
10004 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
10005 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
10006 			err += efunc(i, "unrecognized variable scope %d\n",
10007 			    v->dtdv_scope);
10008 			break;
10009 		}
10010 
10011 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
10012 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
10013 			err += efunc(i, "unrecognized variable type %d\n",
10014 			    v->dtdv_kind);
10015 			break;
10016 		}
10017 
10018 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
10019 			err += efunc(i, "%d exceeds variable id limit\n", id);
10020 			break;
10021 		}
10022 
10023 		if (id < DIF_VAR_OTHER_UBASE)
10024 			continue;
10025 
10026 		/*
10027 		 * For user-defined variables, we need to check that this
10028 		 * definition is identical to any previous definition that we
10029 		 * encountered.
10030 		 */
10031 		ndx = id - DIF_VAR_OTHER_UBASE;
10032 
10033 		switch (v->dtdv_scope) {
10034 		case DIFV_SCOPE_GLOBAL:
10035 			if (maxglobal == -1 || ndx > maxglobal)
10036 				maxglobal = ndx;
10037 
10038 			if (ndx < vstate->dtvs_nglobals) {
10039 				dtrace_statvar_t *svar;
10040 
10041 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
10042 					existing = &svar->dtsv_var;
10043 			}
10044 
10045 			break;
10046 
10047 		case DIFV_SCOPE_THREAD:
10048 			if (maxtlocal == -1 || ndx > maxtlocal)
10049 				maxtlocal = ndx;
10050 
10051 			if (ndx < vstate->dtvs_ntlocals)
10052 				existing = &vstate->dtvs_tlocals[ndx];
10053 			break;
10054 
10055 		case DIFV_SCOPE_LOCAL:
10056 			if (maxlocal == -1 || ndx > maxlocal)
10057 				maxlocal = ndx;
10058 
10059 			if (ndx < vstate->dtvs_nlocals) {
10060 				dtrace_statvar_t *svar;
10061 
10062 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
10063 					existing = &svar->dtsv_var;
10064 			}
10065 
10066 			break;
10067 		}
10068 
10069 		vt = &v->dtdv_type;
10070 
10071 		if (vt->dtdt_flags & DIF_TF_BYREF) {
10072 			if (vt->dtdt_size == 0) {
10073 				err += efunc(i, "zero-sized variable\n");
10074 				break;
10075 			}
10076 
10077 			if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
10078 			    v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
10079 			    vt->dtdt_size > dtrace_statvar_maxsize) {
10080 				err += efunc(i, "oversized by-ref static\n");
10081 				break;
10082 			}
10083 		}
10084 
10085 		if (existing == NULL || existing->dtdv_id == 0)
10086 			continue;
10087 
10088 		ASSERT(existing->dtdv_id == v->dtdv_id);
10089 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
10090 
10091 		if (existing->dtdv_kind != v->dtdv_kind)
10092 			err += efunc(i, "%d changed variable kind\n", id);
10093 
10094 		et = &existing->dtdv_type;
10095 
10096 		if (vt->dtdt_flags != et->dtdt_flags) {
10097 			err += efunc(i, "%d changed variable type flags\n", id);
10098 			break;
10099 		}
10100 
10101 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
10102 			err += efunc(i, "%d changed variable type size\n", id);
10103 			break;
10104 		}
10105 	}
10106 
10107 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
10108 		dif_instr_t instr = dp->dtdo_buf[pc];
10109 
10110 		uint_t v = DIF_INSTR_VAR(instr);
10111 		uint_t op = DIF_INSTR_OP(instr);
10112 
10113 		switch (op) {
10114 		case DIF_OP_LDGS:
10115 		case DIF_OP_LDGAA:
10116 		case DIF_OP_STGS:
10117 		case DIF_OP_STGAA:
10118 			if (v > DIF_VAR_OTHER_UBASE + maxglobal)
10119 				err += efunc(pc, "invalid variable %u\n", v);
10120 			break;
10121 		case DIF_OP_LDTS:
10122 		case DIF_OP_LDTAA:
10123 		case DIF_OP_STTS:
10124 		case DIF_OP_STTAA:
10125 			if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
10126 				err += efunc(pc, "invalid variable %u\n", v);
10127 			break;
10128 		case DIF_OP_LDLS:
10129 		case DIF_OP_STLS:
10130 			if (v > DIF_VAR_OTHER_UBASE + maxlocal)
10131 				err += efunc(pc, "invalid variable %u\n", v);
10132 			break;
10133 		default:
10134 			break;
10135 		}
10136 	}
10137 
10138 	return (err);
10139 }
10140 
10141 /*
10142  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
10143  * are much more constrained than normal DIFOs.  Specifically, they may
10144  * not:
10145  *
10146  * 1. Make calls to subroutines other than copyin(), copyinstr() or
10147  *    miscellaneous string routines
10148  * 2. Access DTrace variables other than the args[] array, and the
10149  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
10150  * 3. Have thread-local variables.
10151  * 4. Have dynamic variables.
10152  */
10153 static int
10154 dtrace_difo_validate_helper(dtrace_difo_t *dp)
10155 {
10156 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
10157 	int err = 0;
10158 	uint_t pc;
10159 
10160 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10161 		dif_instr_t instr = dp->dtdo_buf[pc];
10162 
10163 		uint_t v = DIF_INSTR_VAR(instr);
10164 		uint_t subr = DIF_INSTR_SUBR(instr);
10165 		uint_t op = DIF_INSTR_OP(instr);
10166 
10167 		switch (op) {
10168 		case DIF_OP_OR:
10169 		case DIF_OP_XOR:
10170 		case DIF_OP_AND:
10171 		case DIF_OP_SLL:
10172 		case DIF_OP_SRL:
10173 		case DIF_OP_SRA:
10174 		case DIF_OP_SUB:
10175 		case DIF_OP_ADD:
10176 		case DIF_OP_MUL:
10177 		case DIF_OP_SDIV:
10178 		case DIF_OP_UDIV:
10179 		case DIF_OP_SREM:
10180 		case DIF_OP_UREM:
10181 		case DIF_OP_COPYS:
10182 		case DIF_OP_NOT:
10183 		case DIF_OP_MOV:
10184 		case DIF_OP_RLDSB:
10185 		case DIF_OP_RLDSH:
10186 		case DIF_OP_RLDSW:
10187 		case DIF_OP_RLDUB:
10188 		case DIF_OP_RLDUH:
10189 		case DIF_OP_RLDUW:
10190 		case DIF_OP_RLDX:
10191 		case DIF_OP_ULDSB:
10192 		case DIF_OP_ULDSH:
10193 		case DIF_OP_ULDSW:
10194 		case DIF_OP_ULDUB:
10195 		case DIF_OP_ULDUH:
10196 		case DIF_OP_ULDUW:
10197 		case DIF_OP_ULDX:
10198 		case DIF_OP_STB:
10199 		case DIF_OP_STH:
10200 		case DIF_OP_STW:
10201 		case DIF_OP_STX:
10202 		case DIF_OP_ALLOCS:
10203 		case DIF_OP_CMP:
10204 		case DIF_OP_SCMP:
10205 		case DIF_OP_TST:
10206 		case DIF_OP_BA:
10207 		case DIF_OP_BE:
10208 		case DIF_OP_BNE:
10209 		case DIF_OP_BG:
10210 		case DIF_OP_BGU:
10211 		case DIF_OP_BGE:
10212 		case DIF_OP_BGEU:
10213 		case DIF_OP_BL:
10214 		case DIF_OP_BLU:
10215 		case DIF_OP_BLE:
10216 		case DIF_OP_BLEU:
10217 		case DIF_OP_RET:
10218 		case DIF_OP_NOP:
10219 		case DIF_OP_POPTS:
10220 		case DIF_OP_FLUSHTS:
10221 		case DIF_OP_SETX:
10222 		case DIF_OP_SETS:
10223 		case DIF_OP_LDGA:
10224 		case DIF_OP_LDLS:
10225 		case DIF_OP_STGS:
10226 		case DIF_OP_STLS:
10227 		case DIF_OP_PUSHTR:
10228 		case DIF_OP_PUSHTV:
10229 			break;
10230 
10231 		case DIF_OP_LDGS:
10232 			if (v >= DIF_VAR_OTHER_UBASE)
10233 				break;
10234 
10235 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10236 				break;
10237 
10238 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10239 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10240 			    v == DIF_VAR_EXECARGS ||
10241 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10242 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
10243 				break;
10244 
10245 			err += efunc(pc, "illegal variable %u\n", v);
10246 			break;
10247 
10248 		case DIF_OP_LDTA:
10249 		case DIF_OP_LDTS:
10250 		case DIF_OP_LDGAA:
10251 		case DIF_OP_LDTAA:
10252 			err += efunc(pc, "illegal dynamic variable load\n");
10253 			break;
10254 
10255 		case DIF_OP_STTS:
10256 		case DIF_OP_STGAA:
10257 		case DIF_OP_STTAA:
10258 			err += efunc(pc, "illegal dynamic variable store\n");
10259 			break;
10260 
10261 		case DIF_OP_CALL:
10262 			if (subr == DIF_SUBR_ALLOCA ||
10263 			    subr == DIF_SUBR_BCOPY ||
10264 			    subr == DIF_SUBR_COPYIN ||
10265 			    subr == DIF_SUBR_COPYINTO ||
10266 			    subr == DIF_SUBR_COPYINSTR ||
10267 			    subr == DIF_SUBR_INDEX ||
10268 			    subr == DIF_SUBR_INET_NTOA ||
10269 			    subr == DIF_SUBR_INET_NTOA6 ||
10270 			    subr == DIF_SUBR_INET_NTOP ||
10271 			    subr == DIF_SUBR_JSON ||
10272 			    subr == DIF_SUBR_LLTOSTR ||
10273 			    subr == DIF_SUBR_STRTOLL ||
10274 			    subr == DIF_SUBR_RINDEX ||
10275 			    subr == DIF_SUBR_STRCHR ||
10276 			    subr == DIF_SUBR_STRJOIN ||
10277 			    subr == DIF_SUBR_STRRCHR ||
10278 			    subr == DIF_SUBR_STRSTR ||
10279 			    subr == DIF_SUBR_HTONS ||
10280 			    subr == DIF_SUBR_HTONL ||
10281 			    subr == DIF_SUBR_HTONLL ||
10282 			    subr == DIF_SUBR_NTOHS ||
10283 			    subr == DIF_SUBR_NTOHL ||
10284 			    subr == DIF_SUBR_NTOHLL ||
10285 			    subr == DIF_SUBR_MEMREF)
10286 				break;
10287 #ifdef __FreeBSD__
10288 			if (subr == DIF_SUBR_MEMSTR)
10289 				break;
10290 #endif
10291 
10292 			err += efunc(pc, "invalid subr %u\n", subr);
10293 			break;
10294 
10295 		default:
10296 			err += efunc(pc, "invalid opcode %u\n",
10297 			    DIF_INSTR_OP(instr));
10298 		}
10299 	}
10300 
10301 	return (err);
10302 }
10303 
10304 /*
10305  * Returns 1 if the expression in the DIF object can be cached on a per-thread
10306  * basis; 0 if not.
10307  */
10308 static int
10309 dtrace_difo_cacheable(dtrace_difo_t *dp)
10310 {
10311 	int i;
10312 
10313 	if (dp == NULL)
10314 		return (0);
10315 
10316 	for (i = 0; i < dp->dtdo_varlen; i++) {
10317 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10318 
10319 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10320 			continue;
10321 
10322 		switch (v->dtdv_id) {
10323 		case DIF_VAR_CURTHREAD:
10324 		case DIF_VAR_PID:
10325 		case DIF_VAR_TID:
10326 		case DIF_VAR_EXECARGS:
10327 		case DIF_VAR_EXECNAME:
10328 		case DIF_VAR_ZONENAME:
10329 			break;
10330 
10331 		default:
10332 			return (0);
10333 		}
10334 	}
10335 
10336 	/*
10337 	 * This DIF object may be cacheable.  Now we need to look for any
10338 	 * array loading instructions, any memory loading instructions, or
10339 	 * any stores to thread-local variables.
10340 	 */
10341 	for (i = 0; i < dp->dtdo_len; i++) {
10342 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10343 
10344 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10345 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10346 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10347 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
10348 			return (0);
10349 	}
10350 
10351 	return (1);
10352 }
10353 
10354 static void
10355 dtrace_difo_hold(dtrace_difo_t *dp)
10356 {
10357 	int i;
10358 
10359 	ASSERT(MUTEX_HELD(&dtrace_lock));
10360 
10361 	dp->dtdo_refcnt++;
10362 	ASSERT(dp->dtdo_refcnt != 0);
10363 
10364 	/*
10365 	 * We need to check this DIF object for references to the variable
10366 	 * DIF_VAR_VTIMESTAMP.
10367 	 */
10368 	for (i = 0; i < dp->dtdo_varlen; i++) {
10369 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10370 
10371 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10372 			continue;
10373 
10374 		if (dtrace_vtime_references++ == 0)
10375 			dtrace_vtime_enable();
10376 	}
10377 }
10378 
10379 /*
10380  * This routine calculates the dynamic variable chunksize for a given DIF
10381  * object.  The calculation is not fool-proof, and can probably be tricked by
10382  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
10383  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10384  * if a dynamic variable size exceeds the chunksize.
10385  */
10386 static void
10387 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10388 {
10389 	uint64_t sval = 0;
10390 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10391 	const dif_instr_t *text = dp->dtdo_buf;
10392 	uint_t pc, srd = 0;
10393 	uint_t ttop = 0;
10394 	size_t size, ksize;
10395 	uint_t id, i;
10396 
10397 	for (pc = 0; pc < dp->dtdo_len; pc++) {
10398 		dif_instr_t instr = text[pc];
10399 		uint_t op = DIF_INSTR_OP(instr);
10400 		uint_t rd = DIF_INSTR_RD(instr);
10401 		uint_t r1 = DIF_INSTR_R1(instr);
10402 		uint_t nkeys = 0;
10403 		uchar_t scope = 0;
10404 
10405 		dtrace_key_t *key = tupregs;
10406 
10407 		switch (op) {
10408 		case DIF_OP_SETX:
10409 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10410 			srd = rd;
10411 			continue;
10412 
10413 		case DIF_OP_STTS:
10414 			key = &tupregs[DIF_DTR_NREGS];
10415 			key[0].dttk_size = 0;
10416 			key[1].dttk_size = 0;
10417 			nkeys = 2;
10418 			scope = DIFV_SCOPE_THREAD;
10419 			break;
10420 
10421 		case DIF_OP_STGAA:
10422 		case DIF_OP_STTAA:
10423 			nkeys = ttop;
10424 
10425 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10426 				key[nkeys++].dttk_size = 0;
10427 
10428 			key[nkeys++].dttk_size = 0;
10429 
10430 			if (op == DIF_OP_STTAA) {
10431 				scope = DIFV_SCOPE_THREAD;
10432 			} else {
10433 				scope = DIFV_SCOPE_GLOBAL;
10434 			}
10435 
10436 			break;
10437 
10438 		case DIF_OP_PUSHTR:
10439 			if (ttop == DIF_DTR_NREGS)
10440 				return;
10441 
10442 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10443 				/*
10444 				 * If the register for the size of the "pushtr"
10445 				 * is %r0 (or the value is 0) and the type is
10446 				 * a string, we'll use the system-wide default
10447 				 * string size.
10448 				 */
10449 				tupregs[ttop++].dttk_size =
10450 				    dtrace_strsize_default;
10451 			} else {
10452 				if (srd == 0)
10453 					return;
10454 
10455 				if (sval > LONG_MAX)
10456 					return;
10457 
10458 				tupregs[ttop++].dttk_size = sval;
10459 			}
10460 
10461 			break;
10462 
10463 		case DIF_OP_PUSHTV:
10464 			if (ttop == DIF_DTR_NREGS)
10465 				return;
10466 
10467 			tupregs[ttop++].dttk_size = 0;
10468 			break;
10469 
10470 		case DIF_OP_FLUSHTS:
10471 			ttop = 0;
10472 			break;
10473 
10474 		case DIF_OP_POPTS:
10475 			if (ttop != 0)
10476 				ttop--;
10477 			break;
10478 		}
10479 
10480 		sval = 0;
10481 		srd = 0;
10482 
10483 		if (nkeys == 0)
10484 			continue;
10485 
10486 		/*
10487 		 * We have a dynamic variable allocation; calculate its size.
10488 		 */
10489 		for (ksize = 0, i = 0; i < nkeys; i++)
10490 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10491 
10492 		size = sizeof (dtrace_dynvar_t);
10493 		size += sizeof (dtrace_key_t) * (nkeys - 1);
10494 		size += ksize;
10495 
10496 		/*
10497 		 * Now we need to determine the size of the stored data.
10498 		 */
10499 		id = DIF_INSTR_VAR(instr);
10500 
10501 		for (i = 0; i < dp->dtdo_varlen; i++) {
10502 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
10503 
10504 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
10505 				size += v->dtdv_type.dtdt_size;
10506 				break;
10507 			}
10508 		}
10509 
10510 		if (i == dp->dtdo_varlen)
10511 			return;
10512 
10513 		/*
10514 		 * We have the size.  If this is larger than the chunk size
10515 		 * for our dynamic variable state, reset the chunk size.
10516 		 */
10517 		size = P2ROUNDUP(size, sizeof (uint64_t));
10518 
10519 		/*
10520 		 * Before setting the chunk size, check that we're not going
10521 		 * to set it to a negative value...
10522 		 */
10523 		if (size > LONG_MAX)
10524 			return;
10525 
10526 		/*
10527 		 * ...and make certain that we didn't badly overflow.
10528 		 */
10529 		if (size < ksize || size < sizeof (dtrace_dynvar_t))
10530 			return;
10531 
10532 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
10533 			vstate->dtvs_dynvars.dtds_chunksize = size;
10534 	}
10535 }
10536 
10537 static void
10538 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10539 {
10540 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
10541 	uint_t id;
10542 
10543 	ASSERT(MUTEX_HELD(&dtrace_lock));
10544 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10545 
10546 	for (i = 0; i < dp->dtdo_varlen; i++) {
10547 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10548 		dtrace_statvar_t *svar, ***svarp = NULL;
10549 		size_t dsize = 0;
10550 		uint8_t scope = v->dtdv_scope;
10551 		int *np = NULL;
10552 
10553 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10554 			continue;
10555 
10556 		id -= DIF_VAR_OTHER_UBASE;
10557 
10558 		switch (scope) {
10559 		case DIFV_SCOPE_THREAD:
10560 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10561 				dtrace_difv_t *tlocals;
10562 
10563 				if ((ntlocals = (otlocals << 1)) == 0)
10564 					ntlocals = 1;
10565 
10566 				osz = otlocals * sizeof (dtrace_difv_t);
10567 				nsz = ntlocals * sizeof (dtrace_difv_t);
10568 
10569 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
10570 
10571 				if (osz != 0) {
10572 					bcopy(vstate->dtvs_tlocals,
10573 					    tlocals, osz);
10574 					kmem_free(vstate->dtvs_tlocals, osz);
10575 				}
10576 
10577 				vstate->dtvs_tlocals = tlocals;
10578 				vstate->dtvs_ntlocals = ntlocals;
10579 			}
10580 
10581 			vstate->dtvs_tlocals[id] = *v;
10582 			continue;
10583 
10584 		case DIFV_SCOPE_LOCAL:
10585 			np = &vstate->dtvs_nlocals;
10586 			svarp = &vstate->dtvs_locals;
10587 
10588 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10589 				dsize = NCPU * (v->dtdv_type.dtdt_size +
10590 				    sizeof (uint64_t));
10591 			else
10592 				dsize = NCPU * sizeof (uint64_t);
10593 
10594 			break;
10595 
10596 		case DIFV_SCOPE_GLOBAL:
10597 			np = &vstate->dtvs_nglobals;
10598 			svarp = &vstate->dtvs_globals;
10599 
10600 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10601 				dsize = v->dtdv_type.dtdt_size +
10602 				    sizeof (uint64_t);
10603 
10604 			break;
10605 
10606 		default:
10607 			ASSERT(0);
10608 		}
10609 
10610 		while (id >= (oldsvars = *np)) {
10611 			dtrace_statvar_t **statics;
10612 			int newsvars, oldsize, newsize;
10613 
10614 			if ((newsvars = (oldsvars << 1)) == 0)
10615 				newsvars = 1;
10616 
10617 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10618 			newsize = newsvars * sizeof (dtrace_statvar_t *);
10619 
10620 			statics = kmem_zalloc(newsize, KM_SLEEP);
10621 
10622 			if (oldsize != 0) {
10623 				bcopy(*svarp, statics, oldsize);
10624 				kmem_free(*svarp, oldsize);
10625 			}
10626 
10627 			*svarp = statics;
10628 			*np = newsvars;
10629 		}
10630 
10631 		if ((svar = (*svarp)[id]) == NULL) {
10632 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10633 			svar->dtsv_var = *v;
10634 
10635 			if ((svar->dtsv_size = dsize) != 0) {
10636 				svar->dtsv_data = (uint64_t)(uintptr_t)
10637 				    kmem_zalloc(dsize, KM_SLEEP);
10638 			}
10639 
10640 			(*svarp)[id] = svar;
10641 		}
10642 
10643 		svar->dtsv_refcnt++;
10644 	}
10645 
10646 	dtrace_difo_chunksize(dp, vstate);
10647 	dtrace_difo_hold(dp);
10648 }
10649 
10650 static dtrace_difo_t *
10651 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10652 {
10653 	dtrace_difo_t *new;
10654 	size_t sz;
10655 
10656 	ASSERT(dp->dtdo_buf != NULL);
10657 	ASSERT(dp->dtdo_refcnt != 0);
10658 
10659 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10660 
10661 	ASSERT(dp->dtdo_buf != NULL);
10662 	sz = dp->dtdo_len * sizeof (dif_instr_t);
10663 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10664 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10665 	new->dtdo_len = dp->dtdo_len;
10666 
10667 	if (dp->dtdo_strtab != NULL) {
10668 		ASSERT(dp->dtdo_strlen != 0);
10669 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10670 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10671 		new->dtdo_strlen = dp->dtdo_strlen;
10672 	}
10673 
10674 	if (dp->dtdo_inttab != NULL) {
10675 		ASSERT(dp->dtdo_intlen != 0);
10676 		sz = dp->dtdo_intlen * sizeof (uint64_t);
10677 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10678 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10679 		new->dtdo_intlen = dp->dtdo_intlen;
10680 	}
10681 
10682 	if (dp->dtdo_vartab != NULL) {
10683 		ASSERT(dp->dtdo_varlen != 0);
10684 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10685 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10686 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10687 		new->dtdo_varlen = dp->dtdo_varlen;
10688 	}
10689 
10690 	dtrace_difo_init(new, vstate);
10691 	return (new);
10692 }
10693 
10694 static void
10695 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10696 {
10697 	int i;
10698 
10699 	ASSERT(dp->dtdo_refcnt == 0);
10700 
10701 	for (i = 0; i < dp->dtdo_varlen; i++) {
10702 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10703 		dtrace_statvar_t *svar, **svarp = NULL;
10704 		uint_t id;
10705 		uint8_t scope = v->dtdv_scope;
10706 		int *np = NULL;
10707 
10708 		switch (scope) {
10709 		case DIFV_SCOPE_THREAD:
10710 			continue;
10711 
10712 		case DIFV_SCOPE_LOCAL:
10713 			np = &vstate->dtvs_nlocals;
10714 			svarp = vstate->dtvs_locals;
10715 			break;
10716 
10717 		case DIFV_SCOPE_GLOBAL:
10718 			np = &vstate->dtvs_nglobals;
10719 			svarp = vstate->dtvs_globals;
10720 			break;
10721 
10722 		default:
10723 			ASSERT(0);
10724 		}
10725 
10726 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10727 			continue;
10728 
10729 		id -= DIF_VAR_OTHER_UBASE;
10730 		ASSERT(id < *np);
10731 
10732 		svar = svarp[id];
10733 		ASSERT(svar != NULL);
10734 		ASSERT(svar->dtsv_refcnt > 0);
10735 
10736 		if (--svar->dtsv_refcnt > 0)
10737 			continue;
10738 
10739 		if (svar->dtsv_size != 0) {
10740 			ASSERT(svar->dtsv_data != 0);
10741 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
10742 			    svar->dtsv_size);
10743 		}
10744 
10745 		kmem_free(svar, sizeof (dtrace_statvar_t));
10746 		svarp[id] = NULL;
10747 	}
10748 
10749 	if (dp->dtdo_buf != NULL)
10750 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10751 	if (dp->dtdo_inttab != NULL)
10752 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10753 	if (dp->dtdo_strtab != NULL)
10754 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10755 	if (dp->dtdo_vartab != NULL)
10756 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10757 
10758 	kmem_free(dp, sizeof (dtrace_difo_t));
10759 }
10760 
10761 static void
10762 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10763 {
10764 	int i;
10765 
10766 	ASSERT(MUTEX_HELD(&dtrace_lock));
10767 	ASSERT(dp->dtdo_refcnt != 0);
10768 
10769 	for (i = 0; i < dp->dtdo_varlen; i++) {
10770 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
10771 
10772 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10773 			continue;
10774 
10775 		ASSERT(dtrace_vtime_references > 0);
10776 		if (--dtrace_vtime_references == 0)
10777 			dtrace_vtime_disable();
10778 	}
10779 
10780 	if (--dp->dtdo_refcnt == 0)
10781 		dtrace_difo_destroy(dp, vstate);
10782 }
10783 
10784 /*
10785  * DTrace Format Functions
10786  */
10787 static uint16_t
10788 dtrace_format_add(dtrace_state_t *state, char *str)
10789 {
10790 	char *fmt, **new;
10791 	uint16_t ndx, len = strlen(str) + 1;
10792 
10793 	fmt = kmem_zalloc(len, KM_SLEEP);
10794 	bcopy(str, fmt, len);
10795 
10796 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10797 		if (state->dts_formats[ndx] == NULL) {
10798 			state->dts_formats[ndx] = fmt;
10799 			return (ndx + 1);
10800 		}
10801 	}
10802 
10803 	if (state->dts_nformats == USHRT_MAX) {
10804 		/*
10805 		 * This is only likely if a denial-of-service attack is being
10806 		 * attempted.  As such, it's okay to fail silently here.
10807 		 */
10808 		kmem_free(fmt, len);
10809 		return (0);
10810 	}
10811 
10812 	/*
10813 	 * For simplicity, we always resize the formats array to be exactly the
10814 	 * number of formats.
10815 	 */
10816 	ndx = state->dts_nformats++;
10817 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10818 
10819 	if (state->dts_formats != NULL) {
10820 		ASSERT(ndx != 0);
10821 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
10822 		kmem_free(state->dts_formats, ndx * sizeof (char *));
10823 	}
10824 
10825 	state->dts_formats = new;
10826 	state->dts_formats[ndx] = fmt;
10827 
10828 	return (ndx + 1);
10829 }
10830 
10831 static void
10832 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10833 {
10834 	char *fmt;
10835 
10836 	ASSERT(state->dts_formats != NULL);
10837 	ASSERT(format <= state->dts_nformats);
10838 	ASSERT(state->dts_formats[format - 1] != NULL);
10839 
10840 	fmt = state->dts_formats[format - 1];
10841 	kmem_free(fmt, strlen(fmt) + 1);
10842 	state->dts_formats[format - 1] = NULL;
10843 }
10844 
10845 static void
10846 dtrace_format_destroy(dtrace_state_t *state)
10847 {
10848 	int i;
10849 
10850 	if (state->dts_nformats == 0) {
10851 		ASSERT(state->dts_formats == NULL);
10852 		return;
10853 	}
10854 
10855 	ASSERT(state->dts_formats != NULL);
10856 
10857 	for (i = 0; i < state->dts_nformats; i++) {
10858 		char *fmt = state->dts_formats[i];
10859 
10860 		if (fmt == NULL)
10861 			continue;
10862 
10863 		kmem_free(fmt, strlen(fmt) + 1);
10864 	}
10865 
10866 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10867 	state->dts_nformats = 0;
10868 	state->dts_formats = NULL;
10869 }
10870 
10871 /*
10872  * DTrace Predicate Functions
10873  */
10874 static dtrace_predicate_t *
10875 dtrace_predicate_create(dtrace_difo_t *dp)
10876 {
10877 	dtrace_predicate_t *pred;
10878 
10879 	ASSERT(MUTEX_HELD(&dtrace_lock));
10880 	ASSERT(dp->dtdo_refcnt != 0);
10881 
10882 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10883 	pred->dtp_difo = dp;
10884 	pred->dtp_refcnt = 1;
10885 
10886 	if (!dtrace_difo_cacheable(dp))
10887 		return (pred);
10888 
10889 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10890 		/*
10891 		 * This is only theoretically possible -- we have had 2^32
10892 		 * cacheable predicates on this machine.  We cannot allow any
10893 		 * more predicates to become cacheable:  as unlikely as it is,
10894 		 * there may be a thread caching a (now stale) predicate cache
10895 		 * ID. (N.B.: the temptation is being successfully resisted to
10896 		 * have this cmn_err() "Holy shit -- we executed this code!")
10897 		 */
10898 		return (pred);
10899 	}
10900 
10901 	pred->dtp_cacheid = dtrace_predcache_id++;
10902 
10903 	return (pred);
10904 }
10905 
10906 static void
10907 dtrace_predicate_hold(dtrace_predicate_t *pred)
10908 {
10909 	ASSERT(MUTEX_HELD(&dtrace_lock));
10910 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10911 	ASSERT(pred->dtp_refcnt > 0);
10912 
10913 	pred->dtp_refcnt++;
10914 }
10915 
10916 static void
10917 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10918 {
10919 	dtrace_difo_t *dp = pred->dtp_difo;
10920 
10921 	ASSERT(MUTEX_HELD(&dtrace_lock));
10922 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10923 	ASSERT(pred->dtp_refcnt > 0);
10924 
10925 	if (--pred->dtp_refcnt == 0) {
10926 		dtrace_difo_release(pred->dtp_difo, vstate);
10927 		kmem_free(pred, sizeof (dtrace_predicate_t));
10928 	}
10929 }
10930 
10931 /*
10932  * DTrace Action Description Functions
10933  */
10934 static dtrace_actdesc_t *
10935 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10936     uint64_t uarg, uint64_t arg)
10937 {
10938 	dtrace_actdesc_t *act;
10939 
10940 #ifdef illumos
10941 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10942 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10943 #endif
10944 
10945 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10946 	act->dtad_kind = kind;
10947 	act->dtad_ntuple = ntuple;
10948 	act->dtad_uarg = uarg;
10949 	act->dtad_arg = arg;
10950 	act->dtad_refcnt = 1;
10951 
10952 	return (act);
10953 }
10954 
10955 static void
10956 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10957 {
10958 	ASSERT(act->dtad_refcnt >= 1);
10959 	act->dtad_refcnt++;
10960 }
10961 
10962 static void
10963 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10964 {
10965 	dtrace_actkind_t kind = act->dtad_kind;
10966 	dtrace_difo_t *dp;
10967 
10968 	ASSERT(act->dtad_refcnt >= 1);
10969 
10970 	if (--act->dtad_refcnt != 0)
10971 		return;
10972 
10973 	if ((dp = act->dtad_difo) != NULL)
10974 		dtrace_difo_release(dp, vstate);
10975 
10976 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
10977 		char *str = (char *)(uintptr_t)act->dtad_arg;
10978 
10979 #ifdef illumos
10980 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10981 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10982 #endif
10983 
10984 		if (str != NULL)
10985 			kmem_free(str, strlen(str) + 1);
10986 	}
10987 
10988 	kmem_free(act, sizeof (dtrace_actdesc_t));
10989 }
10990 
10991 /*
10992  * DTrace ECB Functions
10993  */
10994 static dtrace_ecb_t *
10995 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10996 {
10997 	dtrace_ecb_t *ecb;
10998 	dtrace_epid_t epid;
10999 
11000 	ASSERT(MUTEX_HELD(&dtrace_lock));
11001 
11002 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
11003 	ecb->dte_predicate = NULL;
11004 	ecb->dte_probe = probe;
11005 
11006 	/*
11007 	 * The default size is the size of the default action: recording
11008 	 * the header.
11009 	 */
11010 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
11011 	ecb->dte_alignment = sizeof (dtrace_epid_t);
11012 
11013 	epid = state->dts_epid++;
11014 
11015 	if (epid - 1 >= state->dts_necbs) {
11016 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
11017 		int necbs = state->dts_necbs << 1;
11018 
11019 		ASSERT(epid == state->dts_necbs + 1);
11020 
11021 		if (necbs == 0) {
11022 			ASSERT(oecbs == NULL);
11023 			necbs = 1;
11024 		}
11025 
11026 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
11027 
11028 		if (oecbs != NULL)
11029 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
11030 
11031 		dtrace_membar_producer();
11032 		state->dts_ecbs = ecbs;
11033 
11034 		if (oecbs != NULL) {
11035 			/*
11036 			 * If this state is active, we must dtrace_sync()
11037 			 * before we can free the old dts_ecbs array:  we're
11038 			 * coming in hot, and there may be active ring
11039 			 * buffer processing (which indexes into the dts_ecbs
11040 			 * array) on another CPU.
11041 			 */
11042 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11043 				dtrace_sync();
11044 
11045 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
11046 		}
11047 
11048 		dtrace_membar_producer();
11049 		state->dts_necbs = necbs;
11050 	}
11051 
11052 	ecb->dte_state = state;
11053 
11054 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
11055 	dtrace_membar_producer();
11056 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
11057 
11058 	return (ecb);
11059 }
11060 
11061 static void
11062 dtrace_ecb_enable(dtrace_ecb_t *ecb)
11063 {
11064 	dtrace_probe_t *probe = ecb->dte_probe;
11065 
11066 	ASSERT(MUTEX_HELD(&cpu_lock));
11067 	ASSERT(MUTEX_HELD(&dtrace_lock));
11068 	ASSERT(ecb->dte_next == NULL);
11069 
11070 	if (probe == NULL) {
11071 		/*
11072 		 * This is the NULL probe -- there's nothing to do.
11073 		 */
11074 		return;
11075 	}
11076 
11077 	if (probe->dtpr_ecb == NULL) {
11078 		dtrace_provider_t *prov = probe->dtpr_provider;
11079 
11080 		/*
11081 		 * We're the first ECB on this probe.
11082 		 */
11083 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
11084 
11085 		if (ecb->dte_predicate != NULL)
11086 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
11087 
11088 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
11089 		    probe->dtpr_id, probe->dtpr_arg);
11090 	} else {
11091 		/*
11092 		 * This probe is already active.  Swing the last pointer to
11093 		 * point to the new ECB, and issue a dtrace_sync() to assure
11094 		 * that all CPUs have seen the change.
11095 		 */
11096 		ASSERT(probe->dtpr_ecb_last != NULL);
11097 		probe->dtpr_ecb_last->dte_next = ecb;
11098 		probe->dtpr_ecb_last = ecb;
11099 		probe->dtpr_predcache = 0;
11100 
11101 		dtrace_sync();
11102 	}
11103 }
11104 
11105 static int
11106 dtrace_ecb_resize(dtrace_ecb_t *ecb)
11107 {
11108 	dtrace_action_t *act;
11109 	uint32_t curneeded = UINT32_MAX;
11110 	uint32_t aggbase = UINT32_MAX;
11111 
11112 	/*
11113 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
11114 	 * we always record it first.)
11115 	 */
11116 	ecb->dte_size = sizeof (dtrace_rechdr_t);
11117 	ecb->dte_alignment = sizeof (dtrace_epid_t);
11118 
11119 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11120 		dtrace_recdesc_t *rec = &act->dta_rec;
11121 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
11122 
11123 		ecb->dte_alignment = MAX(ecb->dte_alignment,
11124 		    rec->dtrd_alignment);
11125 
11126 		if (DTRACEACT_ISAGG(act->dta_kind)) {
11127 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11128 
11129 			ASSERT(rec->dtrd_size != 0);
11130 			ASSERT(agg->dtag_first != NULL);
11131 			ASSERT(act->dta_prev->dta_intuple);
11132 			ASSERT(aggbase != UINT32_MAX);
11133 			ASSERT(curneeded != UINT32_MAX);
11134 
11135 			agg->dtag_base = aggbase;
11136 
11137 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11138 			rec->dtrd_offset = curneeded;
11139 			if (curneeded + rec->dtrd_size < curneeded)
11140 				return (EINVAL);
11141 			curneeded += rec->dtrd_size;
11142 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
11143 
11144 			aggbase = UINT32_MAX;
11145 			curneeded = UINT32_MAX;
11146 		} else if (act->dta_intuple) {
11147 			if (curneeded == UINT32_MAX) {
11148 				/*
11149 				 * This is the first record in a tuple.  Align
11150 				 * curneeded to be at offset 4 in an 8-byte
11151 				 * aligned block.
11152 				 */
11153 				ASSERT(act->dta_prev == NULL ||
11154 				    !act->dta_prev->dta_intuple);
11155 				ASSERT3U(aggbase, ==, UINT32_MAX);
11156 				curneeded = P2PHASEUP(ecb->dte_size,
11157 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
11158 
11159 				aggbase = curneeded - sizeof (dtrace_aggid_t);
11160 				ASSERT(IS_P2ALIGNED(aggbase,
11161 				    sizeof (uint64_t)));
11162 			}
11163 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11164 			rec->dtrd_offset = curneeded;
11165 			if (curneeded + rec->dtrd_size < curneeded)
11166 				return (EINVAL);
11167 			curneeded += rec->dtrd_size;
11168 		} else {
11169 			/* tuples must be followed by an aggregation */
11170 			ASSERT(act->dta_prev == NULL ||
11171 			    !act->dta_prev->dta_intuple);
11172 
11173 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11174 			    rec->dtrd_alignment);
11175 			rec->dtrd_offset = ecb->dte_size;
11176 			if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
11177 				return (EINVAL);
11178 			ecb->dte_size += rec->dtrd_size;
11179 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11180 		}
11181 	}
11182 
11183 	if ((act = ecb->dte_action) != NULL &&
11184 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11185 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11186 		/*
11187 		 * If the size is still sizeof (dtrace_rechdr_t), then all
11188 		 * actions store no data; set the size to 0.
11189 		 */
11190 		ecb->dte_size = 0;
11191 	}
11192 
11193 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11194 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11195 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11196 	    ecb->dte_needed);
11197 	return (0);
11198 }
11199 
11200 static dtrace_action_t *
11201 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11202 {
11203 	dtrace_aggregation_t *agg;
11204 	size_t size = sizeof (uint64_t);
11205 	int ntuple = desc->dtad_ntuple;
11206 	dtrace_action_t *act;
11207 	dtrace_recdesc_t *frec;
11208 	dtrace_aggid_t aggid;
11209 	dtrace_state_t *state = ecb->dte_state;
11210 
11211 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11212 	agg->dtag_ecb = ecb;
11213 
11214 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11215 
11216 	switch (desc->dtad_kind) {
11217 	case DTRACEAGG_MIN:
11218 		agg->dtag_initial = INT64_MAX;
11219 		agg->dtag_aggregate = dtrace_aggregate_min;
11220 		break;
11221 
11222 	case DTRACEAGG_MAX:
11223 		agg->dtag_initial = INT64_MIN;
11224 		agg->dtag_aggregate = dtrace_aggregate_max;
11225 		break;
11226 
11227 	case DTRACEAGG_COUNT:
11228 		agg->dtag_aggregate = dtrace_aggregate_count;
11229 		break;
11230 
11231 	case DTRACEAGG_QUANTIZE:
11232 		agg->dtag_aggregate = dtrace_aggregate_quantize;
11233 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11234 		    sizeof (uint64_t);
11235 		break;
11236 
11237 	case DTRACEAGG_LQUANTIZE: {
11238 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11239 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11240 
11241 		agg->dtag_initial = desc->dtad_arg;
11242 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
11243 
11244 		if (step == 0 || levels == 0)
11245 			goto err;
11246 
11247 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11248 		break;
11249 	}
11250 
11251 	case DTRACEAGG_LLQUANTIZE: {
11252 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11253 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11254 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11255 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11256 		int64_t v;
11257 
11258 		agg->dtag_initial = desc->dtad_arg;
11259 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
11260 
11261 		if (factor < 2 || low >= high || nsteps < factor)
11262 			goto err;
11263 
11264 		/*
11265 		 * Now check that the number of steps evenly divides a power
11266 		 * of the factor.  (This assures both integer bucket size and
11267 		 * linearity within each magnitude.)
11268 		 */
11269 		for (v = factor; v < nsteps; v *= factor)
11270 			continue;
11271 
11272 		if ((v % nsteps) || (nsteps % factor))
11273 			goto err;
11274 
11275 		size = (dtrace_aggregate_llquantize_bucket(factor,
11276 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11277 		break;
11278 	}
11279 
11280 	case DTRACEAGG_AVG:
11281 		agg->dtag_aggregate = dtrace_aggregate_avg;
11282 		size = sizeof (uint64_t) * 2;
11283 		break;
11284 
11285 	case DTRACEAGG_STDDEV:
11286 		agg->dtag_aggregate = dtrace_aggregate_stddev;
11287 		size = sizeof (uint64_t) * 4;
11288 		break;
11289 
11290 	case DTRACEAGG_SUM:
11291 		agg->dtag_aggregate = dtrace_aggregate_sum;
11292 		break;
11293 
11294 	default:
11295 		goto err;
11296 	}
11297 
11298 	agg->dtag_action.dta_rec.dtrd_size = size;
11299 
11300 	if (ntuple == 0)
11301 		goto err;
11302 
11303 	/*
11304 	 * We must make sure that we have enough actions for the n-tuple.
11305 	 */
11306 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11307 		if (DTRACEACT_ISAGG(act->dta_kind))
11308 			break;
11309 
11310 		if (--ntuple == 0) {
11311 			/*
11312 			 * This is the action with which our n-tuple begins.
11313 			 */
11314 			agg->dtag_first = act;
11315 			goto success;
11316 		}
11317 	}
11318 
11319 	/*
11320 	 * This n-tuple is short by ntuple elements.  Return failure.
11321 	 */
11322 	ASSERT(ntuple != 0);
11323 err:
11324 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11325 	return (NULL);
11326 
11327 success:
11328 	/*
11329 	 * If the last action in the tuple has a size of zero, it's actually
11330 	 * an expression argument for the aggregating action.
11331 	 */
11332 	ASSERT(ecb->dte_action_last != NULL);
11333 	act = ecb->dte_action_last;
11334 
11335 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
11336 		ASSERT(act->dta_difo != NULL);
11337 
11338 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11339 			agg->dtag_hasarg = 1;
11340 	}
11341 
11342 	/*
11343 	 * We need to allocate an id for this aggregation.
11344 	 */
11345 #ifdef illumos
11346 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11347 	    VM_BESTFIT | VM_SLEEP);
11348 #else
11349 	aggid = alloc_unr(state->dts_aggid_arena);
11350 #endif
11351 
11352 	if (aggid - 1 >= state->dts_naggregations) {
11353 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
11354 		dtrace_aggregation_t **aggs;
11355 		int naggs = state->dts_naggregations << 1;
11356 		int onaggs = state->dts_naggregations;
11357 
11358 		ASSERT(aggid == state->dts_naggregations + 1);
11359 
11360 		if (naggs == 0) {
11361 			ASSERT(oaggs == NULL);
11362 			naggs = 1;
11363 		}
11364 
11365 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11366 
11367 		if (oaggs != NULL) {
11368 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11369 			kmem_free(oaggs, onaggs * sizeof (*aggs));
11370 		}
11371 
11372 		state->dts_aggregations = aggs;
11373 		state->dts_naggregations = naggs;
11374 	}
11375 
11376 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11377 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11378 
11379 	frec = &agg->dtag_first->dta_rec;
11380 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11381 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11382 
11383 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11384 		ASSERT(!act->dta_intuple);
11385 		act->dta_intuple = 1;
11386 	}
11387 
11388 	return (&agg->dtag_action);
11389 }
11390 
11391 static void
11392 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11393 {
11394 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11395 	dtrace_state_t *state = ecb->dte_state;
11396 	dtrace_aggid_t aggid = agg->dtag_id;
11397 
11398 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11399 #ifdef illumos
11400 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11401 #else
11402 	free_unr(state->dts_aggid_arena, aggid);
11403 #endif
11404 
11405 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
11406 	state->dts_aggregations[aggid - 1] = NULL;
11407 
11408 	kmem_free(agg, sizeof (dtrace_aggregation_t));
11409 }
11410 
11411 static int
11412 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11413 {
11414 	dtrace_action_t *action, *last;
11415 	dtrace_difo_t *dp = desc->dtad_difo;
11416 	uint32_t size = 0, align = sizeof (uint8_t), mask;
11417 	uint16_t format = 0;
11418 	dtrace_recdesc_t *rec;
11419 	dtrace_state_t *state = ecb->dte_state;
11420 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11421 	uint64_t arg = desc->dtad_arg;
11422 
11423 	ASSERT(MUTEX_HELD(&dtrace_lock));
11424 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11425 
11426 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11427 		/*
11428 		 * If this is an aggregating action, there must be neither
11429 		 * a speculate nor a commit on the action chain.
11430 		 */
11431 		dtrace_action_t *act;
11432 
11433 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11434 			if (act->dta_kind == DTRACEACT_COMMIT)
11435 				return (EINVAL);
11436 
11437 			if (act->dta_kind == DTRACEACT_SPECULATE)
11438 				return (EINVAL);
11439 		}
11440 
11441 		action = dtrace_ecb_aggregation_create(ecb, desc);
11442 
11443 		if (action == NULL)
11444 			return (EINVAL);
11445 	} else {
11446 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11447 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11448 		    dp != NULL && dp->dtdo_destructive)) {
11449 			state->dts_destructive = 1;
11450 		}
11451 
11452 		switch (desc->dtad_kind) {
11453 		case DTRACEACT_PRINTF:
11454 		case DTRACEACT_PRINTA:
11455 		case DTRACEACT_SYSTEM:
11456 		case DTRACEACT_FREOPEN:
11457 		case DTRACEACT_DIFEXPR:
11458 			/*
11459 			 * We know that our arg is a string -- turn it into a
11460 			 * format.
11461 			 */
11462 			if (arg == 0) {
11463 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11464 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
11465 				format = 0;
11466 			} else {
11467 				ASSERT(arg != 0);
11468 #ifdef illumos
11469 				ASSERT(arg > KERNELBASE);
11470 #endif
11471 				format = dtrace_format_add(state,
11472 				    (char *)(uintptr_t)arg);
11473 			}
11474 
11475 			/*FALLTHROUGH*/
11476 		case DTRACEACT_LIBACT:
11477 		case DTRACEACT_TRACEMEM:
11478 		case DTRACEACT_TRACEMEM_DYNSIZE:
11479 			if (dp == NULL)
11480 				return (EINVAL);
11481 
11482 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11483 				break;
11484 
11485 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11486 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11487 					return (EINVAL);
11488 
11489 				size = opt[DTRACEOPT_STRSIZE];
11490 			}
11491 
11492 			break;
11493 
11494 		case DTRACEACT_STACK:
11495 			if ((nframes = arg) == 0) {
11496 				nframes = opt[DTRACEOPT_STACKFRAMES];
11497 				ASSERT(nframes > 0);
11498 				arg = nframes;
11499 			}
11500 
11501 			size = nframes * sizeof (pc_t);
11502 			break;
11503 
11504 		case DTRACEACT_JSTACK:
11505 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11506 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11507 
11508 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11509 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
11510 
11511 			arg = DTRACE_USTACK_ARG(nframes, strsize);
11512 
11513 			/*FALLTHROUGH*/
11514 		case DTRACEACT_USTACK:
11515 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
11516 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11517 				strsize = DTRACE_USTACK_STRSIZE(arg);
11518 				nframes = opt[DTRACEOPT_USTACKFRAMES];
11519 				ASSERT(nframes > 0);
11520 				arg = DTRACE_USTACK_ARG(nframes, strsize);
11521 			}
11522 
11523 			/*
11524 			 * Save a slot for the pid.
11525 			 */
11526 			size = (nframes + 1) * sizeof (uint64_t);
11527 			size += DTRACE_USTACK_STRSIZE(arg);
11528 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11529 
11530 			break;
11531 
11532 		case DTRACEACT_SYM:
11533 		case DTRACEACT_MOD:
11534 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11535 			    sizeof (uint64_t)) ||
11536 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11537 				return (EINVAL);
11538 			break;
11539 
11540 		case DTRACEACT_USYM:
11541 		case DTRACEACT_UMOD:
11542 		case DTRACEACT_UADDR:
11543 			if (dp == NULL ||
11544 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11545 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11546 				return (EINVAL);
11547 
11548 			/*
11549 			 * We have a slot for the pid, plus a slot for the
11550 			 * argument.  To keep things simple (aligned with
11551 			 * bitness-neutral sizing), we store each as a 64-bit
11552 			 * quantity.
11553 			 */
11554 			size = 2 * sizeof (uint64_t);
11555 			break;
11556 
11557 		case DTRACEACT_STOP:
11558 		case DTRACEACT_BREAKPOINT:
11559 		case DTRACEACT_PANIC:
11560 			break;
11561 
11562 		case DTRACEACT_CHILL:
11563 		case DTRACEACT_DISCARD:
11564 		case DTRACEACT_RAISE:
11565 			if (dp == NULL)
11566 				return (EINVAL);
11567 			break;
11568 
11569 		case DTRACEACT_EXIT:
11570 			if (dp == NULL ||
11571 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11572 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11573 				return (EINVAL);
11574 			break;
11575 
11576 		case DTRACEACT_SPECULATE:
11577 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11578 				return (EINVAL);
11579 
11580 			if (dp == NULL)
11581 				return (EINVAL);
11582 
11583 			state->dts_speculates = 1;
11584 			break;
11585 
11586 		case DTRACEACT_PRINTM:
11587 		    	size = dp->dtdo_rtype.dtdt_size;
11588 			break;
11589 
11590 		case DTRACEACT_COMMIT: {
11591 			dtrace_action_t *act = ecb->dte_action;
11592 
11593 			for (; act != NULL; act = act->dta_next) {
11594 				if (act->dta_kind == DTRACEACT_COMMIT)
11595 					return (EINVAL);
11596 			}
11597 
11598 			if (dp == NULL)
11599 				return (EINVAL);
11600 			break;
11601 		}
11602 
11603 		default:
11604 			return (EINVAL);
11605 		}
11606 
11607 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11608 			/*
11609 			 * If this is a data-storing action or a speculate,
11610 			 * we must be sure that there isn't a commit on the
11611 			 * action chain.
11612 			 */
11613 			dtrace_action_t *act = ecb->dte_action;
11614 
11615 			for (; act != NULL; act = act->dta_next) {
11616 				if (act->dta_kind == DTRACEACT_COMMIT)
11617 					return (EINVAL);
11618 			}
11619 		}
11620 
11621 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11622 		action->dta_rec.dtrd_size = size;
11623 	}
11624 
11625 	action->dta_refcnt = 1;
11626 	rec = &action->dta_rec;
11627 	size = rec->dtrd_size;
11628 
11629 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11630 		if (!(size & mask)) {
11631 			align = mask + 1;
11632 			break;
11633 		}
11634 	}
11635 
11636 	action->dta_kind = desc->dtad_kind;
11637 
11638 	if ((action->dta_difo = dp) != NULL)
11639 		dtrace_difo_hold(dp);
11640 
11641 	rec->dtrd_action = action->dta_kind;
11642 	rec->dtrd_arg = arg;
11643 	rec->dtrd_uarg = desc->dtad_uarg;
11644 	rec->dtrd_alignment = (uint16_t)align;
11645 	rec->dtrd_format = format;
11646 
11647 	if ((last = ecb->dte_action_last) != NULL) {
11648 		ASSERT(ecb->dte_action != NULL);
11649 		action->dta_prev = last;
11650 		last->dta_next = action;
11651 	} else {
11652 		ASSERT(ecb->dte_action == NULL);
11653 		ecb->dte_action = action;
11654 	}
11655 
11656 	ecb->dte_action_last = action;
11657 
11658 	return (0);
11659 }
11660 
11661 static void
11662 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11663 {
11664 	dtrace_action_t *act = ecb->dte_action, *next;
11665 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11666 	dtrace_difo_t *dp;
11667 	uint16_t format;
11668 
11669 	if (act != NULL && act->dta_refcnt > 1) {
11670 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11671 		act->dta_refcnt--;
11672 	} else {
11673 		for (; act != NULL; act = next) {
11674 			next = act->dta_next;
11675 			ASSERT(next != NULL || act == ecb->dte_action_last);
11676 			ASSERT(act->dta_refcnt == 1);
11677 
11678 			if ((format = act->dta_rec.dtrd_format) != 0)
11679 				dtrace_format_remove(ecb->dte_state, format);
11680 
11681 			if ((dp = act->dta_difo) != NULL)
11682 				dtrace_difo_release(dp, vstate);
11683 
11684 			if (DTRACEACT_ISAGG(act->dta_kind)) {
11685 				dtrace_ecb_aggregation_destroy(ecb, act);
11686 			} else {
11687 				kmem_free(act, sizeof (dtrace_action_t));
11688 			}
11689 		}
11690 	}
11691 
11692 	ecb->dte_action = NULL;
11693 	ecb->dte_action_last = NULL;
11694 	ecb->dte_size = 0;
11695 }
11696 
11697 static void
11698 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11699 {
11700 	/*
11701 	 * We disable the ECB by removing it from its probe.
11702 	 */
11703 	dtrace_ecb_t *pecb, *prev = NULL;
11704 	dtrace_probe_t *probe = ecb->dte_probe;
11705 
11706 	ASSERT(MUTEX_HELD(&dtrace_lock));
11707 
11708 	if (probe == NULL) {
11709 		/*
11710 		 * This is the NULL probe; there is nothing to disable.
11711 		 */
11712 		return;
11713 	}
11714 
11715 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11716 		if (pecb == ecb)
11717 			break;
11718 		prev = pecb;
11719 	}
11720 
11721 	ASSERT(pecb != NULL);
11722 
11723 	if (prev == NULL) {
11724 		probe->dtpr_ecb = ecb->dte_next;
11725 	} else {
11726 		prev->dte_next = ecb->dte_next;
11727 	}
11728 
11729 	if (ecb == probe->dtpr_ecb_last) {
11730 		ASSERT(ecb->dte_next == NULL);
11731 		probe->dtpr_ecb_last = prev;
11732 	}
11733 
11734 	/*
11735 	 * The ECB has been disconnected from the probe; now sync to assure
11736 	 * that all CPUs have seen the change before returning.
11737 	 */
11738 	dtrace_sync();
11739 
11740 	if (probe->dtpr_ecb == NULL) {
11741 		/*
11742 		 * That was the last ECB on the probe; clear the predicate
11743 		 * cache ID for the probe, disable it and sync one more time
11744 		 * to assure that we'll never hit it again.
11745 		 */
11746 		dtrace_provider_t *prov = probe->dtpr_provider;
11747 
11748 		ASSERT(ecb->dte_next == NULL);
11749 		ASSERT(probe->dtpr_ecb_last == NULL);
11750 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11751 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11752 		    probe->dtpr_id, probe->dtpr_arg);
11753 		dtrace_sync();
11754 	} else {
11755 		/*
11756 		 * There is at least one ECB remaining on the probe.  If there
11757 		 * is _exactly_ one, set the probe's predicate cache ID to be
11758 		 * the predicate cache ID of the remaining ECB.
11759 		 */
11760 		ASSERT(probe->dtpr_ecb_last != NULL);
11761 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11762 
11763 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11764 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11765 
11766 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
11767 
11768 			if (p != NULL)
11769 				probe->dtpr_predcache = p->dtp_cacheid;
11770 		}
11771 
11772 		ecb->dte_next = NULL;
11773 	}
11774 }
11775 
11776 static void
11777 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11778 {
11779 	dtrace_state_t *state = ecb->dte_state;
11780 	dtrace_vstate_t *vstate = &state->dts_vstate;
11781 	dtrace_predicate_t *pred;
11782 	dtrace_epid_t epid = ecb->dte_epid;
11783 
11784 	ASSERT(MUTEX_HELD(&dtrace_lock));
11785 	ASSERT(ecb->dte_next == NULL);
11786 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11787 
11788 	if ((pred = ecb->dte_predicate) != NULL)
11789 		dtrace_predicate_release(pred, vstate);
11790 
11791 	dtrace_ecb_action_remove(ecb);
11792 
11793 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
11794 	state->dts_ecbs[epid - 1] = NULL;
11795 
11796 	kmem_free(ecb, sizeof (dtrace_ecb_t));
11797 }
11798 
11799 static dtrace_ecb_t *
11800 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11801     dtrace_enabling_t *enab)
11802 {
11803 	dtrace_ecb_t *ecb;
11804 	dtrace_predicate_t *pred;
11805 	dtrace_actdesc_t *act;
11806 	dtrace_provider_t *prov;
11807 	dtrace_ecbdesc_t *desc = enab->dten_current;
11808 
11809 	ASSERT(MUTEX_HELD(&dtrace_lock));
11810 	ASSERT(state != NULL);
11811 
11812 	ecb = dtrace_ecb_add(state, probe);
11813 	ecb->dte_uarg = desc->dted_uarg;
11814 
11815 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11816 		dtrace_predicate_hold(pred);
11817 		ecb->dte_predicate = pred;
11818 	}
11819 
11820 	if (probe != NULL) {
11821 		/*
11822 		 * If the provider shows more leg than the consumer is old
11823 		 * enough to see, we need to enable the appropriate implicit
11824 		 * predicate bits to prevent the ecb from activating at
11825 		 * revealing times.
11826 		 *
11827 		 * Providers specifying DTRACE_PRIV_USER at register time
11828 		 * are stating that they need the /proc-style privilege
11829 		 * model to be enforced, and this is what DTRACE_COND_OWNER
11830 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11831 		 */
11832 		prov = probe->dtpr_provider;
11833 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11834 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11835 			ecb->dte_cond |= DTRACE_COND_OWNER;
11836 
11837 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11838 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11839 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11840 
11841 		/*
11842 		 * If the provider shows us kernel innards and the user
11843 		 * is lacking sufficient privilege, enable the
11844 		 * DTRACE_COND_USERMODE implicit predicate.
11845 		 */
11846 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11847 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11848 			ecb->dte_cond |= DTRACE_COND_USERMODE;
11849 	}
11850 
11851 	if (dtrace_ecb_create_cache != NULL) {
11852 		/*
11853 		 * If we have a cached ecb, we'll use its action list instead
11854 		 * of creating our own (saving both time and space).
11855 		 */
11856 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11857 		dtrace_action_t *act = cached->dte_action;
11858 
11859 		if (act != NULL) {
11860 			ASSERT(act->dta_refcnt > 0);
11861 			act->dta_refcnt++;
11862 			ecb->dte_action = act;
11863 			ecb->dte_action_last = cached->dte_action_last;
11864 			ecb->dte_needed = cached->dte_needed;
11865 			ecb->dte_size = cached->dte_size;
11866 			ecb->dte_alignment = cached->dte_alignment;
11867 		}
11868 
11869 		return (ecb);
11870 	}
11871 
11872 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11873 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11874 			dtrace_ecb_destroy(ecb);
11875 			return (NULL);
11876 		}
11877 	}
11878 
11879 	if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11880 		dtrace_ecb_destroy(ecb);
11881 		return (NULL);
11882 	}
11883 
11884 	return (dtrace_ecb_create_cache = ecb);
11885 }
11886 
11887 static int
11888 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11889 {
11890 	dtrace_ecb_t *ecb;
11891 	dtrace_enabling_t *enab = arg;
11892 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11893 
11894 	ASSERT(state != NULL);
11895 
11896 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11897 		/*
11898 		 * This probe was created in a generation for which this
11899 		 * enabling has previously created ECBs; we don't want to
11900 		 * enable it again, so just kick out.
11901 		 */
11902 		return (DTRACE_MATCH_NEXT);
11903 	}
11904 
11905 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11906 		return (DTRACE_MATCH_DONE);
11907 
11908 	dtrace_ecb_enable(ecb);
11909 	return (DTRACE_MATCH_NEXT);
11910 }
11911 
11912 static dtrace_ecb_t *
11913 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11914 {
11915 	dtrace_ecb_t *ecb;
11916 
11917 	ASSERT(MUTEX_HELD(&dtrace_lock));
11918 
11919 	if (id == 0 || id > state->dts_necbs)
11920 		return (NULL);
11921 
11922 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11923 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11924 
11925 	return (state->dts_ecbs[id - 1]);
11926 }
11927 
11928 static dtrace_aggregation_t *
11929 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11930 {
11931 	dtrace_aggregation_t *agg;
11932 
11933 	ASSERT(MUTEX_HELD(&dtrace_lock));
11934 
11935 	if (id == 0 || id > state->dts_naggregations)
11936 		return (NULL);
11937 
11938 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11939 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11940 	    agg->dtag_id == id);
11941 
11942 	return (state->dts_aggregations[id - 1]);
11943 }
11944 
11945 /*
11946  * DTrace Buffer Functions
11947  *
11948  * The following functions manipulate DTrace buffers.  Most of these functions
11949  * are called in the context of establishing or processing consumer state;
11950  * exceptions are explicitly noted.
11951  */
11952 
11953 /*
11954  * Note:  called from cross call context.  This function switches the two
11955  * buffers on a given CPU.  The atomicity of this operation is assured by
11956  * disabling interrupts while the actual switch takes place; the disabling of
11957  * interrupts serializes the execution with any execution of dtrace_probe() on
11958  * the same CPU.
11959  */
11960 static void
11961 dtrace_buffer_switch(dtrace_buffer_t *buf)
11962 {
11963 	caddr_t tomax = buf->dtb_tomax;
11964 	caddr_t xamot = buf->dtb_xamot;
11965 	dtrace_icookie_t cookie;
11966 	hrtime_t now;
11967 
11968 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11969 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11970 
11971 	cookie = dtrace_interrupt_disable();
11972 	now = dtrace_gethrtime();
11973 	buf->dtb_tomax = xamot;
11974 	buf->dtb_xamot = tomax;
11975 	buf->dtb_xamot_drops = buf->dtb_drops;
11976 	buf->dtb_xamot_offset = buf->dtb_offset;
11977 	buf->dtb_xamot_errors = buf->dtb_errors;
11978 	buf->dtb_xamot_flags = buf->dtb_flags;
11979 	buf->dtb_offset = 0;
11980 	buf->dtb_drops = 0;
11981 	buf->dtb_errors = 0;
11982 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11983 	buf->dtb_interval = now - buf->dtb_switched;
11984 	buf->dtb_switched = now;
11985 	dtrace_interrupt_enable(cookie);
11986 }
11987 
11988 /*
11989  * Note:  called from cross call context.  This function activates a buffer
11990  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
11991  * is guaranteed by the disabling of interrupts.
11992  */
11993 static void
11994 dtrace_buffer_activate(dtrace_state_t *state)
11995 {
11996 	dtrace_buffer_t *buf;
11997 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
11998 
11999 	buf = &state->dts_buffer[curcpu];
12000 
12001 	if (buf->dtb_tomax != NULL) {
12002 		/*
12003 		 * We might like to assert that the buffer is marked inactive,
12004 		 * but this isn't necessarily true:  the buffer for the CPU
12005 		 * that processes the BEGIN probe has its buffer activated
12006 		 * manually.  In this case, we take the (harmless) action
12007 		 * re-clearing the bit INACTIVE bit.
12008 		 */
12009 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
12010 	}
12011 
12012 	dtrace_interrupt_enable(cookie);
12013 }
12014 
12015 #ifdef __FreeBSD__
12016 /*
12017  * Activate the specified per-CPU buffer.  This is used instead of
12018  * dtrace_buffer_activate() when APs have not yet started, i.e. when
12019  * activating anonymous state.
12020  */
12021 static void
12022 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu)
12023 {
12024 
12025 	if (state->dts_buffer[cpu].dtb_tomax != NULL)
12026 		state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12027 }
12028 #endif
12029 
12030 static int
12031 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
12032     processorid_t cpu, int *factor)
12033 {
12034 #ifdef illumos
12035 	cpu_t *cp;
12036 #endif
12037 	dtrace_buffer_t *buf;
12038 	int allocated = 0, desired = 0;
12039 
12040 #ifdef illumos
12041 	ASSERT(MUTEX_HELD(&cpu_lock));
12042 	ASSERT(MUTEX_HELD(&dtrace_lock));
12043 
12044 	*factor = 1;
12045 
12046 	if (size > dtrace_nonroot_maxsize &&
12047 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
12048 		return (EFBIG);
12049 
12050 	cp = cpu_list;
12051 
12052 	do {
12053 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12054 			continue;
12055 
12056 		buf = &bufs[cp->cpu_id];
12057 
12058 		/*
12059 		 * If there is already a buffer allocated for this CPU, it
12060 		 * is only possible that this is a DR event.  In this case,
12061 		 */
12062 		if (buf->dtb_tomax != NULL) {
12063 			ASSERT(buf->dtb_size == size);
12064 			continue;
12065 		}
12066 
12067 		ASSERT(buf->dtb_xamot == NULL);
12068 
12069 		if ((buf->dtb_tomax = kmem_zalloc(size,
12070 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12071 			goto err;
12072 
12073 		buf->dtb_size = size;
12074 		buf->dtb_flags = flags;
12075 		buf->dtb_offset = 0;
12076 		buf->dtb_drops = 0;
12077 
12078 		if (flags & DTRACEBUF_NOSWITCH)
12079 			continue;
12080 
12081 		if ((buf->dtb_xamot = kmem_zalloc(size,
12082 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12083 			goto err;
12084 	} while ((cp = cp->cpu_next) != cpu_list);
12085 
12086 	return (0);
12087 
12088 err:
12089 	cp = cpu_list;
12090 
12091 	do {
12092 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12093 			continue;
12094 
12095 		buf = &bufs[cp->cpu_id];
12096 		desired += 2;
12097 
12098 		if (buf->dtb_xamot != NULL) {
12099 			ASSERT(buf->dtb_tomax != NULL);
12100 			ASSERT(buf->dtb_size == size);
12101 			kmem_free(buf->dtb_xamot, size);
12102 			allocated++;
12103 		}
12104 
12105 		if (buf->dtb_tomax != NULL) {
12106 			ASSERT(buf->dtb_size == size);
12107 			kmem_free(buf->dtb_tomax, size);
12108 			allocated++;
12109 		}
12110 
12111 		buf->dtb_tomax = NULL;
12112 		buf->dtb_xamot = NULL;
12113 		buf->dtb_size = 0;
12114 	} while ((cp = cp->cpu_next) != cpu_list);
12115 #else
12116 	int i;
12117 
12118 	*factor = 1;
12119 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
12120     defined(__mips__) || defined(__powerpc__) || defined(__riscv__)
12121 	/*
12122 	 * FreeBSD isn't good at limiting the amount of memory we
12123 	 * ask to malloc, so let's place a limit here before trying
12124 	 * to do something that might well end in tears at bedtime.
12125 	 */
12126 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
12127 		return (ENOMEM);
12128 #endif
12129 
12130 	ASSERT(MUTEX_HELD(&dtrace_lock));
12131 	CPU_FOREACH(i) {
12132 		if (cpu != DTRACE_CPUALL && cpu != i)
12133 			continue;
12134 
12135 		buf = &bufs[i];
12136 
12137 		/*
12138 		 * If there is already a buffer allocated for this CPU, it
12139 		 * is only possible that this is a DR event.  In this case,
12140 		 * the buffer size must match our specified size.
12141 		 */
12142 		if (buf->dtb_tomax != NULL) {
12143 			ASSERT(buf->dtb_size == size);
12144 			continue;
12145 		}
12146 
12147 		ASSERT(buf->dtb_xamot == NULL);
12148 
12149 		if ((buf->dtb_tomax = kmem_zalloc(size,
12150 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12151 			goto err;
12152 
12153 		buf->dtb_size = size;
12154 		buf->dtb_flags = flags;
12155 		buf->dtb_offset = 0;
12156 		buf->dtb_drops = 0;
12157 
12158 		if (flags & DTRACEBUF_NOSWITCH)
12159 			continue;
12160 
12161 		if ((buf->dtb_xamot = kmem_zalloc(size,
12162 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12163 			goto err;
12164 	}
12165 
12166 	return (0);
12167 
12168 err:
12169 	/*
12170 	 * Error allocating memory, so free the buffers that were
12171 	 * allocated before the failed allocation.
12172 	 */
12173 	CPU_FOREACH(i) {
12174 		if (cpu != DTRACE_CPUALL && cpu != i)
12175 			continue;
12176 
12177 		buf = &bufs[i];
12178 		desired += 2;
12179 
12180 		if (buf->dtb_xamot != NULL) {
12181 			ASSERT(buf->dtb_tomax != NULL);
12182 			ASSERT(buf->dtb_size == size);
12183 			kmem_free(buf->dtb_xamot, size);
12184 			allocated++;
12185 		}
12186 
12187 		if (buf->dtb_tomax != NULL) {
12188 			ASSERT(buf->dtb_size == size);
12189 			kmem_free(buf->dtb_tomax, size);
12190 			allocated++;
12191 		}
12192 
12193 		buf->dtb_tomax = NULL;
12194 		buf->dtb_xamot = NULL;
12195 		buf->dtb_size = 0;
12196 
12197 	}
12198 #endif
12199 	*factor = desired / (allocated > 0 ? allocated : 1);
12200 
12201 	return (ENOMEM);
12202 }
12203 
12204 /*
12205  * Note:  called from probe context.  This function just increments the drop
12206  * count on a buffer.  It has been made a function to allow for the
12207  * possibility of understanding the source of mysterious drop counts.  (A
12208  * problem for which one may be particularly disappointed that DTrace cannot
12209  * be used to understand DTrace.)
12210  */
12211 static void
12212 dtrace_buffer_drop(dtrace_buffer_t *buf)
12213 {
12214 	buf->dtb_drops++;
12215 }
12216 
12217 /*
12218  * Note:  called from probe context.  This function is called to reserve space
12219  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
12220  * mstate.  Returns the new offset in the buffer, or a negative value if an
12221  * error has occurred.
12222  */
12223 static intptr_t
12224 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12225     dtrace_state_t *state, dtrace_mstate_t *mstate)
12226 {
12227 	intptr_t offs = buf->dtb_offset, soffs;
12228 	intptr_t woffs;
12229 	caddr_t tomax;
12230 	size_t total;
12231 
12232 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12233 		return (-1);
12234 
12235 	if ((tomax = buf->dtb_tomax) == NULL) {
12236 		dtrace_buffer_drop(buf);
12237 		return (-1);
12238 	}
12239 
12240 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12241 		while (offs & (align - 1)) {
12242 			/*
12243 			 * Assert that our alignment is off by a number which
12244 			 * is itself sizeof (uint32_t) aligned.
12245 			 */
12246 			ASSERT(!((align - (offs & (align - 1))) &
12247 			    (sizeof (uint32_t) - 1)));
12248 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12249 			offs += sizeof (uint32_t);
12250 		}
12251 
12252 		if ((soffs = offs + needed) > buf->dtb_size) {
12253 			dtrace_buffer_drop(buf);
12254 			return (-1);
12255 		}
12256 
12257 		if (mstate == NULL)
12258 			return (offs);
12259 
12260 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12261 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
12262 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12263 
12264 		return (offs);
12265 	}
12266 
12267 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12268 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12269 		    (buf->dtb_flags & DTRACEBUF_FULL))
12270 			return (-1);
12271 		goto out;
12272 	}
12273 
12274 	total = needed + (offs & (align - 1));
12275 
12276 	/*
12277 	 * For a ring buffer, life is quite a bit more complicated.  Before
12278 	 * we can store any padding, we need to adjust our wrapping offset.
12279 	 * (If we've never before wrapped or we're not about to, no adjustment
12280 	 * is required.)
12281 	 */
12282 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12283 	    offs + total > buf->dtb_size) {
12284 		woffs = buf->dtb_xamot_offset;
12285 
12286 		if (offs + total > buf->dtb_size) {
12287 			/*
12288 			 * We can't fit in the end of the buffer.  First, a
12289 			 * sanity check that we can fit in the buffer at all.
12290 			 */
12291 			if (total > buf->dtb_size) {
12292 				dtrace_buffer_drop(buf);
12293 				return (-1);
12294 			}
12295 
12296 			/*
12297 			 * We're going to be storing at the top of the buffer,
12298 			 * so now we need to deal with the wrapped offset.  We
12299 			 * only reset our wrapped offset to 0 if it is
12300 			 * currently greater than the current offset.  If it
12301 			 * is less than the current offset, it is because a
12302 			 * previous allocation induced a wrap -- but the
12303 			 * allocation didn't subsequently take the space due
12304 			 * to an error or false predicate evaluation.  In this
12305 			 * case, we'll just leave the wrapped offset alone: if
12306 			 * the wrapped offset hasn't been advanced far enough
12307 			 * for this allocation, it will be adjusted in the
12308 			 * lower loop.
12309 			 */
12310 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12311 				if (woffs >= offs)
12312 					woffs = 0;
12313 			} else {
12314 				woffs = 0;
12315 			}
12316 
12317 			/*
12318 			 * Now we know that we're going to be storing to the
12319 			 * top of the buffer and that there is room for us
12320 			 * there.  We need to clear the buffer from the current
12321 			 * offset to the end (there may be old gunk there).
12322 			 */
12323 			while (offs < buf->dtb_size)
12324 				tomax[offs++] = 0;
12325 
12326 			/*
12327 			 * We need to set our offset to zero.  And because we
12328 			 * are wrapping, we need to set the bit indicating as
12329 			 * much.  We can also adjust our needed space back
12330 			 * down to the space required by the ECB -- we know
12331 			 * that the top of the buffer is aligned.
12332 			 */
12333 			offs = 0;
12334 			total = needed;
12335 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
12336 		} else {
12337 			/*
12338 			 * There is room for us in the buffer, so we simply
12339 			 * need to check the wrapped offset.
12340 			 */
12341 			if (woffs < offs) {
12342 				/*
12343 				 * The wrapped offset is less than the offset.
12344 				 * This can happen if we allocated buffer space
12345 				 * that induced a wrap, but then we didn't
12346 				 * subsequently take the space due to an error
12347 				 * or false predicate evaluation.  This is
12348 				 * okay; we know that _this_ allocation isn't
12349 				 * going to induce a wrap.  We still can't
12350 				 * reset the wrapped offset to be zero,
12351 				 * however: the space may have been trashed in
12352 				 * the previous failed probe attempt.  But at
12353 				 * least the wrapped offset doesn't need to
12354 				 * be adjusted at all...
12355 				 */
12356 				goto out;
12357 			}
12358 		}
12359 
12360 		while (offs + total > woffs) {
12361 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12362 			size_t size;
12363 
12364 			if (epid == DTRACE_EPIDNONE) {
12365 				size = sizeof (uint32_t);
12366 			} else {
12367 				ASSERT3U(epid, <=, state->dts_necbs);
12368 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
12369 
12370 				size = state->dts_ecbs[epid - 1]->dte_size;
12371 			}
12372 
12373 			ASSERT(woffs + size <= buf->dtb_size);
12374 			ASSERT(size != 0);
12375 
12376 			if (woffs + size == buf->dtb_size) {
12377 				/*
12378 				 * We've reached the end of the buffer; we want
12379 				 * to set the wrapped offset to 0 and break
12380 				 * out.  However, if the offs is 0, then we're
12381 				 * in a strange edge-condition:  the amount of
12382 				 * space that we want to reserve plus the size
12383 				 * of the record that we're overwriting is
12384 				 * greater than the size of the buffer.  This
12385 				 * is problematic because if we reserve the
12386 				 * space but subsequently don't consume it (due
12387 				 * to a failed predicate or error) the wrapped
12388 				 * offset will be 0 -- yet the EPID at offset 0
12389 				 * will not be committed.  This situation is
12390 				 * relatively easy to deal with:  if we're in
12391 				 * this case, the buffer is indistinguishable
12392 				 * from one that hasn't wrapped; we need only
12393 				 * finish the job by clearing the wrapped bit,
12394 				 * explicitly setting the offset to be 0, and
12395 				 * zero'ing out the old data in the buffer.
12396 				 */
12397 				if (offs == 0) {
12398 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12399 					buf->dtb_offset = 0;
12400 					woffs = total;
12401 
12402 					while (woffs < buf->dtb_size)
12403 						tomax[woffs++] = 0;
12404 				}
12405 
12406 				woffs = 0;
12407 				break;
12408 			}
12409 
12410 			woffs += size;
12411 		}
12412 
12413 		/*
12414 		 * We have a wrapped offset.  It may be that the wrapped offset
12415 		 * has become zero -- that's okay.
12416 		 */
12417 		buf->dtb_xamot_offset = woffs;
12418 	}
12419 
12420 out:
12421 	/*
12422 	 * Now we can plow the buffer with any necessary padding.
12423 	 */
12424 	while (offs & (align - 1)) {
12425 		/*
12426 		 * Assert that our alignment is off by a number which
12427 		 * is itself sizeof (uint32_t) aligned.
12428 		 */
12429 		ASSERT(!((align - (offs & (align - 1))) &
12430 		    (sizeof (uint32_t) - 1)));
12431 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12432 		offs += sizeof (uint32_t);
12433 	}
12434 
12435 	if (buf->dtb_flags & DTRACEBUF_FILL) {
12436 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
12437 			buf->dtb_flags |= DTRACEBUF_FULL;
12438 			return (-1);
12439 		}
12440 	}
12441 
12442 	if (mstate == NULL)
12443 		return (offs);
12444 
12445 	/*
12446 	 * For ring buffers and fill buffers, the scratch space is always
12447 	 * the inactive buffer.
12448 	 */
12449 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12450 	mstate->dtms_scratch_size = buf->dtb_size;
12451 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12452 
12453 	return (offs);
12454 }
12455 
12456 static void
12457 dtrace_buffer_polish(dtrace_buffer_t *buf)
12458 {
12459 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12460 	ASSERT(MUTEX_HELD(&dtrace_lock));
12461 
12462 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12463 		return;
12464 
12465 	/*
12466 	 * We need to polish the ring buffer.  There are three cases:
12467 	 *
12468 	 * - The first (and presumably most common) is that there is no gap
12469 	 *   between the buffer offset and the wrapped offset.  In this case,
12470 	 *   there is nothing in the buffer that isn't valid data; we can
12471 	 *   mark the buffer as polished and return.
12472 	 *
12473 	 * - The second (less common than the first but still more common
12474 	 *   than the third) is that there is a gap between the buffer offset
12475 	 *   and the wrapped offset, and the wrapped offset is larger than the
12476 	 *   buffer offset.  This can happen because of an alignment issue, or
12477 	 *   can happen because of a call to dtrace_buffer_reserve() that
12478 	 *   didn't subsequently consume the buffer space.  In this case,
12479 	 *   we need to zero the data from the buffer offset to the wrapped
12480 	 *   offset.
12481 	 *
12482 	 * - The third (and least common) is that there is a gap between the
12483 	 *   buffer offset and the wrapped offset, but the wrapped offset is
12484 	 *   _less_ than the buffer offset.  This can only happen because a
12485 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
12486 	 *   was not subsequently consumed.  In this case, we need to zero the
12487 	 *   space from the offset to the end of the buffer _and_ from the
12488 	 *   top of the buffer to the wrapped offset.
12489 	 */
12490 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
12491 		bzero(buf->dtb_tomax + buf->dtb_offset,
12492 		    buf->dtb_xamot_offset - buf->dtb_offset);
12493 	}
12494 
12495 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
12496 		bzero(buf->dtb_tomax + buf->dtb_offset,
12497 		    buf->dtb_size - buf->dtb_offset);
12498 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12499 	}
12500 }
12501 
12502 /*
12503  * This routine determines if data generated at the specified time has likely
12504  * been entirely consumed at user-level.  This routine is called to determine
12505  * if an ECB on a defunct probe (but for an active enabling) can be safely
12506  * disabled and destroyed.
12507  */
12508 static int
12509 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12510 {
12511 	int i;
12512 
12513 	for (i = 0; i < NCPU; i++) {
12514 		dtrace_buffer_t *buf = &bufs[i];
12515 
12516 		if (buf->dtb_size == 0)
12517 			continue;
12518 
12519 		if (buf->dtb_flags & DTRACEBUF_RING)
12520 			return (0);
12521 
12522 		if (!buf->dtb_switched && buf->dtb_offset != 0)
12523 			return (0);
12524 
12525 		if (buf->dtb_switched - buf->dtb_interval < when)
12526 			return (0);
12527 	}
12528 
12529 	return (1);
12530 }
12531 
12532 static void
12533 dtrace_buffer_free(dtrace_buffer_t *bufs)
12534 {
12535 	int i;
12536 
12537 	for (i = 0; i < NCPU; i++) {
12538 		dtrace_buffer_t *buf = &bufs[i];
12539 
12540 		if (buf->dtb_tomax == NULL) {
12541 			ASSERT(buf->dtb_xamot == NULL);
12542 			ASSERT(buf->dtb_size == 0);
12543 			continue;
12544 		}
12545 
12546 		if (buf->dtb_xamot != NULL) {
12547 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12548 			kmem_free(buf->dtb_xamot, buf->dtb_size);
12549 		}
12550 
12551 		kmem_free(buf->dtb_tomax, buf->dtb_size);
12552 		buf->dtb_size = 0;
12553 		buf->dtb_tomax = NULL;
12554 		buf->dtb_xamot = NULL;
12555 	}
12556 }
12557 
12558 /*
12559  * DTrace Enabling Functions
12560  */
12561 static dtrace_enabling_t *
12562 dtrace_enabling_create(dtrace_vstate_t *vstate)
12563 {
12564 	dtrace_enabling_t *enab;
12565 
12566 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12567 	enab->dten_vstate = vstate;
12568 
12569 	return (enab);
12570 }
12571 
12572 static void
12573 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12574 {
12575 	dtrace_ecbdesc_t **ndesc;
12576 	size_t osize, nsize;
12577 
12578 	/*
12579 	 * We can't add to enablings after we've enabled them, or after we've
12580 	 * retained them.
12581 	 */
12582 	ASSERT(enab->dten_probegen == 0);
12583 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12584 
12585 	if (enab->dten_ndesc < enab->dten_maxdesc) {
12586 		enab->dten_desc[enab->dten_ndesc++] = ecb;
12587 		return;
12588 	}
12589 
12590 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12591 
12592 	if (enab->dten_maxdesc == 0) {
12593 		enab->dten_maxdesc = 1;
12594 	} else {
12595 		enab->dten_maxdesc <<= 1;
12596 	}
12597 
12598 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12599 
12600 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12601 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
12602 	bcopy(enab->dten_desc, ndesc, osize);
12603 	if (enab->dten_desc != NULL)
12604 		kmem_free(enab->dten_desc, osize);
12605 
12606 	enab->dten_desc = ndesc;
12607 	enab->dten_desc[enab->dten_ndesc++] = ecb;
12608 }
12609 
12610 static void
12611 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12612     dtrace_probedesc_t *pd)
12613 {
12614 	dtrace_ecbdesc_t *new;
12615 	dtrace_predicate_t *pred;
12616 	dtrace_actdesc_t *act;
12617 
12618 	/*
12619 	 * We're going to create a new ECB description that matches the
12620 	 * specified ECB in every way, but has the specified probe description.
12621 	 */
12622 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12623 
12624 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12625 		dtrace_predicate_hold(pred);
12626 
12627 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12628 		dtrace_actdesc_hold(act);
12629 
12630 	new->dted_action = ecb->dted_action;
12631 	new->dted_pred = ecb->dted_pred;
12632 	new->dted_probe = *pd;
12633 	new->dted_uarg = ecb->dted_uarg;
12634 
12635 	dtrace_enabling_add(enab, new);
12636 }
12637 
12638 static void
12639 dtrace_enabling_dump(dtrace_enabling_t *enab)
12640 {
12641 	int i;
12642 
12643 	for (i = 0; i < enab->dten_ndesc; i++) {
12644 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12645 
12646 #ifdef __FreeBSD__
12647 		printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i,
12648 		    desc->dtpd_provider, desc->dtpd_mod,
12649 		    desc->dtpd_func, desc->dtpd_name);
12650 #else
12651 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12652 		    desc->dtpd_provider, desc->dtpd_mod,
12653 		    desc->dtpd_func, desc->dtpd_name);
12654 #endif
12655 	}
12656 }
12657 
12658 static void
12659 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12660 {
12661 	int i;
12662 	dtrace_ecbdesc_t *ep;
12663 	dtrace_vstate_t *vstate = enab->dten_vstate;
12664 
12665 	ASSERT(MUTEX_HELD(&dtrace_lock));
12666 
12667 	for (i = 0; i < enab->dten_ndesc; i++) {
12668 		dtrace_actdesc_t *act, *next;
12669 		dtrace_predicate_t *pred;
12670 
12671 		ep = enab->dten_desc[i];
12672 
12673 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12674 			dtrace_predicate_release(pred, vstate);
12675 
12676 		for (act = ep->dted_action; act != NULL; act = next) {
12677 			next = act->dtad_next;
12678 			dtrace_actdesc_release(act, vstate);
12679 		}
12680 
12681 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12682 	}
12683 
12684 	if (enab->dten_desc != NULL)
12685 		kmem_free(enab->dten_desc,
12686 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12687 
12688 	/*
12689 	 * If this was a retained enabling, decrement the dts_nretained count
12690 	 * and take it off of the dtrace_retained list.
12691 	 */
12692 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12693 	    dtrace_retained == enab) {
12694 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12695 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12696 		enab->dten_vstate->dtvs_state->dts_nretained--;
12697 		dtrace_retained_gen++;
12698 	}
12699 
12700 	if (enab->dten_prev == NULL) {
12701 		if (dtrace_retained == enab) {
12702 			dtrace_retained = enab->dten_next;
12703 
12704 			if (dtrace_retained != NULL)
12705 				dtrace_retained->dten_prev = NULL;
12706 		}
12707 	} else {
12708 		ASSERT(enab != dtrace_retained);
12709 		ASSERT(dtrace_retained != NULL);
12710 		enab->dten_prev->dten_next = enab->dten_next;
12711 	}
12712 
12713 	if (enab->dten_next != NULL) {
12714 		ASSERT(dtrace_retained != NULL);
12715 		enab->dten_next->dten_prev = enab->dten_prev;
12716 	}
12717 
12718 	kmem_free(enab, sizeof (dtrace_enabling_t));
12719 }
12720 
12721 static int
12722 dtrace_enabling_retain(dtrace_enabling_t *enab)
12723 {
12724 	dtrace_state_t *state;
12725 
12726 	ASSERT(MUTEX_HELD(&dtrace_lock));
12727 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12728 	ASSERT(enab->dten_vstate != NULL);
12729 
12730 	state = enab->dten_vstate->dtvs_state;
12731 	ASSERT(state != NULL);
12732 
12733 	/*
12734 	 * We only allow each state to retain dtrace_retain_max enablings.
12735 	 */
12736 	if (state->dts_nretained >= dtrace_retain_max)
12737 		return (ENOSPC);
12738 
12739 	state->dts_nretained++;
12740 	dtrace_retained_gen++;
12741 
12742 	if (dtrace_retained == NULL) {
12743 		dtrace_retained = enab;
12744 		return (0);
12745 	}
12746 
12747 	enab->dten_next = dtrace_retained;
12748 	dtrace_retained->dten_prev = enab;
12749 	dtrace_retained = enab;
12750 
12751 	return (0);
12752 }
12753 
12754 static int
12755 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12756     dtrace_probedesc_t *create)
12757 {
12758 	dtrace_enabling_t *new, *enab;
12759 	int found = 0, err = ENOENT;
12760 
12761 	ASSERT(MUTEX_HELD(&dtrace_lock));
12762 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12763 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12764 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12765 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12766 
12767 	new = dtrace_enabling_create(&state->dts_vstate);
12768 
12769 	/*
12770 	 * Iterate over all retained enablings, looking for enablings that
12771 	 * match the specified state.
12772 	 */
12773 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12774 		int i;
12775 
12776 		/*
12777 		 * dtvs_state can only be NULL for helper enablings -- and
12778 		 * helper enablings can't be retained.
12779 		 */
12780 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12781 
12782 		if (enab->dten_vstate->dtvs_state != state)
12783 			continue;
12784 
12785 		/*
12786 		 * Now iterate over each probe description; we're looking for
12787 		 * an exact match to the specified probe description.
12788 		 */
12789 		for (i = 0; i < enab->dten_ndesc; i++) {
12790 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12791 			dtrace_probedesc_t *pd = &ep->dted_probe;
12792 
12793 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12794 				continue;
12795 
12796 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12797 				continue;
12798 
12799 			if (strcmp(pd->dtpd_func, match->dtpd_func))
12800 				continue;
12801 
12802 			if (strcmp(pd->dtpd_name, match->dtpd_name))
12803 				continue;
12804 
12805 			/*
12806 			 * We have a winning probe!  Add it to our growing
12807 			 * enabling.
12808 			 */
12809 			found = 1;
12810 			dtrace_enabling_addlike(new, ep, create);
12811 		}
12812 	}
12813 
12814 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12815 		dtrace_enabling_destroy(new);
12816 		return (err);
12817 	}
12818 
12819 	return (0);
12820 }
12821 
12822 static void
12823 dtrace_enabling_retract(dtrace_state_t *state)
12824 {
12825 	dtrace_enabling_t *enab, *next;
12826 
12827 	ASSERT(MUTEX_HELD(&dtrace_lock));
12828 
12829 	/*
12830 	 * Iterate over all retained enablings, destroy the enablings retained
12831 	 * for the specified state.
12832 	 */
12833 	for (enab = dtrace_retained; enab != NULL; enab = next) {
12834 		next = enab->dten_next;
12835 
12836 		/*
12837 		 * dtvs_state can only be NULL for helper enablings -- and
12838 		 * helper enablings can't be retained.
12839 		 */
12840 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12841 
12842 		if (enab->dten_vstate->dtvs_state == state) {
12843 			ASSERT(state->dts_nretained > 0);
12844 			dtrace_enabling_destroy(enab);
12845 		}
12846 	}
12847 
12848 	ASSERT(state->dts_nretained == 0);
12849 }
12850 
12851 static int
12852 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12853 {
12854 	int i = 0;
12855 	int matched = 0;
12856 
12857 	ASSERT(MUTEX_HELD(&cpu_lock));
12858 	ASSERT(MUTEX_HELD(&dtrace_lock));
12859 
12860 	for (i = 0; i < enab->dten_ndesc; i++) {
12861 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12862 
12863 		enab->dten_current = ep;
12864 		enab->dten_error = 0;
12865 
12866 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
12867 
12868 		if (enab->dten_error != 0) {
12869 			/*
12870 			 * If we get an error half-way through enabling the
12871 			 * probes, we kick out -- perhaps with some number of
12872 			 * them enabled.  Leaving enabled probes enabled may
12873 			 * be slightly confusing for user-level, but we expect
12874 			 * that no one will attempt to actually drive on in
12875 			 * the face of such errors.  If this is an anonymous
12876 			 * enabling (indicated with a NULL nmatched pointer),
12877 			 * we cmn_err() a message.  We aren't expecting to
12878 			 * get such an error -- such as it can exist at all,
12879 			 * it would be a result of corrupted DOF in the driver
12880 			 * properties.
12881 			 */
12882 			if (nmatched == NULL) {
12883 				cmn_err(CE_WARN, "dtrace_enabling_match() "
12884 				    "error on %p: %d", (void *)ep,
12885 				    enab->dten_error);
12886 			}
12887 
12888 			return (enab->dten_error);
12889 		}
12890 	}
12891 
12892 	enab->dten_probegen = dtrace_probegen;
12893 	if (nmatched != NULL)
12894 		*nmatched = matched;
12895 
12896 	return (0);
12897 }
12898 
12899 static void
12900 dtrace_enabling_matchall(void)
12901 {
12902 	dtrace_enabling_t *enab;
12903 
12904 	mutex_enter(&cpu_lock);
12905 	mutex_enter(&dtrace_lock);
12906 
12907 	/*
12908 	 * Iterate over all retained enablings to see if any probes match
12909 	 * against them.  We only perform this operation on enablings for which
12910 	 * we have sufficient permissions by virtue of being in the global zone
12911 	 * or in the same zone as the DTrace client.  Because we can be called
12912 	 * after dtrace_detach() has been called, we cannot assert that there
12913 	 * are retained enablings.  We can safely load from dtrace_retained,
12914 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
12915 	 * block pending our completion.
12916 	 */
12917 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12918 #ifdef illumos
12919 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
12920 
12921 		if (INGLOBALZONE(curproc) ||
12922 		    cr != NULL && getzoneid() == crgetzoneid(cr))
12923 #endif
12924 			(void) dtrace_enabling_match(enab, NULL);
12925 	}
12926 
12927 	mutex_exit(&dtrace_lock);
12928 	mutex_exit(&cpu_lock);
12929 }
12930 
12931 /*
12932  * If an enabling is to be enabled without having matched probes (that is, if
12933  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12934  * enabling must be _primed_ by creating an ECB for every ECB description.
12935  * This must be done to assure that we know the number of speculations, the
12936  * number of aggregations, the minimum buffer size needed, etc. before we
12937  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
12938  * enabling any probes, we create ECBs for every ECB decription, but with a
12939  * NULL probe -- which is exactly what this function does.
12940  */
12941 static void
12942 dtrace_enabling_prime(dtrace_state_t *state)
12943 {
12944 	dtrace_enabling_t *enab;
12945 	int i;
12946 
12947 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12948 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
12949 
12950 		if (enab->dten_vstate->dtvs_state != state)
12951 			continue;
12952 
12953 		/*
12954 		 * We don't want to prime an enabling more than once, lest
12955 		 * we allow a malicious user to induce resource exhaustion.
12956 		 * (The ECBs that result from priming an enabling aren't
12957 		 * leaked -- but they also aren't deallocated until the
12958 		 * consumer state is destroyed.)
12959 		 */
12960 		if (enab->dten_primed)
12961 			continue;
12962 
12963 		for (i = 0; i < enab->dten_ndesc; i++) {
12964 			enab->dten_current = enab->dten_desc[i];
12965 			(void) dtrace_probe_enable(NULL, enab);
12966 		}
12967 
12968 		enab->dten_primed = 1;
12969 	}
12970 }
12971 
12972 /*
12973  * Called to indicate that probes should be provided due to retained
12974  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
12975  * must take an initial lap through the enabling calling the dtps_provide()
12976  * entry point explicitly to allow for autocreated probes.
12977  */
12978 static void
12979 dtrace_enabling_provide(dtrace_provider_t *prv)
12980 {
12981 	int i, all = 0;
12982 	dtrace_probedesc_t desc;
12983 	dtrace_genid_t gen;
12984 
12985 	ASSERT(MUTEX_HELD(&dtrace_lock));
12986 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12987 
12988 	if (prv == NULL) {
12989 		all = 1;
12990 		prv = dtrace_provider;
12991 	}
12992 
12993 	do {
12994 		dtrace_enabling_t *enab;
12995 		void *parg = prv->dtpv_arg;
12996 
12997 retry:
12998 		gen = dtrace_retained_gen;
12999 		for (enab = dtrace_retained; enab != NULL;
13000 		    enab = enab->dten_next) {
13001 			for (i = 0; i < enab->dten_ndesc; i++) {
13002 				desc = enab->dten_desc[i]->dted_probe;
13003 				mutex_exit(&dtrace_lock);
13004 				prv->dtpv_pops.dtps_provide(parg, &desc);
13005 				mutex_enter(&dtrace_lock);
13006 				/*
13007 				 * Process the retained enablings again if
13008 				 * they have changed while we weren't holding
13009 				 * dtrace_lock.
13010 				 */
13011 				if (gen != dtrace_retained_gen)
13012 					goto retry;
13013 			}
13014 		}
13015 	} while (all && (prv = prv->dtpv_next) != NULL);
13016 
13017 	mutex_exit(&dtrace_lock);
13018 	dtrace_probe_provide(NULL, all ? NULL : prv);
13019 	mutex_enter(&dtrace_lock);
13020 }
13021 
13022 /*
13023  * Called to reap ECBs that are attached to probes from defunct providers.
13024  */
13025 static void
13026 dtrace_enabling_reap(void)
13027 {
13028 	dtrace_provider_t *prov;
13029 	dtrace_probe_t *probe;
13030 	dtrace_ecb_t *ecb;
13031 	hrtime_t when;
13032 	int i;
13033 
13034 	mutex_enter(&cpu_lock);
13035 	mutex_enter(&dtrace_lock);
13036 
13037 	for (i = 0; i < dtrace_nprobes; i++) {
13038 		if ((probe = dtrace_probes[i]) == NULL)
13039 			continue;
13040 
13041 		if (probe->dtpr_ecb == NULL)
13042 			continue;
13043 
13044 		prov = probe->dtpr_provider;
13045 
13046 		if ((when = prov->dtpv_defunct) == 0)
13047 			continue;
13048 
13049 		/*
13050 		 * We have ECBs on a defunct provider:  we want to reap these
13051 		 * ECBs to allow the provider to unregister.  The destruction
13052 		 * of these ECBs must be done carefully:  if we destroy the ECB
13053 		 * and the consumer later wishes to consume an EPID that
13054 		 * corresponds to the destroyed ECB (and if the EPID metadata
13055 		 * has not been previously consumed), the consumer will abort
13056 		 * processing on the unknown EPID.  To reduce (but not, sadly,
13057 		 * eliminate) the possibility of this, we will only destroy an
13058 		 * ECB for a defunct provider if, for the state that
13059 		 * corresponds to the ECB:
13060 		 *
13061 		 *  (a)	There is no speculative tracing (which can effectively
13062 		 *	cache an EPID for an arbitrary amount of time).
13063 		 *
13064 		 *  (b)	The principal buffers have been switched twice since the
13065 		 *	provider became defunct.
13066 		 *
13067 		 *  (c)	The aggregation buffers are of zero size or have been
13068 		 *	switched twice since the provider became defunct.
13069 		 *
13070 		 * We use dts_speculates to determine (a) and call a function
13071 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
13072 		 * that as soon as we've been unable to destroy one of the ECBs
13073 		 * associated with the probe, we quit trying -- reaping is only
13074 		 * fruitful in as much as we can destroy all ECBs associated
13075 		 * with the defunct provider's probes.
13076 		 */
13077 		while ((ecb = probe->dtpr_ecb) != NULL) {
13078 			dtrace_state_t *state = ecb->dte_state;
13079 			dtrace_buffer_t *buf = state->dts_buffer;
13080 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
13081 
13082 			if (state->dts_speculates)
13083 				break;
13084 
13085 			if (!dtrace_buffer_consumed(buf, when))
13086 				break;
13087 
13088 			if (!dtrace_buffer_consumed(aggbuf, when))
13089 				break;
13090 
13091 			dtrace_ecb_disable(ecb);
13092 			ASSERT(probe->dtpr_ecb != ecb);
13093 			dtrace_ecb_destroy(ecb);
13094 		}
13095 	}
13096 
13097 	mutex_exit(&dtrace_lock);
13098 	mutex_exit(&cpu_lock);
13099 }
13100 
13101 /*
13102  * DTrace DOF Functions
13103  */
13104 /*ARGSUSED*/
13105 static void
13106 dtrace_dof_error(dof_hdr_t *dof, const char *str)
13107 {
13108 	if (dtrace_err_verbose)
13109 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
13110 
13111 #ifdef DTRACE_ERRDEBUG
13112 	dtrace_errdebug(str);
13113 #endif
13114 }
13115 
13116 /*
13117  * Create DOF out of a currently enabled state.  Right now, we only create
13118  * DOF containing the run-time options -- but this could be expanded to create
13119  * complete DOF representing the enabled state.
13120  */
13121 static dof_hdr_t *
13122 dtrace_dof_create(dtrace_state_t *state)
13123 {
13124 	dof_hdr_t *dof;
13125 	dof_sec_t *sec;
13126 	dof_optdesc_t *opt;
13127 	int i, len = sizeof (dof_hdr_t) +
13128 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
13129 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13130 
13131 	ASSERT(MUTEX_HELD(&dtrace_lock));
13132 
13133 	dof = kmem_zalloc(len, KM_SLEEP);
13134 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
13135 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
13136 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
13137 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
13138 
13139 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
13140 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
13141 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
13142 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
13143 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
13144 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
13145 
13146 	dof->dofh_flags = 0;
13147 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
13148 	dof->dofh_secsize = sizeof (dof_sec_t);
13149 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
13150 	dof->dofh_secoff = sizeof (dof_hdr_t);
13151 	dof->dofh_loadsz = len;
13152 	dof->dofh_filesz = len;
13153 	dof->dofh_pad = 0;
13154 
13155 	/*
13156 	 * Fill in the option section header...
13157 	 */
13158 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
13159 	sec->dofs_type = DOF_SECT_OPTDESC;
13160 	sec->dofs_align = sizeof (uint64_t);
13161 	sec->dofs_flags = DOF_SECF_LOAD;
13162 	sec->dofs_entsize = sizeof (dof_optdesc_t);
13163 
13164 	opt = (dof_optdesc_t *)((uintptr_t)sec +
13165 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
13166 
13167 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
13168 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13169 
13170 	for (i = 0; i < DTRACEOPT_MAX; i++) {
13171 		opt[i].dofo_option = i;
13172 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
13173 		opt[i].dofo_value = state->dts_options[i];
13174 	}
13175 
13176 	return (dof);
13177 }
13178 
13179 static dof_hdr_t *
13180 dtrace_dof_copyin(uintptr_t uarg, int *errp)
13181 {
13182 	dof_hdr_t hdr, *dof;
13183 
13184 	ASSERT(!MUTEX_HELD(&dtrace_lock));
13185 
13186 	/*
13187 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13188 	 */
13189 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13190 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13191 		*errp = EFAULT;
13192 		return (NULL);
13193 	}
13194 
13195 	/*
13196 	 * Now we'll allocate the entire DOF and copy it in -- provided
13197 	 * that the length isn't outrageous.
13198 	 */
13199 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13200 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13201 		*errp = E2BIG;
13202 		return (NULL);
13203 	}
13204 
13205 	if (hdr.dofh_loadsz < sizeof (hdr)) {
13206 		dtrace_dof_error(&hdr, "invalid load size");
13207 		*errp = EINVAL;
13208 		return (NULL);
13209 	}
13210 
13211 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13212 
13213 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13214 	    dof->dofh_loadsz != hdr.dofh_loadsz) {
13215 		kmem_free(dof, hdr.dofh_loadsz);
13216 		*errp = EFAULT;
13217 		return (NULL);
13218 	}
13219 
13220 	return (dof);
13221 }
13222 
13223 #ifdef __FreeBSD__
13224 static dof_hdr_t *
13225 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13226 {
13227 	dof_hdr_t hdr, *dof;
13228 	struct thread *td;
13229 	size_t loadsz;
13230 
13231 	ASSERT(!MUTEX_HELD(&dtrace_lock));
13232 
13233 	td = curthread;
13234 
13235 	/*
13236 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
13237 	 */
13238 	if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13239 		dtrace_dof_error(NULL, "failed to copyin DOF header");
13240 		*errp = EFAULT;
13241 		return (NULL);
13242 	}
13243 
13244 	/*
13245 	 * Now we'll allocate the entire DOF and copy it in -- provided
13246 	 * that the length isn't outrageous.
13247 	 */
13248 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13249 		dtrace_dof_error(&hdr, "load size exceeds maximum");
13250 		*errp = E2BIG;
13251 		return (NULL);
13252 	}
13253 	loadsz = (size_t)hdr.dofh_loadsz;
13254 
13255 	if (loadsz < sizeof (hdr)) {
13256 		dtrace_dof_error(&hdr, "invalid load size");
13257 		*errp = EINVAL;
13258 		return (NULL);
13259 	}
13260 
13261 	dof = kmem_alloc(loadsz, KM_SLEEP);
13262 
13263 	if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13264 	    dof->dofh_loadsz != loadsz) {
13265 		kmem_free(dof, hdr.dofh_loadsz);
13266 		*errp = EFAULT;
13267 		return (NULL);
13268 	}
13269 
13270 	return (dof);
13271 }
13272 
13273 static __inline uchar_t
13274 dtrace_dof_char(char c)
13275 {
13276 
13277 	switch (c) {
13278 	case '0':
13279 	case '1':
13280 	case '2':
13281 	case '3':
13282 	case '4':
13283 	case '5':
13284 	case '6':
13285 	case '7':
13286 	case '8':
13287 	case '9':
13288 		return (c - '0');
13289 	case 'A':
13290 	case 'B':
13291 	case 'C':
13292 	case 'D':
13293 	case 'E':
13294 	case 'F':
13295 		return (c - 'A' + 10);
13296 	case 'a':
13297 	case 'b':
13298 	case 'c':
13299 	case 'd':
13300 	case 'e':
13301 	case 'f':
13302 		return (c - 'a' + 10);
13303 	}
13304 	/* Should not reach here. */
13305 	return (UCHAR_MAX);
13306 }
13307 #endif /* __FreeBSD__ */
13308 
13309 static dof_hdr_t *
13310 dtrace_dof_property(const char *name)
13311 {
13312 #ifdef __FreeBSD__
13313 	uint8_t *dofbuf;
13314 	u_char *data, *eol;
13315 	caddr_t doffile;
13316 	size_t bytes, len, i;
13317 	dof_hdr_t *dof;
13318 	u_char c1, c2;
13319 
13320 	dof = NULL;
13321 
13322 	doffile = preload_search_by_type("dtrace_dof");
13323 	if (doffile == NULL)
13324 		return (NULL);
13325 
13326 	data = preload_fetch_addr(doffile);
13327 	len = preload_fetch_size(doffile);
13328 	for (;;) {
13329 		/* Look for the end of the line. All lines end in a newline. */
13330 		eol = memchr(data, '\n', len);
13331 		if (eol == NULL)
13332 			return (NULL);
13333 
13334 		if (strncmp(name, data, strlen(name)) == 0)
13335 			break;
13336 
13337 		eol++; /* skip past the newline */
13338 		len -= eol - data;
13339 		data = eol;
13340 	}
13341 
13342 	/* We've found the data corresponding to the specified key. */
13343 
13344 	data += strlen(name) + 1; /* skip past the '=' */
13345 	len = eol - data;
13346 	bytes = len / 2;
13347 
13348 	if (bytes < sizeof(dof_hdr_t)) {
13349 		dtrace_dof_error(NULL, "truncated header");
13350 		goto doferr;
13351 	}
13352 
13353 	/*
13354 	 * Each byte is represented by the two ASCII characters in its hex
13355 	 * representation.
13356 	 */
13357 	dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK);
13358 	for (i = 0; i < bytes; i++) {
13359 		c1 = dtrace_dof_char(data[i * 2]);
13360 		c2 = dtrace_dof_char(data[i * 2 + 1]);
13361 		if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) {
13362 			dtrace_dof_error(NULL, "invalid hex char in DOF");
13363 			goto doferr;
13364 		}
13365 		dofbuf[i] = c1 * 16 + c2;
13366 	}
13367 
13368 	dof = (dof_hdr_t *)dofbuf;
13369 	if (bytes < dof->dofh_loadsz) {
13370 		dtrace_dof_error(NULL, "truncated DOF");
13371 		goto doferr;
13372 	}
13373 
13374 	if (dof->dofh_loadsz >= dtrace_dof_maxsize) {
13375 		dtrace_dof_error(NULL, "oversized DOF");
13376 		goto doferr;
13377 	}
13378 
13379 	return (dof);
13380 
13381 doferr:
13382 	free(dof, M_SOLARIS);
13383 	return (NULL);
13384 #else /* __FreeBSD__ */
13385 	uchar_t *buf;
13386 	uint64_t loadsz;
13387 	unsigned int len, i;
13388 	dof_hdr_t *dof;
13389 
13390 	/*
13391 	 * Unfortunately, array of values in .conf files are always (and
13392 	 * only) interpreted to be integer arrays.  We must read our DOF
13393 	 * as an integer array, and then squeeze it into a byte array.
13394 	 */
13395 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13396 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13397 		return (NULL);
13398 
13399 	for (i = 0; i < len; i++)
13400 		buf[i] = (uchar_t)(((int *)buf)[i]);
13401 
13402 	if (len < sizeof (dof_hdr_t)) {
13403 		ddi_prop_free(buf);
13404 		dtrace_dof_error(NULL, "truncated header");
13405 		return (NULL);
13406 	}
13407 
13408 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13409 		ddi_prop_free(buf);
13410 		dtrace_dof_error(NULL, "truncated DOF");
13411 		return (NULL);
13412 	}
13413 
13414 	if (loadsz >= dtrace_dof_maxsize) {
13415 		ddi_prop_free(buf);
13416 		dtrace_dof_error(NULL, "oversized DOF");
13417 		return (NULL);
13418 	}
13419 
13420 	dof = kmem_alloc(loadsz, KM_SLEEP);
13421 	bcopy(buf, dof, loadsz);
13422 	ddi_prop_free(buf);
13423 
13424 	return (dof);
13425 #endif /* !__FreeBSD__ */
13426 }
13427 
13428 static void
13429 dtrace_dof_destroy(dof_hdr_t *dof)
13430 {
13431 	kmem_free(dof, dof->dofh_loadsz);
13432 }
13433 
13434 /*
13435  * Return the dof_sec_t pointer corresponding to a given section index.  If the
13436  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
13437  * a type other than DOF_SECT_NONE is specified, the header is checked against
13438  * this type and NULL is returned if the types do not match.
13439  */
13440 static dof_sec_t *
13441 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13442 {
13443 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13444 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13445 
13446 	if (i >= dof->dofh_secnum) {
13447 		dtrace_dof_error(dof, "referenced section index is invalid");
13448 		return (NULL);
13449 	}
13450 
13451 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13452 		dtrace_dof_error(dof, "referenced section is not loadable");
13453 		return (NULL);
13454 	}
13455 
13456 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13457 		dtrace_dof_error(dof, "referenced section is the wrong type");
13458 		return (NULL);
13459 	}
13460 
13461 	return (sec);
13462 }
13463 
13464 static dtrace_probedesc_t *
13465 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13466 {
13467 	dof_probedesc_t *probe;
13468 	dof_sec_t *strtab;
13469 	uintptr_t daddr = (uintptr_t)dof;
13470 	uintptr_t str;
13471 	size_t size;
13472 
13473 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13474 		dtrace_dof_error(dof, "invalid probe section");
13475 		return (NULL);
13476 	}
13477 
13478 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13479 		dtrace_dof_error(dof, "bad alignment in probe description");
13480 		return (NULL);
13481 	}
13482 
13483 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13484 		dtrace_dof_error(dof, "truncated probe description");
13485 		return (NULL);
13486 	}
13487 
13488 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13489 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13490 
13491 	if (strtab == NULL)
13492 		return (NULL);
13493 
13494 	str = daddr + strtab->dofs_offset;
13495 	size = strtab->dofs_size;
13496 
13497 	if (probe->dofp_provider >= strtab->dofs_size) {
13498 		dtrace_dof_error(dof, "corrupt probe provider");
13499 		return (NULL);
13500 	}
13501 
13502 	(void) strncpy(desc->dtpd_provider,
13503 	    (char *)(str + probe->dofp_provider),
13504 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13505 
13506 	if (probe->dofp_mod >= strtab->dofs_size) {
13507 		dtrace_dof_error(dof, "corrupt probe module");
13508 		return (NULL);
13509 	}
13510 
13511 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13512 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13513 
13514 	if (probe->dofp_func >= strtab->dofs_size) {
13515 		dtrace_dof_error(dof, "corrupt probe function");
13516 		return (NULL);
13517 	}
13518 
13519 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13520 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13521 
13522 	if (probe->dofp_name >= strtab->dofs_size) {
13523 		dtrace_dof_error(dof, "corrupt probe name");
13524 		return (NULL);
13525 	}
13526 
13527 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13528 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13529 
13530 	return (desc);
13531 }
13532 
13533 static dtrace_difo_t *
13534 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13535     cred_t *cr)
13536 {
13537 	dtrace_difo_t *dp;
13538 	size_t ttl = 0;
13539 	dof_difohdr_t *dofd;
13540 	uintptr_t daddr = (uintptr_t)dof;
13541 	size_t max = dtrace_difo_maxsize;
13542 	int i, l, n;
13543 
13544 	static const struct {
13545 		int section;
13546 		int bufoffs;
13547 		int lenoffs;
13548 		int entsize;
13549 		int align;
13550 		const char *msg;
13551 	} difo[] = {
13552 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13553 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13554 		sizeof (dif_instr_t), "multiple DIF sections" },
13555 
13556 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13557 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13558 		sizeof (uint64_t), "multiple integer tables" },
13559 
13560 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13561 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
13562 		sizeof (char), "multiple string tables" },
13563 
13564 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13565 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13566 		sizeof (uint_t), "multiple variable tables" },
13567 
13568 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13569 	};
13570 
13571 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13572 		dtrace_dof_error(dof, "invalid DIFO header section");
13573 		return (NULL);
13574 	}
13575 
13576 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
13577 		dtrace_dof_error(dof, "bad alignment in DIFO header");
13578 		return (NULL);
13579 	}
13580 
13581 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13582 	    sec->dofs_size % sizeof (dof_secidx_t)) {
13583 		dtrace_dof_error(dof, "bad size in DIFO header");
13584 		return (NULL);
13585 	}
13586 
13587 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13588 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13589 
13590 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13591 	dp->dtdo_rtype = dofd->dofd_rtype;
13592 
13593 	for (l = 0; l < n; l++) {
13594 		dof_sec_t *subsec;
13595 		void **bufp;
13596 		uint32_t *lenp;
13597 
13598 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13599 		    dofd->dofd_links[l])) == NULL)
13600 			goto err; /* invalid section link */
13601 
13602 		if (ttl + subsec->dofs_size > max) {
13603 			dtrace_dof_error(dof, "exceeds maximum size");
13604 			goto err;
13605 		}
13606 
13607 		ttl += subsec->dofs_size;
13608 
13609 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13610 			if (subsec->dofs_type != difo[i].section)
13611 				continue;
13612 
13613 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13614 				dtrace_dof_error(dof, "section not loaded");
13615 				goto err;
13616 			}
13617 
13618 			if (subsec->dofs_align != difo[i].align) {
13619 				dtrace_dof_error(dof, "bad alignment");
13620 				goto err;
13621 			}
13622 
13623 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13624 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13625 
13626 			if (*bufp != NULL) {
13627 				dtrace_dof_error(dof, difo[i].msg);
13628 				goto err;
13629 			}
13630 
13631 			if (difo[i].entsize != subsec->dofs_entsize) {
13632 				dtrace_dof_error(dof, "entry size mismatch");
13633 				goto err;
13634 			}
13635 
13636 			if (subsec->dofs_entsize != 0 &&
13637 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13638 				dtrace_dof_error(dof, "corrupt entry size");
13639 				goto err;
13640 			}
13641 
13642 			*lenp = subsec->dofs_size;
13643 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13644 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13645 			    *bufp, subsec->dofs_size);
13646 
13647 			if (subsec->dofs_entsize != 0)
13648 				*lenp /= subsec->dofs_entsize;
13649 
13650 			break;
13651 		}
13652 
13653 		/*
13654 		 * If we encounter a loadable DIFO sub-section that is not
13655 		 * known to us, assume this is a broken program and fail.
13656 		 */
13657 		if (difo[i].section == DOF_SECT_NONE &&
13658 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
13659 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
13660 			goto err;
13661 		}
13662 	}
13663 
13664 	if (dp->dtdo_buf == NULL) {
13665 		/*
13666 		 * We can't have a DIF object without DIF text.
13667 		 */
13668 		dtrace_dof_error(dof, "missing DIF text");
13669 		goto err;
13670 	}
13671 
13672 	/*
13673 	 * Before we validate the DIF object, run through the variable table
13674 	 * looking for the strings -- if any of their size are under, we'll set
13675 	 * their size to be the system-wide default string size.  Note that
13676 	 * this should _not_ happen if the "strsize" option has been set --
13677 	 * in this case, the compiler should have set the size to reflect the
13678 	 * setting of the option.
13679 	 */
13680 	for (i = 0; i < dp->dtdo_varlen; i++) {
13681 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
13682 		dtrace_diftype_t *t = &v->dtdv_type;
13683 
13684 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13685 			continue;
13686 
13687 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13688 			t->dtdt_size = dtrace_strsize_default;
13689 	}
13690 
13691 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13692 		goto err;
13693 
13694 	dtrace_difo_init(dp, vstate);
13695 	return (dp);
13696 
13697 err:
13698 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13699 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13700 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13701 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13702 
13703 	kmem_free(dp, sizeof (dtrace_difo_t));
13704 	return (NULL);
13705 }
13706 
13707 static dtrace_predicate_t *
13708 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13709     cred_t *cr)
13710 {
13711 	dtrace_difo_t *dp;
13712 
13713 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13714 		return (NULL);
13715 
13716 	return (dtrace_predicate_create(dp));
13717 }
13718 
13719 static dtrace_actdesc_t *
13720 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13721     cred_t *cr)
13722 {
13723 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13724 	dof_actdesc_t *desc;
13725 	dof_sec_t *difosec;
13726 	size_t offs;
13727 	uintptr_t daddr = (uintptr_t)dof;
13728 	uint64_t arg;
13729 	dtrace_actkind_t kind;
13730 
13731 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
13732 		dtrace_dof_error(dof, "invalid action section");
13733 		return (NULL);
13734 	}
13735 
13736 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13737 		dtrace_dof_error(dof, "truncated action description");
13738 		return (NULL);
13739 	}
13740 
13741 	if (sec->dofs_align != sizeof (uint64_t)) {
13742 		dtrace_dof_error(dof, "bad alignment in action description");
13743 		return (NULL);
13744 	}
13745 
13746 	if (sec->dofs_size < sec->dofs_entsize) {
13747 		dtrace_dof_error(dof, "section entry size exceeds total size");
13748 		return (NULL);
13749 	}
13750 
13751 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13752 		dtrace_dof_error(dof, "bad entry size in action description");
13753 		return (NULL);
13754 	}
13755 
13756 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13757 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13758 		return (NULL);
13759 	}
13760 
13761 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13762 		desc = (dof_actdesc_t *)(daddr +
13763 		    (uintptr_t)sec->dofs_offset + offs);
13764 		kind = (dtrace_actkind_t)desc->dofa_kind;
13765 
13766 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13767 		    (kind != DTRACEACT_PRINTA ||
13768 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13769 		    (kind == DTRACEACT_DIFEXPR &&
13770 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
13771 			dof_sec_t *strtab;
13772 			char *str, *fmt;
13773 			uint64_t i;
13774 
13775 			/*
13776 			 * The argument to these actions is an index into the
13777 			 * DOF string table.  For printf()-like actions, this
13778 			 * is the format string.  For print(), this is the
13779 			 * CTF type of the expression result.
13780 			 */
13781 			if ((strtab = dtrace_dof_sect(dof,
13782 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13783 				goto err;
13784 
13785 			str = (char *)((uintptr_t)dof +
13786 			    (uintptr_t)strtab->dofs_offset);
13787 
13788 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13789 				if (str[i] == '\0')
13790 					break;
13791 			}
13792 
13793 			if (i >= strtab->dofs_size) {
13794 				dtrace_dof_error(dof, "bogus format string");
13795 				goto err;
13796 			}
13797 
13798 			if (i == desc->dofa_arg) {
13799 				dtrace_dof_error(dof, "empty format string");
13800 				goto err;
13801 			}
13802 
13803 			i -= desc->dofa_arg;
13804 			fmt = kmem_alloc(i + 1, KM_SLEEP);
13805 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
13806 			arg = (uint64_t)(uintptr_t)fmt;
13807 		} else {
13808 			if (kind == DTRACEACT_PRINTA) {
13809 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13810 				arg = 0;
13811 			} else {
13812 				arg = desc->dofa_arg;
13813 			}
13814 		}
13815 
13816 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13817 		    desc->dofa_uarg, arg);
13818 
13819 		if (last != NULL) {
13820 			last->dtad_next = act;
13821 		} else {
13822 			first = act;
13823 		}
13824 
13825 		last = act;
13826 
13827 		if (desc->dofa_difo == DOF_SECIDX_NONE)
13828 			continue;
13829 
13830 		if ((difosec = dtrace_dof_sect(dof,
13831 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13832 			goto err;
13833 
13834 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13835 
13836 		if (act->dtad_difo == NULL)
13837 			goto err;
13838 	}
13839 
13840 	ASSERT(first != NULL);
13841 	return (first);
13842 
13843 err:
13844 	for (act = first; act != NULL; act = next) {
13845 		next = act->dtad_next;
13846 		dtrace_actdesc_release(act, vstate);
13847 	}
13848 
13849 	return (NULL);
13850 }
13851 
13852 static dtrace_ecbdesc_t *
13853 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13854     cred_t *cr)
13855 {
13856 	dtrace_ecbdesc_t *ep;
13857 	dof_ecbdesc_t *ecb;
13858 	dtrace_probedesc_t *desc;
13859 	dtrace_predicate_t *pred = NULL;
13860 
13861 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13862 		dtrace_dof_error(dof, "truncated ECB description");
13863 		return (NULL);
13864 	}
13865 
13866 	if (sec->dofs_align != sizeof (uint64_t)) {
13867 		dtrace_dof_error(dof, "bad alignment in ECB description");
13868 		return (NULL);
13869 	}
13870 
13871 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13872 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13873 
13874 	if (sec == NULL)
13875 		return (NULL);
13876 
13877 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13878 	ep->dted_uarg = ecb->dofe_uarg;
13879 	desc = &ep->dted_probe;
13880 
13881 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13882 		goto err;
13883 
13884 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13885 		if ((sec = dtrace_dof_sect(dof,
13886 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13887 			goto err;
13888 
13889 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13890 			goto err;
13891 
13892 		ep->dted_pred.dtpdd_predicate = pred;
13893 	}
13894 
13895 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13896 		if ((sec = dtrace_dof_sect(dof,
13897 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13898 			goto err;
13899 
13900 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13901 
13902 		if (ep->dted_action == NULL)
13903 			goto err;
13904 	}
13905 
13906 	return (ep);
13907 
13908 err:
13909 	if (pred != NULL)
13910 		dtrace_predicate_release(pred, vstate);
13911 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13912 	return (NULL);
13913 }
13914 
13915 /*
13916  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13917  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
13918  * site of any user SETX relocations to account for load object base address.
13919  * In the future, if we need other relocations, this function can be extended.
13920  */
13921 static int
13922 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13923 {
13924 	uintptr_t daddr = (uintptr_t)dof;
13925 	dof_relohdr_t *dofr =
13926 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13927 	dof_sec_t *ss, *rs, *ts;
13928 	dof_relodesc_t *r;
13929 	uint_t i, n;
13930 
13931 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13932 	    sec->dofs_align != sizeof (dof_secidx_t)) {
13933 		dtrace_dof_error(dof, "invalid relocation header");
13934 		return (-1);
13935 	}
13936 
13937 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13938 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13939 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13940 
13941 	if (ss == NULL || rs == NULL || ts == NULL)
13942 		return (-1); /* dtrace_dof_error() has been called already */
13943 
13944 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13945 	    rs->dofs_align != sizeof (uint64_t)) {
13946 		dtrace_dof_error(dof, "invalid relocation section");
13947 		return (-1);
13948 	}
13949 
13950 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13951 	n = rs->dofs_size / rs->dofs_entsize;
13952 
13953 	for (i = 0; i < n; i++) {
13954 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13955 
13956 		switch (r->dofr_type) {
13957 		case DOF_RELO_NONE:
13958 			break;
13959 		case DOF_RELO_SETX:
13960 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13961 			    sizeof (uint64_t) > ts->dofs_size) {
13962 				dtrace_dof_error(dof, "bad relocation offset");
13963 				return (-1);
13964 			}
13965 
13966 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13967 				dtrace_dof_error(dof, "misaligned setx relo");
13968 				return (-1);
13969 			}
13970 
13971 			*(uint64_t *)taddr += ubase;
13972 			break;
13973 		default:
13974 			dtrace_dof_error(dof, "invalid relocation type");
13975 			return (-1);
13976 		}
13977 
13978 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13979 	}
13980 
13981 	return (0);
13982 }
13983 
13984 /*
13985  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13986  * header:  it should be at the front of a memory region that is at least
13987  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13988  * size.  It need not be validated in any other way.
13989  */
13990 static int
13991 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13992     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13993 {
13994 	uint64_t len = dof->dofh_loadsz, seclen;
13995 	uintptr_t daddr = (uintptr_t)dof;
13996 	dtrace_ecbdesc_t *ep;
13997 	dtrace_enabling_t *enab;
13998 	uint_t i;
13999 
14000 	ASSERT(MUTEX_HELD(&dtrace_lock));
14001 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
14002 
14003 	/*
14004 	 * Check the DOF header identification bytes.  In addition to checking
14005 	 * valid settings, we also verify that unused bits/bytes are zeroed so
14006 	 * we can use them later without fear of regressing existing binaries.
14007 	 */
14008 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
14009 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
14010 		dtrace_dof_error(dof, "DOF magic string mismatch");
14011 		return (-1);
14012 	}
14013 
14014 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
14015 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
14016 		dtrace_dof_error(dof, "DOF has invalid data model");
14017 		return (-1);
14018 	}
14019 
14020 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
14021 		dtrace_dof_error(dof, "DOF encoding mismatch");
14022 		return (-1);
14023 	}
14024 
14025 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14026 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
14027 		dtrace_dof_error(dof, "DOF version mismatch");
14028 		return (-1);
14029 	}
14030 
14031 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
14032 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
14033 		return (-1);
14034 	}
14035 
14036 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
14037 		dtrace_dof_error(dof, "DOF uses too many integer registers");
14038 		return (-1);
14039 	}
14040 
14041 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
14042 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
14043 		return (-1);
14044 	}
14045 
14046 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
14047 		if (dof->dofh_ident[i] != 0) {
14048 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
14049 			return (-1);
14050 		}
14051 	}
14052 
14053 	if (dof->dofh_flags & ~DOF_FL_VALID) {
14054 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
14055 		return (-1);
14056 	}
14057 
14058 	if (dof->dofh_secsize == 0) {
14059 		dtrace_dof_error(dof, "zero section header size");
14060 		return (-1);
14061 	}
14062 
14063 	/*
14064 	 * Check that the section headers don't exceed the amount of DOF
14065 	 * data.  Note that we cast the section size and number of sections
14066 	 * to uint64_t's to prevent possible overflow in the multiplication.
14067 	 */
14068 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
14069 
14070 	if (dof->dofh_secoff > len || seclen > len ||
14071 	    dof->dofh_secoff + seclen > len) {
14072 		dtrace_dof_error(dof, "truncated section headers");
14073 		return (-1);
14074 	}
14075 
14076 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
14077 		dtrace_dof_error(dof, "misaligned section headers");
14078 		return (-1);
14079 	}
14080 
14081 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
14082 		dtrace_dof_error(dof, "misaligned section size");
14083 		return (-1);
14084 	}
14085 
14086 	/*
14087 	 * Take an initial pass through the section headers to be sure that
14088 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
14089 	 * set, do not permit sections relating to providers, probes, or args.
14090 	 */
14091 	for (i = 0; i < dof->dofh_secnum; i++) {
14092 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14093 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14094 
14095 		if (noprobes) {
14096 			switch (sec->dofs_type) {
14097 			case DOF_SECT_PROVIDER:
14098 			case DOF_SECT_PROBES:
14099 			case DOF_SECT_PRARGS:
14100 			case DOF_SECT_PROFFS:
14101 				dtrace_dof_error(dof, "illegal sections "
14102 				    "for enabling");
14103 				return (-1);
14104 			}
14105 		}
14106 
14107 		if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
14108 		    !(sec->dofs_flags & DOF_SECF_LOAD)) {
14109 			dtrace_dof_error(dof, "loadable section with load "
14110 			    "flag unset");
14111 			return (-1);
14112 		}
14113 
14114 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14115 			continue; /* just ignore non-loadable sections */
14116 
14117 		if (!ISP2(sec->dofs_align)) {
14118 			dtrace_dof_error(dof, "bad section alignment");
14119 			return (-1);
14120 		}
14121 
14122 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
14123 			dtrace_dof_error(dof, "misaligned section");
14124 			return (-1);
14125 		}
14126 
14127 		if (sec->dofs_offset > len || sec->dofs_size > len ||
14128 		    sec->dofs_offset + sec->dofs_size > len) {
14129 			dtrace_dof_error(dof, "corrupt section header");
14130 			return (-1);
14131 		}
14132 
14133 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
14134 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
14135 			dtrace_dof_error(dof, "non-terminating string table");
14136 			return (-1);
14137 		}
14138 	}
14139 
14140 	/*
14141 	 * Take a second pass through the sections and locate and perform any
14142 	 * relocations that are present.  We do this after the first pass to
14143 	 * be sure that all sections have had their headers validated.
14144 	 */
14145 	for (i = 0; i < dof->dofh_secnum; i++) {
14146 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14147 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14148 
14149 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
14150 			continue; /* skip sections that are not loadable */
14151 
14152 		switch (sec->dofs_type) {
14153 		case DOF_SECT_URELHDR:
14154 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
14155 				return (-1);
14156 			break;
14157 		}
14158 	}
14159 
14160 	if ((enab = *enabp) == NULL)
14161 		enab = *enabp = dtrace_enabling_create(vstate);
14162 
14163 	for (i = 0; i < dof->dofh_secnum; i++) {
14164 		dof_sec_t *sec = (dof_sec_t *)(daddr +
14165 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14166 
14167 		if (sec->dofs_type != DOF_SECT_ECBDESC)
14168 			continue;
14169 
14170 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
14171 			dtrace_enabling_destroy(enab);
14172 			*enabp = NULL;
14173 			return (-1);
14174 		}
14175 
14176 		dtrace_enabling_add(enab, ep);
14177 	}
14178 
14179 	return (0);
14180 }
14181 
14182 /*
14183  * Process DOF for any options.  This routine assumes that the DOF has been
14184  * at least processed by dtrace_dof_slurp().
14185  */
14186 static int
14187 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
14188 {
14189 	int i, rval;
14190 	uint32_t entsize;
14191 	size_t offs;
14192 	dof_optdesc_t *desc;
14193 
14194 	for (i = 0; i < dof->dofh_secnum; i++) {
14195 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
14196 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14197 
14198 		if (sec->dofs_type != DOF_SECT_OPTDESC)
14199 			continue;
14200 
14201 		if (sec->dofs_align != sizeof (uint64_t)) {
14202 			dtrace_dof_error(dof, "bad alignment in "
14203 			    "option description");
14204 			return (EINVAL);
14205 		}
14206 
14207 		if ((entsize = sec->dofs_entsize) == 0) {
14208 			dtrace_dof_error(dof, "zeroed option entry size");
14209 			return (EINVAL);
14210 		}
14211 
14212 		if (entsize < sizeof (dof_optdesc_t)) {
14213 			dtrace_dof_error(dof, "bad option entry size");
14214 			return (EINVAL);
14215 		}
14216 
14217 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14218 			desc = (dof_optdesc_t *)((uintptr_t)dof +
14219 			    (uintptr_t)sec->dofs_offset + offs);
14220 
14221 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14222 				dtrace_dof_error(dof, "non-zero option string");
14223 				return (EINVAL);
14224 			}
14225 
14226 			if (desc->dofo_value == DTRACEOPT_UNSET) {
14227 				dtrace_dof_error(dof, "unset option");
14228 				return (EINVAL);
14229 			}
14230 
14231 			if ((rval = dtrace_state_option(state,
14232 			    desc->dofo_option, desc->dofo_value)) != 0) {
14233 				dtrace_dof_error(dof, "rejected option");
14234 				return (rval);
14235 			}
14236 		}
14237 	}
14238 
14239 	return (0);
14240 }
14241 
14242 /*
14243  * DTrace Consumer State Functions
14244  */
14245 static int
14246 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14247 {
14248 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14249 	void *base;
14250 	uintptr_t limit;
14251 	dtrace_dynvar_t *dvar, *next, *start;
14252 	int i;
14253 
14254 	ASSERT(MUTEX_HELD(&dtrace_lock));
14255 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14256 
14257 	bzero(dstate, sizeof (dtrace_dstate_t));
14258 
14259 	if ((dstate->dtds_chunksize = chunksize) == 0)
14260 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14261 
14262 	VERIFY(dstate->dtds_chunksize < LONG_MAX);
14263 
14264 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14265 		size = min;
14266 
14267 	if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14268 		return (ENOMEM);
14269 
14270 	dstate->dtds_size = size;
14271 	dstate->dtds_base = base;
14272 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14273 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
14274 
14275 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14276 
14277 	if (hashsize != 1 && (hashsize & 1))
14278 		hashsize--;
14279 
14280 	dstate->dtds_hashsize = hashsize;
14281 	dstate->dtds_hash = dstate->dtds_base;
14282 
14283 	/*
14284 	 * Set all of our hash buckets to point to the single sink, and (if
14285 	 * it hasn't already been set), set the sink's hash value to be the
14286 	 * sink sentinel value.  The sink is needed for dynamic variable
14287 	 * lookups to know that they have iterated over an entire, valid hash
14288 	 * chain.
14289 	 */
14290 	for (i = 0; i < hashsize; i++)
14291 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14292 
14293 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14294 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14295 
14296 	/*
14297 	 * Determine number of active CPUs.  Divide free list evenly among
14298 	 * active CPUs.
14299 	 */
14300 	start = (dtrace_dynvar_t *)
14301 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14302 	limit = (uintptr_t)base + size;
14303 
14304 	VERIFY((uintptr_t)start < limit);
14305 	VERIFY((uintptr_t)start >= (uintptr_t)base);
14306 
14307 	maxper = (limit - (uintptr_t)start) / NCPU;
14308 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14309 
14310 #ifndef illumos
14311 	CPU_FOREACH(i) {
14312 #else
14313 	for (i = 0; i < NCPU; i++) {
14314 #endif
14315 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14316 
14317 		/*
14318 		 * If we don't even have enough chunks to make it once through
14319 		 * NCPUs, we're just going to allocate everything to the first
14320 		 * CPU.  And if we're on the last CPU, we're going to allocate
14321 		 * whatever is left over.  In either case, we set the limit to
14322 		 * be the limit of the dynamic variable space.
14323 		 */
14324 		if (maxper == 0 || i == NCPU - 1) {
14325 			limit = (uintptr_t)base + size;
14326 			start = NULL;
14327 		} else {
14328 			limit = (uintptr_t)start + maxper;
14329 			start = (dtrace_dynvar_t *)limit;
14330 		}
14331 
14332 		VERIFY(limit <= (uintptr_t)base + size);
14333 
14334 		for (;;) {
14335 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14336 			    dstate->dtds_chunksize);
14337 
14338 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14339 				break;
14340 
14341 			VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14342 			    (uintptr_t)dvar <= (uintptr_t)base + size);
14343 			dvar->dtdv_next = next;
14344 			dvar = next;
14345 		}
14346 
14347 		if (maxper == 0)
14348 			break;
14349 	}
14350 
14351 	return (0);
14352 }
14353 
14354 static void
14355 dtrace_dstate_fini(dtrace_dstate_t *dstate)
14356 {
14357 	ASSERT(MUTEX_HELD(&cpu_lock));
14358 
14359 	if (dstate->dtds_base == NULL)
14360 		return;
14361 
14362 	kmem_free(dstate->dtds_base, dstate->dtds_size);
14363 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14364 }
14365 
14366 static void
14367 dtrace_vstate_fini(dtrace_vstate_t *vstate)
14368 {
14369 	/*
14370 	 * Logical XOR, where are you?
14371 	 */
14372 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14373 
14374 	if (vstate->dtvs_nglobals > 0) {
14375 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14376 		    sizeof (dtrace_statvar_t *));
14377 	}
14378 
14379 	if (vstate->dtvs_ntlocals > 0) {
14380 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14381 		    sizeof (dtrace_difv_t));
14382 	}
14383 
14384 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14385 
14386 	if (vstate->dtvs_nlocals > 0) {
14387 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14388 		    sizeof (dtrace_statvar_t *));
14389 	}
14390 }
14391 
14392 #ifdef illumos
14393 static void
14394 dtrace_state_clean(dtrace_state_t *state)
14395 {
14396 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14397 		return;
14398 
14399 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14400 	dtrace_speculation_clean(state);
14401 }
14402 
14403 static void
14404 dtrace_state_deadman(dtrace_state_t *state)
14405 {
14406 	hrtime_t now;
14407 
14408 	dtrace_sync();
14409 
14410 	now = dtrace_gethrtime();
14411 
14412 	if (state != dtrace_anon.dta_state &&
14413 	    now - state->dts_laststatus >= dtrace_deadman_user)
14414 		return;
14415 
14416 	/*
14417 	 * We must be sure that dts_alive never appears to be less than the
14418 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14419 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14420 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14421 	 * the new value.  This assures that dts_alive never appears to be
14422 	 * less than its true value, regardless of the order in which the
14423 	 * stores to the underlying storage are issued.
14424 	 */
14425 	state->dts_alive = INT64_MAX;
14426 	dtrace_membar_producer();
14427 	state->dts_alive = now;
14428 }
14429 #else	/* !illumos */
14430 static void
14431 dtrace_state_clean(void *arg)
14432 {
14433 	dtrace_state_t *state = arg;
14434 	dtrace_optval_t *opt = state->dts_options;
14435 
14436 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14437 		return;
14438 
14439 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14440 	dtrace_speculation_clean(state);
14441 
14442 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14443 	    dtrace_state_clean, state);
14444 }
14445 
14446 static void
14447 dtrace_state_deadman(void *arg)
14448 {
14449 	dtrace_state_t *state = arg;
14450 	hrtime_t now;
14451 
14452 	dtrace_sync();
14453 
14454 	dtrace_debug_output();
14455 
14456 	now = dtrace_gethrtime();
14457 
14458 	if (state != dtrace_anon.dta_state &&
14459 	    now - state->dts_laststatus >= dtrace_deadman_user)
14460 		return;
14461 
14462 	/*
14463 	 * We must be sure that dts_alive never appears to be less than the
14464 	 * value upon entry to dtrace_state_deadman(), and because we lack a
14465 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
14466 	 * store INT64_MAX to it, followed by a memory barrier, followed by
14467 	 * the new value.  This assures that dts_alive never appears to be
14468 	 * less than its true value, regardless of the order in which the
14469 	 * stores to the underlying storage are issued.
14470 	 */
14471 	state->dts_alive = INT64_MAX;
14472 	dtrace_membar_producer();
14473 	state->dts_alive = now;
14474 
14475 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14476 	    dtrace_state_deadman, state);
14477 }
14478 #endif	/* illumos */
14479 
14480 static dtrace_state_t *
14481 #ifdef illumos
14482 dtrace_state_create(dev_t *devp, cred_t *cr)
14483 #else
14484 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused)
14485 #endif
14486 {
14487 #ifdef illumos
14488 	minor_t minor;
14489 	major_t major;
14490 #else
14491 	cred_t *cr = NULL;
14492 	int m = 0;
14493 #endif
14494 	char c[30];
14495 	dtrace_state_t *state;
14496 	dtrace_optval_t *opt;
14497 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
14498 
14499 	ASSERT(MUTEX_HELD(&dtrace_lock));
14500 	ASSERT(MUTEX_HELD(&cpu_lock));
14501 
14502 #ifdef illumos
14503 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14504 	    VM_BESTFIT | VM_SLEEP);
14505 
14506 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14507 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14508 		return (NULL);
14509 	}
14510 
14511 	state = ddi_get_soft_state(dtrace_softstate, minor);
14512 #else
14513 	if (dev != NULL) {
14514 		cr = dev->si_cred;
14515 		m = dev2unit(dev);
14516 	}
14517 
14518 	/* Allocate memory for the state. */
14519 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14520 #endif
14521 
14522 	state->dts_epid = DTRACE_EPIDNONE + 1;
14523 
14524 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14525 #ifdef illumos
14526 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14527 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14528 
14529 	if (devp != NULL) {
14530 		major = getemajor(*devp);
14531 	} else {
14532 		major = ddi_driver_major(dtrace_devi);
14533 	}
14534 
14535 	state->dts_dev = makedevice(major, minor);
14536 
14537 	if (devp != NULL)
14538 		*devp = state->dts_dev;
14539 #else
14540 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14541 	state->dts_dev = dev;
14542 #endif
14543 
14544 	/*
14545 	 * We allocate NCPU buffers.  On the one hand, this can be quite
14546 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
14547 	 * other hand, it saves an additional memory reference in the probe
14548 	 * path.
14549 	 */
14550 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14551 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14552 
14553 #ifdef illumos
14554 	state->dts_cleaner = CYCLIC_NONE;
14555 	state->dts_deadman = CYCLIC_NONE;
14556 #else
14557 	callout_init(&state->dts_cleaner, 1);
14558 	callout_init(&state->dts_deadman, 1);
14559 #endif
14560 	state->dts_vstate.dtvs_state = state;
14561 
14562 	for (i = 0; i < DTRACEOPT_MAX; i++)
14563 		state->dts_options[i] = DTRACEOPT_UNSET;
14564 
14565 	/*
14566 	 * Set the default options.
14567 	 */
14568 	opt = state->dts_options;
14569 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14570 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14571 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14572 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14573 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14574 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14575 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14576 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14577 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14578 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14579 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14580 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14581 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14582 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14583 
14584 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14585 
14586 	/*
14587 	 * Depending on the user credentials, we set flag bits which alter probe
14588 	 * visibility or the amount of destructiveness allowed.  In the case of
14589 	 * actual anonymous tracing, or the possession of all privileges, all of
14590 	 * the normal checks are bypassed.
14591 	 */
14592 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14593 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14594 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14595 	} else {
14596 		/*
14597 		 * Set up the credentials for this instantiation.  We take a
14598 		 * hold on the credential to prevent it from disappearing on
14599 		 * us; this in turn prevents the zone_t referenced by this
14600 		 * credential from disappearing.  This means that we can
14601 		 * examine the credential and the zone from probe context.
14602 		 */
14603 		crhold(cr);
14604 		state->dts_cred.dcr_cred = cr;
14605 
14606 		/*
14607 		 * CRA_PROC means "we have *some* privilege for dtrace" and
14608 		 * unlocks the use of variables like pid, zonename, etc.
14609 		 */
14610 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14611 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14612 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14613 		}
14614 
14615 		/*
14616 		 * dtrace_user allows use of syscall and profile providers.
14617 		 * If the user also has proc_owner and/or proc_zone, we
14618 		 * extend the scope to include additional visibility and
14619 		 * destructive power.
14620 		 */
14621 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14622 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14623 				state->dts_cred.dcr_visible |=
14624 				    DTRACE_CRV_ALLPROC;
14625 
14626 				state->dts_cred.dcr_action |=
14627 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14628 			}
14629 
14630 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14631 				state->dts_cred.dcr_visible |=
14632 				    DTRACE_CRV_ALLZONE;
14633 
14634 				state->dts_cred.dcr_action |=
14635 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14636 			}
14637 
14638 			/*
14639 			 * If we have all privs in whatever zone this is,
14640 			 * we can do destructive things to processes which
14641 			 * have altered credentials.
14642 			 */
14643 #ifdef illumos
14644 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14645 			    cr->cr_zone->zone_privset)) {
14646 				state->dts_cred.dcr_action |=
14647 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14648 			}
14649 #endif
14650 		}
14651 
14652 		/*
14653 		 * Holding the dtrace_kernel privilege also implies that
14654 		 * the user has the dtrace_user privilege from a visibility
14655 		 * perspective.  But without further privileges, some
14656 		 * destructive actions are not available.
14657 		 */
14658 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14659 			/*
14660 			 * Make all probes in all zones visible.  However,
14661 			 * this doesn't mean that all actions become available
14662 			 * to all zones.
14663 			 */
14664 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14665 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14666 
14667 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14668 			    DTRACE_CRA_PROC;
14669 			/*
14670 			 * Holding proc_owner means that destructive actions
14671 			 * for *this* zone are allowed.
14672 			 */
14673 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14674 				state->dts_cred.dcr_action |=
14675 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14676 
14677 			/*
14678 			 * Holding proc_zone means that destructive actions
14679 			 * for this user/group ID in all zones is allowed.
14680 			 */
14681 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14682 				state->dts_cred.dcr_action |=
14683 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14684 
14685 #ifdef illumos
14686 			/*
14687 			 * If we have all privs in whatever zone this is,
14688 			 * we can do destructive things to processes which
14689 			 * have altered credentials.
14690 			 */
14691 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14692 			    cr->cr_zone->zone_privset)) {
14693 				state->dts_cred.dcr_action |=
14694 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14695 			}
14696 #endif
14697 		}
14698 
14699 		/*
14700 		 * Holding the dtrace_proc privilege gives control over fasttrap
14701 		 * and pid providers.  We need to grant wider destructive
14702 		 * privileges in the event that the user has proc_owner and/or
14703 		 * proc_zone.
14704 		 */
14705 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14706 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14707 				state->dts_cred.dcr_action |=
14708 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14709 
14710 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14711 				state->dts_cred.dcr_action |=
14712 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14713 		}
14714 	}
14715 
14716 	return (state);
14717 }
14718 
14719 static int
14720 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14721 {
14722 	dtrace_optval_t *opt = state->dts_options, size;
14723 	processorid_t cpu = 0;;
14724 	int flags = 0, rval, factor, divisor = 1;
14725 
14726 	ASSERT(MUTEX_HELD(&dtrace_lock));
14727 	ASSERT(MUTEX_HELD(&cpu_lock));
14728 	ASSERT(which < DTRACEOPT_MAX);
14729 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14730 	    (state == dtrace_anon.dta_state &&
14731 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14732 
14733 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14734 		return (0);
14735 
14736 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14737 		cpu = opt[DTRACEOPT_CPU];
14738 
14739 	if (which == DTRACEOPT_SPECSIZE)
14740 		flags |= DTRACEBUF_NOSWITCH;
14741 
14742 	if (which == DTRACEOPT_BUFSIZE) {
14743 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14744 			flags |= DTRACEBUF_RING;
14745 
14746 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14747 			flags |= DTRACEBUF_FILL;
14748 
14749 		if (state != dtrace_anon.dta_state ||
14750 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14751 			flags |= DTRACEBUF_INACTIVE;
14752 	}
14753 
14754 	for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14755 		/*
14756 		 * The size must be 8-byte aligned.  If the size is not 8-byte
14757 		 * aligned, drop it down by the difference.
14758 		 */
14759 		if (size & (sizeof (uint64_t) - 1))
14760 			size -= size & (sizeof (uint64_t) - 1);
14761 
14762 		if (size < state->dts_reserve) {
14763 			/*
14764 			 * Buffers always must be large enough to accommodate
14765 			 * their prereserved space.  We return E2BIG instead
14766 			 * of ENOMEM in this case to allow for user-level
14767 			 * software to differentiate the cases.
14768 			 */
14769 			return (E2BIG);
14770 		}
14771 
14772 		rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14773 
14774 		if (rval != ENOMEM) {
14775 			opt[which] = size;
14776 			return (rval);
14777 		}
14778 
14779 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14780 			return (rval);
14781 
14782 		for (divisor = 2; divisor < factor; divisor <<= 1)
14783 			continue;
14784 	}
14785 
14786 	return (ENOMEM);
14787 }
14788 
14789 static int
14790 dtrace_state_buffers(dtrace_state_t *state)
14791 {
14792 	dtrace_speculation_t *spec = state->dts_speculations;
14793 	int rval, i;
14794 
14795 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14796 	    DTRACEOPT_BUFSIZE)) != 0)
14797 		return (rval);
14798 
14799 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14800 	    DTRACEOPT_AGGSIZE)) != 0)
14801 		return (rval);
14802 
14803 	for (i = 0; i < state->dts_nspeculations; i++) {
14804 		if ((rval = dtrace_state_buffer(state,
14805 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14806 			return (rval);
14807 	}
14808 
14809 	return (0);
14810 }
14811 
14812 static void
14813 dtrace_state_prereserve(dtrace_state_t *state)
14814 {
14815 	dtrace_ecb_t *ecb;
14816 	dtrace_probe_t *probe;
14817 
14818 	state->dts_reserve = 0;
14819 
14820 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14821 		return;
14822 
14823 	/*
14824 	 * If our buffer policy is a "fill" buffer policy, we need to set the
14825 	 * prereserved space to be the space required by the END probes.
14826 	 */
14827 	probe = dtrace_probes[dtrace_probeid_end - 1];
14828 	ASSERT(probe != NULL);
14829 
14830 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14831 		if (ecb->dte_state != state)
14832 			continue;
14833 
14834 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14835 	}
14836 }
14837 
14838 static int
14839 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14840 {
14841 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
14842 	dtrace_speculation_t *spec;
14843 	dtrace_buffer_t *buf;
14844 #ifdef illumos
14845 	cyc_handler_t hdlr;
14846 	cyc_time_t when;
14847 #endif
14848 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14849 	dtrace_icookie_t cookie;
14850 
14851 	mutex_enter(&cpu_lock);
14852 	mutex_enter(&dtrace_lock);
14853 
14854 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14855 		rval = EBUSY;
14856 		goto out;
14857 	}
14858 
14859 	/*
14860 	 * Before we can perform any checks, we must prime all of the
14861 	 * retained enablings that correspond to this state.
14862 	 */
14863 	dtrace_enabling_prime(state);
14864 
14865 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14866 		rval = EACCES;
14867 		goto out;
14868 	}
14869 
14870 	dtrace_state_prereserve(state);
14871 
14872 	/*
14873 	 * Now we want to do is try to allocate our speculations.
14874 	 * We do not automatically resize the number of speculations; if
14875 	 * this fails, we will fail the operation.
14876 	 */
14877 	nspec = opt[DTRACEOPT_NSPEC];
14878 	ASSERT(nspec != DTRACEOPT_UNSET);
14879 
14880 	if (nspec > INT_MAX) {
14881 		rval = ENOMEM;
14882 		goto out;
14883 	}
14884 
14885 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14886 	    KM_NOSLEEP | KM_NORMALPRI);
14887 
14888 	if (spec == NULL) {
14889 		rval = ENOMEM;
14890 		goto out;
14891 	}
14892 
14893 	state->dts_speculations = spec;
14894 	state->dts_nspeculations = (int)nspec;
14895 
14896 	for (i = 0; i < nspec; i++) {
14897 		if ((buf = kmem_zalloc(bufsize,
14898 		    KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
14899 			rval = ENOMEM;
14900 			goto err;
14901 		}
14902 
14903 		spec[i].dtsp_buffer = buf;
14904 	}
14905 
14906 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14907 		if (dtrace_anon.dta_state == NULL) {
14908 			rval = ENOENT;
14909 			goto out;
14910 		}
14911 
14912 		if (state->dts_necbs != 0) {
14913 			rval = EALREADY;
14914 			goto out;
14915 		}
14916 
14917 		state->dts_anon = dtrace_anon_grab();
14918 		ASSERT(state->dts_anon != NULL);
14919 		state = state->dts_anon;
14920 
14921 		/*
14922 		 * We want "grabanon" to be set in the grabbed state, so we'll
14923 		 * copy that option value from the grabbing state into the
14924 		 * grabbed state.
14925 		 */
14926 		state->dts_options[DTRACEOPT_GRABANON] =
14927 		    opt[DTRACEOPT_GRABANON];
14928 
14929 		*cpu = dtrace_anon.dta_beganon;
14930 
14931 		/*
14932 		 * If the anonymous state is active (as it almost certainly
14933 		 * is if the anonymous enabling ultimately matched anything),
14934 		 * we don't allow any further option processing -- but we
14935 		 * don't return failure.
14936 		 */
14937 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14938 			goto out;
14939 	}
14940 
14941 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14942 	    opt[DTRACEOPT_AGGSIZE] != 0) {
14943 		if (state->dts_aggregations == NULL) {
14944 			/*
14945 			 * We're not going to create an aggregation buffer
14946 			 * because we don't have any ECBs that contain
14947 			 * aggregations -- set this option to 0.
14948 			 */
14949 			opt[DTRACEOPT_AGGSIZE] = 0;
14950 		} else {
14951 			/*
14952 			 * If we have an aggregation buffer, we must also have
14953 			 * a buffer to use as scratch.
14954 			 */
14955 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14956 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14957 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14958 			}
14959 		}
14960 	}
14961 
14962 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14963 	    opt[DTRACEOPT_SPECSIZE] != 0) {
14964 		if (!state->dts_speculates) {
14965 			/*
14966 			 * We're not going to create speculation buffers
14967 			 * because we don't have any ECBs that actually
14968 			 * speculate -- set the speculation size to 0.
14969 			 */
14970 			opt[DTRACEOPT_SPECSIZE] = 0;
14971 		}
14972 	}
14973 
14974 	/*
14975 	 * The bare minimum size for any buffer that we're actually going to
14976 	 * do anything to is sizeof (uint64_t).
14977 	 */
14978 	sz = sizeof (uint64_t);
14979 
14980 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14981 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14982 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14983 		/*
14984 		 * A buffer size has been explicitly set to 0 (or to a size
14985 		 * that will be adjusted to 0) and we need the space -- we
14986 		 * need to return failure.  We return ENOSPC to differentiate
14987 		 * it from failing to allocate a buffer due to failure to meet
14988 		 * the reserve (for which we return E2BIG).
14989 		 */
14990 		rval = ENOSPC;
14991 		goto out;
14992 	}
14993 
14994 	if ((rval = dtrace_state_buffers(state)) != 0)
14995 		goto err;
14996 
14997 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14998 		sz = dtrace_dstate_defsize;
14999 
15000 	do {
15001 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
15002 
15003 		if (rval == 0)
15004 			break;
15005 
15006 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
15007 			goto err;
15008 	} while (sz >>= 1);
15009 
15010 	opt[DTRACEOPT_DYNVARSIZE] = sz;
15011 
15012 	if (rval != 0)
15013 		goto err;
15014 
15015 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
15016 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
15017 
15018 	if (opt[DTRACEOPT_CLEANRATE] == 0)
15019 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15020 
15021 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
15022 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
15023 
15024 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
15025 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15026 
15027 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
15028 #ifdef illumos
15029 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
15030 	hdlr.cyh_arg = state;
15031 	hdlr.cyh_level = CY_LOW_LEVEL;
15032 
15033 	when.cyt_when = 0;
15034 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
15035 
15036 	state->dts_cleaner = cyclic_add(&hdlr, &when);
15037 
15038 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
15039 	hdlr.cyh_arg = state;
15040 	hdlr.cyh_level = CY_LOW_LEVEL;
15041 
15042 	when.cyt_when = 0;
15043 	when.cyt_interval = dtrace_deadman_interval;
15044 
15045 	state->dts_deadman = cyclic_add(&hdlr, &when);
15046 #else
15047 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
15048 	    dtrace_state_clean, state);
15049 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
15050 	    dtrace_state_deadman, state);
15051 #endif
15052 
15053 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
15054 
15055 #ifdef illumos
15056 	if (state->dts_getf != 0 &&
15057 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15058 		/*
15059 		 * We don't have kernel privs but we have at least one call
15060 		 * to getf(); we need to bump our zone's count, and (if
15061 		 * this is the first enabling to have an unprivileged call
15062 		 * to getf()) we need to hook into closef().
15063 		 */
15064 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
15065 
15066 		if (dtrace_getf++ == 0) {
15067 			ASSERT(dtrace_closef == NULL);
15068 			dtrace_closef = dtrace_getf_barrier;
15069 		}
15070 	}
15071 #endif
15072 
15073 	/*
15074 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
15075 	 * interrupts here both to record the CPU on which we fired the BEGIN
15076 	 * probe (the data from this CPU will be processed first at user
15077 	 * level) and to manually activate the buffer for this CPU.
15078 	 */
15079 	cookie = dtrace_interrupt_disable();
15080 	*cpu = curcpu;
15081 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
15082 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
15083 
15084 	dtrace_probe(dtrace_probeid_begin,
15085 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15086 	dtrace_interrupt_enable(cookie);
15087 	/*
15088 	 * We may have had an exit action from a BEGIN probe; only change our
15089 	 * state to ACTIVE if we're still in WARMUP.
15090 	 */
15091 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
15092 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
15093 
15094 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
15095 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
15096 
15097 #ifdef __FreeBSD__
15098 	/*
15099 	 * We enable anonymous tracing before APs are started, so we must
15100 	 * activate buffers using the current CPU.
15101 	 */
15102 	if (state == dtrace_anon.dta_state)
15103 		for (int i = 0; i < NCPU; i++)
15104 			dtrace_buffer_activate_cpu(state, i);
15105 	else
15106 		dtrace_xcall(DTRACE_CPUALL,
15107 		    (dtrace_xcall_t)dtrace_buffer_activate, state);
15108 #else
15109 	/*
15110 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
15111 	 * want each CPU to transition its principal buffer out of the
15112 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
15113 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
15114 	 * atomically transition from processing none of a state's ECBs to
15115 	 * processing all of them.
15116 	 */
15117 	dtrace_xcall(DTRACE_CPUALL,
15118 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
15119 #endif
15120 	goto out;
15121 
15122 err:
15123 	dtrace_buffer_free(state->dts_buffer);
15124 	dtrace_buffer_free(state->dts_aggbuffer);
15125 
15126 	if ((nspec = state->dts_nspeculations) == 0) {
15127 		ASSERT(state->dts_speculations == NULL);
15128 		goto out;
15129 	}
15130 
15131 	spec = state->dts_speculations;
15132 	ASSERT(spec != NULL);
15133 
15134 	for (i = 0; i < state->dts_nspeculations; i++) {
15135 		if ((buf = spec[i].dtsp_buffer) == NULL)
15136 			break;
15137 
15138 		dtrace_buffer_free(buf);
15139 		kmem_free(buf, bufsize);
15140 	}
15141 
15142 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15143 	state->dts_nspeculations = 0;
15144 	state->dts_speculations = NULL;
15145 
15146 out:
15147 	mutex_exit(&dtrace_lock);
15148 	mutex_exit(&cpu_lock);
15149 
15150 	return (rval);
15151 }
15152 
15153 static int
15154 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
15155 {
15156 	dtrace_icookie_t cookie;
15157 
15158 	ASSERT(MUTEX_HELD(&dtrace_lock));
15159 
15160 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
15161 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
15162 		return (EINVAL);
15163 
15164 	/*
15165 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
15166 	 * to be sure that every CPU has seen it.  See below for the details
15167 	 * on why this is done.
15168 	 */
15169 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
15170 	dtrace_sync();
15171 
15172 	/*
15173 	 * By this point, it is impossible for any CPU to be still processing
15174 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
15175 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
15176 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
15177 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
15178 	 * iff we're in the END probe.
15179 	 */
15180 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
15181 	dtrace_sync();
15182 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
15183 
15184 	/*
15185 	 * Finally, we can release the reserve and call the END probe.  We
15186 	 * disable interrupts across calling the END probe to allow us to
15187 	 * return the CPU on which we actually called the END probe.  This
15188 	 * allows user-land to be sure that this CPU's principal buffer is
15189 	 * processed last.
15190 	 */
15191 	state->dts_reserve = 0;
15192 
15193 	cookie = dtrace_interrupt_disable();
15194 	*cpu = curcpu;
15195 	dtrace_probe(dtrace_probeid_end,
15196 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15197 	dtrace_interrupt_enable(cookie);
15198 
15199 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
15200 	dtrace_sync();
15201 
15202 #ifdef illumos
15203 	if (state->dts_getf != 0 &&
15204 	    !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15205 		/*
15206 		 * We don't have kernel privs but we have at least one call
15207 		 * to getf(); we need to lower our zone's count, and (if
15208 		 * this is the last enabling to have an unprivileged call
15209 		 * to getf()) we need to clear the closef() hook.
15210 		 */
15211 		ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
15212 		ASSERT(dtrace_closef == dtrace_getf_barrier);
15213 		ASSERT(dtrace_getf > 0);
15214 
15215 		state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
15216 
15217 		if (--dtrace_getf == 0)
15218 			dtrace_closef = NULL;
15219 	}
15220 #endif
15221 
15222 	return (0);
15223 }
15224 
15225 static int
15226 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
15227     dtrace_optval_t val)
15228 {
15229 	ASSERT(MUTEX_HELD(&dtrace_lock));
15230 
15231 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15232 		return (EBUSY);
15233 
15234 	if (option >= DTRACEOPT_MAX)
15235 		return (EINVAL);
15236 
15237 	if (option != DTRACEOPT_CPU && val < 0)
15238 		return (EINVAL);
15239 
15240 	switch (option) {
15241 	case DTRACEOPT_DESTRUCTIVE:
15242 		if (dtrace_destructive_disallow)
15243 			return (EACCES);
15244 
15245 		state->dts_cred.dcr_destructive = 1;
15246 		break;
15247 
15248 	case DTRACEOPT_BUFSIZE:
15249 	case DTRACEOPT_DYNVARSIZE:
15250 	case DTRACEOPT_AGGSIZE:
15251 	case DTRACEOPT_SPECSIZE:
15252 	case DTRACEOPT_STRSIZE:
15253 		if (val < 0)
15254 			return (EINVAL);
15255 
15256 		if (val >= LONG_MAX) {
15257 			/*
15258 			 * If this is an otherwise negative value, set it to
15259 			 * the highest multiple of 128m less than LONG_MAX.
15260 			 * Technically, we're adjusting the size without
15261 			 * regard to the buffer resizing policy, but in fact,
15262 			 * this has no effect -- if we set the buffer size to
15263 			 * ~LONG_MAX and the buffer policy is ultimately set to
15264 			 * be "manual", the buffer allocation is guaranteed to
15265 			 * fail, if only because the allocation requires two
15266 			 * buffers.  (We set the the size to the highest
15267 			 * multiple of 128m because it ensures that the size
15268 			 * will remain a multiple of a megabyte when
15269 			 * repeatedly halved -- all the way down to 15m.)
15270 			 */
15271 			val = LONG_MAX - (1 << 27) + 1;
15272 		}
15273 	}
15274 
15275 	state->dts_options[option] = val;
15276 
15277 	return (0);
15278 }
15279 
15280 static void
15281 dtrace_state_destroy(dtrace_state_t *state)
15282 {
15283 	dtrace_ecb_t *ecb;
15284 	dtrace_vstate_t *vstate = &state->dts_vstate;
15285 #ifdef illumos
15286 	minor_t minor = getminor(state->dts_dev);
15287 #endif
15288 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
15289 	dtrace_speculation_t *spec = state->dts_speculations;
15290 	int nspec = state->dts_nspeculations;
15291 	uint32_t match;
15292 
15293 	ASSERT(MUTEX_HELD(&dtrace_lock));
15294 	ASSERT(MUTEX_HELD(&cpu_lock));
15295 
15296 	/*
15297 	 * First, retract any retained enablings for this state.
15298 	 */
15299 	dtrace_enabling_retract(state);
15300 	ASSERT(state->dts_nretained == 0);
15301 
15302 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15303 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15304 		/*
15305 		 * We have managed to come into dtrace_state_destroy() on a
15306 		 * hot enabling -- almost certainly because of a disorderly
15307 		 * shutdown of a consumer.  (That is, a consumer that is
15308 		 * exiting without having called dtrace_stop().) In this case,
15309 		 * we're going to set our activity to be KILLED, and then
15310 		 * issue a sync to be sure that everyone is out of probe
15311 		 * context before we start blowing away ECBs.
15312 		 */
15313 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
15314 		dtrace_sync();
15315 	}
15316 
15317 	/*
15318 	 * Release the credential hold we took in dtrace_state_create().
15319 	 */
15320 	if (state->dts_cred.dcr_cred != NULL)
15321 		crfree(state->dts_cred.dcr_cred);
15322 
15323 	/*
15324 	 * Now we can safely disable and destroy any enabled probes.  Because
15325 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15326 	 * (especially if they're all enabled), we take two passes through the
15327 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15328 	 * in the second we disable whatever is left over.
15329 	 */
15330 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15331 		for (i = 0; i < state->dts_necbs; i++) {
15332 			if ((ecb = state->dts_ecbs[i]) == NULL)
15333 				continue;
15334 
15335 			if (match && ecb->dte_probe != NULL) {
15336 				dtrace_probe_t *probe = ecb->dte_probe;
15337 				dtrace_provider_t *prov = probe->dtpr_provider;
15338 
15339 				if (!(prov->dtpv_priv.dtpp_flags & match))
15340 					continue;
15341 			}
15342 
15343 			dtrace_ecb_disable(ecb);
15344 			dtrace_ecb_destroy(ecb);
15345 		}
15346 
15347 		if (!match)
15348 			break;
15349 	}
15350 
15351 	/*
15352 	 * Before we free the buffers, perform one more sync to assure that
15353 	 * every CPU is out of probe context.
15354 	 */
15355 	dtrace_sync();
15356 
15357 	dtrace_buffer_free(state->dts_buffer);
15358 	dtrace_buffer_free(state->dts_aggbuffer);
15359 
15360 	for (i = 0; i < nspec; i++)
15361 		dtrace_buffer_free(spec[i].dtsp_buffer);
15362 
15363 #ifdef illumos
15364 	if (state->dts_cleaner != CYCLIC_NONE)
15365 		cyclic_remove(state->dts_cleaner);
15366 
15367 	if (state->dts_deadman != CYCLIC_NONE)
15368 		cyclic_remove(state->dts_deadman);
15369 #else
15370 	callout_stop(&state->dts_cleaner);
15371 	callout_drain(&state->dts_cleaner);
15372 	callout_stop(&state->dts_deadman);
15373 	callout_drain(&state->dts_deadman);
15374 #endif
15375 
15376 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
15377 	dtrace_vstate_fini(vstate);
15378 	if (state->dts_ecbs != NULL)
15379 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15380 
15381 	if (state->dts_aggregations != NULL) {
15382 #ifdef DEBUG
15383 		for (i = 0; i < state->dts_naggregations; i++)
15384 			ASSERT(state->dts_aggregations[i] == NULL);
15385 #endif
15386 		ASSERT(state->dts_naggregations > 0);
15387 		kmem_free(state->dts_aggregations,
15388 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15389 	}
15390 
15391 	kmem_free(state->dts_buffer, bufsize);
15392 	kmem_free(state->dts_aggbuffer, bufsize);
15393 
15394 	for (i = 0; i < nspec; i++)
15395 		kmem_free(spec[i].dtsp_buffer, bufsize);
15396 
15397 	if (spec != NULL)
15398 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15399 
15400 	dtrace_format_destroy(state);
15401 
15402 	if (state->dts_aggid_arena != NULL) {
15403 #ifdef illumos
15404 		vmem_destroy(state->dts_aggid_arena);
15405 #else
15406 		delete_unrhdr(state->dts_aggid_arena);
15407 #endif
15408 		state->dts_aggid_arena = NULL;
15409 	}
15410 #ifdef illumos
15411 	ddi_soft_state_free(dtrace_softstate, minor);
15412 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15413 #endif
15414 }
15415 
15416 /*
15417  * DTrace Anonymous Enabling Functions
15418  */
15419 static dtrace_state_t *
15420 dtrace_anon_grab(void)
15421 {
15422 	dtrace_state_t *state;
15423 
15424 	ASSERT(MUTEX_HELD(&dtrace_lock));
15425 
15426 	if ((state = dtrace_anon.dta_state) == NULL) {
15427 		ASSERT(dtrace_anon.dta_enabling == NULL);
15428 		return (NULL);
15429 	}
15430 
15431 	ASSERT(dtrace_anon.dta_enabling != NULL);
15432 	ASSERT(dtrace_retained != NULL);
15433 
15434 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15435 	dtrace_anon.dta_enabling = NULL;
15436 	dtrace_anon.dta_state = NULL;
15437 
15438 	return (state);
15439 }
15440 
15441 static void
15442 dtrace_anon_property(void)
15443 {
15444 	int i, rv;
15445 	dtrace_state_t *state;
15446 	dof_hdr_t *dof;
15447 	char c[32];		/* enough for "dof-data-" + digits */
15448 
15449 	ASSERT(MUTEX_HELD(&dtrace_lock));
15450 	ASSERT(MUTEX_HELD(&cpu_lock));
15451 
15452 	for (i = 0; ; i++) {
15453 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
15454 
15455 		dtrace_err_verbose = 1;
15456 
15457 		if ((dof = dtrace_dof_property(c)) == NULL) {
15458 			dtrace_err_verbose = 0;
15459 			break;
15460 		}
15461 
15462 #ifdef illumos
15463 		/*
15464 		 * We want to create anonymous state, so we need to transition
15465 		 * the kernel debugger to indicate that DTrace is active.  If
15466 		 * this fails (e.g. because the debugger has modified text in
15467 		 * some way), we won't continue with the processing.
15468 		 */
15469 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15470 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15471 			    "enabling ignored.");
15472 			dtrace_dof_destroy(dof);
15473 			break;
15474 		}
15475 #endif
15476 
15477 		/*
15478 		 * If we haven't allocated an anonymous state, we'll do so now.
15479 		 */
15480 		if ((state = dtrace_anon.dta_state) == NULL) {
15481 			state = dtrace_state_create(NULL, NULL);
15482 			dtrace_anon.dta_state = state;
15483 
15484 			if (state == NULL) {
15485 				/*
15486 				 * This basically shouldn't happen:  the only
15487 				 * failure mode from dtrace_state_create() is a
15488 				 * failure of ddi_soft_state_zalloc() that
15489 				 * itself should never happen.  Still, the
15490 				 * interface allows for a failure mode, and
15491 				 * we want to fail as gracefully as possible:
15492 				 * we'll emit an error message and cease
15493 				 * processing anonymous state in this case.
15494 				 */
15495 				cmn_err(CE_WARN, "failed to create "
15496 				    "anonymous state");
15497 				dtrace_dof_destroy(dof);
15498 				break;
15499 			}
15500 		}
15501 
15502 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15503 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
15504 
15505 		if (rv == 0)
15506 			rv = dtrace_dof_options(dof, state);
15507 
15508 		dtrace_err_verbose = 0;
15509 		dtrace_dof_destroy(dof);
15510 
15511 		if (rv != 0) {
15512 			/*
15513 			 * This is malformed DOF; chuck any anonymous state
15514 			 * that we created.
15515 			 */
15516 			ASSERT(dtrace_anon.dta_enabling == NULL);
15517 			dtrace_state_destroy(state);
15518 			dtrace_anon.dta_state = NULL;
15519 			break;
15520 		}
15521 
15522 		ASSERT(dtrace_anon.dta_enabling != NULL);
15523 	}
15524 
15525 	if (dtrace_anon.dta_enabling != NULL) {
15526 		int rval;
15527 
15528 		/*
15529 		 * dtrace_enabling_retain() can only fail because we are
15530 		 * trying to retain more enablings than are allowed -- but
15531 		 * we only have one anonymous enabling, and we are guaranteed
15532 		 * to be allowed at least one retained enabling; we assert
15533 		 * that dtrace_enabling_retain() returns success.
15534 		 */
15535 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15536 		ASSERT(rval == 0);
15537 
15538 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
15539 	}
15540 }
15541 
15542 /*
15543  * DTrace Helper Functions
15544  */
15545 static void
15546 dtrace_helper_trace(dtrace_helper_action_t *helper,
15547     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15548 {
15549 	uint32_t size, next, nnext, i;
15550 	dtrace_helptrace_t *ent, *buffer;
15551 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15552 
15553 	if ((buffer = dtrace_helptrace_buffer) == NULL)
15554 		return;
15555 
15556 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15557 
15558 	/*
15559 	 * What would a tracing framework be without its own tracing
15560 	 * framework?  (Well, a hell of a lot simpler, for starters...)
15561 	 */
15562 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15563 	    sizeof (uint64_t) - sizeof (uint64_t);
15564 
15565 	/*
15566 	 * Iterate until we can allocate a slot in the trace buffer.
15567 	 */
15568 	do {
15569 		next = dtrace_helptrace_next;
15570 
15571 		if (next + size < dtrace_helptrace_bufsize) {
15572 			nnext = next + size;
15573 		} else {
15574 			nnext = size;
15575 		}
15576 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15577 
15578 	/*
15579 	 * We have our slot; fill it in.
15580 	 */
15581 	if (nnext == size) {
15582 		dtrace_helptrace_wrapped++;
15583 		next = 0;
15584 	}
15585 
15586 	ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15587 	ent->dtht_helper = helper;
15588 	ent->dtht_where = where;
15589 	ent->dtht_nlocals = vstate->dtvs_nlocals;
15590 
15591 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15592 	    mstate->dtms_fltoffs : -1;
15593 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15594 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15595 
15596 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
15597 		dtrace_statvar_t *svar;
15598 
15599 		if ((svar = vstate->dtvs_locals[i]) == NULL)
15600 			continue;
15601 
15602 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
15603 		ent->dtht_locals[i] =
15604 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15605 	}
15606 }
15607 
15608 static uint64_t
15609 dtrace_helper(int which, dtrace_mstate_t *mstate,
15610     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15611 {
15612 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15613 	uint64_t sarg0 = mstate->dtms_arg[0];
15614 	uint64_t sarg1 = mstate->dtms_arg[1];
15615 	uint64_t rval = 0;
15616 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15617 	dtrace_helper_action_t *helper;
15618 	dtrace_vstate_t *vstate;
15619 	dtrace_difo_t *pred;
15620 	int i, trace = dtrace_helptrace_buffer != NULL;
15621 
15622 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15623 
15624 	if (helpers == NULL)
15625 		return (0);
15626 
15627 	if ((helper = helpers->dthps_actions[which]) == NULL)
15628 		return (0);
15629 
15630 	vstate = &helpers->dthps_vstate;
15631 	mstate->dtms_arg[0] = arg0;
15632 	mstate->dtms_arg[1] = arg1;
15633 
15634 	/*
15635 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
15636 	 * we'll call the corresponding actions.  Note that the below calls
15637 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
15638 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
15639 	 * the stored DIF offset with its own (which is the desired behavior).
15640 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15641 	 * from machine state; this is okay, too.
15642 	 */
15643 	for (; helper != NULL; helper = helper->dtha_next) {
15644 		if ((pred = helper->dtha_predicate) != NULL) {
15645 			if (trace)
15646 				dtrace_helper_trace(helper, mstate, vstate, 0);
15647 
15648 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15649 				goto next;
15650 
15651 			if (*flags & CPU_DTRACE_FAULT)
15652 				goto err;
15653 		}
15654 
15655 		for (i = 0; i < helper->dtha_nactions; i++) {
15656 			if (trace)
15657 				dtrace_helper_trace(helper,
15658 				    mstate, vstate, i + 1);
15659 
15660 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
15661 			    mstate, vstate, state);
15662 
15663 			if (*flags & CPU_DTRACE_FAULT)
15664 				goto err;
15665 		}
15666 
15667 next:
15668 		if (trace)
15669 			dtrace_helper_trace(helper, mstate, vstate,
15670 			    DTRACE_HELPTRACE_NEXT);
15671 	}
15672 
15673 	if (trace)
15674 		dtrace_helper_trace(helper, mstate, vstate,
15675 		    DTRACE_HELPTRACE_DONE);
15676 
15677 	/*
15678 	 * Restore the arg0 that we saved upon entry.
15679 	 */
15680 	mstate->dtms_arg[0] = sarg0;
15681 	mstate->dtms_arg[1] = sarg1;
15682 
15683 	return (rval);
15684 
15685 err:
15686 	if (trace)
15687 		dtrace_helper_trace(helper, mstate, vstate,
15688 		    DTRACE_HELPTRACE_ERR);
15689 
15690 	/*
15691 	 * Restore the arg0 that we saved upon entry.
15692 	 */
15693 	mstate->dtms_arg[0] = sarg0;
15694 	mstate->dtms_arg[1] = sarg1;
15695 
15696 	return (0);
15697 }
15698 
15699 static void
15700 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15701     dtrace_vstate_t *vstate)
15702 {
15703 	int i;
15704 
15705 	if (helper->dtha_predicate != NULL)
15706 		dtrace_difo_release(helper->dtha_predicate, vstate);
15707 
15708 	for (i = 0; i < helper->dtha_nactions; i++) {
15709 		ASSERT(helper->dtha_actions[i] != NULL);
15710 		dtrace_difo_release(helper->dtha_actions[i], vstate);
15711 	}
15712 
15713 	kmem_free(helper->dtha_actions,
15714 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
15715 	kmem_free(helper, sizeof (dtrace_helper_action_t));
15716 }
15717 
15718 static int
15719 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15720 {
15721 	proc_t *p = curproc;
15722 	dtrace_vstate_t *vstate;
15723 	int i;
15724 
15725 	if (help == NULL)
15726 		help = p->p_dtrace_helpers;
15727 
15728 	ASSERT(MUTEX_HELD(&dtrace_lock));
15729 
15730 	if (help == NULL || gen > help->dthps_generation)
15731 		return (EINVAL);
15732 
15733 	vstate = &help->dthps_vstate;
15734 
15735 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15736 		dtrace_helper_action_t *last = NULL, *h, *next;
15737 
15738 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15739 			next = h->dtha_next;
15740 
15741 			if (h->dtha_generation == gen) {
15742 				if (last != NULL) {
15743 					last->dtha_next = next;
15744 				} else {
15745 					help->dthps_actions[i] = next;
15746 				}
15747 
15748 				dtrace_helper_action_destroy(h, vstate);
15749 			} else {
15750 				last = h;
15751 			}
15752 		}
15753 	}
15754 
15755 	/*
15756 	 * Interate until we've cleared out all helper providers with the
15757 	 * given generation number.
15758 	 */
15759 	for (;;) {
15760 		dtrace_helper_provider_t *prov;
15761 
15762 		/*
15763 		 * Look for a helper provider with the right generation. We
15764 		 * have to start back at the beginning of the list each time
15765 		 * because we drop dtrace_lock. It's unlikely that we'll make
15766 		 * more than two passes.
15767 		 */
15768 		for (i = 0; i < help->dthps_nprovs; i++) {
15769 			prov = help->dthps_provs[i];
15770 
15771 			if (prov->dthp_generation == gen)
15772 				break;
15773 		}
15774 
15775 		/*
15776 		 * If there were no matches, we're done.
15777 		 */
15778 		if (i == help->dthps_nprovs)
15779 			break;
15780 
15781 		/*
15782 		 * Move the last helper provider into this slot.
15783 		 */
15784 		help->dthps_nprovs--;
15785 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15786 		help->dthps_provs[help->dthps_nprovs] = NULL;
15787 
15788 		mutex_exit(&dtrace_lock);
15789 
15790 		/*
15791 		 * If we have a meta provider, remove this helper provider.
15792 		 */
15793 		mutex_enter(&dtrace_meta_lock);
15794 		if (dtrace_meta_pid != NULL) {
15795 			ASSERT(dtrace_deferred_pid == NULL);
15796 			dtrace_helper_provider_remove(&prov->dthp_prov,
15797 			    p->p_pid);
15798 		}
15799 		mutex_exit(&dtrace_meta_lock);
15800 
15801 		dtrace_helper_provider_destroy(prov);
15802 
15803 		mutex_enter(&dtrace_lock);
15804 	}
15805 
15806 	return (0);
15807 }
15808 
15809 static int
15810 dtrace_helper_validate(dtrace_helper_action_t *helper)
15811 {
15812 	int err = 0, i;
15813 	dtrace_difo_t *dp;
15814 
15815 	if ((dp = helper->dtha_predicate) != NULL)
15816 		err += dtrace_difo_validate_helper(dp);
15817 
15818 	for (i = 0; i < helper->dtha_nactions; i++)
15819 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15820 
15821 	return (err == 0);
15822 }
15823 
15824 static int
15825 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15826     dtrace_helpers_t *help)
15827 {
15828 	dtrace_helper_action_t *helper, *last;
15829 	dtrace_actdesc_t *act;
15830 	dtrace_vstate_t *vstate;
15831 	dtrace_predicate_t *pred;
15832 	int count = 0, nactions = 0, i;
15833 
15834 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15835 		return (EINVAL);
15836 
15837 	last = help->dthps_actions[which];
15838 	vstate = &help->dthps_vstate;
15839 
15840 	for (count = 0; last != NULL; last = last->dtha_next) {
15841 		count++;
15842 		if (last->dtha_next == NULL)
15843 			break;
15844 	}
15845 
15846 	/*
15847 	 * If we already have dtrace_helper_actions_max helper actions for this
15848 	 * helper action type, we'll refuse to add a new one.
15849 	 */
15850 	if (count >= dtrace_helper_actions_max)
15851 		return (ENOSPC);
15852 
15853 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15854 	helper->dtha_generation = help->dthps_generation;
15855 
15856 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15857 		ASSERT(pred->dtp_difo != NULL);
15858 		dtrace_difo_hold(pred->dtp_difo);
15859 		helper->dtha_predicate = pred->dtp_difo;
15860 	}
15861 
15862 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15863 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
15864 			goto err;
15865 
15866 		if (act->dtad_difo == NULL)
15867 			goto err;
15868 
15869 		nactions++;
15870 	}
15871 
15872 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15873 	    (helper->dtha_nactions = nactions), KM_SLEEP);
15874 
15875 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15876 		dtrace_difo_hold(act->dtad_difo);
15877 		helper->dtha_actions[i++] = act->dtad_difo;
15878 	}
15879 
15880 	if (!dtrace_helper_validate(helper))
15881 		goto err;
15882 
15883 	if (last == NULL) {
15884 		help->dthps_actions[which] = helper;
15885 	} else {
15886 		last->dtha_next = helper;
15887 	}
15888 
15889 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15890 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15891 		dtrace_helptrace_next = 0;
15892 	}
15893 
15894 	return (0);
15895 err:
15896 	dtrace_helper_action_destroy(helper, vstate);
15897 	return (EINVAL);
15898 }
15899 
15900 static void
15901 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15902     dof_helper_t *dofhp)
15903 {
15904 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15905 
15906 	mutex_enter(&dtrace_meta_lock);
15907 	mutex_enter(&dtrace_lock);
15908 
15909 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15910 		/*
15911 		 * If the dtrace module is loaded but not attached, or if
15912 		 * there aren't isn't a meta provider registered to deal with
15913 		 * these provider descriptions, we need to postpone creating
15914 		 * the actual providers until later.
15915 		 */
15916 
15917 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15918 		    dtrace_deferred_pid != help) {
15919 			help->dthps_deferred = 1;
15920 			help->dthps_pid = p->p_pid;
15921 			help->dthps_next = dtrace_deferred_pid;
15922 			help->dthps_prev = NULL;
15923 			if (dtrace_deferred_pid != NULL)
15924 				dtrace_deferred_pid->dthps_prev = help;
15925 			dtrace_deferred_pid = help;
15926 		}
15927 
15928 		mutex_exit(&dtrace_lock);
15929 
15930 	} else if (dofhp != NULL) {
15931 		/*
15932 		 * If the dtrace module is loaded and we have a particular
15933 		 * helper provider description, pass that off to the
15934 		 * meta provider.
15935 		 */
15936 
15937 		mutex_exit(&dtrace_lock);
15938 
15939 		dtrace_helper_provide(dofhp, p->p_pid);
15940 
15941 	} else {
15942 		/*
15943 		 * Otherwise, just pass all the helper provider descriptions
15944 		 * off to the meta provider.
15945 		 */
15946 
15947 		int i;
15948 		mutex_exit(&dtrace_lock);
15949 
15950 		for (i = 0; i < help->dthps_nprovs; i++) {
15951 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15952 			    p->p_pid);
15953 		}
15954 	}
15955 
15956 	mutex_exit(&dtrace_meta_lock);
15957 }
15958 
15959 static int
15960 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
15961 {
15962 	dtrace_helper_provider_t *hprov, **tmp_provs;
15963 	uint_t tmp_maxprovs, i;
15964 
15965 	ASSERT(MUTEX_HELD(&dtrace_lock));
15966 	ASSERT(help != NULL);
15967 
15968 	/*
15969 	 * If we already have dtrace_helper_providers_max helper providers,
15970 	 * we're refuse to add a new one.
15971 	 */
15972 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
15973 		return (ENOSPC);
15974 
15975 	/*
15976 	 * Check to make sure this isn't a duplicate.
15977 	 */
15978 	for (i = 0; i < help->dthps_nprovs; i++) {
15979 		if (dofhp->dofhp_addr ==
15980 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
15981 			return (EALREADY);
15982 	}
15983 
15984 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15985 	hprov->dthp_prov = *dofhp;
15986 	hprov->dthp_ref = 1;
15987 	hprov->dthp_generation = gen;
15988 
15989 	/*
15990 	 * Allocate a bigger table for helper providers if it's already full.
15991 	 */
15992 	if (help->dthps_maxprovs == help->dthps_nprovs) {
15993 		tmp_maxprovs = help->dthps_maxprovs;
15994 		tmp_provs = help->dthps_provs;
15995 
15996 		if (help->dthps_maxprovs == 0)
15997 			help->dthps_maxprovs = 2;
15998 		else
15999 			help->dthps_maxprovs *= 2;
16000 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
16001 			help->dthps_maxprovs = dtrace_helper_providers_max;
16002 
16003 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
16004 
16005 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
16006 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16007 
16008 		if (tmp_provs != NULL) {
16009 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
16010 			    sizeof (dtrace_helper_provider_t *));
16011 			kmem_free(tmp_provs, tmp_maxprovs *
16012 			    sizeof (dtrace_helper_provider_t *));
16013 		}
16014 	}
16015 
16016 	help->dthps_provs[help->dthps_nprovs] = hprov;
16017 	help->dthps_nprovs++;
16018 
16019 	return (0);
16020 }
16021 
16022 static void
16023 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
16024 {
16025 	mutex_enter(&dtrace_lock);
16026 
16027 	if (--hprov->dthp_ref == 0) {
16028 		dof_hdr_t *dof;
16029 		mutex_exit(&dtrace_lock);
16030 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
16031 		dtrace_dof_destroy(dof);
16032 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
16033 	} else {
16034 		mutex_exit(&dtrace_lock);
16035 	}
16036 }
16037 
16038 static int
16039 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
16040 {
16041 	uintptr_t daddr = (uintptr_t)dof;
16042 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
16043 	dof_provider_t *provider;
16044 	dof_probe_t *probe;
16045 	uint8_t *arg;
16046 	char *strtab, *typestr;
16047 	dof_stridx_t typeidx;
16048 	size_t typesz;
16049 	uint_t nprobes, j, k;
16050 
16051 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
16052 
16053 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
16054 		dtrace_dof_error(dof, "misaligned section offset");
16055 		return (-1);
16056 	}
16057 
16058 	/*
16059 	 * The section needs to be large enough to contain the DOF provider
16060 	 * structure appropriate for the given version.
16061 	 */
16062 	if (sec->dofs_size <
16063 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
16064 	    offsetof(dof_provider_t, dofpv_prenoffs) :
16065 	    sizeof (dof_provider_t))) {
16066 		dtrace_dof_error(dof, "provider section too small");
16067 		return (-1);
16068 	}
16069 
16070 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
16071 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
16072 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
16073 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
16074 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
16075 
16076 	if (str_sec == NULL || prb_sec == NULL ||
16077 	    arg_sec == NULL || off_sec == NULL)
16078 		return (-1);
16079 
16080 	enoff_sec = NULL;
16081 
16082 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
16083 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
16084 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
16085 	    provider->dofpv_prenoffs)) == NULL)
16086 		return (-1);
16087 
16088 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
16089 
16090 	if (provider->dofpv_name >= str_sec->dofs_size ||
16091 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
16092 		dtrace_dof_error(dof, "invalid provider name");
16093 		return (-1);
16094 	}
16095 
16096 	if (prb_sec->dofs_entsize == 0 ||
16097 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
16098 		dtrace_dof_error(dof, "invalid entry size");
16099 		return (-1);
16100 	}
16101 
16102 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
16103 		dtrace_dof_error(dof, "misaligned entry size");
16104 		return (-1);
16105 	}
16106 
16107 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
16108 		dtrace_dof_error(dof, "invalid entry size");
16109 		return (-1);
16110 	}
16111 
16112 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
16113 		dtrace_dof_error(dof, "misaligned section offset");
16114 		return (-1);
16115 	}
16116 
16117 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
16118 		dtrace_dof_error(dof, "invalid entry size");
16119 		return (-1);
16120 	}
16121 
16122 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
16123 
16124 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
16125 
16126 	/*
16127 	 * Take a pass through the probes to check for errors.
16128 	 */
16129 	for (j = 0; j < nprobes; j++) {
16130 		probe = (dof_probe_t *)(uintptr_t)(daddr +
16131 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
16132 
16133 		if (probe->dofpr_func >= str_sec->dofs_size) {
16134 			dtrace_dof_error(dof, "invalid function name");
16135 			return (-1);
16136 		}
16137 
16138 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
16139 			dtrace_dof_error(dof, "function name too long");
16140 			/*
16141 			 * Keep going if the function name is too long.
16142 			 * Unlike provider and probe names, we cannot reasonably
16143 			 * impose restrictions on function names, since they're
16144 			 * a property of the code being instrumented. We will
16145 			 * skip this probe in dtrace_helper_provide_one().
16146 			 */
16147 		}
16148 
16149 		if (probe->dofpr_name >= str_sec->dofs_size ||
16150 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
16151 			dtrace_dof_error(dof, "invalid probe name");
16152 			return (-1);
16153 		}
16154 
16155 		/*
16156 		 * The offset count must not wrap the index, and the offsets
16157 		 * must also not overflow the section's data.
16158 		 */
16159 		if (probe->dofpr_offidx + probe->dofpr_noffs <
16160 		    probe->dofpr_offidx ||
16161 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
16162 		    off_sec->dofs_entsize > off_sec->dofs_size) {
16163 			dtrace_dof_error(dof, "invalid probe offset");
16164 			return (-1);
16165 		}
16166 
16167 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
16168 			/*
16169 			 * If there's no is-enabled offset section, make sure
16170 			 * there aren't any is-enabled offsets. Otherwise
16171 			 * perform the same checks as for probe offsets
16172 			 * (immediately above).
16173 			 */
16174 			if (enoff_sec == NULL) {
16175 				if (probe->dofpr_enoffidx != 0 ||
16176 				    probe->dofpr_nenoffs != 0) {
16177 					dtrace_dof_error(dof, "is-enabled "
16178 					    "offsets with null section");
16179 					return (-1);
16180 				}
16181 			} else if (probe->dofpr_enoffidx +
16182 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
16183 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
16184 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
16185 				dtrace_dof_error(dof, "invalid is-enabled "
16186 				    "offset");
16187 				return (-1);
16188 			}
16189 
16190 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
16191 				dtrace_dof_error(dof, "zero probe and "
16192 				    "is-enabled offsets");
16193 				return (-1);
16194 			}
16195 		} else if (probe->dofpr_noffs == 0) {
16196 			dtrace_dof_error(dof, "zero probe offsets");
16197 			return (-1);
16198 		}
16199 
16200 		if (probe->dofpr_argidx + probe->dofpr_xargc <
16201 		    probe->dofpr_argidx ||
16202 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
16203 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
16204 			dtrace_dof_error(dof, "invalid args");
16205 			return (-1);
16206 		}
16207 
16208 		typeidx = probe->dofpr_nargv;
16209 		typestr = strtab + probe->dofpr_nargv;
16210 		for (k = 0; k < probe->dofpr_nargc; k++) {
16211 			if (typeidx >= str_sec->dofs_size) {
16212 				dtrace_dof_error(dof, "bad "
16213 				    "native argument type");
16214 				return (-1);
16215 			}
16216 
16217 			typesz = strlen(typestr) + 1;
16218 			if (typesz > DTRACE_ARGTYPELEN) {
16219 				dtrace_dof_error(dof, "native "
16220 				    "argument type too long");
16221 				return (-1);
16222 			}
16223 			typeidx += typesz;
16224 			typestr += typesz;
16225 		}
16226 
16227 		typeidx = probe->dofpr_xargv;
16228 		typestr = strtab + probe->dofpr_xargv;
16229 		for (k = 0; k < probe->dofpr_xargc; k++) {
16230 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
16231 				dtrace_dof_error(dof, "bad "
16232 				    "native argument index");
16233 				return (-1);
16234 			}
16235 
16236 			if (typeidx >= str_sec->dofs_size) {
16237 				dtrace_dof_error(dof, "bad "
16238 				    "translated argument type");
16239 				return (-1);
16240 			}
16241 
16242 			typesz = strlen(typestr) + 1;
16243 			if (typesz > DTRACE_ARGTYPELEN) {
16244 				dtrace_dof_error(dof, "translated argument "
16245 				    "type too long");
16246 				return (-1);
16247 			}
16248 
16249 			typeidx += typesz;
16250 			typestr += typesz;
16251 		}
16252 	}
16253 
16254 	return (0);
16255 }
16256 
16257 static int
16258 #ifdef __FreeBSD__
16259 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16260 #else
16261 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
16262 #endif
16263 {
16264 	dtrace_helpers_t *help;
16265 	dtrace_vstate_t *vstate;
16266 	dtrace_enabling_t *enab = NULL;
16267 #ifndef __FreeBSD__
16268 	proc_t *p = curproc;
16269 #endif
16270 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16271 	uintptr_t daddr = (uintptr_t)dof;
16272 
16273 	ASSERT(MUTEX_HELD(&dtrace_lock));
16274 
16275 	if ((help = p->p_dtrace_helpers) == NULL)
16276 		help = dtrace_helpers_create(p);
16277 
16278 	vstate = &help->dthps_vstate;
16279 
16280 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
16281 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
16282 		dtrace_dof_destroy(dof);
16283 		return (rv);
16284 	}
16285 
16286 	/*
16287 	 * Look for helper providers and validate their descriptions.
16288 	 */
16289 	if (dhp != NULL) {
16290 		for (i = 0; i < dof->dofh_secnum; i++) {
16291 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16292 			    dof->dofh_secoff + i * dof->dofh_secsize);
16293 
16294 			if (sec->dofs_type != DOF_SECT_PROVIDER)
16295 				continue;
16296 
16297 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
16298 				dtrace_enabling_destroy(enab);
16299 				dtrace_dof_destroy(dof);
16300 				return (-1);
16301 			}
16302 
16303 			nprovs++;
16304 		}
16305 	}
16306 
16307 	/*
16308 	 * Now we need to walk through the ECB descriptions in the enabling.
16309 	 */
16310 	for (i = 0; i < enab->dten_ndesc; i++) {
16311 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16312 		dtrace_probedesc_t *desc = &ep->dted_probe;
16313 
16314 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16315 			continue;
16316 
16317 		if (strcmp(desc->dtpd_mod, "helper") != 0)
16318 			continue;
16319 
16320 		if (strcmp(desc->dtpd_func, "ustack") != 0)
16321 			continue;
16322 
16323 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16324 		    ep, help)) != 0) {
16325 			/*
16326 			 * Adding this helper action failed -- we are now going
16327 			 * to rip out the entire generation and return failure.
16328 			 */
16329 			(void) dtrace_helper_destroygen(help,
16330 			    help->dthps_generation);
16331 			dtrace_enabling_destroy(enab);
16332 			dtrace_dof_destroy(dof);
16333 			return (-1);
16334 		}
16335 
16336 		nhelpers++;
16337 	}
16338 
16339 	if (nhelpers < enab->dten_ndesc)
16340 		dtrace_dof_error(dof, "unmatched helpers");
16341 
16342 	gen = help->dthps_generation++;
16343 	dtrace_enabling_destroy(enab);
16344 
16345 	if (dhp != NULL && nprovs > 0) {
16346 		/*
16347 		 * Now that this is in-kernel, we change the sense of the
16348 		 * members:  dofhp_dof denotes the in-kernel copy of the DOF
16349 		 * and dofhp_addr denotes the address at user-level.
16350 		 */
16351 		dhp->dofhp_addr = dhp->dofhp_dof;
16352 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16353 
16354 		if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16355 			mutex_exit(&dtrace_lock);
16356 			dtrace_helper_provider_register(p, help, dhp);
16357 			mutex_enter(&dtrace_lock);
16358 
16359 			destroy = 0;
16360 		}
16361 	}
16362 
16363 	if (destroy)
16364 		dtrace_dof_destroy(dof);
16365 
16366 	return (gen);
16367 }
16368 
16369 static dtrace_helpers_t *
16370 dtrace_helpers_create(proc_t *p)
16371 {
16372 	dtrace_helpers_t *help;
16373 
16374 	ASSERT(MUTEX_HELD(&dtrace_lock));
16375 	ASSERT(p->p_dtrace_helpers == NULL);
16376 
16377 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16378 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16379 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16380 
16381 	p->p_dtrace_helpers = help;
16382 	dtrace_helpers++;
16383 
16384 	return (help);
16385 }
16386 
16387 #ifdef illumos
16388 static
16389 #endif
16390 void
16391 dtrace_helpers_destroy(proc_t *p)
16392 {
16393 	dtrace_helpers_t *help;
16394 	dtrace_vstate_t *vstate;
16395 #ifdef illumos
16396 	proc_t *p = curproc;
16397 #endif
16398 	int i;
16399 
16400 	mutex_enter(&dtrace_lock);
16401 
16402 	ASSERT(p->p_dtrace_helpers != NULL);
16403 	ASSERT(dtrace_helpers > 0);
16404 
16405 	help = p->p_dtrace_helpers;
16406 	vstate = &help->dthps_vstate;
16407 
16408 	/*
16409 	 * We're now going to lose the help from this process.
16410 	 */
16411 	p->p_dtrace_helpers = NULL;
16412 	dtrace_sync();
16413 
16414 	/*
16415 	 * Destory the helper actions.
16416 	 */
16417 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16418 		dtrace_helper_action_t *h, *next;
16419 
16420 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
16421 			next = h->dtha_next;
16422 			dtrace_helper_action_destroy(h, vstate);
16423 			h = next;
16424 		}
16425 	}
16426 
16427 	mutex_exit(&dtrace_lock);
16428 
16429 	/*
16430 	 * Destroy the helper providers.
16431 	 */
16432 	if (help->dthps_maxprovs > 0) {
16433 		mutex_enter(&dtrace_meta_lock);
16434 		if (dtrace_meta_pid != NULL) {
16435 			ASSERT(dtrace_deferred_pid == NULL);
16436 
16437 			for (i = 0; i < help->dthps_nprovs; i++) {
16438 				dtrace_helper_provider_remove(
16439 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
16440 			}
16441 		} else {
16442 			mutex_enter(&dtrace_lock);
16443 			ASSERT(help->dthps_deferred == 0 ||
16444 			    help->dthps_next != NULL ||
16445 			    help->dthps_prev != NULL ||
16446 			    help == dtrace_deferred_pid);
16447 
16448 			/*
16449 			 * Remove the helper from the deferred list.
16450 			 */
16451 			if (help->dthps_next != NULL)
16452 				help->dthps_next->dthps_prev = help->dthps_prev;
16453 			if (help->dthps_prev != NULL)
16454 				help->dthps_prev->dthps_next = help->dthps_next;
16455 			if (dtrace_deferred_pid == help) {
16456 				dtrace_deferred_pid = help->dthps_next;
16457 				ASSERT(help->dthps_prev == NULL);
16458 			}
16459 
16460 			mutex_exit(&dtrace_lock);
16461 		}
16462 
16463 		mutex_exit(&dtrace_meta_lock);
16464 
16465 		for (i = 0; i < help->dthps_nprovs; i++) {
16466 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
16467 		}
16468 
16469 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
16470 		    sizeof (dtrace_helper_provider_t *));
16471 	}
16472 
16473 	mutex_enter(&dtrace_lock);
16474 
16475 	dtrace_vstate_fini(&help->dthps_vstate);
16476 	kmem_free(help->dthps_actions,
16477 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16478 	kmem_free(help, sizeof (dtrace_helpers_t));
16479 
16480 	--dtrace_helpers;
16481 	mutex_exit(&dtrace_lock);
16482 }
16483 
16484 #ifdef illumos
16485 static
16486 #endif
16487 void
16488 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16489 {
16490 	dtrace_helpers_t *help, *newhelp;
16491 	dtrace_helper_action_t *helper, *new, *last;
16492 	dtrace_difo_t *dp;
16493 	dtrace_vstate_t *vstate;
16494 	int i, j, sz, hasprovs = 0;
16495 
16496 	mutex_enter(&dtrace_lock);
16497 	ASSERT(from->p_dtrace_helpers != NULL);
16498 	ASSERT(dtrace_helpers > 0);
16499 
16500 	help = from->p_dtrace_helpers;
16501 	newhelp = dtrace_helpers_create(to);
16502 	ASSERT(to->p_dtrace_helpers != NULL);
16503 
16504 	newhelp->dthps_generation = help->dthps_generation;
16505 	vstate = &newhelp->dthps_vstate;
16506 
16507 	/*
16508 	 * Duplicate the helper actions.
16509 	 */
16510 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16511 		if ((helper = help->dthps_actions[i]) == NULL)
16512 			continue;
16513 
16514 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16515 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16516 			    KM_SLEEP);
16517 			new->dtha_generation = helper->dtha_generation;
16518 
16519 			if ((dp = helper->dtha_predicate) != NULL) {
16520 				dp = dtrace_difo_duplicate(dp, vstate);
16521 				new->dtha_predicate = dp;
16522 			}
16523 
16524 			new->dtha_nactions = helper->dtha_nactions;
16525 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16526 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16527 
16528 			for (j = 0; j < new->dtha_nactions; j++) {
16529 				dtrace_difo_t *dp = helper->dtha_actions[j];
16530 
16531 				ASSERT(dp != NULL);
16532 				dp = dtrace_difo_duplicate(dp, vstate);
16533 				new->dtha_actions[j] = dp;
16534 			}
16535 
16536 			if (last != NULL) {
16537 				last->dtha_next = new;
16538 			} else {
16539 				newhelp->dthps_actions[i] = new;
16540 			}
16541 
16542 			last = new;
16543 		}
16544 	}
16545 
16546 	/*
16547 	 * Duplicate the helper providers and register them with the
16548 	 * DTrace framework.
16549 	 */
16550 	if (help->dthps_nprovs > 0) {
16551 		newhelp->dthps_nprovs = help->dthps_nprovs;
16552 		newhelp->dthps_maxprovs = help->dthps_nprovs;
16553 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16554 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16555 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
16556 			newhelp->dthps_provs[i] = help->dthps_provs[i];
16557 			newhelp->dthps_provs[i]->dthp_ref++;
16558 		}
16559 
16560 		hasprovs = 1;
16561 	}
16562 
16563 	mutex_exit(&dtrace_lock);
16564 
16565 	if (hasprovs)
16566 		dtrace_helper_provider_register(to, newhelp, NULL);
16567 }
16568 
16569 /*
16570  * DTrace Hook Functions
16571  */
16572 static void
16573 dtrace_module_loaded(modctl_t *ctl)
16574 {
16575 	dtrace_provider_t *prv;
16576 
16577 	mutex_enter(&dtrace_provider_lock);
16578 #ifdef illumos
16579 	mutex_enter(&mod_lock);
16580 #endif
16581 
16582 #ifdef illumos
16583 	ASSERT(ctl->mod_busy);
16584 #endif
16585 
16586 	/*
16587 	 * We're going to call each providers per-module provide operation
16588 	 * specifying only this module.
16589 	 */
16590 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16591 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16592 
16593 #ifdef illumos
16594 	mutex_exit(&mod_lock);
16595 #endif
16596 	mutex_exit(&dtrace_provider_lock);
16597 
16598 	/*
16599 	 * If we have any retained enablings, we need to match against them.
16600 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
16601 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16602 	 * module.  (In particular, this happens when loading scheduling
16603 	 * classes.)  So if we have any retained enablings, we need to dispatch
16604 	 * our task queue to do the match for us.
16605 	 */
16606 	mutex_enter(&dtrace_lock);
16607 
16608 	if (dtrace_retained == NULL) {
16609 		mutex_exit(&dtrace_lock);
16610 		return;
16611 	}
16612 
16613 	(void) taskq_dispatch(dtrace_taskq,
16614 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
16615 
16616 	mutex_exit(&dtrace_lock);
16617 
16618 	/*
16619 	 * And now, for a little heuristic sleaze:  in general, we want to
16620 	 * match modules as soon as they load.  However, we cannot guarantee
16621 	 * this, because it would lead us to the lock ordering violation
16622 	 * outlined above.  The common case, of course, is that cpu_lock is
16623 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
16624 	 * long enough for the task queue to do its work.  If it's not, it's
16625 	 * not a serious problem -- it just means that the module that we
16626 	 * just loaded may not be immediately instrumentable.
16627 	 */
16628 	delay(1);
16629 }
16630 
16631 static void
16632 #ifdef illumos
16633 dtrace_module_unloaded(modctl_t *ctl)
16634 #else
16635 dtrace_module_unloaded(modctl_t *ctl, int *error)
16636 #endif
16637 {
16638 	dtrace_probe_t template, *probe, *first, *next;
16639 	dtrace_provider_t *prov;
16640 #ifndef illumos
16641 	char modname[DTRACE_MODNAMELEN];
16642 	size_t len;
16643 #endif
16644 
16645 #ifdef illumos
16646 	template.dtpr_mod = ctl->mod_modname;
16647 #else
16648 	/* Handle the fact that ctl->filename may end in ".ko". */
16649 	strlcpy(modname, ctl->filename, sizeof(modname));
16650 	len = strlen(ctl->filename);
16651 	if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16652 		modname[len - 3] = '\0';
16653 	template.dtpr_mod = modname;
16654 #endif
16655 
16656 	mutex_enter(&dtrace_provider_lock);
16657 #ifdef illumos
16658 	mutex_enter(&mod_lock);
16659 #endif
16660 	mutex_enter(&dtrace_lock);
16661 
16662 #ifndef illumos
16663 	if (ctl->nenabled > 0) {
16664 		/* Don't allow unloads if a probe is enabled. */
16665 		mutex_exit(&dtrace_provider_lock);
16666 		mutex_exit(&dtrace_lock);
16667 		*error = -1;
16668 		printf(
16669 	"kldunload: attempt to unload module that has DTrace probes enabled\n");
16670 		return;
16671 	}
16672 #endif
16673 
16674 	if (dtrace_bymod == NULL) {
16675 		/*
16676 		 * The DTrace module is loaded (obviously) but not attached;
16677 		 * we don't have any work to do.
16678 		 */
16679 		mutex_exit(&dtrace_provider_lock);
16680 #ifdef illumos
16681 		mutex_exit(&mod_lock);
16682 #endif
16683 		mutex_exit(&dtrace_lock);
16684 		return;
16685 	}
16686 
16687 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16688 	    probe != NULL; probe = probe->dtpr_nextmod) {
16689 		if (probe->dtpr_ecb != NULL) {
16690 			mutex_exit(&dtrace_provider_lock);
16691 #ifdef illumos
16692 			mutex_exit(&mod_lock);
16693 #endif
16694 			mutex_exit(&dtrace_lock);
16695 
16696 			/*
16697 			 * This shouldn't _actually_ be possible -- we're
16698 			 * unloading a module that has an enabled probe in it.
16699 			 * (It's normally up to the provider to make sure that
16700 			 * this can't happen.)  However, because dtps_enable()
16701 			 * doesn't have a failure mode, there can be an
16702 			 * enable/unload race.  Upshot:  we don't want to
16703 			 * assert, but we're not going to disable the
16704 			 * probe, either.
16705 			 */
16706 			if (dtrace_err_verbose) {
16707 #ifdef illumos
16708 				cmn_err(CE_WARN, "unloaded module '%s' had "
16709 				    "enabled probes", ctl->mod_modname);
16710 #else
16711 				cmn_err(CE_WARN, "unloaded module '%s' had "
16712 				    "enabled probes", modname);
16713 #endif
16714 			}
16715 
16716 			return;
16717 		}
16718 	}
16719 
16720 	probe = first;
16721 
16722 	for (first = NULL; probe != NULL; probe = next) {
16723 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16724 
16725 		dtrace_probes[probe->dtpr_id - 1] = NULL;
16726 
16727 		next = probe->dtpr_nextmod;
16728 		dtrace_hash_remove(dtrace_bymod, probe);
16729 		dtrace_hash_remove(dtrace_byfunc, probe);
16730 		dtrace_hash_remove(dtrace_byname, probe);
16731 
16732 		if (first == NULL) {
16733 			first = probe;
16734 			probe->dtpr_nextmod = NULL;
16735 		} else {
16736 			probe->dtpr_nextmod = first;
16737 			first = probe;
16738 		}
16739 	}
16740 
16741 	/*
16742 	 * We've removed all of the module's probes from the hash chains and
16743 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
16744 	 * everyone has cleared out from any probe array processing.
16745 	 */
16746 	dtrace_sync();
16747 
16748 	for (probe = first; probe != NULL; probe = first) {
16749 		first = probe->dtpr_nextmod;
16750 		prov = probe->dtpr_provider;
16751 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16752 		    probe->dtpr_arg);
16753 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16754 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16755 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16756 #ifdef illumos
16757 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16758 #else
16759 		free_unr(dtrace_arena, probe->dtpr_id);
16760 #endif
16761 		kmem_free(probe, sizeof (dtrace_probe_t));
16762 	}
16763 
16764 	mutex_exit(&dtrace_lock);
16765 #ifdef illumos
16766 	mutex_exit(&mod_lock);
16767 #endif
16768 	mutex_exit(&dtrace_provider_lock);
16769 }
16770 
16771 #ifndef illumos
16772 static void
16773 dtrace_kld_load(void *arg __unused, linker_file_t lf)
16774 {
16775 
16776 	dtrace_module_loaded(lf);
16777 }
16778 
16779 static void
16780 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16781 {
16782 
16783 	if (*error != 0)
16784 		/* We already have an error, so don't do anything. */
16785 		return;
16786 	dtrace_module_unloaded(lf, error);
16787 }
16788 #endif
16789 
16790 #ifdef illumos
16791 static void
16792 dtrace_suspend(void)
16793 {
16794 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16795 }
16796 
16797 static void
16798 dtrace_resume(void)
16799 {
16800 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16801 }
16802 #endif
16803 
16804 static int
16805 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16806 {
16807 	ASSERT(MUTEX_HELD(&cpu_lock));
16808 	mutex_enter(&dtrace_lock);
16809 
16810 	switch (what) {
16811 	case CPU_CONFIG: {
16812 		dtrace_state_t *state;
16813 		dtrace_optval_t *opt, rs, c;
16814 
16815 		/*
16816 		 * For now, we only allocate a new buffer for anonymous state.
16817 		 */
16818 		if ((state = dtrace_anon.dta_state) == NULL)
16819 			break;
16820 
16821 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16822 			break;
16823 
16824 		opt = state->dts_options;
16825 		c = opt[DTRACEOPT_CPU];
16826 
16827 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16828 			break;
16829 
16830 		/*
16831 		 * Regardless of what the actual policy is, we're going to
16832 		 * temporarily set our resize policy to be manual.  We're
16833 		 * also going to temporarily set our CPU option to denote
16834 		 * the newly configured CPU.
16835 		 */
16836 		rs = opt[DTRACEOPT_BUFRESIZE];
16837 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16838 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16839 
16840 		(void) dtrace_state_buffers(state);
16841 
16842 		opt[DTRACEOPT_BUFRESIZE] = rs;
16843 		opt[DTRACEOPT_CPU] = c;
16844 
16845 		break;
16846 	}
16847 
16848 	case CPU_UNCONFIG:
16849 		/*
16850 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
16851 		 * buffer will be freed when the consumer exits.)
16852 		 */
16853 		break;
16854 
16855 	default:
16856 		break;
16857 	}
16858 
16859 	mutex_exit(&dtrace_lock);
16860 	return (0);
16861 }
16862 
16863 #ifdef illumos
16864 static void
16865 dtrace_cpu_setup_initial(processorid_t cpu)
16866 {
16867 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16868 }
16869 #endif
16870 
16871 static void
16872 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16873 {
16874 	if (dtrace_toxranges >= dtrace_toxranges_max) {
16875 		int osize, nsize;
16876 		dtrace_toxrange_t *range;
16877 
16878 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16879 
16880 		if (osize == 0) {
16881 			ASSERT(dtrace_toxrange == NULL);
16882 			ASSERT(dtrace_toxranges_max == 0);
16883 			dtrace_toxranges_max = 1;
16884 		} else {
16885 			dtrace_toxranges_max <<= 1;
16886 		}
16887 
16888 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16889 		range = kmem_zalloc(nsize, KM_SLEEP);
16890 
16891 		if (dtrace_toxrange != NULL) {
16892 			ASSERT(osize != 0);
16893 			bcopy(dtrace_toxrange, range, osize);
16894 			kmem_free(dtrace_toxrange, osize);
16895 		}
16896 
16897 		dtrace_toxrange = range;
16898 	}
16899 
16900 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
16901 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
16902 
16903 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16904 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16905 	dtrace_toxranges++;
16906 }
16907 
16908 static void
16909 dtrace_getf_barrier()
16910 {
16911 #ifdef illumos
16912 	/*
16913 	 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16914 	 * that contain calls to getf(), this routine will be called on every
16915 	 * closef() before either the underlying vnode is released or the
16916 	 * file_t itself is freed.  By the time we are here, it is essential
16917 	 * that the file_t can no longer be accessed from a call to getf()
16918 	 * in probe context -- that assures that a dtrace_sync() can be used
16919 	 * to clear out any enablings referring to the old structures.
16920 	 */
16921 	if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
16922 	    kcred->cr_zone->zone_dtrace_getf != 0)
16923 		dtrace_sync();
16924 #endif
16925 }
16926 
16927 /*
16928  * DTrace Driver Cookbook Functions
16929  */
16930 #ifdef illumos
16931 /*ARGSUSED*/
16932 static int
16933 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
16934 {
16935 	dtrace_provider_id_t id;
16936 	dtrace_state_t *state = NULL;
16937 	dtrace_enabling_t *enab;
16938 
16939 	mutex_enter(&cpu_lock);
16940 	mutex_enter(&dtrace_provider_lock);
16941 	mutex_enter(&dtrace_lock);
16942 
16943 	if (ddi_soft_state_init(&dtrace_softstate,
16944 	    sizeof (dtrace_state_t), 0) != 0) {
16945 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16946 		mutex_exit(&cpu_lock);
16947 		mutex_exit(&dtrace_provider_lock);
16948 		mutex_exit(&dtrace_lock);
16949 		return (DDI_FAILURE);
16950 	}
16951 
16952 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16953 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
16954 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16955 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
16956 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
16957 		ddi_remove_minor_node(devi, NULL);
16958 		ddi_soft_state_fini(&dtrace_softstate);
16959 		mutex_exit(&cpu_lock);
16960 		mutex_exit(&dtrace_provider_lock);
16961 		mutex_exit(&dtrace_lock);
16962 		return (DDI_FAILURE);
16963 	}
16964 
16965 	ddi_report_dev(devi);
16966 	dtrace_devi = devi;
16967 
16968 	dtrace_modload = dtrace_module_loaded;
16969 	dtrace_modunload = dtrace_module_unloaded;
16970 	dtrace_cpu_init = dtrace_cpu_setup_initial;
16971 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
16972 	dtrace_helpers_fork = dtrace_helpers_duplicate;
16973 	dtrace_cpustart_init = dtrace_suspend;
16974 	dtrace_cpustart_fini = dtrace_resume;
16975 	dtrace_debugger_init = dtrace_suspend;
16976 	dtrace_debugger_fini = dtrace_resume;
16977 
16978 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16979 
16980 	ASSERT(MUTEX_HELD(&cpu_lock));
16981 
16982 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
16983 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
16984 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
16985 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
16986 	    VM_SLEEP | VMC_IDENTIFIER);
16987 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
16988 	    1, INT_MAX, 0);
16989 
16990 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
16991 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
16992 	    NULL, NULL, NULL, NULL, NULL, 0);
16993 
16994 	ASSERT(MUTEX_HELD(&cpu_lock));
16995 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
16996 	    offsetof(dtrace_probe_t, dtpr_nextmod),
16997 	    offsetof(dtrace_probe_t, dtpr_prevmod));
16998 
16999 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
17000 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
17001 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
17002 
17003 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
17004 	    offsetof(dtrace_probe_t, dtpr_nextname),
17005 	    offsetof(dtrace_probe_t, dtpr_prevname));
17006 
17007 	if (dtrace_retain_max < 1) {
17008 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
17009 		    "setting to 1", dtrace_retain_max);
17010 		dtrace_retain_max = 1;
17011 	}
17012 
17013 	/*
17014 	 * Now discover our toxic ranges.
17015 	 */
17016 	dtrace_toxic_ranges(dtrace_toxrange_add);
17017 
17018 	/*
17019 	 * Before we register ourselves as a provider to our own framework,
17020 	 * we would like to assert that dtrace_provider is NULL -- but that's
17021 	 * not true if we were loaded as a dependency of a DTrace provider.
17022 	 * Once we've registered, we can assert that dtrace_provider is our
17023 	 * pseudo provider.
17024 	 */
17025 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
17026 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
17027 
17028 	ASSERT(dtrace_provider != NULL);
17029 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
17030 
17031 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
17032 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
17033 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
17034 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
17035 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
17036 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
17037 
17038 	dtrace_anon_property();
17039 	mutex_exit(&cpu_lock);
17040 
17041 	/*
17042 	 * If there are already providers, we must ask them to provide their
17043 	 * probes, and then match any anonymous enabling against them.  Note
17044 	 * that there should be no other retained enablings at this time:
17045 	 * the only retained enablings at this time should be the anonymous
17046 	 * enabling.
17047 	 */
17048 	if (dtrace_anon.dta_enabling != NULL) {
17049 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
17050 
17051 		dtrace_enabling_provide(NULL);
17052 		state = dtrace_anon.dta_state;
17053 
17054 		/*
17055 		 * We couldn't hold cpu_lock across the above call to
17056 		 * dtrace_enabling_provide(), but we must hold it to actually
17057 		 * enable the probes.  We have to drop all of our locks, pick
17058 		 * up cpu_lock, and regain our locks before matching the
17059 		 * retained anonymous enabling.
17060 		 */
17061 		mutex_exit(&dtrace_lock);
17062 		mutex_exit(&dtrace_provider_lock);
17063 
17064 		mutex_enter(&cpu_lock);
17065 		mutex_enter(&dtrace_provider_lock);
17066 		mutex_enter(&dtrace_lock);
17067 
17068 		if ((enab = dtrace_anon.dta_enabling) != NULL)
17069 			(void) dtrace_enabling_match(enab, NULL);
17070 
17071 		mutex_exit(&cpu_lock);
17072 	}
17073 
17074 	mutex_exit(&dtrace_lock);
17075 	mutex_exit(&dtrace_provider_lock);
17076 
17077 	if (state != NULL) {
17078 		/*
17079 		 * If we created any anonymous state, set it going now.
17080 		 */
17081 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
17082 	}
17083 
17084 	return (DDI_SUCCESS);
17085 }
17086 #endif	/* illumos */
17087 
17088 #ifndef illumos
17089 static void dtrace_dtr(void *);
17090 #endif
17091 
17092 /*ARGSUSED*/
17093 static int
17094 #ifdef illumos
17095 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
17096 #else
17097 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
17098 #endif
17099 {
17100 	dtrace_state_t *state;
17101 	uint32_t priv;
17102 	uid_t uid;
17103 	zoneid_t zoneid;
17104 
17105 #ifdef illumos
17106 	if (getminor(*devp) == DTRACEMNRN_HELPER)
17107 		return (0);
17108 
17109 	/*
17110 	 * If this wasn't an open with the "helper" minor, then it must be
17111 	 * the "dtrace" minor.
17112 	 */
17113 	if (getminor(*devp) == DTRACEMNRN_DTRACE)
17114 		return (ENXIO);
17115 #else
17116 	cred_t *cred_p = NULL;
17117 	cred_p = dev->si_cred;
17118 
17119 	/*
17120 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
17121 	 * caller lacks sufficient permission to do anything with DTrace.
17122 	 */
17123 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
17124 	if (priv == DTRACE_PRIV_NONE) {
17125 #endif
17126 
17127 		return (EACCES);
17128 	}
17129 
17130 	/*
17131 	 * Ask all providers to provide all their probes.
17132 	 */
17133 	mutex_enter(&dtrace_provider_lock);
17134 	dtrace_probe_provide(NULL, NULL);
17135 	mutex_exit(&dtrace_provider_lock);
17136 
17137 	mutex_enter(&cpu_lock);
17138 	mutex_enter(&dtrace_lock);
17139 	dtrace_opens++;
17140 	dtrace_membar_producer();
17141 
17142 #ifdef illumos
17143 	/*
17144 	 * If the kernel debugger is active (that is, if the kernel debugger
17145 	 * modified text in some way), we won't allow the open.
17146 	 */
17147 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
17148 		dtrace_opens--;
17149 		mutex_exit(&cpu_lock);
17150 		mutex_exit(&dtrace_lock);
17151 		return (EBUSY);
17152 	}
17153 
17154 	if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
17155 		/*
17156 		 * If DTrace helper tracing is enabled, we need to allocate the
17157 		 * trace buffer and initialize the values.
17158 		 */
17159 		dtrace_helptrace_buffer =
17160 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
17161 		dtrace_helptrace_next = 0;
17162 		dtrace_helptrace_wrapped = 0;
17163 		dtrace_helptrace_enable = 0;
17164 	}
17165 
17166 	state = dtrace_state_create(devp, cred_p);
17167 #else
17168 	state = dtrace_state_create(dev, NULL);
17169 	devfs_set_cdevpriv(state, dtrace_dtr);
17170 #endif
17171 
17172 	mutex_exit(&cpu_lock);
17173 
17174 	if (state == NULL) {
17175 #ifdef illumos
17176 		if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17177 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17178 #else
17179 		--dtrace_opens;
17180 #endif
17181 		mutex_exit(&dtrace_lock);
17182 		return (EAGAIN);
17183 	}
17184 
17185 	mutex_exit(&dtrace_lock);
17186 
17187 	return (0);
17188 }
17189 
17190 /*ARGSUSED*/
17191 #ifdef illumos
17192 static int
17193 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
17194 #else
17195 static void
17196 dtrace_dtr(void *data)
17197 #endif
17198 {
17199 #ifdef illumos
17200 	minor_t minor = getminor(dev);
17201 	dtrace_state_t *state;
17202 #endif
17203 	dtrace_helptrace_t *buf = NULL;
17204 
17205 #ifdef illumos
17206 	if (minor == DTRACEMNRN_HELPER)
17207 		return (0);
17208 
17209 	state = ddi_get_soft_state(dtrace_softstate, minor);
17210 #else
17211 	dtrace_state_t *state = data;
17212 #endif
17213 
17214 	mutex_enter(&cpu_lock);
17215 	mutex_enter(&dtrace_lock);
17216 
17217 #ifdef illumos
17218 	if (state->dts_anon)
17219 #else
17220 	if (state != NULL && state->dts_anon)
17221 #endif
17222 	{
17223 		/*
17224 		 * There is anonymous state. Destroy that first.
17225 		 */
17226 		ASSERT(dtrace_anon.dta_state == NULL);
17227 		dtrace_state_destroy(state->dts_anon);
17228 	}
17229 
17230 	if (dtrace_helptrace_disable) {
17231 		/*
17232 		 * If we have been told to disable helper tracing, set the
17233 		 * buffer to NULL before calling into dtrace_state_destroy();
17234 		 * we take advantage of its dtrace_sync() to know that no
17235 		 * CPU is in probe context with enabled helper tracing
17236 		 * after it returns.
17237 		 */
17238 		buf = dtrace_helptrace_buffer;
17239 		dtrace_helptrace_buffer = NULL;
17240 	}
17241 
17242 #ifdef illumos
17243 	dtrace_state_destroy(state);
17244 #else
17245 	if (state != NULL) {
17246 		dtrace_state_destroy(state);
17247 		kmem_free(state, 0);
17248 	}
17249 #endif
17250 	ASSERT(dtrace_opens > 0);
17251 
17252 #ifdef illumos
17253 	/*
17254 	 * Only relinquish control of the kernel debugger interface when there
17255 	 * are no consumers and no anonymous enablings.
17256 	 */
17257 	if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17258 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17259 #else
17260 	--dtrace_opens;
17261 #endif
17262 
17263 	if (buf != NULL) {
17264 		kmem_free(buf, dtrace_helptrace_bufsize);
17265 		dtrace_helptrace_disable = 0;
17266 	}
17267 
17268 	mutex_exit(&dtrace_lock);
17269 	mutex_exit(&cpu_lock);
17270 
17271 #ifdef illumos
17272 	return (0);
17273 #endif
17274 }
17275 
17276 #ifdef illumos
17277 /*ARGSUSED*/
17278 static int
17279 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17280 {
17281 	int rval;
17282 	dof_helper_t help, *dhp = NULL;
17283 
17284 	switch (cmd) {
17285 	case DTRACEHIOC_ADDDOF:
17286 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17287 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
17288 			return (EFAULT);
17289 		}
17290 
17291 		dhp = &help;
17292 		arg = (intptr_t)help.dofhp_dof;
17293 		/*FALLTHROUGH*/
17294 
17295 	case DTRACEHIOC_ADD: {
17296 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17297 
17298 		if (dof == NULL)
17299 			return (rval);
17300 
17301 		mutex_enter(&dtrace_lock);
17302 
17303 		/*
17304 		 * dtrace_helper_slurp() takes responsibility for the dof --
17305 		 * it may free it now or it may save it and free it later.
17306 		 */
17307 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17308 			*rv = rval;
17309 			rval = 0;
17310 		} else {
17311 			rval = EINVAL;
17312 		}
17313 
17314 		mutex_exit(&dtrace_lock);
17315 		return (rval);
17316 	}
17317 
17318 	case DTRACEHIOC_REMOVE: {
17319 		mutex_enter(&dtrace_lock);
17320 		rval = dtrace_helper_destroygen(NULL, arg);
17321 		mutex_exit(&dtrace_lock);
17322 
17323 		return (rval);
17324 	}
17325 
17326 	default:
17327 		break;
17328 	}
17329 
17330 	return (ENOTTY);
17331 }
17332 
17333 /*ARGSUSED*/
17334 static int
17335 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17336 {
17337 	minor_t minor = getminor(dev);
17338 	dtrace_state_t *state;
17339 	int rval;
17340 
17341 	if (minor == DTRACEMNRN_HELPER)
17342 		return (dtrace_ioctl_helper(cmd, arg, rv));
17343 
17344 	state = ddi_get_soft_state(dtrace_softstate, minor);
17345 
17346 	if (state->dts_anon) {
17347 		ASSERT(dtrace_anon.dta_state == NULL);
17348 		state = state->dts_anon;
17349 	}
17350 
17351 	switch (cmd) {
17352 	case DTRACEIOC_PROVIDER: {
17353 		dtrace_providerdesc_t pvd;
17354 		dtrace_provider_t *pvp;
17355 
17356 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17357 			return (EFAULT);
17358 
17359 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17360 		mutex_enter(&dtrace_provider_lock);
17361 
17362 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17363 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17364 				break;
17365 		}
17366 
17367 		mutex_exit(&dtrace_provider_lock);
17368 
17369 		if (pvp == NULL)
17370 			return (ESRCH);
17371 
17372 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17373 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17374 
17375 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17376 			return (EFAULT);
17377 
17378 		return (0);
17379 	}
17380 
17381 	case DTRACEIOC_EPROBE: {
17382 		dtrace_eprobedesc_t epdesc;
17383 		dtrace_ecb_t *ecb;
17384 		dtrace_action_t *act;
17385 		void *buf;
17386 		size_t size;
17387 		uintptr_t dest;
17388 		int nrecs;
17389 
17390 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17391 			return (EFAULT);
17392 
17393 		mutex_enter(&dtrace_lock);
17394 
17395 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17396 			mutex_exit(&dtrace_lock);
17397 			return (EINVAL);
17398 		}
17399 
17400 		if (ecb->dte_probe == NULL) {
17401 			mutex_exit(&dtrace_lock);
17402 			return (EINVAL);
17403 		}
17404 
17405 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17406 		epdesc.dtepd_uarg = ecb->dte_uarg;
17407 		epdesc.dtepd_size = ecb->dte_size;
17408 
17409 		nrecs = epdesc.dtepd_nrecs;
17410 		epdesc.dtepd_nrecs = 0;
17411 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17412 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17413 				continue;
17414 
17415 			epdesc.dtepd_nrecs++;
17416 		}
17417 
17418 		/*
17419 		 * Now that we have the size, we need to allocate a temporary
17420 		 * buffer in which to store the complete description.  We need
17421 		 * the temporary buffer to be able to drop dtrace_lock()
17422 		 * across the copyout(), below.
17423 		 */
17424 		size = sizeof (dtrace_eprobedesc_t) +
17425 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17426 
17427 		buf = kmem_alloc(size, KM_SLEEP);
17428 		dest = (uintptr_t)buf;
17429 
17430 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17431 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17432 
17433 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17434 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17435 				continue;
17436 
17437 			if (nrecs-- == 0)
17438 				break;
17439 
17440 			bcopy(&act->dta_rec, (void *)dest,
17441 			    sizeof (dtrace_recdesc_t));
17442 			dest += sizeof (dtrace_recdesc_t);
17443 		}
17444 
17445 		mutex_exit(&dtrace_lock);
17446 
17447 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17448 			kmem_free(buf, size);
17449 			return (EFAULT);
17450 		}
17451 
17452 		kmem_free(buf, size);
17453 		return (0);
17454 	}
17455 
17456 	case DTRACEIOC_AGGDESC: {
17457 		dtrace_aggdesc_t aggdesc;
17458 		dtrace_action_t *act;
17459 		dtrace_aggregation_t *agg;
17460 		int nrecs;
17461 		uint32_t offs;
17462 		dtrace_recdesc_t *lrec;
17463 		void *buf;
17464 		size_t size;
17465 		uintptr_t dest;
17466 
17467 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17468 			return (EFAULT);
17469 
17470 		mutex_enter(&dtrace_lock);
17471 
17472 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17473 			mutex_exit(&dtrace_lock);
17474 			return (EINVAL);
17475 		}
17476 
17477 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17478 
17479 		nrecs = aggdesc.dtagd_nrecs;
17480 		aggdesc.dtagd_nrecs = 0;
17481 
17482 		offs = agg->dtag_base;
17483 		lrec = &agg->dtag_action.dta_rec;
17484 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17485 
17486 		for (act = agg->dtag_first; ; act = act->dta_next) {
17487 			ASSERT(act->dta_intuple ||
17488 			    DTRACEACT_ISAGG(act->dta_kind));
17489 
17490 			/*
17491 			 * If this action has a record size of zero, it
17492 			 * denotes an argument to the aggregating action.
17493 			 * Because the presence of this record doesn't (or
17494 			 * shouldn't) affect the way the data is interpreted,
17495 			 * we don't copy it out to save user-level the
17496 			 * confusion of dealing with a zero-length record.
17497 			 */
17498 			if (act->dta_rec.dtrd_size == 0) {
17499 				ASSERT(agg->dtag_hasarg);
17500 				continue;
17501 			}
17502 
17503 			aggdesc.dtagd_nrecs++;
17504 
17505 			if (act == &agg->dtag_action)
17506 				break;
17507 		}
17508 
17509 		/*
17510 		 * Now that we have the size, we need to allocate a temporary
17511 		 * buffer in which to store the complete description.  We need
17512 		 * the temporary buffer to be able to drop dtrace_lock()
17513 		 * across the copyout(), below.
17514 		 */
17515 		size = sizeof (dtrace_aggdesc_t) +
17516 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17517 
17518 		buf = kmem_alloc(size, KM_SLEEP);
17519 		dest = (uintptr_t)buf;
17520 
17521 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17522 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17523 
17524 		for (act = agg->dtag_first; ; act = act->dta_next) {
17525 			dtrace_recdesc_t rec = act->dta_rec;
17526 
17527 			/*
17528 			 * See the comment in the above loop for why we pass
17529 			 * over zero-length records.
17530 			 */
17531 			if (rec.dtrd_size == 0) {
17532 				ASSERT(agg->dtag_hasarg);
17533 				continue;
17534 			}
17535 
17536 			if (nrecs-- == 0)
17537 				break;
17538 
17539 			rec.dtrd_offset -= offs;
17540 			bcopy(&rec, (void *)dest, sizeof (rec));
17541 			dest += sizeof (dtrace_recdesc_t);
17542 
17543 			if (act == &agg->dtag_action)
17544 				break;
17545 		}
17546 
17547 		mutex_exit(&dtrace_lock);
17548 
17549 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17550 			kmem_free(buf, size);
17551 			return (EFAULT);
17552 		}
17553 
17554 		kmem_free(buf, size);
17555 		return (0);
17556 	}
17557 
17558 	case DTRACEIOC_ENABLE: {
17559 		dof_hdr_t *dof;
17560 		dtrace_enabling_t *enab = NULL;
17561 		dtrace_vstate_t *vstate;
17562 		int err = 0;
17563 
17564 		*rv = 0;
17565 
17566 		/*
17567 		 * If a NULL argument has been passed, we take this as our
17568 		 * cue to reevaluate our enablings.
17569 		 */
17570 		if (arg == NULL) {
17571 			dtrace_enabling_matchall();
17572 
17573 			return (0);
17574 		}
17575 
17576 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17577 			return (rval);
17578 
17579 		mutex_enter(&cpu_lock);
17580 		mutex_enter(&dtrace_lock);
17581 		vstate = &state->dts_vstate;
17582 
17583 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17584 			mutex_exit(&dtrace_lock);
17585 			mutex_exit(&cpu_lock);
17586 			dtrace_dof_destroy(dof);
17587 			return (EBUSY);
17588 		}
17589 
17590 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17591 			mutex_exit(&dtrace_lock);
17592 			mutex_exit(&cpu_lock);
17593 			dtrace_dof_destroy(dof);
17594 			return (EINVAL);
17595 		}
17596 
17597 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
17598 			dtrace_enabling_destroy(enab);
17599 			mutex_exit(&dtrace_lock);
17600 			mutex_exit(&cpu_lock);
17601 			dtrace_dof_destroy(dof);
17602 			return (rval);
17603 		}
17604 
17605 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17606 			err = dtrace_enabling_retain(enab);
17607 		} else {
17608 			dtrace_enabling_destroy(enab);
17609 		}
17610 
17611 		mutex_exit(&cpu_lock);
17612 		mutex_exit(&dtrace_lock);
17613 		dtrace_dof_destroy(dof);
17614 
17615 		return (err);
17616 	}
17617 
17618 	case DTRACEIOC_REPLICATE: {
17619 		dtrace_repldesc_t desc;
17620 		dtrace_probedesc_t *match = &desc.dtrpd_match;
17621 		dtrace_probedesc_t *create = &desc.dtrpd_create;
17622 		int err;
17623 
17624 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17625 			return (EFAULT);
17626 
17627 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17628 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17629 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17630 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17631 
17632 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17633 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17634 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17635 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17636 
17637 		mutex_enter(&dtrace_lock);
17638 		err = dtrace_enabling_replicate(state, match, create);
17639 		mutex_exit(&dtrace_lock);
17640 
17641 		return (err);
17642 	}
17643 
17644 	case DTRACEIOC_PROBEMATCH:
17645 	case DTRACEIOC_PROBES: {
17646 		dtrace_probe_t *probe = NULL;
17647 		dtrace_probedesc_t desc;
17648 		dtrace_probekey_t pkey;
17649 		dtrace_id_t i;
17650 		int m = 0;
17651 		uint32_t priv;
17652 		uid_t uid;
17653 		zoneid_t zoneid;
17654 
17655 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17656 			return (EFAULT);
17657 
17658 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17659 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17660 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17661 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17662 
17663 		/*
17664 		 * Before we attempt to match this probe, we want to give
17665 		 * all providers the opportunity to provide it.
17666 		 */
17667 		if (desc.dtpd_id == DTRACE_IDNONE) {
17668 			mutex_enter(&dtrace_provider_lock);
17669 			dtrace_probe_provide(&desc, NULL);
17670 			mutex_exit(&dtrace_provider_lock);
17671 			desc.dtpd_id++;
17672 		}
17673 
17674 		if (cmd == DTRACEIOC_PROBEMATCH)  {
17675 			dtrace_probekey(&desc, &pkey);
17676 			pkey.dtpk_id = DTRACE_IDNONE;
17677 		}
17678 
17679 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17680 
17681 		mutex_enter(&dtrace_lock);
17682 
17683 		if (cmd == DTRACEIOC_PROBEMATCH) {
17684 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17685 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17686 				    (m = dtrace_match_probe(probe, &pkey,
17687 				    priv, uid, zoneid)) != 0)
17688 					break;
17689 			}
17690 
17691 			if (m < 0) {
17692 				mutex_exit(&dtrace_lock);
17693 				return (EINVAL);
17694 			}
17695 
17696 		} else {
17697 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17698 				if ((probe = dtrace_probes[i - 1]) != NULL &&
17699 				    dtrace_match_priv(probe, priv, uid, zoneid))
17700 					break;
17701 			}
17702 		}
17703 
17704 		if (probe == NULL) {
17705 			mutex_exit(&dtrace_lock);
17706 			return (ESRCH);
17707 		}
17708 
17709 		dtrace_probe_description(probe, &desc);
17710 		mutex_exit(&dtrace_lock);
17711 
17712 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17713 			return (EFAULT);
17714 
17715 		return (0);
17716 	}
17717 
17718 	case DTRACEIOC_PROBEARG: {
17719 		dtrace_argdesc_t desc;
17720 		dtrace_probe_t *probe;
17721 		dtrace_provider_t *prov;
17722 
17723 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17724 			return (EFAULT);
17725 
17726 		if (desc.dtargd_id == DTRACE_IDNONE)
17727 			return (EINVAL);
17728 
17729 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
17730 			return (EINVAL);
17731 
17732 		mutex_enter(&dtrace_provider_lock);
17733 		mutex_enter(&mod_lock);
17734 		mutex_enter(&dtrace_lock);
17735 
17736 		if (desc.dtargd_id > dtrace_nprobes) {
17737 			mutex_exit(&dtrace_lock);
17738 			mutex_exit(&mod_lock);
17739 			mutex_exit(&dtrace_provider_lock);
17740 			return (EINVAL);
17741 		}
17742 
17743 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17744 			mutex_exit(&dtrace_lock);
17745 			mutex_exit(&mod_lock);
17746 			mutex_exit(&dtrace_provider_lock);
17747 			return (EINVAL);
17748 		}
17749 
17750 		mutex_exit(&dtrace_lock);
17751 
17752 		prov = probe->dtpr_provider;
17753 
17754 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17755 			/*
17756 			 * There isn't any typed information for this probe.
17757 			 * Set the argument number to DTRACE_ARGNONE.
17758 			 */
17759 			desc.dtargd_ndx = DTRACE_ARGNONE;
17760 		} else {
17761 			desc.dtargd_native[0] = '\0';
17762 			desc.dtargd_xlate[0] = '\0';
17763 			desc.dtargd_mapping = desc.dtargd_ndx;
17764 
17765 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17766 			    probe->dtpr_id, probe->dtpr_arg, &desc);
17767 		}
17768 
17769 		mutex_exit(&mod_lock);
17770 		mutex_exit(&dtrace_provider_lock);
17771 
17772 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17773 			return (EFAULT);
17774 
17775 		return (0);
17776 	}
17777 
17778 	case DTRACEIOC_GO: {
17779 		processorid_t cpuid;
17780 		rval = dtrace_state_go(state, &cpuid);
17781 
17782 		if (rval != 0)
17783 			return (rval);
17784 
17785 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17786 			return (EFAULT);
17787 
17788 		return (0);
17789 	}
17790 
17791 	case DTRACEIOC_STOP: {
17792 		processorid_t cpuid;
17793 
17794 		mutex_enter(&dtrace_lock);
17795 		rval = dtrace_state_stop(state, &cpuid);
17796 		mutex_exit(&dtrace_lock);
17797 
17798 		if (rval != 0)
17799 			return (rval);
17800 
17801 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17802 			return (EFAULT);
17803 
17804 		return (0);
17805 	}
17806 
17807 	case DTRACEIOC_DOFGET: {
17808 		dof_hdr_t hdr, *dof;
17809 		uint64_t len;
17810 
17811 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17812 			return (EFAULT);
17813 
17814 		mutex_enter(&dtrace_lock);
17815 		dof = dtrace_dof_create(state);
17816 		mutex_exit(&dtrace_lock);
17817 
17818 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17819 		rval = copyout(dof, (void *)arg, len);
17820 		dtrace_dof_destroy(dof);
17821 
17822 		return (rval == 0 ? 0 : EFAULT);
17823 	}
17824 
17825 	case DTRACEIOC_AGGSNAP:
17826 	case DTRACEIOC_BUFSNAP: {
17827 		dtrace_bufdesc_t desc;
17828 		caddr_t cached;
17829 		dtrace_buffer_t *buf;
17830 
17831 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17832 			return (EFAULT);
17833 
17834 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17835 			return (EINVAL);
17836 
17837 		mutex_enter(&dtrace_lock);
17838 
17839 		if (cmd == DTRACEIOC_BUFSNAP) {
17840 			buf = &state->dts_buffer[desc.dtbd_cpu];
17841 		} else {
17842 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17843 		}
17844 
17845 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17846 			size_t sz = buf->dtb_offset;
17847 
17848 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17849 				mutex_exit(&dtrace_lock);
17850 				return (EBUSY);
17851 			}
17852 
17853 			/*
17854 			 * If this buffer has already been consumed, we're
17855 			 * going to indicate that there's nothing left here
17856 			 * to consume.
17857 			 */
17858 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17859 				mutex_exit(&dtrace_lock);
17860 
17861 				desc.dtbd_size = 0;
17862 				desc.dtbd_drops = 0;
17863 				desc.dtbd_errors = 0;
17864 				desc.dtbd_oldest = 0;
17865 				sz = sizeof (desc);
17866 
17867 				if (copyout(&desc, (void *)arg, sz) != 0)
17868 					return (EFAULT);
17869 
17870 				return (0);
17871 			}
17872 
17873 			/*
17874 			 * If this is a ring buffer that has wrapped, we want
17875 			 * to copy the whole thing out.
17876 			 */
17877 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17878 				dtrace_buffer_polish(buf);
17879 				sz = buf->dtb_size;
17880 			}
17881 
17882 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17883 				mutex_exit(&dtrace_lock);
17884 				return (EFAULT);
17885 			}
17886 
17887 			desc.dtbd_size = sz;
17888 			desc.dtbd_drops = buf->dtb_drops;
17889 			desc.dtbd_errors = buf->dtb_errors;
17890 			desc.dtbd_oldest = buf->dtb_xamot_offset;
17891 			desc.dtbd_timestamp = dtrace_gethrtime();
17892 
17893 			mutex_exit(&dtrace_lock);
17894 
17895 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17896 				return (EFAULT);
17897 
17898 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
17899 
17900 			return (0);
17901 		}
17902 
17903 		if (buf->dtb_tomax == NULL) {
17904 			ASSERT(buf->dtb_xamot == NULL);
17905 			mutex_exit(&dtrace_lock);
17906 			return (ENOENT);
17907 		}
17908 
17909 		cached = buf->dtb_tomax;
17910 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17911 
17912 		dtrace_xcall(desc.dtbd_cpu,
17913 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
17914 
17915 		state->dts_errors += buf->dtb_xamot_errors;
17916 
17917 		/*
17918 		 * If the buffers did not actually switch, then the cross call
17919 		 * did not take place -- presumably because the given CPU is
17920 		 * not in the ready set.  If this is the case, we'll return
17921 		 * ENOENT.
17922 		 */
17923 		if (buf->dtb_tomax == cached) {
17924 			ASSERT(buf->dtb_xamot != cached);
17925 			mutex_exit(&dtrace_lock);
17926 			return (ENOENT);
17927 		}
17928 
17929 		ASSERT(cached == buf->dtb_xamot);
17930 
17931 		/*
17932 		 * We have our snapshot; now copy it out.
17933 		 */
17934 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
17935 		    buf->dtb_xamot_offset) != 0) {
17936 			mutex_exit(&dtrace_lock);
17937 			return (EFAULT);
17938 		}
17939 
17940 		desc.dtbd_size = buf->dtb_xamot_offset;
17941 		desc.dtbd_drops = buf->dtb_xamot_drops;
17942 		desc.dtbd_errors = buf->dtb_xamot_errors;
17943 		desc.dtbd_oldest = 0;
17944 		desc.dtbd_timestamp = buf->dtb_switched;
17945 
17946 		mutex_exit(&dtrace_lock);
17947 
17948 		/*
17949 		 * Finally, copy out the buffer description.
17950 		 */
17951 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17952 			return (EFAULT);
17953 
17954 		return (0);
17955 	}
17956 
17957 	case DTRACEIOC_CONF: {
17958 		dtrace_conf_t conf;
17959 
17960 		bzero(&conf, sizeof (conf));
17961 		conf.dtc_difversion = DIF_VERSION;
17962 		conf.dtc_difintregs = DIF_DIR_NREGS;
17963 		conf.dtc_diftupregs = DIF_DTR_NREGS;
17964 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
17965 
17966 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
17967 			return (EFAULT);
17968 
17969 		return (0);
17970 	}
17971 
17972 	case DTRACEIOC_STATUS: {
17973 		dtrace_status_t stat;
17974 		dtrace_dstate_t *dstate;
17975 		int i, j;
17976 		uint64_t nerrs;
17977 
17978 		/*
17979 		 * See the comment in dtrace_state_deadman() for the reason
17980 		 * for setting dts_laststatus to INT64_MAX before setting
17981 		 * it to the correct value.
17982 		 */
17983 		state->dts_laststatus = INT64_MAX;
17984 		dtrace_membar_producer();
17985 		state->dts_laststatus = dtrace_gethrtime();
17986 
17987 		bzero(&stat, sizeof (stat));
17988 
17989 		mutex_enter(&dtrace_lock);
17990 
17991 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
17992 			mutex_exit(&dtrace_lock);
17993 			return (ENOENT);
17994 		}
17995 
17996 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
17997 			stat.dtst_exiting = 1;
17998 
17999 		nerrs = state->dts_errors;
18000 		dstate = &state->dts_vstate.dtvs_dynvars;
18001 
18002 		for (i = 0; i < NCPU; i++) {
18003 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
18004 
18005 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
18006 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
18007 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
18008 
18009 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
18010 				stat.dtst_filled++;
18011 
18012 			nerrs += state->dts_buffer[i].dtb_errors;
18013 
18014 			for (j = 0; j < state->dts_nspeculations; j++) {
18015 				dtrace_speculation_t *spec;
18016 				dtrace_buffer_t *buf;
18017 
18018 				spec = &state->dts_speculations[j];
18019 				buf = &spec->dtsp_buffer[i];
18020 				stat.dtst_specdrops += buf->dtb_xamot_drops;
18021 			}
18022 		}
18023 
18024 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
18025 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
18026 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
18027 		stat.dtst_dblerrors = state->dts_dblerrors;
18028 		stat.dtst_killed =
18029 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
18030 		stat.dtst_errors = nerrs;
18031 
18032 		mutex_exit(&dtrace_lock);
18033 
18034 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
18035 			return (EFAULT);
18036 
18037 		return (0);
18038 	}
18039 
18040 	case DTRACEIOC_FORMAT: {
18041 		dtrace_fmtdesc_t fmt;
18042 		char *str;
18043 		int len;
18044 
18045 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
18046 			return (EFAULT);
18047 
18048 		mutex_enter(&dtrace_lock);
18049 
18050 		if (fmt.dtfd_format == 0 ||
18051 		    fmt.dtfd_format > state->dts_nformats) {
18052 			mutex_exit(&dtrace_lock);
18053 			return (EINVAL);
18054 		}
18055 
18056 		/*
18057 		 * Format strings are allocated contiguously and they are
18058 		 * never freed; if a format index is less than the number
18059 		 * of formats, we can assert that the format map is non-NULL
18060 		 * and that the format for the specified index is non-NULL.
18061 		 */
18062 		ASSERT(state->dts_formats != NULL);
18063 		str = state->dts_formats[fmt.dtfd_format - 1];
18064 		ASSERT(str != NULL);
18065 
18066 		len = strlen(str) + 1;
18067 
18068 		if (len > fmt.dtfd_length) {
18069 			fmt.dtfd_length = len;
18070 
18071 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
18072 				mutex_exit(&dtrace_lock);
18073 				return (EINVAL);
18074 			}
18075 		} else {
18076 			if (copyout(str, fmt.dtfd_string, len) != 0) {
18077 				mutex_exit(&dtrace_lock);
18078 				return (EINVAL);
18079 			}
18080 		}
18081 
18082 		mutex_exit(&dtrace_lock);
18083 		return (0);
18084 	}
18085 
18086 	default:
18087 		break;
18088 	}
18089 
18090 	return (ENOTTY);
18091 }
18092 
18093 /*ARGSUSED*/
18094 static int
18095 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
18096 {
18097 	dtrace_state_t *state;
18098 
18099 	switch (cmd) {
18100 	case DDI_DETACH:
18101 		break;
18102 
18103 	case DDI_SUSPEND:
18104 		return (DDI_SUCCESS);
18105 
18106 	default:
18107 		return (DDI_FAILURE);
18108 	}
18109 
18110 	mutex_enter(&cpu_lock);
18111 	mutex_enter(&dtrace_provider_lock);
18112 	mutex_enter(&dtrace_lock);
18113 
18114 	ASSERT(dtrace_opens == 0);
18115 
18116 	if (dtrace_helpers > 0) {
18117 		mutex_exit(&dtrace_provider_lock);
18118 		mutex_exit(&dtrace_lock);
18119 		mutex_exit(&cpu_lock);
18120 		return (DDI_FAILURE);
18121 	}
18122 
18123 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
18124 		mutex_exit(&dtrace_provider_lock);
18125 		mutex_exit(&dtrace_lock);
18126 		mutex_exit(&cpu_lock);
18127 		return (DDI_FAILURE);
18128 	}
18129 
18130 	dtrace_provider = NULL;
18131 
18132 	if ((state = dtrace_anon_grab()) != NULL) {
18133 		/*
18134 		 * If there were ECBs on this state, the provider should
18135 		 * have not been allowed to detach; assert that there is
18136 		 * none.
18137 		 */
18138 		ASSERT(state->dts_necbs == 0);
18139 		dtrace_state_destroy(state);
18140 
18141 		/*
18142 		 * If we're being detached with anonymous state, we need to
18143 		 * indicate to the kernel debugger that DTrace is now inactive.
18144 		 */
18145 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
18146 	}
18147 
18148 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
18149 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
18150 	dtrace_cpu_init = NULL;
18151 	dtrace_helpers_cleanup = NULL;
18152 	dtrace_helpers_fork = NULL;
18153 	dtrace_cpustart_init = NULL;
18154 	dtrace_cpustart_fini = NULL;
18155 	dtrace_debugger_init = NULL;
18156 	dtrace_debugger_fini = NULL;
18157 	dtrace_modload = NULL;
18158 	dtrace_modunload = NULL;
18159 
18160 	ASSERT(dtrace_getf == 0);
18161 	ASSERT(dtrace_closef == NULL);
18162 
18163 	mutex_exit(&cpu_lock);
18164 
18165 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
18166 	dtrace_probes = NULL;
18167 	dtrace_nprobes = 0;
18168 
18169 	dtrace_hash_destroy(dtrace_bymod);
18170 	dtrace_hash_destroy(dtrace_byfunc);
18171 	dtrace_hash_destroy(dtrace_byname);
18172 	dtrace_bymod = NULL;
18173 	dtrace_byfunc = NULL;
18174 	dtrace_byname = NULL;
18175 
18176 	kmem_cache_destroy(dtrace_state_cache);
18177 	vmem_destroy(dtrace_minor);
18178 	vmem_destroy(dtrace_arena);
18179 
18180 	if (dtrace_toxrange != NULL) {
18181 		kmem_free(dtrace_toxrange,
18182 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
18183 		dtrace_toxrange = NULL;
18184 		dtrace_toxranges = 0;
18185 		dtrace_toxranges_max = 0;
18186 	}
18187 
18188 	ddi_remove_minor_node(dtrace_devi, NULL);
18189 	dtrace_devi = NULL;
18190 
18191 	ddi_soft_state_fini(&dtrace_softstate);
18192 
18193 	ASSERT(dtrace_vtime_references == 0);
18194 	ASSERT(dtrace_opens == 0);
18195 	ASSERT(dtrace_retained == NULL);
18196 
18197 	mutex_exit(&dtrace_lock);
18198 	mutex_exit(&dtrace_provider_lock);
18199 
18200 	/*
18201 	 * We don't destroy the task queue until after we have dropped our
18202 	 * locks (taskq_destroy() may block on running tasks).  To prevent
18203 	 * attempting to do work after we have effectively detached but before
18204 	 * the task queue has been destroyed, all tasks dispatched via the
18205 	 * task queue must check that DTrace is still attached before
18206 	 * performing any operation.
18207 	 */
18208 	taskq_destroy(dtrace_taskq);
18209 	dtrace_taskq = NULL;
18210 
18211 	return (DDI_SUCCESS);
18212 }
18213 #endif
18214 
18215 #ifdef illumos
18216 /*ARGSUSED*/
18217 static int
18218 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
18219 {
18220 	int error;
18221 
18222 	switch (infocmd) {
18223 	case DDI_INFO_DEVT2DEVINFO:
18224 		*result = (void *)dtrace_devi;
18225 		error = DDI_SUCCESS;
18226 		break;
18227 	case DDI_INFO_DEVT2INSTANCE:
18228 		*result = (void *)0;
18229 		error = DDI_SUCCESS;
18230 		break;
18231 	default:
18232 		error = DDI_FAILURE;
18233 	}
18234 	return (error);
18235 }
18236 #endif
18237 
18238 #ifdef illumos
18239 static struct cb_ops dtrace_cb_ops = {
18240 	dtrace_open,		/* open */
18241 	dtrace_close,		/* close */
18242 	nulldev,		/* strategy */
18243 	nulldev,		/* print */
18244 	nodev,			/* dump */
18245 	nodev,			/* read */
18246 	nodev,			/* write */
18247 	dtrace_ioctl,		/* ioctl */
18248 	nodev,			/* devmap */
18249 	nodev,			/* mmap */
18250 	nodev,			/* segmap */
18251 	nochpoll,		/* poll */
18252 	ddi_prop_op,		/* cb_prop_op */
18253 	0,			/* streamtab  */
18254 	D_NEW | D_MP		/* Driver compatibility flag */
18255 };
18256 
18257 static struct dev_ops dtrace_ops = {
18258 	DEVO_REV,		/* devo_rev */
18259 	0,			/* refcnt */
18260 	dtrace_info,		/* get_dev_info */
18261 	nulldev,		/* identify */
18262 	nulldev,		/* probe */
18263 	dtrace_attach,		/* attach */
18264 	dtrace_detach,		/* detach */
18265 	nodev,			/* reset */
18266 	&dtrace_cb_ops,		/* driver operations */
18267 	NULL,			/* bus operations */
18268 	nodev			/* dev power */
18269 };
18270 
18271 static struct modldrv modldrv = {
18272 	&mod_driverops,		/* module type (this is a pseudo driver) */
18273 	"Dynamic Tracing",	/* name of module */
18274 	&dtrace_ops,		/* driver ops */
18275 };
18276 
18277 static struct modlinkage modlinkage = {
18278 	MODREV_1,
18279 	(void *)&modldrv,
18280 	NULL
18281 };
18282 
18283 int
18284 _init(void)
18285 {
18286 	return (mod_install(&modlinkage));
18287 }
18288 
18289 int
18290 _info(struct modinfo *modinfop)
18291 {
18292 	return (mod_info(&modlinkage, modinfop));
18293 }
18294 
18295 int
18296 _fini(void)
18297 {
18298 	return (mod_remove(&modlinkage));
18299 }
18300 #else
18301 
18302 static d_ioctl_t	dtrace_ioctl;
18303 static d_ioctl_t	dtrace_ioctl_helper;
18304 static void		dtrace_load(void *);
18305 static int		dtrace_unload(void);
18306 static struct cdev	*dtrace_dev;
18307 static struct cdev	*helper_dev;
18308 
18309 void dtrace_invop_init(void);
18310 void dtrace_invop_uninit(void);
18311 
18312 static struct cdevsw dtrace_cdevsw = {
18313 	.d_version	= D_VERSION,
18314 	.d_ioctl	= dtrace_ioctl,
18315 	.d_open		= dtrace_open,
18316 	.d_name		= "dtrace",
18317 };
18318 
18319 static struct cdevsw helper_cdevsw = {
18320 	.d_version	= D_VERSION,
18321 	.d_ioctl	= dtrace_ioctl_helper,
18322 	.d_name		= "helper",
18323 };
18324 
18325 #include <dtrace_anon.c>
18326 #include <dtrace_ioctl.c>
18327 #include <dtrace_load.c>
18328 #include <dtrace_modevent.c>
18329 #include <dtrace_sysctl.c>
18330 #include <dtrace_unload.c>
18331 #include <dtrace_vtime.c>
18332 #include <dtrace_hacks.c>
18333 #include <dtrace_isa.c>
18334 
18335 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18336 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18337 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18338 
18339 DEV_MODULE(dtrace, dtrace_modevent, NULL);
18340 MODULE_VERSION(dtrace, 1);
18341 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18342 #endif
18343