xref: /freebsd-src/sys/cddl/contrib/opensolaris/uts/common/dtrace/dtrace.c (revision 41840d7587afd6ce27e3725b80481dd4d8f26b1a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  *
21  * $FreeBSD$
22  */
23 
24 /*
25  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
26  * Copyright (c) 2012 by Delphix. All rights reserved
27  * Use is subject to license terms.
28  */
29 
30 #pragma ident	"%Z%%M%	%I%	%E% SMI"
31 
32 /*
33  * DTrace - Dynamic Tracing for Solaris
34  *
35  * This is the implementation of the Solaris Dynamic Tracing framework
36  * (DTrace).  The user-visible interface to DTrace is described at length in
37  * the "Solaris Dynamic Tracing Guide".  The interfaces between the libdtrace
38  * library, the in-kernel DTrace framework, and the DTrace providers are
39  * described in the block comments in the <sys/dtrace.h> header file.  The
40  * internal architecture of DTrace is described in the block comments in the
41  * <sys/dtrace_impl.h> header file.  The comments contained within the DTrace
42  * implementation very much assume mastery of all of these sources; if one has
43  * an unanswered question about the implementation, one should consult them
44  * first.
45  *
46  * The functions here are ordered roughly as follows:
47  *
48  *   - Probe context functions
49  *   - Probe hashing functions
50  *   - Non-probe context utility functions
51  *   - Matching functions
52  *   - Provider-to-Framework API functions
53  *   - Probe management functions
54  *   - DIF object functions
55  *   - Format functions
56  *   - Predicate functions
57  *   - ECB functions
58  *   - Buffer functions
59  *   - Enabling functions
60  *   - DOF functions
61  *   - Anonymous enabling functions
62  *   - Consumer state functions
63  *   - Helper functions
64  *   - Hook functions
65  *   - Driver cookbook functions
66  *
67  * Each group of functions begins with a block comment labelled the "DTrace
68  * [Group] Functions", allowing one to find each block by searching forward
69  * on capital-f functions.
70  */
71 #include <sys/errno.h>
72 #if !defined(sun)
73 #include <sys/time.h>
74 #endif
75 #include <sys/stat.h>
76 #include <sys/modctl.h>
77 #include <sys/conf.h>
78 #include <sys/systm.h>
79 #if defined(sun)
80 #include <sys/ddi.h>
81 #include <sys/sunddi.h>
82 #endif
83 #include <sys/cpuvar.h>
84 #include <sys/kmem.h>
85 #if defined(sun)
86 #include <sys/strsubr.h>
87 #endif
88 #include <sys/sysmacros.h>
89 #include <sys/dtrace_impl.h>
90 #include <sys/atomic.h>
91 #include <sys/cmn_err.h>
92 #if defined(sun)
93 #include <sys/mutex_impl.h>
94 #include <sys/rwlock_impl.h>
95 #endif
96 #include <sys/ctf_api.h>
97 #if defined(sun)
98 #include <sys/panic.h>
99 #include <sys/priv_impl.h>
100 #endif
101 #include <sys/policy.h>
102 #if defined(sun)
103 #include <sys/cred_impl.h>
104 #include <sys/procfs_isa.h>
105 #endif
106 #include <sys/taskq.h>
107 #if defined(sun)
108 #include <sys/mkdev.h>
109 #include <sys/kdi.h>
110 #endif
111 #include <sys/zone.h>
112 #include <sys/socket.h>
113 #include <netinet/in.h>
114 
115 /* FreeBSD includes: */
116 #if !defined(sun)
117 #include <sys/callout.h>
118 #include <sys/ctype.h>
119 #include <sys/limits.h>
120 #include <sys/kdb.h>
121 #include <sys/kernel.h>
122 #include <sys/malloc.h>
123 #include <sys/sysctl.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/rwlock.h>
127 #include <sys/sx.h>
128 #include <sys/dtrace_bsd.h>
129 #include <netinet/in.h>
130 #include "dtrace_cddl.h"
131 #include "dtrace_debug.c"
132 #endif
133 
134 /*
135  * DTrace Tunable Variables
136  *
137  * The following variables may be tuned by adding a line to /etc/system that
138  * includes both the name of the DTrace module ("dtrace") and the name of the
139  * variable.  For example:
140  *
141  *   set dtrace:dtrace_destructive_disallow = 1
142  *
143  * In general, the only variables that one should be tuning this way are those
144  * that affect system-wide DTrace behavior, and for which the default behavior
145  * is undesirable.  Most of these variables are tunable on a per-consumer
146  * basis using DTrace options, and need not be tuned on a system-wide basis.
147  * When tuning these variables, avoid pathological values; while some attempt
148  * is made to verify the integrity of these variables, they are not considered
149  * part of the supported interface to DTrace, and they are therefore not
150  * checked comprehensively.  Further, these variables should not be tuned
151  * dynamically via "mdb -kw" or other means; they should only be tuned via
152  * /etc/system.
153  */
154 int		dtrace_destructive_disallow = 0;
155 dtrace_optval_t	dtrace_nonroot_maxsize = (16 * 1024 * 1024);
156 size_t		dtrace_difo_maxsize = (256 * 1024);
157 dtrace_optval_t	dtrace_dof_maxsize = (256 * 1024);
158 size_t		dtrace_global_maxsize = (16 * 1024);
159 size_t		dtrace_actions_max = (16 * 1024);
160 size_t		dtrace_retain_max = 1024;
161 dtrace_optval_t	dtrace_helper_actions_max = 128;
162 dtrace_optval_t	dtrace_helper_providers_max = 32;
163 dtrace_optval_t	dtrace_dstate_defsize = (1 * 1024 * 1024);
164 size_t		dtrace_strsize_default = 256;
165 dtrace_optval_t	dtrace_cleanrate_default = 9900990;		/* 101 hz */
166 dtrace_optval_t	dtrace_cleanrate_min = 200000;			/* 5000 hz */
167 dtrace_optval_t	dtrace_cleanrate_max = (uint64_t)60 * NANOSEC;	/* 1/minute */
168 dtrace_optval_t	dtrace_aggrate_default = NANOSEC;		/* 1 hz */
169 dtrace_optval_t	dtrace_statusrate_default = NANOSEC;		/* 1 hz */
170 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC;	 /* 6/minute */
171 dtrace_optval_t	dtrace_switchrate_default = NANOSEC;		/* 1 hz */
172 dtrace_optval_t	dtrace_nspec_default = 1;
173 dtrace_optval_t	dtrace_specsize_default = 32 * 1024;
174 dtrace_optval_t dtrace_stackframes_default = 20;
175 dtrace_optval_t dtrace_ustackframes_default = 20;
176 dtrace_optval_t dtrace_jstackframes_default = 50;
177 dtrace_optval_t dtrace_jstackstrsize_default = 512;
178 int		dtrace_msgdsize_max = 128;
179 hrtime_t	dtrace_chill_max = 500 * (NANOSEC / MILLISEC);	/* 500 ms */
180 hrtime_t	dtrace_chill_interval = NANOSEC;		/* 1000 ms */
181 int		dtrace_devdepth_max = 32;
182 int		dtrace_err_verbose;
183 hrtime_t	dtrace_deadman_interval = NANOSEC;
184 hrtime_t	dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
185 hrtime_t	dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
186 hrtime_t	dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
187 
188 /*
189  * DTrace External Variables
190  *
191  * As dtrace(7D) is a kernel module, any DTrace variables are obviously
192  * available to DTrace consumers via the backtick (`) syntax.  One of these,
193  * dtrace_zero, is made deliberately so:  it is provided as a source of
194  * well-known, zero-filled memory.  While this variable is not documented,
195  * it is used by some translators as an implementation detail.
196  */
197 const char	dtrace_zero[256] = { 0 };	/* zero-filled memory */
198 
199 /*
200  * DTrace Internal Variables
201  */
202 #if defined(sun)
203 static dev_info_t	*dtrace_devi;		/* device info */
204 #endif
205 #if defined(sun)
206 static vmem_t		*dtrace_arena;		/* probe ID arena */
207 static vmem_t		*dtrace_minor;		/* minor number arena */
208 #else
209 static taskq_t		*dtrace_taskq;		/* task queue */
210 static struct unrhdr	*dtrace_arena;		/* Probe ID number.     */
211 #endif
212 static dtrace_probe_t	**dtrace_probes;	/* array of all probes */
213 static int		dtrace_nprobes;		/* number of probes */
214 static dtrace_provider_t *dtrace_provider;	/* provider list */
215 static dtrace_meta_t	*dtrace_meta_pid;	/* user-land meta provider */
216 static int		dtrace_opens;		/* number of opens */
217 static int		dtrace_helpers;		/* number of helpers */
218 #if defined(sun)
219 static void		*dtrace_softstate;	/* softstate pointer */
220 #endif
221 static dtrace_hash_t	*dtrace_bymod;		/* probes hashed by module */
222 static dtrace_hash_t	*dtrace_byfunc;		/* probes hashed by function */
223 static dtrace_hash_t	*dtrace_byname;		/* probes hashed by name */
224 static dtrace_toxrange_t *dtrace_toxrange;	/* toxic range array */
225 static int		dtrace_toxranges;	/* number of toxic ranges */
226 static int		dtrace_toxranges_max;	/* size of toxic range array */
227 static dtrace_anon_t	dtrace_anon;		/* anonymous enabling */
228 static kmem_cache_t	*dtrace_state_cache;	/* cache for dynamic state */
229 static uint64_t		dtrace_vtime_references; /* number of vtimestamp refs */
230 static kthread_t	*dtrace_panicked;	/* panicking thread */
231 static dtrace_ecb_t	*dtrace_ecb_create_cache; /* cached created ECB */
232 static dtrace_genid_t	dtrace_probegen;	/* current probe generation */
233 static dtrace_helpers_t *dtrace_deferred_pid;	/* deferred helper list */
234 static dtrace_enabling_t *dtrace_retained;	/* list of retained enablings */
235 static dtrace_dynvar_t	dtrace_dynhash_sink;	/* end of dynamic hash chains */
236 #if !defined(sun)
237 static struct mtx	dtrace_unr_mtx;
238 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
239 int		dtrace_in_probe;	/* non-zero if executing a probe */
240 #if defined(__i386__) || defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
241 uintptr_t	dtrace_in_probe_addr;	/* Address of invop when already in probe */
242 #endif
243 #endif
244 
245 /*
246  * DTrace Locking
247  * DTrace is protected by three (relatively coarse-grained) locks:
248  *
249  * (1) dtrace_lock is required to manipulate essentially any DTrace state,
250  *     including enabling state, probes, ECBs, consumer state, helper state,
251  *     etc.  Importantly, dtrace_lock is _not_ required when in probe context;
252  *     probe context is lock-free -- synchronization is handled via the
253  *     dtrace_sync() cross call mechanism.
254  *
255  * (2) dtrace_provider_lock is required when manipulating provider state, or
256  *     when provider state must be held constant.
257  *
258  * (3) dtrace_meta_lock is required when manipulating meta provider state, or
259  *     when meta provider state must be held constant.
260  *
261  * The lock ordering between these three locks is dtrace_meta_lock before
262  * dtrace_provider_lock before dtrace_lock.  (In particular, there are
263  * several places where dtrace_provider_lock is held by the framework as it
264  * calls into the providers -- which then call back into the framework,
265  * grabbing dtrace_lock.)
266  *
267  * There are two other locks in the mix:  mod_lock and cpu_lock.  With respect
268  * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
269  * role as a coarse-grained lock; it is acquired before both of these locks.
270  * With respect to dtrace_meta_lock, its behavior is stranger:  cpu_lock must
271  * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
272  * mod_lock is similar with respect to dtrace_provider_lock in that it must be
273  * acquired _between_ dtrace_provider_lock and dtrace_lock.
274  */
275 static kmutex_t		dtrace_lock;		/* probe state lock */
276 static kmutex_t		dtrace_provider_lock;	/* provider state lock */
277 static kmutex_t		dtrace_meta_lock;	/* meta-provider state lock */
278 
279 #if !defined(sun)
280 /* XXX FreeBSD hacks. */
281 #define cr_suid		cr_svuid
282 #define cr_sgid		cr_svgid
283 #define	ipaddr_t	in_addr_t
284 #define mod_modname	pathname
285 #define vuprintf	vprintf
286 #define ttoproc(_a)	((_a)->td_proc)
287 #define crgetzoneid(_a)	0
288 #define	NCPU		MAXCPU
289 #define SNOCD		0
290 #define CPU_ON_INTR(_a)	0
291 
292 #define PRIV_EFFECTIVE		(1 << 0)
293 #define PRIV_DTRACE_KERNEL	(1 << 1)
294 #define PRIV_DTRACE_PROC	(1 << 2)
295 #define PRIV_DTRACE_USER	(1 << 3)
296 #define PRIV_PROC_OWNER		(1 << 4)
297 #define PRIV_PROC_ZONE		(1 << 5)
298 #define PRIV_ALL		~0
299 
300 SYSCTL_NODE(_debug, OID_AUTO, dtrace, CTLFLAG_RD, 0, "DTrace Information");
301 #endif
302 
303 #if defined(sun)
304 #define curcpu	CPU->cpu_id
305 #endif
306 
307 
308 /*
309  * DTrace Provider Variables
310  *
311  * These are the variables relating to DTrace as a provider (that is, the
312  * provider of the BEGIN, END, and ERROR probes).
313  */
314 static dtrace_pattr_t	dtrace_provider_attr = {
315 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
316 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
317 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
318 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
319 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
320 };
321 
322 static void
323 dtrace_nullop(void)
324 {}
325 
326 static dtrace_pops_t	dtrace_provider_ops = {
327 	(void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
328 	(void (*)(void *, modctl_t *))dtrace_nullop,
329 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
330 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
331 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
332 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
333 	NULL,
334 	NULL,
335 	NULL,
336 	(void (*)(void *, dtrace_id_t, void *))dtrace_nullop
337 };
338 
339 static dtrace_id_t	dtrace_probeid_begin;	/* special BEGIN probe */
340 static dtrace_id_t	dtrace_probeid_end;	/* special END probe */
341 dtrace_id_t		dtrace_probeid_error;	/* special ERROR probe */
342 
343 /*
344  * DTrace Helper Tracing Variables
345  */
346 uint32_t dtrace_helptrace_next = 0;
347 uint32_t dtrace_helptrace_nlocals;
348 char	*dtrace_helptrace_buffer;
349 int	dtrace_helptrace_bufsize = 512 * 1024;
350 
351 #ifdef DEBUG
352 int	dtrace_helptrace_enabled = 1;
353 #else
354 int	dtrace_helptrace_enabled = 0;
355 #endif
356 
357 /*
358  * DTrace Error Hashing
359  *
360  * On DEBUG kernels, DTrace will track the errors that has seen in a hash
361  * table.  This is very useful for checking coverage of tests that are
362  * expected to induce DIF or DOF processing errors, and may be useful for
363  * debugging problems in the DIF code generator or in DOF generation .  The
364  * error hash may be examined with the ::dtrace_errhash MDB dcmd.
365  */
366 #ifdef DEBUG
367 static dtrace_errhash_t	dtrace_errhash[DTRACE_ERRHASHSZ];
368 static const char *dtrace_errlast;
369 static kthread_t *dtrace_errthread;
370 static kmutex_t dtrace_errlock;
371 #endif
372 
373 /*
374  * DTrace Macros and Constants
375  *
376  * These are various macros that are useful in various spots in the
377  * implementation, along with a few random constants that have no meaning
378  * outside of the implementation.  There is no real structure to this cpp
379  * mishmash -- but is there ever?
380  */
381 #define	DTRACE_HASHSTR(hash, probe)	\
382 	dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
383 
384 #define	DTRACE_HASHNEXT(hash, probe)	\
385 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
386 
387 #define	DTRACE_HASHPREV(hash, probe)	\
388 	(dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
389 
390 #define	DTRACE_HASHEQ(hash, lhs, rhs)	\
391 	(strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
392 	    *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
393 
394 #define	DTRACE_AGGHASHSIZE_SLEW		17
395 
396 #define	DTRACE_V4MAPPED_OFFSET		(sizeof (uint32_t) * 3)
397 
398 /*
399  * The key for a thread-local variable consists of the lower 61 bits of the
400  * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
401  * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
402  * equal to a variable identifier.  This is necessary (but not sufficient) to
403  * assure that global associative arrays never collide with thread-local
404  * variables.  To guarantee that they cannot collide, we must also define the
405  * order for keying dynamic variables.  That order is:
406  *
407  *   [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
408  *
409  * Because the variable-key and the tls-key are in orthogonal spaces, there is
410  * no way for a global variable key signature to match a thread-local key
411  * signature.
412  */
413 #if defined(sun)
414 #define	DTRACE_TLS_THRKEY(where) { \
415 	uint_t intr = 0; \
416 	uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
417 	for (; actv; actv >>= 1) \
418 		intr++; \
419 	ASSERT(intr < (1 << 3)); \
420 	(where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
421 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
422 }
423 #else
424 #define	DTRACE_TLS_THRKEY(where) { \
425 	solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
426 	uint_t intr = 0; \
427 	uint_t actv = _c->cpu_intr_actv; \
428 	for (; actv; actv >>= 1) \
429 		intr++; \
430 	ASSERT(intr < (1 << 3)); \
431 	(where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
432 	    (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
433 }
434 #endif
435 
436 #define	DT_BSWAP_8(x)	((x) & 0xff)
437 #define	DT_BSWAP_16(x)	((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
438 #define	DT_BSWAP_32(x)	((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
439 #define	DT_BSWAP_64(x)	((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
440 
441 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
442 
443 #define	DTRACE_STORE(type, tomax, offset, what) \
444 	*((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
445 
446 #ifndef __x86
447 #define	DTRACE_ALIGNCHECK(addr, size, flags)				\
448 	if (addr & (size - 1)) {					\
449 		*flags |= CPU_DTRACE_BADALIGN;				\
450 		cpu_core[curcpu].cpuc_dtrace_illval = addr;	\
451 		return (0);						\
452 	}
453 #else
454 #define	DTRACE_ALIGNCHECK(addr, size, flags)
455 #endif
456 
457 /*
458  * Test whether a range of memory starting at testaddr of size testsz falls
459  * within the range of memory described by addr, sz.  We take care to avoid
460  * problems with overflow and underflow of the unsigned quantities, and
461  * disallow all negative sizes.  Ranges of size 0 are allowed.
462  */
463 #define	DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
464 	((testaddr) - (baseaddr) < (basesz) && \
465 	(testaddr) + (testsz) - (baseaddr) <= (basesz) && \
466 	(testaddr) + (testsz) >= (testaddr))
467 
468 /*
469  * Test whether alloc_sz bytes will fit in the scratch region.  We isolate
470  * alloc_sz on the righthand side of the comparison in order to avoid overflow
471  * or underflow in the comparison with it.  This is simpler than the INRANGE
472  * check above, because we know that the dtms_scratch_ptr is valid in the
473  * range.  Allocations of size zero are allowed.
474  */
475 #define	DTRACE_INSCRATCH(mstate, alloc_sz) \
476 	((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
477 	(mstate)->dtms_scratch_ptr >= (alloc_sz))
478 
479 #define	DTRACE_LOADFUNC(bits)						\
480 /*CSTYLED*/								\
481 uint##bits##_t								\
482 dtrace_load##bits(uintptr_t addr)					\
483 {									\
484 	size_t size = bits / NBBY;					\
485 	/*CSTYLED*/							\
486 	uint##bits##_t rval;						\
487 	int i;								\
488 	volatile uint16_t *flags = (volatile uint16_t *)		\
489 	    &cpu_core[curcpu].cpuc_dtrace_flags;			\
490 									\
491 	DTRACE_ALIGNCHECK(addr, size, flags);				\
492 									\
493 	for (i = 0; i < dtrace_toxranges; i++) {			\
494 		if (addr >= dtrace_toxrange[i].dtt_limit)		\
495 			continue;					\
496 									\
497 		if (addr + size <= dtrace_toxrange[i].dtt_base)		\
498 			continue;					\
499 									\
500 		/*							\
501 		 * This address falls within a toxic region; return 0.	\
502 		 */							\
503 		*flags |= CPU_DTRACE_BADADDR;				\
504 		cpu_core[curcpu].cpuc_dtrace_illval = addr;		\
505 		return (0);						\
506 	}								\
507 									\
508 	*flags |= CPU_DTRACE_NOFAULT;					\
509 	/*CSTYLED*/							\
510 	rval = *((volatile uint##bits##_t *)addr);			\
511 	*flags &= ~CPU_DTRACE_NOFAULT;					\
512 									\
513 	return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0);		\
514 }
515 
516 #ifdef _LP64
517 #define	dtrace_loadptr	dtrace_load64
518 #else
519 #define	dtrace_loadptr	dtrace_load32
520 #endif
521 
522 #define	DTRACE_DYNHASH_FREE	0
523 #define	DTRACE_DYNHASH_SINK	1
524 #define	DTRACE_DYNHASH_VALID	2
525 
526 #define	DTRACE_MATCH_NEXT	0
527 #define	DTRACE_MATCH_DONE	1
528 #define	DTRACE_ANCHORED(probe)	((probe)->dtpr_func[0] != '\0')
529 #define	DTRACE_STATE_ALIGN	64
530 
531 #define	DTRACE_FLAGS2FLT(flags)						\
532 	(((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR :		\
533 	((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP :		\
534 	((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO :		\
535 	((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV :		\
536 	((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV :		\
537 	((flags) & CPU_DTRACE_TUPOFLOW) ?  DTRACEFLT_TUPOFLOW :		\
538 	((flags) & CPU_DTRACE_BADALIGN) ?  DTRACEFLT_BADALIGN :		\
539 	((flags) & CPU_DTRACE_NOSCRATCH) ?  DTRACEFLT_NOSCRATCH :	\
540 	((flags) & CPU_DTRACE_BADSTACK) ?  DTRACEFLT_BADSTACK :		\
541 	DTRACEFLT_UNKNOWN)
542 
543 #define	DTRACEACT_ISSTRING(act)						\
544 	((act)->dta_kind == DTRACEACT_DIFEXPR &&			\
545 	(act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
546 
547 /* Function prototype definitions: */
548 static size_t dtrace_strlen(const char *, size_t);
549 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
550 static void dtrace_enabling_provide(dtrace_provider_t *);
551 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
552 static void dtrace_enabling_matchall(void);
553 static void dtrace_enabling_reap(void);
554 static dtrace_state_t *dtrace_anon_grab(void);
555 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
556     dtrace_state_t *, uint64_t, uint64_t);
557 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
558 static void dtrace_buffer_drop(dtrace_buffer_t *);
559 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
560 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
561     dtrace_state_t *, dtrace_mstate_t *);
562 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
563     dtrace_optval_t);
564 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
565 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
566 uint16_t dtrace_load16(uintptr_t);
567 uint32_t dtrace_load32(uintptr_t);
568 uint64_t dtrace_load64(uintptr_t);
569 uint8_t dtrace_load8(uintptr_t);
570 void dtrace_dynvar_clean(dtrace_dstate_t *);
571 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
572     size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
573 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
574 
575 /*
576  * DTrace Probe Context Functions
577  *
578  * These functions are called from probe context.  Because probe context is
579  * any context in which C may be called, arbitrarily locks may be held,
580  * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
581  * As a result, functions called from probe context may only call other DTrace
582  * support functions -- they may not interact at all with the system at large.
583  * (Note that the ASSERT macro is made probe-context safe by redefining it in
584  * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
585  * loads are to be performed from probe context, they _must_ be in terms of
586  * the safe dtrace_load*() variants.
587  *
588  * Some functions in this block are not actually called from probe context;
589  * for these functions, there will be a comment above the function reading
590  * "Note:  not called from probe context."
591  */
592 void
593 dtrace_panic(const char *format, ...)
594 {
595 	va_list alist;
596 
597 	va_start(alist, format);
598 	dtrace_vpanic(format, alist);
599 	va_end(alist);
600 }
601 
602 int
603 dtrace_assfail(const char *a, const char *f, int l)
604 {
605 	dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
606 
607 	/*
608 	 * We just need something here that even the most clever compiler
609 	 * cannot optimize away.
610 	 */
611 	return (a[(uintptr_t)f]);
612 }
613 
614 /*
615  * Atomically increment a specified error counter from probe context.
616  */
617 static void
618 dtrace_error(uint32_t *counter)
619 {
620 	/*
621 	 * Most counters stored to in probe context are per-CPU counters.
622 	 * However, there are some error conditions that are sufficiently
623 	 * arcane that they don't merit per-CPU storage.  If these counters
624 	 * are incremented concurrently on different CPUs, scalability will be
625 	 * adversely affected -- but we don't expect them to be white-hot in a
626 	 * correctly constructed enabling...
627 	 */
628 	uint32_t oval, nval;
629 
630 	do {
631 		oval = *counter;
632 
633 		if ((nval = oval + 1) == 0) {
634 			/*
635 			 * If the counter would wrap, set it to 1 -- assuring
636 			 * that the counter is never zero when we have seen
637 			 * errors.  (The counter must be 32-bits because we
638 			 * aren't guaranteed a 64-bit compare&swap operation.)
639 			 * To save this code both the infamy of being fingered
640 			 * by a priggish news story and the indignity of being
641 			 * the target of a neo-puritan witch trial, we're
642 			 * carefully avoiding any colorful description of the
643 			 * likelihood of this condition -- but suffice it to
644 			 * say that it is only slightly more likely than the
645 			 * overflow of predicate cache IDs, as discussed in
646 			 * dtrace_predicate_create().
647 			 */
648 			nval = 1;
649 		}
650 	} while (dtrace_cas32(counter, oval, nval) != oval);
651 }
652 
653 /*
654  * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
655  * uint8_t, a uint16_t, a uint32_t and a uint64_t.
656  */
657 DTRACE_LOADFUNC(8)
658 DTRACE_LOADFUNC(16)
659 DTRACE_LOADFUNC(32)
660 DTRACE_LOADFUNC(64)
661 
662 static int
663 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
664 {
665 	if (dest < mstate->dtms_scratch_base)
666 		return (0);
667 
668 	if (dest + size < dest)
669 		return (0);
670 
671 	if (dest + size > mstate->dtms_scratch_ptr)
672 		return (0);
673 
674 	return (1);
675 }
676 
677 static int
678 dtrace_canstore_statvar(uint64_t addr, size_t sz,
679     dtrace_statvar_t **svars, int nsvars)
680 {
681 	int i;
682 
683 	for (i = 0; i < nsvars; i++) {
684 		dtrace_statvar_t *svar = svars[i];
685 
686 		if (svar == NULL || svar->dtsv_size == 0)
687 			continue;
688 
689 		if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
690 			return (1);
691 	}
692 
693 	return (0);
694 }
695 
696 /*
697  * Check to see if the address is within a memory region to which a store may
698  * be issued.  This includes the DTrace scratch areas, and any DTrace variable
699  * region.  The caller of dtrace_canstore() is responsible for performing any
700  * alignment checks that are needed before stores are actually executed.
701  */
702 static int
703 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
704     dtrace_vstate_t *vstate)
705 {
706 	/*
707 	 * First, check to see if the address is in scratch space...
708 	 */
709 	if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
710 	    mstate->dtms_scratch_size))
711 		return (1);
712 
713 	/*
714 	 * Now check to see if it's a dynamic variable.  This check will pick
715 	 * up both thread-local variables and any global dynamically-allocated
716 	 * variables.
717 	 */
718 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)vstate->dtvs_dynvars.dtds_base,
719 	    vstate->dtvs_dynvars.dtds_size)) {
720 		dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
721 		uintptr_t base = (uintptr_t)dstate->dtds_base +
722 		    (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
723 		uintptr_t chunkoffs;
724 
725 		/*
726 		 * Before we assume that we can store here, we need to make
727 		 * sure that it isn't in our metadata -- storing to our
728 		 * dynamic variable metadata would corrupt our state.  For
729 		 * the range to not include any dynamic variable metadata,
730 		 * it must:
731 		 *
732 		 *	(1) Start above the hash table that is at the base of
733 		 *	the dynamic variable space
734 		 *
735 		 *	(2) Have a starting chunk offset that is beyond the
736 		 *	dtrace_dynvar_t that is at the base of every chunk
737 		 *
738 		 *	(3) Not span a chunk boundary
739 		 *
740 		 */
741 		if (addr < base)
742 			return (0);
743 
744 		chunkoffs = (addr - base) % dstate->dtds_chunksize;
745 
746 		if (chunkoffs < sizeof (dtrace_dynvar_t))
747 			return (0);
748 
749 		if (chunkoffs + sz > dstate->dtds_chunksize)
750 			return (0);
751 
752 		return (1);
753 	}
754 
755 	/*
756 	 * Finally, check the static local and global variables.  These checks
757 	 * take the longest, so we perform them last.
758 	 */
759 	if (dtrace_canstore_statvar(addr, sz,
760 	    vstate->dtvs_locals, vstate->dtvs_nlocals))
761 		return (1);
762 
763 	if (dtrace_canstore_statvar(addr, sz,
764 	    vstate->dtvs_globals, vstate->dtvs_nglobals))
765 		return (1);
766 
767 	return (0);
768 }
769 
770 
771 /*
772  * Convenience routine to check to see if the address is within a memory
773  * region in which a load may be issued given the user's privilege level;
774  * if not, it sets the appropriate error flags and loads 'addr' into the
775  * illegal value slot.
776  *
777  * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
778  * appropriate memory access protection.
779  */
780 static int
781 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
782     dtrace_vstate_t *vstate)
783 {
784 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
785 
786 	/*
787 	 * If we hold the privilege to read from kernel memory, then
788 	 * everything is readable.
789 	 */
790 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
791 		return (1);
792 
793 	/*
794 	 * You can obviously read that which you can store.
795 	 */
796 	if (dtrace_canstore(addr, sz, mstate, vstate))
797 		return (1);
798 
799 	/*
800 	 * We're allowed to read from our own string table.
801 	 */
802 	if (DTRACE_INRANGE(addr, sz, (uintptr_t)mstate->dtms_difo->dtdo_strtab,
803 	    mstate->dtms_difo->dtdo_strlen))
804 		return (1);
805 
806 	DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
807 	*illval = addr;
808 	return (0);
809 }
810 
811 /*
812  * Convenience routine to check to see if a given string is within a memory
813  * region in which a load may be issued given the user's privilege level;
814  * this exists so that we don't need to issue unnecessary dtrace_strlen()
815  * calls in the event that the user has all privileges.
816  */
817 static int
818 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
819     dtrace_vstate_t *vstate)
820 {
821 	size_t strsz;
822 
823 	/*
824 	 * If we hold the privilege to read from kernel memory, then
825 	 * everything is readable.
826 	 */
827 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
828 		return (1);
829 
830 	strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
831 	if (dtrace_canload(addr, strsz, mstate, vstate))
832 		return (1);
833 
834 	return (0);
835 }
836 
837 /*
838  * Convenience routine to check to see if a given variable is within a memory
839  * region in which a load may be issued given the user's privilege level.
840  */
841 static int
842 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
843     dtrace_vstate_t *vstate)
844 {
845 	size_t sz;
846 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
847 
848 	/*
849 	 * If we hold the privilege to read from kernel memory, then
850 	 * everything is readable.
851 	 */
852 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
853 		return (1);
854 
855 	if (type->dtdt_kind == DIF_TYPE_STRING)
856 		sz = dtrace_strlen(src,
857 		    vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
858 	else
859 		sz = type->dtdt_size;
860 
861 	return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
862 }
863 
864 /*
865  * Compare two strings using safe loads.
866  */
867 static int
868 dtrace_strncmp(char *s1, char *s2, size_t limit)
869 {
870 	uint8_t c1, c2;
871 	volatile uint16_t *flags;
872 
873 	if (s1 == s2 || limit == 0)
874 		return (0);
875 
876 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
877 
878 	do {
879 		if (s1 == NULL) {
880 			c1 = '\0';
881 		} else {
882 			c1 = dtrace_load8((uintptr_t)s1++);
883 		}
884 
885 		if (s2 == NULL) {
886 			c2 = '\0';
887 		} else {
888 			c2 = dtrace_load8((uintptr_t)s2++);
889 		}
890 
891 		if (c1 != c2)
892 			return (c1 - c2);
893 	} while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
894 
895 	return (0);
896 }
897 
898 /*
899  * Compute strlen(s) for a string using safe memory accesses.  The additional
900  * len parameter is used to specify a maximum length to ensure completion.
901  */
902 static size_t
903 dtrace_strlen(const char *s, size_t lim)
904 {
905 	uint_t len;
906 
907 	for (len = 0; len != lim; len++) {
908 		if (dtrace_load8((uintptr_t)s++) == '\0')
909 			break;
910 	}
911 
912 	return (len);
913 }
914 
915 /*
916  * Check if an address falls within a toxic region.
917  */
918 static int
919 dtrace_istoxic(uintptr_t kaddr, size_t size)
920 {
921 	uintptr_t taddr, tsize;
922 	int i;
923 
924 	for (i = 0; i < dtrace_toxranges; i++) {
925 		taddr = dtrace_toxrange[i].dtt_base;
926 		tsize = dtrace_toxrange[i].dtt_limit - taddr;
927 
928 		if (kaddr - taddr < tsize) {
929 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
930 			cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
931 			return (1);
932 		}
933 
934 		if (taddr - kaddr < size) {
935 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
936 			cpu_core[curcpu].cpuc_dtrace_illval = taddr;
937 			return (1);
938 		}
939 	}
940 
941 	return (0);
942 }
943 
944 /*
945  * Copy src to dst using safe memory accesses.  The src is assumed to be unsafe
946  * memory specified by the DIF program.  The dst is assumed to be safe memory
947  * that we can store to directly because it is managed by DTrace.  As with
948  * standard bcopy, overlapping copies are handled properly.
949  */
950 static void
951 dtrace_bcopy(const void *src, void *dst, size_t len)
952 {
953 	if (len != 0) {
954 		uint8_t *s1 = dst;
955 		const uint8_t *s2 = src;
956 
957 		if (s1 <= s2) {
958 			do {
959 				*s1++ = dtrace_load8((uintptr_t)s2++);
960 			} while (--len != 0);
961 		} else {
962 			s2 += len;
963 			s1 += len;
964 
965 			do {
966 				*--s1 = dtrace_load8((uintptr_t)--s2);
967 			} while (--len != 0);
968 		}
969 	}
970 }
971 
972 /*
973  * Copy src to dst using safe memory accesses, up to either the specified
974  * length, or the point that a nul byte is encountered.  The src is assumed to
975  * be unsafe memory specified by the DIF program.  The dst is assumed to be
976  * safe memory that we can store to directly because it is managed by DTrace.
977  * Unlike dtrace_bcopy(), overlapping regions are not handled.
978  */
979 static void
980 dtrace_strcpy(const void *src, void *dst, size_t len)
981 {
982 	if (len != 0) {
983 		uint8_t *s1 = dst, c;
984 		const uint8_t *s2 = src;
985 
986 		do {
987 			*s1++ = c = dtrace_load8((uintptr_t)s2++);
988 		} while (--len != 0 && c != '\0');
989 	}
990 }
991 
992 /*
993  * Copy src to dst, deriving the size and type from the specified (BYREF)
994  * variable type.  The src is assumed to be unsafe memory specified by the DIF
995  * program.  The dst is assumed to be DTrace variable memory that is of the
996  * specified type; we assume that we can store to directly.
997  */
998 static void
999 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1000 {
1001 	ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1002 
1003 	if (type->dtdt_kind == DIF_TYPE_STRING) {
1004 		dtrace_strcpy(src, dst, type->dtdt_size);
1005 	} else {
1006 		dtrace_bcopy(src, dst, type->dtdt_size);
1007 	}
1008 }
1009 
1010 /*
1011  * Compare s1 to s2 using safe memory accesses.  The s1 data is assumed to be
1012  * unsafe memory specified by the DIF program.  The s2 data is assumed to be
1013  * safe memory that we can access directly because it is managed by DTrace.
1014  */
1015 static int
1016 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1017 {
1018 	volatile uint16_t *flags;
1019 
1020 	flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1021 
1022 	if (s1 == s2)
1023 		return (0);
1024 
1025 	if (s1 == NULL || s2 == NULL)
1026 		return (1);
1027 
1028 	if (s1 != s2 && len != 0) {
1029 		const uint8_t *ps1 = s1;
1030 		const uint8_t *ps2 = s2;
1031 
1032 		do {
1033 			if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1034 				return (1);
1035 		} while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1036 	}
1037 	return (0);
1038 }
1039 
1040 /*
1041  * Zero the specified region using a simple byte-by-byte loop.  Note that this
1042  * is for safe DTrace-managed memory only.
1043  */
1044 static void
1045 dtrace_bzero(void *dst, size_t len)
1046 {
1047 	uchar_t *cp;
1048 
1049 	for (cp = dst; len != 0; len--)
1050 		*cp++ = 0;
1051 }
1052 
1053 static void
1054 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1055 {
1056 	uint64_t result[2];
1057 
1058 	result[0] = addend1[0] + addend2[0];
1059 	result[1] = addend1[1] + addend2[1] +
1060 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1061 
1062 	sum[0] = result[0];
1063 	sum[1] = result[1];
1064 }
1065 
1066 /*
1067  * Shift the 128-bit value in a by b. If b is positive, shift left.
1068  * If b is negative, shift right.
1069  */
1070 static void
1071 dtrace_shift_128(uint64_t *a, int b)
1072 {
1073 	uint64_t mask;
1074 
1075 	if (b == 0)
1076 		return;
1077 
1078 	if (b < 0) {
1079 		b = -b;
1080 		if (b >= 64) {
1081 			a[0] = a[1] >> (b - 64);
1082 			a[1] = 0;
1083 		} else {
1084 			a[0] >>= b;
1085 			mask = 1LL << (64 - b);
1086 			mask -= 1;
1087 			a[0] |= ((a[1] & mask) << (64 - b));
1088 			a[1] >>= b;
1089 		}
1090 	} else {
1091 		if (b >= 64) {
1092 			a[1] = a[0] << (b - 64);
1093 			a[0] = 0;
1094 		} else {
1095 			a[1] <<= b;
1096 			mask = a[0] >> (64 - b);
1097 			a[1] |= mask;
1098 			a[0] <<= b;
1099 		}
1100 	}
1101 }
1102 
1103 /*
1104  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1105  * use native multiplication on those, and then re-combine into the
1106  * resulting 128-bit value.
1107  *
1108  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1109  *     hi1 * hi2 << 64 +
1110  *     hi1 * lo2 << 32 +
1111  *     hi2 * lo1 << 32 +
1112  *     lo1 * lo2
1113  */
1114 static void
1115 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1116 {
1117 	uint64_t hi1, hi2, lo1, lo2;
1118 	uint64_t tmp[2];
1119 
1120 	hi1 = factor1 >> 32;
1121 	hi2 = factor2 >> 32;
1122 
1123 	lo1 = factor1 & DT_MASK_LO;
1124 	lo2 = factor2 & DT_MASK_LO;
1125 
1126 	product[0] = lo1 * lo2;
1127 	product[1] = hi1 * hi2;
1128 
1129 	tmp[0] = hi1 * lo2;
1130 	tmp[1] = 0;
1131 	dtrace_shift_128(tmp, 32);
1132 	dtrace_add_128(product, tmp, product);
1133 
1134 	tmp[0] = hi2 * lo1;
1135 	tmp[1] = 0;
1136 	dtrace_shift_128(tmp, 32);
1137 	dtrace_add_128(product, tmp, product);
1138 }
1139 
1140 /*
1141  * This privilege check should be used by actions and subroutines to
1142  * verify that the user credentials of the process that enabled the
1143  * invoking ECB match the target credentials
1144  */
1145 static int
1146 dtrace_priv_proc_common_user(dtrace_state_t *state)
1147 {
1148 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1149 
1150 	/*
1151 	 * We should always have a non-NULL state cred here, since if cred
1152 	 * is null (anonymous tracing), we fast-path bypass this routine.
1153 	 */
1154 	ASSERT(s_cr != NULL);
1155 
1156 	if ((cr = CRED()) != NULL &&
1157 	    s_cr->cr_uid == cr->cr_uid &&
1158 	    s_cr->cr_uid == cr->cr_ruid &&
1159 	    s_cr->cr_uid == cr->cr_suid &&
1160 	    s_cr->cr_gid == cr->cr_gid &&
1161 	    s_cr->cr_gid == cr->cr_rgid &&
1162 	    s_cr->cr_gid == cr->cr_sgid)
1163 		return (1);
1164 
1165 	return (0);
1166 }
1167 
1168 /*
1169  * This privilege check should be used by actions and subroutines to
1170  * verify that the zone of the process that enabled the invoking ECB
1171  * matches the target credentials
1172  */
1173 static int
1174 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1175 {
1176 #if defined(sun)
1177 	cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1178 
1179 	/*
1180 	 * We should always have a non-NULL state cred here, since if cred
1181 	 * is null (anonymous tracing), we fast-path bypass this routine.
1182 	 */
1183 	ASSERT(s_cr != NULL);
1184 
1185 	if ((cr = CRED()) != NULL &&
1186 	    s_cr->cr_zone == cr->cr_zone)
1187 		return (1);
1188 
1189 	return (0);
1190 #else
1191 	return (1);
1192 #endif
1193 }
1194 
1195 /*
1196  * This privilege check should be used by actions and subroutines to
1197  * verify that the process has not setuid or changed credentials.
1198  */
1199 static int
1200 dtrace_priv_proc_common_nocd(void)
1201 {
1202 	proc_t *proc;
1203 
1204 	if ((proc = ttoproc(curthread)) != NULL &&
1205 	    !(proc->p_flag & SNOCD))
1206 		return (1);
1207 
1208 	return (0);
1209 }
1210 
1211 static int
1212 dtrace_priv_proc_destructive(dtrace_state_t *state)
1213 {
1214 	int action = state->dts_cred.dcr_action;
1215 
1216 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1217 	    dtrace_priv_proc_common_zone(state) == 0)
1218 		goto bad;
1219 
1220 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1221 	    dtrace_priv_proc_common_user(state) == 0)
1222 		goto bad;
1223 
1224 	if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1225 	    dtrace_priv_proc_common_nocd() == 0)
1226 		goto bad;
1227 
1228 	return (1);
1229 
1230 bad:
1231 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1232 
1233 	return (0);
1234 }
1235 
1236 static int
1237 dtrace_priv_proc_control(dtrace_state_t *state)
1238 {
1239 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1240 		return (1);
1241 
1242 	if (dtrace_priv_proc_common_zone(state) &&
1243 	    dtrace_priv_proc_common_user(state) &&
1244 	    dtrace_priv_proc_common_nocd())
1245 		return (1);
1246 
1247 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1248 
1249 	return (0);
1250 }
1251 
1252 static int
1253 dtrace_priv_proc(dtrace_state_t *state)
1254 {
1255 	if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1256 		return (1);
1257 
1258 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1259 
1260 	return (0);
1261 }
1262 
1263 static int
1264 dtrace_priv_kernel(dtrace_state_t *state)
1265 {
1266 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1267 		return (1);
1268 
1269 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1270 
1271 	return (0);
1272 }
1273 
1274 static int
1275 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1276 {
1277 	if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1278 		return (1);
1279 
1280 	cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1281 
1282 	return (0);
1283 }
1284 
1285 /*
1286  * Note:  not called from probe context.  This function is called
1287  * asynchronously (and at a regular interval) from outside of probe context to
1288  * clean the dirty dynamic variable lists on all CPUs.  Dynamic variable
1289  * cleaning is explained in detail in <sys/dtrace_impl.h>.
1290  */
1291 void
1292 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1293 {
1294 	dtrace_dynvar_t *dirty;
1295 	dtrace_dstate_percpu_t *dcpu;
1296 	int i, work = 0;
1297 
1298 	for (i = 0; i < NCPU; i++) {
1299 		dcpu = &dstate->dtds_percpu[i];
1300 
1301 		ASSERT(dcpu->dtdsc_rinsing == NULL);
1302 
1303 		/*
1304 		 * If the dirty list is NULL, there is no dirty work to do.
1305 		 */
1306 		if (dcpu->dtdsc_dirty == NULL)
1307 			continue;
1308 
1309 		/*
1310 		 * If the clean list is non-NULL, then we're not going to do
1311 		 * any work for this CPU -- it means that there has not been
1312 		 * a dtrace_dynvar() allocation on this CPU (or from this CPU)
1313 		 * since the last time we cleaned house.
1314 		 */
1315 		if (dcpu->dtdsc_clean != NULL)
1316 			continue;
1317 
1318 		work = 1;
1319 
1320 		/*
1321 		 * Atomically move the dirty list aside.
1322 		 */
1323 		do {
1324 			dirty = dcpu->dtdsc_dirty;
1325 
1326 			/*
1327 			 * Before we zap the dirty list, set the rinsing list.
1328 			 * (This allows for a potential assertion in
1329 			 * dtrace_dynvar():  if a free dynamic variable appears
1330 			 * on a hash chain, either the dirty list or the
1331 			 * rinsing list for some CPU must be non-NULL.)
1332 			 */
1333 			dcpu->dtdsc_rinsing = dirty;
1334 			dtrace_membar_producer();
1335 		} while (dtrace_casptr(&dcpu->dtdsc_dirty,
1336 		    dirty, NULL) != dirty);
1337 	}
1338 
1339 	if (!work) {
1340 		/*
1341 		 * We have no work to do; we can simply return.
1342 		 */
1343 		return;
1344 	}
1345 
1346 	dtrace_sync();
1347 
1348 	for (i = 0; i < NCPU; i++) {
1349 		dcpu = &dstate->dtds_percpu[i];
1350 
1351 		if (dcpu->dtdsc_rinsing == NULL)
1352 			continue;
1353 
1354 		/*
1355 		 * We are now guaranteed that no hash chain contains a pointer
1356 		 * into this dirty list; we can make it clean.
1357 		 */
1358 		ASSERT(dcpu->dtdsc_clean == NULL);
1359 		dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1360 		dcpu->dtdsc_rinsing = NULL;
1361 	}
1362 
1363 	/*
1364 	 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1365 	 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1366 	 * This prevents a race whereby a CPU incorrectly decides that
1367 	 * the state should be something other than DTRACE_DSTATE_CLEAN
1368 	 * after dtrace_dynvar_clean() has completed.
1369 	 */
1370 	dtrace_sync();
1371 
1372 	dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1373 }
1374 
1375 /*
1376  * Depending on the value of the op parameter, this function looks-up,
1377  * allocates or deallocates an arbitrarily-keyed dynamic variable.  If an
1378  * allocation is requested, this function will return a pointer to a
1379  * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1380  * variable can be allocated.  If NULL is returned, the appropriate counter
1381  * will be incremented.
1382  */
1383 dtrace_dynvar_t *
1384 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1385     dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1386     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1387 {
1388 	uint64_t hashval = DTRACE_DYNHASH_VALID;
1389 	dtrace_dynhash_t *hash = dstate->dtds_hash;
1390 	dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1391 	processorid_t me = curcpu, cpu = me;
1392 	dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1393 	size_t bucket, ksize;
1394 	size_t chunksize = dstate->dtds_chunksize;
1395 	uintptr_t kdata, lock, nstate;
1396 	uint_t i;
1397 
1398 	ASSERT(nkeys != 0);
1399 
1400 	/*
1401 	 * Hash the key.  As with aggregations, we use Jenkins' "One-at-a-time"
1402 	 * algorithm.  For the by-value portions, we perform the algorithm in
1403 	 * 16-bit chunks (as opposed to 8-bit chunks).  This speeds things up a
1404 	 * bit, and seems to have only a minute effect on distribution.  For
1405 	 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1406 	 * over each referenced byte.  It's painful to do this, but it's much
1407 	 * better than pathological hash distribution.  The efficacy of the
1408 	 * hashing algorithm (and a comparison with other algorithms) may be
1409 	 * found by running the ::dtrace_dynstat MDB dcmd.
1410 	 */
1411 	for (i = 0; i < nkeys; i++) {
1412 		if (key[i].dttk_size == 0) {
1413 			uint64_t val = key[i].dttk_value;
1414 
1415 			hashval += (val >> 48) & 0xffff;
1416 			hashval += (hashval << 10);
1417 			hashval ^= (hashval >> 6);
1418 
1419 			hashval += (val >> 32) & 0xffff;
1420 			hashval += (hashval << 10);
1421 			hashval ^= (hashval >> 6);
1422 
1423 			hashval += (val >> 16) & 0xffff;
1424 			hashval += (hashval << 10);
1425 			hashval ^= (hashval >> 6);
1426 
1427 			hashval += val & 0xffff;
1428 			hashval += (hashval << 10);
1429 			hashval ^= (hashval >> 6);
1430 		} else {
1431 			/*
1432 			 * This is incredibly painful, but it beats the hell
1433 			 * out of the alternative.
1434 			 */
1435 			uint64_t j, size = key[i].dttk_size;
1436 			uintptr_t base = (uintptr_t)key[i].dttk_value;
1437 
1438 			if (!dtrace_canload(base, size, mstate, vstate))
1439 				break;
1440 
1441 			for (j = 0; j < size; j++) {
1442 				hashval += dtrace_load8(base + j);
1443 				hashval += (hashval << 10);
1444 				hashval ^= (hashval >> 6);
1445 			}
1446 		}
1447 	}
1448 
1449 	if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1450 		return (NULL);
1451 
1452 	hashval += (hashval << 3);
1453 	hashval ^= (hashval >> 11);
1454 	hashval += (hashval << 15);
1455 
1456 	/*
1457 	 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1458 	 * comes out to be one of our two sentinel hash values.  If this
1459 	 * actually happens, we set the hashval to be a value known to be a
1460 	 * non-sentinel value.
1461 	 */
1462 	if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1463 		hashval = DTRACE_DYNHASH_VALID;
1464 
1465 	/*
1466 	 * Yes, it's painful to do a divide here.  If the cycle count becomes
1467 	 * important here, tricks can be pulled to reduce it.  (However, it's
1468 	 * critical that hash collisions be kept to an absolute minimum;
1469 	 * they're much more painful than a divide.)  It's better to have a
1470 	 * solution that generates few collisions and still keeps things
1471 	 * relatively simple.
1472 	 */
1473 	bucket = hashval % dstate->dtds_hashsize;
1474 
1475 	if (op == DTRACE_DYNVAR_DEALLOC) {
1476 		volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1477 
1478 		for (;;) {
1479 			while ((lock = *lockp) & 1)
1480 				continue;
1481 
1482 			if (dtrace_casptr((volatile void *)lockp,
1483 			    (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1484 				break;
1485 		}
1486 
1487 		dtrace_membar_producer();
1488 	}
1489 
1490 top:
1491 	prev = NULL;
1492 	lock = hash[bucket].dtdh_lock;
1493 
1494 	dtrace_membar_consumer();
1495 
1496 	start = hash[bucket].dtdh_chain;
1497 	ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1498 	    start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1499 	    op != DTRACE_DYNVAR_DEALLOC));
1500 
1501 	for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1502 		dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1503 		dtrace_key_t *dkey = &dtuple->dtt_key[0];
1504 
1505 		if (dvar->dtdv_hashval != hashval) {
1506 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1507 				/*
1508 				 * We've reached the sink, and therefore the
1509 				 * end of the hash chain; we can kick out of
1510 				 * the loop knowing that we have seen a valid
1511 				 * snapshot of state.
1512 				 */
1513 				ASSERT(dvar->dtdv_next == NULL);
1514 				ASSERT(dvar == &dtrace_dynhash_sink);
1515 				break;
1516 			}
1517 
1518 			if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1519 				/*
1520 				 * We've gone off the rails:  somewhere along
1521 				 * the line, one of the members of this hash
1522 				 * chain was deleted.  Note that we could also
1523 				 * detect this by simply letting this loop run
1524 				 * to completion, as we would eventually hit
1525 				 * the end of the dirty list.  However, we
1526 				 * want to avoid running the length of the
1527 				 * dirty list unnecessarily (it might be quite
1528 				 * long), so we catch this as early as
1529 				 * possible by detecting the hash marker.  In
1530 				 * this case, we simply set dvar to NULL and
1531 				 * break; the conditional after the loop will
1532 				 * send us back to top.
1533 				 */
1534 				dvar = NULL;
1535 				break;
1536 			}
1537 
1538 			goto next;
1539 		}
1540 
1541 		if (dtuple->dtt_nkeys != nkeys)
1542 			goto next;
1543 
1544 		for (i = 0; i < nkeys; i++, dkey++) {
1545 			if (dkey->dttk_size != key[i].dttk_size)
1546 				goto next; /* size or type mismatch */
1547 
1548 			if (dkey->dttk_size != 0) {
1549 				if (dtrace_bcmp(
1550 				    (void *)(uintptr_t)key[i].dttk_value,
1551 				    (void *)(uintptr_t)dkey->dttk_value,
1552 				    dkey->dttk_size))
1553 					goto next;
1554 			} else {
1555 				if (dkey->dttk_value != key[i].dttk_value)
1556 					goto next;
1557 			}
1558 		}
1559 
1560 		if (op != DTRACE_DYNVAR_DEALLOC)
1561 			return (dvar);
1562 
1563 		ASSERT(dvar->dtdv_next == NULL ||
1564 		    dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1565 
1566 		if (prev != NULL) {
1567 			ASSERT(hash[bucket].dtdh_chain != dvar);
1568 			ASSERT(start != dvar);
1569 			ASSERT(prev->dtdv_next == dvar);
1570 			prev->dtdv_next = dvar->dtdv_next;
1571 		} else {
1572 			if (dtrace_casptr(&hash[bucket].dtdh_chain,
1573 			    start, dvar->dtdv_next) != start) {
1574 				/*
1575 				 * We have failed to atomically swing the
1576 				 * hash table head pointer, presumably because
1577 				 * of a conflicting allocation on another CPU.
1578 				 * We need to reread the hash chain and try
1579 				 * again.
1580 				 */
1581 				goto top;
1582 			}
1583 		}
1584 
1585 		dtrace_membar_producer();
1586 
1587 		/*
1588 		 * Now set the hash value to indicate that it's free.
1589 		 */
1590 		ASSERT(hash[bucket].dtdh_chain != dvar);
1591 		dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1592 
1593 		dtrace_membar_producer();
1594 
1595 		/*
1596 		 * Set the next pointer to point at the dirty list, and
1597 		 * atomically swing the dirty pointer to the newly freed dvar.
1598 		 */
1599 		do {
1600 			next = dcpu->dtdsc_dirty;
1601 			dvar->dtdv_next = next;
1602 		} while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1603 
1604 		/*
1605 		 * Finally, unlock this hash bucket.
1606 		 */
1607 		ASSERT(hash[bucket].dtdh_lock == lock);
1608 		ASSERT(lock & 1);
1609 		hash[bucket].dtdh_lock++;
1610 
1611 		return (NULL);
1612 next:
1613 		prev = dvar;
1614 		continue;
1615 	}
1616 
1617 	if (dvar == NULL) {
1618 		/*
1619 		 * If dvar is NULL, it is because we went off the rails:
1620 		 * one of the elements that we traversed in the hash chain
1621 		 * was deleted while we were traversing it.  In this case,
1622 		 * we assert that we aren't doing a dealloc (deallocs lock
1623 		 * the hash bucket to prevent themselves from racing with
1624 		 * one another), and retry the hash chain traversal.
1625 		 */
1626 		ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1627 		goto top;
1628 	}
1629 
1630 	if (op != DTRACE_DYNVAR_ALLOC) {
1631 		/*
1632 		 * If we are not to allocate a new variable, we want to
1633 		 * return NULL now.  Before we return, check that the value
1634 		 * of the lock word hasn't changed.  If it has, we may have
1635 		 * seen an inconsistent snapshot.
1636 		 */
1637 		if (op == DTRACE_DYNVAR_NOALLOC) {
1638 			if (hash[bucket].dtdh_lock != lock)
1639 				goto top;
1640 		} else {
1641 			ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1642 			ASSERT(hash[bucket].dtdh_lock == lock);
1643 			ASSERT(lock & 1);
1644 			hash[bucket].dtdh_lock++;
1645 		}
1646 
1647 		return (NULL);
1648 	}
1649 
1650 	/*
1651 	 * We need to allocate a new dynamic variable.  The size we need is the
1652 	 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1653 	 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1654 	 * the size of any referred-to data (dsize).  We then round the final
1655 	 * size up to the chunksize for allocation.
1656 	 */
1657 	for (ksize = 0, i = 0; i < nkeys; i++)
1658 		ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1659 
1660 	/*
1661 	 * This should be pretty much impossible, but could happen if, say,
1662 	 * strange DIF specified the tuple.  Ideally, this should be an
1663 	 * assertion and not an error condition -- but that requires that the
1664 	 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1665 	 * bullet-proof.  (That is, it must not be able to be fooled by
1666 	 * malicious DIF.)  Given the lack of backwards branches in DIF,
1667 	 * solving this would presumably not amount to solving the Halting
1668 	 * Problem -- but it still seems awfully hard.
1669 	 */
1670 	if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1671 	    ksize + dsize > chunksize) {
1672 		dcpu->dtdsc_drops++;
1673 		return (NULL);
1674 	}
1675 
1676 	nstate = DTRACE_DSTATE_EMPTY;
1677 
1678 	do {
1679 retry:
1680 		free = dcpu->dtdsc_free;
1681 
1682 		if (free == NULL) {
1683 			dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1684 			void *rval;
1685 
1686 			if (clean == NULL) {
1687 				/*
1688 				 * We're out of dynamic variable space on
1689 				 * this CPU.  Unless we have tried all CPUs,
1690 				 * we'll try to allocate from a different
1691 				 * CPU.
1692 				 */
1693 				switch (dstate->dtds_state) {
1694 				case DTRACE_DSTATE_CLEAN: {
1695 					void *sp = &dstate->dtds_state;
1696 
1697 					if (++cpu >= NCPU)
1698 						cpu = 0;
1699 
1700 					if (dcpu->dtdsc_dirty != NULL &&
1701 					    nstate == DTRACE_DSTATE_EMPTY)
1702 						nstate = DTRACE_DSTATE_DIRTY;
1703 
1704 					if (dcpu->dtdsc_rinsing != NULL)
1705 						nstate = DTRACE_DSTATE_RINSING;
1706 
1707 					dcpu = &dstate->dtds_percpu[cpu];
1708 
1709 					if (cpu != me)
1710 						goto retry;
1711 
1712 					(void) dtrace_cas32(sp,
1713 					    DTRACE_DSTATE_CLEAN, nstate);
1714 
1715 					/*
1716 					 * To increment the correct bean
1717 					 * counter, take another lap.
1718 					 */
1719 					goto retry;
1720 				}
1721 
1722 				case DTRACE_DSTATE_DIRTY:
1723 					dcpu->dtdsc_dirty_drops++;
1724 					break;
1725 
1726 				case DTRACE_DSTATE_RINSING:
1727 					dcpu->dtdsc_rinsing_drops++;
1728 					break;
1729 
1730 				case DTRACE_DSTATE_EMPTY:
1731 					dcpu->dtdsc_drops++;
1732 					break;
1733 				}
1734 
1735 				DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1736 				return (NULL);
1737 			}
1738 
1739 			/*
1740 			 * The clean list appears to be non-empty.  We want to
1741 			 * move the clean list to the free list; we start by
1742 			 * moving the clean pointer aside.
1743 			 */
1744 			if (dtrace_casptr(&dcpu->dtdsc_clean,
1745 			    clean, NULL) != clean) {
1746 				/*
1747 				 * We are in one of two situations:
1748 				 *
1749 				 *  (a)	The clean list was switched to the
1750 				 *	free list by another CPU.
1751 				 *
1752 				 *  (b)	The clean list was added to by the
1753 				 *	cleansing cyclic.
1754 				 *
1755 				 * In either of these situations, we can
1756 				 * just reattempt the free list allocation.
1757 				 */
1758 				goto retry;
1759 			}
1760 
1761 			ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
1762 
1763 			/*
1764 			 * Now we'll move the clean list to the free list.
1765 			 * It's impossible for this to fail:  the only way
1766 			 * the free list can be updated is through this
1767 			 * code path, and only one CPU can own the clean list.
1768 			 * Thus, it would only be possible for this to fail if
1769 			 * this code were racing with dtrace_dynvar_clean().
1770 			 * (That is, if dtrace_dynvar_clean() updated the clean
1771 			 * list, and we ended up racing to update the free
1772 			 * list.)  This race is prevented by the dtrace_sync()
1773 			 * in dtrace_dynvar_clean() -- which flushes the
1774 			 * owners of the clean lists out before resetting
1775 			 * the clean lists.
1776 			 */
1777 			rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
1778 			ASSERT(rval == NULL);
1779 			goto retry;
1780 		}
1781 
1782 		dvar = free;
1783 		new_free = dvar->dtdv_next;
1784 	} while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
1785 
1786 	/*
1787 	 * We have now allocated a new chunk.  We copy the tuple keys into the
1788 	 * tuple array and copy any referenced key data into the data space
1789 	 * following the tuple array.  As we do this, we relocate dttk_value
1790 	 * in the final tuple to point to the key data address in the chunk.
1791 	 */
1792 	kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
1793 	dvar->dtdv_data = (void *)(kdata + ksize);
1794 	dvar->dtdv_tuple.dtt_nkeys = nkeys;
1795 
1796 	for (i = 0; i < nkeys; i++) {
1797 		dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
1798 		size_t kesize = key[i].dttk_size;
1799 
1800 		if (kesize != 0) {
1801 			dtrace_bcopy(
1802 			    (const void *)(uintptr_t)key[i].dttk_value,
1803 			    (void *)kdata, kesize);
1804 			dkey->dttk_value = kdata;
1805 			kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
1806 		} else {
1807 			dkey->dttk_value = key[i].dttk_value;
1808 		}
1809 
1810 		dkey->dttk_size = kesize;
1811 	}
1812 
1813 	ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
1814 	dvar->dtdv_hashval = hashval;
1815 	dvar->dtdv_next = start;
1816 
1817 	if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
1818 		return (dvar);
1819 
1820 	/*
1821 	 * The cas has failed.  Either another CPU is adding an element to
1822 	 * this hash chain, or another CPU is deleting an element from this
1823 	 * hash chain.  The simplest way to deal with both of these cases
1824 	 * (though not necessarily the most efficient) is to free our
1825 	 * allocated block and tail-call ourselves.  Note that the free is
1826 	 * to the dirty list and _not_ to the free list.  This is to prevent
1827 	 * races with allocators, above.
1828 	 */
1829 	dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1830 
1831 	dtrace_membar_producer();
1832 
1833 	do {
1834 		free = dcpu->dtdsc_dirty;
1835 		dvar->dtdv_next = free;
1836 	} while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
1837 
1838 	return (dtrace_dynvar(dstate, nkeys, key, dsize, op, mstate, vstate));
1839 }
1840 
1841 /*ARGSUSED*/
1842 static void
1843 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
1844 {
1845 	if ((int64_t)nval < (int64_t)*oval)
1846 		*oval = nval;
1847 }
1848 
1849 /*ARGSUSED*/
1850 static void
1851 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
1852 {
1853 	if ((int64_t)nval > (int64_t)*oval)
1854 		*oval = nval;
1855 }
1856 
1857 static void
1858 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
1859 {
1860 	int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
1861 	int64_t val = (int64_t)nval;
1862 
1863 	if (val < 0) {
1864 		for (i = 0; i < zero; i++) {
1865 			if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
1866 				quanta[i] += incr;
1867 				return;
1868 			}
1869 		}
1870 	} else {
1871 		for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
1872 			if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
1873 				quanta[i - 1] += incr;
1874 				return;
1875 			}
1876 		}
1877 
1878 		quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
1879 		return;
1880 	}
1881 
1882 	ASSERT(0);
1883 }
1884 
1885 static void
1886 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
1887 {
1888 	uint64_t arg = *lquanta++;
1889 	int32_t base = DTRACE_LQUANTIZE_BASE(arg);
1890 	uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
1891 	uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
1892 	int32_t val = (int32_t)nval, level;
1893 
1894 	ASSERT(step != 0);
1895 	ASSERT(levels != 0);
1896 
1897 	if (val < base) {
1898 		/*
1899 		 * This is an underflow.
1900 		 */
1901 		lquanta[0] += incr;
1902 		return;
1903 	}
1904 
1905 	level = (val - base) / step;
1906 
1907 	if (level < levels) {
1908 		lquanta[level + 1] += incr;
1909 		return;
1910 	}
1911 
1912 	/*
1913 	 * This is an overflow.
1914 	 */
1915 	lquanta[levels + 1] += incr;
1916 }
1917 
1918 static int
1919 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
1920     uint16_t high, uint16_t nsteps, int64_t value)
1921 {
1922 	int64_t this = 1, last, next;
1923 	int base = 1, order;
1924 
1925 	ASSERT(factor <= nsteps);
1926 	ASSERT(nsteps % factor == 0);
1927 
1928 	for (order = 0; order < low; order++)
1929 		this *= factor;
1930 
1931 	/*
1932 	 * If our value is less than our factor taken to the power of the
1933 	 * low order of magnitude, it goes into the zeroth bucket.
1934 	 */
1935 	if (value < (last = this))
1936 		return (0);
1937 
1938 	for (this *= factor; order <= high; order++) {
1939 		int nbuckets = this > nsteps ? nsteps : this;
1940 
1941 		if ((next = this * factor) < this) {
1942 			/*
1943 			 * We should not generally get log/linear quantizations
1944 			 * with a high magnitude that allows 64-bits to
1945 			 * overflow, but we nonetheless protect against this
1946 			 * by explicitly checking for overflow, and clamping
1947 			 * our value accordingly.
1948 			 */
1949 			value = this - 1;
1950 		}
1951 
1952 		if (value < this) {
1953 			/*
1954 			 * If our value lies within this order of magnitude,
1955 			 * determine its position by taking the offset within
1956 			 * the order of magnitude, dividing by the bucket
1957 			 * width, and adding to our (accumulated) base.
1958 			 */
1959 			return (base + (value - last) / (this / nbuckets));
1960 		}
1961 
1962 		base += nbuckets - (nbuckets / factor);
1963 		last = this;
1964 		this = next;
1965 	}
1966 
1967 	/*
1968 	 * Our value is greater than or equal to our factor taken to the
1969 	 * power of one plus the high magnitude -- return the top bucket.
1970 	 */
1971 	return (base);
1972 }
1973 
1974 static void
1975 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
1976 {
1977 	uint64_t arg = *llquanta++;
1978 	uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1979 	uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
1980 	uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
1981 	uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1982 
1983 	llquanta[dtrace_aggregate_llquantize_bucket(factor,
1984 	    low, high, nsteps, nval)] += incr;
1985 }
1986 
1987 /*ARGSUSED*/
1988 static void
1989 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
1990 {
1991 	data[0]++;
1992 	data[1] += nval;
1993 }
1994 
1995 /*ARGSUSED*/
1996 static void
1997 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
1998 {
1999 	int64_t snval = (int64_t)nval;
2000 	uint64_t tmp[2];
2001 
2002 	data[0]++;
2003 	data[1] += nval;
2004 
2005 	/*
2006 	 * What we want to say here is:
2007 	 *
2008 	 * data[2] += nval * nval;
2009 	 *
2010 	 * But given that nval is 64-bit, we could easily overflow, so
2011 	 * we do this as 128-bit arithmetic.
2012 	 */
2013 	if (snval < 0)
2014 		snval = -snval;
2015 
2016 	dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2017 	dtrace_add_128(data + 2, tmp, data + 2);
2018 }
2019 
2020 /*ARGSUSED*/
2021 static void
2022 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2023 {
2024 	*oval = *oval + 1;
2025 }
2026 
2027 /*ARGSUSED*/
2028 static void
2029 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2030 {
2031 	*oval += nval;
2032 }
2033 
2034 /*
2035  * Aggregate given the tuple in the principal data buffer, and the aggregating
2036  * action denoted by the specified dtrace_aggregation_t.  The aggregation
2037  * buffer is specified as the buf parameter.  This routine does not return
2038  * failure; if there is no space in the aggregation buffer, the data will be
2039  * dropped, and a corresponding counter incremented.
2040  */
2041 static void
2042 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2043     intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2044 {
2045 	dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2046 	uint32_t i, ndx, size, fsize;
2047 	uint32_t align = sizeof (uint64_t) - 1;
2048 	dtrace_aggbuffer_t *agb;
2049 	dtrace_aggkey_t *key;
2050 	uint32_t hashval = 0, limit, isstr;
2051 	caddr_t tomax, data, kdata;
2052 	dtrace_actkind_t action;
2053 	dtrace_action_t *act;
2054 	uintptr_t offs;
2055 
2056 	if (buf == NULL)
2057 		return;
2058 
2059 	if (!agg->dtag_hasarg) {
2060 		/*
2061 		 * Currently, only quantize() and lquantize() take additional
2062 		 * arguments, and they have the same semantics:  an increment
2063 		 * value that defaults to 1 when not present.  If additional
2064 		 * aggregating actions take arguments, the setting of the
2065 		 * default argument value will presumably have to become more
2066 		 * sophisticated...
2067 		 */
2068 		arg = 1;
2069 	}
2070 
2071 	action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2072 	size = rec->dtrd_offset - agg->dtag_base;
2073 	fsize = size + rec->dtrd_size;
2074 
2075 	ASSERT(dbuf->dtb_tomax != NULL);
2076 	data = dbuf->dtb_tomax + offset + agg->dtag_base;
2077 
2078 	if ((tomax = buf->dtb_tomax) == NULL) {
2079 		dtrace_buffer_drop(buf);
2080 		return;
2081 	}
2082 
2083 	/*
2084 	 * The metastructure is always at the bottom of the buffer.
2085 	 */
2086 	agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2087 	    sizeof (dtrace_aggbuffer_t));
2088 
2089 	if (buf->dtb_offset == 0) {
2090 		/*
2091 		 * We just kludge up approximately 1/8th of the size to be
2092 		 * buckets.  If this guess ends up being routinely
2093 		 * off-the-mark, we may need to dynamically readjust this
2094 		 * based on past performance.
2095 		 */
2096 		uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2097 
2098 		if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2099 		    (uintptr_t)tomax || hashsize == 0) {
2100 			/*
2101 			 * We've been given a ludicrously small buffer;
2102 			 * increment our drop count and leave.
2103 			 */
2104 			dtrace_buffer_drop(buf);
2105 			return;
2106 		}
2107 
2108 		/*
2109 		 * And now, a pathetic attempt to try to get a an odd (or
2110 		 * perchance, a prime) hash size for better hash distribution.
2111 		 */
2112 		if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2113 			hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2114 
2115 		agb->dtagb_hashsize = hashsize;
2116 		agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2117 		    agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2118 		agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2119 
2120 		for (i = 0; i < agb->dtagb_hashsize; i++)
2121 			agb->dtagb_hash[i] = NULL;
2122 	}
2123 
2124 	ASSERT(agg->dtag_first != NULL);
2125 	ASSERT(agg->dtag_first->dta_intuple);
2126 
2127 	/*
2128 	 * Calculate the hash value based on the key.  Note that we _don't_
2129 	 * include the aggid in the hashing (but we will store it as part of
2130 	 * the key).  The hashing algorithm is Bob Jenkins' "One-at-a-time"
2131 	 * algorithm: a simple, quick algorithm that has no known funnels, and
2132 	 * gets good distribution in practice.  The efficacy of the hashing
2133 	 * algorithm (and a comparison with other algorithms) may be found by
2134 	 * running the ::dtrace_aggstat MDB dcmd.
2135 	 */
2136 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2137 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2138 		limit = i + act->dta_rec.dtrd_size;
2139 		ASSERT(limit <= size);
2140 		isstr = DTRACEACT_ISSTRING(act);
2141 
2142 		for (; i < limit; i++) {
2143 			hashval += data[i];
2144 			hashval += (hashval << 10);
2145 			hashval ^= (hashval >> 6);
2146 
2147 			if (isstr && data[i] == '\0')
2148 				break;
2149 		}
2150 	}
2151 
2152 	hashval += (hashval << 3);
2153 	hashval ^= (hashval >> 11);
2154 	hashval += (hashval << 15);
2155 
2156 	/*
2157 	 * Yes, the divide here is expensive -- but it's generally the least
2158 	 * of the performance issues given the amount of data that we iterate
2159 	 * over to compute hash values, compare data, etc.
2160 	 */
2161 	ndx = hashval % agb->dtagb_hashsize;
2162 
2163 	for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2164 		ASSERT((caddr_t)key >= tomax);
2165 		ASSERT((caddr_t)key < tomax + buf->dtb_size);
2166 
2167 		if (hashval != key->dtak_hashval || key->dtak_size != size)
2168 			continue;
2169 
2170 		kdata = key->dtak_data;
2171 		ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2172 
2173 		for (act = agg->dtag_first; act->dta_intuple;
2174 		    act = act->dta_next) {
2175 			i = act->dta_rec.dtrd_offset - agg->dtag_base;
2176 			limit = i + act->dta_rec.dtrd_size;
2177 			ASSERT(limit <= size);
2178 			isstr = DTRACEACT_ISSTRING(act);
2179 
2180 			for (; i < limit; i++) {
2181 				if (kdata[i] != data[i])
2182 					goto next;
2183 
2184 				if (isstr && data[i] == '\0')
2185 					break;
2186 			}
2187 		}
2188 
2189 		if (action != key->dtak_action) {
2190 			/*
2191 			 * We are aggregating on the same value in the same
2192 			 * aggregation with two different aggregating actions.
2193 			 * (This should have been picked up in the compiler,
2194 			 * so we may be dealing with errant or devious DIF.)
2195 			 * This is an error condition; we indicate as much,
2196 			 * and return.
2197 			 */
2198 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2199 			return;
2200 		}
2201 
2202 		/*
2203 		 * This is a hit:  we need to apply the aggregator to
2204 		 * the value at this key.
2205 		 */
2206 		agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2207 		return;
2208 next:
2209 		continue;
2210 	}
2211 
2212 	/*
2213 	 * We didn't find it.  We need to allocate some zero-filled space,
2214 	 * link it into the hash table appropriately, and apply the aggregator
2215 	 * to the (zero-filled) value.
2216 	 */
2217 	offs = buf->dtb_offset;
2218 	while (offs & (align - 1))
2219 		offs += sizeof (uint32_t);
2220 
2221 	/*
2222 	 * If we don't have enough room to both allocate a new key _and_
2223 	 * its associated data, increment the drop count and return.
2224 	 */
2225 	if ((uintptr_t)tomax + offs + fsize >
2226 	    agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2227 		dtrace_buffer_drop(buf);
2228 		return;
2229 	}
2230 
2231 	/*CONSTCOND*/
2232 	ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2233 	key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2234 	agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2235 
2236 	key->dtak_data = kdata = tomax + offs;
2237 	buf->dtb_offset = offs + fsize;
2238 
2239 	/*
2240 	 * Now copy the data across.
2241 	 */
2242 	*((dtrace_aggid_t *)kdata) = agg->dtag_id;
2243 
2244 	for (i = sizeof (dtrace_aggid_t); i < size; i++)
2245 		kdata[i] = data[i];
2246 
2247 	/*
2248 	 * Because strings are not zeroed out by default, we need to iterate
2249 	 * looking for actions that store strings, and we need to explicitly
2250 	 * pad these strings out with zeroes.
2251 	 */
2252 	for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2253 		int nul;
2254 
2255 		if (!DTRACEACT_ISSTRING(act))
2256 			continue;
2257 
2258 		i = act->dta_rec.dtrd_offset - agg->dtag_base;
2259 		limit = i + act->dta_rec.dtrd_size;
2260 		ASSERT(limit <= size);
2261 
2262 		for (nul = 0; i < limit; i++) {
2263 			if (nul) {
2264 				kdata[i] = '\0';
2265 				continue;
2266 			}
2267 
2268 			if (data[i] != '\0')
2269 				continue;
2270 
2271 			nul = 1;
2272 		}
2273 	}
2274 
2275 	for (i = size; i < fsize; i++)
2276 		kdata[i] = 0;
2277 
2278 	key->dtak_hashval = hashval;
2279 	key->dtak_size = size;
2280 	key->dtak_action = action;
2281 	key->dtak_next = agb->dtagb_hash[ndx];
2282 	agb->dtagb_hash[ndx] = key;
2283 
2284 	/*
2285 	 * Finally, apply the aggregator.
2286 	 */
2287 	*((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2288 	agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2289 }
2290 
2291 /*
2292  * Given consumer state, this routine finds a speculation in the INACTIVE
2293  * state and transitions it into the ACTIVE state.  If there is no speculation
2294  * in the INACTIVE state, 0 is returned.  In this case, no error counter is
2295  * incremented -- it is up to the caller to take appropriate action.
2296  */
2297 static int
2298 dtrace_speculation(dtrace_state_t *state)
2299 {
2300 	int i = 0;
2301 	dtrace_speculation_state_t current;
2302 	uint32_t *stat = &state->dts_speculations_unavail, count;
2303 
2304 	while (i < state->dts_nspeculations) {
2305 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2306 
2307 		current = spec->dtsp_state;
2308 
2309 		if (current != DTRACESPEC_INACTIVE) {
2310 			if (current == DTRACESPEC_COMMITTINGMANY ||
2311 			    current == DTRACESPEC_COMMITTING ||
2312 			    current == DTRACESPEC_DISCARDING)
2313 				stat = &state->dts_speculations_busy;
2314 			i++;
2315 			continue;
2316 		}
2317 
2318 		if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2319 		    current, DTRACESPEC_ACTIVE) == current)
2320 			return (i + 1);
2321 	}
2322 
2323 	/*
2324 	 * We couldn't find a speculation.  If we found as much as a single
2325 	 * busy speculation buffer, we'll attribute this failure as "busy"
2326 	 * instead of "unavail".
2327 	 */
2328 	do {
2329 		count = *stat;
2330 	} while (dtrace_cas32(stat, count, count + 1) != count);
2331 
2332 	return (0);
2333 }
2334 
2335 /*
2336  * This routine commits an active speculation.  If the specified speculation
2337  * is not in a valid state to perform a commit(), this routine will silently do
2338  * nothing.  The state of the specified speculation is transitioned according
2339  * to the state transition diagram outlined in <sys/dtrace_impl.h>
2340  */
2341 static void
2342 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2343     dtrace_specid_t which)
2344 {
2345 	dtrace_speculation_t *spec;
2346 	dtrace_buffer_t *src, *dest;
2347 	uintptr_t daddr, saddr, dlimit, slimit;
2348 	dtrace_speculation_state_t current, new = 0;
2349 	intptr_t offs;
2350 	uint64_t timestamp;
2351 
2352 	if (which == 0)
2353 		return;
2354 
2355 	if (which > state->dts_nspeculations) {
2356 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2357 		return;
2358 	}
2359 
2360 	spec = &state->dts_speculations[which - 1];
2361 	src = &spec->dtsp_buffer[cpu];
2362 	dest = &state->dts_buffer[cpu];
2363 
2364 	do {
2365 		current = spec->dtsp_state;
2366 
2367 		if (current == DTRACESPEC_COMMITTINGMANY)
2368 			break;
2369 
2370 		switch (current) {
2371 		case DTRACESPEC_INACTIVE:
2372 		case DTRACESPEC_DISCARDING:
2373 			return;
2374 
2375 		case DTRACESPEC_COMMITTING:
2376 			/*
2377 			 * This is only possible if we are (a) commit()'ing
2378 			 * without having done a prior speculate() on this CPU
2379 			 * and (b) racing with another commit() on a different
2380 			 * CPU.  There's nothing to do -- we just assert that
2381 			 * our offset is 0.
2382 			 */
2383 			ASSERT(src->dtb_offset == 0);
2384 			return;
2385 
2386 		case DTRACESPEC_ACTIVE:
2387 			new = DTRACESPEC_COMMITTING;
2388 			break;
2389 
2390 		case DTRACESPEC_ACTIVEONE:
2391 			/*
2392 			 * This speculation is active on one CPU.  If our
2393 			 * buffer offset is non-zero, we know that the one CPU
2394 			 * must be us.  Otherwise, we are committing on a
2395 			 * different CPU from the speculate(), and we must
2396 			 * rely on being asynchronously cleaned.
2397 			 */
2398 			if (src->dtb_offset != 0) {
2399 				new = DTRACESPEC_COMMITTING;
2400 				break;
2401 			}
2402 			/*FALLTHROUGH*/
2403 
2404 		case DTRACESPEC_ACTIVEMANY:
2405 			new = DTRACESPEC_COMMITTINGMANY;
2406 			break;
2407 
2408 		default:
2409 			ASSERT(0);
2410 		}
2411 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2412 	    current, new) != current);
2413 
2414 	/*
2415 	 * We have set the state to indicate that we are committing this
2416 	 * speculation.  Now reserve the necessary space in the destination
2417 	 * buffer.
2418 	 */
2419 	if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2420 	    sizeof (uint64_t), state, NULL)) < 0) {
2421 		dtrace_buffer_drop(dest);
2422 		goto out;
2423 	}
2424 
2425 	/*
2426 	 * We have sufficient space to copy the speculative buffer into the
2427 	 * primary buffer.  First, modify the speculative buffer, filling
2428 	 * in the timestamp of all entries with the current time.  The data
2429 	 * must have the commit() time rather than the time it was traced,
2430 	 * so that all entries in the primary buffer are in timestamp order.
2431 	 */
2432 	timestamp = dtrace_gethrtime();
2433 	saddr = (uintptr_t)src->dtb_tomax;
2434 	slimit = saddr + src->dtb_offset;
2435 	while (saddr < slimit) {
2436 		size_t size;
2437 		dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2438 
2439 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2440 			saddr += sizeof (dtrace_epid_t);
2441 			continue;
2442 		}
2443 		ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2444 		size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2445 
2446 		ASSERT3U(saddr + size, <=, slimit);
2447 		ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2448 		ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2449 
2450 		DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2451 
2452 		saddr += size;
2453 	}
2454 
2455 	/*
2456 	 * Copy the buffer across.  (Note that this is a
2457 	 * highly subobtimal bcopy(); in the unlikely event that this becomes
2458 	 * a serious performance issue, a high-performance DTrace-specific
2459 	 * bcopy() should obviously be invented.)
2460 	 */
2461 	daddr = (uintptr_t)dest->dtb_tomax + offs;
2462 	dlimit = daddr + src->dtb_offset;
2463 	saddr = (uintptr_t)src->dtb_tomax;
2464 
2465 	/*
2466 	 * First, the aligned portion.
2467 	 */
2468 	while (dlimit - daddr >= sizeof (uint64_t)) {
2469 		*((uint64_t *)daddr) = *((uint64_t *)saddr);
2470 
2471 		daddr += sizeof (uint64_t);
2472 		saddr += sizeof (uint64_t);
2473 	}
2474 
2475 	/*
2476 	 * Now any left-over bit...
2477 	 */
2478 	while (dlimit - daddr)
2479 		*((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2480 
2481 	/*
2482 	 * Finally, commit the reserved space in the destination buffer.
2483 	 */
2484 	dest->dtb_offset = offs + src->dtb_offset;
2485 
2486 out:
2487 	/*
2488 	 * If we're lucky enough to be the only active CPU on this speculation
2489 	 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2490 	 */
2491 	if (current == DTRACESPEC_ACTIVE ||
2492 	    (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2493 		uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2494 		    DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2495 
2496 		ASSERT(rval == DTRACESPEC_COMMITTING);
2497 	}
2498 
2499 	src->dtb_offset = 0;
2500 	src->dtb_xamot_drops += src->dtb_drops;
2501 	src->dtb_drops = 0;
2502 }
2503 
2504 /*
2505  * This routine discards an active speculation.  If the specified speculation
2506  * is not in a valid state to perform a discard(), this routine will silently
2507  * do nothing.  The state of the specified speculation is transitioned
2508  * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2509  */
2510 static void
2511 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2512     dtrace_specid_t which)
2513 {
2514 	dtrace_speculation_t *spec;
2515 	dtrace_speculation_state_t current, new = 0;
2516 	dtrace_buffer_t *buf;
2517 
2518 	if (which == 0)
2519 		return;
2520 
2521 	if (which > state->dts_nspeculations) {
2522 		cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2523 		return;
2524 	}
2525 
2526 	spec = &state->dts_speculations[which - 1];
2527 	buf = &spec->dtsp_buffer[cpu];
2528 
2529 	do {
2530 		current = spec->dtsp_state;
2531 
2532 		switch (current) {
2533 		case DTRACESPEC_INACTIVE:
2534 		case DTRACESPEC_COMMITTINGMANY:
2535 		case DTRACESPEC_COMMITTING:
2536 		case DTRACESPEC_DISCARDING:
2537 			return;
2538 
2539 		case DTRACESPEC_ACTIVE:
2540 		case DTRACESPEC_ACTIVEMANY:
2541 			new = DTRACESPEC_DISCARDING;
2542 			break;
2543 
2544 		case DTRACESPEC_ACTIVEONE:
2545 			if (buf->dtb_offset != 0) {
2546 				new = DTRACESPEC_INACTIVE;
2547 			} else {
2548 				new = DTRACESPEC_DISCARDING;
2549 			}
2550 			break;
2551 
2552 		default:
2553 			ASSERT(0);
2554 		}
2555 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2556 	    current, new) != current);
2557 
2558 	buf->dtb_offset = 0;
2559 	buf->dtb_drops = 0;
2560 }
2561 
2562 /*
2563  * Note:  not called from probe context.  This function is called
2564  * asynchronously from cross call context to clean any speculations that are
2565  * in the COMMITTINGMANY or DISCARDING states.  These speculations may not be
2566  * transitioned back to the INACTIVE state until all CPUs have cleaned the
2567  * speculation.
2568  */
2569 static void
2570 dtrace_speculation_clean_here(dtrace_state_t *state)
2571 {
2572 	dtrace_icookie_t cookie;
2573 	processorid_t cpu = curcpu;
2574 	dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2575 	dtrace_specid_t i;
2576 
2577 	cookie = dtrace_interrupt_disable();
2578 
2579 	if (dest->dtb_tomax == NULL) {
2580 		dtrace_interrupt_enable(cookie);
2581 		return;
2582 	}
2583 
2584 	for (i = 0; i < state->dts_nspeculations; i++) {
2585 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2586 		dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2587 
2588 		if (src->dtb_tomax == NULL)
2589 			continue;
2590 
2591 		if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2592 			src->dtb_offset = 0;
2593 			continue;
2594 		}
2595 
2596 		if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2597 			continue;
2598 
2599 		if (src->dtb_offset == 0)
2600 			continue;
2601 
2602 		dtrace_speculation_commit(state, cpu, i + 1);
2603 	}
2604 
2605 	dtrace_interrupt_enable(cookie);
2606 }
2607 
2608 /*
2609  * Note:  not called from probe context.  This function is called
2610  * asynchronously (and at a regular interval) to clean any speculations that
2611  * are in the COMMITTINGMANY or DISCARDING states.  If it discovers that there
2612  * is work to be done, it cross calls all CPUs to perform that work;
2613  * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2614  * INACTIVE state until they have been cleaned by all CPUs.
2615  */
2616 static void
2617 dtrace_speculation_clean(dtrace_state_t *state)
2618 {
2619 	int work = 0, rv;
2620 	dtrace_specid_t i;
2621 
2622 	for (i = 0; i < state->dts_nspeculations; i++) {
2623 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2624 
2625 		ASSERT(!spec->dtsp_cleaning);
2626 
2627 		if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2628 		    spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2629 			continue;
2630 
2631 		work++;
2632 		spec->dtsp_cleaning = 1;
2633 	}
2634 
2635 	if (!work)
2636 		return;
2637 
2638 	dtrace_xcall(DTRACE_CPUALL,
2639 	    (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2640 
2641 	/*
2642 	 * We now know that all CPUs have committed or discarded their
2643 	 * speculation buffers, as appropriate.  We can now set the state
2644 	 * to inactive.
2645 	 */
2646 	for (i = 0; i < state->dts_nspeculations; i++) {
2647 		dtrace_speculation_t *spec = &state->dts_speculations[i];
2648 		dtrace_speculation_state_t current, new;
2649 
2650 		if (!spec->dtsp_cleaning)
2651 			continue;
2652 
2653 		current = spec->dtsp_state;
2654 		ASSERT(current == DTRACESPEC_DISCARDING ||
2655 		    current == DTRACESPEC_COMMITTINGMANY);
2656 
2657 		new = DTRACESPEC_INACTIVE;
2658 
2659 		rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2660 		ASSERT(rv == current);
2661 		spec->dtsp_cleaning = 0;
2662 	}
2663 }
2664 
2665 /*
2666  * Called as part of a speculate() to get the speculative buffer associated
2667  * with a given speculation.  Returns NULL if the specified speculation is not
2668  * in an ACTIVE state.  If the speculation is in the ACTIVEONE state -- and
2669  * the active CPU is not the specified CPU -- the speculation will be
2670  * atomically transitioned into the ACTIVEMANY state.
2671  */
2672 static dtrace_buffer_t *
2673 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2674     dtrace_specid_t which)
2675 {
2676 	dtrace_speculation_t *spec;
2677 	dtrace_speculation_state_t current, new = 0;
2678 	dtrace_buffer_t *buf;
2679 
2680 	if (which == 0)
2681 		return (NULL);
2682 
2683 	if (which > state->dts_nspeculations) {
2684 		cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2685 		return (NULL);
2686 	}
2687 
2688 	spec = &state->dts_speculations[which - 1];
2689 	buf = &spec->dtsp_buffer[cpuid];
2690 
2691 	do {
2692 		current = spec->dtsp_state;
2693 
2694 		switch (current) {
2695 		case DTRACESPEC_INACTIVE:
2696 		case DTRACESPEC_COMMITTINGMANY:
2697 		case DTRACESPEC_DISCARDING:
2698 			return (NULL);
2699 
2700 		case DTRACESPEC_COMMITTING:
2701 			ASSERT(buf->dtb_offset == 0);
2702 			return (NULL);
2703 
2704 		case DTRACESPEC_ACTIVEONE:
2705 			/*
2706 			 * This speculation is currently active on one CPU.
2707 			 * Check the offset in the buffer; if it's non-zero,
2708 			 * that CPU must be us (and we leave the state alone).
2709 			 * If it's zero, assume that we're starting on a new
2710 			 * CPU -- and change the state to indicate that the
2711 			 * speculation is active on more than one CPU.
2712 			 */
2713 			if (buf->dtb_offset != 0)
2714 				return (buf);
2715 
2716 			new = DTRACESPEC_ACTIVEMANY;
2717 			break;
2718 
2719 		case DTRACESPEC_ACTIVEMANY:
2720 			return (buf);
2721 
2722 		case DTRACESPEC_ACTIVE:
2723 			new = DTRACESPEC_ACTIVEONE;
2724 			break;
2725 
2726 		default:
2727 			ASSERT(0);
2728 		}
2729 	} while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2730 	    current, new) != current);
2731 
2732 	ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2733 	return (buf);
2734 }
2735 
2736 /*
2737  * Return a string.  In the event that the user lacks the privilege to access
2738  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2739  * don't fail access checking.
2740  *
2741  * dtrace_dif_variable() uses this routine as a helper for various
2742  * builtin values such as 'execname' and 'probefunc.'
2743  */
2744 uintptr_t
2745 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2746     dtrace_mstate_t *mstate)
2747 {
2748 	uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2749 	uintptr_t ret;
2750 	size_t strsz;
2751 
2752 	/*
2753 	 * The easy case: this probe is allowed to read all of memory, so
2754 	 * we can just return this as a vanilla pointer.
2755 	 */
2756 	if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
2757 		return (addr);
2758 
2759 	/*
2760 	 * This is the tougher case: we copy the string in question from
2761 	 * kernel memory into scratch memory and return it that way: this
2762 	 * ensures that we won't trip up when access checking tests the
2763 	 * BYREF return value.
2764 	 */
2765 	strsz = dtrace_strlen((char *)addr, size) + 1;
2766 
2767 	if (mstate->dtms_scratch_ptr + strsz >
2768 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2769 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2770 		return (0);
2771 	}
2772 
2773 	dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2774 	    strsz);
2775 	ret = mstate->dtms_scratch_ptr;
2776 	mstate->dtms_scratch_ptr += strsz;
2777 	return (ret);
2778 }
2779 
2780 /*
2781  * Return a string from a memoy address which is known to have one or
2782  * more concatenated, individually zero terminated, sub-strings.
2783  * In the event that the user lacks the privilege to access
2784  * arbitrary kernel memory, we copy the string out to scratch memory so that we
2785  * don't fail access checking.
2786  *
2787  * dtrace_dif_variable() uses this routine as a helper for various
2788  * builtin values such as 'execargs'.
2789  */
2790 static uintptr_t
2791 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
2792     dtrace_mstate_t *mstate)
2793 {
2794 	char *p;
2795 	size_t i;
2796 	uintptr_t ret;
2797 
2798 	if (mstate->dtms_scratch_ptr + strsz >
2799 	    mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
2800 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
2801 		return (0);
2802 	}
2803 
2804 	dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
2805 	    strsz);
2806 
2807 	/* Replace sub-string termination characters with a space. */
2808 	for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
2809 	    p++, i++)
2810 		if (*p == '\0')
2811 			*p = ' ';
2812 
2813 	ret = mstate->dtms_scratch_ptr;
2814 	mstate->dtms_scratch_ptr += strsz;
2815 	return (ret);
2816 }
2817 
2818 /*
2819  * This function implements the DIF emulator's variable lookups.  The emulator
2820  * passes a reserved variable identifier and optional built-in array index.
2821  */
2822 static uint64_t
2823 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
2824     uint64_t ndx)
2825 {
2826 	/*
2827 	 * If we're accessing one of the uncached arguments, we'll turn this
2828 	 * into a reference in the args array.
2829 	 */
2830 	if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
2831 		ndx = v - DIF_VAR_ARG0;
2832 		v = DIF_VAR_ARGS;
2833 	}
2834 
2835 	switch (v) {
2836 	case DIF_VAR_ARGS:
2837 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
2838 		if (ndx >= sizeof (mstate->dtms_arg) /
2839 		    sizeof (mstate->dtms_arg[0])) {
2840 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2841 			dtrace_provider_t *pv;
2842 			uint64_t val;
2843 
2844 			pv = mstate->dtms_probe->dtpr_provider;
2845 			if (pv->dtpv_pops.dtps_getargval != NULL)
2846 				val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
2847 				    mstate->dtms_probe->dtpr_id,
2848 				    mstate->dtms_probe->dtpr_arg, ndx, aframes);
2849 			else
2850 				val = dtrace_getarg(ndx, aframes);
2851 
2852 			/*
2853 			 * This is regrettably required to keep the compiler
2854 			 * from tail-optimizing the call to dtrace_getarg().
2855 			 * The condition always evaluates to true, but the
2856 			 * compiler has no way of figuring that out a priori.
2857 			 * (None of this would be necessary if the compiler
2858 			 * could be relied upon to _always_ tail-optimize
2859 			 * the call to dtrace_getarg() -- but it can't.)
2860 			 */
2861 			if (mstate->dtms_probe != NULL)
2862 				return (val);
2863 
2864 			ASSERT(0);
2865 		}
2866 
2867 		return (mstate->dtms_arg[ndx]);
2868 
2869 #if defined(sun)
2870 	case DIF_VAR_UREGS: {
2871 		klwp_t *lwp;
2872 
2873 		if (!dtrace_priv_proc(state))
2874 			return (0);
2875 
2876 		if ((lwp = curthread->t_lwp) == NULL) {
2877 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2878 			cpu_core[curcpu].cpuc_dtrace_illval = NULL;
2879 			return (0);
2880 		}
2881 
2882 		return (dtrace_getreg(lwp->lwp_regs, ndx));
2883 		return (0);
2884 	}
2885 #else
2886 	case DIF_VAR_UREGS: {
2887 		struct trapframe *tframe;
2888 
2889 		if (!dtrace_priv_proc(state))
2890 			return (0);
2891 
2892 		if ((tframe = curthread->td_frame) == NULL) {
2893 			DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
2894 			cpu_core[curcpu].cpuc_dtrace_illval = 0;
2895 			return (0);
2896 		}
2897 
2898 		return (dtrace_getreg(tframe, ndx));
2899 	}
2900 #endif
2901 
2902 	case DIF_VAR_CURTHREAD:
2903 		if (!dtrace_priv_kernel(state))
2904 			return (0);
2905 		return ((uint64_t)(uintptr_t)curthread);
2906 
2907 	case DIF_VAR_TIMESTAMP:
2908 		if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
2909 			mstate->dtms_timestamp = dtrace_gethrtime();
2910 			mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
2911 		}
2912 		return (mstate->dtms_timestamp);
2913 
2914 	case DIF_VAR_VTIMESTAMP:
2915 		ASSERT(dtrace_vtime_references != 0);
2916 		return (curthread->t_dtrace_vtime);
2917 
2918 	case DIF_VAR_WALLTIMESTAMP:
2919 		if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
2920 			mstate->dtms_walltimestamp = dtrace_gethrestime();
2921 			mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
2922 		}
2923 		return (mstate->dtms_walltimestamp);
2924 
2925 #if defined(sun)
2926 	case DIF_VAR_IPL:
2927 		if (!dtrace_priv_kernel(state))
2928 			return (0);
2929 		if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
2930 			mstate->dtms_ipl = dtrace_getipl();
2931 			mstate->dtms_present |= DTRACE_MSTATE_IPL;
2932 		}
2933 		return (mstate->dtms_ipl);
2934 #endif
2935 
2936 	case DIF_VAR_EPID:
2937 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
2938 		return (mstate->dtms_epid);
2939 
2940 	case DIF_VAR_ID:
2941 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
2942 		return (mstate->dtms_probe->dtpr_id);
2943 
2944 	case DIF_VAR_STACKDEPTH:
2945 		if (!dtrace_priv_kernel(state))
2946 			return (0);
2947 		if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
2948 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2949 
2950 			mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
2951 			mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
2952 		}
2953 		return (mstate->dtms_stackdepth);
2954 
2955 	case DIF_VAR_USTACKDEPTH:
2956 		if (!dtrace_priv_proc(state))
2957 			return (0);
2958 		if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
2959 			/*
2960 			 * See comment in DIF_VAR_PID.
2961 			 */
2962 			if (DTRACE_ANCHORED(mstate->dtms_probe) &&
2963 			    CPU_ON_INTR(CPU)) {
2964 				mstate->dtms_ustackdepth = 0;
2965 			} else {
2966 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
2967 				mstate->dtms_ustackdepth =
2968 				    dtrace_getustackdepth();
2969 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
2970 			}
2971 			mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
2972 		}
2973 		return (mstate->dtms_ustackdepth);
2974 
2975 	case DIF_VAR_CALLER:
2976 		if (!dtrace_priv_kernel(state))
2977 			return (0);
2978 		if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
2979 			int aframes = mstate->dtms_probe->dtpr_aframes + 2;
2980 
2981 			if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
2982 				/*
2983 				 * If this is an unanchored probe, we are
2984 				 * required to go through the slow path:
2985 				 * dtrace_caller() only guarantees correct
2986 				 * results for anchored probes.
2987 				 */
2988 				pc_t caller[2] = {0, 0};
2989 
2990 				dtrace_getpcstack(caller, 2, aframes,
2991 				    (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
2992 				mstate->dtms_caller = caller[1];
2993 			} else if ((mstate->dtms_caller =
2994 			    dtrace_caller(aframes)) == -1) {
2995 				/*
2996 				 * We have failed to do this the quick way;
2997 				 * we must resort to the slower approach of
2998 				 * calling dtrace_getpcstack().
2999 				 */
3000 				pc_t caller = 0;
3001 
3002 				dtrace_getpcstack(&caller, 1, aframes, NULL);
3003 				mstate->dtms_caller = caller;
3004 			}
3005 
3006 			mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3007 		}
3008 		return (mstate->dtms_caller);
3009 
3010 	case DIF_VAR_UCALLER:
3011 		if (!dtrace_priv_proc(state))
3012 			return (0);
3013 
3014 		if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3015 			uint64_t ustack[3];
3016 
3017 			/*
3018 			 * dtrace_getupcstack() fills in the first uint64_t
3019 			 * with the current PID.  The second uint64_t will
3020 			 * be the program counter at user-level.  The third
3021 			 * uint64_t will contain the caller, which is what
3022 			 * we're after.
3023 			 */
3024 			ustack[2] = 0;
3025 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3026 			dtrace_getupcstack(ustack, 3);
3027 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3028 			mstate->dtms_ucaller = ustack[2];
3029 			mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3030 		}
3031 
3032 		return (mstate->dtms_ucaller);
3033 
3034 	case DIF_VAR_PROBEPROV:
3035 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3036 		return (dtrace_dif_varstr(
3037 		    (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3038 		    state, mstate));
3039 
3040 	case DIF_VAR_PROBEMOD:
3041 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3042 		return (dtrace_dif_varstr(
3043 		    (uintptr_t)mstate->dtms_probe->dtpr_mod,
3044 		    state, mstate));
3045 
3046 	case DIF_VAR_PROBEFUNC:
3047 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3048 		return (dtrace_dif_varstr(
3049 		    (uintptr_t)mstate->dtms_probe->dtpr_func,
3050 		    state, mstate));
3051 
3052 	case DIF_VAR_PROBENAME:
3053 		ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3054 		return (dtrace_dif_varstr(
3055 		    (uintptr_t)mstate->dtms_probe->dtpr_name,
3056 		    state, mstate));
3057 
3058 	case DIF_VAR_PID:
3059 		if (!dtrace_priv_proc(state))
3060 			return (0);
3061 
3062 #if defined(sun)
3063 		/*
3064 		 * Note that we are assuming that an unanchored probe is
3065 		 * always due to a high-level interrupt.  (And we're assuming
3066 		 * that there is only a single high level interrupt.)
3067 		 */
3068 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3069 			return (pid0.pid_id);
3070 
3071 		/*
3072 		 * It is always safe to dereference one's own t_procp pointer:
3073 		 * it always points to a valid, allocated proc structure.
3074 		 * Further, it is always safe to dereference the p_pidp member
3075 		 * of one's own proc structure.  (These are truisms becuase
3076 		 * threads and processes don't clean up their own state --
3077 		 * they leave that task to whomever reaps them.)
3078 		 */
3079 		return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3080 #else
3081 		return ((uint64_t)curproc->p_pid);
3082 #endif
3083 
3084 	case DIF_VAR_PPID:
3085 		if (!dtrace_priv_proc(state))
3086 			return (0);
3087 
3088 #if defined(sun)
3089 		/*
3090 		 * See comment in DIF_VAR_PID.
3091 		 */
3092 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3093 			return (pid0.pid_id);
3094 
3095 		/*
3096 		 * It is always safe to dereference one's own t_procp pointer:
3097 		 * it always points to a valid, allocated proc structure.
3098 		 * (This is true because threads don't clean up their own
3099 		 * state -- they leave that task to whomever reaps them.)
3100 		 */
3101 		return ((uint64_t)curthread->t_procp->p_ppid);
3102 #else
3103 		return ((uint64_t)curproc->p_pptr->p_pid);
3104 #endif
3105 
3106 	case DIF_VAR_TID:
3107 #if defined(sun)
3108 		/*
3109 		 * See comment in DIF_VAR_PID.
3110 		 */
3111 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3112 			return (0);
3113 #endif
3114 
3115 		return ((uint64_t)curthread->t_tid);
3116 
3117 	case DIF_VAR_EXECARGS: {
3118 		struct pargs *p_args = curthread->td_proc->p_args;
3119 
3120 		if (p_args == NULL)
3121 			return(0);
3122 
3123 		return (dtrace_dif_varstrz(
3124 		    (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3125 	}
3126 
3127 	case DIF_VAR_EXECNAME:
3128 #if defined(sun)
3129 		if (!dtrace_priv_proc(state))
3130 			return (0);
3131 
3132 		/*
3133 		 * See comment in DIF_VAR_PID.
3134 		 */
3135 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3136 			return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3137 
3138 		/*
3139 		 * It is always safe to dereference one's own t_procp pointer:
3140 		 * it always points to a valid, allocated proc structure.
3141 		 * (This is true because threads don't clean up their own
3142 		 * state -- they leave that task to whomever reaps them.)
3143 		 */
3144 		return (dtrace_dif_varstr(
3145 		    (uintptr_t)curthread->t_procp->p_user.u_comm,
3146 		    state, mstate));
3147 #else
3148 		return (dtrace_dif_varstr(
3149 		    (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3150 #endif
3151 
3152 	case DIF_VAR_ZONENAME:
3153 #if defined(sun)
3154 		if (!dtrace_priv_proc(state))
3155 			return (0);
3156 
3157 		/*
3158 		 * See comment in DIF_VAR_PID.
3159 		 */
3160 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3161 			return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3162 
3163 		/*
3164 		 * It is always safe to dereference one's own t_procp pointer:
3165 		 * it always points to a valid, allocated proc structure.
3166 		 * (This is true because threads don't clean up their own
3167 		 * state -- they leave that task to whomever reaps them.)
3168 		 */
3169 		return (dtrace_dif_varstr(
3170 		    (uintptr_t)curthread->t_procp->p_zone->zone_name,
3171 		    state, mstate));
3172 #else
3173 		return (0);
3174 #endif
3175 
3176 	case DIF_VAR_UID:
3177 		if (!dtrace_priv_proc(state))
3178 			return (0);
3179 
3180 #if defined(sun)
3181 		/*
3182 		 * See comment in DIF_VAR_PID.
3183 		 */
3184 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3185 			return ((uint64_t)p0.p_cred->cr_uid);
3186 #endif
3187 
3188 		/*
3189 		 * It is always safe to dereference one's own t_procp pointer:
3190 		 * it always points to a valid, allocated proc structure.
3191 		 * (This is true because threads don't clean up their own
3192 		 * state -- they leave that task to whomever reaps them.)
3193 		 *
3194 		 * Additionally, it is safe to dereference one's own process
3195 		 * credential, since this is never NULL after process birth.
3196 		 */
3197 		return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3198 
3199 	case DIF_VAR_GID:
3200 		if (!dtrace_priv_proc(state))
3201 			return (0);
3202 
3203 #if defined(sun)
3204 		/*
3205 		 * See comment in DIF_VAR_PID.
3206 		 */
3207 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3208 			return ((uint64_t)p0.p_cred->cr_gid);
3209 #endif
3210 
3211 		/*
3212 		 * It is always safe to dereference one's own t_procp pointer:
3213 		 * it always points to a valid, allocated proc structure.
3214 		 * (This is true because threads don't clean up their own
3215 		 * state -- they leave that task to whomever reaps them.)
3216 		 *
3217 		 * Additionally, it is safe to dereference one's own process
3218 		 * credential, since this is never NULL after process birth.
3219 		 */
3220 		return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3221 
3222 	case DIF_VAR_ERRNO: {
3223 #if defined(sun)
3224 		klwp_t *lwp;
3225 		if (!dtrace_priv_proc(state))
3226 			return (0);
3227 
3228 		/*
3229 		 * See comment in DIF_VAR_PID.
3230 		 */
3231 		if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3232 			return (0);
3233 
3234 		/*
3235 		 * It is always safe to dereference one's own t_lwp pointer in
3236 		 * the event that this pointer is non-NULL.  (This is true
3237 		 * because threads and lwps don't clean up their own state --
3238 		 * they leave that task to whomever reaps them.)
3239 		 */
3240 		if ((lwp = curthread->t_lwp) == NULL)
3241 			return (0);
3242 
3243 		return ((uint64_t)lwp->lwp_errno);
3244 #else
3245 		return (curthread->td_errno);
3246 #endif
3247 	}
3248 #if !defined(sun)
3249 	case DIF_VAR_CPU: {
3250 		return curcpu;
3251 	}
3252 #endif
3253 	default:
3254 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3255 		return (0);
3256 	}
3257 }
3258 
3259 /*
3260  * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3261  * Notice that we don't bother validating the proper number of arguments or
3262  * their types in the tuple stack.  This isn't needed because all argument
3263  * interpretation is safe because of our load safety -- the worst that can
3264  * happen is that a bogus program can obtain bogus results.
3265  */
3266 static void
3267 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3268     dtrace_key_t *tupregs, int nargs,
3269     dtrace_mstate_t *mstate, dtrace_state_t *state)
3270 {
3271 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
3272 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
3273 	dtrace_vstate_t *vstate = &state->dts_vstate;
3274 
3275 #if defined(sun)
3276 	union {
3277 		mutex_impl_t mi;
3278 		uint64_t mx;
3279 	} m;
3280 
3281 	union {
3282 		krwlock_t ri;
3283 		uintptr_t rw;
3284 	} r;
3285 #else
3286 	struct thread *lowner;
3287 	union {
3288 		struct lock_object *li;
3289 		uintptr_t lx;
3290 	} l;
3291 #endif
3292 
3293 	switch (subr) {
3294 	case DIF_SUBR_RAND:
3295 		regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3296 		break;
3297 
3298 #if defined(sun)
3299 	case DIF_SUBR_MUTEX_OWNED:
3300 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3301 		    mstate, vstate)) {
3302 			regs[rd] = 0;
3303 			break;
3304 		}
3305 
3306 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3307 		if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3308 			regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3309 		else
3310 			regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3311 		break;
3312 
3313 	case DIF_SUBR_MUTEX_OWNER:
3314 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3315 		    mstate, vstate)) {
3316 			regs[rd] = 0;
3317 			break;
3318 		}
3319 
3320 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3321 		if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3322 		    MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3323 			regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3324 		else
3325 			regs[rd] = 0;
3326 		break;
3327 
3328 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3329 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3330 		    mstate, vstate)) {
3331 			regs[rd] = 0;
3332 			break;
3333 		}
3334 
3335 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3336 		regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3337 		break;
3338 
3339 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3340 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3341 		    mstate, vstate)) {
3342 			regs[rd] = 0;
3343 			break;
3344 		}
3345 
3346 		m.mx = dtrace_load64(tupregs[0].dttk_value);
3347 		regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3348 		break;
3349 
3350 	case DIF_SUBR_RW_READ_HELD: {
3351 		uintptr_t tmp;
3352 
3353 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3354 		    mstate, vstate)) {
3355 			regs[rd] = 0;
3356 			break;
3357 		}
3358 
3359 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3360 		regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3361 		break;
3362 	}
3363 
3364 	case DIF_SUBR_RW_WRITE_HELD:
3365 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3366 		    mstate, vstate)) {
3367 			regs[rd] = 0;
3368 			break;
3369 		}
3370 
3371 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3372 		regs[rd] = _RW_WRITE_HELD(&r.ri);
3373 		break;
3374 
3375 	case DIF_SUBR_RW_ISWRITER:
3376 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3377 		    mstate, vstate)) {
3378 			regs[rd] = 0;
3379 			break;
3380 		}
3381 
3382 		r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3383 		regs[rd] = _RW_ISWRITER(&r.ri);
3384 		break;
3385 
3386 #else
3387 	case DIF_SUBR_MUTEX_OWNED:
3388 		if (!dtrace_canload(tupregs[0].dttk_value,
3389 			sizeof (struct lock_object), mstate, vstate)) {
3390 			regs[rd] = 0;
3391 			break;
3392 		}
3393 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3394 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3395 		break;
3396 
3397 	case DIF_SUBR_MUTEX_OWNER:
3398 		if (!dtrace_canload(tupregs[0].dttk_value,
3399 			sizeof (struct lock_object), mstate, vstate)) {
3400 			regs[rd] = 0;
3401 			break;
3402 		}
3403 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3404 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3405 		regs[rd] = (uintptr_t)lowner;
3406 		break;
3407 
3408 	case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3409 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3410 		    mstate, vstate)) {
3411 			regs[rd] = 0;
3412 			break;
3413 		}
3414 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3415 		/* XXX - should be only LC_SLEEPABLE? */
3416 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags &
3417 		    (LC_SLEEPLOCK | LC_SLEEPABLE)) != 0;
3418 		break;
3419 
3420 	case DIF_SUBR_MUTEX_TYPE_SPIN:
3421 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
3422 		    mstate, vstate)) {
3423 			regs[rd] = 0;
3424 			break;
3425 		}
3426 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3427 		regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
3428 		break;
3429 
3430 	case DIF_SUBR_RW_READ_HELD:
3431 	case DIF_SUBR_SX_SHARED_HELD:
3432 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3433 		    mstate, vstate)) {
3434 			regs[rd] = 0;
3435 			break;
3436 		}
3437 		l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
3438 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3439 		    lowner == NULL;
3440 		break;
3441 
3442 	case DIF_SUBR_RW_WRITE_HELD:
3443 	case DIF_SUBR_SX_EXCLUSIVE_HELD:
3444 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3445 		    mstate, vstate)) {
3446 			regs[rd] = 0;
3447 			break;
3448 		}
3449 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3450 		LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
3451 		regs[rd] = (lowner == curthread);
3452 		break;
3453 
3454 	case DIF_SUBR_RW_ISWRITER:
3455 	case DIF_SUBR_SX_ISEXCLUSIVE:
3456 		if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3457 		    mstate, vstate)) {
3458 			regs[rd] = 0;
3459 			break;
3460 		}
3461 		l.lx = dtrace_loadptr(tupregs[0].dttk_value);
3462 		regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
3463 		    lowner != NULL;
3464 		break;
3465 #endif /* ! defined(sun) */
3466 
3467 	case DIF_SUBR_BCOPY: {
3468 		/*
3469 		 * We need to be sure that the destination is in the scratch
3470 		 * region -- no other region is allowed.
3471 		 */
3472 		uintptr_t src = tupregs[0].dttk_value;
3473 		uintptr_t dest = tupregs[1].dttk_value;
3474 		size_t size = tupregs[2].dttk_value;
3475 
3476 		if (!dtrace_inscratch(dest, size, mstate)) {
3477 			*flags |= CPU_DTRACE_BADADDR;
3478 			*illval = regs[rd];
3479 			break;
3480 		}
3481 
3482 		if (!dtrace_canload(src, size, mstate, vstate)) {
3483 			regs[rd] = 0;
3484 			break;
3485 		}
3486 
3487 		dtrace_bcopy((void *)src, (void *)dest, size);
3488 		break;
3489 	}
3490 
3491 	case DIF_SUBR_ALLOCA:
3492 	case DIF_SUBR_COPYIN: {
3493 		uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
3494 		uint64_t size =
3495 		    tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
3496 		size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
3497 
3498 		/*
3499 		 * This action doesn't require any credential checks since
3500 		 * probes will not activate in user contexts to which the
3501 		 * enabling user does not have permissions.
3502 		 */
3503 
3504 		/*
3505 		 * Rounding up the user allocation size could have overflowed
3506 		 * a large, bogus allocation (like -1ULL) to 0.
3507 		 */
3508 		if (scratch_size < size ||
3509 		    !DTRACE_INSCRATCH(mstate, scratch_size)) {
3510 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3511 			regs[rd] = 0;
3512 			break;
3513 		}
3514 
3515 		if (subr == DIF_SUBR_COPYIN) {
3516 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3517 			dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3518 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3519 		}
3520 
3521 		mstate->dtms_scratch_ptr += scratch_size;
3522 		regs[rd] = dest;
3523 		break;
3524 	}
3525 
3526 	case DIF_SUBR_COPYINTO: {
3527 		uint64_t size = tupregs[1].dttk_value;
3528 		uintptr_t dest = tupregs[2].dttk_value;
3529 
3530 		/*
3531 		 * This action doesn't require any credential checks since
3532 		 * probes will not activate in user contexts to which the
3533 		 * enabling user does not have permissions.
3534 		 */
3535 		if (!dtrace_inscratch(dest, size, mstate)) {
3536 			*flags |= CPU_DTRACE_BADADDR;
3537 			*illval = regs[rd];
3538 			break;
3539 		}
3540 
3541 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3542 		dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
3543 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3544 		break;
3545 	}
3546 
3547 	case DIF_SUBR_COPYINSTR: {
3548 		uintptr_t dest = mstate->dtms_scratch_ptr;
3549 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3550 
3551 		if (nargs > 1 && tupregs[1].dttk_value < size)
3552 			size = tupregs[1].dttk_value + 1;
3553 
3554 		/*
3555 		 * This action doesn't require any credential checks since
3556 		 * probes will not activate in user contexts to which the
3557 		 * enabling user does not have permissions.
3558 		 */
3559 		if (!DTRACE_INSCRATCH(mstate, size)) {
3560 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3561 			regs[rd] = 0;
3562 			break;
3563 		}
3564 
3565 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3566 		dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
3567 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3568 
3569 		((char *)dest)[size - 1] = '\0';
3570 		mstate->dtms_scratch_ptr += size;
3571 		regs[rd] = dest;
3572 		break;
3573 	}
3574 
3575 #if defined(sun)
3576 	case DIF_SUBR_MSGSIZE:
3577 	case DIF_SUBR_MSGDSIZE: {
3578 		uintptr_t baddr = tupregs[0].dttk_value, daddr;
3579 		uintptr_t wptr, rptr;
3580 		size_t count = 0;
3581 		int cont = 0;
3582 
3583 		while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
3584 
3585 			if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
3586 			    vstate)) {
3587 				regs[rd] = 0;
3588 				break;
3589 			}
3590 
3591 			wptr = dtrace_loadptr(baddr +
3592 			    offsetof(mblk_t, b_wptr));
3593 
3594 			rptr = dtrace_loadptr(baddr +
3595 			    offsetof(mblk_t, b_rptr));
3596 
3597 			if (wptr < rptr) {
3598 				*flags |= CPU_DTRACE_BADADDR;
3599 				*illval = tupregs[0].dttk_value;
3600 				break;
3601 			}
3602 
3603 			daddr = dtrace_loadptr(baddr +
3604 			    offsetof(mblk_t, b_datap));
3605 
3606 			baddr = dtrace_loadptr(baddr +
3607 			    offsetof(mblk_t, b_cont));
3608 
3609 			/*
3610 			 * We want to prevent against denial-of-service here,
3611 			 * so we're only going to search the list for
3612 			 * dtrace_msgdsize_max mblks.
3613 			 */
3614 			if (cont++ > dtrace_msgdsize_max) {
3615 				*flags |= CPU_DTRACE_ILLOP;
3616 				break;
3617 			}
3618 
3619 			if (subr == DIF_SUBR_MSGDSIZE) {
3620 				if (dtrace_load8(daddr +
3621 				    offsetof(dblk_t, db_type)) != M_DATA)
3622 					continue;
3623 			}
3624 
3625 			count += wptr - rptr;
3626 		}
3627 
3628 		if (!(*flags & CPU_DTRACE_FAULT))
3629 			regs[rd] = count;
3630 
3631 		break;
3632 	}
3633 #endif
3634 
3635 	case DIF_SUBR_PROGENYOF: {
3636 		pid_t pid = tupregs[0].dttk_value;
3637 		proc_t *p;
3638 		int rval = 0;
3639 
3640 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3641 
3642 		for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
3643 #if defined(sun)
3644 			if (p->p_pidp->pid_id == pid) {
3645 #else
3646 			if (p->p_pid == pid) {
3647 #endif
3648 				rval = 1;
3649 				break;
3650 			}
3651 		}
3652 
3653 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3654 
3655 		regs[rd] = rval;
3656 		break;
3657 	}
3658 
3659 	case DIF_SUBR_SPECULATION:
3660 		regs[rd] = dtrace_speculation(state);
3661 		break;
3662 
3663 	case DIF_SUBR_COPYOUT: {
3664 		uintptr_t kaddr = tupregs[0].dttk_value;
3665 		uintptr_t uaddr = tupregs[1].dttk_value;
3666 		uint64_t size = tupregs[2].dttk_value;
3667 
3668 		if (!dtrace_destructive_disallow &&
3669 		    dtrace_priv_proc_control(state) &&
3670 		    !dtrace_istoxic(kaddr, size)) {
3671 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3672 			dtrace_copyout(kaddr, uaddr, size, flags);
3673 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3674 		}
3675 		break;
3676 	}
3677 
3678 	case DIF_SUBR_COPYOUTSTR: {
3679 		uintptr_t kaddr = tupregs[0].dttk_value;
3680 		uintptr_t uaddr = tupregs[1].dttk_value;
3681 		uint64_t size = tupregs[2].dttk_value;
3682 
3683 		if (!dtrace_destructive_disallow &&
3684 		    dtrace_priv_proc_control(state) &&
3685 		    !dtrace_istoxic(kaddr, size)) {
3686 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3687 			dtrace_copyoutstr(kaddr, uaddr, size, flags);
3688 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3689 		}
3690 		break;
3691 	}
3692 
3693 	case DIF_SUBR_STRLEN: {
3694 		size_t sz;
3695 		uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
3696 		sz = dtrace_strlen((char *)addr,
3697 		    state->dts_options[DTRACEOPT_STRSIZE]);
3698 
3699 		if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
3700 			regs[rd] = 0;
3701 			break;
3702 		}
3703 
3704 		regs[rd] = sz;
3705 
3706 		break;
3707 	}
3708 
3709 	case DIF_SUBR_STRCHR:
3710 	case DIF_SUBR_STRRCHR: {
3711 		/*
3712 		 * We're going to iterate over the string looking for the
3713 		 * specified character.  We will iterate until we have reached
3714 		 * the string length or we have found the character.  If this
3715 		 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
3716 		 * of the specified character instead of the first.
3717 		 */
3718 		uintptr_t saddr = tupregs[0].dttk_value;
3719 		uintptr_t addr = tupregs[0].dttk_value;
3720 		uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
3721 		char c, target = (char)tupregs[1].dttk_value;
3722 
3723 		for (regs[rd] = 0; addr < limit; addr++) {
3724 			if ((c = dtrace_load8(addr)) == target) {
3725 				regs[rd] = addr;
3726 
3727 				if (subr == DIF_SUBR_STRCHR)
3728 					break;
3729 			}
3730 
3731 			if (c == '\0')
3732 				break;
3733 		}
3734 
3735 		if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
3736 			regs[rd] = 0;
3737 			break;
3738 		}
3739 
3740 		break;
3741 	}
3742 
3743 	case DIF_SUBR_STRSTR:
3744 	case DIF_SUBR_INDEX:
3745 	case DIF_SUBR_RINDEX: {
3746 		/*
3747 		 * We're going to iterate over the string looking for the
3748 		 * specified string.  We will iterate until we have reached
3749 		 * the string length or we have found the string.  (Yes, this
3750 		 * is done in the most naive way possible -- but considering
3751 		 * that the string we're searching for is likely to be
3752 		 * relatively short, the complexity of Rabin-Karp or similar
3753 		 * hardly seems merited.)
3754 		 */
3755 		char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
3756 		char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
3757 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3758 		size_t len = dtrace_strlen(addr, size);
3759 		size_t sublen = dtrace_strlen(substr, size);
3760 		char *limit = addr + len, *orig = addr;
3761 		int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
3762 		int inc = 1;
3763 
3764 		regs[rd] = notfound;
3765 
3766 		if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
3767 			regs[rd] = 0;
3768 			break;
3769 		}
3770 
3771 		if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
3772 		    vstate)) {
3773 			regs[rd] = 0;
3774 			break;
3775 		}
3776 
3777 		/*
3778 		 * strstr() and index()/rindex() have similar semantics if
3779 		 * both strings are the empty string: strstr() returns a
3780 		 * pointer to the (empty) string, and index() and rindex()
3781 		 * both return index 0 (regardless of any position argument).
3782 		 */
3783 		if (sublen == 0 && len == 0) {
3784 			if (subr == DIF_SUBR_STRSTR)
3785 				regs[rd] = (uintptr_t)addr;
3786 			else
3787 				regs[rd] = 0;
3788 			break;
3789 		}
3790 
3791 		if (subr != DIF_SUBR_STRSTR) {
3792 			if (subr == DIF_SUBR_RINDEX) {
3793 				limit = orig - 1;
3794 				addr += len;
3795 				inc = -1;
3796 			}
3797 
3798 			/*
3799 			 * Both index() and rindex() take an optional position
3800 			 * argument that denotes the starting position.
3801 			 */
3802 			if (nargs == 3) {
3803 				int64_t pos = (int64_t)tupregs[2].dttk_value;
3804 
3805 				/*
3806 				 * If the position argument to index() is
3807 				 * negative, Perl implicitly clamps it at
3808 				 * zero.  This semantic is a little surprising
3809 				 * given the special meaning of negative
3810 				 * positions to similar Perl functions like
3811 				 * substr(), but it appears to reflect a
3812 				 * notion that index() can start from a
3813 				 * negative index and increment its way up to
3814 				 * the string.  Given this notion, Perl's
3815 				 * rindex() is at least self-consistent in
3816 				 * that it implicitly clamps positions greater
3817 				 * than the string length to be the string
3818 				 * length.  Where Perl completely loses
3819 				 * coherence, however, is when the specified
3820 				 * substring is the empty string ("").  In
3821 				 * this case, even if the position is
3822 				 * negative, rindex() returns 0 -- and even if
3823 				 * the position is greater than the length,
3824 				 * index() returns the string length.  These
3825 				 * semantics violate the notion that index()
3826 				 * should never return a value less than the
3827 				 * specified position and that rindex() should
3828 				 * never return a value greater than the
3829 				 * specified position.  (One assumes that
3830 				 * these semantics are artifacts of Perl's
3831 				 * implementation and not the results of
3832 				 * deliberate design -- it beggars belief that
3833 				 * even Larry Wall could desire such oddness.)
3834 				 * While in the abstract one would wish for
3835 				 * consistent position semantics across
3836 				 * substr(), index() and rindex() -- or at the
3837 				 * very least self-consistent position
3838 				 * semantics for index() and rindex() -- we
3839 				 * instead opt to keep with the extant Perl
3840 				 * semantics, in all their broken glory.  (Do
3841 				 * we have more desire to maintain Perl's
3842 				 * semantics than Perl does?  Probably.)
3843 				 */
3844 				if (subr == DIF_SUBR_RINDEX) {
3845 					if (pos < 0) {
3846 						if (sublen == 0)
3847 							regs[rd] = 0;
3848 						break;
3849 					}
3850 
3851 					if (pos > len)
3852 						pos = len;
3853 				} else {
3854 					if (pos < 0)
3855 						pos = 0;
3856 
3857 					if (pos >= len) {
3858 						if (sublen == 0)
3859 							regs[rd] = len;
3860 						break;
3861 					}
3862 				}
3863 
3864 				addr = orig + pos;
3865 			}
3866 		}
3867 
3868 		for (regs[rd] = notfound; addr != limit; addr += inc) {
3869 			if (dtrace_strncmp(addr, substr, sublen) == 0) {
3870 				if (subr != DIF_SUBR_STRSTR) {
3871 					/*
3872 					 * As D index() and rindex() are
3873 					 * modeled on Perl (and not on awk),
3874 					 * we return a zero-based (and not a
3875 					 * one-based) index.  (For you Perl
3876 					 * weenies: no, we're not going to add
3877 					 * $[ -- and shouldn't you be at a con
3878 					 * or something?)
3879 					 */
3880 					regs[rd] = (uintptr_t)(addr - orig);
3881 					break;
3882 				}
3883 
3884 				ASSERT(subr == DIF_SUBR_STRSTR);
3885 				regs[rd] = (uintptr_t)addr;
3886 				break;
3887 			}
3888 		}
3889 
3890 		break;
3891 	}
3892 
3893 	case DIF_SUBR_STRTOK: {
3894 		uintptr_t addr = tupregs[0].dttk_value;
3895 		uintptr_t tokaddr = tupregs[1].dttk_value;
3896 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3897 		uintptr_t limit, toklimit = tokaddr + size;
3898 		uint8_t c = 0, tokmap[32];	 /* 256 / 8 */
3899 		char *dest = (char *)mstate->dtms_scratch_ptr;
3900 		int i;
3901 
3902 		/*
3903 		 * Check both the token buffer and (later) the input buffer,
3904 		 * since both could be non-scratch addresses.
3905 		 */
3906 		if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
3907 			regs[rd] = 0;
3908 			break;
3909 		}
3910 
3911 		if (!DTRACE_INSCRATCH(mstate, size)) {
3912 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3913 			regs[rd] = 0;
3914 			break;
3915 		}
3916 
3917 		if (addr == 0) {
3918 			/*
3919 			 * If the address specified is NULL, we use our saved
3920 			 * strtok pointer from the mstate.  Note that this
3921 			 * means that the saved strtok pointer is _only_
3922 			 * valid within multiple enablings of the same probe --
3923 			 * it behaves like an implicit clause-local variable.
3924 			 */
3925 			addr = mstate->dtms_strtok;
3926 		} else {
3927 			/*
3928 			 * If the user-specified address is non-NULL we must
3929 			 * access check it.  This is the only time we have
3930 			 * a chance to do so, since this address may reside
3931 			 * in the string table of this clause-- future calls
3932 			 * (when we fetch addr from mstate->dtms_strtok)
3933 			 * would fail this access check.
3934 			 */
3935 			if (!dtrace_strcanload(addr, size, mstate, vstate)) {
3936 				regs[rd] = 0;
3937 				break;
3938 			}
3939 		}
3940 
3941 		/*
3942 		 * First, zero the token map, and then process the token
3943 		 * string -- setting a bit in the map for every character
3944 		 * found in the token string.
3945 		 */
3946 		for (i = 0; i < sizeof (tokmap); i++)
3947 			tokmap[i] = 0;
3948 
3949 		for (; tokaddr < toklimit; tokaddr++) {
3950 			if ((c = dtrace_load8(tokaddr)) == '\0')
3951 				break;
3952 
3953 			ASSERT((c >> 3) < sizeof (tokmap));
3954 			tokmap[c >> 3] |= (1 << (c & 0x7));
3955 		}
3956 
3957 		for (limit = addr + size; addr < limit; addr++) {
3958 			/*
3959 			 * We're looking for a character that is _not_ contained
3960 			 * in the token string.
3961 			 */
3962 			if ((c = dtrace_load8(addr)) == '\0')
3963 				break;
3964 
3965 			if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
3966 				break;
3967 		}
3968 
3969 		if (c == '\0') {
3970 			/*
3971 			 * We reached the end of the string without finding
3972 			 * any character that was not in the token string.
3973 			 * We return NULL in this case, and we set the saved
3974 			 * address to NULL as well.
3975 			 */
3976 			regs[rd] = 0;
3977 			mstate->dtms_strtok = 0;
3978 			break;
3979 		}
3980 
3981 		/*
3982 		 * From here on, we're copying into the destination string.
3983 		 */
3984 		for (i = 0; addr < limit && i < size - 1; addr++) {
3985 			if ((c = dtrace_load8(addr)) == '\0')
3986 				break;
3987 
3988 			if (tokmap[c >> 3] & (1 << (c & 0x7)))
3989 				break;
3990 
3991 			ASSERT(i < size);
3992 			dest[i++] = c;
3993 		}
3994 
3995 		ASSERT(i < size);
3996 		dest[i] = '\0';
3997 		regs[rd] = (uintptr_t)dest;
3998 		mstate->dtms_scratch_ptr += size;
3999 		mstate->dtms_strtok = addr;
4000 		break;
4001 	}
4002 
4003 	case DIF_SUBR_SUBSTR: {
4004 		uintptr_t s = tupregs[0].dttk_value;
4005 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4006 		char *d = (char *)mstate->dtms_scratch_ptr;
4007 		int64_t index = (int64_t)tupregs[1].dttk_value;
4008 		int64_t remaining = (int64_t)tupregs[2].dttk_value;
4009 		size_t len = dtrace_strlen((char *)s, size);
4010 		int64_t i = 0;
4011 
4012 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4013 			regs[rd] = 0;
4014 			break;
4015 		}
4016 
4017 		if (!DTRACE_INSCRATCH(mstate, size)) {
4018 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4019 			regs[rd] = 0;
4020 			break;
4021 		}
4022 
4023 		if (nargs <= 2)
4024 			remaining = (int64_t)size;
4025 
4026 		if (index < 0) {
4027 			index += len;
4028 
4029 			if (index < 0 && index + remaining > 0) {
4030 				remaining += index;
4031 				index = 0;
4032 			}
4033 		}
4034 
4035 		if (index >= len || index < 0) {
4036 			remaining = 0;
4037 		} else if (remaining < 0) {
4038 			remaining += len - index;
4039 		} else if (index + remaining > size) {
4040 			remaining = size - index;
4041 		}
4042 
4043 		for (i = 0; i < remaining; i++) {
4044 			if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4045 				break;
4046 		}
4047 
4048 		d[i] = '\0';
4049 
4050 		mstate->dtms_scratch_ptr += size;
4051 		regs[rd] = (uintptr_t)d;
4052 		break;
4053 	}
4054 
4055 	case DIF_SUBR_TOUPPER:
4056 	case DIF_SUBR_TOLOWER: {
4057 		uintptr_t s = tupregs[0].dttk_value;
4058 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4059 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4060 		size_t len = dtrace_strlen((char *)s, size);
4061 		char lower, upper, convert;
4062 		int64_t i;
4063 
4064 		if (subr == DIF_SUBR_TOUPPER) {
4065 			lower = 'a';
4066 			upper = 'z';
4067 			convert = 'A';
4068 		} else {
4069 			lower = 'A';
4070 			upper = 'Z';
4071 			convert = 'a';
4072 		}
4073 
4074 		if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4075 			regs[rd] = 0;
4076 			break;
4077 		}
4078 
4079 		if (!DTRACE_INSCRATCH(mstate, size)) {
4080 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4081 			regs[rd] = 0;
4082 			break;
4083 		}
4084 
4085 		for (i = 0; i < size - 1; i++) {
4086 			if ((c = dtrace_load8(s + i)) == '\0')
4087 				break;
4088 
4089 			if (c >= lower && c <= upper)
4090 				c = convert + (c - lower);
4091 
4092 			dest[i] = c;
4093 		}
4094 
4095 		ASSERT(i < size);
4096 		dest[i] = '\0';
4097 		regs[rd] = (uintptr_t)dest;
4098 		mstate->dtms_scratch_ptr += size;
4099 		break;
4100 	}
4101 
4102 #if defined(sun)
4103 	case DIF_SUBR_GETMAJOR:
4104 #ifdef _LP64
4105 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4106 #else
4107 		regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4108 #endif
4109 		break;
4110 
4111 	case DIF_SUBR_GETMINOR:
4112 #ifdef _LP64
4113 		regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4114 #else
4115 		regs[rd] = tupregs[0].dttk_value & MAXMIN;
4116 #endif
4117 		break;
4118 
4119 	case DIF_SUBR_DDI_PATHNAME: {
4120 		/*
4121 		 * This one is a galactic mess.  We are going to roughly
4122 		 * emulate ddi_pathname(), but it's made more complicated
4123 		 * by the fact that we (a) want to include the minor name and
4124 		 * (b) must proceed iteratively instead of recursively.
4125 		 */
4126 		uintptr_t dest = mstate->dtms_scratch_ptr;
4127 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4128 		char *start = (char *)dest, *end = start + size - 1;
4129 		uintptr_t daddr = tupregs[0].dttk_value;
4130 		int64_t minor = (int64_t)tupregs[1].dttk_value;
4131 		char *s;
4132 		int i, len, depth = 0;
4133 
4134 		/*
4135 		 * Due to all the pointer jumping we do and context we must
4136 		 * rely upon, we just mandate that the user must have kernel
4137 		 * read privileges to use this routine.
4138 		 */
4139 		if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4140 			*flags |= CPU_DTRACE_KPRIV;
4141 			*illval = daddr;
4142 			regs[rd] = 0;
4143 		}
4144 
4145 		if (!DTRACE_INSCRATCH(mstate, size)) {
4146 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4147 			regs[rd] = 0;
4148 			break;
4149 		}
4150 
4151 		*end = '\0';
4152 
4153 		/*
4154 		 * We want to have a name for the minor.  In order to do this,
4155 		 * we need to walk the minor list from the devinfo.  We want
4156 		 * to be sure that we don't infinitely walk a circular list,
4157 		 * so we check for circularity by sending a scout pointer
4158 		 * ahead two elements for every element that we iterate over;
4159 		 * if the list is circular, these will ultimately point to the
4160 		 * same element.  You may recognize this little trick as the
4161 		 * answer to a stupid interview question -- one that always
4162 		 * seems to be asked by those who had to have it laboriously
4163 		 * explained to them, and who can't even concisely describe
4164 		 * the conditions under which one would be forced to resort to
4165 		 * this technique.  Needless to say, those conditions are
4166 		 * found here -- and probably only here.  Is this the only use
4167 		 * of this infamous trick in shipping, production code?  If it
4168 		 * isn't, it probably should be...
4169 		 */
4170 		if (minor != -1) {
4171 			uintptr_t maddr = dtrace_loadptr(daddr +
4172 			    offsetof(struct dev_info, devi_minor));
4173 
4174 			uintptr_t next = offsetof(struct ddi_minor_data, next);
4175 			uintptr_t name = offsetof(struct ddi_minor_data,
4176 			    d_minor) + offsetof(struct ddi_minor, name);
4177 			uintptr_t dev = offsetof(struct ddi_minor_data,
4178 			    d_minor) + offsetof(struct ddi_minor, dev);
4179 			uintptr_t scout;
4180 
4181 			if (maddr != NULL)
4182 				scout = dtrace_loadptr(maddr + next);
4183 
4184 			while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4185 				uint64_t m;
4186 #ifdef _LP64
4187 				m = dtrace_load64(maddr + dev) & MAXMIN64;
4188 #else
4189 				m = dtrace_load32(maddr + dev) & MAXMIN;
4190 #endif
4191 				if (m != minor) {
4192 					maddr = dtrace_loadptr(maddr + next);
4193 
4194 					if (scout == NULL)
4195 						continue;
4196 
4197 					scout = dtrace_loadptr(scout + next);
4198 
4199 					if (scout == NULL)
4200 						continue;
4201 
4202 					scout = dtrace_loadptr(scout + next);
4203 
4204 					if (scout == NULL)
4205 						continue;
4206 
4207 					if (scout == maddr) {
4208 						*flags |= CPU_DTRACE_ILLOP;
4209 						break;
4210 					}
4211 
4212 					continue;
4213 				}
4214 
4215 				/*
4216 				 * We have the minor data.  Now we need to
4217 				 * copy the minor's name into the end of the
4218 				 * pathname.
4219 				 */
4220 				s = (char *)dtrace_loadptr(maddr + name);
4221 				len = dtrace_strlen(s, size);
4222 
4223 				if (*flags & CPU_DTRACE_FAULT)
4224 					break;
4225 
4226 				if (len != 0) {
4227 					if ((end -= (len + 1)) < start)
4228 						break;
4229 
4230 					*end = ':';
4231 				}
4232 
4233 				for (i = 1; i <= len; i++)
4234 					end[i] = dtrace_load8((uintptr_t)s++);
4235 				break;
4236 			}
4237 		}
4238 
4239 		while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4240 			ddi_node_state_t devi_state;
4241 
4242 			devi_state = dtrace_load32(daddr +
4243 			    offsetof(struct dev_info, devi_node_state));
4244 
4245 			if (*flags & CPU_DTRACE_FAULT)
4246 				break;
4247 
4248 			if (devi_state >= DS_INITIALIZED) {
4249 				s = (char *)dtrace_loadptr(daddr +
4250 				    offsetof(struct dev_info, devi_addr));
4251 				len = dtrace_strlen(s, size);
4252 
4253 				if (*flags & CPU_DTRACE_FAULT)
4254 					break;
4255 
4256 				if (len != 0) {
4257 					if ((end -= (len + 1)) < start)
4258 						break;
4259 
4260 					*end = '@';
4261 				}
4262 
4263 				for (i = 1; i <= len; i++)
4264 					end[i] = dtrace_load8((uintptr_t)s++);
4265 			}
4266 
4267 			/*
4268 			 * Now for the node name...
4269 			 */
4270 			s = (char *)dtrace_loadptr(daddr +
4271 			    offsetof(struct dev_info, devi_node_name));
4272 
4273 			daddr = dtrace_loadptr(daddr +
4274 			    offsetof(struct dev_info, devi_parent));
4275 
4276 			/*
4277 			 * If our parent is NULL (that is, if we're the root
4278 			 * node), we're going to use the special path
4279 			 * "devices".
4280 			 */
4281 			if (daddr == 0)
4282 				s = "devices";
4283 
4284 			len = dtrace_strlen(s, size);
4285 			if (*flags & CPU_DTRACE_FAULT)
4286 				break;
4287 
4288 			if ((end -= (len + 1)) < start)
4289 				break;
4290 
4291 			for (i = 1; i <= len; i++)
4292 				end[i] = dtrace_load8((uintptr_t)s++);
4293 			*end = '/';
4294 
4295 			if (depth++ > dtrace_devdepth_max) {
4296 				*flags |= CPU_DTRACE_ILLOP;
4297 				break;
4298 			}
4299 		}
4300 
4301 		if (end < start)
4302 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4303 
4304 		if (daddr == 0) {
4305 			regs[rd] = (uintptr_t)end;
4306 			mstate->dtms_scratch_ptr += size;
4307 		}
4308 
4309 		break;
4310 	}
4311 #endif
4312 
4313 	case DIF_SUBR_STRJOIN: {
4314 		char *d = (char *)mstate->dtms_scratch_ptr;
4315 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4316 		uintptr_t s1 = tupregs[0].dttk_value;
4317 		uintptr_t s2 = tupregs[1].dttk_value;
4318 		int i = 0;
4319 
4320 		if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4321 		    !dtrace_strcanload(s2, size, mstate, vstate)) {
4322 			regs[rd] = 0;
4323 			break;
4324 		}
4325 
4326 		if (!DTRACE_INSCRATCH(mstate, size)) {
4327 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4328 			regs[rd] = 0;
4329 			break;
4330 		}
4331 
4332 		for (;;) {
4333 			if (i >= size) {
4334 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4335 				regs[rd] = 0;
4336 				break;
4337 			}
4338 
4339 			if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4340 				i--;
4341 				break;
4342 			}
4343 		}
4344 
4345 		for (;;) {
4346 			if (i >= size) {
4347 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4348 				regs[rd] = 0;
4349 				break;
4350 			}
4351 
4352 			if ((d[i++] = dtrace_load8(s2++)) == '\0')
4353 				break;
4354 		}
4355 
4356 		if (i < size) {
4357 			mstate->dtms_scratch_ptr += i;
4358 			regs[rd] = (uintptr_t)d;
4359 		}
4360 
4361 		break;
4362 	}
4363 
4364 	case DIF_SUBR_LLTOSTR: {
4365 		int64_t i = (int64_t)tupregs[0].dttk_value;
4366 		uint64_t val, digit;
4367 		uint64_t size = 65;	/* enough room for 2^64 in binary */
4368 		char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4369 		int base = 10;
4370 
4371 		if (nargs > 1) {
4372 			if ((base = tupregs[1].dttk_value) <= 1 ||
4373 			    base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4374 				*flags |= CPU_DTRACE_ILLOP;
4375 				break;
4376 			}
4377 		}
4378 
4379 		val = (base == 10 && i < 0) ? i * -1 : i;
4380 
4381 		if (!DTRACE_INSCRATCH(mstate, size)) {
4382 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4383 			regs[rd] = 0;
4384 			break;
4385 		}
4386 
4387 		for (*end-- = '\0'; val; val /= base) {
4388 			if ((digit = val % base) <= '9' - '0') {
4389 				*end-- = '0' + digit;
4390 			} else {
4391 				*end-- = 'a' + (digit - ('9' - '0') - 1);
4392 			}
4393 		}
4394 
4395 		if (i == 0 && base == 16)
4396 			*end-- = '0';
4397 
4398 		if (base == 16)
4399 			*end-- = 'x';
4400 
4401 		if (i == 0 || base == 8 || base == 16)
4402 			*end-- = '0';
4403 
4404 		if (i < 0 && base == 10)
4405 			*end-- = '-';
4406 
4407 		regs[rd] = (uintptr_t)end + 1;
4408 		mstate->dtms_scratch_ptr += size;
4409 		break;
4410 	}
4411 
4412 	case DIF_SUBR_HTONS:
4413 	case DIF_SUBR_NTOHS:
4414 #if BYTE_ORDER == BIG_ENDIAN
4415 		regs[rd] = (uint16_t)tupregs[0].dttk_value;
4416 #else
4417 		regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
4418 #endif
4419 		break;
4420 
4421 
4422 	case DIF_SUBR_HTONL:
4423 	case DIF_SUBR_NTOHL:
4424 #if BYTE_ORDER == BIG_ENDIAN
4425 		regs[rd] = (uint32_t)tupregs[0].dttk_value;
4426 #else
4427 		regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
4428 #endif
4429 		break;
4430 
4431 
4432 	case DIF_SUBR_HTONLL:
4433 	case DIF_SUBR_NTOHLL:
4434 #if BYTE_ORDER == BIG_ENDIAN
4435 		regs[rd] = (uint64_t)tupregs[0].dttk_value;
4436 #else
4437 		regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
4438 #endif
4439 		break;
4440 
4441 
4442 	case DIF_SUBR_DIRNAME:
4443 	case DIF_SUBR_BASENAME: {
4444 		char *dest = (char *)mstate->dtms_scratch_ptr;
4445 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4446 		uintptr_t src = tupregs[0].dttk_value;
4447 		int i, j, len = dtrace_strlen((char *)src, size);
4448 		int lastbase = -1, firstbase = -1, lastdir = -1;
4449 		int start, end;
4450 
4451 		if (!dtrace_canload(src, len + 1, mstate, vstate)) {
4452 			regs[rd] = 0;
4453 			break;
4454 		}
4455 
4456 		if (!DTRACE_INSCRATCH(mstate, size)) {
4457 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4458 			regs[rd] = 0;
4459 			break;
4460 		}
4461 
4462 		/*
4463 		 * The basename and dirname for a zero-length string is
4464 		 * defined to be "."
4465 		 */
4466 		if (len == 0) {
4467 			len = 1;
4468 			src = (uintptr_t)".";
4469 		}
4470 
4471 		/*
4472 		 * Start from the back of the string, moving back toward the
4473 		 * front until we see a character that isn't a slash.  That
4474 		 * character is the last character in the basename.
4475 		 */
4476 		for (i = len - 1; i >= 0; i--) {
4477 			if (dtrace_load8(src + i) != '/')
4478 				break;
4479 		}
4480 
4481 		if (i >= 0)
4482 			lastbase = i;
4483 
4484 		/*
4485 		 * Starting from the last character in the basename, move
4486 		 * towards the front until we find a slash.  The character
4487 		 * that we processed immediately before that is the first
4488 		 * character in the basename.
4489 		 */
4490 		for (; i >= 0; i--) {
4491 			if (dtrace_load8(src + i) == '/')
4492 				break;
4493 		}
4494 
4495 		if (i >= 0)
4496 			firstbase = i + 1;
4497 
4498 		/*
4499 		 * Now keep going until we find a non-slash character.  That
4500 		 * character is the last character in the dirname.
4501 		 */
4502 		for (; i >= 0; i--) {
4503 			if (dtrace_load8(src + i) != '/')
4504 				break;
4505 		}
4506 
4507 		if (i >= 0)
4508 			lastdir = i;
4509 
4510 		ASSERT(!(lastbase == -1 && firstbase != -1));
4511 		ASSERT(!(firstbase == -1 && lastdir != -1));
4512 
4513 		if (lastbase == -1) {
4514 			/*
4515 			 * We didn't find a non-slash character.  We know that
4516 			 * the length is non-zero, so the whole string must be
4517 			 * slashes.  In either the dirname or the basename
4518 			 * case, we return '/'.
4519 			 */
4520 			ASSERT(firstbase == -1);
4521 			firstbase = lastbase = lastdir = 0;
4522 		}
4523 
4524 		if (firstbase == -1) {
4525 			/*
4526 			 * The entire string consists only of a basename
4527 			 * component.  If we're looking for dirname, we need
4528 			 * to change our string to be just "."; if we're
4529 			 * looking for a basename, we'll just set the first
4530 			 * character of the basename to be 0.
4531 			 */
4532 			if (subr == DIF_SUBR_DIRNAME) {
4533 				ASSERT(lastdir == -1);
4534 				src = (uintptr_t)".";
4535 				lastdir = 0;
4536 			} else {
4537 				firstbase = 0;
4538 			}
4539 		}
4540 
4541 		if (subr == DIF_SUBR_DIRNAME) {
4542 			if (lastdir == -1) {
4543 				/*
4544 				 * We know that we have a slash in the name --
4545 				 * or lastdir would be set to 0, above.  And
4546 				 * because lastdir is -1, we know that this
4547 				 * slash must be the first character.  (That
4548 				 * is, the full string must be of the form
4549 				 * "/basename".)  In this case, the last
4550 				 * character of the directory name is 0.
4551 				 */
4552 				lastdir = 0;
4553 			}
4554 
4555 			start = 0;
4556 			end = lastdir;
4557 		} else {
4558 			ASSERT(subr == DIF_SUBR_BASENAME);
4559 			ASSERT(firstbase != -1 && lastbase != -1);
4560 			start = firstbase;
4561 			end = lastbase;
4562 		}
4563 
4564 		for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
4565 			dest[j] = dtrace_load8(src + i);
4566 
4567 		dest[j] = '\0';
4568 		regs[rd] = (uintptr_t)dest;
4569 		mstate->dtms_scratch_ptr += size;
4570 		break;
4571 	}
4572 
4573 	case DIF_SUBR_CLEANPATH: {
4574 		char *dest = (char *)mstate->dtms_scratch_ptr, c;
4575 		uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4576 		uintptr_t src = tupregs[0].dttk_value;
4577 		int i = 0, j = 0;
4578 
4579 		if (!dtrace_strcanload(src, size, mstate, vstate)) {
4580 			regs[rd] = 0;
4581 			break;
4582 		}
4583 
4584 		if (!DTRACE_INSCRATCH(mstate, size)) {
4585 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4586 			regs[rd] = 0;
4587 			break;
4588 		}
4589 
4590 		/*
4591 		 * Move forward, loading each character.
4592 		 */
4593 		do {
4594 			c = dtrace_load8(src + i++);
4595 next:
4596 			if (j + 5 >= size)	/* 5 = strlen("/..c\0") */
4597 				break;
4598 
4599 			if (c != '/') {
4600 				dest[j++] = c;
4601 				continue;
4602 			}
4603 
4604 			c = dtrace_load8(src + i++);
4605 
4606 			if (c == '/') {
4607 				/*
4608 				 * We have two slashes -- we can just advance
4609 				 * to the next character.
4610 				 */
4611 				goto next;
4612 			}
4613 
4614 			if (c != '.') {
4615 				/*
4616 				 * This is not "." and it's not ".." -- we can
4617 				 * just store the "/" and this character and
4618 				 * drive on.
4619 				 */
4620 				dest[j++] = '/';
4621 				dest[j++] = c;
4622 				continue;
4623 			}
4624 
4625 			c = dtrace_load8(src + i++);
4626 
4627 			if (c == '/') {
4628 				/*
4629 				 * This is a "/./" component.  We're not going
4630 				 * to store anything in the destination buffer;
4631 				 * we're just going to go to the next component.
4632 				 */
4633 				goto next;
4634 			}
4635 
4636 			if (c != '.') {
4637 				/*
4638 				 * This is not ".." -- we can just store the
4639 				 * "/." and this character and continue
4640 				 * processing.
4641 				 */
4642 				dest[j++] = '/';
4643 				dest[j++] = '.';
4644 				dest[j++] = c;
4645 				continue;
4646 			}
4647 
4648 			c = dtrace_load8(src + i++);
4649 
4650 			if (c != '/' && c != '\0') {
4651 				/*
4652 				 * This is not ".." -- it's "..[mumble]".
4653 				 * We'll store the "/.." and this character
4654 				 * and continue processing.
4655 				 */
4656 				dest[j++] = '/';
4657 				dest[j++] = '.';
4658 				dest[j++] = '.';
4659 				dest[j++] = c;
4660 				continue;
4661 			}
4662 
4663 			/*
4664 			 * This is "/../" or "/..\0".  We need to back up
4665 			 * our destination pointer until we find a "/".
4666 			 */
4667 			i--;
4668 			while (j != 0 && dest[--j] != '/')
4669 				continue;
4670 
4671 			if (c == '\0')
4672 				dest[++j] = '/';
4673 		} while (c != '\0');
4674 
4675 		dest[j] = '\0';
4676 		regs[rd] = (uintptr_t)dest;
4677 		mstate->dtms_scratch_ptr += size;
4678 		break;
4679 	}
4680 
4681 	case DIF_SUBR_INET_NTOA:
4682 	case DIF_SUBR_INET_NTOA6:
4683 	case DIF_SUBR_INET_NTOP: {
4684 		size_t size;
4685 		int af, argi, i;
4686 		char *base, *end;
4687 
4688 		if (subr == DIF_SUBR_INET_NTOP) {
4689 			af = (int)tupregs[0].dttk_value;
4690 			argi = 1;
4691 		} else {
4692 			af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
4693 			argi = 0;
4694 		}
4695 
4696 		if (af == AF_INET) {
4697 			ipaddr_t ip4;
4698 			uint8_t *ptr8, val;
4699 
4700 			/*
4701 			 * Safely load the IPv4 address.
4702 			 */
4703 			ip4 = dtrace_load32(tupregs[argi].dttk_value);
4704 
4705 			/*
4706 			 * Check an IPv4 string will fit in scratch.
4707 			 */
4708 			size = INET_ADDRSTRLEN;
4709 			if (!DTRACE_INSCRATCH(mstate, size)) {
4710 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4711 				regs[rd] = 0;
4712 				break;
4713 			}
4714 			base = (char *)mstate->dtms_scratch_ptr;
4715 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4716 
4717 			/*
4718 			 * Stringify as a dotted decimal quad.
4719 			 */
4720 			*end-- = '\0';
4721 			ptr8 = (uint8_t *)&ip4;
4722 			for (i = 3; i >= 0; i--) {
4723 				val = ptr8[i];
4724 
4725 				if (val == 0) {
4726 					*end-- = '0';
4727 				} else {
4728 					for (; val; val /= 10) {
4729 						*end-- = '0' + (val % 10);
4730 					}
4731 				}
4732 
4733 				if (i > 0)
4734 					*end-- = '.';
4735 			}
4736 			ASSERT(end + 1 >= base);
4737 
4738 		} else if (af == AF_INET6) {
4739 			struct in6_addr ip6;
4740 			int firstzero, tryzero, numzero, v6end;
4741 			uint16_t val;
4742 			const char digits[] = "0123456789abcdef";
4743 
4744 			/*
4745 			 * Stringify using RFC 1884 convention 2 - 16 bit
4746 			 * hexadecimal values with a zero-run compression.
4747 			 * Lower case hexadecimal digits are used.
4748 			 * 	eg, fe80::214:4fff:fe0b:76c8.
4749 			 * The IPv4 embedded form is returned for inet_ntop,
4750 			 * just the IPv4 string is returned for inet_ntoa6.
4751 			 */
4752 
4753 			/*
4754 			 * Safely load the IPv6 address.
4755 			 */
4756 			dtrace_bcopy(
4757 			    (void *)(uintptr_t)tupregs[argi].dttk_value,
4758 			    (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
4759 
4760 			/*
4761 			 * Check an IPv6 string will fit in scratch.
4762 			 */
4763 			size = INET6_ADDRSTRLEN;
4764 			if (!DTRACE_INSCRATCH(mstate, size)) {
4765 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4766 				regs[rd] = 0;
4767 				break;
4768 			}
4769 			base = (char *)mstate->dtms_scratch_ptr;
4770 			end = (char *)mstate->dtms_scratch_ptr + size - 1;
4771 			*end-- = '\0';
4772 
4773 			/*
4774 			 * Find the longest run of 16 bit zero values
4775 			 * for the single allowed zero compression - "::".
4776 			 */
4777 			firstzero = -1;
4778 			tryzero = -1;
4779 			numzero = 1;
4780 			for (i = 0; i < sizeof (struct in6_addr); i++) {
4781 #if defined(sun)
4782 				if (ip6._S6_un._S6_u8[i] == 0 &&
4783 #else
4784 				if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4785 #endif
4786 				    tryzero == -1 && i % 2 == 0) {
4787 					tryzero = i;
4788 					continue;
4789 				}
4790 
4791 				if (tryzero != -1 &&
4792 #if defined(sun)
4793 				    (ip6._S6_un._S6_u8[i] != 0 ||
4794 #else
4795 				    (ip6.__u6_addr.__u6_addr8[i] != 0 ||
4796 #endif
4797 				    i == sizeof (struct in6_addr) - 1)) {
4798 
4799 					if (i - tryzero <= numzero) {
4800 						tryzero = -1;
4801 						continue;
4802 					}
4803 
4804 					firstzero = tryzero;
4805 					numzero = i - i % 2 - tryzero;
4806 					tryzero = -1;
4807 
4808 #if defined(sun)
4809 					if (ip6._S6_un._S6_u8[i] == 0 &&
4810 #else
4811 					if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
4812 #endif
4813 					    i == sizeof (struct in6_addr) - 1)
4814 						numzero += 2;
4815 				}
4816 			}
4817 			ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
4818 
4819 			/*
4820 			 * Check for an IPv4 embedded address.
4821 			 */
4822 			v6end = sizeof (struct in6_addr) - 2;
4823 			if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
4824 			    IN6_IS_ADDR_V4COMPAT(&ip6)) {
4825 				for (i = sizeof (struct in6_addr) - 1;
4826 				    i >= DTRACE_V4MAPPED_OFFSET; i--) {
4827 					ASSERT(end >= base);
4828 
4829 #if defined(sun)
4830 					val = ip6._S6_un._S6_u8[i];
4831 #else
4832 					val = ip6.__u6_addr.__u6_addr8[i];
4833 #endif
4834 
4835 					if (val == 0) {
4836 						*end-- = '0';
4837 					} else {
4838 						for (; val; val /= 10) {
4839 							*end-- = '0' + val % 10;
4840 						}
4841 					}
4842 
4843 					if (i > DTRACE_V4MAPPED_OFFSET)
4844 						*end-- = '.';
4845 				}
4846 
4847 				if (subr == DIF_SUBR_INET_NTOA6)
4848 					goto inetout;
4849 
4850 				/*
4851 				 * Set v6end to skip the IPv4 address that
4852 				 * we have already stringified.
4853 				 */
4854 				v6end = 10;
4855 			}
4856 
4857 			/*
4858 			 * Build the IPv6 string by working through the
4859 			 * address in reverse.
4860 			 */
4861 			for (i = v6end; i >= 0; i -= 2) {
4862 				ASSERT(end >= base);
4863 
4864 				if (i == firstzero + numzero - 2) {
4865 					*end-- = ':';
4866 					*end-- = ':';
4867 					i -= numzero - 2;
4868 					continue;
4869 				}
4870 
4871 				if (i < 14 && i != firstzero - 2)
4872 					*end-- = ':';
4873 
4874 #if defined(sun)
4875 				val = (ip6._S6_un._S6_u8[i] << 8) +
4876 				    ip6._S6_un._S6_u8[i + 1];
4877 #else
4878 				val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
4879 				    ip6.__u6_addr.__u6_addr8[i + 1];
4880 #endif
4881 
4882 				if (val == 0) {
4883 					*end-- = '0';
4884 				} else {
4885 					for (; val; val /= 16) {
4886 						*end-- = digits[val % 16];
4887 					}
4888 				}
4889 			}
4890 			ASSERT(end + 1 >= base);
4891 
4892 		} else {
4893 			/*
4894 			 * The user didn't use AH_INET or AH_INET6.
4895 			 */
4896 			DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
4897 			regs[rd] = 0;
4898 			break;
4899 		}
4900 
4901 inetout:	regs[rd] = (uintptr_t)end + 1;
4902 		mstate->dtms_scratch_ptr += size;
4903 		break;
4904 	}
4905 
4906 	case DIF_SUBR_MEMREF: {
4907 		uintptr_t size = 2 * sizeof(uintptr_t);
4908 		uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4909 		size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
4910 
4911 		/* address and length */
4912 		memref[0] = tupregs[0].dttk_value;
4913 		memref[1] = tupregs[1].dttk_value;
4914 
4915 		regs[rd] = (uintptr_t) memref;
4916 		mstate->dtms_scratch_ptr += scratch_size;
4917 		break;
4918 	}
4919 
4920 	case DIF_SUBR_TYPEREF: {
4921 		uintptr_t size = 4 * sizeof(uintptr_t);
4922 		uintptr_t *typeref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
4923 		size_t scratch_size = ((uintptr_t) typeref - mstate->dtms_scratch_ptr) + size;
4924 
4925 		/* address, num_elements, type_str, type_len */
4926 		typeref[0] = tupregs[0].dttk_value;
4927 		typeref[1] = tupregs[1].dttk_value;
4928 		typeref[2] = tupregs[2].dttk_value;
4929 		typeref[3] = tupregs[3].dttk_value;
4930 
4931 		regs[rd] = (uintptr_t) typeref;
4932 		mstate->dtms_scratch_ptr += scratch_size;
4933 		break;
4934 	}
4935 	}
4936 }
4937 
4938 /*
4939  * Emulate the execution of DTrace IR instructions specified by the given
4940  * DIF object.  This function is deliberately void of assertions as all of
4941  * the necessary checks are handled by a call to dtrace_difo_validate().
4942  */
4943 static uint64_t
4944 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
4945     dtrace_vstate_t *vstate, dtrace_state_t *state)
4946 {
4947 	const dif_instr_t *text = difo->dtdo_buf;
4948 	const uint_t textlen = difo->dtdo_len;
4949 	const char *strtab = difo->dtdo_strtab;
4950 	const uint64_t *inttab = difo->dtdo_inttab;
4951 
4952 	uint64_t rval = 0;
4953 	dtrace_statvar_t *svar;
4954 	dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
4955 	dtrace_difv_t *v;
4956 	volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4957 	volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4958 
4959 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
4960 	uint64_t regs[DIF_DIR_NREGS];
4961 	uint64_t *tmp;
4962 
4963 	uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
4964 	int64_t cc_r;
4965 	uint_t pc = 0, id, opc = 0;
4966 	uint8_t ttop = 0;
4967 	dif_instr_t instr;
4968 	uint_t r1, r2, rd;
4969 
4970 	/*
4971 	 * We stash the current DIF object into the machine state: we need it
4972 	 * for subsequent access checking.
4973 	 */
4974 	mstate->dtms_difo = difo;
4975 
4976 	regs[DIF_REG_R0] = 0; 		/* %r0 is fixed at zero */
4977 
4978 	while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
4979 		opc = pc;
4980 
4981 		instr = text[pc++];
4982 		r1 = DIF_INSTR_R1(instr);
4983 		r2 = DIF_INSTR_R2(instr);
4984 		rd = DIF_INSTR_RD(instr);
4985 
4986 		switch (DIF_INSTR_OP(instr)) {
4987 		case DIF_OP_OR:
4988 			regs[rd] = regs[r1] | regs[r2];
4989 			break;
4990 		case DIF_OP_XOR:
4991 			regs[rd] = regs[r1] ^ regs[r2];
4992 			break;
4993 		case DIF_OP_AND:
4994 			regs[rd] = regs[r1] & regs[r2];
4995 			break;
4996 		case DIF_OP_SLL:
4997 			regs[rd] = regs[r1] << regs[r2];
4998 			break;
4999 		case DIF_OP_SRL:
5000 			regs[rd] = regs[r1] >> regs[r2];
5001 			break;
5002 		case DIF_OP_SUB:
5003 			regs[rd] = regs[r1] - regs[r2];
5004 			break;
5005 		case DIF_OP_ADD:
5006 			regs[rd] = regs[r1] + regs[r2];
5007 			break;
5008 		case DIF_OP_MUL:
5009 			regs[rd] = regs[r1] * regs[r2];
5010 			break;
5011 		case DIF_OP_SDIV:
5012 			if (regs[r2] == 0) {
5013 				regs[rd] = 0;
5014 				*flags |= CPU_DTRACE_DIVZERO;
5015 			} else {
5016 				regs[rd] = (int64_t)regs[r1] /
5017 				    (int64_t)regs[r2];
5018 			}
5019 			break;
5020 
5021 		case DIF_OP_UDIV:
5022 			if (regs[r2] == 0) {
5023 				regs[rd] = 0;
5024 				*flags |= CPU_DTRACE_DIVZERO;
5025 			} else {
5026 				regs[rd] = regs[r1] / regs[r2];
5027 			}
5028 			break;
5029 
5030 		case DIF_OP_SREM:
5031 			if (regs[r2] == 0) {
5032 				regs[rd] = 0;
5033 				*flags |= CPU_DTRACE_DIVZERO;
5034 			} else {
5035 				regs[rd] = (int64_t)regs[r1] %
5036 				    (int64_t)regs[r2];
5037 			}
5038 			break;
5039 
5040 		case DIF_OP_UREM:
5041 			if (regs[r2] == 0) {
5042 				regs[rd] = 0;
5043 				*flags |= CPU_DTRACE_DIVZERO;
5044 			} else {
5045 				regs[rd] = regs[r1] % regs[r2];
5046 			}
5047 			break;
5048 
5049 		case DIF_OP_NOT:
5050 			regs[rd] = ~regs[r1];
5051 			break;
5052 		case DIF_OP_MOV:
5053 			regs[rd] = regs[r1];
5054 			break;
5055 		case DIF_OP_CMP:
5056 			cc_r = regs[r1] - regs[r2];
5057 			cc_n = cc_r < 0;
5058 			cc_z = cc_r == 0;
5059 			cc_v = 0;
5060 			cc_c = regs[r1] < regs[r2];
5061 			break;
5062 		case DIF_OP_TST:
5063 			cc_n = cc_v = cc_c = 0;
5064 			cc_z = regs[r1] == 0;
5065 			break;
5066 		case DIF_OP_BA:
5067 			pc = DIF_INSTR_LABEL(instr);
5068 			break;
5069 		case DIF_OP_BE:
5070 			if (cc_z)
5071 				pc = DIF_INSTR_LABEL(instr);
5072 			break;
5073 		case DIF_OP_BNE:
5074 			if (cc_z == 0)
5075 				pc = DIF_INSTR_LABEL(instr);
5076 			break;
5077 		case DIF_OP_BG:
5078 			if ((cc_z | (cc_n ^ cc_v)) == 0)
5079 				pc = DIF_INSTR_LABEL(instr);
5080 			break;
5081 		case DIF_OP_BGU:
5082 			if ((cc_c | cc_z) == 0)
5083 				pc = DIF_INSTR_LABEL(instr);
5084 			break;
5085 		case DIF_OP_BGE:
5086 			if ((cc_n ^ cc_v) == 0)
5087 				pc = DIF_INSTR_LABEL(instr);
5088 			break;
5089 		case DIF_OP_BGEU:
5090 			if (cc_c == 0)
5091 				pc = DIF_INSTR_LABEL(instr);
5092 			break;
5093 		case DIF_OP_BL:
5094 			if (cc_n ^ cc_v)
5095 				pc = DIF_INSTR_LABEL(instr);
5096 			break;
5097 		case DIF_OP_BLU:
5098 			if (cc_c)
5099 				pc = DIF_INSTR_LABEL(instr);
5100 			break;
5101 		case DIF_OP_BLE:
5102 			if (cc_z | (cc_n ^ cc_v))
5103 				pc = DIF_INSTR_LABEL(instr);
5104 			break;
5105 		case DIF_OP_BLEU:
5106 			if (cc_c | cc_z)
5107 				pc = DIF_INSTR_LABEL(instr);
5108 			break;
5109 		case DIF_OP_RLDSB:
5110 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5111 				*flags |= CPU_DTRACE_KPRIV;
5112 				*illval = regs[r1];
5113 				break;
5114 			}
5115 			/*FALLTHROUGH*/
5116 		case DIF_OP_LDSB:
5117 			regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5118 			break;
5119 		case DIF_OP_RLDSH:
5120 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5121 				*flags |= CPU_DTRACE_KPRIV;
5122 				*illval = regs[r1];
5123 				break;
5124 			}
5125 			/*FALLTHROUGH*/
5126 		case DIF_OP_LDSH:
5127 			regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5128 			break;
5129 		case DIF_OP_RLDSW:
5130 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5131 				*flags |= CPU_DTRACE_KPRIV;
5132 				*illval = regs[r1];
5133 				break;
5134 			}
5135 			/*FALLTHROUGH*/
5136 		case DIF_OP_LDSW:
5137 			regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5138 			break;
5139 		case DIF_OP_RLDUB:
5140 			if (!dtrace_canstore(regs[r1], 1, mstate, vstate)) {
5141 				*flags |= CPU_DTRACE_KPRIV;
5142 				*illval = regs[r1];
5143 				break;
5144 			}
5145 			/*FALLTHROUGH*/
5146 		case DIF_OP_LDUB:
5147 			regs[rd] = dtrace_load8(regs[r1]);
5148 			break;
5149 		case DIF_OP_RLDUH:
5150 			if (!dtrace_canstore(regs[r1], 2, mstate, vstate)) {
5151 				*flags |= CPU_DTRACE_KPRIV;
5152 				*illval = regs[r1];
5153 				break;
5154 			}
5155 			/*FALLTHROUGH*/
5156 		case DIF_OP_LDUH:
5157 			regs[rd] = dtrace_load16(regs[r1]);
5158 			break;
5159 		case DIF_OP_RLDUW:
5160 			if (!dtrace_canstore(regs[r1], 4, mstate, vstate)) {
5161 				*flags |= CPU_DTRACE_KPRIV;
5162 				*illval = regs[r1];
5163 				break;
5164 			}
5165 			/*FALLTHROUGH*/
5166 		case DIF_OP_LDUW:
5167 			regs[rd] = dtrace_load32(regs[r1]);
5168 			break;
5169 		case DIF_OP_RLDX:
5170 			if (!dtrace_canstore(regs[r1], 8, mstate, vstate)) {
5171 				*flags |= CPU_DTRACE_KPRIV;
5172 				*illval = regs[r1];
5173 				break;
5174 			}
5175 			/*FALLTHROUGH*/
5176 		case DIF_OP_LDX:
5177 			regs[rd] = dtrace_load64(regs[r1]);
5178 			break;
5179 		case DIF_OP_ULDSB:
5180 			regs[rd] = (int8_t)
5181 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5182 			break;
5183 		case DIF_OP_ULDSH:
5184 			regs[rd] = (int16_t)
5185 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5186 			break;
5187 		case DIF_OP_ULDSW:
5188 			regs[rd] = (int32_t)
5189 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5190 			break;
5191 		case DIF_OP_ULDUB:
5192 			regs[rd] =
5193 			    dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5194 			break;
5195 		case DIF_OP_ULDUH:
5196 			regs[rd] =
5197 			    dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5198 			break;
5199 		case DIF_OP_ULDUW:
5200 			regs[rd] =
5201 			    dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5202 			break;
5203 		case DIF_OP_ULDX:
5204 			regs[rd] =
5205 			    dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5206 			break;
5207 		case DIF_OP_RET:
5208 			rval = regs[rd];
5209 			pc = textlen;
5210 			break;
5211 		case DIF_OP_NOP:
5212 			break;
5213 		case DIF_OP_SETX:
5214 			regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5215 			break;
5216 		case DIF_OP_SETS:
5217 			regs[rd] = (uint64_t)(uintptr_t)
5218 			    (strtab + DIF_INSTR_STRING(instr));
5219 			break;
5220 		case DIF_OP_SCMP: {
5221 			size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5222 			uintptr_t s1 = regs[r1];
5223 			uintptr_t s2 = regs[r2];
5224 
5225 			if (s1 != 0 &&
5226 			    !dtrace_strcanload(s1, sz, mstate, vstate))
5227 				break;
5228 			if (s2 != 0 &&
5229 			    !dtrace_strcanload(s2, sz, mstate, vstate))
5230 				break;
5231 
5232 			cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5233 
5234 			cc_n = cc_r < 0;
5235 			cc_z = cc_r == 0;
5236 			cc_v = cc_c = 0;
5237 			break;
5238 		}
5239 		case DIF_OP_LDGA:
5240 			regs[rd] = dtrace_dif_variable(mstate, state,
5241 			    r1, regs[r2]);
5242 			break;
5243 		case DIF_OP_LDGS:
5244 			id = DIF_INSTR_VAR(instr);
5245 
5246 			if (id >= DIF_VAR_OTHER_UBASE) {
5247 				uintptr_t a;
5248 
5249 				id -= DIF_VAR_OTHER_UBASE;
5250 				svar = vstate->dtvs_globals[id];
5251 				ASSERT(svar != NULL);
5252 				v = &svar->dtsv_var;
5253 
5254 				if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5255 					regs[rd] = svar->dtsv_data;
5256 					break;
5257 				}
5258 
5259 				a = (uintptr_t)svar->dtsv_data;
5260 
5261 				if (*(uint8_t *)a == UINT8_MAX) {
5262 					/*
5263 					 * If the 0th byte is set to UINT8_MAX
5264 					 * then this is to be treated as a
5265 					 * reference to a NULL variable.
5266 					 */
5267 					regs[rd] = 0;
5268 				} else {
5269 					regs[rd] = a + sizeof (uint64_t);
5270 				}
5271 
5272 				break;
5273 			}
5274 
5275 			regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5276 			break;
5277 
5278 		case DIF_OP_STGS:
5279 			id = DIF_INSTR_VAR(instr);
5280 
5281 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5282 			id -= DIF_VAR_OTHER_UBASE;
5283 
5284 			svar = vstate->dtvs_globals[id];
5285 			ASSERT(svar != NULL);
5286 			v = &svar->dtsv_var;
5287 
5288 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5289 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5290 
5291 				ASSERT(a != 0);
5292 				ASSERT(svar->dtsv_size != 0);
5293 
5294 				if (regs[rd] == 0) {
5295 					*(uint8_t *)a = UINT8_MAX;
5296 					break;
5297 				} else {
5298 					*(uint8_t *)a = 0;
5299 					a += sizeof (uint64_t);
5300 				}
5301 				if (!dtrace_vcanload(
5302 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5303 				    mstate, vstate))
5304 					break;
5305 
5306 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5307 				    (void *)a, &v->dtdv_type);
5308 				break;
5309 			}
5310 
5311 			svar->dtsv_data = regs[rd];
5312 			break;
5313 
5314 		case DIF_OP_LDTA:
5315 			/*
5316 			 * There are no DTrace built-in thread-local arrays at
5317 			 * present.  This opcode is saved for future work.
5318 			 */
5319 			*flags |= CPU_DTRACE_ILLOP;
5320 			regs[rd] = 0;
5321 			break;
5322 
5323 		case DIF_OP_LDLS:
5324 			id = DIF_INSTR_VAR(instr);
5325 
5326 			if (id < DIF_VAR_OTHER_UBASE) {
5327 				/*
5328 				 * For now, this has no meaning.
5329 				 */
5330 				regs[rd] = 0;
5331 				break;
5332 			}
5333 
5334 			id -= DIF_VAR_OTHER_UBASE;
5335 
5336 			ASSERT(id < vstate->dtvs_nlocals);
5337 			ASSERT(vstate->dtvs_locals != NULL);
5338 
5339 			svar = vstate->dtvs_locals[id];
5340 			ASSERT(svar != NULL);
5341 			v = &svar->dtsv_var;
5342 
5343 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5344 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5345 				size_t sz = v->dtdv_type.dtdt_size;
5346 
5347 				sz += sizeof (uint64_t);
5348 				ASSERT(svar->dtsv_size == NCPU * sz);
5349 				a += curcpu * sz;
5350 
5351 				if (*(uint8_t *)a == UINT8_MAX) {
5352 					/*
5353 					 * If the 0th byte is set to UINT8_MAX
5354 					 * then this is to be treated as a
5355 					 * reference to a NULL variable.
5356 					 */
5357 					regs[rd] = 0;
5358 				} else {
5359 					regs[rd] = a + sizeof (uint64_t);
5360 				}
5361 
5362 				break;
5363 			}
5364 
5365 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5366 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5367 			regs[rd] = tmp[curcpu];
5368 			break;
5369 
5370 		case DIF_OP_STLS:
5371 			id = DIF_INSTR_VAR(instr);
5372 
5373 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5374 			id -= DIF_VAR_OTHER_UBASE;
5375 			ASSERT(id < vstate->dtvs_nlocals);
5376 
5377 			ASSERT(vstate->dtvs_locals != NULL);
5378 			svar = vstate->dtvs_locals[id];
5379 			ASSERT(svar != NULL);
5380 			v = &svar->dtsv_var;
5381 
5382 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5383 				uintptr_t a = (uintptr_t)svar->dtsv_data;
5384 				size_t sz = v->dtdv_type.dtdt_size;
5385 
5386 				sz += sizeof (uint64_t);
5387 				ASSERT(svar->dtsv_size == NCPU * sz);
5388 				a += curcpu * sz;
5389 
5390 				if (regs[rd] == 0) {
5391 					*(uint8_t *)a = UINT8_MAX;
5392 					break;
5393 				} else {
5394 					*(uint8_t *)a = 0;
5395 					a += sizeof (uint64_t);
5396 				}
5397 
5398 				if (!dtrace_vcanload(
5399 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5400 				    mstate, vstate))
5401 					break;
5402 
5403 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5404 				    (void *)a, &v->dtdv_type);
5405 				break;
5406 			}
5407 
5408 			ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5409 			tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5410 			tmp[curcpu] = regs[rd];
5411 			break;
5412 
5413 		case DIF_OP_LDTS: {
5414 			dtrace_dynvar_t *dvar;
5415 			dtrace_key_t *key;
5416 
5417 			id = DIF_INSTR_VAR(instr);
5418 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5419 			id -= DIF_VAR_OTHER_UBASE;
5420 			v = &vstate->dtvs_tlocals[id];
5421 
5422 			key = &tupregs[DIF_DTR_NREGS];
5423 			key[0].dttk_value = (uint64_t)id;
5424 			key[0].dttk_size = 0;
5425 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5426 			key[1].dttk_size = 0;
5427 
5428 			dvar = dtrace_dynvar(dstate, 2, key,
5429 			    sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
5430 			    mstate, vstate);
5431 
5432 			if (dvar == NULL) {
5433 				regs[rd] = 0;
5434 				break;
5435 			}
5436 
5437 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5438 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5439 			} else {
5440 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5441 			}
5442 
5443 			break;
5444 		}
5445 
5446 		case DIF_OP_STTS: {
5447 			dtrace_dynvar_t *dvar;
5448 			dtrace_key_t *key;
5449 
5450 			id = DIF_INSTR_VAR(instr);
5451 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5452 			id -= DIF_VAR_OTHER_UBASE;
5453 
5454 			key = &tupregs[DIF_DTR_NREGS];
5455 			key[0].dttk_value = (uint64_t)id;
5456 			key[0].dttk_size = 0;
5457 			DTRACE_TLS_THRKEY(key[1].dttk_value);
5458 			key[1].dttk_size = 0;
5459 			v = &vstate->dtvs_tlocals[id];
5460 
5461 			dvar = dtrace_dynvar(dstate, 2, key,
5462 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5463 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5464 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5465 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5466 
5467 			/*
5468 			 * Given that we're storing to thread-local data,
5469 			 * we need to flush our predicate cache.
5470 			 */
5471 			curthread->t_predcache = 0;
5472 
5473 			if (dvar == NULL)
5474 				break;
5475 
5476 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5477 				if (!dtrace_vcanload(
5478 				    (void *)(uintptr_t)regs[rd],
5479 				    &v->dtdv_type, mstate, vstate))
5480 					break;
5481 
5482 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5483 				    dvar->dtdv_data, &v->dtdv_type);
5484 			} else {
5485 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5486 			}
5487 
5488 			break;
5489 		}
5490 
5491 		case DIF_OP_SRA:
5492 			regs[rd] = (int64_t)regs[r1] >> regs[r2];
5493 			break;
5494 
5495 		case DIF_OP_CALL:
5496 			dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
5497 			    regs, tupregs, ttop, mstate, state);
5498 			break;
5499 
5500 		case DIF_OP_PUSHTR:
5501 			if (ttop == DIF_DTR_NREGS) {
5502 				*flags |= CPU_DTRACE_TUPOFLOW;
5503 				break;
5504 			}
5505 
5506 			if (r1 == DIF_TYPE_STRING) {
5507 				/*
5508 				 * If this is a string type and the size is 0,
5509 				 * we'll use the system-wide default string
5510 				 * size.  Note that we are _not_ looking at
5511 				 * the value of the DTRACEOPT_STRSIZE option;
5512 				 * had this been set, we would expect to have
5513 				 * a non-zero size value in the "pushtr".
5514 				 */
5515 				tupregs[ttop].dttk_size =
5516 				    dtrace_strlen((char *)(uintptr_t)regs[rd],
5517 				    regs[r2] ? regs[r2] :
5518 				    dtrace_strsize_default) + 1;
5519 			} else {
5520 				tupregs[ttop].dttk_size = regs[r2];
5521 			}
5522 
5523 			tupregs[ttop++].dttk_value = regs[rd];
5524 			break;
5525 
5526 		case DIF_OP_PUSHTV:
5527 			if (ttop == DIF_DTR_NREGS) {
5528 				*flags |= CPU_DTRACE_TUPOFLOW;
5529 				break;
5530 			}
5531 
5532 			tupregs[ttop].dttk_value = regs[rd];
5533 			tupregs[ttop++].dttk_size = 0;
5534 			break;
5535 
5536 		case DIF_OP_POPTS:
5537 			if (ttop != 0)
5538 				ttop--;
5539 			break;
5540 
5541 		case DIF_OP_FLUSHTS:
5542 			ttop = 0;
5543 			break;
5544 
5545 		case DIF_OP_LDGAA:
5546 		case DIF_OP_LDTAA: {
5547 			dtrace_dynvar_t *dvar;
5548 			dtrace_key_t *key = tupregs;
5549 			uint_t nkeys = ttop;
5550 
5551 			id = DIF_INSTR_VAR(instr);
5552 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5553 			id -= DIF_VAR_OTHER_UBASE;
5554 
5555 			key[nkeys].dttk_value = (uint64_t)id;
5556 			key[nkeys++].dttk_size = 0;
5557 
5558 			if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
5559 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5560 				key[nkeys++].dttk_size = 0;
5561 				v = &vstate->dtvs_tlocals[id];
5562 			} else {
5563 				v = &vstate->dtvs_globals[id]->dtsv_var;
5564 			}
5565 
5566 			dvar = dtrace_dynvar(dstate, nkeys, key,
5567 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5568 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5569 			    DTRACE_DYNVAR_NOALLOC, mstate, vstate);
5570 
5571 			if (dvar == NULL) {
5572 				regs[rd] = 0;
5573 				break;
5574 			}
5575 
5576 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5577 				regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
5578 			} else {
5579 				regs[rd] = *((uint64_t *)dvar->dtdv_data);
5580 			}
5581 
5582 			break;
5583 		}
5584 
5585 		case DIF_OP_STGAA:
5586 		case DIF_OP_STTAA: {
5587 			dtrace_dynvar_t *dvar;
5588 			dtrace_key_t *key = tupregs;
5589 			uint_t nkeys = ttop;
5590 
5591 			id = DIF_INSTR_VAR(instr);
5592 			ASSERT(id >= DIF_VAR_OTHER_UBASE);
5593 			id -= DIF_VAR_OTHER_UBASE;
5594 
5595 			key[nkeys].dttk_value = (uint64_t)id;
5596 			key[nkeys++].dttk_size = 0;
5597 
5598 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
5599 				DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
5600 				key[nkeys++].dttk_size = 0;
5601 				v = &vstate->dtvs_tlocals[id];
5602 			} else {
5603 				v = &vstate->dtvs_globals[id]->dtsv_var;
5604 			}
5605 
5606 			dvar = dtrace_dynvar(dstate, nkeys, key,
5607 			    v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
5608 			    v->dtdv_type.dtdt_size : sizeof (uint64_t),
5609 			    regs[rd] ? DTRACE_DYNVAR_ALLOC :
5610 			    DTRACE_DYNVAR_DEALLOC, mstate, vstate);
5611 
5612 			if (dvar == NULL)
5613 				break;
5614 
5615 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5616 				if (!dtrace_vcanload(
5617 				    (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5618 				    mstate, vstate))
5619 					break;
5620 
5621 				dtrace_vcopy((void *)(uintptr_t)regs[rd],
5622 				    dvar->dtdv_data, &v->dtdv_type);
5623 			} else {
5624 				*((uint64_t *)dvar->dtdv_data) = regs[rd];
5625 			}
5626 
5627 			break;
5628 		}
5629 
5630 		case DIF_OP_ALLOCS: {
5631 			uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5632 			size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
5633 
5634 			/*
5635 			 * Rounding up the user allocation size could have
5636 			 * overflowed large, bogus allocations (like -1ULL) to
5637 			 * 0.
5638 			 */
5639 			if (size < regs[r1] ||
5640 			    !DTRACE_INSCRATCH(mstate, size)) {
5641 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5642 				regs[rd] = 0;
5643 				break;
5644 			}
5645 
5646 			dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
5647 			mstate->dtms_scratch_ptr += size;
5648 			regs[rd] = ptr;
5649 			break;
5650 		}
5651 
5652 		case DIF_OP_COPYS:
5653 			if (!dtrace_canstore(regs[rd], regs[r2],
5654 			    mstate, vstate)) {
5655 				*flags |= CPU_DTRACE_BADADDR;
5656 				*illval = regs[rd];
5657 				break;
5658 			}
5659 
5660 			if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
5661 				break;
5662 
5663 			dtrace_bcopy((void *)(uintptr_t)regs[r1],
5664 			    (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
5665 			break;
5666 
5667 		case DIF_OP_STB:
5668 			if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
5669 				*flags |= CPU_DTRACE_BADADDR;
5670 				*illval = regs[rd];
5671 				break;
5672 			}
5673 			*((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
5674 			break;
5675 
5676 		case DIF_OP_STH:
5677 			if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
5678 				*flags |= CPU_DTRACE_BADADDR;
5679 				*illval = regs[rd];
5680 				break;
5681 			}
5682 			if (regs[rd] & 1) {
5683 				*flags |= CPU_DTRACE_BADALIGN;
5684 				*illval = regs[rd];
5685 				break;
5686 			}
5687 			*((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
5688 			break;
5689 
5690 		case DIF_OP_STW:
5691 			if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
5692 				*flags |= CPU_DTRACE_BADADDR;
5693 				*illval = regs[rd];
5694 				break;
5695 			}
5696 			if (regs[rd] & 3) {
5697 				*flags |= CPU_DTRACE_BADALIGN;
5698 				*illval = regs[rd];
5699 				break;
5700 			}
5701 			*((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
5702 			break;
5703 
5704 		case DIF_OP_STX:
5705 			if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
5706 				*flags |= CPU_DTRACE_BADADDR;
5707 				*illval = regs[rd];
5708 				break;
5709 			}
5710 			if (regs[rd] & 7) {
5711 				*flags |= CPU_DTRACE_BADALIGN;
5712 				*illval = regs[rd];
5713 				break;
5714 			}
5715 			*((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
5716 			break;
5717 		}
5718 	}
5719 
5720 	if (!(*flags & CPU_DTRACE_FAULT))
5721 		return (rval);
5722 
5723 	mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
5724 	mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
5725 
5726 	return (0);
5727 }
5728 
5729 static void
5730 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
5731 {
5732 	dtrace_probe_t *probe = ecb->dte_probe;
5733 	dtrace_provider_t *prov = probe->dtpr_provider;
5734 	char c[DTRACE_FULLNAMELEN + 80], *str;
5735 	char *msg = "dtrace: breakpoint action at probe ";
5736 	char *ecbmsg = " (ecb ";
5737 	uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
5738 	uintptr_t val = (uintptr_t)ecb;
5739 	int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
5740 
5741 	if (dtrace_destructive_disallow)
5742 		return;
5743 
5744 	/*
5745 	 * It's impossible to be taking action on the NULL probe.
5746 	 */
5747 	ASSERT(probe != NULL);
5748 
5749 	/*
5750 	 * This is a poor man's (destitute man's?) sprintf():  we want to
5751 	 * print the provider name, module name, function name and name of
5752 	 * the probe, along with the hex address of the ECB with the breakpoint
5753 	 * action -- all of which we must place in the character buffer by
5754 	 * hand.
5755 	 */
5756 	while (*msg != '\0')
5757 		c[i++] = *msg++;
5758 
5759 	for (str = prov->dtpv_name; *str != '\0'; str++)
5760 		c[i++] = *str;
5761 	c[i++] = ':';
5762 
5763 	for (str = probe->dtpr_mod; *str != '\0'; str++)
5764 		c[i++] = *str;
5765 	c[i++] = ':';
5766 
5767 	for (str = probe->dtpr_func; *str != '\0'; str++)
5768 		c[i++] = *str;
5769 	c[i++] = ':';
5770 
5771 	for (str = probe->dtpr_name; *str != '\0'; str++)
5772 		c[i++] = *str;
5773 
5774 	while (*ecbmsg != '\0')
5775 		c[i++] = *ecbmsg++;
5776 
5777 	while (shift >= 0) {
5778 		mask = (uintptr_t)0xf << shift;
5779 
5780 		if (val >= ((uintptr_t)1 << shift))
5781 			c[i++] = "0123456789abcdef"[(val & mask) >> shift];
5782 		shift -= 4;
5783 	}
5784 
5785 	c[i++] = ')';
5786 	c[i] = '\0';
5787 
5788 #if defined(sun)
5789 	debug_enter(c);
5790 #else
5791 	kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
5792 #endif
5793 }
5794 
5795 static void
5796 dtrace_action_panic(dtrace_ecb_t *ecb)
5797 {
5798 	dtrace_probe_t *probe = ecb->dte_probe;
5799 
5800 	/*
5801 	 * It's impossible to be taking action on the NULL probe.
5802 	 */
5803 	ASSERT(probe != NULL);
5804 
5805 	if (dtrace_destructive_disallow)
5806 		return;
5807 
5808 	if (dtrace_panicked != NULL)
5809 		return;
5810 
5811 	if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
5812 		return;
5813 
5814 	/*
5815 	 * We won the right to panic.  (We want to be sure that only one
5816 	 * thread calls panic() from dtrace_probe(), and that panic() is
5817 	 * called exactly once.)
5818 	 */
5819 	dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
5820 	    probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
5821 	    probe->dtpr_func, probe->dtpr_name, (void *)ecb);
5822 }
5823 
5824 static void
5825 dtrace_action_raise(uint64_t sig)
5826 {
5827 	if (dtrace_destructive_disallow)
5828 		return;
5829 
5830 	if (sig >= NSIG) {
5831 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5832 		return;
5833 	}
5834 
5835 #if defined(sun)
5836 	/*
5837 	 * raise() has a queue depth of 1 -- we ignore all subsequent
5838 	 * invocations of the raise() action.
5839 	 */
5840 	if (curthread->t_dtrace_sig == 0)
5841 		curthread->t_dtrace_sig = (uint8_t)sig;
5842 
5843 	curthread->t_sig_check = 1;
5844 	aston(curthread);
5845 #else
5846 	struct proc *p = curproc;
5847 	PROC_LOCK(p);
5848 	kern_psignal(p, sig);
5849 	PROC_UNLOCK(p);
5850 #endif
5851 }
5852 
5853 static void
5854 dtrace_action_stop(void)
5855 {
5856 	if (dtrace_destructive_disallow)
5857 		return;
5858 
5859 #if defined(sun)
5860 	if (!curthread->t_dtrace_stop) {
5861 		curthread->t_dtrace_stop = 1;
5862 		curthread->t_sig_check = 1;
5863 		aston(curthread);
5864 	}
5865 #else
5866 	struct proc *p = curproc;
5867 	PROC_LOCK(p);
5868 	kern_psignal(p, SIGSTOP);
5869 	PROC_UNLOCK(p);
5870 #endif
5871 }
5872 
5873 static void
5874 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
5875 {
5876 	hrtime_t now;
5877 	volatile uint16_t *flags;
5878 #if defined(sun)
5879 	cpu_t *cpu = CPU;
5880 #else
5881 	cpu_t *cpu = &solaris_cpu[curcpu];
5882 #endif
5883 
5884 	if (dtrace_destructive_disallow)
5885 		return;
5886 
5887 	flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
5888 
5889 	now = dtrace_gethrtime();
5890 
5891 	if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
5892 		/*
5893 		 * We need to advance the mark to the current time.
5894 		 */
5895 		cpu->cpu_dtrace_chillmark = now;
5896 		cpu->cpu_dtrace_chilled = 0;
5897 	}
5898 
5899 	/*
5900 	 * Now check to see if the requested chill time would take us over
5901 	 * the maximum amount of time allowed in the chill interval.  (Or
5902 	 * worse, if the calculation itself induces overflow.)
5903 	 */
5904 	if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
5905 	    cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
5906 		*flags |= CPU_DTRACE_ILLOP;
5907 		return;
5908 	}
5909 
5910 	while (dtrace_gethrtime() - now < val)
5911 		continue;
5912 
5913 	/*
5914 	 * Normally, we assure that the value of the variable "timestamp" does
5915 	 * not change within an ECB.  The presence of chill() represents an
5916 	 * exception to this rule, however.
5917 	 */
5918 	mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
5919 	cpu->cpu_dtrace_chilled += val;
5920 }
5921 
5922 static void
5923 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
5924     uint64_t *buf, uint64_t arg)
5925 {
5926 	int nframes = DTRACE_USTACK_NFRAMES(arg);
5927 	int strsize = DTRACE_USTACK_STRSIZE(arg);
5928 	uint64_t *pcs = &buf[1], *fps;
5929 	char *str = (char *)&pcs[nframes];
5930 	int size, offs = 0, i, j;
5931 	uintptr_t old = mstate->dtms_scratch_ptr, saved;
5932 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
5933 	char *sym;
5934 
5935 	/*
5936 	 * Should be taking a faster path if string space has not been
5937 	 * allocated.
5938 	 */
5939 	ASSERT(strsize != 0);
5940 
5941 	/*
5942 	 * We will first allocate some temporary space for the frame pointers.
5943 	 */
5944 	fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
5945 	size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
5946 	    (nframes * sizeof (uint64_t));
5947 
5948 	if (!DTRACE_INSCRATCH(mstate, size)) {
5949 		/*
5950 		 * Not enough room for our frame pointers -- need to indicate
5951 		 * that we ran out of scratch space.
5952 		 */
5953 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5954 		return;
5955 	}
5956 
5957 	mstate->dtms_scratch_ptr += size;
5958 	saved = mstate->dtms_scratch_ptr;
5959 
5960 	/*
5961 	 * Now get a stack with both program counters and frame pointers.
5962 	 */
5963 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5964 	dtrace_getufpstack(buf, fps, nframes + 1);
5965 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5966 
5967 	/*
5968 	 * If that faulted, we're cooked.
5969 	 */
5970 	if (*flags & CPU_DTRACE_FAULT)
5971 		goto out;
5972 
5973 	/*
5974 	 * Now we want to walk up the stack, calling the USTACK helper.  For
5975 	 * each iteration, we restore the scratch pointer.
5976 	 */
5977 	for (i = 0; i < nframes; i++) {
5978 		mstate->dtms_scratch_ptr = saved;
5979 
5980 		if (offs >= strsize)
5981 			break;
5982 
5983 		sym = (char *)(uintptr_t)dtrace_helper(
5984 		    DTRACE_HELPER_ACTION_USTACK,
5985 		    mstate, state, pcs[i], fps[i]);
5986 
5987 		/*
5988 		 * If we faulted while running the helper, we're going to
5989 		 * clear the fault and null out the corresponding string.
5990 		 */
5991 		if (*flags & CPU_DTRACE_FAULT) {
5992 			*flags &= ~CPU_DTRACE_FAULT;
5993 			str[offs++] = '\0';
5994 			continue;
5995 		}
5996 
5997 		if (sym == NULL) {
5998 			str[offs++] = '\0';
5999 			continue;
6000 		}
6001 
6002 		DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6003 
6004 		/*
6005 		 * Now copy in the string that the helper returned to us.
6006 		 */
6007 		for (j = 0; offs + j < strsize; j++) {
6008 			if ((str[offs + j] = sym[j]) == '\0')
6009 				break;
6010 		}
6011 
6012 		DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6013 
6014 		offs += j + 1;
6015 	}
6016 
6017 	if (offs >= strsize) {
6018 		/*
6019 		 * If we didn't have room for all of the strings, we don't
6020 		 * abort processing -- this needn't be a fatal error -- but we
6021 		 * still want to increment a counter (dts_stkstroverflows) to
6022 		 * allow this condition to be warned about.  (If this is from
6023 		 * a jstack() action, it is easily tuned via jstackstrsize.)
6024 		 */
6025 		dtrace_error(&state->dts_stkstroverflows);
6026 	}
6027 
6028 	while (offs < strsize)
6029 		str[offs++] = '\0';
6030 
6031 out:
6032 	mstate->dtms_scratch_ptr = old;
6033 }
6034 
6035 /*
6036  * If you're looking for the epicenter of DTrace, you just found it.  This
6037  * is the function called by the provider to fire a probe -- from which all
6038  * subsequent probe-context DTrace activity emanates.
6039  */
6040 void
6041 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6042     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6043 {
6044 	processorid_t cpuid;
6045 	dtrace_icookie_t cookie;
6046 	dtrace_probe_t *probe;
6047 	dtrace_mstate_t mstate;
6048 	dtrace_ecb_t *ecb;
6049 	dtrace_action_t *act;
6050 	intptr_t offs;
6051 	size_t size;
6052 	int vtime, onintr;
6053 	volatile uint16_t *flags;
6054 	hrtime_t now;
6055 
6056 	if (panicstr != NULL)
6057 		return;
6058 
6059 #if defined(sun)
6060 	/*
6061 	 * Kick out immediately if this CPU is still being born (in which case
6062 	 * curthread will be set to -1) or the current thread can't allow
6063 	 * probes in its current context.
6064 	 */
6065 	if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6066 		return;
6067 #endif
6068 
6069 	cookie = dtrace_interrupt_disable();
6070 	probe = dtrace_probes[id - 1];
6071 	cpuid = curcpu;
6072 	onintr = CPU_ON_INTR(CPU);
6073 
6074 	if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6075 	    probe->dtpr_predcache == curthread->t_predcache) {
6076 		/*
6077 		 * We have hit in the predicate cache; we know that
6078 		 * this predicate would evaluate to be false.
6079 		 */
6080 		dtrace_interrupt_enable(cookie);
6081 		return;
6082 	}
6083 
6084 #if defined(sun)
6085 	if (panic_quiesce) {
6086 #else
6087 	if (panicstr != NULL) {
6088 #endif
6089 		/*
6090 		 * We don't trace anything if we're panicking.
6091 		 */
6092 		dtrace_interrupt_enable(cookie);
6093 		return;
6094 	}
6095 
6096 	now = dtrace_gethrtime();
6097 	vtime = dtrace_vtime_references != 0;
6098 
6099 	if (vtime && curthread->t_dtrace_start)
6100 		curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6101 
6102 	mstate.dtms_difo = NULL;
6103 	mstate.dtms_probe = probe;
6104 	mstate.dtms_strtok = 0;
6105 	mstate.dtms_arg[0] = arg0;
6106 	mstate.dtms_arg[1] = arg1;
6107 	mstate.dtms_arg[2] = arg2;
6108 	mstate.dtms_arg[3] = arg3;
6109 	mstate.dtms_arg[4] = arg4;
6110 
6111 	flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6112 
6113 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6114 		dtrace_predicate_t *pred = ecb->dte_predicate;
6115 		dtrace_state_t *state = ecb->dte_state;
6116 		dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6117 		dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6118 		dtrace_vstate_t *vstate = &state->dts_vstate;
6119 		dtrace_provider_t *prov = probe->dtpr_provider;
6120 		uint64_t tracememsize = 0;
6121 		int committed = 0;
6122 		caddr_t tomax;
6123 
6124 		/*
6125 		 * A little subtlety with the following (seemingly innocuous)
6126 		 * declaration of the automatic 'val':  by looking at the
6127 		 * code, you might think that it could be declared in the
6128 		 * action processing loop, below.  (That is, it's only used in
6129 		 * the action processing loop.)  However, it must be declared
6130 		 * out of that scope because in the case of DIF expression
6131 		 * arguments to aggregating actions, one iteration of the
6132 		 * action loop will use the last iteration's value.
6133 		 */
6134 		uint64_t val = 0;
6135 
6136 		mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6137 		*flags &= ~CPU_DTRACE_ERROR;
6138 
6139 		if (prov == dtrace_provider) {
6140 			/*
6141 			 * If dtrace itself is the provider of this probe,
6142 			 * we're only going to continue processing the ECB if
6143 			 * arg0 (the dtrace_state_t) is equal to the ECB's
6144 			 * creating state.  (This prevents disjoint consumers
6145 			 * from seeing one another's metaprobes.)
6146 			 */
6147 			if (arg0 != (uint64_t)(uintptr_t)state)
6148 				continue;
6149 		}
6150 
6151 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6152 			/*
6153 			 * We're not currently active.  If our provider isn't
6154 			 * the dtrace pseudo provider, we're not interested.
6155 			 */
6156 			if (prov != dtrace_provider)
6157 				continue;
6158 
6159 			/*
6160 			 * Now we must further check if we are in the BEGIN
6161 			 * probe.  If we are, we will only continue processing
6162 			 * if we're still in WARMUP -- if one BEGIN enabling
6163 			 * has invoked the exit() action, we don't want to
6164 			 * evaluate subsequent BEGIN enablings.
6165 			 */
6166 			if (probe->dtpr_id == dtrace_probeid_begin &&
6167 			    state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6168 				ASSERT(state->dts_activity ==
6169 				    DTRACE_ACTIVITY_DRAINING);
6170 				continue;
6171 			}
6172 		}
6173 
6174 		if (ecb->dte_cond) {
6175 			/*
6176 			 * If the dte_cond bits indicate that this
6177 			 * consumer is only allowed to see user-mode firings
6178 			 * of this probe, call the provider's dtps_usermode()
6179 			 * entry point to check that the probe was fired
6180 			 * while in a user context. Skip this ECB if that's
6181 			 * not the case.
6182 			 */
6183 			if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
6184 			    prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
6185 			    probe->dtpr_id, probe->dtpr_arg) == 0)
6186 				continue;
6187 
6188 #if defined(sun)
6189 			/*
6190 			 * This is more subtle than it looks. We have to be
6191 			 * absolutely certain that CRED() isn't going to
6192 			 * change out from under us so it's only legit to
6193 			 * examine that structure if we're in constrained
6194 			 * situations. Currently, the only times we'll this
6195 			 * check is if a non-super-user has enabled the
6196 			 * profile or syscall providers -- providers that
6197 			 * allow visibility of all processes. For the
6198 			 * profile case, the check above will ensure that
6199 			 * we're examining a user context.
6200 			 */
6201 			if (ecb->dte_cond & DTRACE_COND_OWNER) {
6202 				cred_t *cr;
6203 				cred_t *s_cr =
6204 				    ecb->dte_state->dts_cred.dcr_cred;
6205 				proc_t *proc;
6206 
6207 				ASSERT(s_cr != NULL);
6208 
6209 				if ((cr = CRED()) == NULL ||
6210 				    s_cr->cr_uid != cr->cr_uid ||
6211 				    s_cr->cr_uid != cr->cr_ruid ||
6212 				    s_cr->cr_uid != cr->cr_suid ||
6213 				    s_cr->cr_gid != cr->cr_gid ||
6214 				    s_cr->cr_gid != cr->cr_rgid ||
6215 				    s_cr->cr_gid != cr->cr_sgid ||
6216 				    (proc = ttoproc(curthread)) == NULL ||
6217 				    (proc->p_flag & SNOCD))
6218 					continue;
6219 			}
6220 
6221 			if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
6222 				cred_t *cr;
6223 				cred_t *s_cr =
6224 				    ecb->dte_state->dts_cred.dcr_cred;
6225 
6226 				ASSERT(s_cr != NULL);
6227 
6228 				if ((cr = CRED()) == NULL ||
6229 				    s_cr->cr_zone->zone_id !=
6230 				    cr->cr_zone->zone_id)
6231 					continue;
6232 			}
6233 #endif
6234 		}
6235 
6236 		if (now - state->dts_alive > dtrace_deadman_timeout) {
6237 			/*
6238 			 * We seem to be dead.  Unless we (a) have kernel
6239 			 * destructive permissions (b) have explicitly enabled
6240 			 * destructive actions and (c) destructive actions have
6241 			 * not been disabled, we're going to transition into
6242 			 * the KILLED state, from which no further processing
6243 			 * on this state will be performed.
6244 			 */
6245 			if (!dtrace_priv_kernel_destructive(state) ||
6246 			    !state->dts_cred.dcr_destructive ||
6247 			    dtrace_destructive_disallow) {
6248 				void *activity = &state->dts_activity;
6249 				dtrace_activity_t current;
6250 
6251 				do {
6252 					current = state->dts_activity;
6253 				} while (dtrace_cas32(activity, current,
6254 				    DTRACE_ACTIVITY_KILLED) != current);
6255 
6256 				continue;
6257 			}
6258 		}
6259 
6260 		if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6261 		    ecb->dte_alignment, state, &mstate)) < 0)
6262 			continue;
6263 
6264 		tomax = buf->dtb_tomax;
6265 		ASSERT(tomax != NULL);
6266 
6267 		if (ecb->dte_size != 0) {
6268 			dtrace_rechdr_t dtrh;
6269 			if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6270 				mstate.dtms_timestamp = dtrace_gethrtime();
6271 				mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6272 			}
6273 			ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6274 			dtrh.dtrh_epid = ecb->dte_epid;
6275 			DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6276 			    mstate.dtms_timestamp);
6277 			*((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6278 		}
6279 
6280 		mstate.dtms_epid = ecb->dte_epid;
6281 		mstate.dtms_present |= DTRACE_MSTATE_EPID;
6282 
6283 		if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6284 			mstate.dtms_access = DTRACE_ACCESS_KERNEL;
6285 		else
6286 			mstate.dtms_access = 0;
6287 
6288 		if (pred != NULL) {
6289 			dtrace_difo_t *dp = pred->dtp_difo;
6290 			int rval;
6291 
6292 			rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6293 
6294 			if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6295 				dtrace_cacheid_t cid = probe->dtpr_predcache;
6296 
6297 				if (cid != DTRACE_CACHEIDNONE && !onintr) {
6298 					/*
6299 					 * Update the predicate cache...
6300 					 */
6301 					ASSERT(cid == pred->dtp_cacheid);
6302 					curthread->t_predcache = cid;
6303 				}
6304 
6305 				continue;
6306 			}
6307 		}
6308 
6309 		for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6310 		    act != NULL; act = act->dta_next) {
6311 			size_t valoffs;
6312 			dtrace_difo_t *dp;
6313 			dtrace_recdesc_t *rec = &act->dta_rec;
6314 
6315 			size = rec->dtrd_size;
6316 			valoffs = offs + rec->dtrd_offset;
6317 
6318 			if (DTRACEACT_ISAGG(act->dta_kind)) {
6319 				uint64_t v = 0xbad;
6320 				dtrace_aggregation_t *agg;
6321 
6322 				agg = (dtrace_aggregation_t *)act;
6323 
6324 				if ((dp = act->dta_difo) != NULL)
6325 					v = dtrace_dif_emulate(dp,
6326 					    &mstate, vstate, state);
6327 
6328 				if (*flags & CPU_DTRACE_ERROR)
6329 					continue;
6330 
6331 				/*
6332 				 * Note that we always pass the expression
6333 				 * value from the previous iteration of the
6334 				 * action loop.  This value will only be used
6335 				 * if there is an expression argument to the
6336 				 * aggregating action, denoted by the
6337 				 * dtag_hasarg field.
6338 				 */
6339 				dtrace_aggregate(agg, buf,
6340 				    offs, aggbuf, v, val);
6341 				continue;
6342 			}
6343 
6344 			switch (act->dta_kind) {
6345 			case DTRACEACT_STOP:
6346 				if (dtrace_priv_proc_destructive(state))
6347 					dtrace_action_stop();
6348 				continue;
6349 
6350 			case DTRACEACT_BREAKPOINT:
6351 				if (dtrace_priv_kernel_destructive(state))
6352 					dtrace_action_breakpoint(ecb);
6353 				continue;
6354 
6355 			case DTRACEACT_PANIC:
6356 				if (dtrace_priv_kernel_destructive(state))
6357 					dtrace_action_panic(ecb);
6358 				continue;
6359 
6360 			case DTRACEACT_STACK:
6361 				if (!dtrace_priv_kernel(state))
6362 					continue;
6363 
6364 				dtrace_getpcstack((pc_t *)(tomax + valoffs),
6365 				    size / sizeof (pc_t), probe->dtpr_aframes,
6366 				    DTRACE_ANCHORED(probe) ? NULL :
6367 				    (uint32_t *)arg0);
6368 				continue;
6369 
6370 			case DTRACEACT_JSTACK:
6371 			case DTRACEACT_USTACK:
6372 				if (!dtrace_priv_proc(state))
6373 					continue;
6374 
6375 				/*
6376 				 * See comment in DIF_VAR_PID.
6377 				 */
6378 				if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6379 				    CPU_ON_INTR(CPU)) {
6380 					int depth = DTRACE_USTACK_NFRAMES(
6381 					    rec->dtrd_arg) + 1;
6382 
6383 					dtrace_bzero((void *)(tomax + valoffs),
6384 					    DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6385 					    + depth * sizeof (uint64_t));
6386 
6387 					continue;
6388 				}
6389 
6390 				if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6391 				    curproc->p_dtrace_helpers != NULL) {
6392 					/*
6393 					 * This is the slow path -- we have
6394 					 * allocated string space, and we're
6395 					 * getting the stack of a process that
6396 					 * has helpers.  Call into a separate
6397 					 * routine to perform this processing.
6398 					 */
6399 					dtrace_action_ustack(&mstate, state,
6400 					    (uint64_t *)(tomax + valoffs),
6401 					    rec->dtrd_arg);
6402 					continue;
6403 				}
6404 
6405 				DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6406 				dtrace_getupcstack((uint64_t *)
6407 				    (tomax + valoffs),
6408 				    DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
6409 				DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6410 				continue;
6411 
6412 			default:
6413 				break;
6414 			}
6415 
6416 			dp = act->dta_difo;
6417 			ASSERT(dp != NULL);
6418 
6419 			val = dtrace_dif_emulate(dp, &mstate, vstate, state);
6420 
6421 			if (*flags & CPU_DTRACE_ERROR)
6422 				continue;
6423 
6424 			switch (act->dta_kind) {
6425 			case DTRACEACT_SPECULATE: {
6426 				dtrace_rechdr_t *dtrh;
6427 
6428 				ASSERT(buf == &state->dts_buffer[cpuid]);
6429 				buf = dtrace_speculation_buffer(state,
6430 				    cpuid, val);
6431 
6432 				if (buf == NULL) {
6433 					*flags |= CPU_DTRACE_DROP;
6434 					continue;
6435 				}
6436 
6437 				offs = dtrace_buffer_reserve(buf,
6438 				    ecb->dte_needed, ecb->dte_alignment,
6439 				    state, NULL);
6440 
6441 				if (offs < 0) {
6442 					*flags |= CPU_DTRACE_DROP;
6443 					continue;
6444 				}
6445 
6446 				tomax = buf->dtb_tomax;
6447 				ASSERT(tomax != NULL);
6448 
6449 				if (ecb->dte_size == 0)
6450 					continue;
6451 
6452 				ASSERT3U(ecb->dte_size, >=,
6453 				    sizeof (dtrace_rechdr_t));
6454 				dtrh = ((void *)(tomax + offs));
6455 				dtrh->dtrh_epid = ecb->dte_epid;
6456 				/*
6457 				 * When the speculation is committed, all of
6458 				 * the records in the speculative buffer will
6459 				 * have their timestamps set to the commit
6460 				 * time.  Until then, it is set to a sentinel
6461 				 * value, for debugability.
6462 				 */
6463 				DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
6464 				continue;
6465 			}
6466 
6467 			case DTRACEACT_PRINTM: {
6468 				/* The DIF returns a 'memref'. */
6469 				uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
6470 
6471 				/* Get the size from the memref. */
6472 				size = memref[1];
6473 
6474 				/*
6475 				 * Check if the size exceeds the allocated
6476 				 * buffer size.
6477 				 */
6478 				if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6479 					/* Flag a drop! */
6480 					*flags |= CPU_DTRACE_DROP;
6481 					continue;
6482 				}
6483 
6484 				/* Store the size in the buffer first. */
6485 				DTRACE_STORE(uintptr_t, tomax,
6486 				    valoffs, size);
6487 
6488 				/*
6489 				 * Offset the buffer address to the start
6490 				 * of the data.
6491 				 */
6492 				valoffs += sizeof(uintptr_t);
6493 
6494 				/*
6495 				 * Reset to the memory address rather than
6496 				 * the memref array, then let the BYREF
6497 				 * code below do the work to store the
6498 				 * memory data in the buffer.
6499 				 */
6500 				val = memref[0];
6501 				break;
6502 			}
6503 
6504 			case DTRACEACT_PRINTT: {
6505 				/* The DIF returns a 'typeref'. */
6506 				uintptr_t *typeref = (uintptr_t *)(uintptr_t) val;
6507 				char c = '\0' + 1;
6508 				size_t s;
6509 
6510 				/*
6511 				 * Get the type string length and round it
6512 				 * up so that the data that follows is
6513 				 * aligned for easy access.
6514 				 */
6515 				size_t typs = strlen((char *) typeref[2]) + 1;
6516 				typs = roundup(typs,  sizeof(uintptr_t));
6517 
6518 				/*
6519 				 *Get the size from the typeref using the
6520 				 * number of elements and the type size.
6521 				 */
6522 				size = typeref[1] * typeref[3];
6523 
6524 				/*
6525 				 * Check if the size exceeds the allocated
6526 				 * buffer size.
6527 				 */
6528 				if (size + typs + 2 * sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
6529 					/* Flag a drop! */
6530 					*flags |= CPU_DTRACE_DROP;
6531 
6532 				}
6533 
6534 				/* Store the size in the buffer first. */
6535 				DTRACE_STORE(uintptr_t, tomax,
6536 				    valoffs, size);
6537 				valoffs += sizeof(uintptr_t);
6538 
6539 				/* Store the type size in the buffer. */
6540 				DTRACE_STORE(uintptr_t, tomax,
6541 				    valoffs, typeref[3]);
6542 				valoffs += sizeof(uintptr_t);
6543 
6544 				val = typeref[2];
6545 
6546 				for (s = 0; s < typs; s++) {
6547 					if (c != '\0')
6548 						c = dtrace_load8(val++);
6549 
6550 					DTRACE_STORE(uint8_t, tomax,
6551 					    valoffs++, c);
6552 				}
6553 
6554 				/*
6555 				 * Reset to the memory address rather than
6556 				 * the typeref array, then let the BYREF
6557 				 * code below do the work to store the
6558 				 * memory data in the buffer.
6559 				 */
6560 				val = typeref[0];
6561 				break;
6562 			}
6563 
6564 			case DTRACEACT_CHILL:
6565 				if (dtrace_priv_kernel_destructive(state))
6566 					dtrace_action_chill(&mstate, val);
6567 				continue;
6568 
6569 			case DTRACEACT_RAISE:
6570 				if (dtrace_priv_proc_destructive(state))
6571 					dtrace_action_raise(val);
6572 				continue;
6573 
6574 			case DTRACEACT_COMMIT:
6575 				ASSERT(!committed);
6576 
6577 				/*
6578 				 * We need to commit our buffer state.
6579 				 */
6580 				if (ecb->dte_size)
6581 					buf->dtb_offset = offs + ecb->dte_size;
6582 				buf = &state->dts_buffer[cpuid];
6583 				dtrace_speculation_commit(state, cpuid, val);
6584 				committed = 1;
6585 				continue;
6586 
6587 			case DTRACEACT_DISCARD:
6588 				dtrace_speculation_discard(state, cpuid, val);
6589 				continue;
6590 
6591 			case DTRACEACT_DIFEXPR:
6592 			case DTRACEACT_LIBACT:
6593 			case DTRACEACT_PRINTF:
6594 			case DTRACEACT_PRINTA:
6595 			case DTRACEACT_SYSTEM:
6596 			case DTRACEACT_FREOPEN:
6597 			case DTRACEACT_TRACEMEM:
6598 				break;
6599 
6600 			case DTRACEACT_TRACEMEM_DYNSIZE:
6601 				tracememsize = val;
6602 				break;
6603 
6604 			case DTRACEACT_SYM:
6605 			case DTRACEACT_MOD:
6606 				if (!dtrace_priv_kernel(state))
6607 					continue;
6608 				break;
6609 
6610 			case DTRACEACT_USYM:
6611 			case DTRACEACT_UMOD:
6612 			case DTRACEACT_UADDR: {
6613 #if defined(sun)
6614 				struct pid *pid = curthread->t_procp->p_pidp;
6615 #endif
6616 
6617 				if (!dtrace_priv_proc(state))
6618 					continue;
6619 
6620 				DTRACE_STORE(uint64_t, tomax,
6621 #if defined(sun)
6622 				    valoffs, (uint64_t)pid->pid_id);
6623 #else
6624 				    valoffs, (uint64_t) curproc->p_pid);
6625 #endif
6626 				DTRACE_STORE(uint64_t, tomax,
6627 				    valoffs + sizeof (uint64_t), val);
6628 
6629 				continue;
6630 			}
6631 
6632 			case DTRACEACT_EXIT: {
6633 				/*
6634 				 * For the exit action, we are going to attempt
6635 				 * to atomically set our activity to be
6636 				 * draining.  If this fails (either because
6637 				 * another CPU has beat us to the exit action,
6638 				 * or because our current activity is something
6639 				 * other than ACTIVE or WARMUP), we will
6640 				 * continue.  This assures that the exit action
6641 				 * can be successfully recorded at most once
6642 				 * when we're in the ACTIVE state.  If we're
6643 				 * encountering the exit() action while in
6644 				 * COOLDOWN, however, we want to honor the new
6645 				 * status code.  (We know that we're the only
6646 				 * thread in COOLDOWN, so there is no race.)
6647 				 */
6648 				void *activity = &state->dts_activity;
6649 				dtrace_activity_t current = state->dts_activity;
6650 
6651 				if (current == DTRACE_ACTIVITY_COOLDOWN)
6652 					break;
6653 
6654 				if (current != DTRACE_ACTIVITY_WARMUP)
6655 					current = DTRACE_ACTIVITY_ACTIVE;
6656 
6657 				if (dtrace_cas32(activity, current,
6658 				    DTRACE_ACTIVITY_DRAINING) != current) {
6659 					*flags |= CPU_DTRACE_DROP;
6660 					continue;
6661 				}
6662 
6663 				break;
6664 			}
6665 
6666 			default:
6667 				ASSERT(0);
6668 			}
6669 
6670 			if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF) {
6671 				uintptr_t end = valoffs + size;
6672 
6673 				if (tracememsize != 0 &&
6674 				    valoffs + tracememsize < end) {
6675 					end = valoffs + tracememsize;
6676 					tracememsize = 0;
6677 				}
6678 
6679 				if (!dtrace_vcanload((void *)(uintptr_t)val,
6680 				    &dp->dtdo_rtype, &mstate, vstate))
6681 					continue;
6682 
6683 				/*
6684 				 * If this is a string, we're going to only
6685 				 * load until we find the zero byte -- after
6686 				 * which we'll store zero bytes.
6687 				 */
6688 				if (dp->dtdo_rtype.dtdt_kind ==
6689 				    DIF_TYPE_STRING) {
6690 					char c = '\0' + 1;
6691 					int intuple = act->dta_intuple;
6692 					size_t s;
6693 
6694 					for (s = 0; s < size; s++) {
6695 						if (c != '\0')
6696 							c = dtrace_load8(val++);
6697 
6698 						DTRACE_STORE(uint8_t, tomax,
6699 						    valoffs++, c);
6700 
6701 						if (c == '\0' && intuple)
6702 							break;
6703 					}
6704 
6705 					continue;
6706 				}
6707 
6708 				while (valoffs < end) {
6709 					DTRACE_STORE(uint8_t, tomax, valoffs++,
6710 					    dtrace_load8(val++));
6711 				}
6712 
6713 				continue;
6714 			}
6715 
6716 			switch (size) {
6717 			case 0:
6718 				break;
6719 
6720 			case sizeof (uint8_t):
6721 				DTRACE_STORE(uint8_t, tomax, valoffs, val);
6722 				break;
6723 			case sizeof (uint16_t):
6724 				DTRACE_STORE(uint16_t, tomax, valoffs, val);
6725 				break;
6726 			case sizeof (uint32_t):
6727 				DTRACE_STORE(uint32_t, tomax, valoffs, val);
6728 				break;
6729 			case sizeof (uint64_t):
6730 				DTRACE_STORE(uint64_t, tomax, valoffs, val);
6731 				break;
6732 			default:
6733 				/*
6734 				 * Any other size should have been returned by
6735 				 * reference, not by value.
6736 				 */
6737 				ASSERT(0);
6738 				break;
6739 			}
6740 		}
6741 
6742 		if (*flags & CPU_DTRACE_DROP)
6743 			continue;
6744 
6745 		if (*flags & CPU_DTRACE_FAULT) {
6746 			int ndx;
6747 			dtrace_action_t *err;
6748 
6749 			buf->dtb_errors++;
6750 
6751 			if (probe->dtpr_id == dtrace_probeid_error) {
6752 				/*
6753 				 * There's nothing we can do -- we had an
6754 				 * error on the error probe.  We bump an
6755 				 * error counter to at least indicate that
6756 				 * this condition happened.
6757 				 */
6758 				dtrace_error(&state->dts_dblerrors);
6759 				continue;
6760 			}
6761 
6762 			if (vtime) {
6763 				/*
6764 				 * Before recursing on dtrace_probe(), we
6765 				 * need to explicitly clear out our start
6766 				 * time to prevent it from being accumulated
6767 				 * into t_dtrace_vtime.
6768 				 */
6769 				curthread->t_dtrace_start = 0;
6770 			}
6771 
6772 			/*
6773 			 * Iterate over the actions to figure out which action
6774 			 * we were processing when we experienced the error.
6775 			 * Note that act points _past_ the faulting action; if
6776 			 * act is ecb->dte_action, the fault was in the
6777 			 * predicate, if it's ecb->dte_action->dta_next it's
6778 			 * in action #1, and so on.
6779 			 */
6780 			for (err = ecb->dte_action, ndx = 0;
6781 			    err != act; err = err->dta_next, ndx++)
6782 				continue;
6783 
6784 			dtrace_probe_error(state, ecb->dte_epid, ndx,
6785 			    (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
6786 			    mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
6787 			    cpu_core[cpuid].cpuc_dtrace_illval);
6788 
6789 			continue;
6790 		}
6791 
6792 		if (!committed)
6793 			buf->dtb_offset = offs + ecb->dte_size;
6794 	}
6795 
6796 	if (vtime)
6797 		curthread->t_dtrace_start = dtrace_gethrtime();
6798 
6799 	dtrace_interrupt_enable(cookie);
6800 }
6801 
6802 /*
6803  * DTrace Probe Hashing Functions
6804  *
6805  * The functions in this section (and indeed, the functions in remaining
6806  * sections) are not _called_ from probe context.  (Any exceptions to this are
6807  * marked with a "Note:".)  Rather, they are called from elsewhere in the
6808  * DTrace framework to look-up probes in, add probes to and remove probes from
6809  * the DTrace probe hashes.  (Each probe is hashed by each element of the
6810  * probe tuple -- allowing for fast lookups, regardless of what was
6811  * specified.)
6812  */
6813 static uint_t
6814 dtrace_hash_str(const char *p)
6815 {
6816 	unsigned int g;
6817 	uint_t hval = 0;
6818 
6819 	while (*p) {
6820 		hval = (hval << 4) + *p++;
6821 		if ((g = (hval & 0xf0000000)) != 0)
6822 			hval ^= g >> 24;
6823 		hval &= ~g;
6824 	}
6825 	return (hval);
6826 }
6827 
6828 static dtrace_hash_t *
6829 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
6830 {
6831 	dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
6832 
6833 	hash->dth_stroffs = stroffs;
6834 	hash->dth_nextoffs = nextoffs;
6835 	hash->dth_prevoffs = prevoffs;
6836 
6837 	hash->dth_size = 1;
6838 	hash->dth_mask = hash->dth_size - 1;
6839 
6840 	hash->dth_tab = kmem_zalloc(hash->dth_size *
6841 	    sizeof (dtrace_hashbucket_t *), KM_SLEEP);
6842 
6843 	return (hash);
6844 }
6845 
6846 static void
6847 dtrace_hash_destroy(dtrace_hash_t *hash)
6848 {
6849 #ifdef DEBUG
6850 	int i;
6851 
6852 	for (i = 0; i < hash->dth_size; i++)
6853 		ASSERT(hash->dth_tab[i] == NULL);
6854 #endif
6855 
6856 	kmem_free(hash->dth_tab,
6857 	    hash->dth_size * sizeof (dtrace_hashbucket_t *));
6858 	kmem_free(hash, sizeof (dtrace_hash_t));
6859 }
6860 
6861 static void
6862 dtrace_hash_resize(dtrace_hash_t *hash)
6863 {
6864 	int size = hash->dth_size, i, ndx;
6865 	int new_size = hash->dth_size << 1;
6866 	int new_mask = new_size - 1;
6867 	dtrace_hashbucket_t **new_tab, *bucket, *next;
6868 
6869 	ASSERT((new_size & new_mask) == 0);
6870 
6871 	new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
6872 
6873 	for (i = 0; i < size; i++) {
6874 		for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
6875 			dtrace_probe_t *probe = bucket->dthb_chain;
6876 
6877 			ASSERT(probe != NULL);
6878 			ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
6879 
6880 			next = bucket->dthb_next;
6881 			bucket->dthb_next = new_tab[ndx];
6882 			new_tab[ndx] = bucket;
6883 		}
6884 	}
6885 
6886 	kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
6887 	hash->dth_tab = new_tab;
6888 	hash->dth_size = new_size;
6889 	hash->dth_mask = new_mask;
6890 }
6891 
6892 static void
6893 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
6894 {
6895 	int hashval = DTRACE_HASHSTR(hash, new);
6896 	int ndx = hashval & hash->dth_mask;
6897 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6898 	dtrace_probe_t **nextp, **prevp;
6899 
6900 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6901 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
6902 			goto add;
6903 	}
6904 
6905 	if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
6906 		dtrace_hash_resize(hash);
6907 		dtrace_hash_add(hash, new);
6908 		return;
6909 	}
6910 
6911 	bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
6912 	bucket->dthb_next = hash->dth_tab[ndx];
6913 	hash->dth_tab[ndx] = bucket;
6914 	hash->dth_nbuckets++;
6915 
6916 add:
6917 	nextp = DTRACE_HASHNEXT(hash, new);
6918 	ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
6919 	*nextp = bucket->dthb_chain;
6920 
6921 	if (bucket->dthb_chain != NULL) {
6922 		prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
6923 		ASSERT(*prevp == NULL);
6924 		*prevp = new;
6925 	}
6926 
6927 	bucket->dthb_chain = new;
6928 	bucket->dthb_len++;
6929 }
6930 
6931 static dtrace_probe_t *
6932 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
6933 {
6934 	int hashval = DTRACE_HASHSTR(hash, template);
6935 	int ndx = hashval & hash->dth_mask;
6936 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6937 
6938 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6939 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6940 			return (bucket->dthb_chain);
6941 	}
6942 
6943 	return (NULL);
6944 }
6945 
6946 static int
6947 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
6948 {
6949 	int hashval = DTRACE_HASHSTR(hash, template);
6950 	int ndx = hashval & hash->dth_mask;
6951 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6952 
6953 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6954 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
6955 			return (bucket->dthb_len);
6956 	}
6957 
6958 	return (0);
6959 }
6960 
6961 static void
6962 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
6963 {
6964 	int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
6965 	dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
6966 
6967 	dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
6968 	dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
6969 
6970 	/*
6971 	 * Find the bucket that we're removing this probe from.
6972 	 */
6973 	for (; bucket != NULL; bucket = bucket->dthb_next) {
6974 		if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
6975 			break;
6976 	}
6977 
6978 	ASSERT(bucket != NULL);
6979 
6980 	if (*prevp == NULL) {
6981 		if (*nextp == NULL) {
6982 			/*
6983 			 * The removed probe was the only probe on this
6984 			 * bucket; we need to remove the bucket.
6985 			 */
6986 			dtrace_hashbucket_t *b = hash->dth_tab[ndx];
6987 
6988 			ASSERT(bucket->dthb_chain == probe);
6989 			ASSERT(b != NULL);
6990 
6991 			if (b == bucket) {
6992 				hash->dth_tab[ndx] = bucket->dthb_next;
6993 			} else {
6994 				while (b->dthb_next != bucket)
6995 					b = b->dthb_next;
6996 				b->dthb_next = bucket->dthb_next;
6997 			}
6998 
6999 			ASSERT(hash->dth_nbuckets > 0);
7000 			hash->dth_nbuckets--;
7001 			kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7002 			return;
7003 		}
7004 
7005 		bucket->dthb_chain = *nextp;
7006 	} else {
7007 		*(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7008 	}
7009 
7010 	if (*nextp != NULL)
7011 		*(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7012 }
7013 
7014 /*
7015  * DTrace Utility Functions
7016  *
7017  * These are random utility functions that are _not_ called from probe context.
7018  */
7019 static int
7020 dtrace_badattr(const dtrace_attribute_t *a)
7021 {
7022 	return (a->dtat_name > DTRACE_STABILITY_MAX ||
7023 	    a->dtat_data > DTRACE_STABILITY_MAX ||
7024 	    a->dtat_class > DTRACE_CLASS_MAX);
7025 }
7026 
7027 /*
7028  * Return a duplicate copy of a string.  If the specified string is NULL,
7029  * this function returns a zero-length string.
7030  */
7031 static char *
7032 dtrace_strdup(const char *str)
7033 {
7034 	char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7035 
7036 	if (str != NULL)
7037 		(void) strcpy(new, str);
7038 
7039 	return (new);
7040 }
7041 
7042 #define	DTRACE_ISALPHA(c)	\
7043 	(((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7044 
7045 static int
7046 dtrace_badname(const char *s)
7047 {
7048 	char c;
7049 
7050 	if (s == NULL || (c = *s++) == '\0')
7051 		return (0);
7052 
7053 	if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7054 		return (1);
7055 
7056 	while ((c = *s++) != '\0') {
7057 		if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7058 		    c != '-' && c != '_' && c != '.' && c != '`')
7059 			return (1);
7060 	}
7061 
7062 	return (0);
7063 }
7064 
7065 static void
7066 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7067 {
7068 	uint32_t priv;
7069 
7070 #if defined(sun)
7071 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7072 		/*
7073 		 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7074 		 */
7075 		priv = DTRACE_PRIV_ALL;
7076 	} else {
7077 		*uidp = crgetuid(cr);
7078 		*zoneidp = crgetzoneid(cr);
7079 
7080 		priv = 0;
7081 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7082 			priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7083 		else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7084 			priv |= DTRACE_PRIV_USER;
7085 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7086 			priv |= DTRACE_PRIV_PROC;
7087 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7088 			priv |= DTRACE_PRIV_OWNER;
7089 		if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7090 			priv |= DTRACE_PRIV_ZONEOWNER;
7091 	}
7092 #else
7093 	priv = DTRACE_PRIV_ALL;
7094 #endif
7095 
7096 	*privp = priv;
7097 }
7098 
7099 #ifdef DTRACE_ERRDEBUG
7100 static void
7101 dtrace_errdebug(const char *str)
7102 {
7103 	int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
7104 	int occupied = 0;
7105 
7106 	mutex_enter(&dtrace_errlock);
7107 	dtrace_errlast = str;
7108 	dtrace_errthread = curthread;
7109 
7110 	while (occupied++ < DTRACE_ERRHASHSZ) {
7111 		if (dtrace_errhash[hval].dter_msg == str) {
7112 			dtrace_errhash[hval].dter_count++;
7113 			goto out;
7114 		}
7115 
7116 		if (dtrace_errhash[hval].dter_msg != NULL) {
7117 			hval = (hval + 1) % DTRACE_ERRHASHSZ;
7118 			continue;
7119 		}
7120 
7121 		dtrace_errhash[hval].dter_msg = str;
7122 		dtrace_errhash[hval].dter_count = 1;
7123 		goto out;
7124 	}
7125 
7126 	panic("dtrace: undersized error hash");
7127 out:
7128 	mutex_exit(&dtrace_errlock);
7129 }
7130 #endif
7131 
7132 /*
7133  * DTrace Matching Functions
7134  *
7135  * These functions are used to match groups of probes, given some elements of
7136  * a probe tuple, or some globbed expressions for elements of a probe tuple.
7137  */
7138 static int
7139 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7140     zoneid_t zoneid)
7141 {
7142 	if (priv != DTRACE_PRIV_ALL) {
7143 		uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7144 		uint32_t match = priv & ppriv;
7145 
7146 		/*
7147 		 * No PRIV_DTRACE_* privileges...
7148 		 */
7149 		if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7150 		    DTRACE_PRIV_KERNEL)) == 0)
7151 			return (0);
7152 
7153 		/*
7154 		 * No matching bits, but there were bits to match...
7155 		 */
7156 		if (match == 0 && ppriv != 0)
7157 			return (0);
7158 
7159 		/*
7160 		 * Need to have permissions to the process, but don't...
7161 		 */
7162 		if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7163 		    uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7164 			return (0);
7165 		}
7166 
7167 		/*
7168 		 * Need to be in the same zone unless we possess the
7169 		 * privilege to examine all zones.
7170 		 */
7171 		if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7172 		    zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7173 			return (0);
7174 		}
7175 	}
7176 
7177 	return (1);
7178 }
7179 
7180 /*
7181  * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7182  * consists of input pattern strings and an ops-vector to evaluate them.
7183  * This function returns >0 for match, 0 for no match, and <0 for error.
7184  */
7185 static int
7186 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7187     uint32_t priv, uid_t uid, zoneid_t zoneid)
7188 {
7189 	dtrace_provider_t *pvp = prp->dtpr_provider;
7190 	int rv;
7191 
7192 	if (pvp->dtpv_defunct)
7193 		return (0);
7194 
7195 	if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7196 		return (rv);
7197 
7198 	if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7199 		return (rv);
7200 
7201 	if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7202 		return (rv);
7203 
7204 	if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7205 		return (rv);
7206 
7207 	if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7208 		return (0);
7209 
7210 	return (rv);
7211 }
7212 
7213 /*
7214  * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7215  * interface for matching a glob pattern 'p' to an input string 's'.  Unlike
7216  * libc's version, the kernel version only applies to 8-bit ASCII strings.
7217  * In addition, all of the recursion cases except for '*' matching have been
7218  * unwound.  For '*', we still implement recursive evaluation, but a depth
7219  * counter is maintained and matching is aborted if we recurse too deep.
7220  * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7221  */
7222 static int
7223 dtrace_match_glob(const char *s, const char *p, int depth)
7224 {
7225 	const char *olds;
7226 	char s1, c;
7227 	int gs;
7228 
7229 	if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7230 		return (-1);
7231 
7232 	if (s == NULL)
7233 		s = ""; /* treat NULL as empty string */
7234 
7235 top:
7236 	olds = s;
7237 	s1 = *s++;
7238 
7239 	if (p == NULL)
7240 		return (0);
7241 
7242 	if ((c = *p++) == '\0')
7243 		return (s1 == '\0');
7244 
7245 	switch (c) {
7246 	case '[': {
7247 		int ok = 0, notflag = 0;
7248 		char lc = '\0';
7249 
7250 		if (s1 == '\0')
7251 			return (0);
7252 
7253 		if (*p == '!') {
7254 			notflag = 1;
7255 			p++;
7256 		}
7257 
7258 		if ((c = *p++) == '\0')
7259 			return (0);
7260 
7261 		do {
7262 			if (c == '-' && lc != '\0' && *p != ']') {
7263 				if ((c = *p++) == '\0')
7264 					return (0);
7265 				if (c == '\\' && (c = *p++) == '\0')
7266 					return (0);
7267 
7268 				if (notflag) {
7269 					if (s1 < lc || s1 > c)
7270 						ok++;
7271 					else
7272 						return (0);
7273 				} else if (lc <= s1 && s1 <= c)
7274 					ok++;
7275 
7276 			} else if (c == '\\' && (c = *p++) == '\0')
7277 				return (0);
7278 
7279 			lc = c; /* save left-hand 'c' for next iteration */
7280 
7281 			if (notflag) {
7282 				if (s1 != c)
7283 					ok++;
7284 				else
7285 					return (0);
7286 			} else if (s1 == c)
7287 				ok++;
7288 
7289 			if ((c = *p++) == '\0')
7290 				return (0);
7291 
7292 		} while (c != ']');
7293 
7294 		if (ok)
7295 			goto top;
7296 
7297 		return (0);
7298 	}
7299 
7300 	case '\\':
7301 		if ((c = *p++) == '\0')
7302 			return (0);
7303 		/*FALLTHRU*/
7304 
7305 	default:
7306 		if (c != s1)
7307 			return (0);
7308 		/*FALLTHRU*/
7309 
7310 	case '?':
7311 		if (s1 != '\0')
7312 			goto top;
7313 		return (0);
7314 
7315 	case '*':
7316 		while (*p == '*')
7317 			p++; /* consecutive *'s are identical to a single one */
7318 
7319 		if (*p == '\0')
7320 			return (1);
7321 
7322 		for (s = olds; *s != '\0'; s++) {
7323 			if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7324 				return (gs);
7325 		}
7326 
7327 		return (0);
7328 	}
7329 }
7330 
7331 /*ARGSUSED*/
7332 static int
7333 dtrace_match_string(const char *s, const char *p, int depth)
7334 {
7335 	return (s != NULL && strcmp(s, p) == 0);
7336 }
7337 
7338 /*ARGSUSED*/
7339 static int
7340 dtrace_match_nul(const char *s, const char *p, int depth)
7341 {
7342 	return (1); /* always match the empty pattern */
7343 }
7344 
7345 /*ARGSUSED*/
7346 static int
7347 dtrace_match_nonzero(const char *s, const char *p, int depth)
7348 {
7349 	return (s != NULL && s[0] != '\0');
7350 }
7351 
7352 static int
7353 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7354     zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7355 {
7356 	dtrace_probe_t template, *probe;
7357 	dtrace_hash_t *hash = NULL;
7358 	int len, best = INT_MAX, nmatched = 0;
7359 	dtrace_id_t i;
7360 
7361 	ASSERT(MUTEX_HELD(&dtrace_lock));
7362 
7363 	/*
7364 	 * If the probe ID is specified in the key, just lookup by ID and
7365 	 * invoke the match callback once if a matching probe is found.
7366 	 */
7367 	if (pkp->dtpk_id != DTRACE_IDNONE) {
7368 		if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7369 		    dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7370 			(void) (*matched)(probe, arg);
7371 			nmatched++;
7372 		}
7373 		return (nmatched);
7374 	}
7375 
7376 	template.dtpr_mod = (char *)pkp->dtpk_mod;
7377 	template.dtpr_func = (char *)pkp->dtpk_func;
7378 	template.dtpr_name = (char *)pkp->dtpk_name;
7379 
7380 	/*
7381 	 * We want to find the most distinct of the module name, function
7382 	 * name, and name.  So for each one that is not a glob pattern or
7383 	 * empty string, we perform a lookup in the corresponding hash and
7384 	 * use the hash table with the fewest collisions to do our search.
7385 	 */
7386 	if (pkp->dtpk_mmatch == &dtrace_match_string &&
7387 	    (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7388 		best = len;
7389 		hash = dtrace_bymod;
7390 	}
7391 
7392 	if (pkp->dtpk_fmatch == &dtrace_match_string &&
7393 	    (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7394 		best = len;
7395 		hash = dtrace_byfunc;
7396 	}
7397 
7398 	if (pkp->dtpk_nmatch == &dtrace_match_string &&
7399 	    (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7400 		best = len;
7401 		hash = dtrace_byname;
7402 	}
7403 
7404 	/*
7405 	 * If we did not select a hash table, iterate over every probe and
7406 	 * invoke our callback for each one that matches our input probe key.
7407 	 */
7408 	if (hash == NULL) {
7409 		for (i = 0; i < dtrace_nprobes; i++) {
7410 			if ((probe = dtrace_probes[i]) == NULL ||
7411 			    dtrace_match_probe(probe, pkp, priv, uid,
7412 			    zoneid) <= 0)
7413 				continue;
7414 
7415 			nmatched++;
7416 
7417 			if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7418 				break;
7419 		}
7420 
7421 		return (nmatched);
7422 	}
7423 
7424 	/*
7425 	 * If we selected a hash table, iterate over each probe of the same key
7426 	 * name and invoke the callback for every probe that matches the other
7427 	 * attributes of our input probe key.
7428 	 */
7429 	for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7430 	    probe = *(DTRACE_HASHNEXT(hash, probe))) {
7431 
7432 		if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7433 			continue;
7434 
7435 		nmatched++;
7436 
7437 		if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
7438 			break;
7439 	}
7440 
7441 	return (nmatched);
7442 }
7443 
7444 /*
7445  * Return the function pointer dtrace_probecmp() should use to compare the
7446  * specified pattern with a string.  For NULL or empty patterns, we select
7447  * dtrace_match_nul().  For glob pattern strings, we use dtrace_match_glob().
7448  * For non-empty non-glob strings, we use dtrace_match_string().
7449  */
7450 static dtrace_probekey_f *
7451 dtrace_probekey_func(const char *p)
7452 {
7453 	char c;
7454 
7455 	if (p == NULL || *p == '\0')
7456 		return (&dtrace_match_nul);
7457 
7458 	while ((c = *p++) != '\0') {
7459 		if (c == '[' || c == '?' || c == '*' || c == '\\')
7460 			return (&dtrace_match_glob);
7461 	}
7462 
7463 	return (&dtrace_match_string);
7464 }
7465 
7466 /*
7467  * Build a probe comparison key for use with dtrace_match_probe() from the
7468  * given probe description.  By convention, a null key only matches anchored
7469  * probes: if each field is the empty string, reset dtpk_fmatch to
7470  * dtrace_match_nonzero().
7471  */
7472 static void
7473 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7474 {
7475 	pkp->dtpk_prov = pdp->dtpd_provider;
7476 	pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7477 
7478 	pkp->dtpk_mod = pdp->dtpd_mod;
7479 	pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7480 
7481 	pkp->dtpk_func = pdp->dtpd_func;
7482 	pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7483 
7484 	pkp->dtpk_name = pdp->dtpd_name;
7485 	pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7486 
7487 	pkp->dtpk_id = pdp->dtpd_id;
7488 
7489 	if (pkp->dtpk_id == DTRACE_IDNONE &&
7490 	    pkp->dtpk_pmatch == &dtrace_match_nul &&
7491 	    pkp->dtpk_mmatch == &dtrace_match_nul &&
7492 	    pkp->dtpk_fmatch == &dtrace_match_nul &&
7493 	    pkp->dtpk_nmatch == &dtrace_match_nul)
7494 		pkp->dtpk_fmatch = &dtrace_match_nonzero;
7495 }
7496 
7497 /*
7498  * DTrace Provider-to-Framework API Functions
7499  *
7500  * These functions implement much of the Provider-to-Framework API, as
7501  * described in <sys/dtrace.h>.  The parts of the API not in this section are
7502  * the functions in the API for probe management (found below), and
7503  * dtrace_probe() itself (found above).
7504  */
7505 
7506 /*
7507  * Register the calling provider with the DTrace framework.  This should
7508  * generally be called by DTrace providers in their attach(9E) entry point.
7509  */
7510 int
7511 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
7512     cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
7513 {
7514 	dtrace_provider_t *provider;
7515 
7516 	if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
7517 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7518 		    "arguments", name ? name : "<NULL>");
7519 		return (EINVAL);
7520 	}
7521 
7522 	if (name[0] == '\0' || dtrace_badname(name)) {
7523 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7524 		    "provider name", name);
7525 		return (EINVAL);
7526 	}
7527 
7528 	if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
7529 	    pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
7530 	    pops->dtps_destroy == NULL ||
7531 	    ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
7532 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7533 		    "provider ops", name);
7534 		return (EINVAL);
7535 	}
7536 
7537 	if (dtrace_badattr(&pap->dtpa_provider) ||
7538 	    dtrace_badattr(&pap->dtpa_mod) ||
7539 	    dtrace_badattr(&pap->dtpa_func) ||
7540 	    dtrace_badattr(&pap->dtpa_name) ||
7541 	    dtrace_badattr(&pap->dtpa_args)) {
7542 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7543 		    "provider attributes", name);
7544 		return (EINVAL);
7545 	}
7546 
7547 	if (priv & ~DTRACE_PRIV_ALL) {
7548 		cmn_err(CE_WARN, "failed to register provider '%s': invalid "
7549 		    "privilege attributes", name);
7550 		return (EINVAL);
7551 	}
7552 
7553 	if ((priv & DTRACE_PRIV_KERNEL) &&
7554 	    (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
7555 	    pops->dtps_usermode == NULL) {
7556 		cmn_err(CE_WARN, "failed to register provider '%s': need "
7557 		    "dtps_usermode() op for given privilege attributes", name);
7558 		return (EINVAL);
7559 	}
7560 
7561 	provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
7562 	provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
7563 	(void) strcpy(provider->dtpv_name, name);
7564 
7565 	provider->dtpv_attr = *pap;
7566 	provider->dtpv_priv.dtpp_flags = priv;
7567 	if (cr != NULL) {
7568 		provider->dtpv_priv.dtpp_uid = crgetuid(cr);
7569 		provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
7570 	}
7571 	provider->dtpv_pops = *pops;
7572 
7573 	if (pops->dtps_provide == NULL) {
7574 		ASSERT(pops->dtps_provide_module != NULL);
7575 		provider->dtpv_pops.dtps_provide =
7576 		    (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
7577 	}
7578 
7579 	if (pops->dtps_provide_module == NULL) {
7580 		ASSERT(pops->dtps_provide != NULL);
7581 		provider->dtpv_pops.dtps_provide_module =
7582 		    (void (*)(void *, modctl_t *))dtrace_nullop;
7583 	}
7584 
7585 	if (pops->dtps_suspend == NULL) {
7586 		ASSERT(pops->dtps_resume == NULL);
7587 		provider->dtpv_pops.dtps_suspend =
7588 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7589 		provider->dtpv_pops.dtps_resume =
7590 		    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
7591 	}
7592 
7593 	provider->dtpv_arg = arg;
7594 	*idp = (dtrace_provider_id_t)provider;
7595 
7596 	if (pops == &dtrace_provider_ops) {
7597 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7598 		ASSERT(MUTEX_HELD(&dtrace_lock));
7599 		ASSERT(dtrace_anon.dta_enabling == NULL);
7600 
7601 		/*
7602 		 * We make sure that the DTrace provider is at the head of
7603 		 * the provider chain.
7604 		 */
7605 		provider->dtpv_next = dtrace_provider;
7606 		dtrace_provider = provider;
7607 		return (0);
7608 	}
7609 
7610 	mutex_enter(&dtrace_provider_lock);
7611 	mutex_enter(&dtrace_lock);
7612 
7613 	/*
7614 	 * If there is at least one provider registered, we'll add this
7615 	 * provider after the first provider.
7616 	 */
7617 	if (dtrace_provider != NULL) {
7618 		provider->dtpv_next = dtrace_provider->dtpv_next;
7619 		dtrace_provider->dtpv_next = provider;
7620 	} else {
7621 		dtrace_provider = provider;
7622 	}
7623 
7624 	if (dtrace_retained != NULL) {
7625 		dtrace_enabling_provide(provider);
7626 
7627 		/*
7628 		 * Now we need to call dtrace_enabling_matchall() -- which
7629 		 * will acquire cpu_lock and dtrace_lock.  We therefore need
7630 		 * to drop all of our locks before calling into it...
7631 		 */
7632 		mutex_exit(&dtrace_lock);
7633 		mutex_exit(&dtrace_provider_lock);
7634 		dtrace_enabling_matchall();
7635 
7636 		return (0);
7637 	}
7638 
7639 	mutex_exit(&dtrace_lock);
7640 	mutex_exit(&dtrace_provider_lock);
7641 
7642 	return (0);
7643 }
7644 
7645 /*
7646  * Unregister the specified provider from the DTrace framework.  This should
7647  * generally be called by DTrace providers in their detach(9E) entry point.
7648  */
7649 int
7650 dtrace_unregister(dtrace_provider_id_t id)
7651 {
7652 	dtrace_provider_t *old = (dtrace_provider_t *)id;
7653 	dtrace_provider_t *prev = NULL;
7654 	int i, self = 0, noreap = 0;
7655 	dtrace_probe_t *probe, *first = NULL;
7656 
7657 	if (old->dtpv_pops.dtps_enable ==
7658 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
7659 		/*
7660 		 * If DTrace itself is the provider, we're called with locks
7661 		 * already held.
7662 		 */
7663 		ASSERT(old == dtrace_provider);
7664 #if defined(sun)
7665 		ASSERT(dtrace_devi != NULL);
7666 #endif
7667 		ASSERT(MUTEX_HELD(&dtrace_provider_lock));
7668 		ASSERT(MUTEX_HELD(&dtrace_lock));
7669 		self = 1;
7670 
7671 		if (dtrace_provider->dtpv_next != NULL) {
7672 			/*
7673 			 * There's another provider here; return failure.
7674 			 */
7675 			return (EBUSY);
7676 		}
7677 	} else {
7678 		mutex_enter(&dtrace_provider_lock);
7679 #if defined(sun)
7680 		mutex_enter(&mod_lock);
7681 #endif
7682 		mutex_enter(&dtrace_lock);
7683 	}
7684 
7685 	/*
7686 	 * If anyone has /dev/dtrace open, or if there are anonymous enabled
7687 	 * probes, we refuse to let providers slither away, unless this
7688 	 * provider has already been explicitly invalidated.
7689 	 */
7690 	if (!old->dtpv_defunct &&
7691 	    (dtrace_opens || (dtrace_anon.dta_state != NULL &&
7692 	    dtrace_anon.dta_state->dts_necbs > 0))) {
7693 		if (!self) {
7694 			mutex_exit(&dtrace_lock);
7695 #if defined(sun)
7696 			mutex_exit(&mod_lock);
7697 #endif
7698 			mutex_exit(&dtrace_provider_lock);
7699 		}
7700 		return (EBUSY);
7701 	}
7702 
7703 	/*
7704 	 * Attempt to destroy the probes associated with this provider.
7705 	 */
7706 	for (i = 0; i < dtrace_nprobes; i++) {
7707 		if ((probe = dtrace_probes[i]) == NULL)
7708 			continue;
7709 
7710 		if (probe->dtpr_provider != old)
7711 			continue;
7712 
7713 		if (probe->dtpr_ecb == NULL)
7714 			continue;
7715 
7716 		/*
7717 		 * If we are trying to unregister a defunct provider, and the
7718 		 * provider was made defunct within the interval dictated by
7719 		 * dtrace_unregister_defunct_reap, we'll (asynchronously)
7720 		 * attempt to reap our enablings.  To denote that the provider
7721 		 * should reattempt to unregister itself at some point in the
7722 		 * future, we will return a differentiable error code (EAGAIN
7723 		 * instead of EBUSY) in this case.
7724 		 */
7725 		if (dtrace_gethrtime() - old->dtpv_defunct >
7726 		    dtrace_unregister_defunct_reap)
7727 			noreap = 1;
7728 
7729 		if (!self) {
7730 			mutex_exit(&dtrace_lock);
7731 #if defined(sun)
7732 			mutex_exit(&mod_lock);
7733 #endif
7734 			mutex_exit(&dtrace_provider_lock);
7735 		}
7736 
7737 		if (noreap)
7738 			return (EBUSY);
7739 
7740 		(void) taskq_dispatch(dtrace_taskq,
7741 		    (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
7742 
7743 		return (EAGAIN);
7744 	}
7745 
7746 	/*
7747 	 * All of the probes for this provider are disabled; we can safely
7748 	 * remove all of them from their hash chains and from the probe array.
7749 	 */
7750 	for (i = 0; i < dtrace_nprobes; i++) {
7751 		if ((probe = dtrace_probes[i]) == NULL)
7752 			continue;
7753 
7754 		if (probe->dtpr_provider != old)
7755 			continue;
7756 
7757 		dtrace_probes[i] = NULL;
7758 
7759 		dtrace_hash_remove(dtrace_bymod, probe);
7760 		dtrace_hash_remove(dtrace_byfunc, probe);
7761 		dtrace_hash_remove(dtrace_byname, probe);
7762 
7763 		if (first == NULL) {
7764 			first = probe;
7765 			probe->dtpr_nextmod = NULL;
7766 		} else {
7767 			probe->dtpr_nextmod = first;
7768 			first = probe;
7769 		}
7770 	}
7771 
7772 	/*
7773 	 * The provider's probes have been removed from the hash chains and
7774 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
7775 	 * everyone has cleared out from any probe array processing.
7776 	 */
7777 	dtrace_sync();
7778 
7779 	for (probe = first; probe != NULL; probe = first) {
7780 		first = probe->dtpr_nextmod;
7781 
7782 		old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
7783 		    probe->dtpr_arg);
7784 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7785 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7786 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7787 #if defined(sun)
7788 		vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
7789 #else
7790 		free_unr(dtrace_arena, probe->dtpr_id);
7791 #endif
7792 		kmem_free(probe, sizeof (dtrace_probe_t));
7793 	}
7794 
7795 	if ((prev = dtrace_provider) == old) {
7796 #if defined(sun)
7797 		ASSERT(self || dtrace_devi == NULL);
7798 		ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
7799 #endif
7800 		dtrace_provider = old->dtpv_next;
7801 	} else {
7802 		while (prev != NULL && prev->dtpv_next != old)
7803 			prev = prev->dtpv_next;
7804 
7805 		if (prev == NULL) {
7806 			panic("attempt to unregister non-existent "
7807 			    "dtrace provider %p\n", (void *)id);
7808 		}
7809 
7810 		prev->dtpv_next = old->dtpv_next;
7811 	}
7812 
7813 	if (!self) {
7814 		mutex_exit(&dtrace_lock);
7815 #if defined(sun)
7816 		mutex_exit(&mod_lock);
7817 #endif
7818 		mutex_exit(&dtrace_provider_lock);
7819 	}
7820 
7821 	kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
7822 	kmem_free(old, sizeof (dtrace_provider_t));
7823 
7824 	return (0);
7825 }
7826 
7827 /*
7828  * Invalidate the specified provider.  All subsequent probe lookups for the
7829  * specified provider will fail, but its probes will not be removed.
7830  */
7831 void
7832 dtrace_invalidate(dtrace_provider_id_t id)
7833 {
7834 	dtrace_provider_t *pvp = (dtrace_provider_t *)id;
7835 
7836 	ASSERT(pvp->dtpv_pops.dtps_enable !=
7837 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7838 
7839 	mutex_enter(&dtrace_provider_lock);
7840 	mutex_enter(&dtrace_lock);
7841 
7842 	pvp->dtpv_defunct = dtrace_gethrtime();
7843 
7844 	mutex_exit(&dtrace_lock);
7845 	mutex_exit(&dtrace_provider_lock);
7846 }
7847 
7848 /*
7849  * Indicate whether or not DTrace has attached.
7850  */
7851 int
7852 dtrace_attached(void)
7853 {
7854 	/*
7855 	 * dtrace_provider will be non-NULL iff the DTrace driver has
7856 	 * attached.  (It's non-NULL because DTrace is always itself a
7857 	 * provider.)
7858 	 */
7859 	return (dtrace_provider != NULL);
7860 }
7861 
7862 /*
7863  * Remove all the unenabled probes for the given provider.  This function is
7864  * not unlike dtrace_unregister(), except that it doesn't remove the provider
7865  * -- just as many of its associated probes as it can.
7866  */
7867 int
7868 dtrace_condense(dtrace_provider_id_t id)
7869 {
7870 	dtrace_provider_t *prov = (dtrace_provider_t *)id;
7871 	int i;
7872 	dtrace_probe_t *probe;
7873 
7874 	/*
7875 	 * Make sure this isn't the dtrace provider itself.
7876 	 */
7877 	ASSERT(prov->dtpv_pops.dtps_enable !=
7878 	    (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
7879 
7880 	mutex_enter(&dtrace_provider_lock);
7881 	mutex_enter(&dtrace_lock);
7882 
7883 	/*
7884 	 * Attempt to destroy the probes associated with this provider.
7885 	 */
7886 	for (i = 0; i < dtrace_nprobes; i++) {
7887 		if ((probe = dtrace_probes[i]) == NULL)
7888 			continue;
7889 
7890 		if (probe->dtpr_provider != prov)
7891 			continue;
7892 
7893 		if (probe->dtpr_ecb != NULL)
7894 			continue;
7895 
7896 		dtrace_probes[i] = NULL;
7897 
7898 		dtrace_hash_remove(dtrace_bymod, probe);
7899 		dtrace_hash_remove(dtrace_byfunc, probe);
7900 		dtrace_hash_remove(dtrace_byname, probe);
7901 
7902 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
7903 		    probe->dtpr_arg);
7904 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
7905 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
7906 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
7907 		kmem_free(probe, sizeof (dtrace_probe_t));
7908 #if defined(sun)
7909 		vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
7910 #else
7911 		free_unr(dtrace_arena, i + 1);
7912 #endif
7913 	}
7914 
7915 	mutex_exit(&dtrace_lock);
7916 	mutex_exit(&dtrace_provider_lock);
7917 
7918 	return (0);
7919 }
7920 
7921 /*
7922  * DTrace Probe Management Functions
7923  *
7924  * The functions in this section perform the DTrace probe management,
7925  * including functions to create probes, look-up probes, and call into the
7926  * providers to request that probes be provided.  Some of these functions are
7927  * in the Provider-to-Framework API; these functions can be identified by the
7928  * fact that they are not declared "static".
7929  */
7930 
7931 /*
7932  * Create a probe with the specified module name, function name, and name.
7933  */
7934 dtrace_id_t
7935 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
7936     const char *func, const char *name, int aframes, void *arg)
7937 {
7938 	dtrace_probe_t *probe, **probes;
7939 	dtrace_provider_t *provider = (dtrace_provider_t *)prov;
7940 	dtrace_id_t id;
7941 
7942 	if (provider == dtrace_provider) {
7943 		ASSERT(MUTEX_HELD(&dtrace_lock));
7944 	} else {
7945 		mutex_enter(&dtrace_lock);
7946 	}
7947 
7948 #if defined(sun)
7949 	id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
7950 	    VM_BESTFIT | VM_SLEEP);
7951 #else
7952 	id = alloc_unr(dtrace_arena);
7953 #endif
7954 	probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
7955 
7956 	probe->dtpr_id = id;
7957 	probe->dtpr_gen = dtrace_probegen++;
7958 	probe->dtpr_mod = dtrace_strdup(mod);
7959 	probe->dtpr_func = dtrace_strdup(func);
7960 	probe->dtpr_name = dtrace_strdup(name);
7961 	probe->dtpr_arg = arg;
7962 	probe->dtpr_aframes = aframes;
7963 	probe->dtpr_provider = provider;
7964 
7965 	dtrace_hash_add(dtrace_bymod, probe);
7966 	dtrace_hash_add(dtrace_byfunc, probe);
7967 	dtrace_hash_add(dtrace_byname, probe);
7968 
7969 	if (id - 1 >= dtrace_nprobes) {
7970 		size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
7971 		size_t nsize = osize << 1;
7972 
7973 		if (nsize == 0) {
7974 			ASSERT(osize == 0);
7975 			ASSERT(dtrace_probes == NULL);
7976 			nsize = sizeof (dtrace_probe_t *);
7977 		}
7978 
7979 		probes = kmem_zalloc(nsize, KM_SLEEP);
7980 
7981 		if (dtrace_probes == NULL) {
7982 			ASSERT(osize == 0);
7983 			dtrace_probes = probes;
7984 			dtrace_nprobes = 1;
7985 		} else {
7986 			dtrace_probe_t **oprobes = dtrace_probes;
7987 
7988 			bcopy(oprobes, probes, osize);
7989 			dtrace_membar_producer();
7990 			dtrace_probes = probes;
7991 
7992 			dtrace_sync();
7993 
7994 			/*
7995 			 * All CPUs are now seeing the new probes array; we can
7996 			 * safely free the old array.
7997 			 */
7998 			kmem_free(oprobes, osize);
7999 			dtrace_nprobes <<= 1;
8000 		}
8001 
8002 		ASSERT(id - 1 < dtrace_nprobes);
8003 	}
8004 
8005 	ASSERT(dtrace_probes[id - 1] == NULL);
8006 	dtrace_probes[id - 1] = probe;
8007 
8008 	if (provider != dtrace_provider)
8009 		mutex_exit(&dtrace_lock);
8010 
8011 	return (id);
8012 }
8013 
8014 static dtrace_probe_t *
8015 dtrace_probe_lookup_id(dtrace_id_t id)
8016 {
8017 	ASSERT(MUTEX_HELD(&dtrace_lock));
8018 
8019 	if (id == 0 || id > dtrace_nprobes)
8020 		return (NULL);
8021 
8022 	return (dtrace_probes[id - 1]);
8023 }
8024 
8025 static int
8026 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8027 {
8028 	*((dtrace_id_t *)arg) = probe->dtpr_id;
8029 
8030 	return (DTRACE_MATCH_DONE);
8031 }
8032 
8033 /*
8034  * Look up a probe based on provider and one or more of module name, function
8035  * name and probe name.
8036  */
8037 dtrace_id_t
8038 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
8039     char *func, char *name)
8040 {
8041 	dtrace_probekey_t pkey;
8042 	dtrace_id_t id;
8043 	int match;
8044 
8045 	pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8046 	pkey.dtpk_pmatch = &dtrace_match_string;
8047 	pkey.dtpk_mod = mod;
8048 	pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8049 	pkey.dtpk_func = func;
8050 	pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8051 	pkey.dtpk_name = name;
8052 	pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8053 	pkey.dtpk_id = DTRACE_IDNONE;
8054 
8055 	mutex_enter(&dtrace_lock);
8056 	match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8057 	    dtrace_probe_lookup_match, &id);
8058 	mutex_exit(&dtrace_lock);
8059 
8060 	ASSERT(match == 1 || match == 0);
8061 	return (match ? id : 0);
8062 }
8063 
8064 /*
8065  * Returns the probe argument associated with the specified probe.
8066  */
8067 void *
8068 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8069 {
8070 	dtrace_probe_t *probe;
8071 	void *rval = NULL;
8072 
8073 	mutex_enter(&dtrace_lock);
8074 
8075 	if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8076 	    probe->dtpr_provider == (dtrace_provider_t *)id)
8077 		rval = probe->dtpr_arg;
8078 
8079 	mutex_exit(&dtrace_lock);
8080 
8081 	return (rval);
8082 }
8083 
8084 /*
8085  * Copy a probe into a probe description.
8086  */
8087 static void
8088 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8089 {
8090 	bzero(pdp, sizeof (dtrace_probedesc_t));
8091 	pdp->dtpd_id = prp->dtpr_id;
8092 
8093 	(void) strncpy(pdp->dtpd_provider,
8094 	    prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8095 
8096 	(void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8097 	(void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8098 	(void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8099 }
8100 
8101 #if !defined(sun)
8102 static int
8103 dtrace_probe_provide_cb(linker_file_t lf, void *arg)
8104 {
8105 	dtrace_provider_t *prv = (dtrace_provider_t *) arg;
8106 
8107 	prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, lf);
8108 
8109 	return(0);
8110 }
8111 #endif
8112 
8113 
8114 /*
8115  * Called to indicate that a probe -- or probes -- should be provided by a
8116  * specfied provider.  If the specified description is NULL, the provider will
8117  * be told to provide all of its probes.  (This is done whenever a new
8118  * consumer comes along, or whenever a retained enabling is to be matched.) If
8119  * the specified description is non-NULL, the provider is given the
8120  * opportunity to dynamically provide the specified probe, allowing providers
8121  * to support the creation of probes on-the-fly.  (So-called _autocreated_
8122  * probes.)  If the provider is NULL, the operations will be applied to all
8123  * providers; if the provider is non-NULL the operations will only be applied
8124  * to the specified provider.  The dtrace_provider_lock must be held, and the
8125  * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8126  * will need to grab the dtrace_lock when it reenters the framework through
8127  * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8128  */
8129 static void
8130 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8131 {
8132 #if defined(sun)
8133 	modctl_t *ctl;
8134 #endif
8135 	int all = 0;
8136 
8137 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8138 
8139 	if (prv == NULL) {
8140 		all = 1;
8141 		prv = dtrace_provider;
8142 	}
8143 
8144 	do {
8145 		/*
8146 		 * First, call the blanket provide operation.
8147 		 */
8148 		prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8149 
8150 #if defined(sun)
8151 		/*
8152 		 * Now call the per-module provide operation.  We will grab
8153 		 * mod_lock to prevent the list from being modified.  Note
8154 		 * that this also prevents the mod_busy bits from changing.
8155 		 * (mod_busy can only be changed with mod_lock held.)
8156 		 */
8157 		mutex_enter(&mod_lock);
8158 
8159 		ctl = &modules;
8160 		do {
8161 			if (ctl->mod_busy || ctl->mod_mp == NULL)
8162 				continue;
8163 
8164 			prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8165 
8166 		} while ((ctl = ctl->mod_next) != &modules);
8167 
8168 		mutex_exit(&mod_lock);
8169 #else
8170 		(void) linker_file_foreach(dtrace_probe_provide_cb, prv);
8171 #endif
8172 	} while (all && (prv = prv->dtpv_next) != NULL);
8173 }
8174 
8175 #if defined(sun)
8176 /*
8177  * Iterate over each probe, and call the Framework-to-Provider API function
8178  * denoted by offs.
8179  */
8180 static void
8181 dtrace_probe_foreach(uintptr_t offs)
8182 {
8183 	dtrace_provider_t *prov;
8184 	void (*func)(void *, dtrace_id_t, void *);
8185 	dtrace_probe_t *probe;
8186 	dtrace_icookie_t cookie;
8187 	int i;
8188 
8189 	/*
8190 	 * We disable interrupts to walk through the probe array.  This is
8191 	 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8192 	 * won't see stale data.
8193 	 */
8194 	cookie = dtrace_interrupt_disable();
8195 
8196 	for (i = 0; i < dtrace_nprobes; i++) {
8197 		if ((probe = dtrace_probes[i]) == NULL)
8198 			continue;
8199 
8200 		if (probe->dtpr_ecb == NULL) {
8201 			/*
8202 			 * This probe isn't enabled -- don't call the function.
8203 			 */
8204 			continue;
8205 		}
8206 
8207 		prov = probe->dtpr_provider;
8208 		func = *((void(**)(void *, dtrace_id_t, void *))
8209 		    ((uintptr_t)&prov->dtpv_pops + offs));
8210 
8211 		func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8212 	}
8213 
8214 	dtrace_interrupt_enable(cookie);
8215 }
8216 #endif
8217 
8218 static int
8219 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8220 {
8221 	dtrace_probekey_t pkey;
8222 	uint32_t priv;
8223 	uid_t uid;
8224 	zoneid_t zoneid;
8225 
8226 	ASSERT(MUTEX_HELD(&dtrace_lock));
8227 	dtrace_ecb_create_cache = NULL;
8228 
8229 	if (desc == NULL) {
8230 		/*
8231 		 * If we're passed a NULL description, we're being asked to
8232 		 * create an ECB with a NULL probe.
8233 		 */
8234 		(void) dtrace_ecb_create_enable(NULL, enab);
8235 		return (0);
8236 	}
8237 
8238 	dtrace_probekey(desc, &pkey);
8239 	dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8240 	    &priv, &uid, &zoneid);
8241 
8242 	return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8243 	    enab));
8244 }
8245 
8246 /*
8247  * DTrace Helper Provider Functions
8248  */
8249 static void
8250 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8251 {
8252 	attr->dtat_name = DOF_ATTR_NAME(dofattr);
8253 	attr->dtat_data = DOF_ATTR_DATA(dofattr);
8254 	attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8255 }
8256 
8257 static void
8258 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8259     const dof_provider_t *dofprov, char *strtab)
8260 {
8261 	hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8262 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8263 	    dofprov->dofpv_provattr);
8264 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8265 	    dofprov->dofpv_modattr);
8266 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8267 	    dofprov->dofpv_funcattr);
8268 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8269 	    dofprov->dofpv_nameattr);
8270 	dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8271 	    dofprov->dofpv_argsattr);
8272 }
8273 
8274 static void
8275 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8276 {
8277 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8278 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8279 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8280 	dof_provider_t *provider;
8281 	dof_probe_t *probe;
8282 	uint32_t *off, *enoff;
8283 	uint8_t *arg;
8284 	char *strtab;
8285 	uint_t i, nprobes;
8286 	dtrace_helper_provdesc_t dhpv;
8287 	dtrace_helper_probedesc_t dhpb;
8288 	dtrace_meta_t *meta = dtrace_meta_pid;
8289 	dtrace_mops_t *mops = &meta->dtm_mops;
8290 	void *parg;
8291 
8292 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8293 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8294 	    provider->dofpv_strtab * dof->dofh_secsize);
8295 	prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8296 	    provider->dofpv_probes * dof->dofh_secsize);
8297 	arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8298 	    provider->dofpv_prargs * dof->dofh_secsize);
8299 	off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8300 	    provider->dofpv_proffs * dof->dofh_secsize);
8301 
8302 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8303 	off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8304 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8305 	enoff = NULL;
8306 
8307 	/*
8308 	 * See dtrace_helper_provider_validate().
8309 	 */
8310 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8311 	    provider->dofpv_prenoffs != DOF_SECT_NONE) {
8312 		enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8313 		    provider->dofpv_prenoffs * dof->dofh_secsize);
8314 		enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8315 	}
8316 
8317 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8318 
8319 	/*
8320 	 * Create the provider.
8321 	 */
8322 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8323 
8324 	if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8325 		return;
8326 
8327 	meta->dtm_count++;
8328 
8329 	/*
8330 	 * Create the probes.
8331 	 */
8332 	for (i = 0; i < nprobes; i++) {
8333 		probe = (dof_probe_t *)(uintptr_t)(daddr +
8334 		    prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8335 
8336 		dhpb.dthpb_mod = dhp->dofhp_mod;
8337 		dhpb.dthpb_func = strtab + probe->dofpr_func;
8338 		dhpb.dthpb_name = strtab + probe->dofpr_name;
8339 		dhpb.dthpb_base = probe->dofpr_addr;
8340 		dhpb.dthpb_offs = off + probe->dofpr_offidx;
8341 		dhpb.dthpb_noffs = probe->dofpr_noffs;
8342 		if (enoff != NULL) {
8343 			dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8344 			dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8345 		} else {
8346 			dhpb.dthpb_enoffs = NULL;
8347 			dhpb.dthpb_nenoffs = 0;
8348 		}
8349 		dhpb.dthpb_args = arg + probe->dofpr_argidx;
8350 		dhpb.dthpb_nargc = probe->dofpr_nargc;
8351 		dhpb.dthpb_xargc = probe->dofpr_xargc;
8352 		dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8353 		dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8354 
8355 		mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8356 	}
8357 }
8358 
8359 static void
8360 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8361 {
8362 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8363 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8364 	int i;
8365 
8366 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8367 
8368 	for (i = 0; i < dof->dofh_secnum; i++) {
8369 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8370 		    dof->dofh_secoff + i * dof->dofh_secsize);
8371 
8372 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8373 			continue;
8374 
8375 		dtrace_helper_provide_one(dhp, sec, pid);
8376 	}
8377 
8378 	/*
8379 	 * We may have just created probes, so we must now rematch against
8380 	 * any retained enablings.  Note that this call will acquire both
8381 	 * cpu_lock and dtrace_lock; the fact that we are holding
8382 	 * dtrace_meta_lock now is what defines the ordering with respect to
8383 	 * these three locks.
8384 	 */
8385 	dtrace_enabling_matchall();
8386 }
8387 
8388 static void
8389 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8390 {
8391 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8392 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8393 	dof_sec_t *str_sec;
8394 	dof_provider_t *provider;
8395 	char *strtab;
8396 	dtrace_helper_provdesc_t dhpv;
8397 	dtrace_meta_t *meta = dtrace_meta_pid;
8398 	dtrace_mops_t *mops = &meta->dtm_mops;
8399 
8400 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8401 	str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8402 	    provider->dofpv_strtab * dof->dofh_secsize);
8403 
8404 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8405 
8406 	/*
8407 	 * Create the provider.
8408 	 */
8409 	dtrace_dofprov2hprov(&dhpv, provider, strtab);
8410 
8411 	mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8412 
8413 	meta->dtm_count--;
8414 }
8415 
8416 static void
8417 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8418 {
8419 	uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8420 	dof_hdr_t *dof = (dof_hdr_t *)daddr;
8421 	int i;
8422 
8423 	ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8424 
8425 	for (i = 0; i < dof->dofh_secnum; i++) {
8426 		dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8427 		    dof->dofh_secoff + i * dof->dofh_secsize);
8428 
8429 		if (sec->dofs_type != DOF_SECT_PROVIDER)
8430 			continue;
8431 
8432 		dtrace_helper_provider_remove_one(dhp, sec, pid);
8433 	}
8434 }
8435 
8436 /*
8437  * DTrace Meta Provider-to-Framework API Functions
8438  *
8439  * These functions implement the Meta Provider-to-Framework API, as described
8440  * in <sys/dtrace.h>.
8441  */
8442 int
8443 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8444     dtrace_meta_provider_id_t *idp)
8445 {
8446 	dtrace_meta_t *meta;
8447 	dtrace_helpers_t *help, *next;
8448 	int i;
8449 
8450 	*idp = DTRACE_METAPROVNONE;
8451 
8452 	/*
8453 	 * We strictly don't need the name, but we hold onto it for
8454 	 * debuggability. All hail error queues!
8455 	 */
8456 	if (name == NULL) {
8457 		cmn_err(CE_WARN, "failed to register meta-provider: "
8458 		    "invalid name");
8459 		return (EINVAL);
8460 	}
8461 
8462 	if (mops == NULL ||
8463 	    mops->dtms_create_probe == NULL ||
8464 	    mops->dtms_provide_pid == NULL ||
8465 	    mops->dtms_remove_pid == NULL) {
8466 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8467 		    "invalid ops", name);
8468 		return (EINVAL);
8469 	}
8470 
8471 	meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8472 	meta->dtm_mops = *mops;
8473 	meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8474 	(void) strcpy(meta->dtm_name, name);
8475 	meta->dtm_arg = arg;
8476 
8477 	mutex_enter(&dtrace_meta_lock);
8478 	mutex_enter(&dtrace_lock);
8479 
8480 	if (dtrace_meta_pid != NULL) {
8481 		mutex_exit(&dtrace_lock);
8482 		mutex_exit(&dtrace_meta_lock);
8483 		cmn_err(CE_WARN, "failed to register meta-register %s: "
8484 		    "user-land meta-provider exists", name);
8485 		kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8486 		kmem_free(meta, sizeof (dtrace_meta_t));
8487 		return (EINVAL);
8488 	}
8489 
8490 	dtrace_meta_pid = meta;
8491 	*idp = (dtrace_meta_provider_id_t)meta;
8492 
8493 	/*
8494 	 * If there are providers and probes ready to go, pass them
8495 	 * off to the new meta provider now.
8496 	 */
8497 
8498 	help = dtrace_deferred_pid;
8499 	dtrace_deferred_pid = NULL;
8500 
8501 	mutex_exit(&dtrace_lock);
8502 
8503 	while (help != NULL) {
8504 		for (i = 0; i < help->dthps_nprovs; i++) {
8505 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8506 			    help->dthps_pid);
8507 		}
8508 
8509 		next = help->dthps_next;
8510 		help->dthps_next = NULL;
8511 		help->dthps_prev = NULL;
8512 		help->dthps_deferred = 0;
8513 		help = next;
8514 	}
8515 
8516 	mutex_exit(&dtrace_meta_lock);
8517 
8518 	return (0);
8519 }
8520 
8521 int
8522 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8523 {
8524 	dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8525 
8526 	mutex_enter(&dtrace_meta_lock);
8527 	mutex_enter(&dtrace_lock);
8528 
8529 	if (old == dtrace_meta_pid) {
8530 		pp = &dtrace_meta_pid;
8531 	} else {
8532 		panic("attempt to unregister non-existent "
8533 		    "dtrace meta-provider %p\n", (void *)old);
8534 	}
8535 
8536 	if (old->dtm_count != 0) {
8537 		mutex_exit(&dtrace_lock);
8538 		mutex_exit(&dtrace_meta_lock);
8539 		return (EBUSY);
8540 	}
8541 
8542 	*pp = NULL;
8543 
8544 	mutex_exit(&dtrace_lock);
8545 	mutex_exit(&dtrace_meta_lock);
8546 
8547 	kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8548 	kmem_free(old, sizeof (dtrace_meta_t));
8549 
8550 	return (0);
8551 }
8552 
8553 
8554 /*
8555  * DTrace DIF Object Functions
8556  */
8557 static int
8558 dtrace_difo_err(uint_t pc, const char *format, ...)
8559 {
8560 	if (dtrace_err_verbose) {
8561 		va_list alist;
8562 
8563 		(void) uprintf("dtrace DIF object error: [%u]: ", pc);
8564 		va_start(alist, format);
8565 		(void) vuprintf(format, alist);
8566 		va_end(alist);
8567 	}
8568 
8569 #ifdef DTRACE_ERRDEBUG
8570 	dtrace_errdebug(format);
8571 #endif
8572 	return (1);
8573 }
8574 
8575 /*
8576  * Validate a DTrace DIF object by checking the IR instructions.  The following
8577  * rules are currently enforced by dtrace_difo_validate():
8578  *
8579  * 1. Each instruction must have a valid opcode
8580  * 2. Each register, string, variable, or subroutine reference must be valid
8581  * 3. No instruction can modify register %r0 (must be zero)
8582  * 4. All instruction reserved bits must be set to zero
8583  * 5. The last instruction must be a "ret" instruction
8584  * 6. All branch targets must reference a valid instruction _after_ the branch
8585  */
8586 static int
8587 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
8588     cred_t *cr)
8589 {
8590 	int err = 0, i;
8591 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8592 	int kcheckload;
8593 	uint_t pc;
8594 
8595 	kcheckload = cr == NULL ||
8596 	    (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
8597 
8598 	dp->dtdo_destructive = 0;
8599 
8600 	for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
8601 		dif_instr_t instr = dp->dtdo_buf[pc];
8602 
8603 		uint_t r1 = DIF_INSTR_R1(instr);
8604 		uint_t r2 = DIF_INSTR_R2(instr);
8605 		uint_t rd = DIF_INSTR_RD(instr);
8606 		uint_t rs = DIF_INSTR_RS(instr);
8607 		uint_t label = DIF_INSTR_LABEL(instr);
8608 		uint_t v = DIF_INSTR_VAR(instr);
8609 		uint_t subr = DIF_INSTR_SUBR(instr);
8610 		uint_t type = DIF_INSTR_TYPE(instr);
8611 		uint_t op = DIF_INSTR_OP(instr);
8612 
8613 		switch (op) {
8614 		case DIF_OP_OR:
8615 		case DIF_OP_XOR:
8616 		case DIF_OP_AND:
8617 		case DIF_OP_SLL:
8618 		case DIF_OP_SRL:
8619 		case DIF_OP_SRA:
8620 		case DIF_OP_SUB:
8621 		case DIF_OP_ADD:
8622 		case DIF_OP_MUL:
8623 		case DIF_OP_SDIV:
8624 		case DIF_OP_UDIV:
8625 		case DIF_OP_SREM:
8626 		case DIF_OP_UREM:
8627 		case DIF_OP_COPYS:
8628 			if (r1 >= nregs)
8629 				err += efunc(pc, "invalid register %u\n", r1);
8630 			if (r2 >= nregs)
8631 				err += efunc(pc, "invalid register %u\n", r2);
8632 			if (rd >= nregs)
8633 				err += efunc(pc, "invalid register %u\n", rd);
8634 			if (rd == 0)
8635 				err += efunc(pc, "cannot write to %r0\n");
8636 			break;
8637 		case DIF_OP_NOT:
8638 		case DIF_OP_MOV:
8639 		case DIF_OP_ALLOCS:
8640 			if (r1 >= nregs)
8641 				err += efunc(pc, "invalid register %u\n", r1);
8642 			if (r2 != 0)
8643 				err += efunc(pc, "non-zero reserved bits\n");
8644 			if (rd >= nregs)
8645 				err += efunc(pc, "invalid register %u\n", rd);
8646 			if (rd == 0)
8647 				err += efunc(pc, "cannot write to %r0\n");
8648 			break;
8649 		case DIF_OP_LDSB:
8650 		case DIF_OP_LDSH:
8651 		case DIF_OP_LDSW:
8652 		case DIF_OP_LDUB:
8653 		case DIF_OP_LDUH:
8654 		case DIF_OP_LDUW:
8655 		case DIF_OP_LDX:
8656 			if (r1 >= nregs)
8657 				err += efunc(pc, "invalid register %u\n", r1);
8658 			if (r2 != 0)
8659 				err += efunc(pc, "non-zero reserved bits\n");
8660 			if (rd >= nregs)
8661 				err += efunc(pc, "invalid register %u\n", rd);
8662 			if (rd == 0)
8663 				err += efunc(pc, "cannot write to %r0\n");
8664 			if (kcheckload)
8665 				dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
8666 				    DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
8667 			break;
8668 		case DIF_OP_RLDSB:
8669 		case DIF_OP_RLDSH:
8670 		case DIF_OP_RLDSW:
8671 		case DIF_OP_RLDUB:
8672 		case DIF_OP_RLDUH:
8673 		case DIF_OP_RLDUW:
8674 		case DIF_OP_RLDX:
8675 			if (r1 >= nregs)
8676 				err += efunc(pc, "invalid register %u\n", r1);
8677 			if (r2 != 0)
8678 				err += efunc(pc, "non-zero reserved bits\n");
8679 			if (rd >= nregs)
8680 				err += efunc(pc, "invalid register %u\n", rd);
8681 			if (rd == 0)
8682 				err += efunc(pc, "cannot write to %r0\n");
8683 			break;
8684 		case DIF_OP_ULDSB:
8685 		case DIF_OP_ULDSH:
8686 		case DIF_OP_ULDSW:
8687 		case DIF_OP_ULDUB:
8688 		case DIF_OP_ULDUH:
8689 		case DIF_OP_ULDUW:
8690 		case DIF_OP_ULDX:
8691 			if (r1 >= nregs)
8692 				err += efunc(pc, "invalid register %u\n", r1);
8693 			if (r2 != 0)
8694 				err += efunc(pc, "non-zero reserved bits\n");
8695 			if (rd >= nregs)
8696 				err += efunc(pc, "invalid register %u\n", rd);
8697 			if (rd == 0)
8698 				err += efunc(pc, "cannot write to %r0\n");
8699 			break;
8700 		case DIF_OP_STB:
8701 		case DIF_OP_STH:
8702 		case DIF_OP_STW:
8703 		case DIF_OP_STX:
8704 			if (r1 >= nregs)
8705 				err += efunc(pc, "invalid register %u\n", r1);
8706 			if (r2 != 0)
8707 				err += efunc(pc, "non-zero reserved bits\n");
8708 			if (rd >= nregs)
8709 				err += efunc(pc, "invalid register %u\n", rd);
8710 			if (rd == 0)
8711 				err += efunc(pc, "cannot write to 0 address\n");
8712 			break;
8713 		case DIF_OP_CMP:
8714 		case DIF_OP_SCMP:
8715 			if (r1 >= nregs)
8716 				err += efunc(pc, "invalid register %u\n", r1);
8717 			if (r2 >= nregs)
8718 				err += efunc(pc, "invalid register %u\n", r2);
8719 			if (rd != 0)
8720 				err += efunc(pc, "non-zero reserved bits\n");
8721 			break;
8722 		case DIF_OP_TST:
8723 			if (r1 >= nregs)
8724 				err += efunc(pc, "invalid register %u\n", r1);
8725 			if (r2 != 0 || rd != 0)
8726 				err += efunc(pc, "non-zero reserved bits\n");
8727 			break;
8728 		case DIF_OP_BA:
8729 		case DIF_OP_BE:
8730 		case DIF_OP_BNE:
8731 		case DIF_OP_BG:
8732 		case DIF_OP_BGU:
8733 		case DIF_OP_BGE:
8734 		case DIF_OP_BGEU:
8735 		case DIF_OP_BL:
8736 		case DIF_OP_BLU:
8737 		case DIF_OP_BLE:
8738 		case DIF_OP_BLEU:
8739 			if (label >= dp->dtdo_len) {
8740 				err += efunc(pc, "invalid branch target %u\n",
8741 				    label);
8742 			}
8743 			if (label <= pc) {
8744 				err += efunc(pc, "backward branch to %u\n",
8745 				    label);
8746 			}
8747 			break;
8748 		case DIF_OP_RET:
8749 			if (r1 != 0 || r2 != 0)
8750 				err += efunc(pc, "non-zero reserved bits\n");
8751 			if (rd >= nregs)
8752 				err += efunc(pc, "invalid register %u\n", rd);
8753 			break;
8754 		case DIF_OP_NOP:
8755 		case DIF_OP_POPTS:
8756 		case DIF_OP_FLUSHTS:
8757 			if (r1 != 0 || r2 != 0 || rd != 0)
8758 				err += efunc(pc, "non-zero reserved bits\n");
8759 			break;
8760 		case DIF_OP_SETX:
8761 			if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
8762 				err += efunc(pc, "invalid integer ref %u\n",
8763 				    DIF_INSTR_INTEGER(instr));
8764 			}
8765 			if (rd >= nregs)
8766 				err += efunc(pc, "invalid register %u\n", rd);
8767 			if (rd == 0)
8768 				err += efunc(pc, "cannot write to %r0\n");
8769 			break;
8770 		case DIF_OP_SETS:
8771 			if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
8772 				err += efunc(pc, "invalid string ref %u\n",
8773 				    DIF_INSTR_STRING(instr));
8774 			}
8775 			if (rd >= nregs)
8776 				err += efunc(pc, "invalid register %u\n", rd);
8777 			if (rd == 0)
8778 				err += efunc(pc, "cannot write to %r0\n");
8779 			break;
8780 		case DIF_OP_LDGA:
8781 		case DIF_OP_LDTA:
8782 			if (r1 > DIF_VAR_ARRAY_MAX)
8783 				err += efunc(pc, "invalid array %u\n", r1);
8784 			if (r2 >= nregs)
8785 				err += efunc(pc, "invalid register %u\n", r2);
8786 			if (rd >= nregs)
8787 				err += efunc(pc, "invalid register %u\n", rd);
8788 			if (rd == 0)
8789 				err += efunc(pc, "cannot write to %r0\n");
8790 			break;
8791 		case DIF_OP_LDGS:
8792 		case DIF_OP_LDTS:
8793 		case DIF_OP_LDLS:
8794 		case DIF_OP_LDGAA:
8795 		case DIF_OP_LDTAA:
8796 			if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
8797 				err += efunc(pc, "invalid variable %u\n", v);
8798 			if (rd >= nregs)
8799 				err += efunc(pc, "invalid register %u\n", rd);
8800 			if (rd == 0)
8801 				err += efunc(pc, "cannot write to %r0\n");
8802 			break;
8803 		case DIF_OP_STGS:
8804 		case DIF_OP_STTS:
8805 		case DIF_OP_STLS:
8806 		case DIF_OP_STGAA:
8807 		case DIF_OP_STTAA:
8808 			if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
8809 				err += efunc(pc, "invalid variable %u\n", v);
8810 			if (rs >= nregs)
8811 				err += efunc(pc, "invalid register %u\n", rd);
8812 			break;
8813 		case DIF_OP_CALL:
8814 			if (subr > DIF_SUBR_MAX)
8815 				err += efunc(pc, "invalid subr %u\n", subr);
8816 			if (rd >= nregs)
8817 				err += efunc(pc, "invalid register %u\n", rd);
8818 			if (rd == 0)
8819 				err += efunc(pc, "cannot write to %r0\n");
8820 
8821 			if (subr == DIF_SUBR_COPYOUT ||
8822 			    subr == DIF_SUBR_COPYOUTSTR) {
8823 				dp->dtdo_destructive = 1;
8824 			}
8825 			break;
8826 		case DIF_OP_PUSHTR:
8827 			if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
8828 				err += efunc(pc, "invalid ref type %u\n", type);
8829 			if (r2 >= nregs)
8830 				err += efunc(pc, "invalid register %u\n", r2);
8831 			if (rs >= nregs)
8832 				err += efunc(pc, "invalid register %u\n", rs);
8833 			break;
8834 		case DIF_OP_PUSHTV:
8835 			if (type != DIF_TYPE_CTF)
8836 				err += efunc(pc, "invalid val type %u\n", type);
8837 			if (r2 >= nregs)
8838 				err += efunc(pc, "invalid register %u\n", r2);
8839 			if (rs >= nregs)
8840 				err += efunc(pc, "invalid register %u\n", rs);
8841 			break;
8842 		default:
8843 			err += efunc(pc, "invalid opcode %u\n",
8844 			    DIF_INSTR_OP(instr));
8845 		}
8846 	}
8847 
8848 	if (dp->dtdo_len != 0 &&
8849 	    DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
8850 		err += efunc(dp->dtdo_len - 1,
8851 		    "expected 'ret' as last DIF instruction\n");
8852 	}
8853 
8854 	if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF)) {
8855 		/*
8856 		 * If we're not returning by reference, the size must be either
8857 		 * 0 or the size of one of the base types.
8858 		 */
8859 		switch (dp->dtdo_rtype.dtdt_size) {
8860 		case 0:
8861 		case sizeof (uint8_t):
8862 		case sizeof (uint16_t):
8863 		case sizeof (uint32_t):
8864 		case sizeof (uint64_t):
8865 			break;
8866 
8867 		default:
8868 			err += efunc(dp->dtdo_len - 1, "bad return size");
8869 		}
8870 	}
8871 
8872 	for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
8873 		dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
8874 		dtrace_diftype_t *vt, *et;
8875 		uint_t id, ndx;
8876 
8877 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
8878 		    v->dtdv_scope != DIFV_SCOPE_THREAD &&
8879 		    v->dtdv_scope != DIFV_SCOPE_LOCAL) {
8880 			err += efunc(i, "unrecognized variable scope %d\n",
8881 			    v->dtdv_scope);
8882 			break;
8883 		}
8884 
8885 		if (v->dtdv_kind != DIFV_KIND_ARRAY &&
8886 		    v->dtdv_kind != DIFV_KIND_SCALAR) {
8887 			err += efunc(i, "unrecognized variable type %d\n",
8888 			    v->dtdv_kind);
8889 			break;
8890 		}
8891 
8892 		if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
8893 			err += efunc(i, "%d exceeds variable id limit\n", id);
8894 			break;
8895 		}
8896 
8897 		if (id < DIF_VAR_OTHER_UBASE)
8898 			continue;
8899 
8900 		/*
8901 		 * For user-defined variables, we need to check that this
8902 		 * definition is identical to any previous definition that we
8903 		 * encountered.
8904 		 */
8905 		ndx = id - DIF_VAR_OTHER_UBASE;
8906 
8907 		switch (v->dtdv_scope) {
8908 		case DIFV_SCOPE_GLOBAL:
8909 			if (ndx < vstate->dtvs_nglobals) {
8910 				dtrace_statvar_t *svar;
8911 
8912 				if ((svar = vstate->dtvs_globals[ndx]) != NULL)
8913 					existing = &svar->dtsv_var;
8914 			}
8915 
8916 			break;
8917 
8918 		case DIFV_SCOPE_THREAD:
8919 			if (ndx < vstate->dtvs_ntlocals)
8920 				existing = &vstate->dtvs_tlocals[ndx];
8921 			break;
8922 
8923 		case DIFV_SCOPE_LOCAL:
8924 			if (ndx < vstate->dtvs_nlocals) {
8925 				dtrace_statvar_t *svar;
8926 
8927 				if ((svar = vstate->dtvs_locals[ndx]) != NULL)
8928 					existing = &svar->dtsv_var;
8929 			}
8930 
8931 			break;
8932 		}
8933 
8934 		vt = &v->dtdv_type;
8935 
8936 		if (vt->dtdt_flags & DIF_TF_BYREF) {
8937 			if (vt->dtdt_size == 0) {
8938 				err += efunc(i, "zero-sized variable\n");
8939 				break;
8940 			}
8941 
8942 			if (v->dtdv_scope == DIFV_SCOPE_GLOBAL &&
8943 			    vt->dtdt_size > dtrace_global_maxsize) {
8944 				err += efunc(i, "oversized by-ref global\n");
8945 				break;
8946 			}
8947 		}
8948 
8949 		if (existing == NULL || existing->dtdv_id == 0)
8950 			continue;
8951 
8952 		ASSERT(existing->dtdv_id == v->dtdv_id);
8953 		ASSERT(existing->dtdv_scope == v->dtdv_scope);
8954 
8955 		if (existing->dtdv_kind != v->dtdv_kind)
8956 			err += efunc(i, "%d changed variable kind\n", id);
8957 
8958 		et = &existing->dtdv_type;
8959 
8960 		if (vt->dtdt_flags != et->dtdt_flags) {
8961 			err += efunc(i, "%d changed variable type flags\n", id);
8962 			break;
8963 		}
8964 
8965 		if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
8966 			err += efunc(i, "%d changed variable type size\n", id);
8967 			break;
8968 		}
8969 	}
8970 
8971 	return (err);
8972 }
8973 
8974 /*
8975  * Validate a DTrace DIF object that it is to be used as a helper.  Helpers
8976  * are much more constrained than normal DIFOs.  Specifically, they may
8977  * not:
8978  *
8979  * 1. Make calls to subroutines other than copyin(), copyinstr() or
8980  *    miscellaneous string routines
8981  * 2. Access DTrace variables other than the args[] array, and the
8982  *    curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
8983  * 3. Have thread-local variables.
8984  * 4. Have dynamic variables.
8985  */
8986 static int
8987 dtrace_difo_validate_helper(dtrace_difo_t *dp)
8988 {
8989 	int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
8990 	int err = 0;
8991 	uint_t pc;
8992 
8993 	for (pc = 0; pc < dp->dtdo_len; pc++) {
8994 		dif_instr_t instr = dp->dtdo_buf[pc];
8995 
8996 		uint_t v = DIF_INSTR_VAR(instr);
8997 		uint_t subr = DIF_INSTR_SUBR(instr);
8998 		uint_t op = DIF_INSTR_OP(instr);
8999 
9000 		switch (op) {
9001 		case DIF_OP_OR:
9002 		case DIF_OP_XOR:
9003 		case DIF_OP_AND:
9004 		case DIF_OP_SLL:
9005 		case DIF_OP_SRL:
9006 		case DIF_OP_SRA:
9007 		case DIF_OP_SUB:
9008 		case DIF_OP_ADD:
9009 		case DIF_OP_MUL:
9010 		case DIF_OP_SDIV:
9011 		case DIF_OP_UDIV:
9012 		case DIF_OP_SREM:
9013 		case DIF_OP_UREM:
9014 		case DIF_OP_COPYS:
9015 		case DIF_OP_NOT:
9016 		case DIF_OP_MOV:
9017 		case DIF_OP_RLDSB:
9018 		case DIF_OP_RLDSH:
9019 		case DIF_OP_RLDSW:
9020 		case DIF_OP_RLDUB:
9021 		case DIF_OP_RLDUH:
9022 		case DIF_OP_RLDUW:
9023 		case DIF_OP_RLDX:
9024 		case DIF_OP_ULDSB:
9025 		case DIF_OP_ULDSH:
9026 		case DIF_OP_ULDSW:
9027 		case DIF_OP_ULDUB:
9028 		case DIF_OP_ULDUH:
9029 		case DIF_OP_ULDUW:
9030 		case DIF_OP_ULDX:
9031 		case DIF_OP_STB:
9032 		case DIF_OP_STH:
9033 		case DIF_OP_STW:
9034 		case DIF_OP_STX:
9035 		case DIF_OP_ALLOCS:
9036 		case DIF_OP_CMP:
9037 		case DIF_OP_SCMP:
9038 		case DIF_OP_TST:
9039 		case DIF_OP_BA:
9040 		case DIF_OP_BE:
9041 		case DIF_OP_BNE:
9042 		case DIF_OP_BG:
9043 		case DIF_OP_BGU:
9044 		case DIF_OP_BGE:
9045 		case DIF_OP_BGEU:
9046 		case DIF_OP_BL:
9047 		case DIF_OP_BLU:
9048 		case DIF_OP_BLE:
9049 		case DIF_OP_BLEU:
9050 		case DIF_OP_RET:
9051 		case DIF_OP_NOP:
9052 		case DIF_OP_POPTS:
9053 		case DIF_OP_FLUSHTS:
9054 		case DIF_OP_SETX:
9055 		case DIF_OP_SETS:
9056 		case DIF_OP_LDGA:
9057 		case DIF_OP_LDLS:
9058 		case DIF_OP_STGS:
9059 		case DIF_OP_STLS:
9060 		case DIF_OP_PUSHTR:
9061 		case DIF_OP_PUSHTV:
9062 			break;
9063 
9064 		case DIF_OP_LDGS:
9065 			if (v >= DIF_VAR_OTHER_UBASE)
9066 				break;
9067 
9068 			if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9069 				break;
9070 
9071 			if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9072 			    v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9073 			    v == DIF_VAR_EXECARGS ||
9074 			    v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9075 			    v == DIF_VAR_UID || v == DIF_VAR_GID)
9076 				break;
9077 
9078 			err += efunc(pc, "illegal variable %u\n", v);
9079 			break;
9080 
9081 		case DIF_OP_LDTA:
9082 		case DIF_OP_LDTS:
9083 		case DIF_OP_LDGAA:
9084 		case DIF_OP_LDTAA:
9085 			err += efunc(pc, "illegal dynamic variable load\n");
9086 			break;
9087 
9088 		case DIF_OP_STTS:
9089 		case DIF_OP_STGAA:
9090 		case DIF_OP_STTAA:
9091 			err += efunc(pc, "illegal dynamic variable store\n");
9092 			break;
9093 
9094 		case DIF_OP_CALL:
9095 			if (subr == DIF_SUBR_ALLOCA ||
9096 			    subr == DIF_SUBR_BCOPY ||
9097 			    subr == DIF_SUBR_COPYIN ||
9098 			    subr == DIF_SUBR_COPYINTO ||
9099 			    subr == DIF_SUBR_COPYINSTR ||
9100 			    subr == DIF_SUBR_INDEX ||
9101 			    subr == DIF_SUBR_INET_NTOA ||
9102 			    subr == DIF_SUBR_INET_NTOA6 ||
9103 			    subr == DIF_SUBR_INET_NTOP ||
9104 			    subr == DIF_SUBR_LLTOSTR ||
9105 			    subr == DIF_SUBR_RINDEX ||
9106 			    subr == DIF_SUBR_STRCHR ||
9107 			    subr == DIF_SUBR_STRJOIN ||
9108 			    subr == DIF_SUBR_STRRCHR ||
9109 			    subr == DIF_SUBR_STRSTR ||
9110 			    subr == DIF_SUBR_HTONS ||
9111 			    subr == DIF_SUBR_HTONL ||
9112 			    subr == DIF_SUBR_HTONLL ||
9113 			    subr == DIF_SUBR_NTOHS ||
9114 			    subr == DIF_SUBR_NTOHL ||
9115 			    subr == DIF_SUBR_NTOHLL ||
9116 			    subr == DIF_SUBR_MEMREF ||
9117 			    subr == DIF_SUBR_TYPEREF)
9118 				break;
9119 
9120 			err += efunc(pc, "invalid subr %u\n", subr);
9121 			break;
9122 
9123 		default:
9124 			err += efunc(pc, "invalid opcode %u\n",
9125 			    DIF_INSTR_OP(instr));
9126 		}
9127 	}
9128 
9129 	return (err);
9130 }
9131 
9132 /*
9133  * Returns 1 if the expression in the DIF object can be cached on a per-thread
9134  * basis; 0 if not.
9135  */
9136 static int
9137 dtrace_difo_cacheable(dtrace_difo_t *dp)
9138 {
9139 	int i;
9140 
9141 	if (dp == NULL)
9142 		return (0);
9143 
9144 	for (i = 0; i < dp->dtdo_varlen; i++) {
9145 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9146 
9147 		if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9148 			continue;
9149 
9150 		switch (v->dtdv_id) {
9151 		case DIF_VAR_CURTHREAD:
9152 		case DIF_VAR_PID:
9153 		case DIF_VAR_TID:
9154 		case DIF_VAR_EXECARGS:
9155 		case DIF_VAR_EXECNAME:
9156 		case DIF_VAR_ZONENAME:
9157 			break;
9158 
9159 		default:
9160 			return (0);
9161 		}
9162 	}
9163 
9164 	/*
9165 	 * This DIF object may be cacheable.  Now we need to look for any
9166 	 * array loading instructions, any memory loading instructions, or
9167 	 * any stores to thread-local variables.
9168 	 */
9169 	for (i = 0; i < dp->dtdo_len; i++) {
9170 		uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9171 
9172 		if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9173 		    (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9174 		    (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9175 		    op == DIF_OP_LDGA || op == DIF_OP_STTS)
9176 			return (0);
9177 	}
9178 
9179 	return (1);
9180 }
9181 
9182 static void
9183 dtrace_difo_hold(dtrace_difo_t *dp)
9184 {
9185 	int i;
9186 
9187 	ASSERT(MUTEX_HELD(&dtrace_lock));
9188 
9189 	dp->dtdo_refcnt++;
9190 	ASSERT(dp->dtdo_refcnt != 0);
9191 
9192 	/*
9193 	 * We need to check this DIF object for references to the variable
9194 	 * DIF_VAR_VTIMESTAMP.
9195 	 */
9196 	for (i = 0; i < dp->dtdo_varlen; i++) {
9197 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9198 
9199 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9200 			continue;
9201 
9202 		if (dtrace_vtime_references++ == 0)
9203 			dtrace_vtime_enable();
9204 	}
9205 }
9206 
9207 /*
9208  * This routine calculates the dynamic variable chunksize for a given DIF
9209  * object.  The calculation is not fool-proof, and can probably be tricked by
9210  * malicious DIF -- but it works for all compiler-generated DIF.  Because this
9211  * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9212  * if a dynamic variable size exceeds the chunksize.
9213  */
9214 static void
9215 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9216 {
9217 	uint64_t sval = 0;
9218 	dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9219 	const dif_instr_t *text = dp->dtdo_buf;
9220 	uint_t pc, srd = 0;
9221 	uint_t ttop = 0;
9222 	size_t size, ksize;
9223 	uint_t id, i;
9224 
9225 	for (pc = 0; pc < dp->dtdo_len; pc++) {
9226 		dif_instr_t instr = text[pc];
9227 		uint_t op = DIF_INSTR_OP(instr);
9228 		uint_t rd = DIF_INSTR_RD(instr);
9229 		uint_t r1 = DIF_INSTR_R1(instr);
9230 		uint_t nkeys = 0;
9231 		uchar_t scope = 0;
9232 
9233 		dtrace_key_t *key = tupregs;
9234 
9235 		switch (op) {
9236 		case DIF_OP_SETX:
9237 			sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9238 			srd = rd;
9239 			continue;
9240 
9241 		case DIF_OP_STTS:
9242 			key = &tupregs[DIF_DTR_NREGS];
9243 			key[0].dttk_size = 0;
9244 			key[1].dttk_size = 0;
9245 			nkeys = 2;
9246 			scope = DIFV_SCOPE_THREAD;
9247 			break;
9248 
9249 		case DIF_OP_STGAA:
9250 		case DIF_OP_STTAA:
9251 			nkeys = ttop;
9252 
9253 			if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9254 				key[nkeys++].dttk_size = 0;
9255 
9256 			key[nkeys++].dttk_size = 0;
9257 
9258 			if (op == DIF_OP_STTAA) {
9259 				scope = DIFV_SCOPE_THREAD;
9260 			} else {
9261 				scope = DIFV_SCOPE_GLOBAL;
9262 			}
9263 
9264 			break;
9265 
9266 		case DIF_OP_PUSHTR:
9267 			if (ttop == DIF_DTR_NREGS)
9268 				return;
9269 
9270 			if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9271 				/*
9272 				 * If the register for the size of the "pushtr"
9273 				 * is %r0 (or the value is 0) and the type is
9274 				 * a string, we'll use the system-wide default
9275 				 * string size.
9276 				 */
9277 				tupregs[ttop++].dttk_size =
9278 				    dtrace_strsize_default;
9279 			} else {
9280 				if (srd == 0)
9281 					return;
9282 
9283 				tupregs[ttop++].dttk_size = sval;
9284 			}
9285 
9286 			break;
9287 
9288 		case DIF_OP_PUSHTV:
9289 			if (ttop == DIF_DTR_NREGS)
9290 				return;
9291 
9292 			tupregs[ttop++].dttk_size = 0;
9293 			break;
9294 
9295 		case DIF_OP_FLUSHTS:
9296 			ttop = 0;
9297 			break;
9298 
9299 		case DIF_OP_POPTS:
9300 			if (ttop != 0)
9301 				ttop--;
9302 			break;
9303 		}
9304 
9305 		sval = 0;
9306 		srd = 0;
9307 
9308 		if (nkeys == 0)
9309 			continue;
9310 
9311 		/*
9312 		 * We have a dynamic variable allocation; calculate its size.
9313 		 */
9314 		for (ksize = 0, i = 0; i < nkeys; i++)
9315 			ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9316 
9317 		size = sizeof (dtrace_dynvar_t);
9318 		size += sizeof (dtrace_key_t) * (nkeys - 1);
9319 		size += ksize;
9320 
9321 		/*
9322 		 * Now we need to determine the size of the stored data.
9323 		 */
9324 		id = DIF_INSTR_VAR(instr);
9325 
9326 		for (i = 0; i < dp->dtdo_varlen; i++) {
9327 			dtrace_difv_t *v = &dp->dtdo_vartab[i];
9328 
9329 			if (v->dtdv_id == id && v->dtdv_scope == scope) {
9330 				size += v->dtdv_type.dtdt_size;
9331 				break;
9332 			}
9333 		}
9334 
9335 		if (i == dp->dtdo_varlen)
9336 			return;
9337 
9338 		/*
9339 		 * We have the size.  If this is larger than the chunk size
9340 		 * for our dynamic variable state, reset the chunk size.
9341 		 */
9342 		size = P2ROUNDUP(size, sizeof (uint64_t));
9343 
9344 		if (size > vstate->dtvs_dynvars.dtds_chunksize)
9345 			vstate->dtvs_dynvars.dtds_chunksize = size;
9346 	}
9347 }
9348 
9349 static void
9350 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9351 {
9352 	int i, oldsvars, osz, nsz, otlocals, ntlocals;
9353 	uint_t id;
9354 
9355 	ASSERT(MUTEX_HELD(&dtrace_lock));
9356 	ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9357 
9358 	for (i = 0; i < dp->dtdo_varlen; i++) {
9359 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9360 		dtrace_statvar_t *svar, ***svarp = NULL;
9361 		size_t dsize = 0;
9362 		uint8_t scope = v->dtdv_scope;
9363 		int *np = NULL;
9364 
9365 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9366 			continue;
9367 
9368 		id -= DIF_VAR_OTHER_UBASE;
9369 
9370 		switch (scope) {
9371 		case DIFV_SCOPE_THREAD:
9372 			while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9373 				dtrace_difv_t *tlocals;
9374 
9375 				if ((ntlocals = (otlocals << 1)) == 0)
9376 					ntlocals = 1;
9377 
9378 				osz = otlocals * sizeof (dtrace_difv_t);
9379 				nsz = ntlocals * sizeof (dtrace_difv_t);
9380 
9381 				tlocals = kmem_zalloc(nsz, KM_SLEEP);
9382 
9383 				if (osz != 0) {
9384 					bcopy(vstate->dtvs_tlocals,
9385 					    tlocals, osz);
9386 					kmem_free(vstate->dtvs_tlocals, osz);
9387 				}
9388 
9389 				vstate->dtvs_tlocals = tlocals;
9390 				vstate->dtvs_ntlocals = ntlocals;
9391 			}
9392 
9393 			vstate->dtvs_tlocals[id] = *v;
9394 			continue;
9395 
9396 		case DIFV_SCOPE_LOCAL:
9397 			np = &vstate->dtvs_nlocals;
9398 			svarp = &vstate->dtvs_locals;
9399 
9400 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9401 				dsize = NCPU * (v->dtdv_type.dtdt_size +
9402 				    sizeof (uint64_t));
9403 			else
9404 				dsize = NCPU * sizeof (uint64_t);
9405 
9406 			break;
9407 
9408 		case DIFV_SCOPE_GLOBAL:
9409 			np = &vstate->dtvs_nglobals;
9410 			svarp = &vstate->dtvs_globals;
9411 
9412 			if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9413 				dsize = v->dtdv_type.dtdt_size +
9414 				    sizeof (uint64_t);
9415 
9416 			break;
9417 
9418 		default:
9419 			ASSERT(0);
9420 		}
9421 
9422 		while (id >= (oldsvars = *np)) {
9423 			dtrace_statvar_t **statics;
9424 			int newsvars, oldsize, newsize;
9425 
9426 			if ((newsvars = (oldsvars << 1)) == 0)
9427 				newsvars = 1;
9428 
9429 			oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9430 			newsize = newsvars * sizeof (dtrace_statvar_t *);
9431 
9432 			statics = kmem_zalloc(newsize, KM_SLEEP);
9433 
9434 			if (oldsize != 0) {
9435 				bcopy(*svarp, statics, oldsize);
9436 				kmem_free(*svarp, oldsize);
9437 			}
9438 
9439 			*svarp = statics;
9440 			*np = newsvars;
9441 		}
9442 
9443 		if ((svar = (*svarp)[id]) == NULL) {
9444 			svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9445 			svar->dtsv_var = *v;
9446 
9447 			if ((svar->dtsv_size = dsize) != 0) {
9448 				svar->dtsv_data = (uint64_t)(uintptr_t)
9449 				    kmem_zalloc(dsize, KM_SLEEP);
9450 			}
9451 
9452 			(*svarp)[id] = svar;
9453 		}
9454 
9455 		svar->dtsv_refcnt++;
9456 	}
9457 
9458 	dtrace_difo_chunksize(dp, vstate);
9459 	dtrace_difo_hold(dp);
9460 }
9461 
9462 static dtrace_difo_t *
9463 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9464 {
9465 	dtrace_difo_t *new;
9466 	size_t sz;
9467 
9468 	ASSERT(dp->dtdo_buf != NULL);
9469 	ASSERT(dp->dtdo_refcnt != 0);
9470 
9471 	new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9472 
9473 	ASSERT(dp->dtdo_buf != NULL);
9474 	sz = dp->dtdo_len * sizeof (dif_instr_t);
9475 	new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9476 	bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9477 	new->dtdo_len = dp->dtdo_len;
9478 
9479 	if (dp->dtdo_strtab != NULL) {
9480 		ASSERT(dp->dtdo_strlen != 0);
9481 		new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
9482 		bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
9483 		new->dtdo_strlen = dp->dtdo_strlen;
9484 	}
9485 
9486 	if (dp->dtdo_inttab != NULL) {
9487 		ASSERT(dp->dtdo_intlen != 0);
9488 		sz = dp->dtdo_intlen * sizeof (uint64_t);
9489 		new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
9490 		bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
9491 		new->dtdo_intlen = dp->dtdo_intlen;
9492 	}
9493 
9494 	if (dp->dtdo_vartab != NULL) {
9495 		ASSERT(dp->dtdo_varlen != 0);
9496 		sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
9497 		new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
9498 		bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
9499 		new->dtdo_varlen = dp->dtdo_varlen;
9500 	}
9501 
9502 	dtrace_difo_init(new, vstate);
9503 	return (new);
9504 }
9505 
9506 static void
9507 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9508 {
9509 	int i;
9510 
9511 	ASSERT(dp->dtdo_refcnt == 0);
9512 
9513 	for (i = 0; i < dp->dtdo_varlen; i++) {
9514 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9515 		dtrace_statvar_t *svar, **svarp = NULL;
9516 		uint_t id;
9517 		uint8_t scope = v->dtdv_scope;
9518 		int *np = NULL;
9519 
9520 		switch (scope) {
9521 		case DIFV_SCOPE_THREAD:
9522 			continue;
9523 
9524 		case DIFV_SCOPE_LOCAL:
9525 			np = &vstate->dtvs_nlocals;
9526 			svarp = vstate->dtvs_locals;
9527 			break;
9528 
9529 		case DIFV_SCOPE_GLOBAL:
9530 			np = &vstate->dtvs_nglobals;
9531 			svarp = vstate->dtvs_globals;
9532 			break;
9533 
9534 		default:
9535 			ASSERT(0);
9536 		}
9537 
9538 		if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9539 			continue;
9540 
9541 		id -= DIF_VAR_OTHER_UBASE;
9542 		ASSERT(id < *np);
9543 
9544 		svar = svarp[id];
9545 		ASSERT(svar != NULL);
9546 		ASSERT(svar->dtsv_refcnt > 0);
9547 
9548 		if (--svar->dtsv_refcnt > 0)
9549 			continue;
9550 
9551 		if (svar->dtsv_size != 0) {
9552 			ASSERT(svar->dtsv_data != 0);
9553 			kmem_free((void *)(uintptr_t)svar->dtsv_data,
9554 			    svar->dtsv_size);
9555 		}
9556 
9557 		kmem_free(svar, sizeof (dtrace_statvar_t));
9558 		svarp[id] = NULL;
9559 	}
9560 
9561 	if (dp->dtdo_buf != NULL)
9562 		kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
9563 	if (dp->dtdo_inttab != NULL)
9564 		kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
9565 	if (dp->dtdo_strtab != NULL)
9566 		kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
9567 	if (dp->dtdo_vartab != NULL)
9568 		kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
9569 
9570 	kmem_free(dp, sizeof (dtrace_difo_t));
9571 }
9572 
9573 static void
9574 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9575 {
9576 	int i;
9577 
9578 	ASSERT(MUTEX_HELD(&dtrace_lock));
9579 	ASSERT(dp->dtdo_refcnt != 0);
9580 
9581 	for (i = 0; i < dp->dtdo_varlen; i++) {
9582 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
9583 
9584 		if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9585 			continue;
9586 
9587 		ASSERT(dtrace_vtime_references > 0);
9588 		if (--dtrace_vtime_references == 0)
9589 			dtrace_vtime_disable();
9590 	}
9591 
9592 	if (--dp->dtdo_refcnt == 0)
9593 		dtrace_difo_destroy(dp, vstate);
9594 }
9595 
9596 /*
9597  * DTrace Format Functions
9598  */
9599 static uint16_t
9600 dtrace_format_add(dtrace_state_t *state, char *str)
9601 {
9602 	char *fmt, **new;
9603 	uint16_t ndx, len = strlen(str) + 1;
9604 
9605 	fmt = kmem_zalloc(len, KM_SLEEP);
9606 	bcopy(str, fmt, len);
9607 
9608 	for (ndx = 0; ndx < state->dts_nformats; ndx++) {
9609 		if (state->dts_formats[ndx] == NULL) {
9610 			state->dts_formats[ndx] = fmt;
9611 			return (ndx + 1);
9612 		}
9613 	}
9614 
9615 	if (state->dts_nformats == USHRT_MAX) {
9616 		/*
9617 		 * This is only likely if a denial-of-service attack is being
9618 		 * attempted.  As such, it's okay to fail silently here.
9619 		 */
9620 		kmem_free(fmt, len);
9621 		return (0);
9622 	}
9623 
9624 	/*
9625 	 * For simplicity, we always resize the formats array to be exactly the
9626 	 * number of formats.
9627 	 */
9628 	ndx = state->dts_nformats++;
9629 	new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
9630 
9631 	if (state->dts_formats != NULL) {
9632 		ASSERT(ndx != 0);
9633 		bcopy(state->dts_formats, new, ndx * sizeof (char *));
9634 		kmem_free(state->dts_formats, ndx * sizeof (char *));
9635 	}
9636 
9637 	state->dts_formats = new;
9638 	state->dts_formats[ndx] = fmt;
9639 
9640 	return (ndx + 1);
9641 }
9642 
9643 static void
9644 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
9645 {
9646 	char *fmt;
9647 
9648 	ASSERT(state->dts_formats != NULL);
9649 	ASSERT(format <= state->dts_nformats);
9650 	ASSERT(state->dts_formats[format - 1] != NULL);
9651 
9652 	fmt = state->dts_formats[format - 1];
9653 	kmem_free(fmt, strlen(fmt) + 1);
9654 	state->dts_formats[format - 1] = NULL;
9655 }
9656 
9657 static void
9658 dtrace_format_destroy(dtrace_state_t *state)
9659 {
9660 	int i;
9661 
9662 	if (state->dts_nformats == 0) {
9663 		ASSERT(state->dts_formats == NULL);
9664 		return;
9665 	}
9666 
9667 	ASSERT(state->dts_formats != NULL);
9668 
9669 	for (i = 0; i < state->dts_nformats; i++) {
9670 		char *fmt = state->dts_formats[i];
9671 
9672 		if (fmt == NULL)
9673 			continue;
9674 
9675 		kmem_free(fmt, strlen(fmt) + 1);
9676 	}
9677 
9678 	kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
9679 	state->dts_nformats = 0;
9680 	state->dts_formats = NULL;
9681 }
9682 
9683 /*
9684  * DTrace Predicate Functions
9685  */
9686 static dtrace_predicate_t *
9687 dtrace_predicate_create(dtrace_difo_t *dp)
9688 {
9689 	dtrace_predicate_t *pred;
9690 
9691 	ASSERT(MUTEX_HELD(&dtrace_lock));
9692 	ASSERT(dp->dtdo_refcnt != 0);
9693 
9694 	pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
9695 	pred->dtp_difo = dp;
9696 	pred->dtp_refcnt = 1;
9697 
9698 	if (!dtrace_difo_cacheable(dp))
9699 		return (pred);
9700 
9701 	if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
9702 		/*
9703 		 * This is only theoretically possible -- we have had 2^32
9704 		 * cacheable predicates on this machine.  We cannot allow any
9705 		 * more predicates to become cacheable:  as unlikely as it is,
9706 		 * there may be a thread caching a (now stale) predicate cache
9707 		 * ID. (N.B.: the temptation is being successfully resisted to
9708 		 * have this cmn_err() "Holy shit -- we executed this code!")
9709 		 */
9710 		return (pred);
9711 	}
9712 
9713 	pred->dtp_cacheid = dtrace_predcache_id++;
9714 
9715 	return (pred);
9716 }
9717 
9718 static void
9719 dtrace_predicate_hold(dtrace_predicate_t *pred)
9720 {
9721 	ASSERT(MUTEX_HELD(&dtrace_lock));
9722 	ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
9723 	ASSERT(pred->dtp_refcnt > 0);
9724 
9725 	pred->dtp_refcnt++;
9726 }
9727 
9728 static void
9729 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
9730 {
9731 	dtrace_difo_t *dp = pred->dtp_difo;
9732 
9733 	ASSERT(MUTEX_HELD(&dtrace_lock));
9734 	ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
9735 	ASSERT(pred->dtp_refcnt > 0);
9736 
9737 	if (--pred->dtp_refcnt == 0) {
9738 		dtrace_difo_release(pred->dtp_difo, vstate);
9739 		kmem_free(pred, sizeof (dtrace_predicate_t));
9740 	}
9741 }
9742 
9743 /*
9744  * DTrace Action Description Functions
9745  */
9746 static dtrace_actdesc_t *
9747 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
9748     uint64_t uarg, uint64_t arg)
9749 {
9750 	dtrace_actdesc_t *act;
9751 
9752 #if defined(sun)
9753 	ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
9754 	    arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
9755 #endif
9756 
9757 	act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
9758 	act->dtad_kind = kind;
9759 	act->dtad_ntuple = ntuple;
9760 	act->dtad_uarg = uarg;
9761 	act->dtad_arg = arg;
9762 	act->dtad_refcnt = 1;
9763 
9764 	return (act);
9765 }
9766 
9767 static void
9768 dtrace_actdesc_hold(dtrace_actdesc_t *act)
9769 {
9770 	ASSERT(act->dtad_refcnt >= 1);
9771 	act->dtad_refcnt++;
9772 }
9773 
9774 static void
9775 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
9776 {
9777 	dtrace_actkind_t kind = act->dtad_kind;
9778 	dtrace_difo_t *dp;
9779 
9780 	ASSERT(act->dtad_refcnt >= 1);
9781 
9782 	if (--act->dtad_refcnt != 0)
9783 		return;
9784 
9785 	if ((dp = act->dtad_difo) != NULL)
9786 		dtrace_difo_release(dp, vstate);
9787 
9788 	if (DTRACEACT_ISPRINTFLIKE(kind)) {
9789 		char *str = (char *)(uintptr_t)act->dtad_arg;
9790 
9791 #if defined(sun)
9792 		ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
9793 		    (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
9794 #endif
9795 
9796 		if (str != NULL)
9797 			kmem_free(str, strlen(str) + 1);
9798 	}
9799 
9800 	kmem_free(act, sizeof (dtrace_actdesc_t));
9801 }
9802 
9803 /*
9804  * DTrace ECB Functions
9805  */
9806 static dtrace_ecb_t *
9807 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
9808 {
9809 	dtrace_ecb_t *ecb;
9810 	dtrace_epid_t epid;
9811 
9812 	ASSERT(MUTEX_HELD(&dtrace_lock));
9813 
9814 	ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
9815 	ecb->dte_predicate = NULL;
9816 	ecb->dte_probe = probe;
9817 
9818 	/*
9819 	 * The default size is the size of the default action: recording
9820 	 * the header.
9821 	 */
9822 	ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
9823 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9824 
9825 	epid = state->dts_epid++;
9826 
9827 	if (epid - 1 >= state->dts_necbs) {
9828 		dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
9829 		int necbs = state->dts_necbs << 1;
9830 
9831 		ASSERT(epid == state->dts_necbs + 1);
9832 
9833 		if (necbs == 0) {
9834 			ASSERT(oecbs == NULL);
9835 			necbs = 1;
9836 		}
9837 
9838 		ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
9839 
9840 		if (oecbs != NULL)
9841 			bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
9842 
9843 		dtrace_membar_producer();
9844 		state->dts_ecbs = ecbs;
9845 
9846 		if (oecbs != NULL) {
9847 			/*
9848 			 * If this state is active, we must dtrace_sync()
9849 			 * before we can free the old dts_ecbs array:  we're
9850 			 * coming in hot, and there may be active ring
9851 			 * buffer processing (which indexes into the dts_ecbs
9852 			 * array) on another CPU.
9853 			 */
9854 			if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
9855 				dtrace_sync();
9856 
9857 			kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
9858 		}
9859 
9860 		dtrace_membar_producer();
9861 		state->dts_necbs = necbs;
9862 	}
9863 
9864 	ecb->dte_state = state;
9865 
9866 	ASSERT(state->dts_ecbs[epid - 1] == NULL);
9867 	dtrace_membar_producer();
9868 	state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
9869 
9870 	return (ecb);
9871 }
9872 
9873 static void
9874 dtrace_ecb_enable(dtrace_ecb_t *ecb)
9875 {
9876 	dtrace_probe_t *probe = ecb->dte_probe;
9877 
9878 	ASSERT(MUTEX_HELD(&cpu_lock));
9879 	ASSERT(MUTEX_HELD(&dtrace_lock));
9880 	ASSERT(ecb->dte_next == NULL);
9881 
9882 	if (probe == NULL) {
9883 		/*
9884 		 * This is the NULL probe -- there's nothing to do.
9885 		 */
9886 		return;
9887 	}
9888 
9889 	if (probe->dtpr_ecb == NULL) {
9890 		dtrace_provider_t *prov = probe->dtpr_provider;
9891 
9892 		/*
9893 		 * We're the first ECB on this probe.
9894 		 */
9895 		probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
9896 
9897 		if (ecb->dte_predicate != NULL)
9898 			probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
9899 
9900 		prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
9901 		    probe->dtpr_id, probe->dtpr_arg);
9902 	} else {
9903 		/*
9904 		 * This probe is already active.  Swing the last pointer to
9905 		 * point to the new ECB, and issue a dtrace_sync() to assure
9906 		 * that all CPUs have seen the change.
9907 		 */
9908 		ASSERT(probe->dtpr_ecb_last != NULL);
9909 		probe->dtpr_ecb_last->dte_next = ecb;
9910 		probe->dtpr_ecb_last = ecb;
9911 		probe->dtpr_predcache = 0;
9912 
9913 		dtrace_sync();
9914 	}
9915 }
9916 
9917 static void
9918 dtrace_ecb_resize(dtrace_ecb_t *ecb)
9919 {
9920 	dtrace_action_t *act;
9921 	uint32_t curneeded = UINT32_MAX;
9922 	uint32_t aggbase = UINT32_MAX;
9923 
9924 	/*
9925 	 * If we record anything, we always record the dtrace_rechdr_t.  (And
9926 	 * we always record it first.)
9927 	 */
9928 	ecb->dte_size = sizeof (dtrace_rechdr_t);
9929 	ecb->dte_alignment = sizeof (dtrace_epid_t);
9930 
9931 	for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
9932 		dtrace_recdesc_t *rec = &act->dta_rec;
9933 		ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
9934 
9935 		ecb->dte_alignment = MAX(ecb->dte_alignment,
9936 		    rec->dtrd_alignment);
9937 
9938 		if (DTRACEACT_ISAGG(act->dta_kind)) {
9939 			dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
9940 
9941 			ASSERT(rec->dtrd_size != 0);
9942 			ASSERT(agg->dtag_first != NULL);
9943 			ASSERT(act->dta_prev->dta_intuple);
9944 			ASSERT(aggbase != UINT32_MAX);
9945 			ASSERT(curneeded != UINT32_MAX);
9946 
9947 			agg->dtag_base = aggbase;
9948 
9949 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9950 			rec->dtrd_offset = curneeded;
9951 			curneeded += rec->dtrd_size;
9952 			ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
9953 
9954 			aggbase = UINT32_MAX;
9955 			curneeded = UINT32_MAX;
9956 		} else if (act->dta_intuple) {
9957 			if (curneeded == UINT32_MAX) {
9958 				/*
9959 				 * This is the first record in a tuple.  Align
9960 				 * curneeded to be at offset 4 in an 8-byte
9961 				 * aligned block.
9962 				 */
9963 				ASSERT(act->dta_prev == NULL ||
9964 				    !act->dta_prev->dta_intuple);
9965 				ASSERT3U(aggbase, ==, UINT32_MAX);
9966 				curneeded = P2PHASEUP(ecb->dte_size,
9967 				    sizeof (uint64_t), sizeof (dtrace_aggid_t));
9968 
9969 				aggbase = curneeded - sizeof (dtrace_aggid_t);
9970 				ASSERT(IS_P2ALIGNED(aggbase,
9971 				    sizeof (uint64_t)));
9972 			}
9973 			curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
9974 			rec->dtrd_offset = curneeded;
9975 			curneeded += rec->dtrd_size;
9976 		} else {
9977 			/* tuples must be followed by an aggregation */
9978 			ASSERT(act->dta_prev == NULL ||
9979 			    !act->dta_prev->dta_intuple);
9980 
9981 			ecb->dte_size = P2ROUNDUP(ecb->dte_size,
9982 			    rec->dtrd_alignment);
9983 			rec->dtrd_offset = ecb->dte_size;
9984 			ecb->dte_size += rec->dtrd_size;
9985 			ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
9986 		}
9987 	}
9988 
9989 	if ((act = ecb->dte_action) != NULL &&
9990 	    !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
9991 	    ecb->dte_size == sizeof (dtrace_rechdr_t)) {
9992 		/*
9993 		 * If the size is still sizeof (dtrace_rechdr_t), then all
9994 		 * actions store no data; set the size to 0.
9995 		 */
9996 		ecb->dte_size = 0;
9997 	}
9998 
9999 	ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10000 	ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10001 	ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10002 	    ecb->dte_needed);
10003 }
10004 
10005 static dtrace_action_t *
10006 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10007 {
10008 	dtrace_aggregation_t *agg;
10009 	size_t size = sizeof (uint64_t);
10010 	int ntuple = desc->dtad_ntuple;
10011 	dtrace_action_t *act;
10012 	dtrace_recdesc_t *frec;
10013 	dtrace_aggid_t aggid;
10014 	dtrace_state_t *state = ecb->dte_state;
10015 
10016 	agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10017 	agg->dtag_ecb = ecb;
10018 
10019 	ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10020 
10021 	switch (desc->dtad_kind) {
10022 	case DTRACEAGG_MIN:
10023 		agg->dtag_initial = INT64_MAX;
10024 		agg->dtag_aggregate = dtrace_aggregate_min;
10025 		break;
10026 
10027 	case DTRACEAGG_MAX:
10028 		agg->dtag_initial = INT64_MIN;
10029 		agg->dtag_aggregate = dtrace_aggregate_max;
10030 		break;
10031 
10032 	case DTRACEAGG_COUNT:
10033 		agg->dtag_aggregate = dtrace_aggregate_count;
10034 		break;
10035 
10036 	case DTRACEAGG_QUANTIZE:
10037 		agg->dtag_aggregate = dtrace_aggregate_quantize;
10038 		size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10039 		    sizeof (uint64_t);
10040 		break;
10041 
10042 	case DTRACEAGG_LQUANTIZE: {
10043 		uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10044 		uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10045 
10046 		agg->dtag_initial = desc->dtad_arg;
10047 		agg->dtag_aggregate = dtrace_aggregate_lquantize;
10048 
10049 		if (step == 0 || levels == 0)
10050 			goto err;
10051 
10052 		size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10053 		break;
10054 	}
10055 
10056 	case DTRACEAGG_LLQUANTIZE: {
10057 		uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10058 		uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10059 		uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10060 		uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10061 		int64_t v;
10062 
10063 		agg->dtag_initial = desc->dtad_arg;
10064 		agg->dtag_aggregate = dtrace_aggregate_llquantize;
10065 
10066 		if (factor < 2 || low >= high || nsteps < factor)
10067 			goto err;
10068 
10069 		/*
10070 		 * Now check that the number of steps evenly divides a power
10071 		 * of the factor.  (This assures both integer bucket size and
10072 		 * linearity within each magnitude.)
10073 		 */
10074 		for (v = factor; v < nsteps; v *= factor)
10075 			continue;
10076 
10077 		if ((v % nsteps) || (nsteps % factor))
10078 			goto err;
10079 
10080 		size = (dtrace_aggregate_llquantize_bucket(factor,
10081 		    low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10082 		break;
10083 	}
10084 
10085 	case DTRACEAGG_AVG:
10086 		agg->dtag_aggregate = dtrace_aggregate_avg;
10087 		size = sizeof (uint64_t) * 2;
10088 		break;
10089 
10090 	case DTRACEAGG_STDDEV:
10091 		agg->dtag_aggregate = dtrace_aggregate_stddev;
10092 		size = sizeof (uint64_t) * 4;
10093 		break;
10094 
10095 	case DTRACEAGG_SUM:
10096 		agg->dtag_aggregate = dtrace_aggregate_sum;
10097 		break;
10098 
10099 	default:
10100 		goto err;
10101 	}
10102 
10103 	agg->dtag_action.dta_rec.dtrd_size = size;
10104 
10105 	if (ntuple == 0)
10106 		goto err;
10107 
10108 	/*
10109 	 * We must make sure that we have enough actions for the n-tuple.
10110 	 */
10111 	for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10112 		if (DTRACEACT_ISAGG(act->dta_kind))
10113 			break;
10114 
10115 		if (--ntuple == 0) {
10116 			/*
10117 			 * This is the action with which our n-tuple begins.
10118 			 */
10119 			agg->dtag_first = act;
10120 			goto success;
10121 		}
10122 	}
10123 
10124 	/*
10125 	 * This n-tuple is short by ntuple elements.  Return failure.
10126 	 */
10127 	ASSERT(ntuple != 0);
10128 err:
10129 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10130 	return (NULL);
10131 
10132 success:
10133 	/*
10134 	 * If the last action in the tuple has a size of zero, it's actually
10135 	 * an expression argument for the aggregating action.
10136 	 */
10137 	ASSERT(ecb->dte_action_last != NULL);
10138 	act = ecb->dte_action_last;
10139 
10140 	if (act->dta_kind == DTRACEACT_DIFEXPR) {
10141 		ASSERT(act->dta_difo != NULL);
10142 
10143 		if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10144 			agg->dtag_hasarg = 1;
10145 	}
10146 
10147 	/*
10148 	 * We need to allocate an id for this aggregation.
10149 	 */
10150 #if defined(sun)
10151 	aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10152 	    VM_BESTFIT | VM_SLEEP);
10153 #else
10154 	aggid = alloc_unr(state->dts_aggid_arena);
10155 #endif
10156 
10157 	if (aggid - 1 >= state->dts_naggregations) {
10158 		dtrace_aggregation_t **oaggs = state->dts_aggregations;
10159 		dtrace_aggregation_t **aggs;
10160 		int naggs = state->dts_naggregations << 1;
10161 		int onaggs = state->dts_naggregations;
10162 
10163 		ASSERT(aggid == state->dts_naggregations + 1);
10164 
10165 		if (naggs == 0) {
10166 			ASSERT(oaggs == NULL);
10167 			naggs = 1;
10168 		}
10169 
10170 		aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10171 
10172 		if (oaggs != NULL) {
10173 			bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10174 			kmem_free(oaggs, onaggs * sizeof (*aggs));
10175 		}
10176 
10177 		state->dts_aggregations = aggs;
10178 		state->dts_naggregations = naggs;
10179 	}
10180 
10181 	ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10182 	state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10183 
10184 	frec = &agg->dtag_first->dta_rec;
10185 	if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10186 		frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10187 
10188 	for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10189 		ASSERT(!act->dta_intuple);
10190 		act->dta_intuple = 1;
10191 	}
10192 
10193 	return (&agg->dtag_action);
10194 }
10195 
10196 static void
10197 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10198 {
10199 	dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10200 	dtrace_state_t *state = ecb->dte_state;
10201 	dtrace_aggid_t aggid = agg->dtag_id;
10202 
10203 	ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10204 #if defined(sun)
10205 	vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10206 #else
10207 	free_unr(state->dts_aggid_arena, aggid);
10208 #endif
10209 
10210 	ASSERT(state->dts_aggregations[aggid - 1] == agg);
10211 	state->dts_aggregations[aggid - 1] = NULL;
10212 
10213 	kmem_free(agg, sizeof (dtrace_aggregation_t));
10214 }
10215 
10216 static int
10217 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10218 {
10219 	dtrace_action_t *action, *last;
10220 	dtrace_difo_t *dp = desc->dtad_difo;
10221 	uint32_t size = 0, align = sizeof (uint8_t), mask;
10222 	uint16_t format = 0;
10223 	dtrace_recdesc_t *rec;
10224 	dtrace_state_t *state = ecb->dte_state;
10225 	dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
10226 	uint64_t arg = desc->dtad_arg;
10227 
10228 	ASSERT(MUTEX_HELD(&dtrace_lock));
10229 	ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10230 
10231 	if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10232 		/*
10233 		 * If this is an aggregating action, there must be neither
10234 		 * a speculate nor a commit on the action chain.
10235 		 */
10236 		dtrace_action_t *act;
10237 
10238 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10239 			if (act->dta_kind == DTRACEACT_COMMIT)
10240 				return (EINVAL);
10241 
10242 			if (act->dta_kind == DTRACEACT_SPECULATE)
10243 				return (EINVAL);
10244 		}
10245 
10246 		action = dtrace_ecb_aggregation_create(ecb, desc);
10247 
10248 		if (action == NULL)
10249 			return (EINVAL);
10250 	} else {
10251 		if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10252 		    (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10253 		    dp != NULL && dp->dtdo_destructive)) {
10254 			state->dts_destructive = 1;
10255 		}
10256 
10257 		switch (desc->dtad_kind) {
10258 		case DTRACEACT_PRINTF:
10259 		case DTRACEACT_PRINTA:
10260 		case DTRACEACT_SYSTEM:
10261 		case DTRACEACT_FREOPEN:
10262 		case DTRACEACT_DIFEXPR:
10263 			/*
10264 			 * We know that our arg is a string -- turn it into a
10265 			 * format.
10266 			 */
10267 			if (arg == 0) {
10268 				ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10269 				    desc->dtad_kind == DTRACEACT_DIFEXPR);
10270 				format = 0;
10271 			} else {
10272 				ASSERT(arg != 0);
10273 #if defined(sun)
10274 				ASSERT(arg > KERNELBASE);
10275 #endif
10276 				format = dtrace_format_add(state,
10277 				    (char *)(uintptr_t)arg);
10278 			}
10279 
10280 			/*FALLTHROUGH*/
10281 		case DTRACEACT_LIBACT:
10282 		case DTRACEACT_TRACEMEM:
10283 		case DTRACEACT_TRACEMEM_DYNSIZE:
10284 			if (dp == NULL)
10285 				return (EINVAL);
10286 
10287 			if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10288 				break;
10289 
10290 			if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10291 				if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10292 					return (EINVAL);
10293 
10294 				size = opt[DTRACEOPT_STRSIZE];
10295 			}
10296 
10297 			break;
10298 
10299 		case DTRACEACT_STACK:
10300 			if ((nframes = arg) == 0) {
10301 				nframes = opt[DTRACEOPT_STACKFRAMES];
10302 				ASSERT(nframes > 0);
10303 				arg = nframes;
10304 			}
10305 
10306 			size = nframes * sizeof (pc_t);
10307 			break;
10308 
10309 		case DTRACEACT_JSTACK:
10310 			if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10311 				strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10312 
10313 			if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10314 				nframes = opt[DTRACEOPT_JSTACKFRAMES];
10315 
10316 			arg = DTRACE_USTACK_ARG(nframes, strsize);
10317 
10318 			/*FALLTHROUGH*/
10319 		case DTRACEACT_USTACK:
10320 			if (desc->dtad_kind != DTRACEACT_JSTACK &&
10321 			    (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10322 				strsize = DTRACE_USTACK_STRSIZE(arg);
10323 				nframes = opt[DTRACEOPT_USTACKFRAMES];
10324 				ASSERT(nframes > 0);
10325 				arg = DTRACE_USTACK_ARG(nframes, strsize);
10326 			}
10327 
10328 			/*
10329 			 * Save a slot for the pid.
10330 			 */
10331 			size = (nframes + 1) * sizeof (uint64_t);
10332 			size += DTRACE_USTACK_STRSIZE(arg);
10333 			size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10334 
10335 			break;
10336 
10337 		case DTRACEACT_SYM:
10338 		case DTRACEACT_MOD:
10339 			if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10340 			    sizeof (uint64_t)) ||
10341 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10342 				return (EINVAL);
10343 			break;
10344 
10345 		case DTRACEACT_USYM:
10346 		case DTRACEACT_UMOD:
10347 		case DTRACEACT_UADDR:
10348 			if (dp == NULL ||
10349 			    (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10350 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10351 				return (EINVAL);
10352 
10353 			/*
10354 			 * We have a slot for the pid, plus a slot for the
10355 			 * argument.  To keep things simple (aligned with
10356 			 * bitness-neutral sizing), we store each as a 64-bit
10357 			 * quantity.
10358 			 */
10359 			size = 2 * sizeof (uint64_t);
10360 			break;
10361 
10362 		case DTRACEACT_STOP:
10363 		case DTRACEACT_BREAKPOINT:
10364 		case DTRACEACT_PANIC:
10365 			break;
10366 
10367 		case DTRACEACT_CHILL:
10368 		case DTRACEACT_DISCARD:
10369 		case DTRACEACT_RAISE:
10370 			if (dp == NULL)
10371 				return (EINVAL);
10372 			break;
10373 
10374 		case DTRACEACT_EXIT:
10375 			if (dp == NULL ||
10376 			    (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10377 			    (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10378 				return (EINVAL);
10379 			break;
10380 
10381 		case DTRACEACT_SPECULATE:
10382 			if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10383 				return (EINVAL);
10384 
10385 			if (dp == NULL)
10386 				return (EINVAL);
10387 
10388 			state->dts_speculates = 1;
10389 			break;
10390 
10391 		case DTRACEACT_PRINTM:
10392 		    	size = dp->dtdo_rtype.dtdt_size;
10393 			break;
10394 
10395 		case DTRACEACT_PRINTT:
10396 		    	size = dp->dtdo_rtype.dtdt_size;
10397 			break;
10398 
10399 		case DTRACEACT_COMMIT: {
10400 			dtrace_action_t *act = ecb->dte_action;
10401 
10402 			for (; act != NULL; act = act->dta_next) {
10403 				if (act->dta_kind == DTRACEACT_COMMIT)
10404 					return (EINVAL);
10405 			}
10406 
10407 			if (dp == NULL)
10408 				return (EINVAL);
10409 			break;
10410 		}
10411 
10412 		default:
10413 			return (EINVAL);
10414 		}
10415 
10416 		if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10417 			/*
10418 			 * If this is a data-storing action or a speculate,
10419 			 * we must be sure that there isn't a commit on the
10420 			 * action chain.
10421 			 */
10422 			dtrace_action_t *act = ecb->dte_action;
10423 
10424 			for (; act != NULL; act = act->dta_next) {
10425 				if (act->dta_kind == DTRACEACT_COMMIT)
10426 					return (EINVAL);
10427 			}
10428 		}
10429 
10430 		action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10431 		action->dta_rec.dtrd_size = size;
10432 	}
10433 
10434 	action->dta_refcnt = 1;
10435 	rec = &action->dta_rec;
10436 	size = rec->dtrd_size;
10437 
10438 	for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10439 		if (!(size & mask)) {
10440 			align = mask + 1;
10441 			break;
10442 		}
10443 	}
10444 
10445 	action->dta_kind = desc->dtad_kind;
10446 
10447 	if ((action->dta_difo = dp) != NULL)
10448 		dtrace_difo_hold(dp);
10449 
10450 	rec->dtrd_action = action->dta_kind;
10451 	rec->dtrd_arg = arg;
10452 	rec->dtrd_uarg = desc->dtad_uarg;
10453 	rec->dtrd_alignment = (uint16_t)align;
10454 	rec->dtrd_format = format;
10455 
10456 	if ((last = ecb->dte_action_last) != NULL) {
10457 		ASSERT(ecb->dte_action != NULL);
10458 		action->dta_prev = last;
10459 		last->dta_next = action;
10460 	} else {
10461 		ASSERT(ecb->dte_action == NULL);
10462 		ecb->dte_action = action;
10463 	}
10464 
10465 	ecb->dte_action_last = action;
10466 
10467 	return (0);
10468 }
10469 
10470 static void
10471 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10472 {
10473 	dtrace_action_t *act = ecb->dte_action, *next;
10474 	dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10475 	dtrace_difo_t *dp;
10476 	uint16_t format;
10477 
10478 	if (act != NULL && act->dta_refcnt > 1) {
10479 		ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10480 		act->dta_refcnt--;
10481 	} else {
10482 		for (; act != NULL; act = next) {
10483 			next = act->dta_next;
10484 			ASSERT(next != NULL || act == ecb->dte_action_last);
10485 			ASSERT(act->dta_refcnt == 1);
10486 
10487 			if ((format = act->dta_rec.dtrd_format) != 0)
10488 				dtrace_format_remove(ecb->dte_state, format);
10489 
10490 			if ((dp = act->dta_difo) != NULL)
10491 				dtrace_difo_release(dp, vstate);
10492 
10493 			if (DTRACEACT_ISAGG(act->dta_kind)) {
10494 				dtrace_ecb_aggregation_destroy(ecb, act);
10495 			} else {
10496 				kmem_free(act, sizeof (dtrace_action_t));
10497 			}
10498 		}
10499 	}
10500 
10501 	ecb->dte_action = NULL;
10502 	ecb->dte_action_last = NULL;
10503 	ecb->dte_size = 0;
10504 }
10505 
10506 static void
10507 dtrace_ecb_disable(dtrace_ecb_t *ecb)
10508 {
10509 	/*
10510 	 * We disable the ECB by removing it from its probe.
10511 	 */
10512 	dtrace_ecb_t *pecb, *prev = NULL;
10513 	dtrace_probe_t *probe = ecb->dte_probe;
10514 
10515 	ASSERT(MUTEX_HELD(&dtrace_lock));
10516 
10517 	if (probe == NULL) {
10518 		/*
10519 		 * This is the NULL probe; there is nothing to disable.
10520 		 */
10521 		return;
10522 	}
10523 
10524 	for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
10525 		if (pecb == ecb)
10526 			break;
10527 		prev = pecb;
10528 	}
10529 
10530 	ASSERT(pecb != NULL);
10531 
10532 	if (prev == NULL) {
10533 		probe->dtpr_ecb = ecb->dte_next;
10534 	} else {
10535 		prev->dte_next = ecb->dte_next;
10536 	}
10537 
10538 	if (ecb == probe->dtpr_ecb_last) {
10539 		ASSERT(ecb->dte_next == NULL);
10540 		probe->dtpr_ecb_last = prev;
10541 	}
10542 
10543 	/*
10544 	 * The ECB has been disconnected from the probe; now sync to assure
10545 	 * that all CPUs have seen the change before returning.
10546 	 */
10547 	dtrace_sync();
10548 
10549 	if (probe->dtpr_ecb == NULL) {
10550 		/*
10551 		 * That was the last ECB on the probe; clear the predicate
10552 		 * cache ID for the probe, disable it and sync one more time
10553 		 * to assure that we'll never hit it again.
10554 		 */
10555 		dtrace_provider_t *prov = probe->dtpr_provider;
10556 
10557 		ASSERT(ecb->dte_next == NULL);
10558 		ASSERT(probe->dtpr_ecb_last == NULL);
10559 		probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10560 		prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
10561 		    probe->dtpr_id, probe->dtpr_arg);
10562 		dtrace_sync();
10563 	} else {
10564 		/*
10565 		 * There is at least one ECB remaining on the probe.  If there
10566 		 * is _exactly_ one, set the probe's predicate cache ID to be
10567 		 * the predicate cache ID of the remaining ECB.
10568 		 */
10569 		ASSERT(probe->dtpr_ecb_last != NULL);
10570 		ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
10571 
10572 		if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
10573 			dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
10574 
10575 			ASSERT(probe->dtpr_ecb->dte_next == NULL);
10576 
10577 			if (p != NULL)
10578 				probe->dtpr_predcache = p->dtp_cacheid;
10579 		}
10580 
10581 		ecb->dte_next = NULL;
10582 	}
10583 }
10584 
10585 static void
10586 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
10587 {
10588 	dtrace_state_t *state = ecb->dte_state;
10589 	dtrace_vstate_t *vstate = &state->dts_vstate;
10590 	dtrace_predicate_t *pred;
10591 	dtrace_epid_t epid = ecb->dte_epid;
10592 
10593 	ASSERT(MUTEX_HELD(&dtrace_lock));
10594 	ASSERT(ecb->dte_next == NULL);
10595 	ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
10596 
10597 	if ((pred = ecb->dte_predicate) != NULL)
10598 		dtrace_predicate_release(pred, vstate);
10599 
10600 	dtrace_ecb_action_remove(ecb);
10601 
10602 	ASSERT(state->dts_ecbs[epid - 1] == ecb);
10603 	state->dts_ecbs[epid - 1] = NULL;
10604 
10605 	kmem_free(ecb, sizeof (dtrace_ecb_t));
10606 }
10607 
10608 static dtrace_ecb_t *
10609 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
10610     dtrace_enabling_t *enab)
10611 {
10612 	dtrace_ecb_t *ecb;
10613 	dtrace_predicate_t *pred;
10614 	dtrace_actdesc_t *act;
10615 	dtrace_provider_t *prov;
10616 	dtrace_ecbdesc_t *desc = enab->dten_current;
10617 
10618 	ASSERT(MUTEX_HELD(&dtrace_lock));
10619 	ASSERT(state != NULL);
10620 
10621 	ecb = dtrace_ecb_add(state, probe);
10622 	ecb->dte_uarg = desc->dted_uarg;
10623 
10624 	if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
10625 		dtrace_predicate_hold(pred);
10626 		ecb->dte_predicate = pred;
10627 	}
10628 
10629 	if (probe != NULL) {
10630 		/*
10631 		 * If the provider shows more leg than the consumer is old
10632 		 * enough to see, we need to enable the appropriate implicit
10633 		 * predicate bits to prevent the ecb from activating at
10634 		 * revealing times.
10635 		 *
10636 		 * Providers specifying DTRACE_PRIV_USER at register time
10637 		 * are stating that they need the /proc-style privilege
10638 		 * model to be enforced, and this is what DTRACE_COND_OWNER
10639 		 * and DTRACE_COND_ZONEOWNER will then do at probe time.
10640 		 */
10641 		prov = probe->dtpr_provider;
10642 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
10643 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10644 			ecb->dte_cond |= DTRACE_COND_OWNER;
10645 
10646 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
10647 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
10648 			ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
10649 
10650 		/*
10651 		 * If the provider shows us kernel innards and the user
10652 		 * is lacking sufficient privilege, enable the
10653 		 * DTRACE_COND_USERMODE implicit predicate.
10654 		 */
10655 		if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
10656 		    (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
10657 			ecb->dte_cond |= DTRACE_COND_USERMODE;
10658 	}
10659 
10660 	if (dtrace_ecb_create_cache != NULL) {
10661 		/*
10662 		 * If we have a cached ecb, we'll use its action list instead
10663 		 * of creating our own (saving both time and space).
10664 		 */
10665 		dtrace_ecb_t *cached = dtrace_ecb_create_cache;
10666 		dtrace_action_t *act = cached->dte_action;
10667 
10668 		if (act != NULL) {
10669 			ASSERT(act->dta_refcnt > 0);
10670 			act->dta_refcnt++;
10671 			ecb->dte_action = act;
10672 			ecb->dte_action_last = cached->dte_action_last;
10673 			ecb->dte_needed = cached->dte_needed;
10674 			ecb->dte_size = cached->dte_size;
10675 			ecb->dte_alignment = cached->dte_alignment;
10676 		}
10677 
10678 		return (ecb);
10679 	}
10680 
10681 	for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
10682 		if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
10683 			dtrace_ecb_destroy(ecb);
10684 			return (NULL);
10685 		}
10686 	}
10687 
10688 	dtrace_ecb_resize(ecb);
10689 
10690 	return (dtrace_ecb_create_cache = ecb);
10691 }
10692 
10693 static int
10694 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
10695 {
10696 	dtrace_ecb_t *ecb;
10697 	dtrace_enabling_t *enab = arg;
10698 	dtrace_state_t *state = enab->dten_vstate->dtvs_state;
10699 
10700 	ASSERT(state != NULL);
10701 
10702 	if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
10703 		/*
10704 		 * This probe was created in a generation for which this
10705 		 * enabling has previously created ECBs; we don't want to
10706 		 * enable it again, so just kick out.
10707 		 */
10708 		return (DTRACE_MATCH_NEXT);
10709 	}
10710 
10711 	if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
10712 		return (DTRACE_MATCH_DONE);
10713 
10714 	dtrace_ecb_enable(ecb);
10715 	return (DTRACE_MATCH_NEXT);
10716 }
10717 
10718 static dtrace_ecb_t *
10719 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
10720 {
10721 	dtrace_ecb_t *ecb;
10722 
10723 	ASSERT(MUTEX_HELD(&dtrace_lock));
10724 
10725 	if (id == 0 || id > state->dts_necbs)
10726 		return (NULL);
10727 
10728 	ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
10729 	ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
10730 
10731 	return (state->dts_ecbs[id - 1]);
10732 }
10733 
10734 static dtrace_aggregation_t *
10735 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
10736 {
10737 	dtrace_aggregation_t *agg;
10738 
10739 	ASSERT(MUTEX_HELD(&dtrace_lock));
10740 
10741 	if (id == 0 || id > state->dts_naggregations)
10742 		return (NULL);
10743 
10744 	ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
10745 	ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
10746 	    agg->dtag_id == id);
10747 
10748 	return (state->dts_aggregations[id - 1]);
10749 }
10750 
10751 /*
10752  * DTrace Buffer Functions
10753  *
10754  * The following functions manipulate DTrace buffers.  Most of these functions
10755  * are called in the context of establishing or processing consumer state;
10756  * exceptions are explicitly noted.
10757  */
10758 
10759 /*
10760  * Note:  called from cross call context.  This function switches the two
10761  * buffers on a given CPU.  The atomicity of this operation is assured by
10762  * disabling interrupts while the actual switch takes place; the disabling of
10763  * interrupts serializes the execution with any execution of dtrace_probe() on
10764  * the same CPU.
10765  */
10766 static void
10767 dtrace_buffer_switch(dtrace_buffer_t *buf)
10768 {
10769 	caddr_t tomax = buf->dtb_tomax;
10770 	caddr_t xamot = buf->dtb_xamot;
10771 	dtrace_icookie_t cookie;
10772 	hrtime_t now;
10773 
10774 	ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
10775 	ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
10776 
10777 	cookie = dtrace_interrupt_disable();
10778 	now = dtrace_gethrtime();
10779 	buf->dtb_tomax = xamot;
10780 	buf->dtb_xamot = tomax;
10781 	buf->dtb_xamot_drops = buf->dtb_drops;
10782 	buf->dtb_xamot_offset = buf->dtb_offset;
10783 	buf->dtb_xamot_errors = buf->dtb_errors;
10784 	buf->dtb_xamot_flags = buf->dtb_flags;
10785 	buf->dtb_offset = 0;
10786 	buf->dtb_drops = 0;
10787 	buf->dtb_errors = 0;
10788 	buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
10789 	buf->dtb_interval = now - buf->dtb_switched;
10790 	buf->dtb_switched = now;
10791 	dtrace_interrupt_enable(cookie);
10792 }
10793 
10794 /*
10795  * Note:  called from cross call context.  This function activates a buffer
10796  * on a CPU.  As with dtrace_buffer_switch(), the atomicity of the operation
10797  * is guaranteed by the disabling of interrupts.
10798  */
10799 static void
10800 dtrace_buffer_activate(dtrace_state_t *state)
10801 {
10802 	dtrace_buffer_t *buf;
10803 	dtrace_icookie_t cookie = dtrace_interrupt_disable();
10804 
10805 	buf = &state->dts_buffer[curcpu];
10806 
10807 	if (buf->dtb_tomax != NULL) {
10808 		/*
10809 		 * We might like to assert that the buffer is marked inactive,
10810 		 * but this isn't necessarily true:  the buffer for the CPU
10811 		 * that processes the BEGIN probe has its buffer activated
10812 		 * manually.  In this case, we take the (harmless) action
10813 		 * re-clearing the bit INACTIVE bit.
10814 		 */
10815 		buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
10816 	}
10817 
10818 	dtrace_interrupt_enable(cookie);
10819 }
10820 
10821 static int
10822 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
10823     processorid_t cpu)
10824 {
10825 #if defined(sun)
10826 	cpu_t *cp;
10827 #endif
10828 	dtrace_buffer_t *buf;
10829 
10830 #if defined(sun)
10831 	ASSERT(MUTEX_HELD(&cpu_lock));
10832 	ASSERT(MUTEX_HELD(&dtrace_lock));
10833 
10834 	if (size > dtrace_nonroot_maxsize &&
10835 	    !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
10836 		return (EFBIG);
10837 
10838 	cp = cpu_list;
10839 
10840 	do {
10841 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10842 			continue;
10843 
10844 		buf = &bufs[cp->cpu_id];
10845 
10846 		/*
10847 		 * If there is already a buffer allocated for this CPU, it
10848 		 * is only possible that this is a DR event.  In this case,
10849 		 */
10850 		if (buf->dtb_tomax != NULL) {
10851 			ASSERT(buf->dtb_size == size);
10852 			continue;
10853 		}
10854 
10855 		ASSERT(buf->dtb_xamot == NULL);
10856 
10857 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10858 			goto err;
10859 
10860 		buf->dtb_size = size;
10861 		buf->dtb_flags = flags;
10862 		buf->dtb_offset = 0;
10863 		buf->dtb_drops = 0;
10864 
10865 		if (flags & DTRACEBUF_NOSWITCH)
10866 			continue;
10867 
10868 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10869 			goto err;
10870 	} while ((cp = cp->cpu_next) != cpu_list);
10871 
10872 	return (0);
10873 
10874 err:
10875 	cp = cpu_list;
10876 
10877 	do {
10878 		if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
10879 			continue;
10880 
10881 		buf = &bufs[cp->cpu_id];
10882 
10883 		if (buf->dtb_xamot != NULL) {
10884 			ASSERT(buf->dtb_tomax != NULL);
10885 			ASSERT(buf->dtb_size == size);
10886 			kmem_free(buf->dtb_xamot, size);
10887 		}
10888 
10889 		if (buf->dtb_tomax != NULL) {
10890 			ASSERT(buf->dtb_size == size);
10891 			kmem_free(buf->dtb_tomax, size);
10892 		}
10893 
10894 		buf->dtb_tomax = NULL;
10895 		buf->dtb_xamot = NULL;
10896 		buf->dtb_size = 0;
10897 	} while ((cp = cp->cpu_next) != cpu_list);
10898 
10899 	return (ENOMEM);
10900 #else
10901 	int i;
10902 
10903 #if defined(__amd64__) || defined(__mips__) || defined(__powerpc__)
10904 	/*
10905 	 * FreeBSD isn't good at limiting the amount of memory we
10906 	 * ask to malloc, so let's place a limit here before trying
10907 	 * to do something that might well end in tears at bedtime.
10908 	 */
10909 	if (size > physmem * PAGE_SIZE / (128 * (mp_maxid + 1)))
10910 		return(ENOMEM);
10911 #endif
10912 
10913 	ASSERT(MUTEX_HELD(&dtrace_lock));
10914 	CPU_FOREACH(i) {
10915 		if (cpu != DTRACE_CPUALL && cpu != i)
10916 			continue;
10917 
10918 		buf = &bufs[i];
10919 
10920 		/*
10921 		 * If there is already a buffer allocated for this CPU, it
10922 		 * is only possible that this is a DR event.  In this case,
10923 		 * the buffer size must match our specified size.
10924 		 */
10925 		if (buf->dtb_tomax != NULL) {
10926 			ASSERT(buf->dtb_size == size);
10927 			continue;
10928 		}
10929 
10930 		ASSERT(buf->dtb_xamot == NULL);
10931 
10932 		if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10933 			goto err;
10934 
10935 		buf->dtb_size = size;
10936 		buf->dtb_flags = flags;
10937 		buf->dtb_offset = 0;
10938 		buf->dtb_drops = 0;
10939 
10940 		if (flags & DTRACEBUF_NOSWITCH)
10941 			continue;
10942 
10943 		if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
10944 			goto err;
10945 	}
10946 
10947 	return (0);
10948 
10949 err:
10950 	/*
10951 	 * Error allocating memory, so free the buffers that were
10952 	 * allocated before the failed allocation.
10953 	 */
10954 	CPU_FOREACH(i) {
10955 		if (cpu != DTRACE_CPUALL && cpu != i)
10956 			continue;
10957 
10958 		buf = &bufs[i];
10959 
10960 		if (buf->dtb_xamot != NULL) {
10961 			ASSERT(buf->dtb_tomax != NULL);
10962 			ASSERT(buf->dtb_size == size);
10963 			kmem_free(buf->dtb_xamot, size);
10964 		}
10965 
10966 		if (buf->dtb_tomax != NULL) {
10967 			ASSERT(buf->dtb_size == size);
10968 			kmem_free(buf->dtb_tomax, size);
10969 		}
10970 
10971 		buf->dtb_tomax = NULL;
10972 		buf->dtb_xamot = NULL;
10973 		buf->dtb_size = 0;
10974 
10975 	}
10976 
10977 	return (ENOMEM);
10978 #endif
10979 }
10980 
10981 /*
10982  * Note:  called from probe context.  This function just increments the drop
10983  * count on a buffer.  It has been made a function to allow for the
10984  * possibility of understanding the source of mysterious drop counts.  (A
10985  * problem for which one may be particularly disappointed that DTrace cannot
10986  * be used to understand DTrace.)
10987  */
10988 static void
10989 dtrace_buffer_drop(dtrace_buffer_t *buf)
10990 {
10991 	buf->dtb_drops++;
10992 }
10993 
10994 /*
10995  * Note:  called from probe context.  This function is called to reserve space
10996  * in a buffer.  If mstate is non-NULL, sets the scratch base and size in the
10997  * mstate.  Returns the new offset in the buffer, or a negative value if an
10998  * error has occurred.
10999  */
11000 static intptr_t
11001 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11002     dtrace_state_t *state, dtrace_mstate_t *mstate)
11003 {
11004 	intptr_t offs = buf->dtb_offset, soffs;
11005 	intptr_t woffs;
11006 	caddr_t tomax;
11007 	size_t total;
11008 
11009 	if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11010 		return (-1);
11011 
11012 	if ((tomax = buf->dtb_tomax) == NULL) {
11013 		dtrace_buffer_drop(buf);
11014 		return (-1);
11015 	}
11016 
11017 	if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11018 		while (offs & (align - 1)) {
11019 			/*
11020 			 * Assert that our alignment is off by a number which
11021 			 * is itself sizeof (uint32_t) aligned.
11022 			 */
11023 			ASSERT(!((align - (offs & (align - 1))) &
11024 			    (sizeof (uint32_t) - 1)));
11025 			DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11026 			offs += sizeof (uint32_t);
11027 		}
11028 
11029 		if ((soffs = offs + needed) > buf->dtb_size) {
11030 			dtrace_buffer_drop(buf);
11031 			return (-1);
11032 		}
11033 
11034 		if (mstate == NULL)
11035 			return (offs);
11036 
11037 		mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11038 		mstate->dtms_scratch_size = buf->dtb_size - soffs;
11039 		mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11040 
11041 		return (offs);
11042 	}
11043 
11044 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11045 		if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11046 		    (buf->dtb_flags & DTRACEBUF_FULL))
11047 			return (-1);
11048 		goto out;
11049 	}
11050 
11051 	total = needed + (offs & (align - 1));
11052 
11053 	/*
11054 	 * For a ring buffer, life is quite a bit more complicated.  Before
11055 	 * we can store any padding, we need to adjust our wrapping offset.
11056 	 * (If we've never before wrapped or we're not about to, no adjustment
11057 	 * is required.)
11058 	 */
11059 	if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11060 	    offs + total > buf->dtb_size) {
11061 		woffs = buf->dtb_xamot_offset;
11062 
11063 		if (offs + total > buf->dtb_size) {
11064 			/*
11065 			 * We can't fit in the end of the buffer.  First, a
11066 			 * sanity check that we can fit in the buffer at all.
11067 			 */
11068 			if (total > buf->dtb_size) {
11069 				dtrace_buffer_drop(buf);
11070 				return (-1);
11071 			}
11072 
11073 			/*
11074 			 * We're going to be storing at the top of the buffer,
11075 			 * so now we need to deal with the wrapped offset.  We
11076 			 * only reset our wrapped offset to 0 if it is
11077 			 * currently greater than the current offset.  If it
11078 			 * is less than the current offset, it is because a
11079 			 * previous allocation induced a wrap -- but the
11080 			 * allocation didn't subsequently take the space due
11081 			 * to an error or false predicate evaluation.  In this
11082 			 * case, we'll just leave the wrapped offset alone: if
11083 			 * the wrapped offset hasn't been advanced far enough
11084 			 * for this allocation, it will be adjusted in the
11085 			 * lower loop.
11086 			 */
11087 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11088 				if (woffs >= offs)
11089 					woffs = 0;
11090 			} else {
11091 				woffs = 0;
11092 			}
11093 
11094 			/*
11095 			 * Now we know that we're going to be storing to the
11096 			 * top of the buffer and that there is room for us
11097 			 * there.  We need to clear the buffer from the current
11098 			 * offset to the end (there may be old gunk there).
11099 			 */
11100 			while (offs < buf->dtb_size)
11101 				tomax[offs++] = 0;
11102 
11103 			/*
11104 			 * We need to set our offset to zero.  And because we
11105 			 * are wrapping, we need to set the bit indicating as
11106 			 * much.  We can also adjust our needed space back
11107 			 * down to the space required by the ECB -- we know
11108 			 * that the top of the buffer is aligned.
11109 			 */
11110 			offs = 0;
11111 			total = needed;
11112 			buf->dtb_flags |= DTRACEBUF_WRAPPED;
11113 		} else {
11114 			/*
11115 			 * There is room for us in the buffer, so we simply
11116 			 * need to check the wrapped offset.
11117 			 */
11118 			if (woffs < offs) {
11119 				/*
11120 				 * The wrapped offset is less than the offset.
11121 				 * This can happen if we allocated buffer space
11122 				 * that induced a wrap, but then we didn't
11123 				 * subsequently take the space due to an error
11124 				 * or false predicate evaluation.  This is
11125 				 * okay; we know that _this_ allocation isn't
11126 				 * going to induce a wrap.  We still can't
11127 				 * reset the wrapped offset to be zero,
11128 				 * however: the space may have been trashed in
11129 				 * the previous failed probe attempt.  But at
11130 				 * least the wrapped offset doesn't need to
11131 				 * be adjusted at all...
11132 				 */
11133 				goto out;
11134 			}
11135 		}
11136 
11137 		while (offs + total > woffs) {
11138 			dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11139 			size_t size;
11140 
11141 			if (epid == DTRACE_EPIDNONE) {
11142 				size = sizeof (uint32_t);
11143 			} else {
11144 				ASSERT3U(epid, <=, state->dts_necbs);
11145 				ASSERT(state->dts_ecbs[epid - 1] != NULL);
11146 
11147 				size = state->dts_ecbs[epid - 1]->dte_size;
11148 			}
11149 
11150 			ASSERT(woffs + size <= buf->dtb_size);
11151 			ASSERT(size != 0);
11152 
11153 			if (woffs + size == buf->dtb_size) {
11154 				/*
11155 				 * We've reached the end of the buffer; we want
11156 				 * to set the wrapped offset to 0 and break
11157 				 * out.  However, if the offs is 0, then we're
11158 				 * in a strange edge-condition:  the amount of
11159 				 * space that we want to reserve plus the size
11160 				 * of the record that we're overwriting is
11161 				 * greater than the size of the buffer.  This
11162 				 * is problematic because if we reserve the
11163 				 * space but subsequently don't consume it (due
11164 				 * to a failed predicate or error) the wrapped
11165 				 * offset will be 0 -- yet the EPID at offset 0
11166 				 * will not be committed.  This situation is
11167 				 * relatively easy to deal with:  if we're in
11168 				 * this case, the buffer is indistinguishable
11169 				 * from one that hasn't wrapped; we need only
11170 				 * finish the job by clearing the wrapped bit,
11171 				 * explicitly setting the offset to be 0, and
11172 				 * zero'ing out the old data in the buffer.
11173 				 */
11174 				if (offs == 0) {
11175 					buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11176 					buf->dtb_offset = 0;
11177 					woffs = total;
11178 
11179 					while (woffs < buf->dtb_size)
11180 						tomax[woffs++] = 0;
11181 				}
11182 
11183 				woffs = 0;
11184 				break;
11185 			}
11186 
11187 			woffs += size;
11188 		}
11189 
11190 		/*
11191 		 * We have a wrapped offset.  It may be that the wrapped offset
11192 		 * has become zero -- that's okay.
11193 		 */
11194 		buf->dtb_xamot_offset = woffs;
11195 	}
11196 
11197 out:
11198 	/*
11199 	 * Now we can plow the buffer with any necessary padding.
11200 	 */
11201 	while (offs & (align - 1)) {
11202 		/*
11203 		 * Assert that our alignment is off by a number which
11204 		 * is itself sizeof (uint32_t) aligned.
11205 		 */
11206 		ASSERT(!((align - (offs & (align - 1))) &
11207 		    (sizeof (uint32_t) - 1)));
11208 		DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11209 		offs += sizeof (uint32_t);
11210 	}
11211 
11212 	if (buf->dtb_flags & DTRACEBUF_FILL) {
11213 		if (offs + needed > buf->dtb_size - state->dts_reserve) {
11214 			buf->dtb_flags |= DTRACEBUF_FULL;
11215 			return (-1);
11216 		}
11217 	}
11218 
11219 	if (mstate == NULL)
11220 		return (offs);
11221 
11222 	/*
11223 	 * For ring buffers and fill buffers, the scratch space is always
11224 	 * the inactive buffer.
11225 	 */
11226 	mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11227 	mstate->dtms_scratch_size = buf->dtb_size;
11228 	mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11229 
11230 	return (offs);
11231 }
11232 
11233 static void
11234 dtrace_buffer_polish(dtrace_buffer_t *buf)
11235 {
11236 	ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11237 	ASSERT(MUTEX_HELD(&dtrace_lock));
11238 
11239 	if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11240 		return;
11241 
11242 	/*
11243 	 * We need to polish the ring buffer.  There are three cases:
11244 	 *
11245 	 * - The first (and presumably most common) is that there is no gap
11246 	 *   between the buffer offset and the wrapped offset.  In this case,
11247 	 *   there is nothing in the buffer that isn't valid data; we can
11248 	 *   mark the buffer as polished and return.
11249 	 *
11250 	 * - The second (less common than the first but still more common
11251 	 *   than the third) is that there is a gap between the buffer offset
11252 	 *   and the wrapped offset, and the wrapped offset is larger than the
11253 	 *   buffer offset.  This can happen because of an alignment issue, or
11254 	 *   can happen because of a call to dtrace_buffer_reserve() that
11255 	 *   didn't subsequently consume the buffer space.  In this case,
11256 	 *   we need to zero the data from the buffer offset to the wrapped
11257 	 *   offset.
11258 	 *
11259 	 * - The third (and least common) is that there is a gap between the
11260 	 *   buffer offset and the wrapped offset, but the wrapped offset is
11261 	 *   _less_ than the buffer offset.  This can only happen because a
11262 	 *   call to dtrace_buffer_reserve() induced a wrap, but the space
11263 	 *   was not subsequently consumed.  In this case, we need to zero the
11264 	 *   space from the offset to the end of the buffer _and_ from the
11265 	 *   top of the buffer to the wrapped offset.
11266 	 */
11267 	if (buf->dtb_offset < buf->dtb_xamot_offset) {
11268 		bzero(buf->dtb_tomax + buf->dtb_offset,
11269 		    buf->dtb_xamot_offset - buf->dtb_offset);
11270 	}
11271 
11272 	if (buf->dtb_offset > buf->dtb_xamot_offset) {
11273 		bzero(buf->dtb_tomax + buf->dtb_offset,
11274 		    buf->dtb_size - buf->dtb_offset);
11275 		bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11276 	}
11277 }
11278 
11279 /*
11280  * This routine determines if data generated at the specified time has likely
11281  * been entirely consumed at user-level.  This routine is called to determine
11282  * if an ECB on a defunct probe (but for an active enabling) can be safely
11283  * disabled and destroyed.
11284  */
11285 static int
11286 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11287 {
11288 	int i;
11289 
11290 	for (i = 0; i < NCPU; i++) {
11291 		dtrace_buffer_t *buf = &bufs[i];
11292 
11293 		if (buf->dtb_size == 0)
11294 			continue;
11295 
11296 		if (buf->dtb_flags & DTRACEBUF_RING)
11297 			return (0);
11298 
11299 		if (!buf->dtb_switched && buf->dtb_offset != 0)
11300 			return (0);
11301 
11302 		if (buf->dtb_switched - buf->dtb_interval < when)
11303 			return (0);
11304 	}
11305 
11306 	return (1);
11307 }
11308 
11309 static void
11310 dtrace_buffer_free(dtrace_buffer_t *bufs)
11311 {
11312 	int i;
11313 
11314 	for (i = 0; i < NCPU; i++) {
11315 		dtrace_buffer_t *buf = &bufs[i];
11316 
11317 		if (buf->dtb_tomax == NULL) {
11318 			ASSERT(buf->dtb_xamot == NULL);
11319 			ASSERT(buf->dtb_size == 0);
11320 			continue;
11321 		}
11322 
11323 		if (buf->dtb_xamot != NULL) {
11324 			ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11325 			kmem_free(buf->dtb_xamot, buf->dtb_size);
11326 		}
11327 
11328 		kmem_free(buf->dtb_tomax, buf->dtb_size);
11329 		buf->dtb_size = 0;
11330 		buf->dtb_tomax = NULL;
11331 		buf->dtb_xamot = NULL;
11332 	}
11333 }
11334 
11335 /*
11336  * DTrace Enabling Functions
11337  */
11338 static dtrace_enabling_t *
11339 dtrace_enabling_create(dtrace_vstate_t *vstate)
11340 {
11341 	dtrace_enabling_t *enab;
11342 
11343 	enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11344 	enab->dten_vstate = vstate;
11345 
11346 	return (enab);
11347 }
11348 
11349 static void
11350 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11351 {
11352 	dtrace_ecbdesc_t **ndesc;
11353 	size_t osize, nsize;
11354 
11355 	/*
11356 	 * We can't add to enablings after we've enabled them, or after we've
11357 	 * retained them.
11358 	 */
11359 	ASSERT(enab->dten_probegen == 0);
11360 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11361 
11362 	if (enab->dten_ndesc < enab->dten_maxdesc) {
11363 		enab->dten_desc[enab->dten_ndesc++] = ecb;
11364 		return;
11365 	}
11366 
11367 	osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11368 
11369 	if (enab->dten_maxdesc == 0) {
11370 		enab->dten_maxdesc = 1;
11371 	} else {
11372 		enab->dten_maxdesc <<= 1;
11373 	}
11374 
11375 	ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11376 
11377 	nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11378 	ndesc = kmem_zalloc(nsize, KM_SLEEP);
11379 	bcopy(enab->dten_desc, ndesc, osize);
11380 	if (enab->dten_desc != NULL)
11381 		kmem_free(enab->dten_desc, osize);
11382 
11383 	enab->dten_desc = ndesc;
11384 	enab->dten_desc[enab->dten_ndesc++] = ecb;
11385 }
11386 
11387 static void
11388 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11389     dtrace_probedesc_t *pd)
11390 {
11391 	dtrace_ecbdesc_t *new;
11392 	dtrace_predicate_t *pred;
11393 	dtrace_actdesc_t *act;
11394 
11395 	/*
11396 	 * We're going to create a new ECB description that matches the
11397 	 * specified ECB in every way, but has the specified probe description.
11398 	 */
11399 	new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11400 
11401 	if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11402 		dtrace_predicate_hold(pred);
11403 
11404 	for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11405 		dtrace_actdesc_hold(act);
11406 
11407 	new->dted_action = ecb->dted_action;
11408 	new->dted_pred = ecb->dted_pred;
11409 	new->dted_probe = *pd;
11410 	new->dted_uarg = ecb->dted_uarg;
11411 
11412 	dtrace_enabling_add(enab, new);
11413 }
11414 
11415 static void
11416 dtrace_enabling_dump(dtrace_enabling_t *enab)
11417 {
11418 	int i;
11419 
11420 	for (i = 0; i < enab->dten_ndesc; i++) {
11421 		dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11422 
11423 		cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11424 		    desc->dtpd_provider, desc->dtpd_mod,
11425 		    desc->dtpd_func, desc->dtpd_name);
11426 	}
11427 }
11428 
11429 static void
11430 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11431 {
11432 	int i;
11433 	dtrace_ecbdesc_t *ep;
11434 	dtrace_vstate_t *vstate = enab->dten_vstate;
11435 
11436 	ASSERT(MUTEX_HELD(&dtrace_lock));
11437 
11438 	for (i = 0; i < enab->dten_ndesc; i++) {
11439 		dtrace_actdesc_t *act, *next;
11440 		dtrace_predicate_t *pred;
11441 
11442 		ep = enab->dten_desc[i];
11443 
11444 		if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11445 			dtrace_predicate_release(pred, vstate);
11446 
11447 		for (act = ep->dted_action; act != NULL; act = next) {
11448 			next = act->dtad_next;
11449 			dtrace_actdesc_release(act, vstate);
11450 		}
11451 
11452 		kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11453 	}
11454 
11455 	if (enab->dten_desc != NULL)
11456 		kmem_free(enab->dten_desc,
11457 		    enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11458 
11459 	/*
11460 	 * If this was a retained enabling, decrement the dts_nretained count
11461 	 * and take it off of the dtrace_retained list.
11462 	 */
11463 	if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11464 	    dtrace_retained == enab) {
11465 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11466 		ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11467 		enab->dten_vstate->dtvs_state->dts_nretained--;
11468 	}
11469 
11470 	if (enab->dten_prev == NULL) {
11471 		if (dtrace_retained == enab) {
11472 			dtrace_retained = enab->dten_next;
11473 
11474 			if (dtrace_retained != NULL)
11475 				dtrace_retained->dten_prev = NULL;
11476 		}
11477 	} else {
11478 		ASSERT(enab != dtrace_retained);
11479 		ASSERT(dtrace_retained != NULL);
11480 		enab->dten_prev->dten_next = enab->dten_next;
11481 	}
11482 
11483 	if (enab->dten_next != NULL) {
11484 		ASSERT(dtrace_retained != NULL);
11485 		enab->dten_next->dten_prev = enab->dten_prev;
11486 	}
11487 
11488 	kmem_free(enab, sizeof (dtrace_enabling_t));
11489 }
11490 
11491 static int
11492 dtrace_enabling_retain(dtrace_enabling_t *enab)
11493 {
11494 	dtrace_state_t *state;
11495 
11496 	ASSERT(MUTEX_HELD(&dtrace_lock));
11497 	ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11498 	ASSERT(enab->dten_vstate != NULL);
11499 
11500 	state = enab->dten_vstate->dtvs_state;
11501 	ASSERT(state != NULL);
11502 
11503 	/*
11504 	 * We only allow each state to retain dtrace_retain_max enablings.
11505 	 */
11506 	if (state->dts_nretained >= dtrace_retain_max)
11507 		return (ENOSPC);
11508 
11509 	state->dts_nretained++;
11510 
11511 	if (dtrace_retained == NULL) {
11512 		dtrace_retained = enab;
11513 		return (0);
11514 	}
11515 
11516 	enab->dten_next = dtrace_retained;
11517 	dtrace_retained->dten_prev = enab;
11518 	dtrace_retained = enab;
11519 
11520 	return (0);
11521 }
11522 
11523 static int
11524 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11525     dtrace_probedesc_t *create)
11526 {
11527 	dtrace_enabling_t *new, *enab;
11528 	int found = 0, err = ENOENT;
11529 
11530 	ASSERT(MUTEX_HELD(&dtrace_lock));
11531 	ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11532 	ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11533 	ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11534 	ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11535 
11536 	new = dtrace_enabling_create(&state->dts_vstate);
11537 
11538 	/*
11539 	 * Iterate over all retained enablings, looking for enablings that
11540 	 * match the specified state.
11541 	 */
11542 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11543 		int i;
11544 
11545 		/*
11546 		 * dtvs_state can only be NULL for helper enablings -- and
11547 		 * helper enablings can't be retained.
11548 		 */
11549 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11550 
11551 		if (enab->dten_vstate->dtvs_state != state)
11552 			continue;
11553 
11554 		/*
11555 		 * Now iterate over each probe description; we're looking for
11556 		 * an exact match to the specified probe description.
11557 		 */
11558 		for (i = 0; i < enab->dten_ndesc; i++) {
11559 			dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11560 			dtrace_probedesc_t *pd = &ep->dted_probe;
11561 
11562 			if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11563 				continue;
11564 
11565 			if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11566 				continue;
11567 
11568 			if (strcmp(pd->dtpd_func, match->dtpd_func))
11569 				continue;
11570 
11571 			if (strcmp(pd->dtpd_name, match->dtpd_name))
11572 				continue;
11573 
11574 			/*
11575 			 * We have a winning probe!  Add it to our growing
11576 			 * enabling.
11577 			 */
11578 			found = 1;
11579 			dtrace_enabling_addlike(new, ep, create);
11580 		}
11581 	}
11582 
11583 	if (!found || (err = dtrace_enabling_retain(new)) != 0) {
11584 		dtrace_enabling_destroy(new);
11585 		return (err);
11586 	}
11587 
11588 	return (0);
11589 }
11590 
11591 static void
11592 dtrace_enabling_retract(dtrace_state_t *state)
11593 {
11594 	dtrace_enabling_t *enab, *next;
11595 
11596 	ASSERT(MUTEX_HELD(&dtrace_lock));
11597 
11598 	/*
11599 	 * Iterate over all retained enablings, destroy the enablings retained
11600 	 * for the specified state.
11601 	 */
11602 	for (enab = dtrace_retained; enab != NULL; enab = next) {
11603 		next = enab->dten_next;
11604 
11605 		/*
11606 		 * dtvs_state can only be NULL for helper enablings -- and
11607 		 * helper enablings can't be retained.
11608 		 */
11609 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11610 
11611 		if (enab->dten_vstate->dtvs_state == state) {
11612 			ASSERT(state->dts_nretained > 0);
11613 			dtrace_enabling_destroy(enab);
11614 		}
11615 	}
11616 
11617 	ASSERT(state->dts_nretained == 0);
11618 }
11619 
11620 static int
11621 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
11622 {
11623 	int i = 0;
11624 	int matched = 0;
11625 
11626 	ASSERT(MUTEX_HELD(&cpu_lock));
11627 	ASSERT(MUTEX_HELD(&dtrace_lock));
11628 
11629 	for (i = 0; i < enab->dten_ndesc; i++) {
11630 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11631 
11632 		enab->dten_current = ep;
11633 		enab->dten_error = 0;
11634 
11635 		matched += dtrace_probe_enable(&ep->dted_probe, enab);
11636 
11637 		if (enab->dten_error != 0) {
11638 			/*
11639 			 * If we get an error half-way through enabling the
11640 			 * probes, we kick out -- perhaps with some number of
11641 			 * them enabled.  Leaving enabled probes enabled may
11642 			 * be slightly confusing for user-level, but we expect
11643 			 * that no one will attempt to actually drive on in
11644 			 * the face of such errors.  If this is an anonymous
11645 			 * enabling (indicated with a NULL nmatched pointer),
11646 			 * we cmn_err() a message.  We aren't expecting to
11647 			 * get such an error -- such as it can exist at all,
11648 			 * it would be a result of corrupted DOF in the driver
11649 			 * properties.
11650 			 */
11651 			if (nmatched == NULL) {
11652 				cmn_err(CE_WARN, "dtrace_enabling_match() "
11653 				    "error on %p: %d", (void *)ep,
11654 				    enab->dten_error);
11655 			}
11656 
11657 			return (enab->dten_error);
11658 		}
11659 	}
11660 
11661 	enab->dten_probegen = dtrace_probegen;
11662 	if (nmatched != NULL)
11663 		*nmatched = matched;
11664 
11665 	return (0);
11666 }
11667 
11668 static void
11669 dtrace_enabling_matchall(void)
11670 {
11671 	dtrace_enabling_t *enab;
11672 
11673 	mutex_enter(&cpu_lock);
11674 	mutex_enter(&dtrace_lock);
11675 
11676 	/*
11677 	 * Iterate over all retained enablings to see if any probes match
11678 	 * against them.  We only perform this operation on enablings for which
11679 	 * we have sufficient permissions by virtue of being in the global zone
11680 	 * or in the same zone as the DTrace client.  Because we can be called
11681 	 * after dtrace_detach() has been called, we cannot assert that there
11682 	 * are retained enablings.  We can safely load from dtrace_retained,
11683 	 * however:  the taskq_destroy() at the end of dtrace_detach() will
11684 	 * block pending our completion.
11685 	 */
11686 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11687 #if defined(sun)
11688 		cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
11689 
11690 		if (INGLOBALZONE(curproc) || getzoneid() == crgetzoneid(cr))
11691 #endif
11692 			(void) dtrace_enabling_match(enab, NULL);
11693 	}
11694 
11695 	mutex_exit(&dtrace_lock);
11696 	mutex_exit(&cpu_lock);
11697 }
11698 
11699 /*
11700  * If an enabling is to be enabled without having matched probes (that is, if
11701  * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
11702  * enabling must be _primed_ by creating an ECB for every ECB description.
11703  * This must be done to assure that we know the number of speculations, the
11704  * number of aggregations, the minimum buffer size needed, etc. before we
11705  * transition out of DTRACE_ACTIVITY_INACTIVE.  To do this without actually
11706  * enabling any probes, we create ECBs for every ECB decription, but with a
11707  * NULL probe -- which is exactly what this function does.
11708  */
11709 static void
11710 dtrace_enabling_prime(dtrace_state_t *state)
11711 {
11712 	dtrace_enabling_t *enab;
11713 	int i;
11714 
11715 	for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11716 		ASSERT(enab->dten_vstate->dtvs_state != NULL);
11717 
11718 		if (enab->dten_vstate->dtvs_state != state)
11719 			continue;
11720 
11721 		/*
11722 		 * We don't want to prime an enabling more than once, lest
11723 		 * we allow a malicious user to induce resource exhaustion.
11724 		 * (The ECBs that result from priming an enabling aren't
11725 		 * leaked -- but they also aren't deallocated until the
11726 		 * consumer state is destroyed.)
11727 		 */
11728 		if (enab->dten_primed)
11729 			continue;
11730 
11731 		for (i = 0; i < enab->dten_ndesc; i++) {
11732 			enab->dten_current = enab->dten_desc[i];
11733 			(void) dtrace_probe_enable(NULL, enab);
11734 		}
11735 
11736 		enab->dten_primed = 1;
11737 	}
11738 }
11739 
11740 /*
11741  * Called to indicate that probes should be provided due to retained
11742  * enablings.  This is implemented in terms of dtrace_probe_provide(), but it
11743  * must take an initial lap through the enabling calling the dtps_provide()
11744  * entry point explicitly to allow for autocreated probes.
11745  */
11746 static void
11747 dtrace_enabling_provide(dtrace_provider_t *prv)
11748 {
11749 	int i, all = 0;
11750 	dtrace_probedesc_t desc;
11751 
11752 	ASSERT(MUTEX_HELD(&dtrace_lock));
11753 	ASSERT(MUTEX_HELD(&dtrace_provider_lock));
11754 
11755 	if (prv == NULL) {
11756 		all = 1;
11757 		prv = dtrace_provider;
11758 	}
11759 
11760 	do {
11761 		dtrace_enabling_t *enab = dtrace_retained;
11762 		void *parg = prv->dtpv_arg;
11763 
11764 		for (; enab != NULL; enab = enab->dten_next) {
11765 			for (i = 0; i < enab->dten_ndesc; i++) {
11766 				desc = enab->dten_desc[i]->dted_probe;
11767 				mutex_exit(&dtrace_lock);
11768 				prv->dtpv_pops.dtps_provide(parg, &desc);
11769 				mutex_enter(&dtrace_lock);
11770 			}
11771 		}
11772 	} while (all && (prv = prv->dtpv_next) != NULL);
11773 
11774 	mutex_exit(&dtrace_lock);
11775 	dtrace_probe_provide(NULL, all ? NULL : prv);
11776 	mutex_enter(&dtrace_lock);
11777 }
11778 
11779 /*
11780  * Called to reap ECBs that are attached to probes from defunct providers.
11781  */
11782 static void
11783 dtrace_enabling_reap(void)
11784 {
11785 	dtrace_provider_t *prov;
11786 	dtrace_probe_t *probe;
11787 	dtrace_ecb_t *ecb;
11788 	hrtime_t when;
11789 	int i;
11790 
11791 	mutex_enter(&cpu_lock);
11792 	mutex_enter(&dtrace_lock);
11793 
11794 	for (i = 0; i < dtrace_nprobes; i++) {
11795 		if ((probe = dtrace_probes[i]) == NULL)
11796 			continue;
11797 
11798 		if (probe->dtpr_ecb == NULL)
11799 			continue;
11800 
11801 		prov = probe->dtpr_provider;
11802 
11803 		if ((when = prov->dtpv_defunct) == 0)
11804 			continue;
11805 
11806 		/*
11807 		 * We have ECBs on a defunct provider:  we want to reap these
11808 		 * ECBs to allow the provider to unregister.  The destruction
11809 		 * of these ECBs must be done carefully:  if we destroy the ECB
11810 		 * and the consumer later wishes to consume an EPID that
11811 		 * corresponds to the destroyed ECB (and if the EPID metadata
11812 		 * has not been previously consumed), the consumer will abort
11813 		 * processing on the unknown EPID.  To reduce (but not, sadly,
11814 		 * eliminate) the possibility of this, we will only destroy an
11815 		 * ECB for a defunct provider if, for the state that
11816 		 * corresponds to the ECB:
11817 		 *
11818 		 *  (a)	There is no speculative tracing (which can effectively
11819 		 *	cache an EPID for an arbitrary amount of time).
11820 		 *
11821 		 *  (b)	The principal buffers have been switched twice since the
11822 		 *	provider became defunct.
11823 		 *
11824 		 *  (c)	The aggregation buffers are of zero size or have been
11825 		 *	switched twice since the provider became defunct.
11826 		 *
11827 		 * We use dts_speculates to determine (a) and call a function
11828 		 * (dtrace_buffer_consumed()) to determine (b) and (c).  Note
11829 		 * that as soon as we've been unable to destroy one of the ECBs
11830 		 * associated with the probe, we quit trying -- reaping is only
11831 		 * fruitful in as much as we can destroy all ECBs associated
11832 		 * with the defunct provider's probes.
11833 		 */
11834 		while ((ecb = probe->dtpr_ecb) != NULL) {
11835 			dtrace_state_t *state = ecb->dte_state;
11836 			dtrace_buffer_t *buf = state->dts_buffer;
11837 			dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
11838 
11839 			if (state->dts_speculates)
11840 				break;
11841 
11842 			if (!dtrace_buffer_consumed(buf, when))
11843 				break;
11844 
11845 			if (!dtrace_buffer_consumed(aggbuf, when))
11846 				break;
11847 
11848 			dtrace_ecb_disable(ecb);
11849 			ASSERT(probe->dtpr_ecb != ecb);
11850 			dtrace_ecb_destroy(ecb);
11851 		}
11852 	}
11853 
11854 	mutex_exit(&dtrace_lock);
11855 	mutex_exit(&cpu_lock);
11856 }
11857 
11858 /*
11859  * DTrace DOF Functions
11860  */
11861 /*ARGSUSED*/
11862 static void
11863 dtrace_dof_error(dof_hdr_t *dof, const char *str)
11864 {
11865 	if (dtrace_err_verbose)
11866 		cmn_err(CE_WARN, "failed to process DOF: %s", str);
11867 
11868 #ifdef DTRACE_ERRDEBUG
11869 	dtrace_errdebug(str);
11870 #endif
11871 }
11872 
11873 /*
11874  * Create DOF out of a currently enabled state.  Right now, we only create
11875  * DOF containing the run-time options -- but this could be expanded to create
11876  * complete DOF representing the enabled state.
11877  */
11878 static dof_hdr_t *
11879 dtrace_dof_create(dtrace_state_t *state)
11880 {
11881 	dof_hdr_t *dof;
11882 	dof_sec_t *sec;
11883 	dof_optdesc_t *opt;
11884 	int i, len = sizeof (dof_hdr_t) +
11885 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
11886 	    sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11887 
11888 	ASSERT(MUTEX_HELD(&dtrace_lock));
11889 
11890 	dof = kmem_zalloc(len, KM_SLEEP);
11891 	dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
11892 	dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
11893 	dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
11894 	dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
11895 
11896 	dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
11897 	dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
11898 	dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
11899 	dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
11900 	dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
11901 	dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
11902 
11903 	dof->dofh_flags = 0;
11904 	dof->dofh_hdrsize = sizeof (dof_hdr_t);
11905 	dof->dofh_secsize = sizeof (dof_sec_t);
11906 	dof->dofh_secnum = 1;	/* only DOF_SECT_OPTDESC */
11907 	dof->dofh_secoff = sizeof (dof_hdr_t);
11908 	dof->dofh_loadsz = len;
11909 	dof->dofh_filesz = len;
11910 	dof->dofh_pad = 0;
11911 
11912 	/*
11913 	 * Fill in the option section header...
11914 	 */
11915 	sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
11916 	sec->dofs_type = DOF_SECT_OPTDESC;
11917 	sec->dofs_align = sizeof (uint64_t);
11918 	sec->dofs_flags = DOF_SECF_LOAD;
11919 	sec->dofs_entsize = sizeof (dof_optdesc_t);
11920 
11921 	opt = (dof_optdesc_t *)((uintptr_t)sec +
11922 	    roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
11923 
11924 	sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
11925 	sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
11926 
11927 	for (i = 0; i < DTRACEOPT_MAX; i++) {
11928 		opt[i].dofo_option = i;
11929 		opt[i].dofo_strtab = DOF_SECIDX_NONE;
11930 		opt[i].dofo_value = state->dts_options[i];
11931 	}
11932 
11933 	return (dof);
11934 }
11935 
11936 static dof_hdr_t *
11937 dtrace_dof_copyin(uintptr_t uarg, int *errp)
11938 {
11939 	dof_hdr_t hdr, *dof;
11940 
11941 	ASSERT(!MUTEX_HELD(&dtrace_lock));
11942 
11943 	/*
11944 	 * First, we're going to copyin() the sizeof (dof_hdr_t).
11945 	 */
11946 	if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
11947 		dtrace_dof_error(NULL, "failed to copyin DOF header");
11948 		*errp = EFAULT;
11949 		return (NULL);
11950 	}
11951 
11952 	/*
11953 	 * Now we'll allocate the entire DOF and copy it in -- provided
11954 	 * that the length isn't outrageous.
11955 	 */
11956 	if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
11957 		dtrace_dof_error(&hdr, "load size exceeds maximum");
11958 		*errp = E2BIG;
11959 		return (NULL);
11960 	}
11961 
11962 	if (hdr.dofh_loadsz < sizeof (hdr)) {
11963 		dtrace_dof_error(&hdr, "invalid load size");
11964 		*errp = EINVAL;
11965 		return (NULL);
11966 	}
11967 
11968 	dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
11969 
11970 	if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0) {
11971 		kmem_free(dof, hdr.dofh_loadsz);
11972 		*errp = EFAULT;
11973 		return (NULL);
11974 	}
11975 
11976 	return (dof);
11977 }
11978 
11979 #if !defined(sun)
11980 static __inline uchar_t
11981 dtrace_dof_char(char c) {
11982 	switch (c) {
11983 	case '0':
11984 	case '1':
11985 	case '2':
11986 	case '3':
11987 	case '4':
11988 	case '5':
11989 	case '6':
11990 	case '7':
11991 	case '8':
11992 	case '9':
11993 		return (c - '0');
11994 	case 'A':
11995 	case 'B':
11996 	case 'C':
11997 	case 'D':
11998 	case 'E':
11999 	case 'F':
12000 		return (c - 'A' + 10);
12001 	case 'a':
12002 	case 'b':
12003 	case 'c':
12004 	case 'd':
12005 	case 'e':
12006 	case 'f':
12007 		return (c - 'a' + 10);
12008 	}
12009 	/* Should not reach here. */
12010 	return (0);
12011 }
12012 #endif
12013 
12014 static dof_hdr_t *
12015 dtrace_dof_property(const char *name)
12016 {
12017 	uchar_t *buf;
12018 	uint64_t loadsz;
12019 	unsigned int len, i;
12020 	dof_hdr_t *dof;
12021 
12022 #if defined(sun)
12023 	/*
12024 	 * Unfortunately, array of values in .conf files are always (and
12025 	 * only) interpreted to be integer arrays.  We must read our DOF
12026 	 * as an integer array, and then squeeze it into a byte array.
12027 	 */
12028 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12029 	    (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12030 		return (NULL);
12031 
12032 	for (i = 0; i < len; i++)
12033 		buf[i] = (uchar_t)(((int *)buf)[i]);
12034 
12035 	if (len < sizeof (dof_hdr_t)) {
12036 		ddi_prop_free(buf);
12037 		dtrace_dof_error(NULL, "truncated header");
12038 		return (NULL);
12039 	}
12040 
12041 	if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12042 		ddi_prop_free(buf);
12043 		dtrace_dof_error(NULL, "truncated DOF");
12044 		return (NULL);
12045 	}
12046 
12047 	if (loadsz >= dtrace_dof_maxsize) {
12048 		ddi_prop_free(buf);
12049 		dtrace_dof_error(NULL, "oversized DOF");
12050 		return (NULL);
12051 	}
12052 
12053 	dof = kmem_alloc(loadsz, KM_SLEEP);
12054 	bcopy(buf, dof, loadsz);
12055 	ddi_prop_free(buf);
12056 #else
12057 	char *p;
12058 	char *p_env;
12059 
12060 	if ((p_env = getenv(name)) == NULL)
12061 		return (NULL);
12062 
12063 	len = strlen(p_env) / 2;
12064 
12065 	buf = kmem_alloc(len, KM_SLEEP);
12066 
12067 	dof = (dof_hdr_t *) buf;
12068 
12069 	p = p_env;
12070 
12071 	for (i = 0; i < len; i++) {
12072 		buf[i] = (dtrace_dof_char(p[0]) << 4) |
12073 		     dtrace_dof_char(p[1]);
12074 		p += 2;
12075 	}
12076 
12077 	freeenv(p_env);
12078 
12079 	if (len < sizeof (dof_hdr_t)) {
12080 		kmem_free(buf, 0);
12081 		dtrace_dof_error(NULL, "truncated header");
12082 		return (NULL);
12083 	}
12084 
12085 	if (len < (loadsz = dof->dofh_loadsz)) {
12086 		kmem_free(buf, 0);
12087 		dtrace_dof_error(NULL, "truncated DOF");
12088 		return (NULL);
12089 	}
12090 
12091 	if (loadsz >= dtrace_dof_maxsize) {
12092 		kmem_free(buf, 0);
12093 		dtrace_dof_error(NULL, "oversized DOF");
12094 		return (NULL);
12095 	}
12096 #endif
12097 
12098 	return (dof);
12099 }
12100 
12101 static void
12102 dtrace_dof_destroy(dof_hdr_t *dof)
12103 {
12104 	kmem_free(dof, dof->dofh_loadsz);
12105 }
12106 
12107 /*
12108  * Return the dof_sec_t pointer corresponding to a given section index.  If the
12109  * index is not valid, dtrace_dof_error() is called and NULL is returned.  If
12110  * a type other than DOF_SECT_NONE is specified, the header is checked against
12111  * this type and NULL is returned if the types do not match.
12112  */
12113 static dof_sec_t *
12114 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12115 {
12116 	dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12117 	    ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12118 
12119 	if (i >= dof->dofh_secnum) {
12120 		dtrace_dof_error(dof, "referenced section index is invalid");
12121 		return (NULL);
12122 	}
12123 
12124 	if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12125 		dtrace_dof_error(dof, "referenced section is not loadable");
12126 		return (NULL);
12127 	}
12128 
12129 	if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12130 		dtrace_dof_error(dof, "referenced section is the wrong type");
12131 		return (NULL);
12132 	}
12133 
12134 	return (sec);
12135 }
12136 
12137 static dtrace_probedesc_t *
12138 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12139 {
12140 	dof_probedesc_t *probe;
12141 	dof_sec_t *strtab;
12142 	uintptr_t daddr = (uintptr_t)dof;
12143 	uintptr_t str;
12144 	size_t size;
12145 
12146 	if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12147 		dtrace_dof_error(dof, "invalid probe section");
12148 		return (NULL);
12149 	}
12150 
12151 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12152 		dtrace_dof_error(dof, "bad alignment in probe description");
12153 		return (NULL);
12154 	}
12155 
12156 	if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12157 		dtrace_dof_error(dof, "truncated probe description");
12158 		return (NULL);
12159 	}
12160 
12161 	probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12162 	strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12163 
12164 	if (strtab == NULL)
12165 		return (NULL);
12166 
12167 	str = daddr + strtab->dofs_offset;
12168 	size = strtab->dofs_size;
12169 
12170 	if (probe->dofp_provider >= strtab->dofs_size) {
12171 		dtrace_dof_error(dof, "corrupt probe provider");
12172 		return (NULL);
12173 	}
12174 
12175 	(void) strncpy(desc->dtpd_provider,
12176 	    (char *)(str + probe->dofp_provider),
12177 	    MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12178 
12179 	if (probe->dofp_mod >= strtab->dofs_size) {
12180 		dtrace_dof_error(dof, "corrupt probe module");
12181 		return (NULL);
12182 	}
12183 
12184 	(void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12185 	    MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12186 
12187 	if (probe->dofp_func >= strtab->dofs_size) {
12188 		dtrace_dof_error(dof, "corrupt probe function");
12189 		return (NULL);
12190 	}
12191 
12192 	(void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12193 	    MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12194 
12195 	if (probe->dofp_name >= strtab->dofs_size) {
12196 		dtrace_dof_error(dof, "corrupt probe name");
12197 		return (NULL);
12198 	}
12199 
12200 	(void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12201 	    MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12202 
12203 	return (desc);
12204 }
12205 
12206 static dtrace_difo_t *
12207 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12208     cred_t *cr)
12209 {
12210 	dtrace_difo_t *dp;
12211 	size_t ttl = 0;
12212 	dof_difohdr_t *dofd;
12213 	uintptr_t daddr = (uintptr_t)dof;
12214 	size_t max = dtrace_difo_maxsize;
12215 	int i, l, n;
12216 
12217 	static const struct {
12218 		int section;
12219 		int bufoffs;
12220 		int lenoffs;
12221 		int entsize;
12222 		int align;
12223 		const char *msg;
12224 	} difo[] = {
12225 		{ DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12226 		offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12227 		sizeof (dif_instr_t), "multiple DIF sections" },
12228 
12229 		{ DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12230 		offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12231 		sizeof (uint64_t), "multiple integer tables" },
12232 
12233 		{ DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12234 		offsetof(dtrace_difo_t, dtdo_strlen), 0,
12235 		sizeof (char), "multiple string tables" },
12236 
12237 		{ DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12238 		offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12239 		sizeof (uint_t), "multiple variable tables" },
12240 
12241 		{ DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12242 	};
12243 
12244 	if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12245 		dtrace_dof_error(dof, "invalid DIFO header section");
12246 		return (NULL);
12247 	}
12248 
12249 	if (sec->dofs_align != sizeof (dof_secidx_t)) {
12250 		dtrace_dof_error(dof, "bad alignment in DIFO header");
12251 		return (NULL);
12252 	}
12253 
12254 	if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12255 	    sec->dofs_size % sizeof (dof_secidx_t)) {
12256 		dtrace_dof_error(dof, "bad size in DIFO header");
12257 		return (NULL);
12258 	}
12259 
12260 	dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12261 	n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12262 
12263 	dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12264 	dp->dtdo_rtype = dofd->dofd_rtype;
12265 
12266 	for (l = 0; l < n; l++) {
12267 		dof_sec_t *subsec;
12268 		void **bufp;
12269 		uint32_t *lenp;
12270 
12271 		if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12272 		    dofd->dofd_links[l])) == NULL)
12273 			goto err; /* invalid section link */
12274 
12275 		if (ttl + subsec->dofs_size > max) {
12276 			dtrace_dof_error(dof, "exceeds maximum size");
12277 			goto err;
12278 		}
12279 
12280 		ttl += subsec->dofs_size;
12281 
12282 		for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12283 			if (subsec->dofs_type != difo[i].section)
12284 				continue;
12285 
12286 			if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12287 				dtrace_dof_error(dof, "section not loaded");
12288 				goto err;
12289 			}
12290 
12291 			if (subsec->dofs_align != difo[i].align) {
12292 				dtrace_dof_error(dof, "bad alignment");
12293 				goto err;
12294 			}
12295 
12296 			bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12297 			lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12298 
12299 			if (*bufp != NULL) {
12300 				dtrace_dof_error(dof, difo[i].msg);
12301 				goto err;
12302 			}
12303 
12304 			if (difo[i].entsize != subsec->dofs_entsize) {
12305 				dtrace_dof_error(dof, "entry size mismatch");
12306 				goto err;
12307 			}
12308 
12309 			if (subsec->dofs_entsize != 0 &&
12310 			    (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12311 				dtrace_dof_error(dof, "corrupt entry size");
12312 				goto err;
12313 			}
12314 
12315 			*lenp = subsec->dofs_size;
12316 			*bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12317 			bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12318 			    *bufp, subsec->dofs_size);
12319 
12320 			if (subsec->dofs_entsize != 0)
12321 				*lenp /= subsec->dofs_entsize;
12322 
12323 			break;
12324 		}
12325 
12326 		/*
12327 		 * If we encounter a loadable DIFO sub-section that is not
12328 		 * known to us, assume this is a broken program and fail.
12329 		 */
12330 		if (difo[i].section == DOF_SECT_NONE &&
12331 		    (subsec->dofs_flags & DOF_SECF_LOAD)) {
12332 			dtrace_dof_error(dof, "unrecognized DIFO subsection");
12333 			goto err;
12334 		}
12335 	}
12336 
12337 	if (dp->dtdo_buf == NULL) {
12338 		/*
12339 		 * We can't have a DIF object without DIF text.
12340 		 */
12341 		dtrace_dof_error(dof, "missing DIF text");
12342 		goto err;
12343 	}
12344 
12345 	/*
12346 	 * Before we validate the DIF object, run through the variable table
12347 	 * looking for the strings -- if any of their size are under, we'll set
12348 	 * their size to be the system-wide default string size.  Note that
12349 	 * this should _not_ happen if the "strsize" option has been set --
12350 	 * in this case, the compiler should have set the size to reflect the
12351 	 * setting of the option.
12352 	 */
12353 	for (i = 0; i < dp->dtdo_varlen; i++) {
12354 		dtrace_difv_t *v = &dp->dtdo_vartab[i];
12355 		dtrace_diftype_t *t = &v->dtdv_type;
12356 
12357 		if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12358 			continue;
12359 
12360 		if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12361 			t->dtdt_size = dtrace_strsize_default;
12362 	}
12363 
12364 	if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12365 		goto err;
12366 
12367 	dtrace_difo_init(dp, vstate);
12368 	return (dp);
12369 
12370 err:
12371 	kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12372 	kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12373 	kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12374 	kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12375 
12376 	kmem_free(dp, sizeof (dtrace_difo_t));
12377 	return (NULL);
12378 }
12379 
12380 static dtrace_predicate_t *
12381 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12382     cred_t *cr)
12383 {
12384 	dtrace_difo_t *dp;
12385 
12386 	if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12387 		return (NULL);
12388 
12389 	return (dtrace_predicate_create(dp));
12390 }
12391 
12392 static dtrace_actdesc_t *
12393 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12394     cred_t *cr)
12395 {
12396 	dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12397 	dof_actdesc_t *desc;
12398 	dof_sec_t *difosec;
12399 	size_t offs;
12400 	uintptr_t daddr = (uintptr_t)dof;
12401 	uint64_t arg;
12402 	dtrace_actkind_t kind;
12403 
12404 	if (sec->dofs_type != DOF_SECT_ACTDESC) {
12405 		dtrace_dof_error(dof, "invalid action section");
12406 		return (NULL);
12407 	}
12408 
12409 	if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12410 		dtrace_dof_error(dof, "truncated action description");
12411 		return (NULL);
12412 	}
12413 
12414 	if (sec->dofs_align != sizeof (uint64_t)) {
12415 		dtrace_dof_error(dof, "bad alignment in action description");
12416 		return (NULL);
12417 	}
12418 
12419 	if (sec->dofs_size < sec->dofs_entsize) {
12420 		dtrace_dof_error(dof, "section entry size exceeds total size");
12421 		return (NULL);
12422 	}
12423 
12424 	if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12425 		dtrace_dof_error(dof, "bad entry size in action description");
12426 		return (NULL);
12427 	}
12428 
12429 	if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12430 		dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12431 		return (NULL);
12432 	}
12433 
12434 	for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12435 		desc = (dof_actdesc_t *)(daddr +
12436 		    (uintptr_t)sec->dofs_offset + offs);
12437 		kind = (dtrace_actkind_t)desc->dofa_kind;
12438 
12439 		if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12440 		    (kind != DTRACEACT_PRINTA ||
12441 		    desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12442 		    (kind == DTRACEACT_DIFEXPR &&
12443 		    desc->dofa_strtab != DOF_SECIDX_NONE)) {
12444 			dof_sec_t *strtab;
12445 			char *str, *fmt;
12446 			uint64_t i;
12447 
12448 			/*
12449 			 * The argument to these actions is an index into the
12450 			 * DOF string table.  For printf()-like actions, this
12451 			 * is the format string.  For print(), this is the
12452 			 * CTF type of the expression result.
12453 			 */
12454 			if ((strtab = dtrace_dof_sect(dof,
12455 			    DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12456 				goto err;
12457 
12458 			str = (char *)((uintptr_t)dof +
12459 			    (uintptr_t)strtab->dofs_offset);
12460 
12461 			for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12462 				if (str[i] == '\0')
12463 					break;
12464 			}
12465 
12466 			if (i >= strtab->dofs_size) {
12467 				dtrace_dof_error(dof, "bogus format string");
12468 				goto err;
12469 			}
12470 
12471 			if (i == desc->dofa_arg) {
12472 				dtrace_dof_error(dof, "empty format string");
12473 				goto err;
12474 			}
12475 
12476 			i -= desc->dofa_arg;
12477 			fmt = kmem_alloc(i + 1, KM_SLEEP);
12478 			bcopy(&str[desc->dofa_arg], fmt, i + 1);
12479 			arg = (uint64_t)(uintptr_t)fmt;
12480 		} else {
12481 			if (kind == DTRACEACT_PRINTA) {
12482 				ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12483 				arg = 0;
12484 			} else {
12485 				arg = desc->dofa_arg;
12486 			}
12487 		}
12488 
12489 		act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12490 		    desc->dofa_uarg, arg);
12491 
12492 		if (last != NULL) {
12493 			last->dtad_next = act;
12494 		} else {
12495 			first = act;
12496 		}
12497 
12498 		last = act;
12499 
12500 		if (desc->dofa_difo == DOF_SECIDX_NONE)
12501 			continue;
12502 
12503 		if ((difosec = dtrace_dof_sect(dof,
12504 		    DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12505 			goto err;
12506 
12507 		act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12508 
12509 		if (act->dtad_difo == NULL)
12510 			goto err;
12511 	}
12512 
12513 	ASSERT(first != NULL);
12514 	return (first);
12515 
12516 err:
12517 	for (act = first; act != NULL; act = next) {
12518 		next = act->dtad_next;
12519 		dtrace_actdesc_release(act, vstate);
12520 	}
12521 
12522 	return (NULL);
12523 }
12524 
12525 static dtrace_ecbdesc_t *
12526 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12527     cred_t *cr)
12528 {
12529 	dtrace_ecbdesc_t *ep;
12530 	dof_ecbdesc_t *ecb;
12531 	dtrace_probedesc_t *desc;
12532 	dtrace_predicate_t *pred = NULL;
12533 
12534 	if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12535 		dtrace_dof_error(dof, "truncated ECB description");
12536 		return (NULL);
12537 	}
12538 
12539 	if (sec->dofs_align != sizeof (uint64_t)) {
12540 		dtrace_dof_error(dof, "bad alignment in ECB description");
12541 		return (NULL);
12542 	}
12543 
12544 	ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12545 	sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12546 
12547 	if (sec == NULL)
12548 		return (NULL);
12549 
12550 	ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12551 	ep->dted_uarg = ecb->dofe_uarg;
12552 	desc = &ep->dted_probe;
12553 
12554 	if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12555 		goto err;
12556 
12557 	if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12558 		if ((sec = dtrace_dof_sect(dof,
12559 		    DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12560 			goto err;
12561 
12562 		if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12563 			goto err;
12564 
12565 		ep->dted_pred.dtpdd_predicate = pred;
12566 	}
12567 
12568 	if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12569 		if ((sec = dtrace_dof_sect(dof,
12570 		    DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12571 			goto err;
12572 
12573 		ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12574 
12575 		if (ep->dted_action == NULL)
12576 			goto err;
12577 	}
12578 
12579 	return (ep);
12580 
12581 err:
12582 	if (pred != NULL)
12583 		dtrace_predicate_release(pred, vstate);
12584 	kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12585 	return (NULL);
12586 }
12587 
12588 /*
12589  * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12590  * specified DOF.  At present, this amounts to simply adding 'ubase' to the
12591  * site of any user SETX relocations to account for load object base address.
12592  * In the future, if we need other relocations, this function can be extended.
12593  */
12594 static int
12595 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12596 {
12597 	uintptr_t daddr = (uintptr_t)dof;
12598 	dof_relohdr_t *dofr =
12599 	    (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12600 	dof_sec_t *ss, *rs, *ts;
12601 	dof_relodesc_t *r;
12602 	uint_t i, n;
12603 
12604 	if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12605 	    sec->dofs_align != sizeof (dof_secidx_t)) {
12606 		dtrace_dof_error(dof, "invalid relocation header");
12607 		return (-1);
12608 	}
12609 
12610 	ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12611 	rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12612 	ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12613 
12614 	if (ss == NULL || rs == NULL || ts == NULL)
12615 		return (-1); /* dtrace_dof_error() has been called already */
12616 
12617 	if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12618 	    rs->dofs_align != sizeof (uint64_t)) {
12619 		dtrace_dof_error(dof, "invalid relocation section");
12620 		return (-1);
12621 	}
12622 
12623 	r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12624 	n = rs->dofs_size / rs->dofs_entsize;
12625 
12626 	for (i = 0; i < n; i++) {
12627 		uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12628 
12629 		switch (r->dofr_type) {
12630 		case DOF_RELO_NONE:
12631 			break;
12632 		case DOF_RELO_SETX:
12633 			if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
12634 			    sizeof (uint64_t) > ts->dofs_size) {
12635 				dtrace_dof_error(dof, "bad relocation offset");
12636 				return (-1);
12637 			}
12638 
12639 			if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
12640 				dtrace_dof_error(dof, "misaligned setx relo");
12641 				return (-1);
12642 			}
12643 
12644 			*(uint64_t *)taddr += ubase;
12645 			break;
12646 		default:
12647 			dtrace_dof_error(dof, "invalid relocation type");
12648 			return (-1);
12649 		}
12650 
12651 		r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
12652 	}
12653 
12654 	return (0);
12655 }
12656 
12657 /*
12658  * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
12659  * header:  it should be at the front of a memory region that is at least
12660  * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
12661  * size.  It need not be validated in any other way.
12662  */
12663 static int
12664 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
12665     dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
12666 {
12667 	uint64_t len = dof->dofh_loadsz, seclen;
12668 	uintptr_t daddr = (uintptr_t)dof;
12669 	dtrace_ecbdesc_t *ep;
12670 	dtrace_enabling_t *enab;
12671 	uint_t i;
12672 
12673 	ASSERT(MUTEX_HELD(&dtrace_lock));
12674 	ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
12675 
12676 	/*
12677 	 * Check the DOF header identification bytes.  In addition to checking
12678 	 * valid settings, we also verify that unused bits/bytes are zeroed so
12679 	 * we can use them later without fear of regressing existing binaries.
12680 	 */
12681 	if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
12682 	    DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
12683 		dtrace_dof_error(dof, "DOF magic string mismatch");
12684 		return (-1);
12685 	}
12686 
12687 	if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
12688 	    dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
12689 		dtrace_dof_error(dof, "DOF has invalid data model");
12690 		return (-1);
12691 	}
12692 
12693 	if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
12694 		dtrace_dof_error(dof, "DOF encoding mismatch");
12695 		return (-1);
12696 	}
12697 
12698 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
12699 	    dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
12700 		dtrace_dof_error(dof, "DOF version mismatch");
12701 		return (-1);
12702 	}
12703 
12704 	if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
12705 		dtrace_dof_error(dof, "DOF uses unsupported instruction set");
12706 		return (-1);
12707 	}
12708 
12709 	if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
12710 		dtrace_dof_error(dof, "DOF uses too many integer registers");
12711 		return (-1);
12712 	}
12713 
12714 	if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
12715 		dtrace_dof_error(dof, "DOF uses too many tuple registers");
12716 		return (-1);
12717 	}
12718 
12719 	for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
12720 		if (dof->dofh_ident[i] != 0) {
12721 			dtrace_dof_error(dof, "DOF has invalid ident byte set");
12722 			return (-1);
12723 		}
12724 	}
12725 
12726 	if (dof->dofh_flags & ~DOF_FL_VALID) {
12727 		dtrace_dof_error(dof, "DOF has invalid flag bits set");
12728 		return (-1);
12729 	}
12730 
12731 	if (dof->dofh_secsize == 0) {
12732 		dtrace_dof_error(dof, "zero section header size");
12733 		return (-1);
12734 	}
12735 
12736 	/*
12737 	 * Check that the section headers don't exceed the amount of DOF
12738 	 * data.  Note that we cast the section size and number of sections
12739 	 * to uint64_t's to prevent possible overflow in the multiplication.
12740 	 */
12741 	seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
12742 
12743 	if (dof->dofh_secoff > len || seclen > len ||
12744 	    dof->dofh_secoff + seclen > len) {
12745 		dtrace_dof_error(dof, "truncated section headers");
12746 		return (-1);
12747 	}
12748 
12749 	if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
12750 		dtrace_dof_error(dof, "misaligned section headers");
12751 		return (-1);
12752 	}
12753 
12754 	if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
12755 		dtrace_dof_error(dof, "misaligned section size");
12756 		return (-1);
12757 	}
12758 
12759 	/*
12760 	 * Take an initial pass through the section headers to be sure that
12761 	 * the headers don't have stray offsets.  If the 'noprobes' flag is
12762 	 * set, do not permit sections relating to providers, probes, or args.
12763 	 */
12764 	for (i = 0; i < dof->dofh_secnum; i++) {
12765 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12766 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12767 
12768 		if (noprobes) {
12769 			switch (sec->dofs_type) {
12770 			case DOF_SECT_PROVIDER:
12771 			case DOF_SECT_PROBES:
12772 			case DOF_SECT_PRARGS:
12773 			case DOF_SECT_PROFFS:
12774 				dtrace_dof_error(dof, "illegal sections "
12775 				    "for enabling");
12776 				return (-1);
12777 			}
12778 		}
12779 
12780 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12781 			continue; /* just ignore non-loadable sections */
12782 
12783 		if (sec->dofs_align & (sec->dofs_align - 1)) {
12784 			dtrace_dof_error(dof, "bad section alignment");
12785 			return (-1);
12786 		}
12787 
12788 		if (sec->dofs_offset & (sec->dofs_align - 1)) {
12789 			dtrace_dof_error(dof, "misaligned section");
12790 			return (-1);
12791 		}
12792 
12793 		if (sec->dofs_offset > len || sec->dofs_size > len ||
12794 		    sec->dofs_offset + sec->dofs_size > len) {
12795 			dtrace_dof_error(dof, "corrupt section header");
12796 			return (-1);
12797 		}
12798 
12799 		if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
12800 		    sec->dofs_offset + sec->dofs_size - 1) != '\0') {
12801 			dtrace_dof_error(dof, "non-terminating string table");
12802 			return (-1);
12803 		}
12804 	}
12805 
12806 	/*
12807 	 * Take a second pass through the sections and locate and perform any
12808 	 * relocations that are present.  We do this after the first pass to
12809 	 * be sure that all sections have had their headers validated.
12810 	 */
12811 	for (i = 0; i < dof->dofh_secnum; i++) {
12812 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12813 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12814 
12815 		if (!(sec->dofs_flags & DOF_SECF_LOAD))
12816 			continue; /* skip sections that are not loadable */
12817 
12818 		switch (sec->dofs_type) {
12819 		case DOF_SECT_URELHDR:
12820 			if (dtrace_dof_relocate(dof, sec, ubase) != 0)
12821 				return (-1);
12822 			break;
12823 		}
12824 	}
12825 
12826 	if ((enab = *enabp) == NULL)
12827 		enab = *enabp = dtrace_enabling_create(vstate);
12828 
12829 	for (i = 0; i < dof->dofh_secnum; i++) {
12830 		dof_sec_t *sec = (dof_sec_t *)(daddr +
12831 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12832 
12833 		if (sec->dofs_type != DOF_SECT_ECBDESC)
12834 			continue;
12835 
12836 		if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
12837 			dtrace_enabling_destroy(enab);
12838 			*enabp = NULL;
12839 			return (-1);
12840 		}
12841 
12842 		dtrace_enabling_add(enab, ep);
12843 	}
12844 
12845 	return (0);
12846 }
12847 
12848 /*
12849  * Process DOF for any options.  This routine assumes that the DOF has been
12850  * at least processed by dtrace_dof_slurp().
12851  */
12852 static int
12853 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
12854 {
12855 	int i, rval;
12856 	uint32_t entsize;
12857 	size_t offs;
12858 	dof_optdesc_t *desc;
12859 
12860 	for (i = 0; i < dof->dofh_secnum; i++) {
12861 		dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
12862 		    (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
12863 
12864 		if (sec->dofs_type != DOF_SECT_OPTDESC)
12865 			continue;
12866 
12867 		if (sec->dofs_align != sizeof (uint64_t)) {
12868 			dtrace_dof_error(dof, "bad alignment in "
12869 			    "option description");
12870 			return (EINVAL);
12871 		}
12872 
12873 		if ((entsize = sec->dofs_entsize) == 0) {
12874 			dtrace_dof_error(dof, "zeroed option entry size");
12875 			return (EINVAL);
12876 		}
12877 
12878 		if (entsize < sizeof (dof_optdesc_t)) {
12879 			dtrace_dof_error(dof, "bad option entry size");
12880 			return (EINVAL);
12881 		}
12882 
12883 		for (offs = 0; offs < sec->dofs_size; offs += entsize) {
12884 			desc = (dof_optdesc_t *)((uintptr_t)dof +
12885 			    (uintptr_t)sec->dofs_offset + offs);
12886 
12887 			if (desc->dofo_strtab != DOF_SECIDX_NONE) {
12888 				dtrace_dof_error(dof, "non-zero option string");
12889 				return (EINVAL);
12890 			}
12891 
12892 			if (desc->dofo_value == DTRACEOPT_UNSET) {
12893 				dtrace_dof_error(dof, "unset option");
12894 				return (EINVAL);
12895 			}
12896 
12897 			if ((rval = dtrace_state_option(state,
12898 			    desc->dofo_option, desc->dofo_value)) != 0) {
12899 				dtrace_dof_error(dof, "rejected option");
12900 				return (rval);
12901 			}
12902 		}
12903 	}
12904 
12905 	return (0);
12906 }
12907 
12908 /*
12909  * DTrace Consumer State Functions
12910  */
12911 static int
12912 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
12913 {
12914 	size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
12915 	void *base;
12916 	uintptr_t limit;
12917 	dtrace_dynvar_t *dvar, *next, *start;
12918 	int i;
12919 
12920 	ASSERT(MUTEX_HELD(&dtrace_lock));
12921 	ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
12922 
12923 	bzero(dstate, sizeof (dtrace_dstate_t));
12924 
12925 	if ((dstate->dtds_chunksize = chunksize) == 0)
12926 		dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
12927 
12928 	if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
12929 		size = min;
12930 
12931 	if ((base = kmem_zalloc(size, KM_NOSLEEP)) == NULL)
12932 		return (ENOMEM);
12933 
12934 	dstate->dtds_size = size;
12935 	dstate->dtds_base = base;
12936 	dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
12937 	bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
12938 
12939 	hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
12940 
12941 	if (hashsize != 1 && (hashsize & 1))
12942 		hashsize--;
12943 
12944 	dstate->dtds_hashsize = hashsize;
12945 	dstate->dtds_hash = dstate->dtds_base;
12946 
12947 	/*
12948 	 * Set all of our hash buckets to point to the single sink, and (if
12949 	 * it hasn't already been set), set the sink's hash value to be the
12950 	 * sink sentinel value.  The sink is needed for dynamic variable
12951 	 * lookups to know that they have iterated over an entire, valid hash
12952 	 * chain.
12953 	 */
12954 	for (i = 0; i < hashsize; i++)
12955 		dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
12956 
12957 	if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
12958 		dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
12959 
12960 	/*
12961 	 * Determine number of active CPUs.  Divide free list evenly among
12962 	 * active CPUs.
12963 	 */
12964 	start = (dtrace_dynvar_t *)
12965 	    ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
12966 	limit = (uintptr_t)base + size;
12967 
12968 	maxper = (limit - (uintptr_t)start) / NCPU;
12969 	maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
12970 
12971 #if !defined(sun)
12972 	CPU_FOREACH(i) {
12973 #else
12974 	for (i = 0; i < NCPU; i++) {
12975 #endif
12976 		dstate->dtds_percpu[i].dtdsc_free = dvar = start;
12977 
12978 		/*
12979 		 * If we don't even have enough chunks to make it once through
12980 		 * NCPUs, we're just going to allocate everything to the first
12981 		 * CPU.  And if we're on the last CPU, we're going to allocate
12982 		 * whatever is left over.  In either case, we set the limit to
12983 		 * be the limit of the dynamic variable space.
12984 		 */
12985 		if (maxper == 0 || i == NCPU - 1) {
12986 			limit = (uintptr_t)base + size;
12987 			start = NULL;
12988 		} else {
12989 			limit = (uintptr_t)start + maxper;
12990 			start = (dtrace_dynvar_t *)limit;
12991 		}
12992 
12993 		ASSERT(limit <= (uintptr_t)base + size);
12994 
12995 		for (;;) {
12996 			next = (dtrace_dynvar_t *)((uintptr_t)dvar +
12997 			    dstate->dtds_chunksize);
12998 
12999 			if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13000 				break;
13001 
13002 			dvar->dtdv_next = next;
13003 			dvar = next;
13004 		}
13005 
13006 		if (maxper == 0)
13007 			break;
13008 	}
13009 
13010 	return (0);
13011 }
13012 
13013 static void
13014 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13015 {
13016 	ASSERT(MUTEX_HELD(&cpu_lock));
13017 
13018 	if (dstate->dtds_base == NULL)
13019 		return;
13020 
13021 	kmem_free(dstate->dtds_base, dstate->dtds_size);
13022 	kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13023 }
13024 
13025 static void
13026 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13027 {
13028 	/*
13029 	 * Logical XOR, where are you?
13030 	 */
13031 	ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13032 
13033 	if (vstate->dtvs_nglobals > 0) {
13034 		kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13035 		    sizeof (dtrace_statvar_t *));
13036 	}
13037 
13038 	if (vstate->dtvs_ntlocals > 0) {
13039 		kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13040 		    sizeof (dtrace_difv_t));
13041 	}
13042 
13043 	ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13044 
13045 	if (vstate->dtvs_nlocals > 0) {
13046 		kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13047 		    sizeof (dtrace_statvar_t *));
13048 	}
13049 }
13050 
13051 #if defined(sun)
13052 static void
13053 dtrace_state_clean(dtrace_state_t *state)
13054 {
13055 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13056 		return;
13057 
13058 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13059 	dtrace_speculation_clean(state);
13060 }
13061 
13062 static void
13063 dtrace_state_deadman(dtrace_state_t *state)
13064 {
13065 	hrtime_t now;
13066 
13067 	dtrace_sync();
13068 
13069 	now = dtrace_gethrtime();
13070 
13071 	if (state != dtrace_anon.dta_state &&
13072 	    now - state->dts_laststatus >= dtrace_deadman_user)
13073 		return;
13074 
13075 	/*
13076 	 * We must be sure that dts_alive never appears to be less than the
13077 	 * value upon entry to dtrace_state_deadman(), and because we lack a
13078 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13079 	 * store INT64_MAX to it, followed by a memory barrier, followed by
13080 	 * the new value.  This assures that dts_alive never appears to be
13081 	 * less than its true value, regardless of the order in which the
13082 	 * stores to the underlying storage are issued.
13083 	 */
13084 	state->dts_alive = INT64_MAX;
13085 	dtrace_membar_producer();
13086 	state->dts_alive = now;
13087 }
13088 #else
13089 static void
13090 dtrace_state_clean(void *arg)
13091 {
13092 	dtrace_state_t *state = arg;
13093 	dtrace_optval_t *opt = state->dts_options;
13094 
13095 	if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13096 		return;
13097 
13098 	dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13099 	dtrace_speculation_clean(state);
13100 
13101 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13102 	    dtrace_state_clean, state);
13103 }
13104 
13105 static void
13106 dtrace_state_deadman(void *arg)
13107 {
13108 	dtrace_state_t *state = arg;
13109 	hrtime_t now;
13110 
13111 	dtrace_sync();
13112 
13113 	dtrace_debug_output();
13114 
13115 	now = dtrace_gethrtime();
13116 
13117 	if (state != dtrace_anon.dta_state &&
13118 	    now - state->dts_laststatus >= dtrace_deadman_user)
13119 		return;
13120 
13121 	/*
13122 	 * We must be sure that dts_alive never appears to be less than the
13123 	 * value upon entry to dtrace_state_deadman(), and because we lack a
13124 	 * dtrace_cas64(), we cannot store to it atomically.  We thus instead
13125 	 * store INT64_MAX to it, followed by a memory barrier, followed by
13126 	 * the new value.  This assures that dts_alive never appears to be
13127 	 * less than its true value, regardless of the order in which the
13128 	 * stores to the underlying storage are issued.
13129 	 */
13130 	state->dts_alive = INT64_MAX;
13131 	dtrace_membar_producer();
13132 	state->dts_alive = now;
13133 
13134 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13135 	    dtrace_state_deadman, state);
13136 }
13137 #endif
13138 
13139 static dtrace_state_t *
13140 #if defined(sun)
13141 dtrace_state_create(dev_t *devp, cred_t *cr)
13142 #else
13143 dtrace_state_create(struct cdev *dev)
13144 #endif
13145 {
13146 #if defined(sun)
13147 	minor_t minor;
13148 	major_t major;
13149 #else
13150 	cred_t *cr = NULL;
13151 	int m = 0;
13152 #endif
13153 	char c[30];
13154 	dtrace_state_t *state;
13155 	dtrace_optval_t *opt;
13156 	int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13157 
13158 	ASSERT(MUTEX_HELD(&dtrace_lock));
13159 	ASSERT(MUTEX_HELD(&cpu_lock));
13160 
13161 #if defined(sun)
13162 	minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13163 	    VM_BESTFIT | VM_SLEEP);
13164 
13165 	if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13166 		vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13167 		return (NULL);
13168 	}
13169 
13170 	state = ddi_get_soft_state(dtrace_softstate, minor);
13171 #else
13172 	if (dev != NULL) {
13173 		cr = dev->si_cred;
13174 		m = dev2unit(dev);
13175 		}
13176 
13177 	/* Allocate memory for the state. */
13178 	state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
13179 #endif
13180 
13181 	state->dts_epid = DTRACE_EPIDNONE + 1;
13182 
13183 	(void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
13184 #if defined(sun)
13185 	state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13186 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13187 
13188 	if (devp != NULL) {
13189 		major = getemajor(*devp);
13190 	} else {
13191 		major = ddi_driver_major(dtrace_devi);
13192 	}
13193 
13194 	state->dts_dev = makedevice(major, minor);
13195 
13196 	if (devp != NULL)
13197 		*devp = state->dts_dev;
13198 #else
13199 	state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
13200 	state->dts_dev = dev;
13201 #endif
13202 
13203 	/*
13204 	 * We allocate NCPU buffers.  On the one hand, this can be quite
13205 	 * a bit of memory per instance (nearly 36K on a Starcat).  On the
13206 	 * other hand, it saves an additional memory reference in the probe
13207 	 * path.
13208 	 */
13209 	state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13210 	state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13211 
13212 #if defined(sun)
13213 	state->dts_cleaner = CYCLIC_NONE;
13214 	state->dts_deadman = CYCLIC_NONE;
13215 #else
13216 	callout_init(&state->dts_cleaner, CALLOUT_MPSAFE);
13217 	callout_init(&state->dts_deadman, CALLOUT_MPSAFE);
13218 #endif
13219 	state->dts_vstate.dtvs_state = state;
13220 
13221 	for (i = 0; i < DTRACEOPT_MAX; i++)
13222 		state->dts_options[i] = DTRACEOPT_UNSET;
13223 
13224 	/*
13225 	 * Set the default options.
13226 	 */
13227 	opt = state->dts_options;
13228 	opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13229 	opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13230 	opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13231 	opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13232 	opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13233 	opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13234 	opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13235 	opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13236 	opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13237 	opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13238 	opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13239 	opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13240 	opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13241 	opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13242 
13243 	state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13244 
13245 	/*
13246 	 * Depending on the user credentials, we set flag bits which alter probe
13247 	 * visibility or the amount of destructiveness allowed.  In the case of
13248 	 * actual anonymous tracing, or the possession of all privileges, all of
13249 	 * the normal checks are bypassed.
13250 	 */
13251 	if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13252 		state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13253 		state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13254 	} else {
13255 		/*
13256 		 * Set up the credentials for this instantiation.  We take a
13257 		 * hold on the credential to prevent it from disappearing on
13258 		 * us; this in turn prevents the zone_t referenced by this
13259 		 * credential from disappearing.  This means that we can
13260 		 * examine the credential and the zone from probe context.
13261 		 */
13262 		crhold(cr);
13263 		state->dts_cred.dcr_cred = cr;
13264 
13265 		/*
13266 		 * CRA_PROC means "we have *some* privilege for dtrace" and
13267 		 * unlocks the use of variables like pid, zonename, etc.
13268 		 */
13269 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13270 		    PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13271 			state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13272 		}
13273 
13274 		/*
13275 		 * dtrace_user allows use of syscall and profile providers.
13276 		 * If the user also has proc_owner and/or proc_zone, we
13277 		 * extend the scope to include additional visibility and
13278 		 * destructive power.
13279 		 */
13280 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13281 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13282 				state->dts_cred.dcr_visible |=
13283 				    DTRACE_CRV_ALLPROC;
13284 
13285 				state->dts_cred.dcr_action |=
13286 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13287 			}
13288 
13289 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13290 				state->dts_cred.dcr_visible |=
13291 				    DTRACE_CRV_ALLZONE;
13292 
13293 				state->dts_cred.dcr_action |=
13294 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13295 			}
13296 
13297 			/*
13298 			 * If we have all privs in whatever zone this is,
13299 			 * we can do destructive things to processes which
13300 			 * have altered credentials.
13301 			 */
13302 #if defined(sun)
13303 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13304 			    cr->cr_zone->zone_privset)) {
13305 				state->dts_cred.dcr_action |=
13306 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13307 			}
13308 #endif
13309 		}
13310 
13311 		/*
13312 		 * Holding the dtrace_kernel privilege also implies that
13313 		 * the user has the dtrace_user privilege from a visibility
13314 		 * perspective.  But without further privileges, some
13315 		 * destructive actions are not available.
13316 		 */
13317 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13318 			/*
13319 			 * Make all probes in all zones visible.  However,
13320 			 * this doesn't mean that all actions become available
13321 			 * to all zones.
13322 			 */
13323 			state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13324 			    DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13325 
13326 			state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13327 			    DTRACE_CRA_PROC;
13328 			/*
13329 			 * Holding proc_owner means that destructive actions
13330 			 * for *this* zone are allowed.
13331 			 */
13332 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13333 				state->dts_cred.dcr_action |=
13334 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13335 
13336 			/*
13337 			 * Holding proc_zone means that destructive actions
13338 			 * for this user/group ID in all zones is allowed.
13339 			 */
13340 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13341 				state->dts_cred.dcr_action |=
13342 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13343 
13344 #if defined(sun)
13345 			/*
13346 			 * If we have all privs in whatever zone this is,
13347 			 * we can do destructive things to processes which
13348 			 * have altered credentials.
13349 			 */
13350 			if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13351 			    cr->cr_zone->zone_privset)) {
13352 				state->dts_cred.dcr_action |=
13353 				    DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13354 			}
13355 #endif
13356 		}
13357 
13358 		/*
13359 		 * Holding the dtrace_proc privilege gives control over fasttrap
13360 		 * and pid providers.  We need to grant wider destructive
13361 		 * privileges in the event that the user has proc_owner and/or
13362 		 * proc_zone.
13363 		 */
13364 		if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13365 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13366 				state->dts_cred.dcr_action |=
13367 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13368 
13369 			if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13370 				state->dts_cred.dcr_action |=
13371 				    DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13372 		}
13373 	}
13374 
13375 	return (state);
13376 }
13377 
13378 static int
13379 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13380 {
13381 	dtrace_optval_t *opt = state->dts_options, size;
13382 	processorid_t cpu = 0;;
13383 	int flags = 0, rval;
13384 
13385 	ASSERT(MUTEX_HELD(&dtrace_lock));
13386 	ASSERT(MUTEX_HELD(&cpu_lock));
13387 	ASSERT(which < DTRACEOPT_MAX);
13388 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13389 	    (state == dtrace_anon.dta_state &&
13390 	    state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13391 
13392 	if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13393 		return (0);
13394 
13395 	if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13396 		cpu = opt[DTRACEOPT_CPU];
13397 
13398 	if (which == DTRACEOPT_SPECSIZE)
13399 		flags |= DTRACEBUF_NOSWITCH;
13400 
13401 	if (which == DTRACEOPT_BUFSIZE) {
13402 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13403 			flags |= DTRACEBUF_RING;
13404 
13405 		if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13406 			flags |= DTRACEBUF_FILL;
13407 
13408 		if (state != dtrace_anon.dta_state ||
13409 		    state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13410 			flags |= DTRACEBUF_INACTIVE;
13411 	}
13412 
13413 	for (size = opt[which]; size >= sizeof (uint64_t); size >>= 1) {
13414 		/*
13415 		 * The size must be 8-byte aligned.  If the size is not 8-byte
13416 		 * aligned, drop it down by the difference.
13417 		 */
13418 		if (size & (sizeof (uint64_t) - 1))
13419 			size -= size & (sizeof (uint64_t) - 1);
13420 
13421 		if (size < state->dts_reserve) {
13422 			/*
13423 			 * Buffers always must be large enough to accommodate
13424 			 * their prereserved space.  We return E2BIG instead
13425 			 * of ENOMEM in this case to allow for user-level
13426 			 * software to differentiate the cases.
13427 			 */
13428 			return (E2BIG);
13429 		}
13430 
13431 		rval = dtrace_buffer_alloc(buf, size, flags, cpu);
13432 
13433 		if (rval != ENOMEM) {
13434 			opt[which] = size;
13435 			return (rval);
13436 		}
13437 
13438 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13439 			return (rval);
13440 	}
13441 
13442 	return (ENOMEM);
13443 }
13444 
13445 static int
13446 dtrace_state_buffers(dtrace_state_t *state)
13447 {
13448 	dtrace_speculation_t *spec = state->dts_speculations;
13449 	int rval, i;
13450 
13451 	if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13452 	    DTRACEOPT_BUFSIZE)) != 0)
13453 		return (rval);
13454 
13455 	if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13456 	    DTRACEOPT_AGGSIZE)) != 0)
13457 		return (rval);
13458 
13459 	for (i = 0; i < state->dts_nspeculations; i++) {
13460 		if ((rval = dtrace_state_buffer(state,
13461 		    spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13462 			return (rval);
13463 	}
13464 
13465 	return (0);
13466 }
13467 
13468 static void
13469 dtrace_state_prereserve(dtrace_state_t *state)
13470 {
13471 	dtrace_ecb_t *ecb;
13472 	dtrace_probe_t *probe;
13473 
13474 	state->dts_reserve = 0;
13475 
13476 	if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13477 		return;
13478 
13479 	/*
13480 	 * If our buffer policy is a "fill" buffer policy, we need to set the
13481 	 * prereserved space to be the space required by the END probes.
13482 	 */
13483 	probe = dtrace_probes[dtrace_probeid_end - 1];
13484 	ASSERT(probe != NULL);
13485 
13486 	for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13487 		if (ecb->dte_state != state)
13488 			continue;
13489 
13490 		state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13491 	}
13492 }
13493 
13494 static int
13495 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13496 {
13497 	dtrace_optval_t *opt = state->dts_options, sz, nspec;
13498 	dtrace_speculation_t *spec;
13499 	dtrace_buffer_t *buf;
13500 #if defined(sun)
13501 	cyc_handler_t hdlr;
13502 	cyc_time_t when;
13503 #endif
13504 	int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13505 	dtrace_icookie_t cookie;
13506 
13507 	mutex_enter(&cpu_lock);
13508 	mutex_enter(&dtrace_lock);
13509 
13510 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13511 		rval = EBUSY;
13512 		goto out;
13513 	}
13514 
13515 	/*
13516 	 * Before we can perform any checks, we must prime all of the
13517 	 * retained enablings that correspond to this state.
13518 	 */
13519 	dtrace_enabling_prime(state);
13520 
13521 	if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13522 		rval = EACCES;
13523 		goto out;
13524 	}
13525 
13526 	dtrace_state_prereserve(state);
13527 
13528 	/*
13529 	 * Now we want to do is try to allocate our speculations.
13530 	 * We do not automatically resize the number of speculations; if
13531 	 * this fails, we will fail the operation.
13532 	 */
13533 	nspec = opt[DTRACEOPT_NSPEC];
13534 	ASSERT(nspec != DTRACEOPT_UNSET);
13535 
13536 	if (nspec > INT_MAX) {
13537 		rval = ENOMEM;
13538 		goto out;
13539 	}
13540 
13541 	spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t), KM_NOSLEEP);
13542 
13543 	if (spec == NULL) {
13544 		rval = ENOMEM;
13545 		goto out;
13546 	}
13547 
13548 	state->dts_speculations = spec;
13549 	state->dts_nspeculations = (int)nspec;
13550 
13551 	for (i = 0; i < nspec; i++) {
13552 		if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP)) == NULL) {
13553 			rval = ENOMEM;
13554 			goto err;
13555 		}
13556 
13557 		spec[i].dtsp_buffer = buf;
13558 	}
13559 
13560 	if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13561 		if (dtrace_anon.dta_state == NULL) {
13562 			rval = ENOENT;
13563 			goto out;
13564 		}
13565 
13566 		if (state->dts_necbs != 0) {
13567 			rval = EALREADY;
13568 			goto out;
13569 		}
13570 
13571 		state->dts_anon = dtrace_anon_grab();
13572 		ASSERT(state->dts_anon != NULL);
13573 		state = state->dts_anon;
13574 
13575 		/*
13576 		 * We want "grabanon" to be set in the grabbed state, so we'll
13577 		 * copy that option value from the grabbing state into the
13578 		 * grabbed state.
13579 		 */
13580 		state->dts_options[DTRACEOPT_GRABANON] =
13581 		    opt[DTRACEOPT_GRABANON];
13582 
13583 		*cpu = dtrace_anon.dta_beganon;
13584 
13585 		/*
13586 		 * If the anonymous state is active (as it almost certainly
13587 		 * is if the anonymous enabling ultimately matched anything),
13588 		 * we don't allow any further option processing -- but we
13589 		 * don't return failure.
13590 		 */
13591 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13592 			goto out;
13593 	}
13594 
13595 	if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13596 	    opt[DTRACEOPT_AGGSIZE] != 0) {
13597 		if (state->dts_aggregations == NULL) {
13598 			/*
13599 			 * We're not going to create an aggregation buffer
13600 			 * because we don't have any ECBs that contain
13601 			 * aggregations -- set this option to 0.
13602 			 */
13603 			opt[DTRACEOPT_AGGSIZE] = 0;
13604 		} else {
13605 			/*
13606 			 * If we have an aggregation buffer, we must also have
13607 			 * a buffer to use as scratch.
13608 			 */
13609 			if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13610 			    opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13611 				opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13612 			}
13613 		}
13614 	}
13615 
13616 	if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13617 	    opt[DTRACEOPT_SPECSIZE] != 0) {
13618 		if (!state->dts_speculates) {
13619 			/*
13620 			 * We're not going to create speculation buffers
13621 			 * because we don't have any ECBs that actually
13622 			 * speculate -- set the speculation size to 0.
13623 			 */
13624 			opt[DTRACEOPT_SPECSIZE] = 0;
13625 		}
13626 	}
13627 
13628 	/*
13629 	 * The bare minimum size for any buffer that we're actually going to
13630 	 * do anything to is sizeof (uint64_t).
13631 	 */
13632 	sz = sizeof (uint64_t);
13633 
13634 	if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13635 	    (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13636 	    (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13637 		/*
13638 		 * A buffer size has been explicitly set to 0 (or to a size
13639 		 * that will be adjusted to 0) and we need the space -- we
13640 		 * need to return failure.  We return ENOSPC to differentiate
13641 		 * it from failing to allocate a buffer due to failure to meet
13642 		 * the reserve (for which we return E2BIG).
13643 		 */
13644 		rval = ENOSPC;
13645 		goto out;
13646 	}
13647 
13648 	if ((rval = dtrace_state_buffers(state)) != 0)
13649 		goto err;
13650 
13651 	if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13652 		sz = dtrace_dstate_defsize;
13653 
13654 	do {
13655 		rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13656 
13657 		if (rval == 0)
13658 			break;
13659 
13660 		if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13661 			goto err;
13662 	} while (sz >>= 1);
13663 
13664 	opt[DTRACEOPT_DYNVARSIZE] = sz;
13665 
13666 	if (rval != 0)
13667 		goto err;
13668 
13669 	if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13670 		opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13671 
13672 	if (opt[DTRACEOPT_CLEANRATE] == 0)
13673 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13674 
13675 	if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13676 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13677 
13678 	if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13679 		opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13680 
13681 	state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13682 #if defined(sun)
13683 	hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13684 	hdlr.cyh_arg = state;
13685 	hdlr.cyh_level = CY_LOW_LEVEL;
13686 
13687 	when.cyt_when = 0;
13688 	when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13689 
13690 	state->dts_cleaner = cyclic_add(&hdlr, &when);
13691 
13692 	hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13693 	hdlr.cyh_arg = state;
13694 	hdlr.cyh_level = CY_LOW_LEVEL;
13695 
13696 	when.cyt_when = 0;
13697 	when.cyt_interval = dtrace_deadman_interval;
13698 
13699 	state->dts_deadman = cyclic_add(&hdlr, &when);
13700 #else
13701 	callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
13702 	    dtrace_state_clean, state);
13703 	callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
13704 	    dtrace_state_deadman, state);
13705 #endif
13706 
13707 	state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13708 
13709 	/*
13710 	 * Now it's time to actually fire the BEGIN probe.  We need to disable
13711 	 * interrupts here both to record the CPU on which we fired the BEGIN
13712 	 * probe (the data from this CPU will be processed first at user
13713 	 * level) and to manually activate the buffer for this CPU.
13714 	 */
13715 	cookie = dtrace_interrupt_disable();
13716 	*cpu = curcpu;
13717 	ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
13718 	state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
13719 
13720 	dtrace_probe(dtrace_probeid_begin,
13721 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13722 	dtrace_interrupt_enable(cookie);
13723 	/*
13724 	 * We may have had an exit action from a BEGIN probe; only change our
13725 	 * state to ACTIVE if we're still in WARMUP.
13726 	 */
13727 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
13728 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING);
13729 
13730 	if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
13731 		state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
13732 
13733 	/*
13734 	 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
13735 	 * want each CPU to transition its principal buffer out of the
13736 	 * INACTIVE state.  Doing this assures that no CPU will suddenly begin
13737 	 * processing an ECB halfway down a probe's ECB chain; all CPUs will
13738 	 * atomically transition from processing none of a state's ECBs to
13739 	 * processing all of them.
13740 	 */
13741 	dtrace_xcall(DTRACE_CPUALL,
13742 	    (dtrace_xcall_t)dtrace_buffer_activate, state);
13743 	goto out;
13744 
13745 err:
13746 	dtrace_buffer_free(state->dts_buffer);
13747 	dtrace_buffer_free(state->dts_aggbuffer);
13748 
13749 	if ((nspec = state->dts_nspeculations) == 0) {
13750 		ASSERT(state->dts_speculations == NULL);
13751 		goto out;
13752 	}
13753 
13754 	spec = state->dts_speculations;
13755 	ASSERT(spec != NULL);
13756 
13757 	for (i = 0; i < state->dts_nspeculations; i++) {
13758 		if ((buf = spec[i].dtsp_buffer) == NULL)
13759 			break;
13760 
13761 		dtrace_buffer_free(buf);
13762 		kmem_free(buf, bufsize);
13763 	}
13764 
13765 	kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
13766 	state->dts_nspeculations = 0;
13767 	state->dts_speculations = NULL;
13768 
13769 out:
13770 	mutex_exit(&dtrace_lock);
13771 	mutex_exit(&cpu_lock);
13772 
13773 	return (rval);
13774 }
13775 
13776 static int
13777 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
13778 {
13779 	dtrace_icookie_t cookie;
13780 
13781 	ASSERT(MUTEX_HELD(&dtrace_lock));
13782 
13783 	if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
13784 	    state->dts_activity != DTRACE_ACTIVITY_DRAINING)
13785 		return (EINVAL);
13786 
13787 	/*
13788 	 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
13789 	 * to be sure that every CPU has seen it.  See below for the details
13790 	 * on why this is done.
13791 	 */
13792 	state->dts_activity = DTRACE_ACTIVITY_DRAINING;
13793 	dtrace_sync();
13794 
13795 	/*
13796 	 * By this point, it is impossible for any CPU to be still processing
13797 	 * with DTRACE_ACTIVITY_ACTIVE.  We can thus set our activity to
13798 	 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
13799 	 * other CPU in dtrace_buffer_reserve().  This allows dtrace_probe()
13800 	 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
13801 	 * iff we're in the END probe.
13802 	 */
13803 	state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
13804 	dtrace_sync();
13805 	ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
13806 
13807 	/*
13808 	 * Finally, we can release the reserve and call the END probe.  We
13809 	 * disable interrupts across calling the END probe to allow us to
13810 	 * return the CPU on which we actually called the END probe.  This
13811 	 * allows user-land to be sure that this CPU's principal buffer is
13812 	 * processed last.
13813 	 */
13814 	state->dts_reserve = 0;
13815 
13816 	cookie = dtrace_interrupt_disable();
13817 	*cpu = curcpu;
13818 	dtrace_probe(dtrace_probeid_end,
13819 	    (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
13820 	dtrace_interrupt_enable(cookie);
13821 
13822 	state->dts_activity = DTRACE_ACTIVITY_STOPPED;
13823 	dtrace_sync();
13824 
13825 	return (0);
13826 }
13827 
13828 static int
13829 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
13830     dtrace_optval_t val)
13831 {
13832 	ASSERT(MUTEX_HELD(&dtrace_lock));
13833 
13834 	if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13835 		return (EBUSY);
13836 
13837 	if (option >= DTRACEOPT_MAX)
13838 		return (EINVAL);
13839 
13840 	if (option != DTRACEOPT_CPU && val < 0)
13841 		return (EINVAL);
13842 
13843 	switch (option) {
13844 	case DTRACEOPT_DESTRUCTIVE:
13845 		if (dtrace_destructive_disallow)
13846 			return (EACCES);
13847 
13848 		state->dts_cred.dcr_destructive = 1;
13849 		break;
13850 
13851 	case DTRACEOPT_BUFSIZE:
13852 	case DTRACEOPT_DYNVARSIZE:
13853 	case DTRACEOPT_AGGSIZE:
13854 	case DTRACEOPT_SPECSIZE:
13855 	case DTRACEOPT_STRSIZE:
13856 		if (val < 0)
13857 			return (EINVAL);
13858 
13859 		if (val >= LONG_MAX) {
13860 			/*
13861 			 * If this is an otherwise negative value, set it to
13862 			 * the highest multiple of 128m less than LONG_MAX.
13863 			 * Technically, we're adjusting the size without
13864 			 * regard to the buffer resizing policy, but in fact,
13865 			 * this has no effect -- if we set the buffer size to
13866 			 * ~LONG_MAX and the buffer policy is ultimately set to
13867 			 * be "manual", the buffer allocation is guaranteed to
13868 			 * fail, if only because the allocation requires two
13869 			 * buffers.  (We set the the size to the highest
13870 			 * multiple of 128m because it ensures that the size
13871 			 * will remain a multiple of a megabyte when
13872 			 * repeatedly halved -- all the way down to 15m.)
13873 			 */
13874 			val = LONG_MAX - (1 << 27) + 1;
13875 		}
13876 	}
13877 
13878 	state->dts_options[option] = val;
13879 
13880 	return (0);
13881 }
13882 
13883 static void
13884 dtrace_state_destroy(dtrace_state_t *state)
13885 {
13886 	dtrace_ecb_t *ecb;
13887 	dtrace_vstate_t *vstate = &state->dts_vstate;
13888 #if defined(sun)
13889 	minor_t minor = getminor(state->dts_dev);
13890 #endif
13891 	int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13892 	dtrace_speculation_t *spec = state->dts_speculations;
13893 	int nspec = state->dts_nspeculations;
13894 	uint32_t match;
13895 
13896 	ASSERT(MUTEX_HELD(&dtrace_lock));
13897 	ASSERT(MUTEX_HELD(&cpu_lock));
13898 
13899 	/*
13900 	 * First, retract any retained enablings for this state.
13901 	 */
13902 	dtrace_enabling_retract(state);
13903 	ASSERT(state->dts_nretained == 0);
13904 
13905 	if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
13906 	    state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
13907 		/*
13908 		 * We have managed to come into dtrace_state_destroy() on a
13909 		 * hot enabling -- almost certainly because of a disorderly
13910 		 * shutdown of a consumer.  (That is, a consumer that is
13911 		 * exiting without having called dtrace_stop().) In this case,
13912 		 * we're going to set our activity to be KILLED, and then
13913 		 * issue a sync to be sure that everyone is out of probe
13914 		 * context before we start blowing away ECBs.
13915 		 */
13916 		state->dts_activity = DTRACE_ACTIVITY_KILLED;
13917 		dtrace_sync();
13918 	}
13919 
13920 	/*
13921 	 * Release the credential hold we took in dtrace_state_create().
13922 	 */
13923 	if (state->dts_cred.dcr_cred != NULL)
13924 		crfree(state->dts_cred.dcr_cred);
13925 
13926 	/*
13927 	 * Now we can safely disable and destroy any enabled probes.  Because
13928 	 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
13929 	 * (especially if they're all enabled), we take two passes through the
13930 	 * ECBs:  in the first, we disable just DTRACE_PRIV_KERNEL probes, and
13931 	 * in the second we disable whatever is left over.
13932 	 */
13933 	for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
13934 		for (i = 0; i < state->dts_necbs; i++) {
13935 			if ((ecb = state->dts_ecbs[i]) == NULL)
13936 				continue;
13937 
13938 			if (match && ecb->dte_probe != NULL) {
13939 				dtrace_probe_t *probe = ecb->dte_probe;
13940 				dtrace_provider_t *prov = probe->dtpr_provider;
13941 
13942 				if (!(prov->dtpv_priv.dtpp_flags & match))
13943 					continue;
13944 			}
13945 
13946 			dtrace_ecb_disable(ecb);
13947 			dtrace_ecb_destroy(ecb);
13948 		}
13949 
13950 		if (!match)
13951 			break;
13952 	}
13953 
13954 	/*
13955 	 * Before we free the buffers, perform one more sync to assure that
13956 	 * every CPU is out of probe context.
13957 	 */
13958 	dtrace_sync();
13959 
13960 	dtrace_buffer_free(state->dts_buffer);
13961 	dtrace_buffer_free(state->dts_aggbuffer);
13962 
13963 	for (i = 0; i < nspec; i++)
13964 		dtrace_buffer_free(spec[i].dtsp_buffer);
13965 
13966 #if defined(sun)
13967 	if (state->dts_cleaner != CYCLIC_NONE)
13968 		cyclic_remove(state->dts_cleaner);
13969 
13970 	if (state->dts_deadman != CYCLIC_NONE)
13971 		cyclic_remove(state->dts_deadman);
13972 #else
13973 	callout_stop(&state->dts_cleaner);
13974 	callout_drain(&state->dts_cleaner);
13975 	callout_stop(&state->dts_deadman);
13976 	callout_drain(&state->dts_deadman);
13977 #endif
13978 
13979 	dtrace_dstate_fini(&vstate->dtvs_dynvars);
13980 	dtrace_vstate_fini(vstate);
13981 	if (state->dts_ecbs != NULL)
13982 		kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
13983 
13984 	if (state->dts_aggregations != NULL) {
13985 #ifdef DEBUG
13986 		for (i = 0; i < state->dts_naggregations; i++)
13987 			ASSERT(state->dts_aggregations[i] == NULL);
13988 #endif
13989 		ASSERT(state->dts_naggregations > 0);
13990 		kmem_free(state->dts_aggregations,
13991 		    state->dts_naggregations * sizeof (dtrace_aggregation_t *));
13992 	}
13993 
13994 	kmem_free(state->dts_buffer, bufsize);
13995 	kmem_free(state->dts_aggbuffer, bufsize);
13996 
13997 	for (i = 0; i < nspec; i++)
13998 		kmem_free(spec[i].dtsp_buffer, bufsize);
13999 
14000 	if (spec != NULL)
14001 		kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14002 
14003 	dtrace_format_destroy(state);
14004 
14005 	if (state->dts_aggid_arena != NULL) {
14006 #if defined(sun)
14007 		vmem_destroy(state->dts_aggid_arena);
14008 #else
14009 		delete_unrhdr(state->dts_aggid_arena);
14010 #endif
14011 		state->dts_aggid_arena = NULL;
14012 	}
14013 #if defined(sun)
14014 	ddi_soft_state_free(dtrace_softstate, minor);
14015 	vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14016 #endif
14017 }
14018 
14019 /*
14020  * DTrace Anonymous Enabling Functions
14021  */
14022 static dtrace_state_t *
14023 dtrace_anon_grab(void)
14024 {
14025 	dtrace_state_t *state;
14026 
14027 	ASSERT(MUTEX_HELD(&dtrace_lock));
14028 
14029 	if ((state = dtrace_anon.dta_state) == NULL) {
14030 		ASSERT(dtrace_anon.dta_enabling == NULL);
14031 		return (NULL);
14032 	}
14033 
14034 	ASSERT(dtrace_anon.dta_enabling != NULL);
14035 	ASSERT(dtrace_retained != NULL);
14036 
14037 	dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14038 	dtrace_anon.dta_enabling = NULL;
14039 	dtrace_anon.dta_state = NULL;
14040 
14041 	return (state);
14042 }
14043 
14044 static void
14045 dtrace_anon_property(void)
14046 {
14047 	int i, rv;
14048 	dtrace_state_t *state;
14049 	dof_hdr_t *dof;
14050 	char c[32];		/* enough for "dof-data-" + digits */
14051 
14052 	ASSERT(MUTEX_HELD(&dtrace_lock));
14053 	ASSERT(MUTEX_HELD(&cpu_lock));
14054 
14055 	for (i = 0; ; i++) {
14056 		(void) snprintf(c, sizeof (c), "dof-data-%d", i);
14057 
14058 		dtrace_err_verbose = 1;
14059 
14060 		if ((dof = dtrace_dof_property(c)) == NULL) {
14061 			dtrace_err_verbose = 0;
14062 			break;
14063 		}
14064 
14065 #if defined(sun)
14066 		/*
14067 		 * We want to create anonymous state, so we need to transition
14068 		 * the kernel debugger to indicate that DTrace is active.  If
14069 		 * this fails (e.g. because the debugger has modified text in
14070 		 * some way), we won't continue with the processing.
14071 		 */
14072 		if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14073 			cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14074 			    "enabling ignored.");
14075 			dtrace_dof_destroy(dof);
14076 			break;
14077 		}
14078 #endif
14079 
14080 		/*
14081 		 * If we haven't allocated an anonymous state, we'll do so now.
14082 		 */
14083 		if ((state = dtrace_anon.dta_state) == NULL) {
14084 #if defined(sun)
14085 			state = dtrace_state_create(NULL, NULL);
14086 #else
14087 			state = dtrace_state_create(NULL);
14088 #endif
14089 			dtrace_anon.dta_state = state;
14090 
14091 			if (state == NULL) {
14092 				/*
14093 				 * This basically shouldn't happen:  the only
14094 				 * failure mode from dtrace_state_create() is a
14095 				 * failure of ddi_soft_state_zalloc() that
14096 				 * itself should never happen.  Still, the
14097 				 * interface allows for a failure mode, and
14098 				 * we want to fail as gracefully as possible:
14099 				 * we'll emit an error message and cease
14100 				 * processing anonymous state in this case.
14101 				 */
14102 				cmn_err(CE_WARN, "failed to create "
14103 				    "anonymous state");
14104 				dtrace_dof_destroy(dof);
14105 				break;
14106 			}
14107 		}
14108 
14109 		rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14110 		    &dtrace_anon.dta_enabling, 0, B_TRUE);
14111 
14112 		if (rv == 0)
14113 			rv = dtrace_dof_options(dof, state);
14114 
14115 		dtrace_err_verbose = 0;
14116 		dtrace_dof_destroy(dof);
14117 
14118 		if (rv != 0) {
14119 			/*
14120 			 * This is malformed DOF; chuck any anonymous state
14121 			 * that we created.
14122 			 */
14123 			ASSERT(dtrace_anon.dta_enabling == NULL);
14124 			dtrace_state_destroy(state);
14125 			dtrace_anon.dta_state = NULL;
14126 			break;
14127 		}
14128 
14129 		ASSERT(dtrace_anon.dta_enabling != NULL);
14130 	}
14131 
14132 	if (dtrace_anon.dta_enabling != NULL) {
14133 		int rval;
14134 
14135 		/*
14136 		 * dtrace_enabling_retain() can only fail because we are
14137 		 * trying to retain more enablings than are allowed -- but
14138 		 * we only have one anonymous enabling, and we are guaranteed
14139 		 * to be allowed at least one retained enabling; we assert
14140 		 * that dtrace_enabling_retain() returns success.
14141 		 */
14142 		rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14143 		ASSERT(rval == 0);
14144 
14145 		dtrace_enabling_dump(dtrace_anon.dta_enabling);
14146 	}
14147 }
14148 
14149 /*
14150  * DTrace Helper Functions
14151  */
14152 static void
14153 dtrace_helper_trace(dtrace_helper_action_t *helper,
14154     dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14155 {
14156 	uint32_t size, next, nnext, i;
14157 	dtrace_helptrace_t *ent;
14158 	uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
14159 
14160 	if (!dtrace_helptrace_enabled)
14161 		return;
14162 
14163 	ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14164 
14165 	/*
14166 	 * What would a tracing framework be without its own tracing
14167 	 * framework?  (Well, a hell of a lot simpler, for starters...)
14168 	 */
14169 	size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14170 	    sizeof (uint64_t) - sizeof (uint64_t);
14171 
14172 	/*
14173 	 * Iterate until we can allocate a slot in the trace buffer.
14174 	 */
14175 	do {
14176 		next = dtrace_helptrace_next;
14177 
14178 		if (next + size < dtrace_helptrace_bufsize) {
14179 			nnext = next + size;
14180 		} else {
14181 			nnext = size;
14182 		}
14183 	} while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14184 
14185 	/*
14186 	 * We have our slot; fill it in.
14187 	 */
14188 	if (nnext == size)
14189 		next = 0;
14190 
14191 	ent = (dtrace_helptrace_t *)&dtrace_helptrace_buffer[next];
14192 	ent->dtht_helper = helper;
14193 	ent->dtht_where = where;
14194 	ent->dtht_nlocals = vstate->dtvs_nlocals;
14195 
14196 	ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14197 	    mstate->dtms_fltoffs : -1;
14198 	ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14199 	ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
14200 
14201 	for (i = 0; i < vstate->dtvs_nlocals; i++) {
14202 		dtrace_statvar_t *svar;
14203 
14204 		if ((svar = vstate->dtvs_locals[i]) == NULL)
14205 			continue;
14206 
14207 		ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14208 		ent->dtht_locals[i] =
14209 		    ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
14210 	}
14211 }
14212 
14213 static uint64_t
14214 dtrace_helper(int which, dtrace_mstate_t *mstate,
14215     dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14216 {
14217 	uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
14218 	uint64_t sarg0 = mstate->dtms_arg[0];
14219 	uint64_t sarg1 = mstate->dtms_arg[1];
14220 	uint64_t rval = 0;
14221 	dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14222 	dtrace_helper_action_t *helper;
14223 	dtrace_vstate_t *vstate;
14224 	dtrace_difo_t *pred;
14225 	int i, trace = dtrace_helptrace_enabled;
14226 
14227 	ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14228 
14229 	if (helpers == NULL)
14230 		return (0);
14231 
14232 	if ((helper = helpers->dthps_actions[which]) == NULL)
14233 		return (0);
14234 
14235 	vstate = &helpers->dthps_vstate;
14236 	mstate->dtms_arg[0] = arg0;
14237 	mstate->dtms_arg[1] = arg1;
14238 
14239 	/*
14240 	 * Now iterate over each helper.  If its predicate evaluates to 'true',
14241 	 * we'll call the corresponding actions.  Note that the below calls
14242 	 * to dtrace_dif_emulate() may set faults in machine state.  This is
14243 	 * okay:  our caller (the outer dtrace_dif_emulate()) will simply plow
14244 	 * the stored DIF offset with its own (which is the desired behavior).
14245 	 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14246 	 * from machine state; this is okay, too.
14247 	 */
14248 	for (; helper != NULL; helper = helper->dtha_next) {
14249 		if ((pred = helper->dtha_predicate) != NULL) {
14250 			if (trace)
14251 				dtrace_helper_trace(helper, mstate, vstate, 0);
14252 
14253 			if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14254 				goto next;
14255 
14256 			if (*flags & CPU_DTRACE_FAULT)
14257 				goto err;
14258 		}
14259 
14260 		for (i = 0; i < helper->dtha_nactions; i++) {
14261 			if (trace)
14262 				dtrace_helper_trace(helper,
14263 				    mstate, vstate, i + 1);
14264 
14265 			rval = dtrace_dif_emulate(helper->dtha_actions[i],
14266 			    mstate, vstate, state);
14267 
14268 			if (*flags & CPU_DTRACE_FAULT)
14269 				goto err;
14270 		}
14271 
14272 next:
14273 		if (trace)
14274 			dtrace_helper_trace(helper, mstate, vstate,
14275 			    DTRACE_HELPTRACE_NEXT);
14276 	}
14277 
14278 	if (trace)
14279 		dtrace_helper_trace(helper, mstate, vstate,
14280 		    DTRACE_HELPTRACE_DONE);
14281 
14282 	/*
14283 	 * Restore the arg0 that we saved upon entry.
14284 	 */
14285 	mstate->dtms_arg[0] = sarg0;
14286 	mstate->dtms_arg[1] = sarg1;
14287 
14288 	return (rval);
14289 
14290 err:
14291 	if (trace)
14292 		dtrace_helper_trace(helper, mstate, vstate,
14293 		    DTRACE_HELPTRACE_ERR);
14294 
14295 	/*
14296 	 * Restore the arg0 that we saved upon entry.
14297 	 */
14298 	mstate->dtms_arg[0] = sarg0;
14299 	mstate->dtms_arg[1] = sarg1;
14300 
14301 	return (0);
14302 }
14303 
14304 static void
14305 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14306     dtrace_vstate_t *vstate)
14307 {
14308 	int i;
14309 
14310 	if (helper->dtha_predicate != NULL)
14311 		dtrace_difo_release(helper->dtha_predicate, vstate);
14312 
14313 	for (i = 0; i < helper->dtha_nactions; i++) {
14314 		ASSERT(helper->dtha_actions[i] != NULL);
14315 		dtrace_difo_release(helper->dtha_actions[i], vstate);
14316 	}
14317 
14318 	kmem_free(helper->dtha_actions,
14319 	    helper->dtha_nactions * sizeof (dtrace_difo_t *));
14320 	kmem_free(helper, sizeof (dtrace_helper_action_t));
14321 }
14322 
14323 static int
14324 dtrace_helper_destroygen(int gen)
14325 {
14326 	proc_t *p = curproc;
14327 	dtrace_helpers_t *help = p->p_dtrace_helpers;
14328 	dtrace_vstate_t *vstate;
14329 	int i;
14330 
14331 	ASSERT(MUTEX_HELD(&dtrace_lock));
14332 
14333 	if (help == NULL || gen > help->dthps_generation)
14334 		return (EINVAL);
14335 
14336 	vstate = &help->dthps_vstate;
14337 
14338 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14339 		dtrace_helper_action_t *last = NULL, *h, *next;
14340 
14341 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
14342 			next = h->dtha_next;
14343 
14344 			if (h->dtha_generation == gen) {
14345 				if (last != NULL) {
14346 					last->dtha_next = next;
14347 				} else {
14348 					help->dthps_actions[i] = next;
14349 				}
14350 
14351 				dtrace_helper_action_destroy(h, vstate);
14352 			} else {
14353 				last = h;
14354 			}
14355 		}
14356 	}
14357 
14358 	/*
14359 	 * Interate until we've cleared out all helper providers with the
14360 	 * given generation number.
14361 	 */
14362 	for (;;) {
14363 		dtrace_helper_provider_t *prov;
14364 
14365 		/*
14366 		 * Look for a helper provider with the right generation. We
14367 		 * have to start back at the beginning of the list each time
14368 		 * because we drop dtrace_lock. It's unlikely that we'll make
14369 		 * more than two passes.
14370 		 */
14371 		for (i = 0; i < help->dthps_nprovs; i++) {
14372 			prov = help->dthps_provs[i];
14373 
14374 			if (prov->dthp_generation == gen)
14375 				break;
14376 		}
14377 
14378 		/*
14379 		 * If there were no matches, we're done.
14380 		 */
14381 		if (i == help->dthps_nprovs)
14382 			break;
14383 
14384 		/*
14385 		 * Move the last helper provider into this slot.
14386 		 */
14387 		help->dthps_nprovs--;
14388 		help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14389 		help->dthps_provs[help->dthps_nprovs] = NULL;
14390 
14391 		mutex_exit(&dtrace_lock);
14392 
14393 		/*
14394 		 * If we have a meta provider, remove this helper provider.
14395 		 */
14396 		mutex_enter(&dtrace_meta_lock);
14397 		if (dtrace_meta_pid != NULL) {
14398 			ASSERT(dtrace_deferred_pid == NULL);
14399 			dtrace_helper_provider_remove(&prov->dthp_prov,
14400 			    p->p_pid);
14401 		}
14402 		mutex_exit(&dtrace_meta_lock);
14403 
14404 		dtrace_helper_provider_destroy(prov);
14405 
14406 		mutex_enter(&dtrace_lock);
14407 	}
14408 
14409 	return (0);
14410 }
14411 
14412 static int
14413 dtrace_helper_validate(dtrace_helper_action_t *helper)
14414 {
14415 	int err = 0, i;
14416 	dtrace_difo_t *dp;
14417 
14418 	if ((dp = helper->dtha_predicate) != NULL)
14419 		err += dtrace_difo_validate_helper(dp);
14420 
14421 	for (i = 0; i < helper->dtha_nactions; i++)
14422 		err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14423 
14424 	return (err == 0);
14425 }
14426 
14427 static int
14428 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14429 {
14430 	dtrace_helpers_t *help;
14431 	dtrace_helper_action_t *helper, *last;
14432 	dtrace_actdesc_t *act;
14433 	dtrace_vstate_t *vstate;
14434 	dtrace_predicate_t *pred;
14435 	int count = 0, nactions = 0, i;
14436 
14437 	if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14438 		return (EINVAL);
14439 
14440 	help = curproc->p_dtrace_helpers;
14441 	last = help->dthps_actions[which];
14442 	vstate = &help->dthps_vstate;
14443 
14444 	for (count = 0; last != NULL; last = last->dtha_next) {
14445 		count++;
14446 		if (last->dtha_next == NULL)
14447 			break;
14448 	}
14449 
14450 	/*
14451 	 * If we already have dtrace_helper_actions_max helper actions for this
14452 	 * helper action type, we'll refuse to add a new one.
14453 	 */
14454 	if (count >= dtrace_helper_actions_max)
14455 		return (ENOSPC);
14456 
14457 	helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14458 	helper->dtha_generation = help->dthps_generation;
14459 
14460 	if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14461 		ASSERT(pred->dtp_difo != NULL);
14462 		dtrace_difo_hold(pred->dtp_difo);
14463 		helper->dtha_predicate = pred->dtp_difo;
14464 	}
14465 
14466 	for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14467 		if (act->dtad_kind != DTRACEACT_DIFEXPR)
14468 			goto err;
14469 
14470 		if (act->dtad_difo == NULL)
14471 			goto err;
14472 
14473 		nactions++;
14474 	}
14475 
14476 	helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14477 	    (helper->dtha_nactions = nactions), KM_SLEEP);
14478 
14479 	for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14480 		dtrace_difo_hold(act->dtad_difo);
14481 		helper->dtha_actions[i++] = act->dtad_difo;
14482 	}
14483 
14484 	if (!dtrace_helper_validate(helper))
14485 		goto err;
14486 
14487 	if (last == NULL) {
14488 		help->dthps_actions[which] = helper;
14489 	} else {
14490 		last->dtha_next = helper;
14491 	}
14492 
14493 	if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14494 		dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14495 		dtrace_helptrace_next = 0;
14496 	}
14497 
14498 	return (0);
14499 err:
14500 	dtrace_helper_action_destroy(helper, vstate);
14501 	return (EINVAL);
14502 }
14503 
14504 static void
14505 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14506     dof_helper_t *dofhp)
14507 {
14508 	ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14509 
14510 	mutex_enter(&dtrace_meta_lock);
14511 	mutex_enter(&dtrace_lock);
14512 
14513 	if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14514 		/*
14515 		 * If the dtrace module is loaded but not attached, or if
14516 		 * there aren't isn't a meta provider registered to deal with
14517 		 * these provider descriptions, we need to postpone creating
14518 		 * the actual providers until later.
14519 		 */
14520 
14521 		if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14522 		    dtrace_deferred_pid != help) {
14523 			help->dthps_deferred = 1;
14524 			help->dthps_pid = p->p_pid;
14525 			help->dthps_next = dtrace_deferred_pid;
14526 			help->dthps_prev = NULL;
14527 			if (dtrace_deferred_pid != NULL)
14528 				dtrace_deferred_pid->dthps_prev = help;
14529 			dtrace_deferred_pid = help;
14530 		}
14531 
14532 		mutex_exit(&dtrace_lock);
14533 
14534 	} else if (dofhp != NULL) {
14535 		/*
14536 		 * If the dtrace module is loaded and we have a particular
14537 		 * helper provider description, pass that off to the
14538 		 * meta provider.
14539 		 */
14540 
14541 		mutex_exit(&dtrace_lock);
14542 
14543 		dtrace_helper_provide(dofhp, p->p_pid);
14544 
14545 	} else {
14546 		/*
14547 		 * Otherwise, just pass all the helper provider descriptions
14548 		 * off to the meta provider.
14549 		 */
14550 
14551 		int i;
14552 		mutex_exit(&dtrace_lock);
14553 
14554 		for (i = 0; i < help->dthps_nprovs; i++) {
14555 			dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14556 			    p->p_pid);
14557 		}
14558 	}
14559 
14560 	mutex_exit(&dtrace_meta_lock);
14561 }
14562 
14563 static int
14564 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14565 {
14566 	dtrace_helpers_t *help;
14567 	dtrace_helper_provider_t *hprov, **tmp_provs;
14568 	uint_t tmp_maxprovs, i;
14569 
14570 	ASSERT(MUTEX_HELD(&dtrace_lock));
14571 
14572 	help = curproc->p_dtrace_helpers;
14573 	ASSERT(help != NULL);
14574 
14575 	/*
14576 	 * If we already have dtrace_helper_providers_max helper providers,
14577 	 * we're refuse to add a new one.
14578 	 */
14579 	if (help->dthps_nprovs >= dtrace_helper_providers_max)
14580 		return (ENOSPC);
14581 
14582 	/*
14583 	 * Check to make sure this isn't a duplicate.
14584 	 */
14585 	for (i = 0; i < help->dthps_nprovs; i++) {
14586 		if (dofhp->dofhp_addr ==
14587 		    help->dthps_provs[i]->dthp_prov.dofhp_addr)
14588 			return (EALREADY);
14589 	}
14590 
14591 	hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14592 	hprov->dthp_prov = *dofhp;
14593 	hprov->dthp_ref = 1;
14594 	hprov->dthp_generation = gen;
14595 
14596 	/*
14597 	 * Allocate a bigger table for helper providers if it's already full.
14598 	 */
14599 	if (help->dthps_maxprovs == help->dthps_nprovs) {
14600 		tmp_maxprovs = help->dthps_maxprovs;
14601 		tmp_provs = help->dthps_provs;
14602 
14603 		if (help->dthps_maxprovs == 0)
14604 			help->dthps_maxprovs = 2;
14605 		else
14606 			help->dthps_maxprovs *= 2;
14607 		if (help->dthps_maxprovs > dtrace_helper_providers_max)
14608 			help->dthps_maxprovs = dtrace_helper_providers_max;
14609 
14610 		ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14611 
14612 		help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14613 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14614 
14615 		if (tmp_provs != NULL) {
14616 			bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14617 			    sizeof (dtrace_helper_provider_t *));
14618 			kmem_free(tmp_provs, tmp_maxprovs *
14619 			    sizeof (dtrace_helper_provider_t *));
14620 		}
14621 	}
14622 
14623 	help->dthps_provs[help->dthps_nprovs] = hprov;
14624 	help->dthps_nprovs++;
14625 
14626 	return (0);
14627 }
14628 
14629 static void
14630 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14631 {
14632 	mutex_enter(&dtrace_lock);
14633 
14634 	if (--hprov->dthp_ref == 0) {
14635 		dof_hdr_t *dof;
14636 		mutex_exit(&dtrace_lock);
14637 		dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14638 		dtrace_dof_destroy(dof);
14639 		kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14640 	} else {
14641 		mutex_exit(&dtrace_lock);
14642 	}
14643 }
14644 
14645 static int
14646 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14647 {
14648 	uintptr_t daddr = (uintptr_t)dof;
14649 	dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14650 	dof_provider_t *provider;
14651 	dof_probe_t *probe;
14652 	uint8_t *arg;
14653 	char *strtab, *typestr;
14654 	dof_stridx_t typeidx;
14655 	size_t typesz;
14656 	uint_t nprobes, j, k;
14657 
14658 	ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14659 
14660 	if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14661 		dtrace_dof_error(dof, "misaligned section offset");
14662 		return (-1);
14663 	}
14664 
14665 	/*
14666 	 * The section needs to be large enough to contain the DOF provider
14667 	 * structure appropriate for the given version.
14668 	 */
14669 	if (sec->dofs_size <
14670 	    ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14671 	    offsetof(dof_provider_t, dofpv_prenoffs) :
14672 	    sizeof (dof_provider_t))) {
14673 		dtrace_dof_error(dof, "provider section too small");
14674 		return (-1);
14675 	}
14676 
14677 	provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14678 	str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14679 	prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14680 	arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14681 	off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14682 
14683 	if (str_sec == NULL || prb_sec == NULL ||
14684 	    arg_sec == NULL || off_sec == NULL)
14685 		return (-1);
14686 
14687 	enoff_sec = NULL;
14688 
14689 	if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14690 	    provider->dofpv_prenoffs != DOF_SECT_NONE &&
14691 	    (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14692 	    provider->dofpv_prenoffs)) == NULL)
14693 		return (-1);
14694 
14695 	strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14696 
14697 	if (provider->dofpv_name >= str_sec->dofs_size ||
14698 	    strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14699 		dtrace_dof_error(dof, "invalid provider name");
14700 		return (-1);
14701 	}
14702 
14703 	if (prb_sec->dofs_entsize == 0 ||
14704 	    prb_sec->dofs_entsize > prb_sec->dofs_size) {
14705 		dtrace_dof_error(dof, "invalid entry size");
14706 		return (-1);
14707 	}
14708 
14709 	if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
14710 		dtrace_dof_error(dof, "misaligned entry size");
14711 		return (-1);
14712 	}
14713 
14714 	if (off_sec->dofs_entsize != sizeof (uint32_t)) {
14715 		dtrace_dof_error(dof, "invalid entry size");
14716 		return (-1);
14717 	}
14718 
14719 	if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
14720 		dtrace_dof_error(dof, "misaligned section offset");
14721 		return (-1);
14722 	}
14723 
14724 	if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
14725 		dtrace_dof_error(dof, "invalid entry size");
14726 		return (-1);
14727 	}
14728 
14729 	arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
14730 
14731 	nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
14732 
14733 	/*
14734 	 * Take a pass through the probes to check for errors.
14735 	 */
14736 	for (j = 0; j < nprobes; j++) {
14737 		probe = (dof_probe_t *)(uintptr_t)(daddr +
14738 		    prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
14739 
14740 		if (probe->dofpr_func >= str_sec->dofs_size) {
14741 			dtrace_dof_error(dof, "invalid function name");
14742 			return (-1);
14743 		}
14744 
14745 		if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
14746 			dtrace_dof_error(dof, "function name too long");
14747 			return (-1);
14748 		}
14749 
14750 		if (probe->dofpr_name >= str_sec->dofs_size ||
14751 		    strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
14752 			dtrace_dof_error(dof, "invalid probe name");
14753 			return (-1);
14754 		}
14755 
14756 		/*
14757 		 * The offset count must not wrap the index, and the offsets
14758 		 * must also not overflow the section's data.
14759 		 */
14760 		if (probe->dofpr_offidx + probe->dofpr_noffs <
14761 		    probe->dofpr_offidx ||
14762 		    (probe->dofpr_offidx + probe->dofpr_noffs) *
14763 		    off_sec->dofs_entsize > off_sec->dofs_size) {
14764 			dtrace_dof_error(dof, "invalid probe offset");
14765 			return (-1);
14766 		}
14767 
14768 		if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
14769 			/*
14770 			 * If there's no is-enabled offset section, make sure
14771 			 * there aren't any is-enabled offsets. Otherwise
14772 			 * perform the same checks as for probe offsets
14773 			 * (immediately above).
14774 			 */
14775 			if (enoff_sec == NULL) {
14776 				if (probe->dofpr_enoffidx != 0 ||
14777 				    probe->dofpr_nenoffs != 0) {
14778 					dtrace_dof_error(dof, "is-enabled "
14779 					    "offsets with null section");
14780 					return (-1);
14781 				}
14782 			} else if (probe->dofpr_enoffidx +
14783 			    probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
14784 			    (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
14785 			    enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
14786 				dtrace_dof_error(dof, "invalid is-enabled "
14787 				    "offset");
14788 				return (-1);
14789 			}
14790 
14791 			if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
14792 				dtrace_dof_error(dof, "zero probe and "
14793 				    "is-enabled offsets");
14794 				return (-1);
14795 			}
14796 		} else if (probe->dofpr_noffs == 0) {
14797 			dtrace_dof_error(dof, "zero probe offsets");
14798 			return (-1);
14799 		}
14800 
14801 		if (probe->dofpr_argidx + probe->dofpr_xargc <
14802 		    probe->dofpr_argidx ||
14803 		    (probe->dofpr_argidx + probe->dofpr_xargc) *
14804 		    arg_sec->dofs_entsize > arg_sec->dofs_size) {
14805 			dtrace_dof_error(dof, "invalid args");
14806 			return (-1);
14807 		}
14808 
14809 		typeidx = probe->dofpr_nargv;
14810 		typestr = strtab + probe->dofpr_nargv;
14811 		for (k = 0; k < probe->dofpr_nargc; k++) {
14812 			if (typeidx >= str_sec->dofs_size) {
14813 				dtrace_dof_error(dof, "bad "
14814 				    "native argument type");
14815 				return (-1);
14816 			}
14817 
14818 			typesz = strlen(typestr) + 1;
14819 			if (typesz > DTRACE_ARGTYPELEN) {
14820 				dtrace_dof_error(dof, "native "
14821 				    "argument type too long");
14822 				return (-1);
14823 			}
14824 			typeidx += typesz;
14825 			typestr += typesz;
14826 		}
14827 
14828 		typeidx = probe->dofpr_xargv;
14829 		typestr = strtab + probe->dofpr_xargv;
14830 		for (k = 0; k < probe->dofpr_xargc; k++) {
14831 			if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
14832 				dtrace_dof_error(dof, "bad "
14833 				    "native argument index");
14834 				return (-1);
14835 			}
14836 
14837 			if (typeidx >= str_sec->dofs_size) {
14838 				dtrace_dof_error(dof, "bad "
14839 				    "translated argument type");
14840 				return (-1);
14841 			}
14842 
14843 			typesz = strlen(typestr) + 1;
14844 			if (typesz > DTRACE_ARGTYPELEN) {
14845 				dtrace_dof_error(dof, "translated argument "
14846 				    "type too long");
14847 				return (-1);
14848 			}
14849 
14850 			typeidx += typesz;
14851 			typestr += typesz;
14852 		}
14853 	}
14854 
14855 	return (0);
14856 }
14857 
14858 static int
14859 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
14860 {
14861 	dtrace_helpers_t *help;
14862 	dtrace_vstate_t *vstate;
14863 	dtrace_enabling_t *enab = NULL;
14864 	int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
14865 	uintptr_t daddr = (uintptr_t)dof;
14866 
14867 	ASSERT(MUTEX_HELD(&dtrace_lock));
14868 
14869 	if ((help = curproc->p_dtrace_helpers) == NULL)
14870 		help = dtrace_helpers_create(curproc);
14871 
14872 	vstate = &help->dthps_vstate;
14873 
14874 	if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
14875 	    dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
14876 		dtrace_dof_destroy(dof);
14877 		return (rv);
14878 	}
14879 
14880 	/*
14881 	 * Look for helper providers and validate their descriptions.
14882 	 */
14883 	if (dhp != NULL) {
14884 		for (i = 0; i < dof->dofh_secnum; i++) {
14885 			dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
14886 			    dof->dofh_secoff + i * dof->dofh_secsize);
14887 
14888 			if (sec->dofs_type != DOF_SECT_PROVIDER)
14889 				continue;
14890 
14891 			if (dtrace_helper_provider_validate(dof, sec) != 0) {
14892 				dtrace_enabling_destroy(enab);
14893 				dtrace_dof_destroy(dof);
14894 				return (-1);
14895 			}
14896 
14897 			nprovs++;
14898 		}
14899 	}
14900 
14901 	/*
14902 	 * Now we need to walk through the ECB descriptions in the enabling.
14903 	 */
14904 	for (i = 0; i < enab->dten_ndesc; i++) {
14905 		dtrace_ecbdesc_t *ep = enab->dten_desc[i];
14906 		dtrace_probedesc_t *desc = &ep->dted_probe;
14907 
14908 		if (strcmp(desc->dtpd_provider, "dtrace") != 0)
14909 			continue;
14910 
14911 		if (strcmp(desc->dtpd_mod, "helper") != 0)
14912 			continue;
14913 
14914 		if (strcmp(desc->dtpd_func, "ustack") != 0)
14915 			continue;
14916 
14917 		if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
14918 		    ep)) != 0) {
14919 			/*
14920 			 * Adding this helper action failed -- we are now going
14921 			 * to rip out the entire generation and return failure.
14922 			 */
14923 			(void) dtrace_helper_destroygen(help->dthps_generation);
14924 			dtrace_enabling_destroy(enab);
14925 			dtrace_dof_destroy(dof);
14926 			return (-1);
14927 		}
14928 
14929 		nhelpers++;
14930 	}
14931 
14932 	if (nhelpers < enab->dten_ndesc)
14933 		dtrace_dof_error(dof, "unmatched helpers");
14934 
14935 	gen = help->dthps_generation++;
14936 	dtrace_enabling_destroy(enab);
14937 
14938 	if (dhp != NULL && nprovs > 0) {
14939 		dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
14940 		if (dtrace_helper_provider_add(dhp, gen) == 0) {
14941 			mutex_exit(&dtrace_lock);
14942 			dtrace_helper_provider_register(curproc, help, dhp);
14943 			mutex_enter(&dtrace_lock);
14944 
14945 			destroy = 0;
14946 		}
14947 	}
14948 
14949 	if (destroy)
14950 		dtrace_dof_destroy(dof);
14951 
14952 	return (gen);
14953 }
14954 
14955 static dtrace_helpers_t *
14956 dtrace_helpers_create(proc_t *p)
14957 {
14958 	dtrace_helpers_t *help;
14959 
14960 	ASSERT(MUTEX_HELD(&dtrace_lock));
14961 	ASSERT(p->p_dtrace_helpers == NULL);
14962 
14963 	help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
14964 	help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
14965 	    DTRACE_NHELPER_ACTIONS, KM_SLEEP);
14966 
14967 	p->p_dtrace_helpers = help;
14968 	dtrace_helpers++;
14969 
14970 	return (help);
14971 }
14972 
14973 #if defined(sun)
14974 static
14975 #endif
14976 void
14977 dtrace_helpers_destroy(proc_t *p)
14978 {
14979 	dtrace_helpers_t *help;
14980 	dtrace_vstate_t *vstate;
14981 #if defined(sun)
14982 	proc_t *p = curproc;
14983 #endif
14984 	int i;
14985 
14986 	mutex_enter(&dtrace_lock);
14987 
14988 	ASSERT(p->p_dtrace_helpers != NULL);
14989 	ASSERT(dtrace_helpers > 0);
14990 
14991 	help = p->p_dtrace_helpers;
14992 	vstate = &help->dthps_vstate;
14993 
14994 	/*
14995 	 * We're now going to lose the help from this process.
14996 	 */
14997 	p->p_dtrace_helpers = NULL;
14998 	dtrace_sync();
14999 
15000 	/*
15001 	 * Destory the helper actions.
15002 	 */
15003 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15004 		dtrace_helper_action_t *h, *next;
15005 
15006 		for (h = help->dthps_actions[i]; h != NULL; h = next) {
15007 			next = h->dtha_next;
15008 			dtrace_helper_action_destroy(h, vstate);
15009 			h = next;
15010 		}
15011 	}
15012 
15013 	mutex_exit(&dtrace_lock);
15014 
15015 	/*
15016 	 * Destroy the helper providers.
15017 	 */
15018 	if (help->dthps_maxprovs > 0) {
15019 		mutex_enter(&dtrace_meta_lock);
15020 		if (dtrace_meta_pid != NULL) {
15021 			ASSERT(dtrace_deferred_pid == NULL);
15022 
15023 			for (i = 0; i < help->dthps_nprovs; i++) {
15024 				dtrace_helper_provider_remove(
15025 				    &help->dthps_provs[i]->dthp_prov, p->p_pid);
15026 			}
15027 		} else {
15028 			mutex_enter(&dtrace_lock);
15029 			ASSERT(help->dthps_deferred == 0 ||
15030 			    help->dthps_next != NULL ||
15031 			    help->dthps_prev != NULL ||
15032 			    help == dtrace_deferred_pid);
15033 
15034 			/*
15035 			 * Remove the helper from the deferred list.
15036 			 */
15037 			if (help->dthps_next != NULL)
15038 				help->dthps_next->dthps_prev = help->dthps_prev;
15039 			if (help->dthps_prev != NULL)
15040 				help->dthps_prev->dthps_next = help->dthps_next;
15041 			if (dtrace_deferred_pid == help) {
15042 				dtrace_deferred_pid = help->dthps_next;
15043 				ASSERT(help->dthps_prev == NULL);
15044 			}
15045 
15046 			mutex_exit(&dtrace_lock);
15047 		}
15048 
15049 		mutex_exit(&dtrace_meta_lock);
15050 
15051 		for (i = 0; i < help->dthps_nprovs; i++) {
15052 			dtrace_helper_provider_destroy(help->dthps_provs[i]);
15053 		}
15054 
15055 		kmem_free(help->dthps_provs, help->dthps_maxprovs *
15056 		    sizeof (dtrace_helper_provider_t *));
15057 	}
15058 
15059 	mutex_enter(&dtrace_lock);
15060 
15061 	dtrace_vstate_fini(&help->dthps_vstate);
15062 	kmem_free(help->dthps_actions,
15063 	    sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15064 	kmem_free(help, sizeof (dtrace_helpers_t));
15065 
15066 	--dtrace_helpers;
15067 	mutex_exit(&dtrace_lock);
15068 }
15069 
15070 #if defined(sun)
15071 static
15072 #endif
15073 void
15074 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15075 {
15076 	dtrace_helpers_t *help, *newhelp;
15077 	dtrace_helper_action_t *helper, *new, *last;
15078 	dtrace_difo_t *dp;
15079 	dtrace_vstate_t *vstate;
15080 	int i, j, sz, hasprovs = 0;
15081 
15082 	mutex_enter(&dtrace_lock);
15083 	ASSERT(from->p_dtrace_helpers != NULL);
15084 	ASSERT(dtrace_helpers > 0);
15085 
15086 	help = from->p_dtrace_helpers;
15087 	newhelp = dtrace_helpers_create(to);
15088 	ASSERT(to->p_dtrace_helpers != NULL);
15089 
15090 	newhelp->dthps_generation = help->dthps_generation;
15091 	vstate = &newhelp->dthps_vstate;
15092 
15093 	/*
15094 	 * Duplicate the helper actions.
15095 	 */
15096 	for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15097 		if ((helper = help->dthps_actions[i]) == NULL)
15098 			continue;
15099 
15100 		for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15101 			new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15102 			    KM_SLEEP);
15103 			new->dtha_generation = helper->dtha_generation;
15104 
15105 			if ((dp = helper->dtha_predicate) != NULL) {
15106 				dp = dtrace_difo_duplicate(dp, vstate);
15107 				new->dtha_predicate = dp;
15108 			}
15109 
15110 			new->dtha_nactions = helper->dtha_nactions;
15111 			sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15112 			new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15113 
15114 			for (j = 0; j < new->dtha_nactions; j++) {
15115 				dtrace_difo_t *dp = helper->dtha_actions[j];
15116 
15117 				ASSERT(dp != NULL);
15118 				dp = dtrace_difo_duplicate(dp, vstate);
15119 				new->dtha_actions[j] = dp;
15120 			}
15121 
15122 			if (last != NULL) {
15123 				last->dtha_next = new;
15124 			} else {
15125 				newhelp->dthps_actions[i] = new;
15126 			}
15127 
15128 			last = new;
15129 		}
15130 	}
15131 
15132 	/*
15133 	 * Duplicate the helper providers and register them with the
15134 	 * DTrace framework.
15135 	 */
15136 	if (help->dthps_nprovs > 0) {
15137 		newhelp->dthps_nprovs = help->dthps_nprovs;
15138 		newhelp->dthps_maxprovs = help->dthps_nprovs;
15139 		newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15140 		    sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15141 		for (i = 0; i < newhelp->dthps_nprovs; i++) {
15142 			newhelp->dthps_provs[i] = help->dthps_provs[i];
15143 			newhelp->dthps_provs[i]->dthp_ref++;
15144 		}
15145 
15146 		hasprovs = 1;
15147 	}
15148 
15149 	mutex_exit(&dtrace_lock);
15150 
15151 	if (hasprovs)
15152 		dtrace_helper_provider_register(to, newhelp, NULL);
15153 }
15154 
15155 #if defined(sun)
15156 /*
15157  * DTrace Hook Functions
15158  */
15159 static void
15160 dtrace_module_loaded(modctl_t *ctl)
15161 {
15162 	dtrace_provider_t *prv;
15163 
15164 	mutex_enter(&dtrace_provider_lock);
15165 #if defined(sun)
15166 	mutex_enter(&mod_lock);
15167 #endif
15168 
15169 	ASSERT(ctl->mod_busy);
15170 
15171 	/*
15172 	 * We're going to call each providers per-module provide operation
15173 	 * specifying only this module.
15174 	 */
15175 	for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15176 		prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15177 
15178 #if defined(sun)
15179 	mutex_exit(&mod_lock);
15180 #endif
15181 	mutex_exit(&dtrace_provider_lock);
15182 
15183 	/*
15184 	 * If we have any retained enablings, we need to match against them.
15185 	 * Enabling probes requires that cpu_lock be held, and we cannot hold
15186 	 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15187 	 * module.  (In particular, this happens when loading scheduling
15188 	 * classes.)  So if we have any retained enablings, we need to dispatch
15189 	 * our task queue to do the match for us.
15190 	 */
15191 	mutex_enter(&dtrace_lock);
15192 
15193 	if (dtrace_retained == NULL) {
15194 		mutex_exit(&dtrace_lock);
15195 		return;
15196 	}
15197 
15198 	(void) taskq_dispatch(dtrace_taskq,
15199 	    (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15200 
15201 	mutex_exit(&dtrace_lock);
15202 
15203 	/*
15204 	 * And now, for a little heuristic sleaze:  in general, we want to
15205 	 * match modules as soon as they load.  However, we cannot guarantee
15206 	 * this, because it would lead us to the lock ordering violation
15207 	 * outlined above.  The common case, of course, is that cpu_lock is
15208 	 * _not_ held -- so we delay here for a clock tick, hoping that that's
15209 	 * long enough for the task queue to do its work.  If it's not, it's
15210 	 * not a serious problem -- it just means that the module that we
15211 	 * just loaded may not be immediately instrumentable.
15212 	 */
15213 	delay(1);
15214 }
15215 
15216 static void
15217 dtrace_module_unloaded(modctl_t *ctl)
15218 {
15219 	dtrace_probe_t template, *probe, *first, *next;
15220 	dtrace_provider_t *prov;
15221 
15222 	template.dtpr_mod = ctl->mod_modname;
15223 
15224 	mutex_enter(&dtrace_provider_lock);
15225 #if defined(sun)
15226 	mutex_enter(&mod_lock);
15227 #endif
15228 	mutex_enter(&dtrace_lock);
15229 
15230 	if (dtrace_bymod == NULL) {
15231 		/*
15232 		 * The DTrace module is loaded (obviously) but not attached;
15233 		 * we don't have any work to do.
15234 		 */
15235 		mutex_exit(&dtrace_provider_lock);
15236 #if defined(sun)
15237 		mutex_exit(&mod_lock);
15238 #endif
15239 		mutex_exit(&dtrace_lock);
15240 		return;
15241 	}
15242 
15243 	for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15244 	    probe != NULL; probe = probe->dtpr_nextmod) {
15245 		if (probe->dtpr_ecb != NULL) {
15246 			mutex_exit(&dtrace_provider_lock);
15247 #if defined(sun)
15248 			mutex_exit(&mod_lock);
15249 #endif
15250 			mutex_exit(&dtrace_lock);
15251 
15252 			/*
15253 			 * This shouldn't _actually_ be possible -- we're
15254 			 * unloading a module that has an enabled probe in it.
15255 			 * (It's normally up to the provider to make sure that
15256 			 * this can't happen.)  However, because dtps_enable()
15257 			 * doesn't have a failure mode, there can be an
15258 			 * enable/unload race.  Upshot:  we don't want to
15259 			 * assert, but we're not going to disable the
15260 			 * probe, either.
15261 			 */
15262 			if (dtrace_err_verbose) {
15263 				cmn_err(CE_WARN, "unloaded module '%s' had "
15264 				    "enabled probes", ctl->mod_modname);
15265 			}
15266 
15267 			return;
15268 		}
15269 	}
15270 
15271 	probe = first;
15272 
15273 	for (first = NULL; probe != NULL; probe = next) {
15274 		ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15275 
15276 		dtrace_probes[probe->dtpr_id - 1] = NULL;
15277 
15278 		next = probe->dtpr_nextmod;
15279 		dtrace_hash_remove(dtrace_bymod, probe);
15280 		dtrace_hash_remove(dtrace_byfunc, probe);
15281 		dtrace_hash_remove(dtrace_byname, probe);
15282 
15283 		if (first == NULL) {
15284 			first = probe;
15285 			probe->dtpr_nextmod = NULL;
15286 		} else {
15287 			probe->dtpr_nextmod = first;
15288 			first = probe;
15289 		}
15290 	}
15291 
15292 	/*
15293 	 * We've removed all of the module's probes from the hash chains and
15294 	 * from the probe array.  Now issue a dtrace_sync() to be sure that
15295 	 * everyone has cleared out from any probe array processing.
15296 	 */
15297 	dtrace_sync();
15298 
15299 	for (probe = first; probe != NULL; probe = first) {
15300 		first = probe->dtpr_nextmod;
15301 		prov = probe->dtpr_provider;
15302 		prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15303 		    probe->dtpr_arg);
15304 		kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15305 		kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15306 		kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15307 		vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15308 		kmem_free(probe, sizeof (dtrace_probe_t));
15309 	}
15310 
15311 	mutex_exit(&dtrace_lock);
15312 #if defined(sun)
15313 	mutex_exit(&mod_lock);
15314 #endif
15315 	mutex_exit(&dtrace_provider_lock);
15316 }
15317 
15318 static void
15319 dtrace_suspend(void)
15320 {
15321 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15322 }
15323 
15324 static void
15325 dtrace_resume(void)
15326 {
15327 	dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15328 }
15329 #endif
15330 
15331 static int
15332 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15333 {
15334 	ASSERT(MUTEX_HELD(&cpu_lock));
15335 	mutex_enter(&dtrace_lock);
15336 
15337 	switch (what) {
15338 	case CPU_CONFIG: {
15339 		dtrace_state_t *state;
15340 		dtrace_optval_t *opt, rs, c;
15341 
15342 		/*
15343 		 * For now, we only allocate a new buffer for anonymous state.
15344 		 */
15345 		if ((state = dtrace_anon.dta_state) == NULL)
15346 			break;
15347 
15348 		if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15349 			break;
15350 
15351 		opt = state->dts_options;
15352 		c = opt[DTRACEOPT_CPU];
15353 
15354 		if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15355 			break;
15356 
15357 		/*
15358 		 * Regardless of what the actual policy is, we're going to
15359 		 * temporarily set our resize policy to be manual.  We're
15360 		 * also going to temporarily set our CPU option to denote
15361 		 * the newly configured CPU.
15362 		 */
15363 		rs = opt[DTRACEOPT_BUFRESIZE];
15364 		opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15365 		opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15366 
15367 		(void) dtrace_state_buffers(state);
15368 
15369 		opt[DTRACEOPT_BUFRESIZE] = rs;
15370 		opt[DTRACEOPT_CPU] = c;
15371 
15372 		break;
15373 	}
15374 
15375 	case CPU_UNCONFIG:
15376 		/*
15377 		 * We don't free the buffer in the CPU_UNCONFIG case.  (The
15378 		 * buffer will be freed when the consumer exits.)
15379 		 */
15380 		break;
15381 
15382 	default:
15383 		break;
15384 	}
15385 
15386 	mutex_exit(&dtrace_lock);
15387 	return (0);
15388 }
15389 
15390 #if defined(sun)
15391 static void
15392 dtrace_cpu_setup_initial(processorid_t cpu)
15393 {
15394 	(void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15395 }
15396 #endif
15397 
15398 static void
15399 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15400 {
15401 	if (dtrace_toxranges >= dtrace_toxranges_max) {
15402 		int osize, nsize;
15403 		dtrace_toxrange_t *range;
15404 
15405 		osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15406 
15407 		if (osize == 0) {
15408 			ASSERT(dtrace_toxrange == NULL);
15409 			ASSERT(dtrace_toxranges_max == 0);
15410 			dtrace_toxranges_max = 1;
15411 		} else {
15412 			dtrace_toxranges_max <<= 1;
15413 		}
15414 
15415 		nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15416 		range = kmem_zalloc(nsize, KM_SLEEP);
15417 
15418 		if (dtrace_toxrange != NULL) {
15419 			ASSERT(osize != 0);
15420 			bcopy(dtrace_toxrange, range, osize);
15421 			kmem_free(dtrace_toxrange, osize);
15422 		}
15423 
15424 		dtrace_toxrange = range;
15425 	}
15426 
15427 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
15428 	ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
15429 
15430 	dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15431 	dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15432 	dtrace_toxranges++;
15433 }
15434 
15435 /*
15436  * DTrace Driver Cookbook Functions
15437  */
15438 #if defined(sun)
15439 /*ARGSUSED*/
15440 static int
15441 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15442 {
15443 	dtrace_provider_id_t id;
15444 	dtrace_state_t *state = NULL;
15445 	dtrace_enabling_t *enab;
15446 
15447 	mutex_enter(&cpu_lock);
15448 	mutex_enter(&dtrace_provider_lock);
15449 	mutex_enter(&dtrace_lock);
15450 
15451 	if (ddi_soft_state_init(&dtrace_softstate,
15452 	    sizeof (dtrace_state_t), 0) != 0) {
15453 		cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15454 		mutex_exit(&cpu_lock);
15455 		mutex_exit(&dtrace_provider_lock);
15456 		mutex_exit(&dtrace_lock);
15457 		return (DDI_FAILURE);
15458 	}
15459 
15460 	if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15461 	    DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15462 	    ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15463 	    DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15464 		cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15465 		ddi_remove_minor_node(devi, NULL);
15466 		ddi_soft_state_fini(&dtrace_softstate);
15467 		mutex_exit(&cpu_lock);
15468 		mutex_exit(&dtrace_provider_lock);
15469 		mutex_exit(&dtrace_lock);
15470 		return (DDI_FAILURE);
15471 	}
15472 
15473 	ddi_report_dev(devi);
15474 	dtrace_devi = devi;
15475 
15476 	dtrace_modload = dtrace_module_loaded;
15477 	dtrace_modunload = dtrace_module_unloaded;
15478 	dtrace_cpu_init = dtrace_cpu_setup_initial;
15479 	dtrace_helpers_cleanup = dtrace_helpers_destroy;
15480 	dtrace_helpers_fork = dtrace_helpers_duplicate;
15481 	dtrace_cpustart_init = dtrace_suspend;
15482 	dtrace_cpustart_fini = dtrace_resume;
15483 	dtrace_debugger_init = dtrace_suspend;
15484 	dtrace_debugger_fini = dtrace_resume;
15485 
15486 	register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15487 
15488 	ASSERT(MUTEX_HELD(&cpu_lock));
15489 
15490 	dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15491 	    NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15492 	dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15493 	    UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15494 	    VM_SLEEP | VMC_IDENTIFIER);
15495 	dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15496 	    1, INT_MAX, 0);
15497 
15498 	dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15499 	    sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15500 	    NULL, NULL, NULL, NULL, NULL, 0);
15501 
15502 	ASSERT(MUTEX_HELD(&cpu_lock));
15503 	dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15504 	    offsetof(dtrace_probe_t, dtpr_nextmod),
15505 	    offsetof(dtrace_probe_t, dtpr_prevmod));
15506 
15507 	dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15508 	    offsetof(dtrace_probe_t, dtpr_nextfunc),
15509 	    offsetof(dtrace_probe_t, dtpr_prevfunc));
15510 
15511 	dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15512 	    offsetof(dtrace_probe_t, dtpr_nextname),
15513 	    offsetof(dtrace_probe_t, dtpr_prevname));
15514 
15515 	if (dtrace_retain_max < 1) {
15516 		cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15517 		    "setting to 1", dtrace_retain_max);
15518 		dtrace_retain_max = 1;
15519 	}
15520 
15521 	/*
15522 	 * Now discover our toxic ranges.
15523 	 */
15524 	dtrace_toxic_ranges(dtrace_toxrange_add);
15525 
15526 	/*
15527 	 * Before we register ourselves as a provider to our own framework,
15528 	 * we would like to assert that dtrace_provider is NULL -- but that's
15529 	 * not true if we were loaded as a dependency of a DTrace provider.
15530 	 * Once we've registered, we can assert that dtrace_provider is our
15531 	 * pseudo provider.
15532 	 */
15533 	(void) dtrace_register("dtrace", &dtrace_provider_attr,
15534 	    DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15535 
15536 	ASSERT(dtrace_provider != NULL);
15537 	ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15538 
15539 	dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15540 	    dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15541 	dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15542 	    dtrace_provider, NULL, NULL, "END", 0, NULL);
15543 	dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15544 	    dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15545 
15546 	dtrace_anon_property();
15547 	mutex_exit(&cpu_lock);
15548 
15549 	/*
15550 	 * If DTrace helper tracing is enabled, we need to allocate the
15551 	 * trace buffer and initialize the values.
15552 	 */
15553 	if (dtrace_helptrace_enabled) {
15554 		ASSERT(dtrace_helptrace_buffer == NULL);
15555 		dtrace_helptrace_buffer =
15556 		    kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15557 		dtrace_helptrace_next = 0;
15558 	}
15559 
15560 	/*
15561 	 * If there are already providers, we must ask them to provide their
15562 	 * probes, and then match any anonymous enabling against them.  Note
15563 	 * that there should be no other retained enablings at this time:
15564 	 * the only retained enablings at this time should be the anonymous
15565 	 * enabling.
15566 	 */
15567 	if (dtrace_anon.dta_enabling != NULL) {
15568 		ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15569 
15570 		dtrace_enabling_provide(NULL);
15571 		state = dtrace_anon.dta_state;
15572 
15573 		/*
15574 		 * We couldn't hold cpu_lock across the above call to
15575 		 * dtrace_enabling_provide(), but we must hold it to actually
15576 		 * enable the probes.  We have to drop all of our locks, pick
15577 		 * up cpu_lock, and regain our locks before matching the
15578 		 * retained anonymous enabling.
15579 		 */
15580 		mutex_exit(&dtrace_lock);
15581 		mutex_exit(&dtrace_provider_lock);
15582 
15583 		mutex_enter(&cpu_lock);
15584 		mutex_enter(&dtrace_provider_lock);
15585 		mutex_enter(&dtrace_lock);
15586 
15587 		if ((enab = dtrace_anon.dta_enabling) != NULL)
15588 			(void) dtrace_enabling_match(enab, NULL);
15589 
15590 		mutex_exit(&cpu_lock);
15591 	}
15592 
15593 	mutex_exit(&dtrace_lock);
15594 	mutex_exit(&dtrace_provider_lock);
15595 
15596 	if (state != NULL) {
15597 		/*
15598 		 * If we created any anonymous state, set it going now.
15599 		 */
15600 		(void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15601 	}
15602 
15603 	return (DDI_SUCCESS);
15604 }
15605 #endif
15606 
15607 #if !defined(sun)
15608 #if __FreeBSD_version >= 800039
15609 static void dtrace_dtr(void *);
15610 #endif
15611 #endif
15612 
15613 /*ARGSUSED*/
15614 static int
15615 #if defined(sun)
15616 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15617 #else
15618 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
15619 #endif
15620 {
15621 	dtrace_state_t *state;
15622 	uint32_t priv;
15623 	uid_t uid;
15624 	zoneid_t zoneid;
15625 
15626 #if defined(sun)
15627 	if (getminor(*devp) == DTRACEMNRN_HELPER)
15628 		return (0);
15629 
15630 	/*
15631 	 * If this wasn't an open with the "helper" minor, then it must be
15632 	 * the "dtrace" minor.
15633 	 */
15634 	ASSERT(getminor(*devp) == DTRACEMNRN_DTRACE);
15635 #else
15636 	cred_t *cred_p = NULL;
15637 
15638 #if __FreeBSD_version < 800039
15639 	/*
15640 	 * The first minor device is the one that is cloned so there is
15641 	 * nothing more to do here.
15642 	 */
15643 	if (dev2unit(dev) == 0)
15644 		return 0;
15645 
15646 	/*
15647 	 * Devices are cloned, so if the DTrace state has already
15648 	 * been allocated, that means this device belongs to a
15649 	 * different client. Each client should open '/dev/dtrace'
15650 	 * to get a cloned device.
15651 	 */
15652 	if (dev->si_drv1 != NULL)
15653 		return (EBUSY);
15654 #endif
15655 
15656 	cred_p = dev->si_cred;
15657 #endif
15658 
15659 	/*
15660 	 * If no DTRACE_PRIV_* bits are set in the credential, then the
15661 	 * caller lacks sufficient permission to do anything with DTrace.
15662 	 */
15663 	dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15664 	if (priv == DTRACE_PRIV_NONE) {
15665 #if !defined(sun)
15666 #if __FreeBSD_version < 800039
15667 		/* Destroy the cloned device. */
15668                 destroy_dev(dev);
15669 #endif
15670 #endif
15671 
15672 		return (EACCES);
15673 	}
15674 
15675 	/*
15676 	 * Ask all providers to provide all their probes.
15677 	 */
15678 	mutex_enter(&dtrace_provider_lock);
15679 	dtrace_probe_provide(NULL, NULL);
15680 	mutex_exit(&dtrace_provider_lock);
15681 
15682 	mutex_enter(&cpu_lock);
15683 	mutex_enter(&dtrace_lock);
15684 	dtrace_opens++;
15685 	dtrace_membar_producer();
15686 
15687 #if defined(sun)
15688 	/*
15689 	 * If the kernel debugger is active (that is, if the kernel debugger
15690 	 * modified text in some way), we won't allow the open.
15691 	 */
15692 	if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15693 		dtrace_opens--;
15694 		mutex_exit(&cpu_lock);
15695 		mutex_exit(&dtrace_lock);
15696 		return (EBUSY);
15697 	}
15698 
15699 	state = dtrace_state_create(devp, cred_p);
15700 #else
15701 	state = dtrace_state_create(dev);
15702 #if __FreeBSD_version < 800039
15703 	dev->si_drv1 = state;
15704 #else
15705 	devfs_set_cdevpriv(state, dtrace_dtr);
15706 #endif
15707 	/* This code actually belongs in dtrace_attach() */
15708 	if (dtrace_opens == 1)
15709 		dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15710 		    1, INT_MAX, 0);
15711 #endif
15712 
15713 	mutex_exit(&cpu_lock);
15714 
15715 	if (state == NULL) {
15716 #if defined(sun)
15717 		if (--dtrace_opens == 0)
15718 			(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15719 #else
15720 		--dtrace_opens;
15721 #endif
15722 		mutex_exit(&dtrace_lock);
15723 #if !defined(sun)
15724 #if __FreeBSD_version < 800039
15725 		/* Destroy the cloned device. */
15726                 destroy_dev(dev);
15727 #endif
15728 #endif
15729 		return (EAGAIN);
15730 	}
15731 
15732 	mutex_exit(&dtrace_lock);
15733 
15734 	return (0);
15735 }
15736 
15737 /*ARGSUSED*/
15738 #if defined(sun)
15739 static int
15740 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15741 #elif __FreeBSD_version < 800039
15742 static int
15743 dtrace_close(struct cdev *dev, int flags, int fmt __unused, struct thread *td)
15744 #else
15745 static void
15746 dtrace_dtr(void *data)
15747 #endif
15748 {
15749 #if defined(sun)
15750 	minor_t minor = getminor(dev);
15751 	dtrace_state_t *state;
15752 
15753 	if (minor == DTRACEMNRN_HELPER)
15754 		return (0);
15755 
15756 	state = ddi_get_soft_state(dtrace_softstate, minor);
15757 #else
15758 #if __FreeBSD_version < 800039
15759 	dtrace_state_t *state = dev->si_drv1;
15760 
15761 	/* Check if this is not a cloned device. */
15762 	if (dev2unit(dev) == 0)
15763 		return (0);
15764 #else
15765 	dtrace_state_t *state = data;
15766 #endif
15767 
15768 #endif
15769 
15770 	mutex_enter(&cpu_lock);
15771 	mutex_enter(&dtrace_lock);
15772 
15773 	if (state != NULL) {
15774 		if (state->dts_anon) {
15775 			/*
15776 			 * There is anonymous state. Destroy that first.
15777 			 */
15778 			ASSERT(dtrace_anon.dta_state == NULL);
15779 			dtrace_state_destroy(state->dts_anon);
15780 		}
15781 
15782 		dtrace_state_destroy(state);
15783 
15784 #if !defined(sun)
15785 		kmem_free(state, 0);
15786 #if __FreeBSD_version < 800039
15787 		dev->si_drv1 = NULL;
15788 #endif
15789 #endif
15790 	}
15791 
15792 	ASSERT(dtrace_opens > 0);
15793 #if defined(sun)
15794 	if (--dtrace_opens == 0)
15795 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15796 #else
15797 	--dtrace_opens;
15798 	/* This code actually belongs in dtrace_detach() */
15799 	if ((dtrace_opens == 0) && (dtrace_taskq != NULL)) {
15800 		taskq_destroy(dtrace_taskq);
15801 		dtrace_taskq = NULL;
15802 	}
15803 #endif
15804 
15805 	mutex_exit(&dtrace_lock);
15806 	mutex_exit(&cpu_lock);
15807 
15808 #if __FreeBSD_version < 800039
15809 	/* Schedule this cloned device to be destroyed. */
15810 	destroy_dev_sched(dev);
15811 #endif
15812 
15813 #if defined(sun) || __FreeBSD_version < 800039
15814 	return (0);
15815 #endif
15816 }
15817 
15818 #if defined(sun)
15819 /*ARGSUSED*/
15820 static int
15821 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
15822 {
15823 	int rval;
15824 	dof_helper_t help, *dhp = NULL;
15825 
15826 	switch (cmd) {
15827 	case DTRACEHIOC_ADDDOF:
15828 		if (copyin((void *)arg, &help, sizeof (help)) != 0) {
15829 			dtrace_dof_error(NULL, "failed to copyin DOF helper");
15830 			return (EFAULT);
15831 		}
15832 
15833 		dhp = &help;
15834 		arg = (intptr_t)help.dofhp_dof;
15835 		/*FALLTHROUGH*/
15836 
15837 	case DTRACEHIOC_ADD: {
15838 		dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
15839 
15840 		if (dof == NULL)
15841 			return (rval);
15842 
15843 		mutex_enter(&dtrace_lock);
15844 
15845 		/*
15846 		 * dtrace_helper_slurp() takes responsibility for the dof --
15847 		 * it may free it now or it may save it and free it later.
15848 		 */
15849 		if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
15850 			*rv = rval;
15851 			rval = 0;
15852 		} else {
15853 			rval = EINVAL;
15854 		}
15855 
15856 		mutex_exit(&dtrace_lock);
15857 		return (rval);
15858 	}
15859 
15860 	case DTRACEHIOC_REMOVE: {
15861 		mutex_enter(&dtrace_lock);
15862 		rval = dtrace_helper_destroygen(arg);
15863 		mutex_exit(&dtrace_lock);
15864 
15865 		return (rval);
15866 	}
15867 
15868 	default:
15869 		break;
15870 	}
15871 
15872 	return (ENOTTY);
15873 }
15874 
15875 /*ARGSUSED*/
15876 static int
15877 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
15878 {
15879 	minor_t minor = getminor(dev);
15880 	dtrace_state_t *state;
15881 	int rval;
15882 
15883 	if (minor == DTRACEMNRN_HELPER)
15884 		return (dtrace_ioctl_helper(cmd, arg, rv));
15885 
15886 	state = ddi_get_soft_state(dtrace_softstate, minor);
15887 
15888 	if (state->dts_anon) {
15889 		ASSERT(dtrace_anon.dta_state == NULL);
15890 		state = state->dts_anon;
15891 	}
15892 
15893 	switch (cmd) {
15894 	case DTRACEIOC_PROVIDER: {
15895 		dtrace_providerdesc_t pvd;
15896 		dtrace_provider_t *pvp;
15897 
15898 		if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
15899 			return (EFAULT);
15900 
15901 		pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
15902 		mutex_enter(&dtrace_provider_lock);
15903 
15904 		for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
15905 			if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
15906 				break;
15907 		}
15908 
15909 		mutex_exit(&dtrace_provider_lock);
15910 
15911 		if (pvp == NULL)
15912 			return (ESRCH);
15913 
15914 		bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
15915 		bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
15916 
15917 		if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
15918 			return (EFAULT);
15919 
15920 		return (0);
15921 	}
15922 
15923 	case DTRACEIOC_EPROBE: {
15924 		dtrace_eprobedesc_t epdesc;
15925 		dtrace_ecb_t *ecb;
15926 		dtrace_action_t *act;
15927 		void *buf;
15928 		size_t size;
15929 		uintptr_t dest;
15930 		int nrecs;
15931 
15932 		if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
15933 			return (EFAULT);
15934 
15935 		mutex_enter(&dtrace_lock);
15936 
15937 		if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
15938 			mutex_exit(&dtrace_lock);
15939 			return (EINVAL);
15940 		}
15941 
15942 		if (ecb->dte_probe == NULL) {
15943 			mutex_exit(&dtrace_lock);
15944 			return (EINVAL);
15945 		}
15946 
15947 		epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
15948 		epdesc.dtepd_uarg = ecb->dte_uarg;
15949 		epdesc.dtepd_size = ecb->dte_size;
15950 
15951 		nrecs = epdesc.dtepd_nrecs;
15952 		epdesc.dtepd_nrecs = 0;
15953 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15954 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15955 				continue;
15956 
15957 			epdesc.dtepd_nrecs++;
15958 		}
15959 
15960 		/*
15961 		 * Now that we have the size, we need to allocate a temporary
15962 		 * buffer in which to store the complete description.  We need
15963 		 * the temporary buffer to be able to drop dtrace_lock()
15964 		 * across the copyout(), below.
15965 		 */
15966 		size = sizeof (dtrace_eprobedesc_t) +
15967 		    (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
15968 
15969 		buf = kmem_alloc(size, KM_SLEEP);
15970 		dest = (uintptr_t)buf;
15971 
15972 		bcopy(&epdesc, (void *)dest, sizeof (epdesc));
15973 		dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
15974 
15975 		for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
15976 			if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
15977 				continue;
15978 
15979 			if (nrecs-- == 0)
15980 				break;
15981 
15982 			bcopy(&act->dta_rec, (void *)dest,
15983 			    sizeof (dtrace_recdesc_t));
15984 			dest += sizeof (dtrace_recdesc_t);
15985 		}
15986 
15987 		mutex_exit(&dtrace_lock);
15988 
15989 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
15990 			kmem_free(buf, size);
15991 			return (EFAULT);
15992 		}
15993 
15994 		kmem_free(buf, size);
15995 		return (0);
15996 	}
15997 
15998 	case DTRACEIOC_AGGDESC: {
15999 		dtrace_aggdesc_t aggdesc;
16000 		dtrace_action_t *act;
16001 		dtrace_aggregation_t *agg;
16002 		int nrecs;
16003 		uint32_t offs;
16004 		dtrace_recdesc_t *lrec;
16005 		void *buf;
16006 		size_t size;
16007 		uintptr_t dest;
16008 
16009 		if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16010 			return (EFAULT);
16011 
16012 		mutex_enter(&dtrace_lock);
16013 
16014 		if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16015 			mutex_exit(&dtrace_lock);
16016 			return (EINVAL);
16017 		}
16018 
16019 		aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16020 
16021 		nrecs = aggdesc.dtagd_nrecs;
16022 		aggdesc.dtagd_nrecs = 0;
16023 
16024 		offs = agg->dtag_base;
16025 		lrec = &agg->dtag_action.dta_rec;
16026 		aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16027 
16028 		for (act = agg->dtag_first; ; act = act->dta_next) {
16029 			ASSERT(act->dta_intuple ||
16030 			    DTRACEACT_ISAGG(act->dta_kind));
16031 
16032 			/*
16033 			 * If this action has a record size of zero, it
16034 			 * denotes an argument to the aggregating action.
16035 			 * Because the presence of this record doesn't (or
16036 			 * shouldn't) affect the way the data is interpreted,
16037 			 * we don't copy it out to save user-level the
16038 			 * confusion of dealing with a zero-length record.
16039 			 */
16040 			if (act->dta_rec.dtrd_size == 0) {
16041 				ASSERT(agg->dtag_hasarg);
16042 				continue;
16043 			}
16044 
16045 			aggdesc.dtagd_nrecs++;
16046 
16047 			if (act == &agg->dtag_action)
16048 				break;
16049 		}
16050 
16051 		/*
16052 		 * Now that we have the size, we need to allocate a temporary
16053 		 * buffer in which to store the complete description.  We need
16054 		 * the temporary buffer to be able to drop dtrace_lock()
16055 		 * across the copyout(), below.
16056 		 */
16057 		size = sizeof (dtrace_aggdesc_t) +
16058 		    (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16059 
16060 		buf = kmem_alloc(size, KM_SLEEP);
16061 		dest = (uintptr_t)buf;
16062 
16063 		bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16064 		dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16065 
16066 		for (act = agg->dtag_first; ; act = act->dta_next) {
16067 			dtrace_recdesc_t rec = act->dta_rec;
16068 
16069 			/*
16070 			 * See the comment in the above loop for why we pass
16071 			 * over zero-length records.
16072 			 */
16073 			if (rec.dtrd_size == 0) {
16074 				ASSERT(agg->dtag_hasarg);
16075 				continue;
16076 			}
16077 
16078 			if (nrecs-- == 0)
16079 				break;
16080 
16081 			rec.dtrd_offset -= offs;
16082 			bcopy(&rec, (void *)dest, sizeof (rec));
16083 			dest += sizeof (dtrace_recdesc_t);
16084 
16085 			if (act == &agg->dtag_action)
16086 				break;
16087 		}
16088 
16089 		mutex_exit(&dtrace_lock);
16090 
16091 		if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16092 			kmem_free(buf, size);
16093 			return (EFAULT);
16094 		}
16095 
16096 		kmem_free(buf, size);
16097 		return (0);
16098 	}
16099 
16100 	case DTRACEIOC_ENABLE: {
16101 		dof_hdr_t *dof;
16102 		dtrace_enabling_t *enab = NULL;
16103 		dtrace_vstate_t *vstate;
16104 		int err = 0;
16105 
16106 		*rv = 0;
16107 
16108 		/*
16109 		 * If a NULL argument has been passed, we take this as our
16110 		 * cue to reevaluate our enablings.
16111 		 */
16112 		if (arg == NULL) {
16113 			dtrace_enabling_matchall();
16114 
16115 			return (0);
16116 		}
16117 
16118 		if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16119 			return (rval);
16120 
16121 		mutex_enter(&cpu_lock);
16122 		mutex_enter(&dtrace_lock);
16123 		vstate = &state->dts_vstate;
16124 
16125 		if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16126 			mutex_exit(&dtrace_lock);
16127 			mutex_exit(&cpu_lock);
16128 			dtrace_dof_destroy(dof);
16129 			return (EBUSY);
16130 		}
16131 
16132 		if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16133 			mutex_exit(&dtrace_lock);
16134 			mutex_exit(&cpu_lock);
16135 			dtrace_dof_destroy(dof);
16136 			return (EINVAL);
16137 		}
16138 
16139 		if ((rval = dtrace_dof_options(dof, state)) != 0) {
16140 			dtrace_enabling_destroy(enab);
16141 			mutex_exit(&dtrace_lock);
16142 			mutex_exit(&cpu_lock);
16143 			dtrace_dof_destroy(dof);
16144 			return (rval);
16145 		}
16146 
16147 		if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16148 			err = dtrace_enabling_retain(enab);
16149 		} else {
16150 			dtrace_enabling_destroy(enab);
16151 		}
16152 
16153 		mutex_exit(&cpu_lock);
16154 		mutex_exit(&dtrace_lock);
16155 		dtrace_dof_destroy(dof);
16156 
16157 		return (err);
16158 	}
16159 
16160 	case DTRACEIOC_REPLICATE: {
16161 		dtrace_repldesc_t desc;
16162 		dtrace_probedesc_t *match = &desc.dtrpd_match;
16163 		dtrace_probedesc_t *create = &desc.dtrpd_create;
16164 		int err;
16165 
16166 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16167 			return (EFAULT);
16168 
16169 		match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16170 		match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16171 		match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16172 		match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16173 
16174 		create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16175 		create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16176 		create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16177 		create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16178 
16179 		mutex_enter(&dtrace_lock);
16180 		err = dtrace_enabling_replicate(state, match, create);
16181 		mutex_exit(&dtrace_lock);
16182 
16183 		return (err);
16184 	}
16185 
16186 	case DTRACEIOC_PROBEMATCH:
16187 	case DTRACEIOC_PROBES: {
16188 		dtrace_probe_t *probe = NULL;
16189 		dtrace_probedesc_t desc;
16190 		dtrace_probekey_t pkey;
16191 		dtrace_id_t i;
16192 		int m = 0;
16193 		uint32_t priv;
16194 		uid_t uid;
16195 		zoneid_t zoneid;
16196 
16197 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16198 			return (EFAULT);
16199 
16200 		desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16201 		desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16202 		desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16203 		desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16204 
16205 		/*
16206 		 * Before we attempt to match this probe, we want to give
16207 		 * all providers the opportunity to provide it.
16208 		 */
16209 		if (desc.dtpd_id == DTRACE_IDNONE) {
16210 			mutex_enter(&dtrace_provider_lock);
16211 			dtrace_probe_provide(&desc, NULL);
16212 			mutex_exit(&dtrace_provider_lock);
16213 			desc.dtpd_id++;
16214 		}
16215 
16216 		if (cmd == DTRACEIOC_PROBEMATCH)  {
16217 			dtrace_probekey(&desc, &pkey);
16218 			pkey.dtpk_id = DTRACE_IDNONE;
16219 		}
16220 
16221 		dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16222 
16223 		mutex_enter(&dtrace_lock);
16224 
16225 		if (cmd == DTRACEIOC_PROBEMATCH) {
16226 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16227 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16228 				    (m = dtrace_match_probe(probe, &pkey,
16229 				    priv, uid, zoneid)) != 0)
16230 					break;
16231 			}
16232 
16233 			if (m < 0) {
16234 				mutex_exit(&dtrace_lock);
16235 				return (EINVAL);
16236 			}
16237 
16238 		} else {
16239 			for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16240 				if ((probe = dtrace_probes[i - 1]) != NULL &&
16241 				    dtrace_match_priv(probe, priv, uid, zoneid))
16242 					break;
16243 			}
16244 		}
16245 
16246 		if (probe == NULL) {
16247 			mutex_exit(&dtrace_lock);
16248 			return (ESRCH);
16249 		}
16250 
16251 		dtrace_probe_description(probe, &desc);
16252 		mutex_exit(&dtrace_lock);
16253 
16254 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16255 			return (EFAULT);
16256 
16257 		return (0);
16258 	}
16259 
16260 	case DTRACEIOC_PROBEARG: {
16261 		dtrace_argdesc_t desc;
16262 		dtrace_probe_t *probe;
16263 		dtrace_provider_t *prov;
16264 
16265 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16266 			return (EFAULT);
16267 
16268 		if (desc.dtargd_id == DTRACE_IDNONE)
16269 			return (EINVAL);
16270 
16271 		if (desc.dtargd_ndx == DTRACE_ARGNONE)
16272 			return (EINVAL);
16273 
16274 		mutex_enter(&dtrace_provider_lock);
16275 		mutex_enter(&mod_lock);
16276 		mutex_enter(&dtrace_lock);
16277 
16278 		if (desc.dtargd_id > dtrace_nprobes) {
16279 			mutex_exit(&dtrace_lock);
16280 			mutex_exit(&mod_lock);
16281 			mutex_exit(&dtrace_provider_lock);
16282 			return (EINVAL);
16283 		}
16284 
16285 		if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16286 			mutex_exit(&dtrace_lock);
16287 			mutex_exit(&mod_lock);
16288 			mutex_exit(&dtrace_provider_lock);
16289 			return (EINVAL);
16290 		}
16291 
16292 		mutex_exit(&dtrace_lock);
16293 
16294 		prov = probe->dtpr_provider;
16295 
16296 		if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16297 			/*
16298 			 * There isn't any typed information for this probe.
16299 			 * Set the argument number to DTRACE_ARGNONE.
16300 			 */
16301 			desc.dtargd_ndx = DTRACE_ARGNONE;
16302 		} else {
16303 			desc.dtargd_native[0] = '\0';
16304 			desc.dtargd_xlate[0] = '\0';
16305 			desc.dtargd_mapping = desc.dtargd_ndx;
16306 
16307 			prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16308 			    probe->dtpr_id, probe->dtpr_arg, &desc);
16309 		}
16310 
16311 		mutex_exit(&mod_lock);
16312 		mutex_exit(&dtrace_provider_lock);
16313 
16314 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16315 			return (EFAULT);
16316 
16317 		return (0);
16318 	}
16319 
16320 	case DTRACEIOC_GO: {
16321 		processorid_t cpuid;
16322 		rval = dtrace_state_go(state, &cpuid);
16323 
16324 		if (rval != 0)
16325 			return (rval);
16326 
16327 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16328 			return (EFAULT);
16329 
16330 		return (0);
16331 	}
16332 
16333 	case DTRACEIOC_STOP: {
16334 		processorid_t cpuid;
16335 
16336 		mutex_enter(&dtrace_lock);
16337 		rval = dtrace_state_stop(state, &cpuid);
16338 		mutex_exit(&dtrace_lock);
16339 
16340 		if (rval != 0)
16341 			return (rval);
16342 
16343 		if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16344 			return (EFAULT);
16345 
16346 		return (0);
16347 	}
16348 
16349 	case DTRACEIOC_DOFGET: {
16350 		dof_hdr_t hdr, *dof;
16351 		uint64_t len;
16352 
16353 		if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16354 			return (EFAULT);
16355 
16356 		mutex_enter(&dtrace_lock);
16357 		dof = dtrace_dof_create(state);
16358 		mutex_exit(&dtrace_lock);
16359 
16360 		len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16361 		rval = copyout(dof, (void *)arg, len);
16362 		dtrace_dof_destroy(dof);
16363 
16364 		return (rval == 0 ? 0 : EFAULT);
16365 	}
16366 
16367 	case DTRACEIOC_AGGSNAP:
16368 	case DTRACEIOC_BUFSNAP: {
16369 		dtrace_bufdesc_t desc;
16370 		caddr_t cached;
16371 		dtrace_buffer_t *buf;
16372 
16373 		if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16374 			return (EFAULT);
16375 
16376 		if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16377 			return (EINVAL);
16378 
16379 		mutex_enter(&dtrace_lock);
16380 
16381 		if (cmd == DTRACEIOC_BUFSNAP) {
16382 			buf = &state->dts_buffer[desc.dtbd_cpu];
16383 		} else {
16384 			buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16385 		}
16386 
16387 		if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16388 			size_t sz = buf->dtb_offset;
16389 
16390 			if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16391 				mutex_exit(&dtrace_lock);
16392 				return (EBUSY);
16393 			}
16394 
16395 			/*
16396 			 * If this buffer has already been consumed, we're
16397 			 * going to indicate that there's nothing left here
16398 			 * to consume.
16399 			 */
16400 			if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16401 				mutex_exit(&dtrace_lock);
16402 
16403 				desc.dtbd_size = 0;
16404 				desc.dtbd_drops = 0;
16405 				desc.dtbd_errors = 0;
16406 				desc.dtbd_oldest = 0;
16407 				sz = sizeof (desc);
16408 
16409 				if (copyout(&desc, (void *)arg, sz) != 0)
16410 					return (EFAULT);
16411 
16412 				return (0);
16413 			}
16414 
16415 			/*
16416 			 * If this is a ring buffer that has wrapped, we want
16417 			 * to copy the whole thing out.
16418 			 */
16419 			if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16420 				dtrace_buffer_polish(buf);
16421 				sz = buf->dtb_size;
16422 			}
16423 
16424 			if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16425 				mutex_exit(&dtrace_lock);
16426 				return (EFAULT);
16427 			}
16428 
16429 			desc.dtbd_size = sz;
16430 			desc.dtbd_drops = buf->dtb_drops;
16431 			desc.dtbd_errors = buf->dtb_errors;
16432 			desc.dtbd_oldest = buf->dtb_xamot_offset;
16433 			desc.dtbd_timestamp = dtrace_gethrtime();
16434 
16435 			mutex_exit(&dtrace_lock);
16436 
16437 			if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16438 				return (EFAULT);
16439 
16440 			buf->dtb_flags |= DTRACEBUF_CONSUMED;
16441 
16442 			return (0);
16443 		}
16444 
16445 		if (buf->dtb_tomax == NULL) {
16446 			ASSERT(buf->dtb_xamot == NULL);
16447 			mutex_exit(&dtrace_lock);
16448 			return (ENOENT);
16449 		}
16450 
16451 		cached = buf->dtb_tomax;
16452 		ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16453 
16454 		dtrace_xcall(desc.dtbd_cpu,
16455 		    (dtrace_xcall_t)dtrace_buffer_switch, buf);
16456 
16457 		state->dts_errors += buf->dtb_xamot_errors;
16458 
16459 		/*
16460 		 * If the buffers did not actually switch, then the cross call
16461 		 * did not take place -- presumably because the given CPU is
16462 		 * not in the ready set.  If this is the case, we'll return
16463 		 * ENOENT.
16464 		 */
16465 		if (buf->dtb_tomax == cached) {
16466 			ASSERT(buf->dtb_xamot != cached);
16467 			mutex_exit(&dtrace_lock);
16468 			return (ENOENT);
16469 		}
16470 
16471 		ASSERT(cached == buf->dtb_xamot);
16472 
16473 		/*
16474 		 * We have our snapshot; now copy it out.
16475 		 */
16476 		if (copyout(buf->dtb_xamot, desc.dtbd_data,
16477 		    buf->dtb_xamot_offset) != 0) {
16478 			mutex_exit(&dtrace_lock);
16479 			return (EFAULT);
16480 		}
16481 
16482 		desc.dtbd_size = buf->dtb_xamot_offset;
16483 		desc.dtbd_drops = buf->dtb_xamot_drops;
16484 		desc.dtbd_errors = buf->dtb_xamot_errors;
16485 		desc.dtbd_oldest = 0;
16486 		desc.dtbd_timestamp = buf->dtb_switched;
16487 
16488 		mutex_exit(&dtrace_lock);
16489 
16490 		/*
16491 		 * Finally, copy out the buffer description.
16492 		 */
16493 		if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16494 			return (EFAULT);
16495 
16496 		return (0);
16497 	}
16498 
16499 	case DTRACEIOC_CONF: {
16500 		dtrace_conf_t conf;
16501 
16502 		bzero(&conf, sizeof (conf));
16503 		conf.dtc_difversion = DIF_VERSION;
16504 		conf.dtc_difintregs = DIF_DIR_NREGS;
16505 		conf.dtc_diftupregs = DIF_DTR_NREGS;
16506 		conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16507 
16508 		if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16509 			return (EFAULT);
16510 
16511 		return (0);
16512 	}
16513 
16514 	case DTRACEIOC_STATUS: {
16515 		dtrace_status_t stat;
16516 		dtrace_dstate_t *dstate;
16517 		int i, j;
16518 		uint64_t nerrs;
16519 
16520 		/*
16521 		 * See the comment in dtrace_state_deadman() for the reason
16522 		 * for setting dts_laststatus to INT64_MAX before setting
16523 		 * it to the correct value.
16524 		 */
16525 		state->dts_laststatus = INT64_MAX;
16526 		dtrace_membar_producer();
16527 		state->dts_laststatus = dtrace_gethrtime();
16528 
16529 		bzero(&stat, sizeof (stat));
16530 
16531 		mutex_enter(&dtrace_lock);
16532 
16533 		if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16534 			mutex_exit(&dtrace_lock);
16535 			return (ENOENT);
16536 		}
16537 
16538 		if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16539 			stat.dtst_exiting = 1;
16540 
16541 		nerrs = state->dts_errors;
16542 		dstate = &state->dts_vstate.dtvs_dynvars;
16543 
16544 		for (i = 0; i < NCPU; i++) {
16545 			dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16546 
16547 			stat.dtst_dyndrops += dcpu->dtdsc_drops;
16548 			stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16549 			stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16550 
16551 			if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16552 				stat.dtst_filled++;
16553 
16554 			nerrs += state->dts_buffer[i].dtb_errors;
16555 
16556 			for (j = 0; j < state->dts_nspeculations; j++) {
16557 				dtrace_speculation_t *spec;
16558 				dtrace_buffer_t *buf;
16559 
16560 				spec = &state->dts_speculations[j];
16561 				buf = &spec->dtsp_buffer[i];
16562 				stat.dtst_specdrops += buf->dtb_xamot_drops;
16563 			}
16564 		}
16565 
16566 		stat.dtst_specdrops_busy = state->dts_speculations_busy;
16567 		stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16568 		stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16569 		stat.dtst_dblerrors = state->dts_dblerrors;
16570 		stat.dtst_killed =
16571 		    (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16572 		stat.dtst_errors = nerrs;
16573 
16574 		mutex_exit(&dtrace_lock);
16575 
16576 		if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16577 			return (EFAULT);
16578 
16579 		return (0);
16580 	}
16581 
16582 	case DTRACEIOC_FORMAT: {
16583 		dtrace_fmtdesc_t fmt;
16584 		char *str;
16585 		int len;
16586 
16587 		if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16588 			return (EFAULT);
16589 
16590 		mutex_enter(&dtrace_lock);
16591 
16592 		if (fmt.dtfd_format == 0 ||
16593 		    fmt.dtfd_format > state->dts_nformats) {
16594 			mutex_exit(&dtrace_lock);
16595 			return (EINVAL);
16596 		}
16597 
16598 		/*
16599 		 * Format strings are allocated contiguously and they are
16600 		 * never freed; if a format index is less than the number
16601 		 * of formats, we can assert that the format map is non-NULL
16602 		 * and that the format for the specified index is non-NULL.
16603 		 */
16604 		ASSERT(state->dts_formats != NULL);
16605 		str = state->dts_formats[fmt.dtfd_format - 1];
16606 		ASSERT(str != NULL);
16607 
16608 		len = strlen(str) + 1;
16609 
16610 		if (len > fmt.dtfd_length) {
16611 			fmt.dtfd_length = len;
16612 
16613 			if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16614 				mutex_exit(&dtrace_lock);
16615 				return (EINVAL);
16616 			}
16617 		} else {
16618 			if (copyout(str, fmt.dtfd_string, len) != 0) {
16619 				mutex_exit(&dtrace_lock);
16620 				return (EINVAL);
16621 			}
16622 		}
16623 
16624 		mutex_exit(&dtrace_lock);
16625 		return (0);
16626 	}
16627 
16628 	default:
16629 		break;
16630 	}
16631 
16632 	return (ENOTTY);
16633 }
16634 
16635 /*ARGSUSED*/
16636 static int
16637 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16638 {
16639 	dtrace_state_t *state;
16640 
16641 	switch (cmd) {
16642 	case DDI_DETACH:
16643 		break;
16644 
16645 	case DDI_SUSPEND:
16646 		return (DDI_SUCCESS);
16647 
16648 	default:
16649 		return (DDI_FAILURE);
16650 	}
16651 
16652 	mutex_enter(&cpu_lock);
16653 	mutex_enter(&dtrace_provider_lock);
16654 	mutex_enter(&dtrace_lock);
16655 
16656 	ASSERT(dtrace_opens == 0);
16657 
16658 	if (dtrace_helpers > 0) {
16659 		mutex_exit(&dtrace_provider_lock);
16660 		mutex_exit(&dtrace_lock);
16661 		mutex_exit(&cpu_lock);
16662 		return (DDI_FAILURE);
16663 	}
16664 
16665 	if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16666 		mutex_exit(&dtrace_provider_lock);
16667 		mutex_exit(&dtrace_lock);
16668 		mutex_exit(&cpu_lock);
16669 		return (DDI_FAILURE);
16670 	}
16671 
16672 	dtrace_provider = NULL;
16673 
16674 	if ((state = dtrace_anon_grab()) != NULL) {
16675 		/*
16676 		 * If there were ECBs on this state, the provider should
16677 		 * have not been allowed to detach; assert that there is
16678 		 * none.
16679 		 */
16680 		ASSERT(state->dts_necbs == 0);
16681 		dtrace_state_destroy(state);
16682 
16683 		/*
16684 		 * If we're being detached with anonymous state, we need to
16685 		 * indicate to the kernel debugger that DTrace is now inactive.
16686 		 */
16687 		(void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16688 	}
16689 
16690 	bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16691 	unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16692 	dtrace_cpu_init = NULL;
16693 	dtrace_helpers_cleanup = NULL;
16694 	dtrace_helpers_fork = NULL;
16695 	dtrace_cpustart_init = NULL;
16696 	dtrace_cpustart_fini = NULL;
16697 	dtrace_debugger_init = NULL;
16698 	dtrace_debugger_fini = NULL;
16699 	dtrace_modload = NULL;
16700 	dtrace_modunload = NULL;
16701 
16702 	mutex_exit(&cpu_lock);
16703 
16704 	if (dtrace_helptrace_enabled) {
16705 		kmem_free(dtrace_helptrace_buffer, dtrace_helptrace_bufsize);
16706 		dtrace_helptrace_buffer = NULL;
16707 	}
16708 
16709 	kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16710 	dtrace_probes = NULL;
16711 	dtrace_nprobes = 0;
16712 
16713 	dtrace_hash_destroy(dtrace_bymod);
16714 	dtrace_hash_destroy(dtrace_byfunc);
16715 	dtrace_hash_destroy(dtrace_byname);
16716 	dtrace_bymod = NULL;
16717 	dtrace_byfunc = NULL;
16718 	dtrace_byname = NULL;
16719 
16720 	kmem_cache_destroy(dtrace_state_cache);
16721 	vmem_destroy(dtrace_minor);
16722 	vmem_destroy(dtrace_arena);
16723 
16724 	if (dtrace_toxrange != NULL) {
16725 		kmem_free(dtrace_toxrange,
16726 		    dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16727 		dtrace_toxrange = NULL;
16728 		dtrace_toxranges = 0;
16729 		dtrace_toxranges_max = 0;
16730 	}
16731 
16732 	ddi_remove_minor_node(dtrace_devi, NULL);
16733 	dtrace_devi = NULL;
16734 
16735 	ddi_soft_state_fini(&dtrace_softstate);
16736 
16737 	ASSERT(dtrace_vtime_references == 0);
16738 	ASSERT(dtrace_opens == 0);
16739 	ASSERT(dtrace_retained == NULL);
16740 
16741 	mutex_exit(&dtrace_lock);
16742 	mutex_exit(&dtrace_provider_lock);
16743 
16744 	/*
16745 	 * We don't destroy the task queue until after we have dropped our
16746 	 * locks (taskq_destroy() may block on running tasks).  To prevent
16747 	 * attempting to do work after we have effectively detached but before
16748 	 * the task queue has been destroyed, all tasks dispatched via the
16749 	 * task queue must check that DTrace is still attached before
16750 	 * performing any operation.
16751 	 */
16752 	taskq_destroy(dtrace_taskq);
16753 	dtrace_taskq = NULL;
16754 
16755 	return (DDI_SUCCESS);
16756 }
16757 #endif
16758 
16759 #if defined(sun)
16760 /*ARGSUSED*/
16761 static int
16762 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16763 {
16764 	int error;
16765 
16766 	switch (infocmd) {
16767 	case DDI_INFO_DEVT2DEVINFO:
16768 		*result = (void *)dtrace_devi;
16769 		error = DDI_SUCCESS;
16770 		break;
16771 	case DDI_INFO_DEVT2INSTANCE:
16772 		*result = (void *)0;
16773 		error = DDI_SUCCESS;
16774 		break;
16775 	default:
16776 		error = DDI_FAILURE;
16777 	}
16778 	return (error);
16779 }
16780 #endif
16781 
16782 #if defined(sun)
16783 static struct cb_ops dtrace_cb_ops = {
16784 	dtrace_open,		/* open */
16785 	dtrace_close,		/* close */
16786 	nulldev,		/* strategy */
16787 	nulldev,		/* print */
16788 	nodev,			/* dump */
16789 	nodev,			/* read */
16790 	nodev,			/* write */
16791 	dtrace_ioctl,		/* ioctl */
16792 	nodev,			/* devmap */
16793 	nodev,			/* mmap */
16794 	nodev,			/* segmap */
16795 	nochpoll,		/* poll */
16796 	ddi_prop_op,		/* cb_prop_op */
16797 	0,			/* streamtab  */
16798 	D_NEW | D_MP		/* Driver compatibility flag */
16799 };
16800 
16801 static struct dev_ops dtrace_ops = {
16802 	DEVO_REV,		/* devo_rev */
16803 	0,			/* refcnt */
16804 	dtrace_info,		/* get_dev_info */
16805 	nulldev,		/* identify */
16806 	nulldev,		/* probe */
16807 	dtrace_attach,		/* attach */
16808 	dtrace_detach,		/* detach */
16809 	nodev,			/* reset */
16810 	&dtrace_cb_ops,		/* driver operations */
16811 	NULL,			/* bus operations */
16812 	nodev			/* dev power */
16813 };
16814 
16815 static struct modldrv modldrv = {
16816 	&mod_driverops,		/* module type (this is a pseudo driver) */
16817 	"Dynamic Tracing",	/* name of module */
16818 	&dtrace_ops,		/* driver ops */
16819 };
16820 
16821 static struct modlinkage modlinkage = {
16822 	MODREV_1,
16823 	(void *)&modldrv,
16824 	NULL
16825 };
16826 
16827 int
16828 _init(void)
16829 {
16830 	return (mod_install(&modlinkage));
16831 }
16832 
16833 int
16834 _info(struct modinfo *modinfop)
16835 {
16836 	return (mod_info(&modlinkage, modinfop));
16837 }
16838 
16839 int
16840 _fini(void)
16841 {
16842 	return (mod_remove(&modlinkage));
16843 }
16844 #else
16845 
16846 static d_ioctl_t	dtrace_ioctl;
16847 static d_ioctl_t	dtrace_ioctl_helper;
16848 static void		dtrace_load(void *);
16849 static int		dtrace_unload(void);
16850 #if __FreeBSD_version < 800039
16851 static void		dtrace_clone(void *, struct ucred *, char *, int , struct cdev **);
16852 static struct clonedevs	*dtrace_clones;		/* Ptr to the array of cloned devices. */
16853 static eventhandler_tag	eh_tag;			/* Event handler tag. */
16854 #else
16855 static struct cdev	*dtrace_dev;
16856 static struct cdev	*helper_dev;
16857 #endif
16858 
16859 void dtrace_invop_init(void);
16860 void dtrace_invop_uninit(void);
16861 
16862 static struct cdevsw dtrace_cdevsw = {
16863 	.d_version	= D_VERSION,
16864 #if __FreeBSD_version < 800039
16865 	.d_flags	= D_TRACKCLOSE | D_NEEDMINOR,
16866 	.d_close	= dtrace_close,
16867 #endif
16868 	.d_ioctl	= dtrace_ioctl,
16869 	.d_open		= dtrace_open,
16870 	.d_name		= "dtrace",
16871 };
16872 
16873 static struct cdevsw helper_cdevsw = {
16874 	.d_version	= D_VERSION,
16875 	.d_ioctl	= dtrace_ioctl_helper,
16876 	.d_name		= "helper",
16877 };
16878 
16879 #include <dtrace_anon.c>
16880 #if __FreeBSD_version < 800039
16881 #include <dtrace_clone.c>
16882 #endif
16883 #include <dtrace_ioctl.c>
16884 #include <dtrace_load.c>
16885 #include <dtrace_modevent.c>
16886 #include <dtrace_sysctl.c>
16887 #include <dtrace_unload.c>
16888 #include <dtrace_vtime.c>
16889 #include <dtrace_hacks.c>
16890 #include <dtrace_isa.c>
16891 
16892 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
16893 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
16894 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
16895 
16896 DEV_MODULE(dtrace, dtrace_modevent, NULL);
16897 MODULE_VERSION(dtrace, 1);
16898 MODULE_DEPEND(dtrace, cyclic, 1, 1, 1);
16899 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
16900 #endif
16901