1e4afa19cSDavid Schultz /*-
2*4d846d26SWarner Losh * SPDX-License-Identifier: BSD-2-Clause
35e53a4f9SPedro F. Giffuni *
4e4afa19cSDavid Schultz * Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
5e4afa19cSDavid Schultz * All rights reserved.
6e4afa19cSDavid Schultz *
7e4afa19cSDavid Schultz * Redistribution and use in source and binary forms, with or without
8e4afa19cSDavid Schultz * modification, are permitted provided that the following conditions
9e4afa19cSDavid Schultz * are met:
10e4afa19cSDavid Schultz * 1. Redistributions of source code must retain the above copyright
11e4afa19cSDavid Schultz * notice, this list of conditions and the following disclaimer.
12e4afa19cSDavid Schultz * 2. Redistributions in binary form must reproduce the above copyright
13e4afa19cSDavid Schultz * notice, this list of conditions and the following disclaimer in the
14e4afa19cSDavid Schultz * documentation and/or other materials provided with the distribution.
15e4afa19cSDavid Schultz *
16e4afa19cSDavid Schultz * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17e4afa19cSDavid Schultz * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18e4afa19cSDavid Schultz * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19e4afa19cSDavid Schultz * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20e4afa19cSDavid Schultz * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21e4afa19cSDavid Schultz * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22e4afa19cSDavid Schultz * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23e4afa19cSDavid Schultz * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24e4afa19cSDavid Schultz * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25e4afa19cSDavid Schultz * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26e4afa19cSDavid Schultz * SUCH DAMAGE.
27e4afa19cSDavid Schultz */
28e4afa19cSDavid Schultz
29e4afa19cSDavid Schultz #include <complex.h>
30e4afa19cSDavid Schultz #include <float.h>
31e4afa19cSDavid Schultz
32e4afa19cSDavid Schultz #include "math.h"
33e4afa19cSDavid Schultz #include "math_private.h"
34e4afa19cSDavid Schultz
35e4afa19cSDavid Schultz #undef isinf
36e4afa19cSDavid Schultz #define isinf(x) (fabs(x) == INFINITY)
37e4afa19cSDavid Schultz #undef isnan
38e4afa19cSDavid Schultz #define isnan(x) ((x) != (x))
393a462c98SDimitry Andric #define raise_inexact() do { volatile float junk __unused = 1 + tiny; } while(0)
40e4afa19cSDavid Schultz #undef signbit
41e4afa19cSDavid Schultz #define signbit(x) (__builtin_signbit(x))
42e4afa19cSDavid Schultz
43e4afa19cSDavid Schultz /* We need that DBL_EPSILON^2/128 is larger than FOUR_SQRT_MIN. */
44e4afa19cSDavid Schultz static const double
45e4afa19cSDavid Schultz A_crossover = 10, /* Hull et al suggest 1.5, but 10 works better */
46e4afa19cSDavid Schultz B_crossover = 0.6417, /* suggested by Hull et al */
47e4afa19cSDavid Schultz FOUR_SQRT_MIN = 0x1p-509, /* >= 4 * sqrt(DBL_MIN) */
48e4afa19cSDavid Schultz QUARTER_SQRT_MAX = 0x1p509, /* <= sqrt(DBL_MAX) / 4 */
49e4afa19cSDavid Schultz m_e = 2.7182818284590452e0, /* 0x15bf0a8b145769.0p-51 */
50e4afa19cSDavid Schultz m_ln2 = 6.9314718055994531e-1, /* 0x162e42fefa39ef.0p-53 */
51e4afa19cSDavid Schultz pio2_hi = 1.5707963267948966e0, /* 0x1921fb54442d18.0p-52 */
52e4afa19cSDavid Schultz RECIP_EPSILON = 1 / DBL_EPSILON,
53e4afa19cSDavid Schultz SQRT_3_EPSILON = 2.5809568279517849e-8, /* 0x1bb67ae8584caa.0p-78 */
54e4afa19cSDavid Schultz SQRT_6_EPSILON = 3.6500241499888571e-8, /* 0x13988e1409212e.0p-77 */
55e4afa19cSDavid Schultz SQRT_MIN = 0x1p-511; /* >= sqrt(DBL_MIN) */
56e4afa19cSDavid Schultz
57e4afa19cSDavid Schultz static const volatile double
58e4afa19cSDavid Schultz pio2_lo = 6.1232339957367659e-17; /* 0x11a62633145c07.0p-106 */
59e4afa19cSDavid Schultz static const volatile float
60e4afa19cSDavid Schultz tiny = 0x1p-100;
61e4afa19cSDavid Schultz
62e4afa19cSDavid Schultz static double complex clog_for_large_values(double complex z);
63e4afa19cSDavid Schultz
64e4afa19cSDavid Schultz /*
65e4afa19cSDavid Schultz * Testing indicates that all these functions are accurate up to 4 ULP.
66e4afa19cSDavid Schultz * The functions casin(h) and cacos(h) are about 2.5 times slower than asinh.
67e4afa19cSDavid Schultz * The functions catan(h) are a little under 2 times slower than atanh.
68e4afa19cSDavid Schultz *
69e4afa19cSDavid Schultz * The code for casinh, casin, cacos, and cacosh comes first. The code is
70e4afa19cSDavid Schultz * rather complicated, and the four functions are highly interdependent.
71e4afa19cSDavid Schultz *
72e4afa19cSDavid Schultz * The code for catanh and catan comes at the end. It is much simpler than
73e4afa19cSDavid Schultz * the other functions, and the code for these can be disconnected from the
74e4afa19cSDavid Schultz * rest of the code.
75e4afa19cSDavid Schultz */
76e4afa19cSDavid Schultz
77e4afa19cSDavid Schultz /*
78e4afa19cSDavid Schultz * ================================
79e4afa19cSDavid Schultz * | casinh, casin, cacos, cacosh |
80e4afa19cSDavid Schultz * ================================
81e4afa19cSDavid Schultz */
82e4afa19cSDavid Schultz
83e4afa19cSDavid Schultz /*
84e4afa19cSDavid Schultz * The algorithm is very close to that in "Implementing the complex arcsine
85e4afa19cSDavid Schultz * and arccosine functions using exception handling" by T. E. Hull, Thomas F.
86e4afa19cSDavid Schultz * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
87e4afa19cSDavid Schultz * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
88e4afa19cSDavid Schultz * http://dl.acm.org/citation.cfm?id=275324.
89e4afa19cSDavid Schultz *
90e4afa19cSDavid Schultz * Throughout we use the convention z = x + I*y.
91e4afa19cSDavid Schultz *
92e4afa19cSDavid Schultz * casinh(z) = sign(x)*log(A+sqrt(A*A-1)) + I*asin(B)
93e4afa19cSDavid Schultz * where
94e4afa19cSDavid Schultz * A = (|z+I| + |z-I|) / 2
95e4afa19cSDavid Schultz * B = (|z+I| - |z-I|) / 2 = y/A
96e4afa19cSDavid Schultz *
97e4afa19cSDavid Schultz * These formulas become numerically unstable:
98e4afa19cSDavid Schultz * (a) for Re(casinh(z)) when z is close to the line segment [-I, I] (that
99e4afa19cSDavid Schultz * is, Re(casinh(z)) is close to 0);
100e4afa19cSDavid Schultz * (b) for Im(casinh(z)) when z is close to either of the intervals
101e4afa19cSDavid Schultz * [I, I*infinity) or (-I*infinity, -I] (that is, |Im(casinh(z))| is
102e4afa19cSDavid Schultz * close to PI/2).
103e4afa19cSDavid Schultz *
104e4afa19cSDavid Schultz * These numerical problems are overcome by defining
105e4afa19cSDavid Schultz * f(a, b) = (hypot(a, b) - b) / 2 = a*a / (hypot(a, b) + b) / 2
106e4afa19cSDavid Schultz * Then if A < A_crossover, we use
107e4afa19cSDavid Schultz * log(A + sqrt(A*A-1)) = log1p((A-1) + sqrt((A-1)*(A+1)))
108e4afa19cSDavid Schultz * A-1 = f(x, 1+y) + f(x, 1-y)
109e4afa19cSDavid Schultz * and if B > B_crossover, we use
110e4afa19cSDavid Schultz * asin(B) = atan2(y, sqrt(A*A - y*y)) = atan2(y, sqrt((A+y)*(A-y)))
111e4afa19cSDavid Schultz * A-y = f(x, y+1) + f(x, y-1)
112e4afa19cSDavid Schultz * where without loss of generality we have assumed that x and y are
113e4afa19cSDavid Schultz * non-negative.
114e4afa19cSDavid Schultz *
115e4afa19cSDavid Schultz * Much of the difficulty comes because the intermediate computations may
116e4afa19cSDavid Schultz * produce overflows or underflows. This is dealt with in the paper by Hull
117e4afa19cSDavid Schultz * et al by using exception handling. We do this by detecting when
118e4afa19cSDavid Schultz * computations risk underflow or overflow. The hardest part is handling the
119e4afa19cSDavid Schultz * underflows when computing f(a, b).
120e4afa19cSDavid Schultz *
121e4afa19cSDavid Schultz * Note that the function f(a, b) does not appear explicitly in the paper by
122e4afa19cSDavid Schultz * Hull et al, but the idea may be found on pages 308 and 309. Introducing the
123e4afa19cSDavid Schultz * function f(a, b) allows us to concentrate many of the clever tricks in this
124e4afa19cSDavid Schultz * paper into one function.
125e4afa19cSDavid Schultz */
126e4afa19cSDavid Schultz
127e4afa19cSDavid Schultz /*
128e4afa19cSDavid Schultz * Function f(a, b, hypot_a_b) = (hypot(a, b) - b) / 2.
129e4afa19cSDavid Schultz * Pass hypot(a, b) as the third argument.
130e4afa19cSDavid Schultz */
131e4afa19cSDavid Schultz static inline double
f(double a,double b,double hypot_a_b)132e4afa19cSDavid Schultz f(double a, double b, double hypot_a_b)
133e4afa19cSDavid Schultz {
134e4afa19cSDavid Schultz if (b < 0)
135e4afa19cSDavid Schultz return ((hypot_a_b - b) / 2);
136e4afa19cSDavid Schultz if (b == 0)
137e4afa19cSDavid Schultz return (a / 2);
138e4afa19cSDavid Schultz return (a * a / (hypot_a_b + b) / 2);
139e4afa19cSDavid Schultz }
140e4afa19cSDavid Schultz
141e4afa19cSDavid Schultz /*
142e4afa19cSDavid Schultz * All the hard work is contained in this function.
143e4afa19cSDavid Schultz * x and y are assumed positive or zero, and less than RECIP_EPSILON.
144e4afa19cSDavid Schultz * Upon return:
145e4afa19cSDavid Schultz * rx = Re(casinh(z)) = -Im(cacos(y + I*x)).
146e4afa19cSDavid Schultz * B_is_usable is set to 1 if the value of B is usable.
147e4afa19cSDavid Schultz * If B_is_usable is set to 0, sqrt_A2my2 = sqrt(A*A - y*y), and new_y = y.
148e4afa19cSDavid Schultz * If returning sqrt_A2my2 has potential to result in an underflow, it is
149e4afa19cSDavid Schultz * rescaled, and new_y is similarly rescaled.
150e4afa19cSDavid Schultz */
151e4afa19cSDavid Schultz static inline void
do_hard_work(double x,double y,double * rx,int * B_is_usable,double * B,double * sqrt_A2my2,double * new_y)152e4afa19cSDavid Schultz do_hard_work(double x, double y, double *rx, int *B_is_usable, double *B,
153e4afa19cSDavid Schultz double *sqrt_A2my2, double *new_y)
154e4afa19cSDavid Schultz {
155e4afa19cSDavid Schultz double R, S, A; /* A, B, R, and S are as in Hull et al. */
156e4afa19cSDavid Schultz double Am1, Amy; /* A-1, A-y. */
157e4afa19cSDavid Schultz
158e4afa19cSDavid Schultz R = hypot(x, y + 1); /* |z+I| */
159e4afa19cSDavid Schultz S = hypot(x, y - 1); /* |z-I| */
160e4afa19cSDavid Schultz
161e4afa19cSDavid Schultz /* A = (|z+I| + |z-I|) / 2 */
162e4afa19cSDavid Schultz A = (R + S) / 2;
163e4afa19cSDavid Schultz /*
164e4afa19cSDavid Schultz * Mathematically A >= 1. There is a small chance that this will not
165e4afa19cSDavid Schultz * be so because of rounding errors. So we will make certain it is
166e4afa19cSDavid Schultz * so.
167e4afa19cSDavid Schultz */
168e4afa19cSDavid Schultz if (A < 1)
169e4afa19cSDavid Schultz A = 1;
170e4afa19cSDavid Schultz
171e4afa19cSDavid Schultz if (A < A_crossover) {
172e4afa19cSDavid Schultz /*
173e4afa19cSDavid Schultz * Am1 = fp + fm, where fp = f(x, 1+y), and fm = f(x, 1-y).
174e4afa19cSDavid Schultz * rx = log1p(Am1 + sqrt(Am1*(A+1)))
175e4afa19cSDavid Schultz */
176e4afa19cSDavid Schultz if (y == 1 && x < DBL_EPSILON * DBL_EPSILON / 128) {
177e4afa19cSDavid Schultz /*
178e4afa19cSDavid Schultz * fp is of order x^2, and fm = x/2.
179e4afa19cSDavid Schultz * A = 1 (inexactly).
180e4afa19cSDavid Schultz */
181e4afa19cSDavid Schultz *rx = sqrt(x);
182e4afa19cSDavid Schultz } else if (x >= DBL_EPSILON * fabs(y - 1)) {
183e4afa19cSDavid Schultz /*
184e4afa19cSDavid Schultz * Underflow will not occur because
185e4afa19cSDavid Schultz * x >= DBL_EPSILON^2/128 >= FOUR_SQRT_MIN
186e4afa19cSDavid Schultz */
187e4afa19cSDavid Schultz Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
188e4afa19cSDavid Schultz *rx = log1p(Am1 + sqrt(Am1 * (A + 1)));
189e4afa19cSDavid Schultz } else if (y < 1) {
190e4afa19cSDavid Schultz /*
191e4afa19cSDavid Schultz * fp = x*x/(1+y)/4, fm = x*x/(1-y)/4, and
192e4afa19cSDavid Schultz * A = 1 (inexactly).
193e4afa19cSDavid Schultz */
194e4afa19cSDavid Schultz *rx = x / sqrt((1 - y) * (1 + y));
1950b8d0b5bSDavid Schultz } else { /* if (y > 1) */
196e4afa19cSDavid Schultz /*
197e4afa19cSDavid Schultz * A-1 = y-1 (inexactly).
198e4afa19cSDavid Schultz */
199e4afa19cSDavid Schultz *rx = log1p((y - 1) + sqrt((y - 1) * (y + 1)));
200e4afa19cSDavid Schultz }
201e4afa19cSDavid Schultz } else {
202e4afa19cSDavid Schultz *rx = log(A + sqrt(A * A - 1));
203e4afa19cSDavid Schultz }
204e4afa19cSDavid Schultz
205e4afa19cSDavid Schultz *new_y = y;
206e4afa19cSDavid Schultz
207e4afa19cSDavid Schultz if (y < FOUR_SQRT_MIN) {
208e4afa19cSDavid Schultz /*
209e4afa19cSDavid Schultz * Avoid a possible underflow caused by y/A. For casinh this
210e4afa19cSDavid Schultz * would be legitimate, but will be picked up by invoking atan2
211e4afa19cSDavid Schultz * later on. For cacos this would not be legitimate.
212e4afa19cSDavid Schultz */
213e4afa19cSDavid Schultz *B_is_usable = 0;
214e4afa19cSDavid Schultz *sqrt_A2my2 = A * (2 / DBL_EPSILON);
215e4afa19cSDavid Schultz *new_y = y * (2 / DBL_EPSILON);
216e4afa19cSDavid Schultz return;
217e4afa19cSDavid Schultz }
218e4afa19cSDavid Schultz
219e4afa19cSDavid Schultz /* B = (|z+I| - |z-I|) / 2 = y/A */
220e4afa19cSDavid Schultz *B = y / A;
221e4afa19cSDavid Schultz *B_is_usable = 1;
222e4afa19cSDavid Schultz
223e4afa19cSDavid Schultz if (*B > B_crossover) {
224e4afa19cSDavid Schultz *B_is_usable = 0;
225e4afa19cSDavid Schultz /*
226e4afa19cSDavid Schultz * Amy = fp + fm, where fp = f(x, y+1), and fm = f(x, y-1).
227e4afa19cSDavid Schultz * sqrt_A2my2 = sqrt(Amy*(A+y))
228e4afa19cSDavid Schultz */
229e4afa19cSDavid Schultz if (y == 1 && x < DBL_EPSILON / 128) {
230e4afa19cSDavid Schultz /*
231e4afa19cSDavid Schultz * fp is of order x^2, and fm = x/2.
232e4afa19cSDavid Schultz * A = 1 (inexactly).
233e4afa19cSDavid Schultz */
234e4afa19cSDavid Schultz *sqrt_A2my2 = sqrt(x) * sqrt((A + y) / 2);
235e4afa19cSDavid Schultz } else if (x >= DBL_EPSILON * fabs(y - 1)) {
236e4afa19cSDavid Schultz /*
237e4afa19cSDavid Schultz * Underflow will not occur because
238e4afa19cSDavid Schultz * x >= DBL_EPSILON/128 >= FOUR_SQRT_MIN
239e4afa19cSDavid Schultz * and
240e4afa19cSDavid Schultz * x >= DBL_EPSILON^2 >= FOUR_SQRT_MIN
241e4afa19cSDavid Schultz */
242e4afa19cSDavid Schultz Amy = f(x, y + 1, R) + f(x, y - 1, S);
243e4afa19cSDavid Schultz *sqrt_A2my2 = sqrt(Amy * (A + y));
244e4afa19cSDavid Schultz } else if (y > 1) {
245e4afa19cSDavid Schultz /*
246e4afa19cSDavid Schultz * fp = x*x/(y+1)/4, fm = x*x/(y-1)/4, and
247e4afa19cSDavid Schultz * A = y (inexactly).
248e4afa19cSDavid Schultz *
249e4afa19cSDavid Schultz * y < RECIP_EPSILON. So the following
250e4afa19cSDavid Schultz * scaling should avoid any underflow problems.
251e4afa19cSDavid Schultz */
252e4afa19cSDavid Schultz *sqrt_A2my2 = x * (4 / DBL_EPSILON / DBL_EPSILON) * y /
253e4afa19cSDavid Schultz sqrt((y + 1) * (y - 1));
254e4afa19cSDavid Schultz *new_y = y * (4 / DBL_EPSILON / DBL_EPSILON);
2550b8d0b5bSDavid Schultz } else { /* if (y < 1) */
256e4afa19cSDavid Schultz /*
257e4afa19cSDavid Schultz * fm = 1-y >= DBL_EPSILON, fp is of order x^2, and
258e4afa19cSDavid Schultz * A = 1 (inexactly).
259e4afa19cSDavid Schultz */
260e4afa19cSDavid Schultz *sqrt_A2my2 = sqrt((1 - y) * (1 + y));
261e4afa19cSDavid Schultz }
262e4afa19cSDavid Schultz }
263e4afa19cSDavid Schultz }
264e4afa19cSDavid Schultz
265e4afa19cSDavid Schultz /*
266e4afa19cSDavid Schultz * casinh(z) = z + O(z^3) as z -> 0
267e4afa19cSDavid Schultz *
268e4afa19cSDavid Schultz * casinh(z) = sign(x)*clog(sign(x)*z) + O(1/z^2) as z -> infinity
269e4afa19cSDavid Schultz * The above formula works for the imaginary part as well, because
270e4afa19cSDavid Schultz * Im(casinh(z)) = sign(x)*atan2(sign(x)*y, fabs(x)) + O(y/z^3)
271e4afa19cSDavid Schultz * as z -> infinity, uniformly in y
272e4afa19cSDavid Schultz */
273e4afa19cSDavid Schultz double complex
casinh(double complex z)274e4afa19cSDavid Schultz casinh(double complex z)
275e4afa19cSDavid Schultz {
276e4afa19cSDavid Schultz double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
277e4afa19cSDavid Schultz int B_is_usable;
278e4afa19cSDavid Schultz double complex w;
279e4afa19cSDavid Schultz
280e4afa19cSDavid Schultz x = creal(z);
281e4afa19cSDavid Schultz y = cimag(z);
282e4afa19cSDavid Schultz ax = fabs(x);
283e4afa19cSDavid Schultz ay = fabs(y);
284e4afa19cSDavid Schultz
285e4afa19cSDavid Schultz if (isnan(x) || isnan(y)) {
286e4afa19cSDavid Schultz /* casinh(+-Inf + I*NaN) = +-Inf + I*NaN */
287e4afa19cSDavid Schultz if (isinf(x))
2882cec876aSEd Schouten return (CMPLX(x, y + y));
289e4afa19cSDavid Schultz /* casinh(NaN + I*+-Inf) = opt(+-)Inf + I*NaN */
290e4afa19cSDavid Schultz if (isinf(y))
2912cec876aSEd Schouten return (CMPLX(y, x + x));
292e4afa19cSDavid Schultz /* casinh(NaN + I*0) = NaN + I*0 */
293e4afa19cSDavid Schultz if (y == 0)
2942cec876aSEd Schouten return (CMPLX(x + x, y));
295e4afa19cSDavid Schultz /*
296e4afa19cSDavid Schultz * All other cases involving NaN return NaN + I*NaN.
297e4afa19cSDavid Schultz * C99 leaves it optional whether to raise invalid if one of
298e4afa19cSDavid Schultz * the arguments is not NaN, so we opt not to raise it.
299e4afa19cSDavid Schultz */
3006f1b8a07SBruce Evans return (CMPLX(nan_mix(x, y), nan_mix(x, y)));
301e4afa19cSDavid Schultz }
302e4afa19cSDavid Schultz
303e4afa19cSDavid Schultz if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
304e4afa19cSDavid Schultz /* clog...() will raise inexact unless x or y is infinite. */
305e4afa19cSDavid Schultz if (signbit(x) == 0)
306e4afa19cSDavid Schultz w = clog_for_large_values(z) + m_ln2;
307e4afa19cSDavid Schultz else
308e4afa19cSDavid Schultz w = clog_for_large_values(-z) + m_ln2;
3092cec876aSEd Schouten return (CMPLX(copysign(creal(w), x), copysign(cimag(w), y)));
310e4afa19cSDavid Schultz }
311e4afa19cSDavid Schultz
312e4afa19cSDavid Schultz /* Avoid spuriously raising inexact for z = 0. */
313e4afa19cSDavid Schultz if (x == 0 && y == 0)
314e4afa19cSDavid Schultz return (z);
315e4afa19cSDavid Schultz
316e4afa19cSDavid Schultz /* All remaining cases are inexact. */
317e4afa19cSDavid Schultz raise_inexact();
318e4afa19cSDavid Schultz
319e4afa19cSDavid Schultz if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
320e4afa19cSDavid Schultz return (z);
321e4afa19cSDavid Schultz
322e4afa19cSDavid Schultz do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
323e4afa19cSDavid Schultz if (B_is_usable)
324e4afa19cSDavid Schultz ry = asin(B);
325e4afa19cSDavid Schultz else
326e4afa19cSDavid Schultz ry = atan2(new_y, sqrt_A2my2);
3272cec876aSEd Schouten return (CMPLX(copysign(rx, x), copysign(ry, y)));
328e4afa19cSDavid Schultz }
329e4afa19cSDavid Schultz
330e4afa19cSDavid Schultz /*
331e4afa19cSDavid Schultz * casin(z) = reverse(casinh(reverse(z)))
332e4afa19cSDavid Schultz * where reverse(x + I*y) = y + I*x = I*conj(z).
333e4afa19cSDavid Schultz */
334e4afa19cSDavid Schultz double complex
casin(double complex z)335e4afa19cSDavid Schultz casin(double complex z)
336e4afa19cSDavid Schultz {
3372cec876aSEd Schouten double complex w = casinh(CMPLX(cimag(z), creal(z)));
3380b8d0b5bSDavid Schultz
3392cec876aSEd Schouten return (CMPLX(cimag(w), creal(w)));
340e4afa19cSDavid Schultz }
341e4afa19cSDavid Schultz
342e4afa19cSDavid Schultz /*
343e4afa19cSDavid Schultz * cacos(z) = PI/2 - casin(z)
344e4afa19cSDavid Schultz * but do the computation carefully so cacos(z) is accurate when z is
345e4afa19cSDavid Schultz * close to 1.
346e4afa19cSDavid Schultz *
347e4afa19cSDavid Schultz * cacos(z) = PI/2 - z + O(z^3) as z -> 0
348e4afa19cSDavid Schultz *
349e4afa19cSDavid Schultz * cacos(z) = -sign(y)*I*clog(z) + O(1/z^2) as z -> infinity
350e4afa19cSDavid Schultz * The above formula works for the real part as well, because
351e4afa19cSDavid Schultz * Re(cacos(z)) = atan2(fabs(y), x) + O(y/z^3)
352e4afa19cSDavid Schultz * as z -> infinity, uniformly in y
353e4afa19cSDavid Schultz */
354e4afa19cSDavid Schultz double complex
cacos(double complex z)355e4afa19cSDavid Schultz cacos(double complex z)
356e4afa19cSDavid Schultz {
357e4afa19cSDavid Schultz double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
358e4afa19cSDavid Schultz int sx, sy;
359e4afa19cSDavid Schultz int B_is_usable;
360e4afa19cSDavid Schultz double complex w;
361e4afa19cSDavid Schultz
362e4afa19cSDavid Schultz x = creal(z);
363e4afa19cSDavid Schultz y = cimag(z);
364e4afa19cSDavid Schultz sx = signbit(x);
365e4afa19cSDavid Schultz sy = signbit(y);
366e4afa19cSDavid Schultz ax = fabs(x);
367e4afa19cSDavid Schultz ay = fabs(y);
368e4afa19cSDavid Schultz
369e4afa19cSDavid Schultz if (isnan(x) || isnan(y)) {
370e4afa19cSDavid Schultz /* cacos(+-Inf + I*NaN) = NaN + I*opt(-)Inf */
371e4afa19cSDavid Schultz if (isinf(x))
3722cec876aSEd Schouten return (CMPLX(y + y, -INFINITY));
373e4afa19cSDavid Schultz /* cacos(NaN + I*+-Inf) = NaN + I*-+Inf */
374e4afa19cSDavid Schultz if (isinf(y))
3752cec876aSEd Schouten return (CMPLX(x + x, -y));
376e4afa19cSDavid Schultz /* cacos(0 + I*NaN) = PI/2 + I*NaN with inexact */
377e4afa19cSDavid Schultz if (x == 0)
3782cec876aSEd Schouten return (CMPLX(pio2_hi + pio2_lo, y + y));
379e4afa19cSDavid Schultz /*
380e4afa19cSDavid Schultz * All other cases involving NaN return NaN + I*NaN.
381e4afa19cSDavid Schultz * C99 leaves it optional whether to raise invalid if one of
382e4afa19cSDavid Schultz * the arguments is not NaN, so we opt not to raise it.
383e4afa19cSDavid Schultz */
3846f1b8a07SBruce Evans return (CMPLX(nan_mix(x, y), nan_mix(x, y)));
385e4afa19cSDavid Schultz }
386e4afa19cSDavid Schultz
387e4afa19cSDavid Schultz if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
388e4afa19cSDavid Schultz /* clog...() will raise inexact unless x or y is infinite. */
389e4afa19cSDavid Schultz w = clog_for_large_values(z);
390e4afa19cSDavid Schultz rx = fabs(cimag(w));
391e4afa19cSDavid Schultz ry = creal(w) + m_ln2;
392e4afa19cSDavid Schultz if (sy == 0)
393e4afa19cSDavid Schultz ry = -ry;
3942cec876aSEd Schouten return (CMPLX(rx, ry));
395e4afa19cSDavid Schultz }
396e4afa19cSDavid Schultz
397e4afa19cSDavid Schultz /* Avoid spuriously raising inexact for z = 1. */
398e4afa19cSDavid Schultz if (x == 1 && y == 0)
3992cec876aSEd Schouten return (CMPLX(0, -y));
400e4afa19cSDavid Schultz
401e4afa19cSDavid Schultz /* All remaining cases are inexact. */
402e4afa19cSDavid Schultz raise_inexact();
403e4afa19cSDavid Schultz
404e4afa19cSDavid Schultz if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
4052cec876aSEd Schouten return (CMPLX(pio2_hi - (x - pio2_lo), -y));
406e4afa19cSDavid Schultz
407e4afa19cSDavid Schultz do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
408e4afa19cSDavid Schultz if (B_is_usable) {
409e4afa19cSDavid Schultz if (sx == 0)
410e4afa19cSDavid Schultz rx = acos(B);
411e4afa19cSDavid Schultz else
412e4afa19cSDavid Schultz rx = acos(-B);
413e4afa19cSDavid Schultz } else {
414e4afa19cSDavid Schultz if (sx == 0)
415e4afa19cSDavid Schultz rx = atan2(sqrt_A2mx2, new_x);
416e4afa19cSDavid Schultz else
417e4afa19cSDavid Schultz rx = atan2(sqrt_A2mx2, -new_x);
418e4afa19cSDavid Schultz }
419e4afa19cSDavid Schultz if (sy == 0)
420e4afa19cSDavid Schultz ry = -ry;
4212cec876aSEd Schouten return (CMPLX(rx, ry));
422e4afa19cSDavid Schultz }
423e4afa19cSDavid Schultz
424e4afa19cSDavid Schultz /*
425e4afa19cSDavid Schultz * cacosh(z) = I*cacos(z) or -I*cacos(z)
426e4afa19cSDavid Schultz * where the sign is chosen so Re(cacosh(z)) >= 0.
427e4afa19cSDavid Schultz */
428e4afa19cSDavid Schultz double complex
cacosh(double complex z)429e4afa19cSDavid Schultz cacosh(double complex z)
430e4afa19cSDavid Schultz {
431e4afa19cSDavid Schultz double complex w;
432e4afa19cSDavid Schultz double rx, ry;
433e4afa19cSDavid Schultz
434e4afa19cSDavid Schultz w = cacos(z);
435e4afa19cSDavid Schultz rx = creal(w);
436e4afa19cSDavid Schultz ry = cimag(w);
437e4afa19cSDavid Schultz /* cacosh(NaN + I*NaN) = NaN + I*NaN */
438e4afa19cSDavid Schultz if (isnan(rx) && isnan(ry))
4392cec876aSEd Schouten return (CMPLX(ry, rx));
440e4afa19cSDavid Schultz /* cacosh(NaN + I*+-Inf) = +Inf + I*NaN */
441e4afa19cSDavid Schultz /* cacosh(+-Inf + I*NaN) = +Inf + I*NaN */
442e4afa19cSDavid Schultz if (isnan(rx))
4432cec876aSEd Schouten return (CMPLX(fabs(ry), rx));
444e4afa19cSDavid Schultz /* cacosh(0 + I*NaN) = NaN + I*NaN */
445e4afa19cSDavid Schultz if (isnan(ry))
4462cec876aSEd Schouten return (CMPLX(ry, ry));
4472cec876aSEd Schouten return (CMPLX(fabs(ry), copysign(rx, cimag(z))));
448e4afa19cSDavid Schultz }
449e4afa19cSDavid Schultz
450e4afa19cSDavid Schultz /*
451e4afa19cSDavid Schultz * Optimized version of clog() for |z| finite and larger than ~RECIP_EPSILON.
452e4afa19cSDavid Schultz */
453e4afa19cSDavid Schultz static double complex
clog_for_large_values(double complex z)454e4afa19cSDavid Schultz clog_for_large_values(double complex z)
455e4afa19cSDavid Schultz {
456e4afa19cSDavid Schultz double x, y;
457e4afa19cSDavid Schultz double ax, ay, t;
458e4afa19cSDavid Schultz
459e4afa19cSDavid Schultz x = creal(z);
460e4afa19cSDavid Schultz y = cimag(z);
461e4afa19cSDavid Schultz ax = fabs(x);
462e4afa19cSDavid Schultz ay = fabs(y);
463e4afa19cSDavid Schultz if (ax < ay) {
464e4afa19cSDavid Schultz t = ax;
465e4afa19cSDavid Schultz ax = ay;
466e4afa19cSDavid Schultz ay = t;
467e4afa19cSDavid Schultz }
468e4afa19cSDavid Schultz
469e4afa19cSDavid Schultz /*
470e4afa19cSDavid Schultz * Avoid overflow in hypot() when x and y are both very large.
471cf551d94SRyan Libby * Divide x and y by E, and then add 1 to the logarithm. This
472cf551d94SRyan Libby * depends on E being larger than sqrt(2), since the return value of
473cf551d94SRyan Libby * hypot cannot overflow if neither argument is greater in magnitude
474cf551d94SRyan Libby * than 1/sqrt(2) of the maximum value of the return type. Likewise
475cf551d94SRyan Libby * this determines the necessary threshold for using this method
476cf551d94SRyan Libby * (however, actually use 1/2 instead as it is simpler).
477cf551d94SRyan Libby *
478e4afa19cSDavid Schultz * Dividing by E causes an insignificant loss of accuracy; however
479e4afa19cSDavid Schultz * this method is still poor since it is uneccessarily slow.
480e4afa19cSDavid Schultz */
481e4afa19cSDavid Schultz if (ax > DBL_MAX / 2)
4822cec876aSEd Schouten return (CMPLX(log(hypot(x / m_e, y / m_e)) + 1, atan2(y, x)));
483e4afa19cSDavid Schultz
484e4afa19cSDavid Schultz /*
485e4afa19cSDavid Schultz * Avoid overflow when x or y is large. Avoid underflow when x or
486e4afa19cSDavid Schultz * y is small.
487e4afa19cSDavid Schultz */
488e4afa19cSDavid Schultz if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
4892cec876aSEd Schouten return (CMPLX(log(hypot(x, y)), atan2(y, x)));
490e4afa19cSDavid Schultz
4912cec876aSEd Schouten return (CMPLX(log(ax * ax + ay * ay) / 2, atan2(y, x)));
492e4afa19cSDavid Schultz }
493e4afa19cSDavid Schultz
494e4afa19cSDavid Schultz /*
495e4afa19cSDavid Schultz * =================
496e4afa19cSDavid Schultz * | catanh, catan |
497e4afa19cSDavid Schultz * =================
498e4afa19cSDavid Schultz */
499e4afa19cSDavid Schultz
500e4afa19cSDavid Schultz /*
501e4afa19cSDavid Schultz * sum_squares(x,y) = x*x + y*y (or just x*x if y*y would underflow).
502e4afa19cSDavid Schultz * Assumes x*x and y*y will not overflow.
503e4afa19cSDavid Schultz * Assumes x and y are finite.
504e4afa19cSDavid Schultz * Assumes y is non-negative.
505e4afa19cSDavid Schultz * Assumes fabs(x) >= DBL_EPSILON.
506e4afa19cSDavid Schultz */
507e4afa19cSDavid Schultz static inline double
sum_squares(double x,double y)508e4afa19cSDavid Schultz sum_squares(double x, double y)
509e4afa19cSDavid Schultz {
510e4afa19cSDavid Schultz
511e4afa19cSDavid Schultz /* Avoid underflow when y is small. */
512e4afa19cSDavid Schultz if (y < SQRT_MIN)
513e4afa19cSDavid Schultz return (x * x);
5140b8d0b5bSDavid Schultz
515e4afa19cSDavid Schultz return (x * x + y * y);
516e4afa19cSDavid Schultz }
517e4afa19cSDavid Schultz
518e4afa19cSDavid Schultz /*
519e4afa19cSDavid Schultz * real_part_reciprocal(x, y) = Re(1/(x+I*y)) = x/(x*x + y*y).
520e4afa19cSDavid Schultz * Assumes x and y are not NaN, and one of x and y is larger than
521e4afa19cSDavid Schultz * RECIP_EPSILON. We avoid unwarranted underflow. It is important to not use
522e4afa19cSDavid Schultz * the code creal(1/z), because the imaginary part may produce an unwanted
523e4afa19cSDavid Schultz * underflow.
524e4afa19cSDavid Schultz * This is only called in a context where inexact is always raised before
525e4afa19cSDavid Schultz * the call, so no effort is made to avoid or force inexact.
526e4afa19cSDavid Schultz */
527e4afa19cSDavid Schultz static inline double
real_part_reciprocal(double x,double y)528e4afa19cSDavid Schultz real_part_reciprocal(double x, double y)
529e4afa19cSDavid Schultz {
530e4afa19cSDavid Schultz double scale;
531e4afa19cSDavid Schultz uint32_t hx, hy;
532e4afa19cSDavid Schultz int32_t ix, iy;
533e4afa19cSDavid Schultz
534e4afa19cSDavid Schultz /*
535e4afa19cSDavid Schultz * This code is inspired by the C99 document n1124.pdf, Section G.5.1,
536e4afa19cSDavid Schultz * example 2.
537e4afa19cSDavid Schultz */
538e4afa19cSDavid Schultz GET_HIGH_WORD(hx, x);
539e4afa19cSDavid Schultz ix = hx & 0x7ff00000;
540e4afa19cSDavid Schultz GET_HIGH_WORD(hy, y);
541e4afa19cSDavid Schultz iy = hy & 0x7ff00000;
542e4afa19cSDavid Schultz #define BIAS (DBL_MAX_EXP - 1)
543e4afa19cSDavid Schultz /* XXX more guard digits are useful iff there is extra precision. */
544e4afa19cSDavid Schultz #define CUTOFF (DBL_MANT_DIG / 2 + 1) /* just half or 1 guard digit */
545e4afa19cSDavid Schultz if (ix - iy >= CUTOFF << 20 || isinf(x))
546e4afa19cSDavid Schultz return (1 / x); /* +-Inf -> +-0 is special */
547e4afa19cSDavid Schultz if (iy - ix >= CUTOFF << 20)
548e4afa19cSDavid Schultz return (x / y / y); /* should avoid double div, but hard */
549e4afa19cSDavid Schultz if (ix <= (BIAS + DBL_MAX_EXP / 2 - CUTOFF) << 20)
550e4afa19cSDavid Schultz return (x / (x * x + y * y));
551e4afa19cSDavid Schultz scale = 1;
552e4afa19cSDavid Schultz SET_HIGH_WORD(scale, 0x7ff00000 - ix); /* 2**(1-ilogb(x)) */
553e4afa19cSDavid Schultz x *= scale;
554e4afa19cSDavid Schultz y *= scale;
555e4afa19cSDavid Schultz return (x / (x * x + y * y) * scale);
556e4afa19cSDavid Schultz }
557e4afa19cSDavid Schultz
558e4afa19cSDavid Schultz /*
559e4afa19cSDavid Schultz * catanh(z) = log((1+z)/(1-z)) / 2
560e4afa19cSDavid Schultz * = log1p(4*x / |z-1|^2) / 4
561e4afa19cSDavid Schultz * + I * atan2(2*y, (1-x)*(1+x)-y*y) / 2
562e4afa19cSDavid Schultz *
563e4afa19cSDavid Schultz * catanh(z) = z + O(z^3) as z -> 0
564e4afa19cSDavid Schultz *
565e4afa19cSDavid Schultz * catanh(z) = 1/z + sign(y)*I*PI/2 + O(1/z^3) as z -> infinity
566e4afa19cSDavid Schultz * The above formula works for the real part as well, because
567e4afa19cSDavid Schultz * Re(catanh(z)) = x/|z|^2 + O(x/z^4)
568e4afa19cSDavid Schultz * as z -> infinity, uniformly in x
569e4afa19cSDavid Schultz */
570e4afa19cSDavid Schultz double complex
catanh(double complex z)571e4afa19cSDavid Schultz catanh(double complex z)
572e4afa19cSDavid Schultz {
573e4afa19cSDavid Schultz double x, y, ax, ay, rx, ry;
574e4afa19cSDavid Schultz
575e4afa19cSDavid Schultz x = creal(z);
576e4afa19cSDavid Schultz y = cimag(z);
577e4afa19cSDavid Schultz ax = fabs(x);
578e4afa19cSDavid Schultz ay = fabs(y);
579e4afa19cSDavid Schultz
580e4afa19cSDavid Schultz /* This helps handle many cases. */
581e4afa19cSDavid Schultz if (y == 0 && ax <= 1)
5822cec876aSEd Schouten return (CMPLX(atanh(x), y));
583e4afa19cSDavid Schultz
584e4afa19cSDavid Schultz /* To ensure the same accuracy as atan(), and to filter out z = 0. */
585e4afa19cSDavid Schultz if (x == 0)
5862cec876aSEd Schouten return (CMPLX(x, atan(y)));
587e4afa19cSDavid Schultz
588e4afa19cSDavid Schultz if (isnan(x) || isnan(y)) {
589e4afa19cSDavid Schultz /* catanh(+-Inf + I*NaN) = +-0 + I*NaN */
590e4afa19cSDavid Schultz if (isinf(x))
5912cec876aSEd Schouten return (CMPLX(copysign(0, x), y + y));
592e4afa19cSDavid Schultz /* catanh(NaN + I*+-Inf) = sign(NaN)0 + I*+-PI/2 */
5930b8d0b5bSDavid Schultz if (isinf(y))
5942cec876aSEd Schouten return (CMPLX(copysign(0, x),
595e4afa19cSDavid Schultz copysign(pio2_hi + pio2_lo, y)));
596e4afa19cSDavid Schultz /*
597e4afa19cSDavid Schultz * All other cases involving NaN return NaN + I*NaN.
598e4afa19cSDavid Schultz * C99 leaves it optional whether to raise invalid if one of
599e4afa19cSDavid Schultz * the arguments is not NaN, so we opt not to raise it.
600e4afa19cSDavid Schultz */
6016f1b8a07SBruce Evans return (CMPLX(nan_mix(x, y), nan_mix(x, y)));
602e4afa19cSDavid Schultz }
603e4afa19cSDavid Schultz
6040b8d0b5bSDavid Schultz if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
6052cec876aSEd Schouten return (CMPLX(real_part_reciprocal(x, y),
606e4afa19cSDavid Schultz copysign(pio2_hi + pio2_lo, y)));
607e4afa19cSDavid Schultz
608e4afa19cSDavid Schultz if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
609e4afa19cSDavid Schultz /*
610e4afa19cSDavid Schultz * z = 0 was filtered out above. All other cases must raise
611d52a982eSEitan Adler * inexact, but this is the only case that needs to do it
612e4afa19cSDavid Schultz * explicitly.
613e4afa19cSDavid Schultz */
614e4afa19cSDavid Schultz raise_inexact();
615e4afa19cSDavid Schultz return (z);
616e4afa19cSDavid Schultz }
617e4afa19cSDavid Schultz
618e4afa19cSDavid Schultz if (ax == 1 && ay < DBL_EPSILON)
6190b8d0b5bSDavid Schultz rx = (m_ln2 - log(ay)) / 2;
620e4afa19cSDavid Schultz else
621e4afa19cSDavid Schultz rx = log1p(4 * ax / sum_squares(ax - 1, ay)) / 4;
622e4afa19cSDavid Schultz
623e4afa19cSDavid Schultz if (ax == 1)
624e4afa19cSDavid Schultz ry = atan2(2, -ay) / 2;
625e4afa19cSDavid Schultz else if (ay < DBL_EPSILON)
626e4afa19cSDavid Schultz ry = atan2(2 * ay, (1 - ax) * (1 + ax)) / 2;
627e4afa19cSDavid Schultz else
628e4afa19cSDavid Schultz ry = atan2(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
629e4afa19cSDavid Schultz
6302cec876aSEd Schouten return (CMPLX(copysign(rx, x), copysign(ry, y)));
631e4afa19cSDavid Schultz }
632e4afa19cSDavid Schultz
633e4afa19cSDavid Schultz /*
634e4afa19cSDavid Schultz * catan(z) = reverse(catanh(reverse(z)))
635e4afa19cSDavid Schultz * where reverse(x + I*y) = y + I*x = I*conj(z).
636e4afa19cSDavid Schultz */
637e4afa19cSDavid Schultz double complex
catan(double complex z)638e4afa19cSDavid Schultz catan(double complex z)
639e4afa19cSDavid Schultz {
6402cec876aSEd Schouten double complex w = catanh(CMPLX(cimag(z), creal(z)));
6410b8d0b5bSDavid Schultz
6422cec876aSEd Schouten return (CMPLX(cimag(w), creal(w)));
643e4afa19cSDavid Schultz }
644a2877353SMahdi Mokhtari
645a2877353SMahdi Mokhtari #if LDBL_MANT_DIG == 53
646a2877353SMahdi Mokhtari __weak_reference(cacosh, cacoshl);
647a2877353SMahdi Mokhtari __weak_reference(cacos, cacosl);
648a2877353SMahdi Mokhtari __weak_reference(casinh, casinhl);
649a2877353SMahdi Mokhtari __weak_reference(casin, casinl);
650a2877353SMahdi Mokhtari __weak_reference(catanh, catanhl);
651a2877353SMahdi Mokhtari __weak_reference(catan, catanl);
652a2877353SMahdi Mokhtari #endif
653