xref: /freebsd-src/lib/msun/ld80/s_logl.c (revision 07cc7ea7386c5428cef9e8f06d4ebd8144dec311)
125a4d6bfSDavid Schultz /*-
24d846d26SWarner Losh  * SPDX-License-Identifier: BSD-2-Clause
35e53a4f9SPedro F. Giffuni  *
425a4d6bfSDavid Schultz  * Copyright (c) 2007-2013 Bruce D. Evans
525a4d6bfSDavid Schultz  * All rights reserved.
625a4d6bfSDavid Schultz  *
725a4d6bfSDavid Schultz  * Redistribution and use in source and binary forms, with or without
825a4d6bfSDavid Schultz  * modification, are permitted provided that the following conditions
925a4d6bfSDavid Schultz  * are met:
1025a4d6bfSDavid Schultz  * 1. Redistributions of source code must retain the above copyright
1125a4d6bfSDavid Schultz  *    notice unmodified, this list of conditions, and the following
1225a4d6bfSDavid Schultz  *    disclaimer.
1325a4d6bfSDavid Schultz  * 2. Redistributions in binary form must reproduce the above copyright
1425a4d6bfSDavid Schultz  *    notice, this list of conditions and the following disclaimer in the
1525a4d6bfSDavid Schultz  *    documentation and/or other materials provided with the distribution.
1625a4d6bfSDavid Schultz  *
1725a4d6bfSDavid Schultz  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
1825a4d6bfSDavid Schultz  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
1925a4d6bfSDavid Schultz  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
2025a4d6bfSDavid Schultz  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
2125a4d6bfSDavid Schultz  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
2225a4d6bfSDavid Schultz  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2325a4d6bfSDavid Schultz  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2425a4d6bfSDavid Schultz  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2525a4d6bfSDavid Schultz  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
2625a4d6bfSDavid Schultz  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2725a4d6bfSDavid Schultz  */
2825a4d6bfSDavid Schultz 
2925a4d6bfSDavid Schultz /**
3025a4d6bfSDavid Schultz  * Implementation of the natural logarithm of x for Intel 80-bit format.
3125a4d6bfSDavid Schultz  *
3225a4d6bfSDavid Schultz  * First decompose x into its base 2 representation:
3325a4d6bfSDavid Schultz  *
3425a4d6bfSDavid Schultz  *    log(x) = log(X * 2**k), where X is in [1, 2)
3525a4d6bfSDavid Schultz  *           = log(X) + k * log(2).
3625a4d6bfSDavid Schultz  *
3725a4d6bfSDavid Schultz  * Let X = X_i + e, where X_i is the center of one of the intervals
3825a4d6bfSDavid Schultz  * [-1.0/256, 1.0/256), [1.0/256, 3.0/256), .... [2.0-1.0/256, 2.0+1.0/256)
3925a4d6bfSDavid Schultz  * and X is in this interval.  Then
4025a4d6bfSDavid Schultz  *
4125a4d6bfSDavid Schultz  *    log(X) = log(X_i + e)
4225a4d6bfSDavid Schultz  *           = log(X_i * (1 + e / X_i))
4325a4d6bfSDavid Schultz  *           = log(X_i) + log(1 + e / X_i).
4425a4d6bfSDavid Schultz  *
4525a4d6bfSDavid Schultz  * The values log(X_i) are tabulated below.  Let d = e / X_i and use
4625a4d6bfSDavid Schultz  *
4725a4d6bfSDavid Schultz  *    log(1 + d) = p(d)
4825a4d6bfSDavid Schultz  *
4925a4d6bfSDavid Schultz  * where p(d) = d - 0.5*d*d + ... is a special minimax polynomial of
5025a4d6bfSDavid Schultz  * suitably high degree.
5125a4d6bfSDavid Schultz  *
5225a4d6bfSDavid Schultz  * To get sufficiently small roundoff errors, k * log(2), log(X_i), and
5325a4d6bfSDavid Schultz  * sometimes (if |k| is not large) the first term in p(d) must be evaluated
5425a4d6bfSDavid Schultz  * and added up in extra precision.  Extra precision is not needed for the
5525a4d6bfSDavid Schultz  * rest of p(d).  In the worst case when k = 0 and log(X_i) is 0, the final
5625a4d6bfSDavid Schultz  * error is controlled mainly by the error in the second term in p(d).  The
5725a4d6bfSDavid Schultz  * error in this term itself is at most 0.5 ulps from the d*d operation in
5825a4d6bfSDavid Schultz  * it.  The error in this term relative to the first term is thus at most
5925a4d6bfSDavid Schultz  * 0.5 * |-0.5| * |d| < 1.0/1024 ulps.  We aim for an accumulated error of
6025a4d6bfSDavid Schultz  * at most twice this at the point of the final rounding step.  Thus the
6125a4d6bfSDavid Schultz  * final error should be at most 0.5 + 1.0/512 = 0.5020 ulps.  Exhaustive
6225a4d6bfSDavid Schultz  * testing of a float variant of this function showed a maximum final error
6325a4d6bfSDavid Schultz  * of 0.5008 ulps.  Non-exhaustive testing of a double variant of this
6425a4d6bfSDavid Schultz  * function showed a maximum final error of 0.5078 ulps (near 1+1.0/256).
6525a4d6bfSDavid Schultz  *
6625a4d6bfSDavid Schultz  * We made the maximum of |d| (and thus the total relative error and the
6725a4d6bfSDavid Schultz  * degree of p(d)) small by using a large number of intervals.  Using
6825a4d6bfSDavid Schultz  * centers of intervals instead of endpoints reduces this maximum by a
6925a4d6bfSDavid Schultz  * factor of 2 for a given number of intervals.  p(d) is special only
7025a4d6bfSDavid Schultz  * in beginning with the Taylor coefficients 0 + 1*d, which tends to happen
7125a4d6bfSDavid Schultz  * naturally.  The most accurate minimax polynomial of a given degree might
7225a4d6bfSDavid Schultz  * be different, but then we wouldn't want it since we would have to do
7325a4d6bfSDavid Schultz  * extra work to avoid roundoff error (especially for P0*d instead of d).
7425a4d6bfSDavid Schultz  */
7525a4d6bfSDavid Schultz 
7625a4d6bfSDavid Schultz #ifdef DEBUG
7725a4d6bfSDavid Schultz #include <assert.h>
7825a4d6bfSDavid Schultz #include <fenv.h>
7925a4d6bfSDavid Schultz #endif
8025a4d6bfSDavid Schultz 
8125a4d6bfSDavid Schultz #ifdef __i386__
8225a4d6bfSDavid Schultz #include <ieeefp.h>
8325a4d6bfSDavid Schultz #endif
8425a4d6bfSDavid Schultz 
8525a4d6bfSDavid Schultz #include "fpmath.h"
8625a4d6bfSDavid Schultz #include "math.h"
8725a4d6bfSDavid Schultz #define	i386_SSE_GOOD
8825a4d6bfSDavid Schultz #ifndef NO_STRUCT_RETURN
8925a4d6bfSDavid Schultz #define	STRUCT_RETURN
9025a4d6bfSDavid Schultz #endif
9125a4d6bfSDavid Schultz #include "math_private.h"
9225a4d6bfSDavid Schultz 
9325a4d6bfSDavid Schultz #if !defined(NO_UTAB) && !defined(NO_UTABL)
9425a4d6bfSDavid Schultz #define	USE_UTAB
9525a4d6bfSDavid Schultz #endif
9625a4d6bfSDavid Schultz 
9725a4d6bfSDavid Schultz /*
9825a4d6bfSDavid Schultz  * Domain [-0.005280, 0.004838], range ~[-5.1736e-22, 5.1738e-22]:
9925a4d6bfSDavid Schultz  * |log(1 + d)/d - p(d)| < 2**-70.7
10025a4d6bfSDavid Schultz  */
10125a4d6bfSDavid Schultz static const double
10225a4d6bfSDavid Schultz P2 = -0.5,
10325a4d6bfSDavid Schultz P3 =  3.3333333333333359e-1,		/*  0x1555555555555a.0p-54 */
10425a4d6bfSDavid Schultz P4 = -2.5000000000004424e-1,		/* -0x1000000000031d.0p-54 */
10525a4d6bfSDavid Schultz P5 =  1.9999999992970016e-1,		/*  0x1999999972f3c7.0p-55 */
10625a4d6bfSDavid Schultz P6 = -1.6666666072191585e-1,		/* -0x15555548912c09.0p-55 */
10725a4d6bfSDavid Schultz P7 =  1.4286227413310518e-1,		/*  0x12494f9d9def91.0p-55 */
10825a4d6bfSDavid Schultz P8 = -1.2518388626763144e-1;		/* -0x1006068cc0b97c.0p-55 */
10925a4d6bfSDavid Schultz 
11025a4d6bfSDavid Schultz static volatile const double zero = 0;
11125a4d6bfSDavid Schultz 
11225a4d6bfSDavid Schultz #define	INTERVALS	128
11325a4d6bfSDavid Schultz #define	LOG2_INTERVALS	7
11425a4d6bfSDavid Schultz #define	TSIZE		(INTERVALS + 1)
11525a4d6bfSDavid Schultz #define	G(i)		(T[(i)].G)
11625a4d6bfSDavid Schultz #define	F_hi(i)		(T[(i)].F_hi)
11725a4d6bfSDavid Schultz #define	F_lo(i)		(T[(i)].F_lo)
11825a4d6bfSDavid Schultz #define	ln2_hi		F_hi(TSIZE - 1)
11925a4d6bfSDavid Schultz #define	ln2_lo		F_lo(TSIZE - 1)
12025a4d6bfSDavid Schultz #define	E(i)		(U[(i)].E)
12125a4d6bfSDavid Schultz #define	H(i)		(U[(i)].H)
12225a4d6bfSDavid Schultz 
12325a4d6bfSDavid Schultz static const struct {
12425a4d6bfSDavid Schultz 	float	G;			/* 1/(1 + i/128) rounded to 8/9 bits */
12525a4d6bfSDavid Schultz 	float	F_hi;			/* log(1 / G_i) rounded (see below) */
12625a4d6bfSDavid Schultz 	double	F_lo;			/* next 53 bits for log(1 / G_i) */
12725a4d6bfSDavid Schultz } T[TSIZE] = {
12825a4d6bfSDavid Schultz 	/*
12925a4d6bfSDavid Schultz 	 * ln2_hi and each F_hi(i) are rounded to a number of bits that
13025a4d6bfSDavid Schultz 	 * makes F_hi(i) + dk*ln2_hi exact for all i and all dk.
13125a4d6bfSDavid Schultz 	 *
13225a4d6bfSDavid Schultz 	 * The last entry (for X just below 2) is used to define ln2_hi
13325a4d6bfSDavid Schultz 	 * and ln2_lo, to ensure that F_hi(i) and F_lo(i) cancel exactly
13425a4d6bfSDavid Schultz 	 * with dk*ln2_hi and dk*ln2_lo, respectively, when dk = -1.
13525a4d6bfSDavid Schultz 	 * This is needed for accuracy when x is just below 1.  (To avoid
13625a4d6bfSDavid Schultz 	 * special cases, such x are "reduced" strangely to X just below
13725a4d6bfSDavid Schultz 	 * 2 and dk = -1, and then the exact cancellation is needed
13825a4d6bfSDavid Schultz 	 * because any the error from any non-exactness would be too
13925a4d6bfSDavid Schultz 	 * large).
14025a4d6bfSDavid Schultz 	 *
14125a4d6bfSDavid Schultz 	 * We want to share this table between double precision and ld80,
14225a4d6bfSDavid Schultz 	 * so the relevant range of dk is the larger one of ld80
14325a4d6bfSDavid Schultz 	 * ([-16445, 16383]) and the relevant exactness requirement is
14425a4d6bfSDavid Schultz 	 * the stricter one of double precision.  The maximum number of
14525a4d6bfSDavid Schultz 	 * bits in F_hi(i) that works is very dependent on i but has
14625a4d6bfSDavid Schultz 	 * a minimum of 33.  We only need about 12 bits in F_hi(i) for
14725a4d6bfSDavid Schultz 	 * it to provide enough extra precision in double precision (11
14825a4d6bfSDavid Schultz 	 * more than that are required for ld80).
14925a4d6bfSDavid Schultz 	 *
15025a4d6bfSDavid Schultz 	 * We round F_hi(i) to 24 bits so that it can have type float,
15125a4d6bfSDavid Schultz 	 * mainly to minimize the size of the table.  Using all 24 bits
15225a4d6bfSDavid Schultz 	 * in a float for it automatically satisfies the above constraints.
15325a4d6bfSDavid Schultz 	 */
154dba5d1caSEd Maste 	 { 0x800000.0p-23,  0,               0 },
155dba5d1caSEd Maste 	 { 0xfe0000.0p-24,  0x8080ac.0p-30, -0x14ee431dae6675.0p-84 },
156dba5d1caSEd Maste 	 { 0xfc0000.0p-24,  0x8102b3.0p-29, -0x1db29ee2d83718.0p-84 },
157dba5d1caSEd Maste 	 { 0xfa0000.0p-24,  0xc24929.0p-29,  0x1191957d173698.0p-83 },
158dba5d1caSEd Maste 	 { 0xf80000.0p-24,  0x820aec.0p-28,  0x13ce8888e02e79.0p-82 },
159dba5d1caSEd Maste 	 { 0xf60000.0p-24,  0xa33577.0p-28, -0x17a4382ce6eb7c.0p-82 },
160dba5d1caSEd Maste 	 { 0xf48000.0p-24,  0xbc42cb.0p-28, -0x172a21161a1076.0p-83 },
161dba5d1caSEd Maste 	 { 0xf30000.0p-24,  0xd57797.0p-28, -0x1e09de07cb9589.0p-82 },
162dba5d1caSEd Maste 	 { 0xf10000.0p-24,  0xf7518e.0p-28,  0x1ae1eec1b036c5.0p-91 },
163dba5d1caSEd Maste 	 { 0xef0000.0p-24,  0x8cb9df.0p-27, -0x1d7355325d560e.0p-81 },
164dba5d1caSEd Maste 	 { 0xed8000.0p-24,  0x999ec0.0p-27, -0x1f9f02d256d503.0p-82 },
165dba5d1caSEd Maste 	 { 0xec0000.0p-24,  0xa6988b.0p-27, -0x16fc0a9d12c17a.0p-83 },
166dba5d1caSEd Maste 	 { 0xea0000.0p-24,  0xb80698.0p-27,  0x15d581c1e8da9a.0p-81 },
167dba5d1caSEd Maste 	 { 0xe80000.0p-24,  0xc99af3.0p-27, -0x1535b3ba8f150b.0p-83 },
168dba5d1caSEd Maste 	 { 0xe70000.0p-24,  0xd273b2.0p-27,  0x163786f5251af0.0p-85 },
169dba5d1caSEd Maste 	 { 0xe50000.0p-24,  0xe442c0.0p-27,  0x1bc4b2368e32d5.0p-84 },
170dba5d1caSEd Maste 	 { 0xe38000.0p-24,  0xf1b83f.0p-27,  0x1c6090f684e676.0p-81 },
171dba5d1caSEd Maste 	 { 0xe20000.0p-24,  0xff448a.0p-27, -0x1890aa69ac9f42.0p-82 },
172dba5d1caSEd Maste 	 { 0xe08000.0p-24,  0x8673f6.0p-26,  0x1b9985194b6b00.0p-80 },
173dba5d1caSEd Maste 	 { 0xdf0000.0p-24,  0x8d515c.0p-26, -0x1dc08d61c6ef1e.0p-83 },
174dba5d1caSEd Maste 	 { 0xdd8000.0p-24,  0x943a9e.0p-26, -0x1f72a2dac729b4.0p-82 },
175dba5d1caSEd Maste 	 { 0xdc0000.0p-24,  0x9b2fe6.0p-26, -0x1fd4dfd3a0afb9.0p-80 },
176dba5d1caSEd Maste 	 { 0xda8000.0p-24,  0xa2315d.0p-26, -0x11b26121629c47.0p-82 },
177dba5d1caSEd Maste 	 { 0xd90000.0p-24,  0xa93f2f.0p-26,  0x1286d633e8e569.0p-81 },
178dba5d1caSEd Maste 	 { 0xd78000.0p-24,  0xb05988.0p-26,  0x16128eba936770.0p-84 },
179dba5d1caSEd Maste 	 { 0xd60000.0p-24,  0xb78094.0p-26,  0x16ead577390d32.0p-80 },
180dba5d1caSEd Maste 	 { 0xd50000.0p-24,  0xbc4c6c.0p-26,  0x151131ccf7c7b7.0p-81 },
181dba5d1caSEd Maste 	 { 0xd38000.0p-24,  0xc3890a.0p-26, -0x115e2cd714bd06.0p-80 },
182dba5d1caSEd Maste 	 { 0xd20000.0p-24,  0xcad2d7.0p-26, -0x1847f406ebd3b0.0p-82 },
183dba5d1caSEd Maste 	 { 0xd10000.0p-24,  0xcfb620.0p-26,  0x1c2259904d6866.0p-81 },
184dba5d1caSEd Maste 	 { 0xcf8000.0p-24,  0xd71653.0p-26,  0x1ece57a8d5ae55.0p-80 },
185dba5d1caSEd Maste 	 { 0xce0000.0p-24,  0xde843a.0p-26, -0x1f109d4bc45954.0p-81 },
186dba5d1caSEd Maste 	 { 0xcd0000.0p-24,  0xe37fde.0p-26,  0x1bc03dc271a74d.0p-81 },
187dba5d1caSEd Maste 	 { 0xcb8000.0p-24,  0xeb050c.0p-26, -0x1bf2badc0df842.0p-85 },
188dba5d1caSEd Maste 	 { 0xca0000.0p-24,  0xf29878.0p-26, -0x18efededd89fbe.0p-87 },
189dba5d1caSEd Maste 	 { 0xc90000.0p-24,  0xf7ad6f.0p-26,  0x1373ff977baa69.0p-81 },
190dba5d1caSEd Maste 	 { 0xc80000.0p-24,  0xfcc8e3.0p-26,  0x196766f2fb3283.0p-80 },
191dba5d1caSEd Maste 	 { 0xc68000.0p-24,  0x823f30.0p-25,  0x19bd076f7c434e.0p-79 },
192dba5d1caSEd Maste 	 { 0xc58000.0p-24,  0x84d52c.0p-25, -0x1a327257af0f46.0p-79 },
193dba5d1caSEd Maste 	 { 0xc40000.0p-24,  0x88bc74.0p-25,  0x113f23def19c5a.0p-81 },
194dba5d1caSEd Maste 	 { 0xc30000.0p-24,  0x8b5ae6.0p-25,  0x1759f6e6b37de9.0p-79 },
195dba5d1caSEd Maste 	 { 0xc20000.0p-24,  0x8dfccb.0p-25,  0x1ad35ca6ed5148.0p-81 },
196dba5d1caSEd Maste 	 { 0xc10000.0p-24,  0x90a22b.0p-25,  0x1a1d71a87deba4.0p-79 },
197dba5d1caSEd Maste 	 { 0xbf8000.0p-24,  0x94a0d8.0p-25, -0x139e5210c2b731.0p-80 },
198dba5d1caSEd Maste 	 { 0xbe8000.0p-24,  0x974f16.0p-25, -0x18f6ebcff3ed73.0p-81 },
199dba5d1caSEd Maste 	 { 0xbd8000.0p-24,  0x9a00f1.0p-25, -0x1aa268be39aab7.0p-79 },
200dba5d1caSEd Maste 	 { 0xbc8000.0p-24,  0x9cb672.0p-25, -0x14c8815839c566.0p-79 },
201dba5d1caSEd Maste 	 { 0xbb0000.0p-24,  0xa0cda1.0p-25,  0x1eaf46390dbb24.0p-81 },
202dba5d1caSEd Maste 	 { 0xba0000.0p-24,  0xa38c6e.0p-25,  0x138e20d831f698.0p-81 },
203dba5d1caSEd Maste 	 { 0xb90000.0p-24,  0xa64f05.0p-25, -0x1e8d3c41123616.0p-82 },
204dba5d1caSEd Maste 	 { 0xb80000.0p-24,  0xa91570.0p-25,  0x1ce28f5f3840b2.0p-80 },
205dba5d1caSEd Maste 	 { 0xb70000.0p-24,  0xabdfbb.0p-25, -0x186e5c0a424234.0p-79 },
206dba5d1caSEd Maste 	 { 0xb60000.0p-24,  0xaeadef.0p-25, -0x14d41a0b2a08a4.0p-83 },
207dba5d1caSEd Maste 	 { 0xb50000.0p-24,  0xb18018.0p-25,  0x16755892770634.0p-79 },
208dba5d1caSEd Maste 	 { 0xb40000.0p-24,  0xb45642.0p-25, -0x16395ebe59b152.0p-82 },
209dba5d1caSEd Maste 	 { 0xb30000.0p-24,  0xb73077.0p-25,  0x1abc65c8595f09.0p-80 },
210dba5d1caSEd Maste 	 { 0xb20000.0p-24,  0xba0ec4.0p-25, -0x1273089d3dad89.0p-79 },
211dba5d1caSEd Maste 	 { 0xb10000.0p-24,  0xbcf133.0p-25,  0x10f9f67b1f4bbf.0p-79 },
212dba5d1caSEd Maste 	 { 0xb00000.0p-24,  0xbfd7d2.0p-25, -0x109fab90486409.0p-80 },
213dba5d1caSEd Maste 	 { 0xaf0000.0p-24,  0xc2c2ac.0p-25, -0x1124680aa43333.0p-79 },
214dba5d1caSEd Maste 	 { 0xae8000.0p-24,  0xc439b3.0p-25, -0x1f360cc4710fc0.0p-80 },
215dba5d1caSEd Maste 	 { 0xad8000.0p-24,  0xc72afd.0p-25, -0x132d91f21d89c9.0p-80 },
216dba5d1caSEd Maste 	 { 0xac8000.0p-24,  0xca20a2.0p-25, -0x16bf9b4d1f8da8.0p-79 },
217dba5d1caSEd Maste 	 { 0xab8000.0p-24,  0xcd1aae.0p-25,  0x19deb5ce6a6a87.0p-81 },
218dba5d1caSEd Maste 	 { 0xaa8000.0p-24,  0xd0192f.0p-25,  0x1a29fb48f7d3cb.0p-79 },
219dba5d1caSEd Maste 	 { 0xaa0000.0p-24,  0xd19a20.0p-25,  0x1127d3c6457f9d.0p-81 },
220dba5d1caSEd Maste 	 { 0xa90000.0p-24,  0xd49f6a.0p-25, -0x1ba930e486a0ac.0p-81 },
221dba5d1caSEd Maste 	 { 0xa80000.0p-24,  0xd7a94b.0p-25, -0x1b6e645f31549e.0p-79 },
222dba5d1caSEd Maste 	 { 0xa70000.0p-24,  0xdab7d0.0p-25,  0x1118a425494b61.0p-80 },
223dba5d1caSEd Maste 	 { 0xa68000.0p-24,  0xdc40d5.0p-25,  0x1966f24d29d3a3.0p-80 },
224dba5d1caSEd Maste 	 { 0xa58000.0p-24,  0xdf566d.0p-25, -0x1d8e52eb2248f1.0p-82 },
225dba5d1caSEd Maste 	 { 0xa48000.0p-24,  0xe270ce.0p-25, -0x1ee370f96e6b68.0p-80 },
226dba5d1caSEd Maste 	 { 0xa40000.0p-24,  0xe3ffce.0p-25,  0x1d155324911f57.0p-80 },
227dba5d1caSEd Maste 	 { 0xa30000.0p-24,  0xe72179.0p-25, -0x1fe6e2f2f867d9.0p-80 },
228dba5d1caSEd Maste 	 { 0xa20000.0p-24,  0xea4812.0p-25,  0x1b7be9add7f4d4.0p-80 },
229dba5d1caSEd Maste 	 { 0xa18000.0p-24,  0xebdd3d.0p-25,  0x1b3cfb3f7511dd.0p-79 },
230dba5d1caSEd Maste 	 { 0xa08000.0p-24,  0xef0b5b.0p-25, -0x1220de1f730190.0p-79 },
231dba5d1caSEd Maste 	 { 0xa00000.0p-24,  0xf0a451.0p-25, -0x176364c9ac81cd.0p-80 },
232dba5d1caSEd Maste 	 { 0x9f0000.0p-24,  0xf3da16.0p-25,  0x1eed6b9aafac8d.0p-81 },
233dba5d1caSEd Maste 	 { 0x9e8000.0p-24,  0xf576e9.0p-25,  0x1d593218675af2.0p-79 },
234dba5d1caSEd Maste 	 { 0x9d8000.0p-24,  0xf8b47c.0p-25, -0x13e8eb7da053e0.0p-84 },
235dba5d1caSEd Maste 	 { 0x9d0000.0p-24,  0xfa553f.0p-25,  0x1c063259bcade0.0p-79 },
236dba5d1caSEd Maste 	 { 0x9c0000.0p-24,  0xfd9ac5.0p-25,  0x1ef491085fa3c1.0p-79 },
237dba5d1caSEd Maste 	 { 0x9b8000.0p-24,  0xff3f8c.0p-25,  0x1d607a7c2b8c53.0p-79 },
238dba5d1caSEd Maste 	 { 0x9a8000.0p-24,  0x814697.0p-24, -0x12ad3817004f3f.0p-78 },
239dba5d1caSEd Maste 	 { 0x9a0000.0p-24,  0x821b06.0p-24, -0x189fc53117f9e5.0p-81 },
240dba5d1caSEd Maste 	 { 0x990000.0p-24,  0x83c5f8.0p-24,  0x14cf15a048907b.0p-79 },
241dba5d1caSEd Maste 	 { 0x988000.0p-24,  0x849c7d.0p-24,  0x1cbb1d35fb8287.0p-78 },
242dba5d1caSEd Maste 	 { 0x978000.0p-24,  0x864ba6.0p-24,  0x1128639b814f9c.0p-78 },
243dba5d1caSEd Maste 	 { 0x970000.0p-24,  0x87244c.0p-24,  0x184733853300f0.0p-79 },
244dba5d1caSEd Maste 	 { 0x968000.0p-24,  0x87fdaa.0p-24,  0x109d23aef77dd6.0p-80 },
245dba5d1caSEd Maste 	 { 0x958000.0p-24,  0x89b293.0p-24, -0x1a81ef367a59de.0p-78 },
246dba5d1caSEd Maste 	 { 0x950000.0p-24,  0x8a8e20.0p-24, -0x121ad3dbb2f452.0p-78 },
247dba5d1caSEd Maste 	 { 0x948000.0p-24,  0x8b6a6a.0p-24, -0x1cfb981628af72.0p-79 },
248dba5d1caSEd Maste 	 { 0x938000.0p-24,  0x8d253a.0p-24, -0x1d21730ea76cfe.0p-79 },
249dba5d1caSEd Maste 	 { 0x930000.0p-24,  0x8e03c2.0p-24,  0x135cc00e566f77.0p-78 },
250dba5d1caSEd Maste 	 { 0x928000.0p-24,  0x8ee30d.0p-24, -0x10fcb5df257a26.0p-80 },
251dba5d1caSEd Maste 	 { 0x918000.0p-24,  0x90a3ee.0p-24, -0x16e171b15433d7.0p-79 },
252dba5d1caSEd Maste 	 { 0x910000.0p-24,  0x918587.0p-24, -0x1d050da07f3237.0p-79 },
253dba5d1caSEd Maste 	 { 0x908000.0p-24,  0x9267e7.0p-24,  0x1be03669a5268d.0p-79 },
254dba5d1caSEd Maste 	 { 0x8f8000.0p-24,  0x942f04.0p-24,  0x10b28e0e26c337.0p-79 },
255dba5d1caSEd Maste 	 { 0x8f0000.0p-24,  0x9513c3.0p-24,  0x1a1d820da57cf3.0p-78 },
256dba5d1caSEd Maste 	 { 0x8e8000.0p-24,  0x95f950.0p-24, -0x19ef8f13ae3cf1.0p-79 },
257dba5d1caSEd Maste 	 { 0x8e0000.0p-24,  0x96dfab.0p-24, -0x109e417a6e507c.0p-78 },
258dba5d1caSEd Maste 	 { 0x8d0000.0p-24,  0x98aed2.0p-24,  0x10d01a2c5b0e98.0p-79 },
259dba5d1caSEd Maste 	 { 0x8c8000.0p-24,  0x9997a2.0p-24, -0x1d6a50d4b61ea7.0p-78 },
260dba5d1caSEd Maste 	 { 0x8c0000.0p-24,  0x9a8145.0p-24,  0x1b3b190b83f952.0p-78 },
261dba5d1caSEd Maste 	 { 0x8b8000.0p-24,  0x9b6bbf.0p-24,  0x13a69fad7e7abe.0p-78 },
262dba5d1caSEd Maste 	 { 0x8b0000.0p-24,  0x9c5711.0p-24, -0x11cd12316f576b.0p-78 },
263dba5d1caSEd Maste 	 { 0x8a8000.0p-24,  0x9d433b.0p-24,  0x1c95c444b807a2.0p-79 },
264dba5d1caSEd Maste 	 { 0x898000.0p-24,  0x9f1e22.0p-24, -0x1b9c224ea698c3.0p-79 },
265dba5d1caSEd Maste 	 { 0x890000.0p-24,  0xa00ce1.0p-24,  0x125ca93186cf0f.0p-81 },
266dba5d1caSEd Maste 	 { 0x888000.0p-24,  0xa0fc80.0p-24, -0x1ee38a7bc228b3.0p-79 },
267dba5d1caSEd Maste 	 { 0x880000.0p-24,  0xa1ed00.0p-24, -0x1a0db876613d20.0p-78 },
268dba5d1caSEd Maste 	 { 0x878000.0p-24,  0xa2de62.0p-24,  0x193224e8516c01.0p-79 },
269dba5d1caSEd Maste 	 { 0x870000.0p-24,  0xa3d0a9.0p-24,  0x1fa28b4d2541ad.0p-79 },
270dba5d1caSEd Maste 	 { 0x868000.0p-24,  0xa4c3d6.0p-24,  0x1c1b5760fb4572.0p-78 },
271dba5d1caSEd Maste 	 { 0x858000.0p-24,  0xa6acea.0p-24,  0x1fed5d0f65949c.0p-80 },
272dba5d1caSEd Maste 	 { 0x850000.0p-24,  0xa7a2d4.0p-24,  0x1ad270c9d74936.0p-80 },
273dba5d1caSEd Maste 	 { 0x848000.0p-24,  0xa899ab.0p-24,  0x199ff15ce53266.0p-79 },
274dba5d1caSEd Maste 	 { 0x840000.0p-24,  0xa99171.0p-24,  0x1a19e15ccc45d2.0p-79 },
275dba5d1caSEd Maste 	 { 0x838000.0p-24,  0xaa8a28.0p-24, -0x121a14ec532b36.0p-80 },
276dba5d1caSEd Maste 	 { 0x830000.0p-24,  0xab83d1.0p-24,  0x1aee319980bff3.0p-79 },
277dba5d1caSEd Maste 	 { 0x828000.0p-24,  0xac7e6f.0p-24, -0x18ffd9e3900346.0p-80 },
278dba5d1caSEd Maste 	 { 0x820000.0p-24,  0xad7a03.0p-24, -0x1e4db102ce29f8.0p-80 },
279dba5d1caSEd Maste 	 { 0x818000.0p-24,  0xae768f.0p-24,  0x17c35c55a04a83.0p-81 },
280dba5d1caSEd Maste 	 { 0x810000.0p-24,  0xaf7415.0p-24,  0x1448324047019b.0p-78 },
281dba5d1caSEd Maste 	 { 0x808000.0p-24,  0xb07298.0p-24, -0x1750ee3915a198.0p-78 },
282dba5d1caSEd Maste 	 { 0x800000.0p-24,  0xb17218.0p-24, -0x105c610ca86c39.0p-81 },
28325a4d6bfSDavid Schultz };
28425a4d6bfSDavid Schultz 
28525a4d6bfSDavid Schultz #ifdef USE_UTAB
28625a4d6bfSDavid Schultz static const struct {
28725a4d6bfSDavid Schultz 	float	H;			/* 1 + i/INTERVALS (exact) */
28825a4d6bfSDavid Schultz 	float	E;			/* H(i) * G(i) - 1 (exact) */
28925a4d6bfSDavid Schultz } U[TSIZE] = {
290dba5d1caSEd Maste 	 { 0x800000.0p-23,  0 },
291dba5d1caSEd Maste 	 { 0x810000.0p-23, -0x800000.0p-37 },
292dba5d1caSEd Maste 	 { 0x820000.0p-23, -0x800000.0p-35 },
293dba5d1caSEd Maste 	 { 0x830000.0p-23, -0x900000.0p-34 },
294dba5d1caSEd Maste 	 { 0x840000.0p-23, -0x800000.0p-33 },
295dba5d1caSEd Maste 	 { 0x850000.0p-23, -0xc80000.0p-33 },
296dba5d1caSEd Maste 	 { 0x860000.0p-23, -0xa00000.0p-36 },
297dba5d1caSEd Maste 	 { 0x870000.0p-23,  0x940000.0p-33 },
298dba5d1caSEd Maste 	 { 0x880000.0p-23,  0x800000.0p-35 },
299dba5d1caSEd Maste 	 { 0x890000.0p-23, -0xc80000.0p-34 },
300dba5d1caSEd Maste 	 { 0x8a0000.0p-23,  0xe00000.0p-36 },
301dba5d1caSEd Maste 	 { 0x8b0000.0p-23,  0x900000.0p-33 },
302dba5d1caSEd Maste 	 { 0x8c0000.0p-23, -0x800000.0p-35 },
303dba5d1caSEd Maste 	 { 0x8d0000.0p-23, -0xe00000.0p-33 },
304dba5d1caSEd Maste 	 { 0x8e0000.0p-23,  0x880000.0p-33 },
305dba5d1caSEd Maste 	 { 0x8f0000.0p-23, -0xa80000.0p-34 },
306dba5d1caSEd Maste 	 { 0x900000.0p-23, -0x800000.0p-35 },
307dba5d1caSEd Maste 	 { 0x910000.0p-23,  0x800000.0p-37 },
308dba5d1caSEd Maste 	 { 0x920000.0p-23,  0x900000.0p-35 },
309dba5d1caSEd Maste 	 { 0x930000.0p-23,  0xd00000.0p-35 },
310dba5d1caSEd Maste 	 { 0x940000.0p-23,  0xe00000.0p-35 },
311dba5d1caSEd Maste 	 { 0x950000.0p-23,  0xc00000.0p-35 },
312dba5d1caSEd Maste 	 { 0x960000.0p-23,  0xe00000.0p-36 },
313dba5d1caSEd Maste 	 { 0x970000.0p-23, -0x800000.0p-38 },
314dba5d1caSEd Maste 	 { 0x980000.0p-23, -0xc00000.0p-35 },
315dba5d1caSEd Maste 	 { 0x990000.0p-23, -0xd00000.0p-34 },
316dba5d1caSEd Maste 	 { 0x9a0000.0p-23,  0x880000.0p-33 },
317dba5d1caSEd Maste 	 { 0x9b0000.0p-23,  0xe80000.0p-35 },
318dba5d1caSEd Maste 	 { 0x9c0000.0p-23, -0x800000.0p-35 },
319dba5d1caSEd Maste 	 { 0x9d0000.0p-23,  0xb40000.0p-33 },
320dba5d1caSEd Maste 	 { 0x9e0000.0p-23,  0x880000.0p-34 },
321dba5d1caSEd Maste 	 { 0x9f0000.0p-23, -0xe00000.0p-35 },
322dba5d1caSEd Maste 	 { 0xa00000.0p-23,  0x800000.0p-33 },
323dba5d1caSEd Maste 	 { 0xa10000.0p-23, -0x900000.0p-36 },
324dba5d1caSEd Maste 	 { 0xa20000.0p-23, -0xb00000.0p-33 },
325dba5d1caSEd Maste 	 { 0xa30000.0p-23, -0xa00000.0p-36 },
326dba5d1caSEd Maste 	 { 0xa40000.0p-23,  0x800000.0p-33 },
327dba5d1caSEd Maste 	 { 0xa50000.0p-23, -0xf80000.0p-35 },
328dba5d1caSEd Maste 	 { 0xa60000.0p-23,  0x880000.0p-34 },
329dba5d1caSEd Maste 	 { 0xa70000.0p-23, -0x900000.0p-33 },
330dba5d1caSEd Maste 	 { 0xa80000.0p-23, -0x800000.0p-35 },
331dba5d1caSEd Maste 	 { 0xa90000.0p-23,  0x900000.0p-34 },
332dba5d1caSEd Maste 	 { 0xaa0000.0p-23,  0xa80000.0p-33 },
333dba5d1caSEd Maste 	 { 0xab0000.0p-23, -0xac0000.0p-34 },
334dba5d1caSEd Maste 	 { 0xac0000.0p-23, -0x800000.0p-37 },
335dba5d1caSEd Maste 	 { 0xad0000.0p-23,  0xf80000.0p-35 },
336dba5d1caSEd Maste 	 { 0xae0000.0p-23,  0xf80000.0p-34 },
337dba5d1caSEd Maste 	 { 0xaf0000.0p-23, -0xac0000.0p-33 },
338dba5d1caSEd Maste 	 { 0xb00000.0p-23, -0x800000.0p-33 },
339dba5d1caSEd Maste 	 { 0xb10000.0p-23, -0xb80000.0p-34 },
340dba5d1caSEd Maste 	 { 0xb20000.0p-23, -0x800000.0p-34 },
341dba5d1caSEd Maste 	 { 0xb30000.0p-23, -0xb00000.0p-35 },
342dba5d1caSEd Maste 	 { 0xb40000.0p-23, -0x800000.0p-35 },
343dba5d1caSEd Maste 	 { 0xb50000.0p-23, -0xe00000.0p-36 },
344dba5d1caSEd Maste 	 { 0xb60000.0p-23, -0x800000.0p-35 },
345dba5d1caSEd Maste 	 { 0xb70000.0p-23, -0xb00000.0p-35 },
346dba5d1caSEd Maste 	 { 0xb80000.0p-23, -0x800000.0p-34 },
347dba5d1caSEd Maste 	 { 0xb90000.0p-23, -0xb80000.0p-34 },
348dba5d1caSEd Maste 	 { 0xba0000.0p-23, -0x800000.0p-33 },
349dba5d1caSEd Maste 	 { 0xbb0000.0p-23, -0xac0000.0p-33 },
350dba5d1caSEd Maste 	 { 0xbc0000.0p-23,  0x980000.0p-33 },
351dba5d1caSEd Maste 	 { 0xbd0000.0p-23,  0xbc0000.0p-34 },
352dba5d1caSEd Maste 	 { 0xbe0000.0p-23,  0xe00000.0p-36 },
353dba5d1caSEd Maste 	 { 0xbf0000.0p-23, -0xb80000.0p-35 },
354dba5d1caSEd Maste 	 { 0xc00000.0p-23, -0x800000.0p-33 },
355dba5d1caSEd Maste 	 { 0xc10000.0p-23,  0xa80000.0p-33 },
356dba5d1caSEd Maste 	 { 0xc20000.0p-23,  0x900000.0p-34 },
357dba5d1caSEd Maste 	 { 0xc30000.0p-23, -0x800000.0p-35 },
358dba5d1caSEd Maste 	 { 0xc40000.0p-23, -0x900000.0p-33 },
359dba5d1caSEd Maste 	 { 0xc50000.0p-23,  0x820000.0p-33 },
360dba5d1caSEd Maste 	 { 0xc60000.0p-23,  0x800000.0p-38 },
361dba5d1caSEd Maste 	 { 0xc70000.0p-23, -0x820000.0p-33 },
362dba5d1caSEd Maste 	 { 0xc80000.0p-23,  0x800000.0p-33 },
363dba5d1caSEd Maste 	 { 0xc90000.0p-23, -0xa00000.0p-36 },
364dba5d1caSEd Maste 	 { 0xca0000.0p-23, -0xb00000.0p-33 },
365dba5d1caSEd Maste 	 { 0xcb0000.0p-23,  0x840000.0p-34 },
366dba5d1caSEd Maste 	 { 0xcc0000.0p-23, -0xd00000.0p-34 },
367dba5d1caSEd Maste 	 { 0xcd0000.0p-23,  0x800000.0p-33 },
368dba5d1caSEd Maste 	 { 0xce0000.0p-23, -0xe00000.0p-35 },
369dba5d1caSEd Maste 	 { 0xcf0000.0p-23,  0xa60000.0p-33 },
370dba5d1caSEd Maste 	 { 0xd00000.0p-23, -0x800000.0p-35 },
371dba5d1caSEd Maste 	 { 0xd10000.0p-23,  0xb40000.0p-33 },
372dba5d1caSEd Maste 	 { 0xd20000.0p-23, -0x800000.0p-35 },
373dba5d1caSEd Maste 	 { 0xd30000.0p-23,  0xaa0000.0p-33 },
374dba5d1caSEd Maste 	 { 0xd40000.0p-23, -0xe00000.0p-35 },
375dba5d1caSEd Maste 	 { 0xd50000.0p-23,  0x880000.0p-33 },
376dba5d1caSEd Maste 	 { 0xd60000.0p-23, -0xd00000.0p-34 },
377dba5d1caSEd Maste 	 { 0xd70000.0p-23,  0x9c0000.0p-34 },
378dba5d1caSEd Maste 	 { 0xd80000.0p-23, -0xb00000.0p-33 },
379dba5d1caSEd Maste 	 { 0xd90000.0p-23, -0x800000.0p-38 },
380dba5d1caSEd Maste 	 { 0xda0000.0p-23,  0xa40000.0p-33 },
381dba5d1caSEd Maste 	 { 0xdb0000.0p-23, -0xdc0000.0p-34 },
382dba5d1caSEd Maste 	 { 0xdc0000.0p-23,  0xc00000.0p-35 },
383dba5d1caSEd Maste 	 { 0xdd0000.0p-23,  0xca0000.0p-33 },
384dba5d1caSEd Maste 	 { 0xde0000.0p-23, -0xb80000.0p-34 },
385dba5d1caSEd Maste 	 { 0xdf0000.0p-23,  0xd00000.0p-35 },
386dba5d1caSEd Maste 	 { 0xe00000.0p-23,  0xc00000.0p-33 },
387dba5d1caSEd Maste 	 { 0xe10000.0p-23, -0xf40000.0p-34 },
388dba5d1caSEd Maste 	 { 0xe20000.0p-23,  0x800000.0p-37 },
389dba5d1caSEd Maste 	 { 0xe30000.0p-23,  0x860000.0p-33 },
390dba5d1caSEd Maste 	 { 0xe40000.0p-23, -0xc80000.0p-33 },
391dba5d1caSEd Maste 	 { 0xe50000.0p-23, -0xa80000.0p-34 },
392dba5d1caSEd Maste 	 { 0xe60000.0p-23,  0xe00000.0p-36 },
393dba5d1caSEd Maste 	 { 0xe70000.0p-23,  0x880000.0p-33 },
394dba5d1caSEd Maste 	 { 0xe80000.0p-23, -0xe00000.0p-33 },
395dba5d1caSEd Maste 	 { 0xe90000.0p-23, -0xfc0000.0p-34 },
396dba5d1caSEd Maste 	 { 0xea0000.0p-23, -0x800000.0p-35 },
397dba5d1caSEd Maste 	 { 0xeb0000.0p-23,  0xe80000.0p-35 },
398dba5d1caSEd Maste 	 { 0xec0000.0p-23,  0x900000.0p-33 },
399dba5d1caSEd Maste 	 { 0xed0000.0p-23,  0xe20000.0p-33 },
400dba5d1caSEd Maste 	 { 0xee0000.0p-23, -0xac0000.0p-33 },
401dba5d1caSEd Maste 	 { 0xef0000.0p-23, -0xc80000.0p-34 },
402dba5d1caSEd Maste 	 { 0xf00000.0p-23, -0x800000.0p-35 },
403dba5d1caSEd Maste 	 { 0xf10000.0p-23,  0x800000.0p-35 },
404dba5d1caSEd Maste 	 { 0xf20000.0p-23,  0xb80000.0p-34 },
405dba5d1caSEd Maste 	 { 0xf30000.0p-23,  0x940000.0p-33 },
406dba5d1caSEd Maste 	 { 0xf40000.0p-23,  0xc80000.0p-33 },
407dba5d1caSEd Maste 	 { 0xf50000.0p-23, -0xf20000.0p-33 },
408dba5d1caSEd Maste 	 { 0xf60000.0p-23, -0xc80000.0p-33 },
409dba5d1caSEd Maste 	 { 0xf70000.0p-23, -0xa20000.0p-33 },
410dba5d1caSEd Maste 	 { 0xf80000.0p-23, -0x800000.0p-33 },
411dba5d1caSEd Maste 	 { 0xf90000.0p-23, -0xc40000.0p-34 },
412dba5d1caSEd Maste 	 { 0xfa0000.0p-23, -0x900000.0p-34 },
413dba5d1caSEd Maste 	 { 0xfb0000.0p-23, -0xc80000.0p-35 },
414dba5d1caSEd Maste 	 { 0xfc0000.0p-23, -0x800000.0p-35 },
415dba5d1caSEd Maste 	 { 0xfd0000.0p-23, -0x900000.0p-36 },
416dba5d1caSEd Maste 	 { 0xfe0000.0p-23, -0x800000.0p-37 },
417dba5d1caSEd Maste 	 { 0xff0000.0p-23, -0x800000.0p-39 },
418dba5d1caSEd Maste 	 { 0x800000.0p-22,  0 },
41925a4d6bfSDavid Schultz };
42025a4d6bfSDavid Schultz #endif /* USE_UTAB */
42125a4d6bfSDavid Schultz 
42225a4d6bfSDavid Schultz #ifdef STRUCT_RETURN
42325a4d6bfSDavid Schultz #define	RETURN1(rp, v) do {	\
42425a4d6bfSDavid Schultz 	(rp)->hi = (v);		\
42525a4d6bfSDavid Schultz 	(rp)->lo_set = 0;	\
42625a4d6bfSDavid Schultz 	return;			\
42725a4d6bfSDavid Schultz } while (0)
42825a4d6bfSDavid Schultz 
42925a4d6bfSDavid Schultz #define	RETURN2(rp, h, l) do {	\
43025a4d6bfSDavid Schultz 	(rp)->hi = (h);		\
43125a4d6bfSDavid Schultz 	(rp)->lo = (l);		\
43225a4d6bfSDavid Schultz 	(rp)->lo_set = 1;	\
43325a4d6bfSDavid Schultz 	return;			\
43425a4d6bfSDavid Schultz } while (0)
43525a4d6bfSDavid Schultz 
43625a4d6bfSDavid Schultz struct ld {
43725a4d6bfSDavid Schultz 	long double hi;
43825a4d6bfSDavid Schultz 	long double lo;
43925a4d6bfSDavid Schultz 	int	lo_set;
44025a4d6bfSDavid Schultz };
44125a4d6bfSDavid Schultz #else
44225a4d6bfSDavid Schultz #define	RETURN1(rp, v)	RETURNF(v)
44325a4d6bfSDavid Schultz #define	RETURN2(rp, h, l)	RETURNI((h) + (l))
44425a4d6bfSDavid Schultz #endif
44525a4d6bfSDavid Schultz 
44625a4d6bfSDavid Schultz #ifdef STRUCT_RETURN
447*07cc7ea7SRyan Libby static __always_inline void
k_logl(long double x,struct ld * rp)44825a4d6bfSDavid Schultz k_logl(long double x, struct ld *rp)
44925a4d6bfSDavid Schultz #else
45025a4d6bfSDavid Schultz long double
45125a4d6bfSDavid Schultz logl(long double x)
45225a4d6bfSDavid Schultz #endif
45325a4d6bfSDavid Schultz {
45425a4d6bfSDavid Schultz 	long double d, dk, val_hi, val_lo, z;
45525a4d6bfSDavid Schultz 	uint64_t ix, lx;
45625a4d6bfSDavid Schultz 	int i, k;
45725a4d6bfSDavid Schultz 	uint16_t hx;
45825a4d6bfSDavid Schultz 
45925a4d6bfSDavid Schultz 	EXTRACT_LDBL80_WORDS(hx, lx, x);
46025a4d6bfSDavid Schultz 	k = -16383;
46125a4d6bfSDavid Schultz #if 0 /* Hard to do efficiently.  Don't do it until we support all modes. */
46225a4d6bfSDavid Schultz 	if (x == 1)
46325a4d6bfSDavid Schultz 		RETURN1(rp, 0);		/* log(1) = +0 in all rounding modes */
46425a4d6bfSDavid Schultz #endif
46525a4d6bfSDavid Schultz 	if (hx == 0 || hx >= 0x8000) {	/* zero, negative or subnormal? */
46625a4d6bfSDavid Schultz 		if (((hx & 0x7fff) | lx) == 0)
46725a4d6bfSDavid Schultz 			RETURN1(rp, -1 / zero);	/* log(+-0) = -Inf */
46825a4d6bfSDavid Schultz 		if (hx != 0)
46925a4d6bfSDavid Schultz 			/* log(neg or [pseudo-]NaN) = qNaN: */
47025a4d6bfSDavid Schultz 			RETURN1(rp, (x - x) / zero);
47125a4d6bfSDavid Schultz 		x *= 0x1.0p65;		/* subnormal; scale up x */
47225a4d6bfSDavid Schultz 					/* including pseudo-subnormals */
47325a4d6bfSDavid Schultz 		EXTRACT_LDBL80_WORDS(hx, lx, x);
47425a4d6bfSDavid Schultz 		k = -16383 - 65;
47525a4d6bfSDavid Schultz 	} else if (hx >= 0x7fff || (lx & 0x8000000000000000ULL) == 0)
47625a4d6bfSDavid Schultz 		RETURN1(rp, x + x);	/* log(Inf or NaN) = Inf or qNaN */
47725a4d6bfSDavid Schultz 					/* log(pseudo-Inf) = qNaN */
47825a4d6bfSDavid Schultz 					/* log(pseudo-NaN) = qNaN */
47925a4d6bfSDavid Schultz 					/* log(unnormal) = qNaN */
48025a4d6bfSDavid Schultz #ifndef STRUCT_RETURN
48125a4d6bfSDavid Schultz 	ENTERI();
48225a4d6bfSDavid Schultz #endif
48325a4d6bfSDavid Schultz 	k += hx;
48425a4d6bfSDavid Schultz 	ix = lx & 0x7fffffffffffffffULL;
48525a4d6bfSDavid Schultz 	dk = k;
48625a4d6bfSDavid Schultz 
48725a4d6bfSDavid Schultz 	/* Scale x to be in [1, 2). */
48825a4d6bfSDavid Schultz 	SET_LDBL_EXPSIGN(x, 0x3fff);
48925a4d6bfSDavid Schultz 
49025a4d6bfSDavid Schultz 	/* 0 <= i <= INTERVALS: */
49125a4d6bfSDavid Schultz #define	L2I	(64 - LOG2_INTERVALS)
49225a4d6bfSDavid Schultz 	i = (ix + (1LL << (L2I - 2))) >> (L2I - 1);
49325a4d6bfSDavid Schultz 
49425a4d6bfSDavid Schultz 	/*
49525a4d6bfSDavid Schultz 	 * -0.005280 < d < 0.004838.  In particular, the infinite-
49625a4d6bfSDavid Schultz 	 * precision |d| is <= 2**-7.  Rounding of G(i) to 8 bits
49725a4d6bfSDavid Schultz 	 * ensures that d is representable without extra precision for
49825a4d6bfSDavid Schultz 	 * this bound on |d| (since when this calculation is expressed
49925a4d6bfSDavid Schultz 	 * as x*G(i)-1, the multiplication needs as many extra bits as
50025a4d6bfSDavid Schultz 	 * G(i) has and the subtraction cancels 8 bits).  But for
50125a4d6bfSDavid Schultz 	 * most i (107 cases out of 129), the infinite-precision |d|
50225a4d6bfSDavid Schultz 	 * is <= 2**-8.  G(i) is rounded to 9 bits for such i to give
50325a4d6bfSDavid Schultz 	 * better accuracy (this works by improving the bound on |d|,
50425a4d6bfSDavid Schultz 	 * which in turn allows rounding to 9 bits in more cases).
50525a4d6bfSDavid Schultz 	 * This is only important when the original x is near 1 -- it
50625a4d6bfSDavid Schultz 	 * lets us avoid using a special method to give the desired
50725a4d6bfSDavid Schultz 	 * accuracy for such x.
50825a4d6bfSDavid Schultz 	 */
50925a4d6bfSDavid Schultz 	if (0)
51025a4d6bfSDavid Schultz 		d = x * G(i) - 1;
51125a4d6bfSDavid Schultz 	else {
51225a4d6bfSDavid Schultz #ifdef USE_UTAB
51325a4d6bfSDavid Schultz 		d = (x - H(i)) * G(i) + E(i);
51425a4d6bfSDavid Schultz #else
51525a4d6bfSDavid Schultz 		long double x_hi, x_lo;
51625a4d6bfSDavid Schultz 		float fx_hi;
51725a4d6bfSDavid Schultz 
51825a4d6bfSDavid Schultz 		/*
51925a4d6bfSDavid Schultz 		 * Split x into x_hi + x_lo to calculate x*G(i)-1 exactly.
52025a4d6bfSDavid Schultz 		 * G(i) has at most 9 bits, so the splitting point is not
52125a4d6bfSDavid Schultz 		 * critical.
52225a4d6bfSDavid Schultz 		 */
52325a4d6bfSDavid Schultz 		SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000);
52425a4d6bfSDavid Schultz 		x_hi = fx_hi;
52525a4d6bfSDavid Schultz 		x_lo = x - x_hi;
52625a4d6bfSDavid Schultz 		d = x_hi * G(i) - 1 + x_lo * G(i);
52725a4d6bfSDavid Schultz #endif
52825a4d6bfSDavid Schultz 	}
52925a4d6bfSDavid Schultz 
53025a4d6bfSDavid Schultz 	/*
53125a4d6bfSDavid Schultz 	 * Our algorithm depends on exact cancellation of F_lo(i) and
53225a4d6bfSDavid Schultz 	 * F_hi(i) with dk*ln_2_lo and dk*ln2_hi when k is -1 and i is
53325a4d6bfSDavid Schultz 	 * at the end of the table.  This and other technical complications
53425a4d6bfSDavid Schultz 	 * make it difficult to avoid the double scaling in (dk*ln2) *
53525a4d6bfSDavid Schultz 	 * log(base) for base != e without losing more accuracy and/or
53625a4d6bfSDavid Schultz 	 * efficiency than is gained.
53725a4d6bfSDavid Schultz 	 */
53825a4d6bfSDavid Schultz 	z = d * d;
53925a4d6bfSDavid Schultz 	val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) +
54025a4d6bfSDavid Schultz 	    (F_lo(i) + dk * ln2_lo + z * d * (d * P4 + P3)) + z * P2;
54125a4d6bfSDavid Schultz 	val_hi = d;
54225a4d6bfSDavid Schultz #ifdef DEBUG
54325a4d6bfSDavid Schultz 	if (fetestexcept(FE_UNDERFLOW))
54425a4d6bfSDavid Schultz 		breakpoint();
54525a4d6bfSDavid Schultz #endif
54625a4d6bfSDavid Schultz 
54725a4d6bfSDavid Schultz 	_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
54825a4d6bfSDavid Schultz 	RETURN2(rp, val_hi, val_lo);
54925a4d6bfSDavid Schultz }
55025a4d6bfSDavid Schultz 
55125a4d6bfSDavid Schultz long double
log1pl(long double x)55225a4d6bfSDavid Schultz log1pl(long double x)
55325a4d6bfSDavid Schultz {
55425a4d6bfSDavid Schultz 	long double d, d_hi, d_lo, dk, f_lo, val_hi, val_lo, z;
55525a4d6bfSDavid Schultz 	long double f_hi, twopminusk;
55625a4d6bfSDavid Schultz 	uint64_t ix, lx;
55725a4d6bfSDavid Schultz 	int i, k;
55825a4d6bfSDavid Schultz 	int16_t ax, hx;
55925a4d6bfSDavid Schultz 
56025a4d6bfSDavid Schultz 	EXTRACT_LDBL80_WORDS(hx, lx, x);
56125a4d6bfSDavid Schultz 	if (hx < 0x3fff) {		/* x < 1, or x neg NaN */
56225a4d6bfSDavid Schultz 		ax = hx & 0x7fff;
56325a4d6bfSDavid Schultz 		if (ax >= 0x3fff) {	/* x <= -1, or x neg NaN */
56425a4d6bfSDavid Schultz 			if (ax == 0x3fff && lx == 0x8000000000000000ULL)
565c66a499eSSteve Kargl 				RETURNF(-1 / zero);	/* log1p(-1) = -Inf */
56625a4d6bfSDavid Schultz 			/* log1p(x < 1, or x [pseudo-]NaN) = qNaN: */
567c66a499eSSteve Kargl 			RETURNF((x - x) / (x - x));
56825a4d6bfSDavid Schultz 		}
56925a4d6bfSDavid Schultz 		if (ax <= 0x3fbe) {	/* |x| < 2**-64 */
57025a4d6bfSDavid Schultz 			if ((int)x == 0)
571c66a499eSSteve Kargl 				RETURNF(x);	/* x with inexact if x != 0 */
57225a4d6bfSDavid Schultz 		}
57325a4d6bfSDavid Schultz 		f_hi = 1;
57425a4d6bfSDavid Schultz 		f_lo = x;
57525a4d6bfSDavid Schultz 	} else if (hx >= 0x7fff) {	/* x +Inf or non-neg NaN */
576c66a499eSSteve Kargl 		RETURNF(x + x);		/* log1p(Inf or NaN) = Inf or qNaN */
57725a4d6bfSDavid Schultz 					/* log1p(pseudo-Inf) = qNaN */
57825a4d6bfSDavid Schultz 					/* log1p(pseudo-NaN) = qNaN */
57925a4d6bfSDavid Schultz 					/* log1p(unnormal) = qNaN */
58025a4d6bfSDavid Schultz 	} else if (hx < 0x407f) {	/* 1 <= x < 2**128 */
58125a4d6bfSDavid Schultz 		f_hi = x;
58225a4d6bfSDavid Schultz 		f_lo = 1;
58325a4d6bfSDavid Schultz 	} else {			/* 2**128 <= x < +Inf */
58425a4d6bfSDavid Schultz 		f_hi = x;
58525a4d6bfSDavid Schultz 		f_lo = 0;		/* avoid underflow of the P5 term */
58625a4d6bfSDavid Schultz 	}
58725a4d6bfSDavid Schultz 	ENTERI();
58825a4d6bfSDavid Schultz 	x = f_hi + f_lo;
58925a4d6bfSDavid Schultz 	f_lo = (f_hi - x) + f_lo;
59025a4d6bfSDavid Schultz 
59125a4d6bfSDavid Schultz 	EXTRACT_LDBL80_WORDS(hx, lx, x);
59225a4d6bfSDavid Schultz 	k = -16383;
59325a4d6bfSDavid Schultz 
59425a4d6bfSDavid Schultz 	k += hx;
59525a4d6bfSDavid Schultz 	ix = lx & 0x7fffffffffffffffULL;
59625a4d6bfSDavid Schultz 	dk = k;
59725a4d6bfSDavid Schultz 
59825a4d6bfSDavid Schultz 	SET_LDBL_EXPSIGN(x, 0x3fff);
59925a4d6bfSDavid Schultz 	twopminusk = 1;
60025a4d6bfSDavid Schultz 	SET_LDBL_EXPSIGN(twopminusk, 0x7ffe - (hx & 0x7fff));
60125a4d6bfSDavid Schultz 	f_lo *= twopminusk;
60225a4d6bfSDavid Schultz 
60325a4d6bfSDavid Schultz 	i = (ix + (1LL << (L2I - 2))) >> (L2I - 1);
60425a4d6bfSDavid Schultz 
60525a4d6bfSDavid Schultz 	/*
60625a4d6bfSDavid Schultz 	 * x*G(i)-1 (with a reduced x) can be represented exactly, as
60725a4d6bfSDavid Schultz 	 * above, but now we need to evaluate the polynomial on d =
60825a4d6bfSDavid Schultz 	 * (x+f_lo)*G(i)-1 and extra precision is needed for that.
60925a4d6bfSDavid Schultz 	 * Since x+x_lo is a hi+lo decomposition and subtracting 1
61025a4d6bfSDavid Schultz 	 * doesn't lose too many bits, an inexact calculation for
61125a4d6bfSDavid Schultz 	 * f_lo*G(i) is good enough.
61225a4d6bfSDavid Schultz 	 */
61325a4d6bfSDavid Schultz 	if (0)
61425a4d6bfSDavid Schultz 		d_hi = x * G(i) - 1;
61525a4d6bfSDavid Schultz 	else {
61625a4d6bfSDavid Schultz #ifdef USE_UTAB
61725a4d6bfSDavid Schultz 		d_hi = (x - H(i)) * G(i) + E(i);
61825a4d6bfSDavid Schultz #else
61925a4d6bfSDavid Schultz 		long double x_hi, x_lo;
62025a4d6bfSDavid Schultz 		float fx_hi;
62125a4d6bfSDavid Schultz 
62225a4d6bfSDavid Schultz 		SET_FLOAT_WORD(fx_hi, (lx >> 40) | 0x3f800000);
62325a4d6bfSDavid Schultz 		x_hi = fx_hi;
62425a4d6bfSDavid Schultz 		x_lo = x - x_hi;
62525a4d6bfSDavid Schultz 		d_hi = x_hi * G(i) - 1 + x_lo * G(i);
62625a4d6bfSDavid Schultz #endif
62725a4d6bfSDavid Schultz 	}
62825a4d6bfSDavid Schultz 	d_lo = f_lo * G(i);
62925a4d6bfSDavid Schultz 
63025a4d6bfSDavid Schultz 	/*
63125a4d6bfSDavid Schultz 	 * This is _2sumF(d_hi, d_lo) inlined.  The condition
63225a4d6bfSDavid Schultz 	 * (d_hi == 0 || |d_hi| >= |d_lo|) for using _2sumF() is not
63325a4d6bfSDavid Schultz 	 * always satisifed, so it is not clear that this works, but
63425a4d6bfSDavid Schultz 	 * it works in practice.  It works even if it gives a wrong
63525a4d6bfSDavid Schultz 	 * normalized d_lo, since |d_lo| > |d_hi| implies that i is
63625a4d6bfSDavid Schultz 	 * nonzero and d is tiny, so the F(i) term dominates d_lo.
63725a4d6bfSDavid Schultz 	 * In float precision:
63825a4d6bfSDavid Schultz 	 * (By exhaustive testing, the worst case is d_hi = 0x1.bp-25.
63925a4d6bfSDavid Schultz 	 * And if d is only a little tinier than that, we would have
64025a4d6bfSDavid Schultz 	 * another underflow problem for the P3 term; this is also ruled
64125a4d6bfSDavid Schultz 	 * out by exhaustive testing.)
64225a4d6bfSDavid Schultz 	 */
64325a4d6bfSDavid Schultz 	d = d_hi + d_lo;
64425a4d6bfSDavid Schultz 	d_lo = d_hi - d + d_lo;
64525a4d6bfSDavid Schultz 	d_hi = d;
64625a4d6bfSDavid Schultz 
64725a4d6bfSDavid Schultz 	z = d * d;
64825a4d6bfSDavid Schultz 	val_lo = z * d * z * (z * (d * P8 + P7) + (d * P6 + P5)) +
64925a4d6bfSDavid Schultz 	    (F_lo(i) + dk * ln2_lo + d_lo + z * d * (d * P4 + P3)) + z * P2;
65025a4d6bfSDavid Schultz 	val_hi = d_hi;
65125a4d6bfSDavid Schultz #ifdef DEBUG
65225a4d6bfSDavid Schultz 	if (fetestexcept(FE_UNDERFLOW))
65325a4d6bfSDavid Schultz 		breakpoint();
65425a4d6bfSDavid Schultz #endif
65525a4d6bfSDavid Schultz 
65625a4d6bfSDavid Schultz 	_3sumF(val_hi, val_lo, F_hi(i) + dk * ln2_hi);
657c66a499eSSteve Kargl 	RETURNI(val_hi + val_lo);
65825a4d6bfSDavid Schultz }
65925a4d6bfSDavid Schultz 
66025a4d6bfSDavid Schultz #ifdef STRUCT_RETURN
66125a4d6bfSDavid Schultz 
66225a4d6bfSDavid Schultz long double
logl(long double x)66325a4d6bfSDavid Schultz logl(long double x)
66425a4d6bfSDavid Schultz {
66525a4d6bfSDavid Schultz 	struct ld r;
66625a4d6bfSDavid Schultz 
66725a4d6bfSDavid Schultz 	ENTERI();
66825a4d6bfSDavid Schultz 	k_logl(x, &r);
66925a4d6bfSDavid Schultz 	RETURNSPI(&r);
67025a4d6bfSDavid Schultz }
67125a4d6bfSDavid Schultz 
67205eac56aSAlex Richardson /* Use macros since GCC < 8 rejects static const expressions in initializers. */
67305eac56aSAlex Richardson #define	invln10_hi	4.3429448190317999e-1	/*  0x1bcb7b1526e000.0p-54 */
67405eac56aSAlex Richardson #define	invln10_lo	7.1842412889749798e-14	/*  0x1438ca9aadd558.0p-96 */
67505eac56aSAlex Richardson #define	invln2_hi	1.4426950408887933e0	/*  0x171547652b8000.0p-52 */
67605eac56aSAlex Richardson #define	invln2_lo	1.7010652264631490e-13	/*  0x17f0bbbe87fed0.0p-95 */
67705eac56aSAlex Richardson /* Let the compiler pre-calculate this sum to avoid FE_INEXACT at run time. */
67805eac56aSAlex Richardson static const double invln10_lo_plus_hi = invln10_lo + invln10_hi;
67905eac56aSAlex Richardson static const double invln2_lo_plus_hi = invln2_lo + invln2_hi;
68025a4d6bfSDavid Schultz 
68125a4d6bfSDavid Schultz long double
log10l(long double x)68225a4d6bfSDavid Schultz log10l(long double x)
68325a4d6bfSDavid Schultz {
68425a4d6bfSDavid Schultz 	struct ld r;
68525a4d6bfSDavid Schultz 	long double hi, lo;
68625a4d6bfSDavid Schultz 
68725a4d6bfSDavid Schultz 	ENTERI();
68825a4d6bfSDavid Schultz 	k_logl(x, &r);
68925a4d6bfSDavid Schultz 	if (!r.lo_set)
690c66a499eSSteve Kargl 		RETURNI(r.hi);
69125a4d6bfSDavid Schultz 	_2sumF(r.hi, r.lo);
69225a4d6bfSDavid Schultz 	hi = (float)r.hi;
69325a4d6bfSDavid Schultz 	lo = r.lo + (r.hi - hi);
694c66a499eSSteve Kargl 	RETURNI(invln10_hi * hi +
695c66a499eSSteve Kargl 	    (invln10_lo_plus_hi * lo + invln10_lo * hi));
69625a4d6bfSDavid Schultz }
69725a4d6bfSDavid Schultz 
69825a4d6bfSDavid Schultz long double
log2l(long double x)69925a4d6bfSDavid Schultz log2l(long double x)
70025a4d6bfSDavid Schultz {
70125a4d6bfSDavid Schultz 	struct ld r;
70225a4d6bfSDavid Schultz 	long double hi, lo;
70325a4d6bfSDavid Schultz 
70425a4d6bfSDavid Schultz 	ENTERI();
70525a4d6bfSDavid Schultz 	k_logl(x, &r);
70625a4d6bfSDavid Schultz 	if (!r.lo_set)
707c66a499eSSteve Kargl 		RETURNI(r.hi);
70825a4d6bfSDavid Schultz 	_2sumF(r.hi, r.lo);
70925a4d6bfSDavid Schultz 	hi = (float)r.hi;
71025a4d6bfSDavid Schultz 	lo = r.lo + (r.hi - hi);
711c66a499eSSteve Kargl 	RETURNI(invln2_hi * hi +
712c66a499eSSteve Kargl 	    (invln2_lo_plus_hi * lo + invln2_lo * hi));
71325a4d6bfSDavid Schultz }
71425a4d6bfSDavid Schultz 
71525a4d6bfSDavid Schultz #endif /* STRUCT_RETURN */
716