xref: /freebsd-src/lib/msun/ld80/k_cosl.c (revision 0dd5a5603e7a33d976f8e6015620bbc79839c609)
1*de336b0cSDavid Schultz /*
2*de336b0cSDavid Schultz  * ====================================================
3*de336b0cSDavid Schultz  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4*de336b0cSDavid Schultz  * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans.
5*de336b0cSDavid Schultz  *
6*de336b0cSDavid Schultz  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7*de336b0cSDavid Schultz  * Permission to use, copy, modify, and distribute this
8*de336b0cSDavid Schultz  * software is freely granted, provided that this notice
9*de336b0cSDavid Schultz  * is preserved.
10*de336b0cSDavid Schultz  * ====================================================
11*de336b0cSDavid Schultz  */
12*de336b0cSDavid Schultz 
13*de336b0cSDavid Schultz /*
14*de336b0cSDavid Schultz  * ld80 version of k_cos.c.  See ../src/k_cos.c for most comments.
15*de336b0cSDavid Schultz  */
16*de336b0cSDavid Schultz 
17*de336b0cSDavid Schultz #include "math_private.h"
18*de336b0cSDavid Schultz 
19*de336b0cSDavid Schultz /*
20*de336b0cSDavid Schultz  * Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]:
21*de336b0cSDavid Schultz  * |cos(x) - c(x)| < 2**-75.1
22*de336b0cSDavid Schultz  *
23*de336b0cSDavid Schultz  * The coefficients of c(x) were generated by a pari-gp script using
24*de336b0cSDavid Schultz  * a Remez algorithm that searches for the best higher coefficients
25*de336b0cSDavid Schultz  * after rounding leading coefficients to a specified precision.
26*de336b0cSDavid Schultz  *
27*de336b0cSDavid Schultz  * Simpler methods like Chebyshev or basic Remez barely suffice for
28*de336b0cSDavid Schultz  * cos() in 64-bit precision, because we want the coefficient of x^2
29*de336b0cSDavid Schultz  * to be precisely -0.5 so that multiplying by it is exact, and plain
30*de336b0cSDavid Schultz  * rounding of the coefficients of a good polynomial approximation only
31*de336b0cSDavid Schultz  * gives this up to about 64-bit precision.  Plain rounding also gives
32*de336b0cSDavid Schultz  * a mediocre approximation for the coefficient of x^4, but a rounding
33*de336b0cSDavid Schultz  * error of 0.5 ulps for this coefficient would only contribute ~0.01
34*de336b0cSDavid Schultz  * ulps to the final error, so this is unimportant.  Rounding errors in
35*de336b0cSDavid Schultz  * higher coefficients are even less important.
36*de336b0cSDavid Schultz  *
37*de336b0cSDavid Schultz  * In fact, coefficients above the x^4 one only need to have 53-bit
38*de336b0cSDavid Schultz  * precision, and this is more efficient.  We get this optimization
39*de336b0cSDavid Schultz  * almost for free from the complications needed to search for the best
40*de336b0cSDavid Schultz  * higher coefficients.
41*de336b0cSDavid Schultz  */
42*de336b0cSDavid Schultz static const double
43*de336b0cSDavid Schultz one = 1.0;
44*de336b0cSDavid Schultz 
45*de336b0cSDavid Schultz #if defined(__amd64__) || defined(__i386__)
46*de336b0cSDavid Schultz /* Long double constants are slow on these arches, and broken on i386. */
47*de336b0cSDavid Schultz static const volatile double
48*de336b0cSDavid Schultz C1hi = 0.041666666666666664,		/*  0x15555555555555.0p-57 */
49*de336b0cSDavid Schultz C1lo = 2.2598839032744733e-18;		/*  0x14d80000000000.0p-111 */
50*de336b0cSDavid Schultz #define	C1	((long double)C1hi + C1lo)
51*de336b0cSDavid Schultz #else
52*de336b0cSDavid Schultz static const long double
53*de336b0cSDavid Schultz C1 =  0.0416666666666666666136L;	/*  0xaaaaaaaaaaaaaa9b.0p-68 */
54*de336b0cSDavid Schultz #endif
55*de336b0cSDavid Schultz 
56*de336b0cSDavid Schultz static const double
57*de336b0cSDavid Schultz C2 = -0.0013888888888888874,		/* -0x16c16c16c16c10.0p-62 */
58*de336b0cSDavid Schultz C3 =  0.000024801587301571716,		/*  0x1a01a01a018e22.0p-68 */
59*de336b0cSDavid Schultz C4 = -0.00000027557319215507120,	/* -0x127e4fb7602f22.0p-74 */
60*de336b0cSDavid Schultz C5 =  0.0000000020876754400407278,	/*  0x11eed8caaeccf1.0p-81 */
61*de336b0cSDavid Schultz C6 = -1.1470297442401303e-11,		/* -0x19393412bd1529.0p-89 */
62*de336b0cSDavid Schultz C7 =  4.7383039476436467e-14;		/*  0x1aac9d9af5c43e.0p-97 */
63*de336b0cSDavid Schultz 
64*de336b0cSDavid Schultz long double
__kernel_cosl(long double x,long double y)65*de336b0cSDavid Schultz __kernel_cosl(long double x, long double y)
66*de336b0cSDavid Schultz {
67*de336b0cSDavid Schultz 	long double hz,z,r,w;
68*de336b0cSDavid Schultz 
69*de336b0cSDavid Schultz 	z  = x*x;
70*de336b0cSDavid Schultz 	r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7))))));
71*de336b0cSDavid Schultz 	hz = 0.5*z;
72*de336b0cSDavid Schultz 	w  = one-hz;
73*de336b0cSDavid Schultz 	return w + (((one-w)-hz) + (z*r-x*y));
74*de336b0cSDavid Schultz }
75