xref: /freebsd-src/lib/libc/regex/regcomp.c (revision adeebf4cd47c3e85155d92f386bda5e519b75ab2)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1992, 1993, 1994 Henry Spencer.
5  * Copyright (c) 1992, 1993, 1994
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Copyright (c) 2011 The FreeBSD Foundation
9  * All rights reserved.
10  * Portions of this software were developed by David Chisnall
11  * under sponsorship from the FreeBSD Foundation.
12  *
13  * This code is derived from software contributed to Berkeley by
14  * Henry Spencer.
15  *
16  * Redistribution and use in source and binary forms, with or without
17  * modification, are permitted provided that the following conditions
18  * are met:
19  * 1. Redistributions of source code must retain the above copyright
20  *    notice, this list of conditions and the following disclaimer.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	@(#)regcomp.c	8.5 (Berkeley) 3/20/94
41  */
42 
43 #if defined(LIBC_SCCS) && !defined(lint)
44 static char sccsid[] = "@(#)regcomp.c	8.5 (Berkeley) 3/20/94";
45 #endif /* LIBC_SCCS and not lint */
46 #include <sys/cdefs.h>
47 __FBSDID("$FreeBSD$");
48 
49 #include <sys/types.h>
50 #include <stdio.h>
51 #include <string.h>
52 #include <ctype.h>
53 #include <limits.h>
54 #include <stdlib.h>
55 #include <regex.h>
56 #include <stdbool.h>
57 #include <wchar.h>
58 #include <wctype.h>
59 
60 #ifndef LIBREGEX
61 #include "collate.h"
62 #endif
63 
64 #include "utils.h"
65 #include "regex2.h"
66 
67 #include "cname.h"
68 
69 /*
70  * Branching context, used to keep track of branch state for all of the branch-
71  * aware functions. In addition to keeping track of branch positions for the
72  * p_branch_* functions, we use this to simplify some clumsiness in BREs for
73  * detection of whether ^ is acting as an anchor or being used erroneously and
74  * also for whether we're in a sub-expression or not.
75  */
76 struct branchc {
77 	sopno start;
78 	sopno back;
79 	sopno fwd;
80 
81 	int nbranch;
82 	int nchain;
83 	bool outer;
84 	bool terminate;
85 };
86 
87 /*
88  * parse structure, passed up and down to avoid global variables and
89  * other clumsinesses
90  */
91 struct parse {
92 	const char *next;	/* next character in RE */
93 	const char *end;	/* end of string (-> NUL normally) */
94 	int error;		/* has an error been seen? */
95 	sop *strip;		/* malloced strip */
96 	sopno ssize;		/* malloced strip size (allocated) */
97 	sopno slen;		/* malloced strip length (used) */
98 	int ncsalloc;		/* number of csets allocated */
99 	struct re_guts *g;
100 #	define	NPAREN	10	/* we need to remember () 1-9 for back refs */
101 	sopno pbegin[NPAREN];	/* -> ( ([0] unused) */
102 	sopno pend[NPAREN];	/* -> ) ([0] unused) */
103 	bool allowbranch;	/* can this expression branch? */
104 	bool bre;		/* convenience; is this a BRE? */
105 	int pflags;		/* other parsing flags -- legacy escapes? */
106 	bool (*parse_expr)(struct parse *, struct branchc *);
107 	void (*pre_parse)(struct parse *, struct branchc *);
108 	void (*post_parse)(struct parse *, struct branchc *);
109 };
110 
111 #define PFLAG_LEGACY_ESC	0x00000001
112 
113 /* ========= begin header generated by ./mkh ========= */
114 #ifdef __cplusplus
115 extern "C" {
116 #endif
117 
118 /* === regcomp.c === */
119 static bool p_ere_exp(struct parse *p, struct branchc *bc);
120 static void p_str(struct parse *p);
121 static int p_branch_eat_delim(struct parse *p, struct branchc *bc);
122 static void p_branch_ins_offset(struct parse *p, struct branchc *bc);
123 static void p_branch_fix_tail(struct parse *p, struct branchc *bc);
124 static bool p_branch_empty(struct parse *p, struct branchc *bc);
125 static bool p_branch_do(struct parse *p, struct branchc *bc);
126 static void p_bre_pre_parse(struct parse *p, struct branchc *bc);
127 static void p_bre_post_parse(struct parse *p, struct branchc *bc);
128 static void p_re(struct parse *p, int end1, int end2);
129 static bool p_simp_re(struct parse *p, struct branchc *bc);
130 static int p_count(struct parse *p);
131 static void p_bracket(struct parse *p);
132 static int p_range_cmp(wchar_t c1, wchar_t c2);
133 static void p_b_term(struct parse *p, cset *cs);
134 static void p_b_cclass(struct parse *p, cset *cs);
135 static void p_b_eclass(struct parse *p, cset *cs);
136 static wint_t p_b_symbol(struct parse *p);
137 static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
138 static bool may_escape(struct parse *p, const wint_t ch);
139 static wint_t othercase(wint_t ch);
140 static void bothcases(struct parse *p, wint_t ch);
141 static void ordinary(struct parse *p, wint_t ch);
142 static void nonnewline(struct parse *p);
143 static void repeat(struct parse *p, sopno start, int from, int to);
144 static int seterr(struct parse *p, int e);
145 static cset *allocset(struct parse *p);
146 static void freeset(struct parse *p, cset *cs);
147 static void CHadd(struct parse *p, cset *cs, wint_t ch);
148 static void CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max);
149 static void CHaddtype(struct parse *p, cset *cs, wctype_t wct);
150 static wint_t singleton(cset *cs);
151 static sopno dupl(struct parse *p, sopno start, sopno finish);
152 static void doemit(struct parse *p, sop op, size_t opnd);
153 static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
154 static void dofwd(struct parse *p, sopno pos, sop value);
155 static int enlarge(struct parse *p, sopno size);
156 static void stripsnug(struct parse *p, struct re_guts *g);
157 static void findmust(struct parse *p, struct re_guts *g);
158 static int altoffset(sop *scan, int offset);
159 static void computejumps(struct parse *p, struct re_guts *g);
160 static void computematchjumps(struct parse *p, struct re_guts *g);
161 static sopno pluscount(struct parse *p, struct re_guts *g);
162 static wint_t wgetnext(struct parse *p);
163 
164 #ifdef __cplusplus
165 }
166 #endif
167 /* ========= end header generated by ./mkh ========= */
168 
169 static char nuls[10];		/* place to point scanner in event of error */
170 
171 /*
172  * macros for use with parse structure
173  * BEWARE:  these know that the parse structure is named `p' !!!
174  */
175 #define	PEEK()	(*p->next)
176 #define	PEEK2()	(*(p->next+1))
177 #define	MORE()	(p->next < p->end)
178 #define	MORE2()	(p->next+1 < p->end)
179 #define	SEE(c)	(MORE() && PEEK() == (c))
180 #define	SEETWO(a, b)	(MORE() && MORE2() && PEEK() == (a) && PEEK2() == (b))
181 #define	SEESPEC(a)	(p->bre ? SEETWO('\\', a) : SEE(a))
182 #define	EAT(c)	((SEE(c)) ? (NEXT(), 1) : 0)
183 #define	EATTWO(a, b)	((SEETWO(a, b)) ? (NEXT2(), 1) : 0)
184 #define	NEXT()	(p->next++)
185 #define	NEXT2()	(p->next += 2)
186 #define	NEXTn(n)	(p->next += (n))
187 #define	GETNEXT()	(*p->next++)
188 #define	WGETNEXT()	wgetnext(p)
189 #define	SETERROR(e)	seterr(p, (e))
190 #define	REQUIRE(co, e)	((co) || SETERROR(e))
191 #define	MUSTSEE(c, e)	(REQUIRE(MORE() && PEEK() == (c), e))
192 #define	MUSTEAT(c, e)	(REQUIRE(MORE() && GETNEXT() == (c), e))
193 #define	MUSTNOTSEE(c, e)	(REQUIRE(!MORE() || PEEK() != (c), e))
194 #define	EMIT(op, sopnd)	doemit(p, (sop)(op), (size_t)(sopnd))
195 #define	INSERT(op, pos)	doinsert(p, (sop)(op), HERE()-(pos)+1, pos)
196 #define	AHEAD(pos)		dofwd(p, pos, HERE()-(pos))
197 #define	ASTERN(sop, pos)	EMIT(sop, HERE()-pos)
198 #define	HERE()		(p->slen)
199 #define	THERE()		(p->slen - 1)
200 #define	THERETHERE()	(p->slen - 2)
201 #define	DROP(n)	(p->slen -= (n))
202 
203 /* Macro used by computejump()/computematchjump() */
204 #define MIN(a,b)	((a)<(b)?(a):(b))
205 
206 static int				/* 0 success, otherwise REG_something */
207 regcomp_internal(regex_t * __restrict preg,
208 	const char * __restrict pattern,
209 	int cflags, int pflags)
210 {
211 	struct parse pa;
212 	struct re_guts *g;
213 	struct parse *p = &pa;
214 	int i;
215 	size_t len;
216 	size_t maxlen;
217 #ifdef REDEBUG
218 #	define	GOODFLAGS(f)	(f)
219 #else
220 #	define	GOODFLAGS(f)	((f)&~REG_DUMP)
221 #endif
222 
223 	cflags = GOODFLAGS(cflags);
224 	if ((cflags&REG_EXTENDED) && (cflags&REG_NOSPEC))
225 		return(REG_INVARG);
226 
227 	if (cflags&REG_PEND) {
228 		if (preg->re_endp < pattern)
229 			return(REG_INVARG);
230 		len = preg->re_endp - pattern;
231 	} else
232 		len = strlen(pattern);
233 
234 	/* do the mallocs early so failure handling is easy */
235 	g = (struct re_guts *)malloc(sizeof(struct re_guts));
236 	if (g == NULL)
237 		return(REG_ESPACE);
238 	/*
239 	 * Limit the pattern space to avoid a 32-bit overflow on buffer
240 	 * extension.  Also avoid any signed overflow in case of conversion
241 	 * so make the real limit based on a 31-bit overflow.
242 	 *
243 	 * Likely not applicable on 64-bit systems but handle the case
244 	 * generically (who are we to stop people from using ~715MB+
245 	 * patterns?).
246 	 */
247 	maxlen = ((size_t)-1 >> 1) / sizeof(sop) * 2 / 3;
248 	if (len >= maxlen) {
249 		free((char *)g);
250 		return(REG_ESPACE);
251 	}
252 	p->ssize = len/(size_t)2*(size_t)3 + (size_t)1;	/* ugh */
253 	assert(p->ssize >= len);
254 
255 	p->strip = (sop *)malloc(p->ssize * sizeof(sop));
256 	p->slen = 0;
257 	if (p->strip == NULL) {
258 		free((char *)g);
259 		return(REG_ESPACE);
260 	}
261 
262 	/* set things up */
263 	p->g = g;
264 	p->next = pattern;	/* convenience; we do not modify it */
265 	p->end = p->next + len;
266 	p->error = 0;
267 	p->ncsalloc = 0;
268 	p->pflags = pflags;
269 	for (i = 0; i < NPAREN; i++) {
270 		p->pbegin[i] = 0;
271 		p->pend[i] = 0;
272 	}
273 	if (cflags & REG_EXTENDED) {
274 		p->allowbranch = true;
275 		p->bre = false;
276 		p->parse_expr = p_ere_exp;
277 		p->pre_parse = NULL;
278 		p->post_parse = NULL;
279 	} else {
280 		p->allowbranch = false;
281 		p->bre = true;
282 		p->parse_expr = p_simp_re;
283 		p->pre_parse = p_bre_pre_parse;
284 		p->post_parse = p_bre_post_parse;
285 	}
286 	g->sets = NULL;
287 	g->ncsets = 0;
288 	g->cflags = cflags;
289 	g->iflags = 0;
290 	g->nbol = 0;
291 	g->neol = 0;
292 	g->must = NULL;
293 	g->moffset = -1;
294 	g->charjump = NULL;
295 	g->matchjump = NULL;
296 	g->mlen = 0;
297 	g->nsub = 0;
298 	g->backrefs = 0;
299 
300 	/* do it */
301 	EMIT(OEND, 0);
302 	g->firststate = THERE();
303 	if (cflags & REG_NOSPEC)
304 		p_str(p);
305 	else
306 		p_re(p, OUT, OUT);
307 	EMIT(OEND, 0);
308 	g->laststate = THERE();
309 
310 	/* tidy up loose ends and fill things in */
311 	stripsnug(p, g);
312 	findmust(p, g);
313 	/* only use Boyer-Moore algorithm if the pattern is bigger
314 	 * than three characters
315 	 */
316 	if(g->mlen > 3) {
317 		computejumps(p, g);
318 		computematchjumps(p, g);
319 		if(g->matchjump == NULL && g->charjump != NULL) {
320 			free(g->charjump);
321 			g->charjump = NULL;
322 		}
323 	}
324 	g->nplus = pluscount(p, g);
325 	g->magic = MAGIC2;
326 	preg->re_nsub = g->nsub;
327 	preg->re_g = g;
328 	preg->re_magic = MAGIC1;
329 #ifndef REDEBUG
330 	/* not debugging, so can't rely on the assert() in regexec() */
331 	if (g->iflags&BAD)
332 		SETERROR(REG_ASSERT);
333 #endif
334 
335 	/* win or lose, we're done */
336 	if (p->error != 0)	/* lose */
337 		regfree(preg);
338 	return(p->error);
339 }
340 
341 /*
342  - regcomp - interface for parser and compilation
343  = extern int regcomp(regex_t *, const char *, int);
344  = #define	REG_BASIC	0000
345  = #define	REG_EXTENDED	0001
346  = #define	REG_ICASE	0002
347  = #define	REG_NOSUB	0004
348  = #define	REG_NEWLINE	0010
349  = #define	REG_NOSPEC	0020
350  = #define	REG_PEND	0040
351  = #define	REG_DUMP	0200
352  */
353 int				/* 0 success, otherwise REG_something */
354 regcomp(regex_t * __restrict preg,
355 	const char * __restrict pattern,
356 	int cflags)
357 {
358 
359 	return (regcomp_internal(preg, pattern, cflags, 0));
360 }
361 
362 #ifndef LIBREGEX
363 /*
364  * Legacy interface that requires more lax escaping behavior.
365  */
366 int
367 freebsd12_regcomp(regex_t * __restrict preg,
368 	const char * __restrict pattern,
369 	int cflags, int pflags)
370 {
371 
372 	return (regcomp_internal(preg, pattern, cflags, PFLAG_LEGACY_ESC));
373 }
374 
375 __sym_compat(regcomp, freebsd12_regcomp, FBSD_1.0);
376 #endif	/* !LIBREGEX */
377 
378 /*
379  - p_ere_exp - parse one subERE, an atom possibly followed by a repetition op,
380  - return whether we should terminate or not
381  == static bool p_ere_exp(struct parse *p);
382  */
383 static bool
384 p_ere_exp(struct parse *p, struct branchc *bc)
385 {
386 	char c;
387 	wint_t wc;
388 	sopno pos;
389 	int count;
390 	int count2;
391 	sopno subno;
392 	int wascaret = 0;
393 
394 	(void)bc;
395 	assert(MORE());		/* caller should have ensured this */
396 	c = GETNEXT();
397 
398 	pos = HERE();
399 	switch (c) {
400 	case '(':
401 		(void)REQUIRE(MORE(), REG_EPAREN);
402 		p->g->nsub++;
403 		subno = p->g->nsub;
404 		if (subno < NPAREN)
405 			p->pbegin[subno] = HERE();
406 		EMIT(OLPAREN, subno);
407 		if (!SEE(')'))
408 			p_re(p, ')', IGN);
409 		if (subno < NPAREN) {
410 			p->pend[subno] = HERE();
411 			assert(p->pend[subno] != 0);
412 		}
413 		EMIT(ORPAREN, subno);
414 		(void)MUSTEAT(')', REG_EPAREN);
415 		break;
416 #ifndef POSIX_MISTAKE
417 	case ')':		/* happens only if no current unmatched ( */
418 		/*
419 		 * You may ask, why the ifndef?  Because I didn't notice
420 		 * this until slightly too late for 1003.2, and none of the
421 		 * other 1003.2 regular-expression reviewers noticed it at
422 		 * all.  So an unmatched ) is legal POSIX, at least until
423 		 * we can get it fixed.
424 		 */
425 		SETERROR(REG_EPAREN);
426 		break;
427 #endif
428 	case '^':
429 		EMIT(OBOL, 0);
430 		p->g->iflags |= USEBOL;
431 		p->g->nbol++;
432 		wascaret = 1;
433 		break;
434 	case '$':
435 		EMIT(OEOL, 0);
436 		p->g->iflags |= USEEOL;
437 		p->g->neol++;
438 		break;
439 	case '|':
440 		SETERROR(REG_EMPTY);
441 		break;
442 	case '*':
443 	case '+':
444 	case '?':
445 	case '{':
446 		SETERROR(REG_BADRPT);
447 		break;
448 	case '.':
449 		if (p->g->cflags&REG_NEWLINE)
450 			nonnewline(p);
451 		else
452 			EMIT(OANY, 0);
453 		break;
454 	case '[':
455 		p_bracket(p);
456 		break;
457 	case '\\':
458 		(void)REQUIRE(MORE(), REG_EESCAPE);
459 		wc = WGETNEXT();
460 		switch (wc) {
461 		case '<':
462 			EMIT(OBOW, 0);
463 			break;
464 		case '>':
465 			EMIT(OEOW, 0);
466 			break;
467 		default:
468 			if (may_escape(p, wc))
469 				ordinary(p, wc);
470 			else
471 				SETERROR(REG_EESCAPE);
472 			break;
473 		}
474 		break;
475 	default:
476 		if (p->error != 0)
477 			return (false);
478 		p->next--;
479 		wc = WGETNEXT();
480 		ordinary(p, wc);
481 		break;
482 	}
483 
484 	if (!MORE())
485 		return (false);
486 	c = PEEK();
487 	/* we call { a repetition if followed by a digit */
488 	if (!( c == '*' || c == '+' || c == '?' || c == '{'))
489 		return (false);		/* no repetition, we're done */
490 	else if (c == '{')
491 		(void)REQUIRE(MORE2() && \
492 		    (isdigit((uch)PEEK2()) || PEEK2() == ','), REG_BADRPT);
493 	NEXT();
494 
495 	(void)REQUIRE(!wascaret, REG_BADRPT);
496 	switch (c) {
497 	case '*':	/* implemented as +? */
498 		/* this case does not require the (y|) trick, noKLUDGE */
499 		INSERT(OPLUS_, pos);
500 		ASTERN(O_PLUS, pos);
501 		INSERT(OQUEST_, pos);
502 		ASTERN(O_QUEST, pos);
503 		break;
504 	case '+':
505 		INSERT(OPLUS_, pos);
506 		ASTERN(O_PLUS, pos);
507 		break;
508 	case '?':
509 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
510 		INSERT(OCH_, pos);		/* offset slightly wrong */
511 		ASTERN(OOR1, pos);		/* this one's right */
512 		AHEAD(pos);			/* fix the OCH_ */
513 		EMIT(OOR2, 0);			/* offset very wrong... */
514 		AHEAD(THERE());			/* ...so fix it */
515 		ASTERN(O_CH, THERETHERE());
516 		break;
517 	case '{':
518 		count = p_count(p);
519 		if (EAT(',')) {
520 			if (isdigit((uch)PEEK())) {
521 				count2 = p_count(p);
522 				(void)REQUIRE(count <= count2, REG_BADBR);
523 			} else		/* single number with comma */
524 				count2 = INFINITY;
525 		} else		/* just a single number */
526 			count2 = count;
527 		repeat(p, pos, count, count2);
528 		if (!EAT('}')) {	/* error heuristics */
529 			while (MORE() && PEEK() != '}')
530 				NEXT();
531 			(void)REQUIRE(MORE(), REG_EBRACE);
532 			SETERROR(REG_BADBR);
533 		}
534 		break;
535 	}
536 
537 	if (!MORE())
538 		return (false);
539 	c = PEEK();
540 	if (!( c == '*' || c == '+' || c == '?' ||
541 				(c == '{' && MORE2() && isdigit((uch)PEEK2())) ) )
542 		return (false);
543 	SETERROR(REG_BADRPT);
544 	return (false);
545 }
546 
547 /*
548  - p_str - string (no metacharacters) "parser"
549  == static void p_str(struct parse *p);
550  */
551 static void
552 p_str(struct parse *p)
553 {
554 	(void)REQUIRE(MORE(), REG_EMPTY);
555 	while (MORE())
556 		ordinary(p, WGETNEXT());
557 }
558 
559 /*
560  * Eat consecutive branch delimiters for the kind of expression that we are
561  * parsing, return the number of delimiters that we ate.
562  */
563 static int
564 p_branch_eat_delim(struct parse *p, struct branchc *bc)
565 {
566 	int nskip;
567 
568 	(void)bc;
569 	nskip = 0;
570 	while (EAT('|'))
571 		++nskip;
572 	return (nskip);
573 }
574 
575 /*
576  * Insert necessary branch book-keeping operations. This emits a
577  * bogus 'next' offset, since we still have more to parse
578  */
579 static void
580 p_branch_ins_offset(struct parse *p, struct branchc *bc)
581 {
582 
583 	if (bc->nbranch == 0) {
584 		INSERT(OCH_, bc->start);	/* offset is wrong */
585 		bc->fwd = bc->start;
586 		bc->back = bc->start;
587 	}
588 
589 	ASTERN(OOR1, bc->back);
590 	bc->back = THERE();
591 	AHEAD(bc->fwd);			/* fix previous offset */
592 	bc->fwd = HERE();
593 	EMIT(OOR2, 0);			/* offset is very wrong */
594 	++bc->nbranch;
595 }
596 
597 /*
598  * Fix the offset of the tail branch, if we actually had any branches.
599  * This is to correct the bogus placeholder offset that we use.
600  */
601 static void
602 p_branch_fix_tail(struct parse *p, struct branchc *bc)
603 {
604 
605 	/* Fix bogus offset at the tail if we actually have branches */
606 	if (bc->nbranch > 0) {
607 		AHEAD(bc->fwd);
608 		ASTERN(O_CH, bc->back);
609 	}
610 }
611 
612 /*
613  * Signal to the parser that an empty branch has been encountered; this will,
614  * in the future, be used to allow for more permissive behavior with empty
615  * branches. The return value should indicate whether parsing may continue
616  * or not.
617  */
618 static bool
619 p_branch_empty(struct parse *p, struct branchc *bc)
620 {
621 
622 	(void)bc;
623 	SETERROR(REG_EMPTY);
624 	return (false);
625 }
626 
627 /*
628  * Take care of any branching requirements. This includes inserting the
629  * appropriate branching instructions as well as eating all of the branch
630  * delimiters until we either run out of pattern or need to parse more pattern.
631  */
632 static bool
633 p_branch_do(struct parse *p, struct branchc *bc)
634 {
635 	int ate = 0;
636 
637 	ate = p_branch_eat_delim(p, bc);
638 	if (ate == 0)
639 		return (false);
640 	else if ((ate > 1 || (bc->outer && !MORE())) && !p_branch_empty(p, bc))
641 		/*
642 		 * Halt parsing only if we have an empty branch and p_branch_empty
643 		 * indicates that we must not continue. In the future, this will not
644 		 * necessarily be an error.
645 		 */
646 		return (false);
647 	p_branch_ins_offset(p, bc);
648 
649 	return (true);
650 }
651 
652 static void
653 p_bre_pre_parse(struct parse *p, struct branchc *bc)
654 {
655 
656 	(void) bc;
657 	/*
658 	 * Does not move cleanly into expression parser because of
659 	 * ordinary interpration of * at the beginning position of
660 	 * an expression.
661 	 */
662 	if (EAT('^')) {
663 		EMIT(OBOL, 0);
664 		p->g->iflags |= USEBOL;
665 		p->g->nbol++;
666 	}
667 }
668 
669 static void
670 p_bre_post_parse(struct parse *p, struct branchc *bc)
671 {
672 
673 	/* Expression is terminating due to EOL token */
674 	if (bc->terminate) {
675 		DROP(1);
676 		EMIT(OEOL, 0);
677 		p->g->iflags |= USEEOL;
678 		p->g->neol++;
679 	}
680 }
681 
682 /*
683  - p_re - Top level parser, concatenation and BRE anchoring
684  == static void p_re(struct parse *p, int end1, int end2);
685  * Giving end1 as OUT essentially eliminates the end1/end2 check.
686  *
687  * This implementation is a bit of a kludge, in that a trailing $ is first
688  * taken as an ordinary character and then revised to be an anchor.
689  * The amount of lookahead needed to avoid this kludge is excessive.
690  */
691 static void
692 p_re(struct parse *p,
693 	int end1,	/* first terminating character */
694 	int end2)	/* second terminating character; ignored for EREs */
695 {
696 	struct branchc bc;
697 
698 	bc.nbranch = 0;
699 	if (end1 == OUT && end2 == OUT)
700 		bc.outer = true;
701 	else
702 		bc.outer = false;
703 #define	SEEEND()	(!p->bre ? SEE(end1) : SEETWO(end1, end2))
704 	for (;;) {
705 		bc.start = HERE();
706 		bc.nchain = 0;
707 		bc.terminate = false;
708 		if (p->pre_parse != NULL)
709 			p->pre_parse(p, &bc);
710 		while (MORE() && (!p->allowbranch || !SEESPEC('|')) && !SEEEND()) {
711 			bc.terminate = p->parse_expr(p, &bc);
712 			++bc.nchain;
713 		}
714 		if (p->post_parse != NULL)
715 			p->post_parse(p, &bc);
716 		(void) REQUIRE(HERE() != bc.start, REG_EMPTY);
717 		if (!p->allowbranch)
718 			break;
719 		/*
720 		 * p_branch_do's return value indicates whether we should
721 		 * continue parsing or not. This is both for correctness and
722 		 * a slight optimization, because it will check if we've
723 		 * encountered an empty branch or the end of the string
724 		 * immediately following a branch delimiter.
725 		 */
726 		if (!p_branch_do(p, &bc))
727 			break;
728 	}
729 #undef SEE_END
730 	if (p->allowbranch)
731 		p_branch_fix_tail(p, &bc);
732 	assert(!MORE() || SEE(end1));
733 }
734 
735 /*
736  - p_simp_re - parse a simple RE, an atom possibly followed by a repetition
737  == static bool p_simp_re(struct parse *p, struct branchc *bc);
738  */
739 static bool			/* was the simple RE an unbackslashed $? */
740 p_simp_re(struct parse *p, struct branchc *bc)
741 {
742 	int c;
743 	int count;
744 	int count2;
745 	sopno pos;
746 	int i;
747 	wint_t wc;
748 	sopno subno;
749 #	define	BACKSL	(1<<CHAR_BIT)
750 
751 	pos = HERE();		/* repetition op, if any, covers from here */
752 
753 	assert(MORE());		/* caller should have ensured this */
754 	c = GETNEXT();
755 	if (c == '\\') {
756 		(void)REQUIRE(MORE(), REG_EESCAPE);
757 		c = BACKSL | GETNEXT();
758 	}
759 	switch (c) {
760 	case '.':
761 		if (p->g->cflags&REG_NEWLINE)
762 			nonnewline(p);
763 		else
764 			EMIT(OANY, 0);
765 		break;
766 	case '[':
767 		p_bracket(p);
768 		break;
769 	case BACKSL|'<':
770 		EMIT(OBOW, 0);
771 		break;
772 	case BACKSL|'>':
773 		EMIT(OEOW, 0);
774 		break;
775 	case BACKSL|'{':
776 		SETERROR(REG_BADRPT);
777 		break;
778 	case BACKSL|'(':
779 		p->g->nsub++;
780 		subno = p->g->nsub;
781 		if (subno < NPAREN)
782 			p->pbegin[subno] = HERE();
783 		EMIT(OLPAREN, subno);
784 		/* the MORE here is an error heuristic */
785 		if (MORE() && !SEETWO('\\', ')'))
786 			p_re(p, '\\', ')');
787 		if (subno < NPAREN) {
788 			p->pend[subno] = HERE();
789 			assert(p->pend[subno] != 0);
790 		}
791 		EMIT(ORPAREN, subno);
792 		(void)REQUIRE(EATTWO('\\', ')'), REG_EPAREN);
793 		break;
794 	case BACKSL|')':	/* should not get here -- must be user */
795 		SETERROR(REG_EPAREN);
796 		break;
797 	case BACKSL|'1':
798 	case BACKSL|'2':
799 	case BACKSL|'3':
800 	case BACKSL|'4':
801 	case BACKSL|'5':
802 	case BACKSL|'6':
803 	case BACKSL|'7':
804 	case BACKSL|'8':
805 	case BACKSL|'9':
806 		i = (c&~BACKSL) - '0';
807 		assert(i < NPAREN);
808 		if (p->pend[i] != 0) {
809 			assert(i <= p->g->nsub);
810 			EMIT(OBACK_, i);
811 			assert(p->pbegin[i] != 0);
812 			assert(OP(p->strip[p->pbegin[i]]) == OLPAREN);
813 			assert(OP(p->strip[p->pend[i]]) == ORPAREN);
814 			(void) dupl(p, p->pbegin[i]+1, p->pend[i]);
815 			EMIT(O_BACK, i);
816 		} else
817 			SETERROR(REG_ESUBREG);
818 		p->g->backrefs = 1;
819 		break;
820 	case '*':
821 		/*
822 		 * Ordinary if used as the first character beyond BOL anchor of
823 		 * a (sub-)expression, counts as a bad repetition operator if it
824 		 * appears otherwise.
825 		 */
826 		(void)REQUIRE(bc->nchain == 0, REG_BADRPT);
827 		/* FALLTHROUGH */
828 	default:
829 		if (p->error != 0)
830 			return (false);	/* Definitely not $... */
831 		p->next--;
832 		wc = WGETNEXT();
833 		if ((c & BACKSL) == 0 || may_escape(p, wc))
834 			ordinary(p, wc);
835 		else
836 			SETERROR(REG_EESCAPE);
837 		break;
838 	}
839 
840 	if (EAT('*')) {		/* implemented as +? */
841 		/* this case does not require the (y|) trick, noKLUDGE */
842 		INSERT(OPLUS_, pos);
843 		ASTERN(O_PLUS, pos);
844 		INSERT(OQUEST_, pos);
845 		ASTERN(O_QUEST, pos);
846 	} else if (EATTWO('\\', '{')) {
847 		count = p_count(p);
848 		if (EAT(',')) {
849 			if (MORE() && isdigit((uch)PEEK())) {
850 				count2 = p_count(p);
851 				(void)REQUIRE(count <= count2, REG_BADBR);
852 			} else		/* single number with comma */
853 				count2 = INFINITY;
854 		} else		/* just a single number */
855 			count2 = count;
856 		repeat(p, pos, count, count2);
857 		if (!EATTWO('\\', '}')) {	/* error heuristics */
858 			while (MORE() && !SEETWO('\\', '}'))
859 				NEXT();
860 			(void)REQUIRE(MORE(), REG_EBRACE);
861 			SETERROR(REG_BADBR);
862 		}
863 	} else if (c == '$')     /* $ (but not \$) ends it */
864 		return (true);
865 
866 	return (false);
867 }
868 
869 /*
870  - p_count - parse a repetition count
871  == static int p_count(struct parse *p);
872  */
873 static int			/* the value */
874 p_count(struct parse *p)
875 {
876 	int count = 0;
877 	int ndigits = 0;
878 
879 	while (MORE() && isdigit((uch)PEEK()) && count <= DUPMAX) {
880 		count = count*10 + (GETNEXT() - '0');
881 		ndigits++;
882 	}
883 
884 	(void)REQUIRE(ndigits > 0 && count <= DUPMAX, REG_BADBR);
885 	return(count);
886 }
887 
888 /*
889  - p_bracket - parse a bracketed character list
890  == static void p_bracket(struct parse *p);
891  */
892 static void
893 p_bracket(struct parse *p)
894 {
895 	cset *cs;
896 	wint_t ch;
897 
898 	/* Dept of Truly Sickening Special-Case Kludges */
899 	if (p->next + 5 < p->end && strncmp(p->next, "[:<:]]", 6) == 0) {
900 		EMIT(OBOW, 0);
901 		NEXTn(6);
902 		return;
903 	}
904 	if (p->next + 5 < p->end && strncmp(p->next, "[:>:]]", 6) == 0) {
905 		EMIT(OEOW, 0);
906 		NEXTn(6);
907 		return;
908 	}
909 
910 	if ((cs = allocset(p)) == NULL)
911 		return;
912 
913 	if (p->g->cflags&REG_ICASE)
914 		cs->icase = 1;
915 	if (EAT('^'))
916 		cs->invert = 1;
917 	if (EAT(']'))
918 		CHadd(p, cs, ']');
919 	else if (EAT('-'))
920 		CHadd(p, cs, '-');
921 	while (MORE() && PEEK() != ']' && !SEETWO('-', ']'))
922 		p_b_term(p, cs);
923 	if (EAT('-'))
924 		CHadd(p, cs, '-');
925 	(void)MUSTEAT(']', REG_EBRACK);
926 
927 	if (p->error != 0)	/* don't mess things up further */
928 		return;
929 
930 	if (cs->invert && p->g->cflags&REG_NEWLINE)
931 		cs->bmp['\n' >> 3] |= 1 << ('\n' & 7);
932 
933 	if ((ch = singleton(cs)) != OUT) {	/* optimize singleton sets */
934 		ordinary(p, ch);
935 		freeset(p, cs);
936 	} else
937 		EMIT(OANYOF, (int)(cs - p->g->sets));
938 }
939 
940 static int
941 p_range_cmp(wchar_t c1, wchar_t c2)
942 {
943 #ifndef LIBREGEX
944 	return __wcollate_range_cmp(c1, c2);
945 #else
946 	/* Copied from libc/collate __wcollate_range_cmp */
947 	wchar_t s1[2], s2[2];
948 
949 	s1[0] = c1;
950 	s1[1] = L'\0';
951 	s2[0] = c2;
952 	s2[1] = L'\0';
953 	return (wcscoll(s1, s2));
954 #endif
955 }
956 
957 /*
958  - p_b_term - parse one term of a bracketed character list
959  == static void p_b_term(struct parse *p, cset *cs);
960  */
961 static void
962 p_b_term(struct parse *p, cset *cs)
963 {
964 	char c;
965 	wint_t start, finish;
966 	wint_t i;
967 #ifndef LIBREGEX
968 	struct xlocale_collate *table =
969 		(struct xlocale_collate*)__get_locale()->components[XLC_COLLATE];
970 #endif
971 	/* classify what we've got */
972 	switch ((MORE()) ? PEEK() : '\0') {
973 	case '[':
974 		c = (MORE2()) ? PEEK2() : '\0';
975 		break;
976 	case '-':
977 		SETERROR(REG_ERANGE);
978 		return;			/* NOTE RETURN */
979 	default:
980 		c = '\0';
981 		break;
982 	}
983 
984 	switch (c) {
985 	case ':':		/* character class */
986 		NEXT2();
987 		(void)REQUIRE(MORE(), REG_EBRACK);
988 		c = PEEK();
989 		(void)REQUIRE(c != '-' && c != ']', REG_ECTYPE);
990 		p_b_cclass(p, cs);
991 		(void)REQUIRE(MORE(), REG_EBRACK);
992 		(void)REQUIRE(EATTWO(':', ']'), REG_ECTYPE);
993 		break;
994 	case '=':		/* equivalence class */
995 		NEXT2();
996 		(void)REQUIRE(MORE(), REG_EBRACK);
997 		c = PEEK();
998 		(void)REQUIRE(c != '-' && c != ']', REG_ECOLLATE);
999 		p_b_eclass(p, cs);
1000 		(void)REQUIRE(MORE(), REG_EBRACK);
1001 		(void)REQUIRE(EATTWO('=', ']'), REG_ECOLLATE);
1002 		break;
1003 	default:		/* symbol, ordinary character, or range */
1004 		start = p_b_symbol(p);
1005 		if (SEE('-') && MORE2() && PEEK2() != ']') {
1006 			/* range */
1007 			NEXT();
1008 			if (EAT('-'))
1009 				finish = '-';
1010 			else
1011 				finish = p_b_symbol(p);
1012 		} else
1013 			finish = start;
1014 		if (start == finish)
1015 			CHadd(p, cs, start);
1016 		else {
1017 #ifndef LIBREGEX
1018 			if (table->__collate_load_error || MB_CUR_MAX > 1) {
1019 #else
1020 			if (MB_CUR_MAX > 1) {
1021 #endif
1022 				(void)REQUIRE(start <= finish, REG_ERANGE);
1023 				CHaddrange(p, cs, start, finish);
1024 			} else {
1025 				(void)REQUIRE(p_range_cmp(start, finish) <= 0, REG_ERANGE);
1026 				for (i = 0; i <= UCHAR_MAX; i++) {
1027 					if (p_range_cmp(start, i) <= 0 &&
1028 					    p_range_cmp(i, finish) <= 0 )
1029 						CHadd(p, cs, i);
1030 				}
1031 			}
1032 		}
1033 		break;
1034 	}
1035 }
1036 
1037 /*
1038  - p_b_cclass - parse a character-class name and deal with it
1039  == static void p_b_cclass(struct parse *p, cset *cs);
1040  */
1041 static void
1042 p_b_cclass(struct parse *p, cset *cs)
1043 {
1044 	const char *sp = p->next;
1045 	size_t len;
1046 	wctype_t wct;
1047 	char clname[16];
1048 
1049 	while (MORE() && isalpha((uch)PEEK()))
1050 		NEXT();
1051 	len = p->next - sp;
1052 	if (len >= sizeof(clname) - 1) {
1053 		SETERROR(REG_ECTYPE);
1054 		return;
1055 	}
1056 	memcpy(clname, sp, len);
1057 	clname[len] = '\0';
1058 	if ((wct = wctype(clname)) == 0) {
1059 		SETERROR(REG_ECTYPE);
1060 		return;
1061 	}
1062 	CHaddtype(p, cs, wct);
1063 }
1064 
1065 /*
1066  - p_b_eclass - parse an equivalence-class name and deal with it
1067  == static void p_b_eclass(struct parse *p, cset *cs);
1068  *
1069  * This implementation is incomplete. xxx
1070  */
1071 static void
1072 p_b_eclass(struct parse *p, cset *cs)
1073 {
1074 	wint_t c;
1075 
1076 	c = p_b_coll_elem(p, '=');
1077 	CHadd(p, cs, c);
1078 }
1079 
1080 /*
1081  - p_b_symbol - parse a character or [..]ed multicharacter collating symbol
1082  == static wint_t p_b_symbol(struct parse *p);
1083  */
1084 static wint_t			/* value of symbol */
1085 p_b_symbol(struct parse *p)
1086 {
1087 	wint_t value;
1088 
1089 	(void)REQUIRE(MORE(), REG_EBRACK);
1090 	if (!EATTWO('[', '.'))
1091 		return(WGETNEXT());
1092 
1093 	/* collating symbol */
1094 	value = p_b_coll_elem(p, '.');
1095 	(void)REQUIRE(EATTWO('.', ']'), REG_ECOLLATE);
1096 	return(value);
1097 }
1098 
1099 /*
1100  - p_b_coll_elem - parse a collating-element name and look it up
1101  == static wint_t p_b_coll_elem(struct parse *p, wint_t endc);
1102  */
1103 static wint_t			/* value of collating element */
1104 p_b_coll_elem(struct parse *p,
1105 	wint_t endc)		/* name ended by endc,']' */
1106 {
1107 	const char *sp = p->next;
1108 	struct cname *cp;
1109 	mbstate_t mbs;
1110 	wchar_t wc;
1111 	size_t clen, len;
1112 
1113 	while (MORE() && !SEETWO(endc, ']'))
1114 		NEXT();
1115 	if (!MORE()) {
1116 		SETERROR(REG_EBRACK);
1117 		return(0);
1118 	}
1119 	len = p->next - sp;
1120 	for (cp = cnames; cp->name != NULL; cp++)
1121 		if (strncmp(cp->name, sp, len) == 0 && strlen(cp->name) == len)
1122 			return(cp->code);	/* known name */
1123 	memset(&mbs, 0, sizeof(mbs));
1124 	if ((clen = mbrtowc(&wc, sp, len, &mbs)) == len)
1125 		return (wc);			/* single character */
1126 	else if (clen == (size_t)-1 || clen == (size_t)-2)
1127 		SETERROR(REG_ILLSEQ);
1128 	else
1129 		SETERROR(REG_ECOLLATE);		/* neither */
1130 	return(0);
1131 }
1132 
1133 /*
1134  - may_escape - determine whether 'ch' is escape-able in the current context
1135  == static int may_escape(struct parse *p, const wint_t ch)
1136  */
1137 static bool
1138 may_escape(struct parse *p, const wint_t ch)
1139 {
1140 
1141 	if ((p->pflags & PFLAG_LEGACY_ESC) != 0)
1142 		return (true);
1143 	if (isalpha(ch) || ch == '\'' || ch == '`')
1144 		return (false);
1145 	return (true);
1146 #ifdef NOTYET
1147 	/*
1148 	 * Build a whitelist of characters that may be escaped to produce an
1149 	 * ordinary in the current context. This assumes that these have not
1150 	 * been otherwise interpreted as a special character. Escaping an
1151 	 * ordinary character yields undefined results according to
1152 	 * IEEE 1003.1-2008. Some extensions (notably, some GNU extensions) take
1153 	 * advantage of this and use escaped ordinary characters to provide
1154 	 * special meaning, e.g. \b, \B, \w, \W, \s, \S.
1155 	 */
1156 	switch(ch) {
1157 	case '|':
1158 	case '+':
1159 	case '?':
1160 		/* The above characters may not be escaped in BREs */
1161 		if (!(p->g->cflags&REG_EXTENDED))
1162 			return (false);
1163 		/* Fallthrough */
1164 	case '(':
1165 	case ')':
1166 	case '{':
1167 	case '}':
1168 	case '.':
1169 	case '[':
1170 	case ']':
1171 	case '\\':
1172 	case '*':
1173 	case '^':
1174 	case '$':
1175 		return (true);
1176 	default:
1177 		return (false);
1178 	}
1179 #endif
1180 }
1181 
1182 /*
1183  - othercase - return the case counterpart of an alphabetic
1184  == static wint_t othercase(wint_t ch);
1185  */
1186 static wint_t			/* if no counterpart, return ch */
1187 othercase(wint_t ch)
1188 {
1189 	assert(iswalpha(ch));
1190 	if (iswupper(ch))
1191 		return(towlower(ch));
1192 	else if (iswlower(ch))
1193 		return(towupper(ch));
1194 	else			/* peculiar, but could happen */
1195 		return(ch);
1196 }
1197 
1198 /*
1199  - bothcases - emit a dualcase version of a two-case character
1200  == static void bothcases(struct parse *p, wint_t ch);
1201  *
1202  * Boy, is this implementation ever a kludge...
1203  */
1204 static void
1205 bothcases(struct parse *p, wint_t ch)
1206 {
1207 	const char *oldnext = p->next;
1208 	const char *oldend = p->end;
1209 	char bracket[3 + MB_LEN_MAX];
1210 	size_t n;
1211 	mbstate_t mbs;
1212 
1213 	assert(othercase(ch) != ch);	/* p_bracket() would recurse */
1214 	p->next = bracket;
1215 	memset(&mbs, 0, sizeof(mbs));
1216 	n = wcrtomb(bracket, ch, &mbs);
1217 	assert(n != (size_t)-1);
1218 	bracket[n] = ']';
1219 	bracket[n + 1] = '\0';
1220 	p->end = bracket+n+1;
1221 	p_bracket(p);
1222 	assert(p->next == p->end);
1223 	p->next = oldnext;
1224 	p->end = oldend;
1225 }
1226 
1227 /*
1228  - ordinary - emit an ordinary character
1229  == static void ordinary(struct parse *p, wint_t ch);
1230  */
1231 static void
1232 ordinary(struct parse *p, wint_t ch)
1233 {
1234 	cset *cs;
1235 
1236 	if ((p->g->cflags&REG_ICASE) && iswalpha(ch) && othercase(ch) != ch)
1237 		bothcases(p, ch);
1238 	else if ((ch & OPDMASK) == ch)
1239 		EMIT(OCHAR, ch);
1240 	else {
1241 		/*
1242 		 * Kludge: character is too big to fit into an OCHAR operand.
1243 		 * Emit a singleton set.
1244 		 */
1245 		if ((cs = allocset(p)) == NULL)
1246 			return;
1247 		CHadd(p, cs, ch);
1248 		EMIT(OANYOF, (int)(cs - p->g->sets));
1249 	}
1250 }
1251 
1252 /*
1253  - nonnewline - emit REG_NEWLINE version of OANY
1254  == static void nonnewline(struct parse *p);
1255  *
1256  * Boy, is this implementation ever a kludge...
1257  */
1258 static void
1259 nonnewline(struct parse *p)
1260 {
1261 	const char *oldnext = p->next;
1262 	const char *oldend = p->end;
1263 	char bracket[4];
1264 
1265 	p->next = bracket;
1266 	p->end = bracket+3;
1267 	bracket[0] = '^';
1268 	bracket[1] = '\n';
1269 	bracket[2] = ']';
1270 	bracket[3] = '\0';
1271 	p_bracket(p);
1272 	assert(p->next == bracket+3);
1273 	p->next = oldnext;
1274 	p->end = oldend;
1275 }
1276 
1277 /*
1278  - repeat - generate code for a bounded repetition, recursively if needed
1279  == static void repeat(struct parse *p, sopno start, int from, int to);
1280  */
1281 static void
1282 repeat(struct parse *p,
1283 	sopno start,		/* operand from here to end of strip */
1284 	int from,		/* repeated from this number */
1285 	int to)			/* to this number of times (maybe INFINITY) */
1286 {
1287 	sopno finish = HERE();
1288 #	define	N	2
1289 #	define	INF	3
1290 #	define	REP(f, t)	((f)*8 + (t))
1291 #	define	MAP(n)	(((n) <= 1) ? (n) : ((n) == INFINITY) ? INF : N)
1292 	sopno copy;
1293 
1294 	if (p->error != 0)	/* head off possible runaway recursion */
1295 		return;
1296 
1297 	assert(from <= to);
1298 
1299 	switch (REP(MAP(from), MAP(to))) {
1300 	case REP(0, 0):			/* must be user doing this */
1301 		DROP(finish-start);	/* drop the operand */
1302 		break;
1303 	case REP(0, 1):			/* as x{1,1}? */
1304 	case REP(0, N):			/* as x{1,n}? */
1305 	case REP(0, INF):		/* as x{1,}? */
1306 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1307 		INSERT(OCH_, start);		/* offset is wrong... */
1308 		repeat(p, start+1, 1, to);
1309 		ASTERN(OOR1, start);
1310 		AHEAD(start);			/* ... fix it */
1311 		EMIT(OOR2, 0);
1312 		AHEAD(THERE());
1313 		ASTERN(O_CH, THERETHERE());
1314 		break;
1315 	case REP(1, 1):			/* trivial case */
1316 		/* done */
1317 		break;
1318 	case REP(1, N):			/* as x?x{1,n-1} */
1319 		/* KLUDGE: emit y? as (y|) until subtle bug gets fixed */
1320 		INSERT(OCH_, start);
1321 		ASTERN(OOR1, start);
1322 		AHEAD(start);
1323 		EMIT(OOR2, 0);			/* offset very wrong... */
1324 		AHEAD(THERE());			/* ...so fix it */
1325 		ASTERN(O_CH, THERETHERE());
1326 		copy = dupl(p, start+1, finish+1);
1327 		assert(copy == finish+4);
1328 		repeat(p, copy, 1, to-1);
1329 		break;
1330 	case REP(1, INF):		/* as x+ */
1331 		INSERT(OPLUS_, start);
1332 		ASTERN(O_PLUS, start);
1333 		break;
1334 	case REP(N, N):			/* as xx{m-1,n-1} */
1335 		copy = dupl(p, start, finish);
1336 		repeat(p, copy, from-1, to-1);
1337 		break;
1338 	case REP(N, INF):		/* as xx{n-1,INF} */
1339 		copy = dupl(p, start, finish);
1340 		repeat(p, copy, from-1, to);
1341 		break;
1342 	default:			/* "can't happen" */
1343 		SETERROR(REG_ASSERT);	/* just in case */
1344 		break;
1345 	}
1346 }
1347 
1348 /*
1349  - wgetnext - helper function for WGETNEXT() macro. Gets the next wide
1350  - character from the parse struct, signals a REG_ILLSEQ error if the
1351  - character can't be converted. Returns the number of bytes consumed.
1352  */
1353 static wint_t
1354 wgetnext(struct parse *p)
1355 {
1356 	mbstate_t mbs;
1357 	wchar_t wc;
1358 	size_t n;
1359 
1360 	memset(&mbs, 0, sizeof(mbs));
1361 	n = mbrtowc(&wc, p->next, p->end - p->next, &mbs);
1362 	if (n == (size_t)-1 || n == (size_t)-2) {
1363 		SETERROR(REG_ILLSEQ);
1364 		return (0);
1365 	}
1366 	if (n == 0)
1367 		n = 1;
1368 	p->next += n;
1369 	return (wc);
1370 }
1371 
1372 /*
1373  - seterr - set an error condition
1374  == static int seterr(struct parse *p, int e);
1375  */
1376 static int			/* useless but makes type checking happy */
1377 seterr(struct parse *p, int e)
1378 {
1379 	if (p->error == 0)	/* keep earliest error condition */
1380 		p->error = e;
1381 	p->next = nuls;		/* try to bring things to a halt */
1382 	p->end = nuls;
1383 	return(0);		/* make the return value well-defined */
1384 }
1385 
1386 /*
1387  - allocset - allocate a set of characters for []
1388  == static cset *allocset(struct parse *p);
1389  */
1390 static cset *
1391 allocset(struct parse *p)
1392 {
1393 	cset *cs, *ncs;
1394 
1395 	ncs = reallocarray(p->g->sets, p->g->ncsets + 1, sizeof(*ncs));
1396 	if (ncs == NULL) {
1397 		SETERROR(REG_ESPACE);
1398 		return (NULL);
1399 	}
1400 	p->g->sets = ncs;
1401 	cs = &p->g->sets[p->g->ncsets++];
1402 	memset(cs, 0, sizeof(*cs));
1403 
1404 	return(cs);
1405 }
1406 
1407 /*
1408  - freeset - free a now-unused set
1409  == static void freeset(struct parse *p, cset *cs);
1410  */
1411 static void
1412 freeset(struct parse *p, cset *cs)
1413 {
1414 	cset *top = &p->g->sets[p->g->ncsets];
1415 
1416 	free(cs->wides);
1417 	free(cs->ranges);
1418 	free(cs->types);
1419 	memset(cs, 0, sizeof(*cs));
1420 	if (cs == top-1)	/* recover only the easy case */
1421 		p->g->ncsets--;
1422 }
1423 
1424 /*
1425  - singleton - Determine whether a set contains only one character,
1426  - returning it if so, otherwise returning OUT.
1427  */
1428 static wint_t
1429 singleton(cset *cs)
1430 {
1431 	wint_t i, s, n;
1432 
1433 	for (i = n = 0; i < NC; i++)
1434 		if (CHIN(cs, i)) {
1435 			n++;
1436 			s = i;
1437 		}
1438 	if (n == 1)
1439 		return (s);
1440 	if (cs->nwides == 1 && cs->nranges == 0 && cs->ntypes == 0 &&
1441 	    cs->icase == 0)
1442 		return (cs->wides[0]);
1443 	/* Don't bother handling the other cases. */
1444 	return (OUT);
1445 }
1446 
1447 /*
1448  - CHadd - add character to character set.
1449  */
1450 static void
1451 CHadd(struct parse *p, cset *cs, wint_t ch)
1452 {
1453 	wint_t nch, *newwides;
1454 	assert(ch >= 0);
1455 	if (ch < NC)
1456 		cs->bmp[ch >> 3] |= 1 << (ch & 7);
1457 	else {
1458 		newwides = reallocarray(cs->wides, cs->nwides + 1,
1459 		    sizeof(*cs->wides));
1460 		if (newwides == NULL) {
1461 			SETERROR(REG_ESPACE);
1462 			return;
1463 		}
1464 		cs->wides = newwides;
1465 		cs->wides[cs->nwides++] = ch;
1466 	}
1467 	if (cs->icase) {
1468 		if ((nch = towlower(ch)) < NC)
1469 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1470 		if ((nch = towupper(ch)) < NC)
1471 			cs->bmp[nch >> 3] |= 1 << (nch & 7);
1472 	}
1473 }
1474 
1475 /*
1476  - CHaddrange - add all characters in the range [min,max] to a character set.
1477  */
1478 static void
1479 CHaddrange(struct parse *p, cset *cs, wint_t min, wint_t max)
1480 {
1481 	crange *newranges;
1482 
1483 	for (; min < NC && min <= max; min++)
1484 		CHadd(p, cs, min);
1485 	if (min >= max)
1486 		return;
1487 	newranges = reallocarray(cs->ranges, cs->nranges + 1,
1488 	    sizeof(*cs->ranges));
1489 	if (newranges == NULL) {
1490 		SETERROR(REG_ESPACE);
1491 		return;
1492 	}
1493 	cs->ranges = newranges;
1494 	cs->ranges[cs->nranges].min = min;
1495 	cs->ranges[cs->nranges].max = max;
1496 	cs->nranges++;
1497 }
1498 
1499 /*
1500  - CHaddtype - add all characters of a certain type to a character set.
1501  */
1502 static void
1503 CHaddtype(struct parse *p, cset *cs, wctype_t wct)
1504 {
1505 	wint_t i;
1506 	wctype_t *newtypes;
1507 
1508 	for (i = 0; i < NC; i++)
1509 		if (iswctype(i, wct))
1510 			CHadd(p, cs, i);
1511 	newtypes = reallocarray(cs->types, cs->ntypes + 1,
1512 	    sizeof(*cs->types));
1513 	if (newtypes == NULL) {
1514 		SETERROR(REG_ESPACE);
1515 		return;
1516 	}
1517 	cs->types = newtypes;
1518 	cs->types[cs->ntypes++] = wct;
1519 }
1520 
1521 /*
1522  - dupl - emit a duplicate of a bunch of sops
1523  == static sopno dupl(struct parse *p, sopno start, sopno finish);
1524  */
1525 static sopno			/* start of duplicate */
1526 dupl(struct parse *p,
1527 	sopno start,		/* from here */
1528 	sopno finish)		/* to this less one */
1529 {
1530 	sopno ret = HERE();
1531 	sopno len = finish - start;
1532 
1533 	assert(finish >= start);
1534 	if (len == 0)
1535 		return(ret);
1536 	if (!enlarge(p, p->ssize + len)) /* this many unexpected additions */
1537 		return(ret);
1538 	(void) memcpy((char *)(p->strip + p->slen),
1539 		(char *)(p->strip + start), (size_t)len*sizeof(sop));
1540 	p->slen += len;
1541 	return(ret);
1542 }
1543 
1544 /*
1545  - doemit - emit a strip operator
1546  == static void doemit(struct parse *p, sop op, size_t opnd);
1547  *
1548  * It might seem better to implement this as a macro with a function as
1549  * hard-case backup, but it's just too big and messy unless there are
1550  * some changes to the data structures.  Maybe later.
1551  */
1552 static void
1553 doemit(struct parse *p, sop op, size_t opnd)
1554 {
1555 	/* avoid making error situations worse */
1556 	if (p->error != 0)
1557 		return;
1558 
1559 	/* deal with oversize operands ("can't happen", more or less) */
1560 	assert(opnd < 1<<OPSHIFT);
1561 
1562 	/* deal with undersized strip */
1563 	if (p->slen >= p->ssize)
1564 		if (!enlarge(p, (p->ssize+1) / 2 * 3))	/* +50% */
1565 			return;
1566 
1567 	/* finally, it's all reduced to the easy case */
1568 	p->strip[p->slen++] = SOP(op, opnd);
1569 }
1570 
1571 /*
1572  - doinsert - insert a sop into the strip
1573  == static void doinsert(struct parse *p, sop op, size_t opnd, sopno pos);
1574  */
1575 static void
1576 doinsert(struct parse *p, sop op, size_t opnd, sopno pos)
1577 {
1578 	sopno sn;
1579 	sop s;
1580 	int i;
1581 
1582 	/* avoid making error situations worse */
1583 	if (p->error != 0)
1584 		return;
1585 
1586 	sn = HERE();
1587 	EMIT(op, opnd);		/* do checks, ensure space */
1588 	assert(HERE() == sn+1);
1589 	s = p->strip[sn];
1590 
1591 	/* adjust paren pointers */
1592 	assert(pos > 0);
1593 	for (i = 1; i < NPAREN; i++) {
1594 		if (p->pbegin[i] >= pos) {
1595 			p->pbegin[i]++;
1596 		}
1597 		if (p->pend[i] >= pos) {
1598 			p->pend[i]++;
1599 		}
1600 	}
1601 
1602 	memmove((char *)&p->strip[pos+1], (char *)&p->strip[pos],
1603 						(HERE()-pos-1)*sizeof(sop));
1604 	p->strip[pos] = s;
1605 }
1606 
1607 /*
1608  - dofwd - complete a forward reference
1609  == static void dofwd(struct parse *p, sopno pos, sop value);
1610  */
1611 static void
1612 dofwd(struct parse *p, sopno pos, sop value)
1613 {
1614 	/* avoid making error situations worse */
1615 	if (p->error != 0)
1616 		return;
1617 
1618 	assert(value < 1<<OPSHIFT);
1619 	p->strip[pos] = OP(p->strip[pos]) | value;
1620 }
1621 
1622 /*
1623  - enlarge - enlarge the strip
1624  == static int enlarge(struct parse *p, sopno size);
1625  */
1626 static int
1627 enlarge(struct parse *p, sopno size)
1628 {
1629 	sop *sp;
1630 
1631 	if (p->ssize >= size)
1632 		return 1;
1633 
1634 	sp = reallocarray(p->strip, size, sizeof(sop));
1635 	if (sp == NULL) {
1636 		SETERROR(REG_ESPACE);
1637 		return 0;
1638 	}
1639 	p->strip = sp;
1640 	p->ssize = size;
1641 	return 1;
1642 }
1643 
1644 /*
1645  - stripsnug - compact the strip
1646  == static void stripsnug(struct parse *p, struct re_guts *g);
1647  */
1648 static void
1649 stripsnug(struct parse *p, struct re_guts *g)
1650 {
1651 	g->nstates = p->slen;
1652 	g->strip = reallocarray((char *)p->strip, p->slen, sizeof(sop));
1653 	if (g->strip == NULL) {
1654 		SETERROR(REG_ESPACE);
1655 		g->strip = p->strip;
1656 	}
1657 }
1658 
1659 /*
1660  - findmust - fill in must and mlen with longest mandatory literal string
1661  == static void findmust(struct parse *p, struct re_guts *g);
1662  *
1663  * This algorithm could do fancy things like analyzing the operands of |
1664  * for common subsequences.  Someday.  This code is simple and finds most
1665  * of the interesting cases.
1666  *
1667  * Note that must and mlen got initialized during setup.
1668  */
1669 static void
1670 findmust(struct parse *p, struct re_guts *g)
1671 {
1672 	sop *scan;
1673 	sop *start = NULL;
1674 	sop *newstart = NULL;
1675 	sopno newlen;
1676 	sop s;
1677 	char *cp;
1678 	int offset;
1679 	char buf[MB_LEN_MAX];
1680 	size_t clen;
1681 	mbstate_t mbs;
1682 
1683 	/* avoid making error situations worse */
1684 	if (p->error != 0)
1685 		return;
1686 
1687 	/*
1688 	 * It's not generally safe to do a ``char'' substring search on
1689 	 * multibyte character strings, but it's safe for at least
1690 	 * UTF-8 (see RFC 3629).
1691 	 */
1692 	if (MB_CUR_MAX > 1 &&
1693 	    strcmp(_CurrentRuneLocale->__encoding, "UTF-8") != 0)
1694 		return;
1695 
1696 	/* find the longest OCHAR sequence in strip */
1697 	newlen = 0;
1698 	offset = 0;
1699 	g->moffset = 0;
1700 	scan = g->strip + 1;
1701 	do {
1702 		s = *scan++;
1703 		switch (OP(s)) {
1704 		case OCHAR:		/* sequence member */
1705 			if (newlen == 0) {		/* new sequence */
1706 				memset(&mbs, 0, sizeof(mbs));
1707 				newstart = scan - 1;
1708 			}
1709 			clen = wcrtomb(buf, OPND(s), &mbs);
1710 			if (clen == (size_t)-1)
1711 				goto toohard;
1712 			newlen += clen;
1713 			break;
1714 		case OPLUS_:		/* things that don't break one */
1715 		case OLPAREN:
1716 		case ORPAREN:
1717 			break;
1718 		case OQUEST_:		/* things that must be skipped */
1719 		case OCH_:
1720 			offset = altoffset(scan, offset);
1721 			scan--;
1722 			do {
1723 				scan += OPND(s);
1724 				s = *scan;
1725 				/* assert() interferes w debug printouts */
1726 				if (OP(s) != (sop)O_QUEST &&
1727 				    OP(s) != (sop)O_CH && OP(s) != (sop)OOR2) {
1728 					g->iflags |= BAD;
1729 					return;
1730 				}
1731 			} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
1732 			/* FALLTHROUGH */
1733 		case OBOW:		/* things that break a sequence */
1734 		case OEOW:
1735 		case OBOL:
1736 		case OEOL:
1737 		case O_QUEST:
1738 		case O_CH:
1739 		case OEND:
1740 			if (newlen > (sopno)g->mlen) {		/* ends one */
1741 				start = newstart;
1742 				g->mlen = newlen;
1743 				if (offset > -1) {
1744 					g->moffset += offset;
1745 					offset = newlen;
1746 				} else
1747 					g->moffset = offset;
1748 			} else {
1749 				if (offset > -1)
1750 					offset += newlen;
1751 			}
1752 			newlen = 0;
1753 			break;
1754 		case OANY:
1755 			if (newlen > (sopno)g->mlen) {		/* ends one */
1756 				start = newstart;
1757 				g->mlen = newlen;
1758 				if (offset > -1) {
1759 					g->moffset += offset;
1760 					offset = newlen;
1761 				} else
1762 					g->moffset = offset;
1763 			} else {
1764 				if (offset > -1)
1765 					offset += newlen;
1766 			}
1767 			if (offset > -1)
1768 				offset++;
1769 			newlen = 0;
1770 			break;
1771 		case OANYOF:		/* may or may not invalidate offset */
1772 			/* First, everything as OANY */
1773 			if (newlen > (sopno)g->mlen) {		/* ends one */
1774 				start = newstart;
1775 				g->mlen = newlen;
1776 				if (offset > -1) {
1777 					g->moffset += offset;
1778 					offset = newlen;
1779 				} else
1780 					g->moffset = offset;
1781 			} else {
1782 				if (offset > -1)
1783 					offset += newlen;
1784 			}
1785 			if (offset > -1)
1786 				offset++;
1787 			newlen = 0;
1788 			break;
1789 		toohard:
1790 		default:
1791 			/* Anything here makes it impossible or too hard
1792 			 * to calculate the offset -- so we give up;
1793 			 * save the last known good offset, in case the
1794 			 * must sequence doesn't occur later.
1795 			 */
1796 			if (newlen > (sopno)g->mlen) {		/* ends one */
1797 				start = newstart;
1798 				g->mlen = newlen;
1799 				if (offset > -1)
1800 					g->moffset += offset;
1801 				else
1802 					g->moffset = offset;
1803 			}
1804 			offset = -1;
1805 			newlen = 0;
1806 			break;
1807 		}
1808 	} while (OP(s) != OEND);
1809 
1810 	if (g->mlen == 0) {		/* there isn't one */
1811 		g->moffset = -1;
1812 		return;
1813 	}
1814 
1815 	/* turn it into a character string */
1816 	g->must = malloc((size_t)g->mlen + 1);
1817 	if (g->must == NULL) {		/* argh; just forget it */
1818 		g->mlen = 0;
1819 		g->moffset = -1;
1820 		return;
1821 	}
1822 	cp = g->must;
1823 	scan = start;
1824 	memset(&mbs, 0, sizeof(mbs));
1825 	while (cp < g->must + g->mlen) {
1826 		while (OP(s = *scan++) != OCHAR)
1827 			continue;
1828 		clen = wcrtomb(cp, OPND(s), &mbs);
1829 		assert(clen != (size_t)-1);
1830 		cp += clen;
1831 	}
1832 	assert(cp == g->must + g->mlen);
1833 	*cp++ = '\0';		/* just on general principles */
1834 }
1835 
1836 /*
1837  - altoffset - choose biggest offset among multiple choices
1838  == static int altoffset(sop *scan, int offset);
1839  *
1840  * Compute, recursively if necessary, the largest offset among multiple
1841  * re paths.
1842  */
1843 static int
1844 altoffset(sop *scan, int offset)
1845 {
1846 	int largest;
1847 	int try;
1848 	sop s;
1849 
1850 	/* If we gave up already on offsets, return */
1851 	if (offset == -1)
1852 		return -1;
1853 
1854 	largest = 0;
1855 	try = 0;
1856 	s = *scan++;
1857 	while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH) {
1858 		switch (OP(s)) {
1859 		case OOR1:
1860 			if (try > largest)
1861 				largest = try;
1862 			try = 0;
1863 			break;
1864 		case OQUEST_:
1865 		case OCH_:
1866 			try = altoffset(scan, try);
1867 			if (try == -1)
1868 				return -1;
1869 			scan--;
1870 			do {
1871 				scan += OPND(s);
1872 				s = *scan;
1873 				if (OP(s) != (sop)O_QUEST &&
1874 				    OP(s) != (sop)O_CH && OP(s) != (sop)OOR2)
1875 					return -1;
1876 			} while (OP(s) != (sop)O_QUEST && OP(s) != (sop)O_CH);
1877 			/* We must skip to the next position, or we'll
1878 			 * leave altoffset() too early.
1879 			 */
1880 			scan++;
1881 			break;
1882 		case OANYOF:
1883 		case OCHAR:
1884 		case OANY:
1885 			try++;
1886 		case OBOW:
1887 		case OEOW:
1888 		case OLPAREN:
1889 		case ORPAREN:
1890 		case OOR2:
1891 			break;
1892 		default:
1893 			try = -1;
1894 			break;
1895 		}
1896 		if (try == -1)
1897 			return -1;
1898 		s = *scan++;
1899 	}
1900 
1901 	if (try > largest)
1902 		largest = try;
1903 
1904 	return largest+offset;
1905 }
1906 
1907 /*
1908  - computejumps - compute char jumps for BM scan
1909  == static void computejumps(struct parse *p, struct re_guts *g);
1910  *
1911  * This algorithm assumes g->must exists and is has size greater than
1912  * zero. It's based on the algorithm found on Computer Algorithms by
1913  * Sara Baase.
1914  *
1915  * A char jump is the number of characters one needs to jump based on
1916  * the value of the character from the text that was mismatched.
1917  */
1918 static void
1919 computejumps(struct parse *p, struct re_guts *g)
1920 {
1921 	int ch;
1922 	int mindex;
1923 
1924 	/* Avoid making errors worse */
1925 	if (p->error != 0)
1926 		return;
1927 
1928 	g->charjump = (int *)malloc((NC_MAX + 1) * sizeof(int));
1929 	if (g->charjump == NULL)	/* Not a fatal error */
1930 		return;
1931 	/* Adjust for signed chars, if necessary */
1932 	g->charjump = &g->charjump[-(CHAR_MIN)];
1933 
1934 	/* If the character does not exist in the pattern, the jump
1935 	 * is equal to the number of characters in the pattern.
1936 	 */
1937 	for (ch = CHAR_MIN; ch < (CHAR_MAX + 1); ch++)
1938 		g->charjump[ch] = g->mlen;
1939 
1940 	/* If the character does exist, compute the jump that would
1941 	 * take us to the last character in the pattern equal to it
1942 	 * (notice that we match right to left, so that last character
1943 	 * is the first one that would be matched).
1944 	 */
1945 	for (mindex = 0; mindex < g->mlen; mindex++)
1946 		g->charjump[(int)g->must[mindex]] = g->mlen - mindex - 1;
1947 }
1948 
1949 /*
1950  - computematchjumps - compute match jumps for BM scan
1951  == static void computematchjumps(struct parse *p, struct re_guts *g);
1952  *
1953  * This algorithm assumes g->must exists and is has size greater than
1954  * zero. It's based on the algorithm found on Computer Algorithms by
1955  * Sara Baase.
1956  *
1957  * A match jump is the number of characters one needs to advance based
1958  * on the already-matched suffix.
1959  * Notice that all values here are minus (g->mlen-1), because of the way
1960  * the search algorithm works.
1961  */
1962 static void
1963 computematchjumps(struct parse *p, struct re_guts *g)
1964 {
1965 	int mindex;		/* General "must" iterator */
1966 	int suffix;		/* Keeps track of matching suffix */
1967 	int ssuffix;		/* Keeps track of suffixes' suffix */
1968 	int* pmatches;		/* pmatches[k] points to the next i
1969 				 * such that i+1...mlen is a substring
1970 				 * of k+1...k+mlen-i-1
1971 				 */
1972 
1973 	/* Avoid making errors worse */
1974 	if (p->error != 0)
1975 		return;
1976 
1977 	pmatches = (int*) malloc(g->mlen * sizeof(int));
1978 	if (pmatches == NULL) {
1979 		g->matchjump = NULL;
1980 		return;
1981 	}
1982 
1983 	g->matchjump = (int*) malloc(g->mlen * sizeof(int));
1984 	if (g->matchjump == NULL) {	/* Not a fatal error */
1985 		free(pmatches);
1986 		return;
1987 	}
1988 
1989 	/* Set maximum possible jump for each character in the pattern */
1990 	for (mindex = 0; mindex < g->mlen; mindex++)
1991 		g->matchjump[mindex] = 2*g->mlen - mindex - 1;
1992 
1993 	/* Compute pmatches[] */
1994 	for (mindex = g->mlen - 1, suffix = g->mlen; mindex >= 0;
1995 	    mindex--, suffix--) {
1996 		pmatches[mindex] = suffix;
1997 
1998 		/* If a mismatch is found, interrupting the substring,
1999 		 * compute the matchjump for that position. If no
2000 		 * mismatch is found, then a text substring mismatched
2001 		 * against the suffix will also mismatch against the
2002 		 * substring.
2003 		 */
2004 		while (suffix < g->mlen
2005 		    && g->must[mindex] != g->must[suffix]) {
2006 			g->matchjump[suffix] = MIN(g->matchjump[suffix],
2007 			    g->mlen - mindex - 1);
2008 			suffix = pmatches[suffix];
2009 		}
2010 	}
2011 
2012 	/* Compute the matchjump up to the last substring found to jump
2013 	 * to the beginning of the largest must pattern prefix matching
2014 	 * it's own suffix.
2015 	 */
2016 	for (mindex = 0; mindex <= suffix; mindex++)
2017 		g->matchjump[mindex] = MIN(g->matchjump[mindex],
2018 		    g->mlen + suffix - mindex);
2019 
2020         ssuffix = pmatches[suffix];
2021         while (suffix < g->mlen) {
2022                 while (suffix <= ssuffix && suffix < g->mlen) {
2023                         g->matchjump[suffix] = MIN(g->matchjump[suffix],
2024 			    g->mlen + ssuffix - suffix);
2025                         suffix++;
2026                 }
2027 		if (suffix < g->mlen)
2028                 	ssuffix = pmatches[ssuffix];
2029         }
2030 
2031 	free(pmatches);
2032 }
2033 
2034 /*
2035  - pluscount - count + nesting
2036  == static sopno pluscount(struct parse *p, struct re_guts *g);
2037  */
2038 static sopno			/* nesting depth */
2039 pluscount(struct parse *p, struct re_guts *g)
2040 {
2041 	sop *scan;
2042 	sop s;
2043 	sopno plusnest = 0;
2044 	sopno maxnest = 0;
2045 
2046 	if (p->error != 0)
2047 		return(0);	/* there may not be an OEND */
2048 
2049 	scan = g->strip + 1;
2050 	do {
2051 		s = *scan++;
2052 		switch (OP(s)) {
2053 		case OPLUS_:
2054 			plusnest++;
2055 			break;
2056 		case O_PLUS:
2057 			if (plusnest > maxnest)
2058 				maxnest = plusnest;
2059 			plusnest--;
2060 			break;
2061 		}
2062 	} while (OP(s) != OEND);
2063 	if (plusnest != 0)
2064 		g->iflags |= BAD;
2065 	return(maxnest);
2066 }
2067