1 /* 2 * kmp_tasking.cpp -- OpenMP 3.0 tasking support. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_i18n.h" 15 #include "kmp_itt.h" 16 #include "kmp_stats.h" 17 #include "kmp_wait_release.h" 18 #include "kmp_taskdeps.h" 19 20 #if OMPT_SUPPORT 21 #include "ompt-specific.h" 22 #endif 23 24 #include "tsan_annotations.h" 25 26 /* forward declaration */ 27 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 28 kmp_info_t *this_thr); 29 static void __kmp_alloc_task_deque(kmp_info_t *thread, 30 kmp_thread_data_t *thread_data); 31 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 32 kmp_task_team_t *task_team); 33 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask); 34 35 #ifdef BUILD_TIED_TASK_STACK 36 37 // __kmp_trace_task_stack: print the tied tasks from the task stack in order 38 // from top do bottom 39 // 40 // gtid: global thread identifier for thread containing stack 41 // thread_data: thread data for task team thread containing stack 42 // threshold: value above which the trace statement triggers 43 // location: string identifying call site of this function (for trace) 44 static void __kmp_trace_task_stack(kmp_int32 gtid, 45 kmp_thread_data_t *thread_data, 46 int threshold, char *location) { 47 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 48 kmp_taskdata_t **stack_top = task_stack->ts_top; 49 kmp_int32 entries = task_stack->ts_entries; 50 kmp_taskdata_t *tied_task; 51 52 KA_TRACE( 53 threshold, 54 ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " 55 "first_block = %p, stack_top = %p \n", 56 location, gtid, entries, task_stack->ts_first_block, stack_top)); 57 58 KMP_DEBUG_ASSERT(stack_top != NULL); 59 KMP_DEBUG_ASSERT(entries > 0); 60 61 while (entries != 0) { 62 KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]); 63 // fix up ts_top if we need to pop from previous block 64 if (entries & TASK_STACK_INDEX_MASK == 0) { 65 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top); 66 67 stack_block = stack_block->sb_prev; 68 stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 69 } 70 71 // finish bookkeeping 72 stack_top--; 73 entries--; 74 75 tied_task = *stack_top; 76 77 KMP_DEBUG_ASSERT(tied_task != NULL); 78 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 79 80 KA_TRACE(threshold, 81 ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, " 82 "stack_top=%p, tied_task=%p\n", 83 location, gtid, entries, stack_top, tied_task)); 84 } 85 KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]); 86 87 KA_TRACE(threshold, 88 ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n", 89 location, gtid)); 90 } 91 92 // __kmp_init_task_stack: initialize the task stack for the first time 93 // after a thread_data structure is created. 94 // It should not be necessary to do this again (assuming the stack works). 95 // 96 // gtid: global thread identifier of calling thread 97 // thread_data: thread data for task team thread containing stack 98 static void __kmp_init_task_stack(kmp_int32 gtid, 99 kmp_thread_data_t *thread_data) { 100 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 101 kmp_stack_block_t *first_block; 102 103 // set up the first block of the stack 104 first_block = &task_stack->ts_first_block; 105 task_stack->ts_top = (kmp_taskdata_t **)first_block; 106 memset((void *)first_block, '\0', 107 TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); 108 109 // initialize the stack to be empty 110 task_stack->ts_entries = TASK_STACK_EMPTY; 111 first_block->sb_next = NULL; 112 first_block->sb_prev = NULL; 113 } 114 115 // __kmp_free_task_stack: free the task stack when thread_data is destroyed. 116 // 117 // gtid: global thread identifier for calling thread 118 // thread_data: thread info for thread containing stack 119 static void __kmp_free_task_stack(kmp_int32 gtid, 120 kmp_thread_data_t *thread_data) { 121 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 122 kmp_stack_block_t *stack_block = &task_stack->ts_first_block; 123 124 KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY); 125 // free from the second block of the stack 126 while (stack_block != NULL) { 127 kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL; 128 129 stack_block->sb_next = NULL; 130 stack_block->sb_prev = NULL; 131 if (stack_block != &task_stack->ts_first_block) { 132 __kmp_thread_free(thread, 133 stack_block); // free the block, if not the first 134 } 135 stack_block = next_block; 136 } 137 // initialize the stack to be empty 138 task_stack->ts_entries = 0; 139 task_stack->ts_top = NULL; 140 } 141 142 // __kmp_push_task_stack: Push the tied task onto the task stack. 143 // Grow the stack if necessary by allocating another block. 144 // 145 // gtid: global thread identifier for calling thread 146 // thread: thread info for thread containing stack 147 // tied_task: the task to push on the stack 148 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread, 149 kmp_taskdata_t *tied_task) { 150 // GEH - need to consider what to do if tt_threads_data not allocated yet 151 kmp_thread_data_t *thread_data = 152 &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 153 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 154 155 if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) { 156 return; // Don't push anything on stack if team or team tasks are serialized 157 } 158 159 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 160 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 161 162 KA_TRACE(20, 163 ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n", 164 gtid, thread, tied_task)); 165 // Store entry 166 *(task_stack->ts_top) = tied_task; 167 168 // Do bookkeeping for next push 169 task_stack->ts_top++; 170 task_stack->ts_entries++; 171 172 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 173 // Find beginning of this task block 174 kmp_stack_block_t *stack_block = 175 (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE); 176 177 // Check if we already have a block 178 if (stack_block->sb_next != 179 NULL) { // reset ts_top to beginning of next block 180 task_stack->ts_top = &stack_block->sb_next->sb_block[0]; 181 } else { // Alloc new block and link it up 182 kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc( 183 thread, sizeof(kmp_stack_block_t)); 184 185 task_stack->ts_top = &new_block->sb_block[0]; 186 stack_block->sb_next = new_block; 187 new_block->sb_prev = stack_block; 188 new_block->sb_next = NULL; 189 190 KA_TRACE( 191 30, 192 ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n", 193 gtid, tied_task, new_block)); 194 } 195 } 196 KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 197 tied_task)); 198 } 199 200 // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return 201 // the task, just check to make sure it matches the ending task passed in. 202 // 203 // gtid: global thread identifier for the calling thread 204 // thread: thread info structure containing stack 205 // tied_task: the task popped off the stack 206 // ending_task: the task that is ending (should match popped task) 207 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread, 208 kmp_taskdata_t *ending_task) { 209 // GEH - need to consider what to do if tt_threads_data not allocated yet 210 kmp_thread_data_t *thread_data = 211 &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)]; 212 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 213 kmp_taskdata_t *tied_task; 214 215 if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) { 216 // Don't pop anything from stack if team or team tasks are serialized 217 return; 218 } 219 220 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 221 KMP_DEBUG_ASSERT(task_stack->ts_entries > 0); 222 223 KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid, 224 thread)); 225 226 // fix up ts_top if we need to pop from previous block 227 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 228 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top); 229 230 stack_block = stack_block->sb_prev; 231 task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 232 } 233 234 // finish bookkeeping 235 task_stack->ts_top--; 236 task_stack->ts_entries--; 237 238 tied_task = *(task_stack->ts_top); 239 240 KMP_DEBUG_ASSERT(tied_task != NULL); 241 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 242 KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly 243 244 KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 245 tied_task)); 246 return; 247 } 248 #endif /* BUILD_TIED_TASK_STACK */ 249 250 // returns 1 if new task is allowed to execute, 0 otherwise 251 // checks Task Scheduling constraint (if requested) and 252 // mutexinoutset dependencies if any 253 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained, 254 const kmp_taskdata_t *tasknew, 255 const kmp_taskdata_t *taskcurr) { 256 if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) { 257 // Check if the candidate obeys the Task Scheduling Constraints (TSC) 258 // only descendant of all deferred tied tasks can be scheduled, checking 259 // the last one is enough, as it in turn is the descendant of all others 260 kmp_taskdata_t *current = taskcurr->td_last_tied; 261 KMP_DEBUG_ASSERT(current != NULL); 262 // check if the task is not suspended on barrier 263 if (current->td_flags.tasktype == TASK_EXPLICIT || 264 current->td_taskwait_thread > 0) { // <= 0 on barrier 265 kmp_int32 level = current->td_level; 266 kmp_taskdata_t *parent = tasknew->td_parent; 267 while (parent != current && parent->td_level > level) { 268 // check generation up to the level of the current task 269 parent = parent->td_parent; 270 KMP_DEBUG_ASSERT(parent != NULL); 271 } 272 if (parent != current) 273 return false; 274 } 275 } 276 // Check mutexinoutset dependencies, acquire locks 277 kmp_depnode_t *node = tasknew->td_depnode; 278 if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { 279 for (int i = 0; i < node->dn.mtx_num_locks; ++i) { 280 KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL); 281 if (__kmp_test_lock(node->dn.mtx_locks[i], gtid)) 282 continue; 283 // could not get the lock, release previous locks 284 for (int j = i - 1; j >= 0; --j) 285 __kmp_release_lock(node->dn.mtx_locks[j], gtid); 286 return false; 287 } 288 // negative num_locks means all locks acquired successfully 289 node->dn.mtx_num_locks = -node->dn.mtx_num_locks; 290 } 291 return true; 292 } 293 294 // __kmp_realloc_task_deque: 295 // Re-allocates a task deque for a particular thread, copies the content from 296 // the old deque and adjusts the necessary data structures relating to the 297 // deque. This operation must be done with the deque_lock being held 298 static void __kmp_realloc_task_deque(kmp_info_t *thread, 299 kmp_thread_data_t *thread_data) { 300 kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td); 301 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size); 302 kmp_int32 new_size = 2 * size; 303 304 KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to " 305 "%d] for thread_data %p\n", 306 __kmp_gtid_from_thread(thread), size, new_size, thread_data)); 307 308 kmp_taskdata_t **new_deque = 309 (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *)); 310 311 int i, j; 312 for (i = thread_data->td.td_deque_head, j = 0; j < size; 313 i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++) 314 new_deque[j] = thread_data->td.td_deque[i]; 315 316 __kmp_free(thread_data->td.td_deque); 317 318 thread_data->td.td_deque_head = 0; 319 thread_data->td.td_deque_tail = size; 320 thread_data->td.td_deque = new_deque; 321 thread_data->td.td_deque_size = new_size; 322 } 323 324 // __kmp_push_task: Add a task to the thread's deque 325 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) { 326 kmp_info_t *thread = __kmp_threads[gtid]; 327 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 328 329 if (taskdata->td_flags.hidden_helper) { 330 gtid = KMP_GTID_TO_SHADOW_GTID(gtid); 331 thread = __kmp_threads[gtid]; 332 } 333 334 kmp_task_team_t *task_team = thread->th.th_task_team; 335 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 336 kmp_thread_data_t *thread_data; 337 338 KA_TRACE(20, 339 ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata)); 340 341 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 342 // untied task needs to increment counter so that the task structure is not 343 // freed prematurely 344 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 345 KMP_DEBUG_USE_VAR(counter); 346 KA_TRACE( 347 20, 348 ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n", 349 gtid, counter, taskdata)); 350 } 351 352 // The first check avoids building task_team thread data if serialized 353 if (UNLIKELY(taskdata->td_flags.task_serial)) { 354 KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning " 355 "TASK_NOT_PUSHED for task %p\n", 356 gtid, taskdata)); 357 return TASK_NOT_PUSHED; 358 } 359 360 // Now that serialized tasks have returned, we can assume that we are not in 361 // immediate exec mode 362 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 363 if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) { 364 __kmp_enable_tasking(task_team, thread); 365 } 366 KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE); 367 KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL); 368 369 // Find tasking deque specific to encountering thread 370 thread_data = &task_team->tt.tt_threads_data[tid]; 371 372 // No lock needed since only owner can allocate. If the task is hidden_helper, 373 // we don't need it either because we have initialized the dequeue for hidden 374 // helper thread data. 375 if (UNLIKELY(thread_data->td.td_deque == NULL)) { 376 __kmp_alloc_task_deque(thread, thread_data); 377 } 378 379 int locked = 0; 380 // Check if deque is full 381 if (TCR_4(thread_data->td.td_deque_ntasks) >= 382 TASK_DEQUE_SIZE(thread_data->td)) { 383 if (__kmp_enable_task_throttling && 384 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 385 thread->th.th_current_task)) { 386 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning " 387 "TASK_NOT_PUSHED for task %p\n", 388 gtid, taskdata)); 389 return TASK_NOT_PUSHED; 390 } else { 391 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 392 locked = 1; 393 if (TCR_4(thread_data->td.td_deque_ntasks) >= 394 TASK_DEQUE_SIZE(thread_data->td)) { 395 // expand deque to push the task which is not allowed to execute 396 __kmp_realloc_task_deque(thread, thread_data); 397 } 398 } 399 } 400 // Lock the deque for the task push operation 401 if (!locked) { 402 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 403 // Need to recheck as we can get a proxy task from thread outside of OpenMP 404 if (TCR_4(thread_data->td.td_deque_ntasks) >= 405 TASK_DEQUE_SIZE(thread_data->td)) { 406 if (__kmp_enable_task_throttling && 407 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 408 thread->th.th_current_task)) { 409 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 410 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; " 411 "returning TASK_NOT_PUSHED for task %p\n", 412 gtid, taskdata)); 413 return TASK_NOT_PUSHED; 414 } else { 415 // expand deque to push the task which is not allowed to execute 416 __kmp_realloc_task_deque(thread, thread_data); 417 } 418 } 419 } 420 // Must have room since no thread can add tasks but calling thread 421 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < 422 TASK_DEQUE_SIZE(thread_data->td)); 423 424 thread_data->td.td_deque[thread_data->td.td_deque_tail] = 425 taskdata; // Push taskdata 426 // Wrap index. 427 thread_data->td.td_deque_tail = 428 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 429 TCW_4(thread_data->td.td_deque_ntasks, 430 TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count 431 KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self 432 KMP_FSYNC_RELEASING(taskdata); // releasing child 433 KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " 434 "task=%p ntasks=%d head=%u tail=%u\n", 435 gtid, taskdata, thread_data->td.td_deque_ntasks, 436 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 437 438 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 439 440 // Signal one worker thread to execute the task 441 if (taskdata->td_flags.hidden_helper) { 442 // Wake hidden helper threads up if they're sleeping 443 __kmp_hidden_helper_worker_thread_signal(); 444 } 445 446 return TASK_SUCCESSFULLY_PUSHED; 447 } 448 449 // __kmp_pop_current_task_from_thread: set up current task from called thread 450 // when team ends 451 // 452 // this_thr: thread structure to set current_task in. 453 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) { 454 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d " 455 "this_thread=%p, curtask=%p, " 456 "curtask_parent=%p\n", 457 0, this_thr, this_thr->th.th_current_task, 458 this_thr->th.th_current_task->td_parent)); 459 460 this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent; 461 462 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d " 463 "this_thread=%p, curtask=%p, " 464 "curtask_parent=%p\n", 465 0, this_thr, this_thr->th.th_current_task, 466 this_thr->th.th_current_task->td_parent)); 467 } 468 469 // __kmp_push_current_task_to_thread: set up current task in called thread for a 470 // new team 471 // 472 // this_thr: thread structure to set up 473 // team: team for implicit task data 474 // tid: thread within team to set up 475 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team, 476 int tid) { 477 // current task of the thread is a parent of the new just created implicit 478 // tasks of new team 479 KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p " 480 "curtask=%p " 481 "parent_task=%p\n", 482 tid, this_thr, this_thr->th.th_current_task, 483 team->t.t_implicit_task_taskdata[tid].td_parent)); 484 485 KMP_DEBUG_ASSERT(this_thr != NULL); 486 487 if (tid == 0) { 488 if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) { 489 team->t.t_implicit_task_taskdata[0].td_parent = 490 this_thr->th.th_current_task; 491 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0]; 492 } 493 } else { 494 team->t.t_implicit_task_taskdata[tid].td_parent = 495 team->t.t_implicit_task_taskdata[0].td_parent; 496 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid]; 497 } 498 499 KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p " 500 "curtask=%p " 501 "parent_task=%p\n", 502 tid, this_thr, this_thr->th.th_current_task, 503 team->t.t_implicit_task_taskdata[tid].td_parent)); 504 } 505 506 // __kmp_task_start: bookkeeping for a task starting execution 507 // 508 // GTID: global thread id of calling thread 509 // task: task starting execution 510 // current_task: task suspending 511 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task, 512 kmp_taskdata_t *current_task) { 513 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 514 kmp_info_t *thread = __kmp_threads[gtid]; 515 516 KA_TRACE(10, 517 ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n", 518 gtid, taskdata, current_task)); 519 520 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 521 522 // mark currently executing task as suspended 523 // TODO: GEH - make sure root team implicit task is initialized properly. 524 // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); 525 current_task->td_flags.executing = 0; 526 527 // Add task to stack if tied 528 #ifdef BUILD_TIED_TASK_STACK 529 if (taskdata->td_flags.tiedness == TASK_TIED) { 530 __kmp_push_task_stack(gtid, thread, taskdata); 531 } 532 #endif /* BUILD_TIED_TASK_STACK */ 533 534 // mark starting task as executing and as current task 535 thread->th.th_current_task = taskdata; 536 537 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 || 538 taskdata->td_flags.tiedness == TASK_UNTIED); 539 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 || 540 taskdata->td_flags.tiedness == TASK_UNTIED); 541 taskdata->td_flags.started = 1; 542 taskdata->td_flags.executing = 1; 543 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 544 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 545 546 // GEH TODO: shouldn't we pass some sort of location identifier here? 547 // APT: yes, we will pass location here. 548 // need to store current thread state (in a thread or taskdata structure) 549 // before setting work_state, otherwise wrong state is set after end of task 550 551 KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata)); 552 553 return; 554 } 555 556 #if OMPT_SUPPORT 557 //------------------------------------------------------------------------------ 558 // __ompt_task_init: 559 // Initialize OMPT fields maintained by a task. This will only be called after 560 // ompt_start_tool, so we already know whether ompt is enabled or not. 561 562 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) { 563 // The calls to __ompt_task_init already have the ompt_enabled condition. 564 task->ompt_task_info.task_data.value = 0; 565 task->ompt_task_info.frame.exit_frame = ompt_data_none; 566 task->ompt_task_info.frame.enter_frame = ompt_data_none; 567 task->ompt_task_info.frame.exit_frame_flags = ompt_frame_runtime | ompt_frame_framepointer; 568 task->ompt_task_info.frame.enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer; 569 } 570 571 // __ompt_task_start: 572 // Build and trigger task-begin event 573 static inline void __ompt_task_start(kmp_task_t *task, 574 kmp_taskdata_t *current_task, 575 kmp_int32 gtid) { 576 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 577 ompt_task_status_t status = ompt_task_switch; 578 if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) { 579 status = ompt_task_yield; 580 __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0; 581 } 582 /* let OMPT know that we're about to run this task */ 583 if (ompt_enabled.ompt_callback_task_schedule) { 584 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 585 &(current_task->ompt_task_info.task_data), status, 586 &(taskdata->ompt_task_info.task_data)); 587 } 588 taskdata->ompt_task_info.scheduling_parent = current_task; 589 } 590 591 // __ompt_task_finish: 592 // Build and trigger final task-schedule event 593 static inline void __ompt_task_finish(kmp_task_t *task, 594 kmp_taskdata_t *resumed_task, 595 ompt_task_status_t status) { 596 if (ompt_enabled.ompt_callback_task_schedule) { 597 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 598 if (__kmp_omp_cancellation && taskdata->td_taskgroup && 599 taskdata->td_taskgroup->cancel_request == cancel_taskgroup) { 600 status = ompt_task_cancel; 601 } 602 603 /* let OMPT know that we're returning to the callee task */ 604 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 605 &(taskdata->ompt_task_info.task_data), status, 606 (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL)); 607 } 608 } 609 #endif 610 611 template <bool ompt> 612 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid, 613 kmp_task_t *task, 614 void *frame_address, 615 void *return_address) { 616 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 617 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 618 619 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p " 620 "current_task=%p\n", 621 gtid, loc_ref, taskdata, current_task)); 622 623 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 624 // untied task needs to increment counter so that the task structure is not 625 // freed prematurely 626 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 627 KMP_DEBUG_USE_VAR(counter); 628 KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) " 629 "incremented for task %p\n", 630 gtid, counter, taskdata)); 631 } 632 633 taskdata->td_flags.task_serial = 634 1; // Execute this task immediately, not deferred. 635 __kmp_task_start(gtid, task, current_task); 636 637 #if OMPT_SUPPORT 638 if (ompt) { 639 if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) { 640 current_task->ompt_task_info.frame.enter_frame.ptr = 641 taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address; 642 current_task->ompt_task_info.frame.enter_frame_flags = 643 taskdata->ompt_task_info.frame.exit_frame_flags = ompt_frame_application | ompt_frame_framepointer; 644 } 645 if (ompt_enabled.ompt_callback_task_create) { 646 ompt_task_info_t *parent_info = &(current_task->ompt_task_info); 647 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 648 &(parent_info->task_data), &(parent_info->frame), 649 &(taskdata->ompt_task_info.task_data), 650 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0, 651 return_address); 652 } 653 __ompt_task_start(task, current_task, gtid); 654 } 655 #endif // OMPT_SUPPORT 656 657 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid, 658 loc_ref, taskdata)); 659 } 660 661 #if OMPT_SUPPORT 662 OMPT_NOINLINE 663 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 664 kmp_task_t *task, 665 void *frame_address, 666 void *return_address) { 667 __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address, 668 return_address); 669 } 670 #endif // OMPT_SUPPORT 671 672 // __kmpc_omp_task_begin_if0: report that a given serialized task has started 673 // execution 674 // 675 // loc_ref: source location information; points to beginning of task block. 676 // gtid: global thread number. 677 // task: task thunk for the started task. 678 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 679 kmp_task_t *task) { 680 #if OMPT_SUPPORT 681 if (UNLIKELY(ompt_enabled.enabled)) { 682 OMPT_STORE_RETURN_ADDRESS(gtid); 683 __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task, 684 OMPT_GET_FRAME_ADDRESS(1), 685 OMPT_LOAD_RETURN_ADDRESS(gtid)); 686 return; 687 } 688 #endif 689 __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL); 690 } 691 692 #ifdef TASK_UNUSED 693 // __kmpc_omp_task_begin: report that a given task has started execution 694 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 695 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) { 696 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 697 698 KA_TRACE( 699 10, 700 ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n", 701 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task)); 702 703 __kmp_task_start(gtid, task, current_task); 704 705 KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid, 706 loc_ref, KMP_TASK_TO_TASKDATA(task))); 707 return; 708 } 709 #endif // TASK_UNUSED 710 711 // __kmp_free_task: free the current task space and the space for shareds 712 // 713 // gtid: Global thread ID of calling thread 714 // taskdata: task to free 715 // thread: thread data structure of caller 716 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata, 717 kmp_info_t *thread) { 718 KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid, 719 taskdata)); 720 721 // Check to make sure all flags and counters have the correct values 722 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 723 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0); 724 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1); 725 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 726 KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 || 727 taskdata->td_flags.task_serial == 1); 728 KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0); 729 730 taskdata->td_flags.freed = 1; 731 ANNOTATE_HAPPENS_BEFORE(taskdata); 732 // deallocate the taskdata and shared variable blocks associated with this task 733 #if USE_FAST_MEMORY 734 __kmp_fast_free(thread, taskdata); 735 #else /* ! USE_FAST_MEMORY */ 736 __kmp_thread_free(thread, taskdata); 737 #endif 738 KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata)); 739 } 740 741 // __kmp_free_task_and_ancestors: free the current task and ancestors without 742 // children 743 // 744 // gtid: Global thread ID of calling thread 745 // taskdata: task to free 746 // thread: thread data structure of caller 747 static void __kmp_free_task_and_ancestors(kmp_int32 gtid, 748 kmp_taskdata_t *taskdata, 749 kmp_info_t *thread) { 750 // Proxy tasks must always be allowed to free their parents 751 // because they can be run in background even in serial mode. 752 kmp_int32 team_serial = 753 (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) && 754 !taskdata->td_flags.proxy; 755 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 756 757 kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 758 KMP_DEBUG_ASSERT(children >= 0); 759 760 // Now, go up the ancestor tree to see if any ancestors can now be freed. 761 while (children == 0) { 762 kmp_taskdata_t *parent_taskdata = taskdata->td_parent; 763 764 KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " 765 "and freeing itself\n", 766 gtid, taskdata)); 767 768 // --- Deallocate my ancestor task --- 769 __kmp_free_task(gtid, taskdata, thread); 770 771 taskdata = parent_taskdata; 772 773 if (team_serial) 774 return; 775 // Stop checking ancestors at implicit task instead of walking up ancestor 776 // tree to avoid premature deallocation of ancestors. 777 if (taskdata->td_flags.tasktype == TASK_IMPLICIT) { 778 if (taskdata->td_dephash) { // do we need to cleanup dephash? 779 int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks); 780 kmp_tasking_flags_t flags_old = taskdata->td_flags; 781 if (children == 0 && flags_old.complete == 1) { 782 kmp_tasking_flags_t flags_new = flags_old; 783 flags_new.complete = 0; 784 if (KMP_COMPARE_AND_STORE_ACQ32( 785 RCAST(kmp_int32 *, &taskdata->td_flags), 786 *RCAST(kmp_int32 *, &flags_old), 787 *RCAST(kmp_int32 *, &flags_new))) { 788 KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans " 789 "dephash of implicit task %p\n", 790 gtid, taskdata)); 791 // cleanup dephash of finished implicit task 792 __kmp_dephash_free_entries(thread, taskdata->td_dephash); 793 } 794 } 795 } 796 return; 797 } 798 // Predecrement simulated by "- 1" calculation 799 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 800 KMP_DEBUG_ASSERT(children >= 0); 801 } 802 803 KA_TRACE( 804 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " 805 "not freeing it yet\n", 806 gtid, taskdata, children)); 807 } 808 809 // __kmp_task_finish: bookkeeping to do when a task finishes execution 810 // 811 // gtid: global thread ID for calling thread 812 // task: task to be finished 813 // resumed_task: task to be resumed. (may be NULL if task is serialized) 814 // 815 // template<ompt>: effectively ompt_enabled.enabled!=0 816 // the version with ompt=false is inlined, allowing to optimize away all ompt 817 // code in this case 818 template <bool ompt> 819 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task, 820 kmp_taskdata_t *resumed_task) { 821 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 822 kmp_info_t *thread = __kmp_threads[gtid]; 823 kmp_task_team_t *task_team = 824 thread->th.th_task_team; // might be NULL for serial teams... 825 kmp_int32 children = 0; 826 827 KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming " 828 "task %p\n", 829 gtid, taskdata, resumed_task)); 830 831 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 832 833 // Pop task from stack if tied 834 #ifdef BUILD_TIED_TASK_STACK 835 if (taskdata->td_flags.tiedness == TASK_TIED) { 836 __kmp_pop_task_stack(gtid, thread, taskdata); 837 } 838 #endif /* BUILD_TIED_TASK_STACK */ 839 840 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 841 // untied task needs to check the counter so that the task structure is not 842 // freed prematurely 843 kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1; 844 KA_TRACE( 845 20, 846 ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n", 847 gtid, counter, taskdata)); 848 if (counter > 0) { 849 // untied task is not done, to be continued possibly by other thread, do 850 // not free it now 851 if (resumed_task == NULL) { 852 KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial); 853 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 854 // task is the parent 855 } 856 thread->th.th_current_task = resumed_task; // restore current_task 857 resumed_task->td_flags.executing = 1; // resume previous task 858 KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, " 859 "resuming task %p\n", 860 gtid, taskdata, resumed_task)); 861 return; 862 } 863 } 864 865 // bookkeeping for resuming task: 866 // GEH - note tasking_ser => task_serial 867 KMP_DEBUG_ASSERT( 868 (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == 869 taskdata->td_flags.task_serial); 870 if (taskdata->td_flags.task_serial) { 871 if (resumed_task == NULL) { 872 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 873 // task is the parent 874 } 875 } else { 876 KMP_DEBUG_ASSERT(resumed_task != 877 NULL); // verify that resumed task is passed as argument 878 } 879 880 /* If the tasks' destructor thunk flag has been set, we need to invoke the 881 destructor thunk that has been generated by the compiler. The code is 882 placed here, since at this point other tasks might have been released 883 hence overlapping the destructor invocations with some other work in the 884 released tasks. The OpenMP spec is not specific on when the destructors 885 are invoked, so we should be free to choose. */ 886 if (taskdata->td_flags.destructors_thunk) { 887 kmp_routine_entry_t destr_thunk = task->data1.destructors; 888 KMP_ASSERT(destr_thunk); 889 destr_thunk(gtid, task); 890 } 891 892 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 893 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1); 894 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 895 896 bool detach = false; 897 if (taskdata->td_flags.detachable == TASK_DETACHABLE) { 898 if (taskdata->td_allow_completion_event.type == 899 KMP_EVENT_ALLOW_COMPLETION) { 900 // event hasn't been fulfilled yet. Try to detach task. 901 __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 902 if (taskdata->td_allow_completion_event.type == 903 KMP_EVENT_ALLOW_COMPLETION) { 904 // task finished execution 905 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 906 taskdata->td_flags.executing = 0; // suspend the finishing task 907 908 #if OMPT_SUPPORT 909 // For a detached task, which is not completed, we switch back 910 // the omp_fulfill_event signals completion 911 // locking is necessary to avoid a race with ompt_task_late_fulfill 912 if (ompt) 913 __ompt_task_finish(task, resumed_task, ompt_task_detach); 914 #endif 915 916 // no access to taskdata after this point! 917 // __kmp_fulfill_event might free taskdata at any time from now 918 919 taskdata->td_flags.proxy = TASK_PROXY; // proxify! 920 detach = true; 921 } 922 __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 923 } 924 } 925 926 if (!detach) { 927 taskdata->td_flags.complete = 1; // mark the task as completed 928 929 #if OMPT_SUPPORT 930 // This is not a detached task, we are done here 931 if (ompt) 932 __ompt_task_finish(task, resumed_task, ompt_task_complete); 933 #endif 934 935 // Only need to keep track of count if team parallel and tasking not 936 // serialized, or task is detachable and event has already been fulfilled 937 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) || 938 taskdata->td_flags.detachable == TASK_DETACHABLE || 939 taskdata->td_flags.hidden_helper) { 940 // Predecrement simulated by "- 1" calculation 941 children = 942 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1; 943 KMP_DEBUG_ASSERT(children >= 0); 944 if (taskdata->td_taskgroup) 945 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 946 __kmp_release_deps(gtid, taskdata); 947 } else if (task_team && task_team->tt.tt_found_proxy_tasks) { 948 // if we found proxy tasks there could exist a dependency chain 949 // with the proxy task as origin 950 __kmp_release_deps(gtid, taskdata); 951 } 952 // td_flags.executing must be marked as 0 after __kmp_release_deps has been 953 // called. Othertwise, if a task is executed immediately from the 954 // release_deps code, the flag will be reset to 1 again by this same 955 // function 956 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 957 taskdata->td_flags.executing = 0; // suspend the finishing task 958 } 959 960 961 KA_TRACE( 962 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n", 963 gtid, taskdata, children)); 964 965 // Free this task and then ancestor tasks if they have no children. 966 // Restore th_current_task first as suggested by John: 967 // johnmc: if an asynchronous inquiry peers into the runtime system 968 // it doesn't see the freed task as the current task. 969 thread->th.th_current_task = resumed_task; 970 if (!detach) 971 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 972 973 // TODO: GEH - make sure root team implicit task is initialized properly. 974 // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); 975 resumed_task->td_flags.executing = 1; // resume previous task 976 977 KA_TRACE( 978 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n", 979 gtid, taskdata, resumed_task)); 980 981 return; 982 } 983 984 template <bool ompt> 985 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref, 986 kmp_int32 gtid, 987 kmp_task_t *task) { 988 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n", 989 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 990 __kmp_assert_valid_gtid(gtid); 991 // this routine will provide task to resume 992 __kmp_task_finish<ompt>(gtid, task, NULL); 993 994 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n", 995 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 996 997 #if OMPT_SUPPORT 998 if (ompt) { 999 ompt_frame_t *ompt_frame; 1000 __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); 1001 ompt_frame->enter_frame = ompt_data_none; 1002 ompt_frame->enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer; 1003 } 1004 #endif 1005 1006 return; 1007 } 1008 1009 #if OMPT_SUPPORT 1010 OMPT_NOINLINE 1011 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 1012 kmp_task_t *task) { 1013 __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task); 1014 } 1015 #endif // OMPT_SUPPORT 1016 1017 // __kmpc_omp_task_complete_if0: report that a task has completed execution 1018 // 1019 // loc_ref: source location information; points to end of task block. 1020 // gtid: global thread number. 1021 // task: task thunk for the completed task. 1022 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 1023 kmp_task_t *task) { 1024 #if OMPT_SUPPORT 1025 if (UNLIKELY(ompt_enabled.enabled)) { 1026 __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task); 1027 return; 1028 } 1029 #endif 1030 __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task); 1031 } 1032 1033 #ifdef TASK_UNUSED 1034 // __kmpc_omp_task_complete: report that a task has completed execution 1035 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 1036 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 1037 kmp_task_t *task) { 1038 KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid, 1039 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1040 1041 __kmp_task_finish<false>(gtid, task, 1042 NULL); // Not sure how to find task to resume 1043 1044 KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid, 1045 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1046 return; 1047 } 1048 #endif // TASK_UNUSED 1049 1050 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit 1051 // task for a given thread 1052 // 1053 // loc_ref: reference to source location of parallel region 1054 // this_thr: thread data structure corresponding to implicit task 1055 // team: team for this_thr 1056 // tid: thread id of given thread within team 1057 // set_curr_task: TRUE if need to push current task to thread 1058 // NOTE: Routine does not set up the implicit task ICVS. This is assumed to 1059 // have already been done elsewhere. 1060 // TODO: Get better loc_ref. Value passed in may be NULL 1061 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 1062 kmp_team_t *team, int tid, int set_curr_task) { 1063 kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid]; 1064 1065 KF_TRACE( 1066 10, 1067 ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n", 1068 tid, team, task, set_curr_task ? "TRUE" : "FALSE")); 1069 1070 task->td_task_id = KMP_GEN_TASK_ID(); 1071 task->td_team = team; 1072 // task->td_parent = NULL; // fix for CQ230101 (broken parent task info 1073 // in debugger) 1074 task->td_ident = loc_ref; 1075 task->td_taskwait_ident = NULL; 1076 task->td_taskwait_counter = 0; 1077 task->td_taskwait_thread = 0; 1078 1079 task->td_flags.tiedness = TASK_TIED; 1080 task->td_flags.tasktype = TASK_IMPLICIT; 1081 task->td_flags.proxy = TASK_FULL; 1082 1083 // All implicit tasks are executed immediately, not deferred 1084 task->td_flags.task_serial = 1; 1085 task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1086 task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1087 1088 task->td_flags.started = 1; 1089 task->td_flags.executing = 1; 1090 task->td_flags.complete = 0; 1091 task->td_flags.freed = 0; 1092 1093 task->td_depnode = NULL; 1094 task->td_last_tied = task; 1095 task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1096 1097 if (set_curr_task) { // only do this init first time thread is created 1098 KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0); 1099 // Not used: don't need to deallocate implicit task 1100 KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0); 1101 task->td_taskgroup = NULL; // An implicit task does not have taskgroup 1102 task->td_dephash = NULL; 1103 __kmp_push_current_task_to_thread(this_thr, team, tid); 1104 } else { 1105 KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); 1106 KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); 1107 } 1108 1109 #if OMPT_SUPPORT 1110 if (UNLIKELY(ompt_enabled.enabled)) 1111 __ompt_task_init(task, tid); 1112 #endif 1113 1114 KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid, 1115 team, task)); 1116 } 1117 1118 // __kmp_finish_implicit_task: Release resources associated to implicit tasks 1119 // at the end of parallel regions. Some resources are kept for reuse in the next 1120 // parallel region. 1121 // 1122 // thread: thread data structure corresponding to implicit task 1123 void __kmp_finish_implicit_task(kmp_info_t *thread) { 1124 kmp_taskdata_t *task = thread->th.th_current_task; 1125 if (task->td_dephash) { 1126 int children; 1127 task->td_flags.complete = 1; 1128 children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks); 1129 kmp_tasking_flags_t flags_old = task->td_flags; 1130 if (children == 0 && flags_old.complete == 1) { 1131 kmp_tasking_flags_t flags_new = flags_old; 1132 flags_new.complete = 0; 1133 if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags), 1134 *RCAST(kmp_int32 *, &flags_old), 1135 *RCAST(kmp_int32 *, &flags_new))) { 1136 KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans " 1137 "dephash of implicit task %p\n", 1138 thread->th.th_info.ds.ds_gtid, task)); 1139 __kmp_dephash_free_entries(thread, task->td_dephash); 1140 } 1141 } 1142 } 1143 } 1144 1145 // __kmp_free_implicit_task: Release resources associated to implicit tasks 1146 // when these are destroyed regions 1147 // 1148 // thread: thread data structure corresponding to implicit task 1149 void __kmp_free_implicit_task(kmp_info_t *thread) { 1150 kmp_taskdata_t *task = thread->th.th_current_task; 1151 if (task && task->td_dephash) { 1152 __kmp_dephash_free(thread, task->td_dephash); 1153 task->td_dephash = NULL; 1154 } 1155 } 1156 1157 // Round up a size to a power of two specified by val: Used to insert padding 1158 // between structures co-allocated using a single malloc() call 1159 static size_t __kmp_round_up_to_val(size_t size, size_t val) { 1160 if (size & (val - 1)) { 1161 size &= ~(val - 1); 1162 if (size <= KMP_SIZE_T_MAX - val) { 1163 size += val; // Round up if there is no overflow. 1164 } 1165 } 1166 return size; 1167 } // __kmp_round_up_to_va 1168 1169 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task 1170 // 1171 // loc_ref: source location information 1172 // gtid: global thread number. 1173 // flags: include tiedness & task type (explicit vs. implicit) of the ''new'' 1174 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine. 1175 // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including 1176 // private vars accessed in task. 1177 // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed 1178 // in task. 1179 // task_entry: Pointer to task code entry point generated by compiler. 1180 // returns: a pointer to the allocated kmp_task_t structure (task). 1181 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1182 kmp_tasking_flags_t *flags, 1183 size_t sizeof_kmp_task_t, size_t sizeof_shareds, 1184 kmp_routine_entry_t task_entry) { 1185 kmp_task_t *task; 1186 kmp_taskdata_t *taskdata; 1187 kmp_info_t *thread = __kmp_threads[gtid]; 1188 kmp_info_t *encountering_thread = thread; 1189 kmp_team_t *team = thread->th.th_team; 1190 kmp_taskdata_t *parent_task = thread->th.th_current_task; 1191 size_t shareds_offset; 1192 1193 if (UNLIKELY(!TCR_4(__kmp_init_middle))) 1194 __kmp_middle_initialize(); 1195 1196 if (flags->hidden_helper) { 1197 if (__kmp_enable_hidden_helper) { 1198 if (!TCR_4(__kmp_init_hidden_helper)) 1199 __kmp_hidden_helper_initialize(); 1200 1201 // For a hidden helper task encountered by a regular thread, we will push 1202 // the task to the (gtid%__kmp_hidden_helper_threads_num)-th hidden helper 1203 // thread. 1204 if (!KMP_HIDDEN_HELPER_THREAD(gtid)) { 1205 thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)]; 1206 // We don't change the parent-child relation for hidden helper task as 1207 // we need that to do per-task-region synchronization. 1208 } 1209 } else { 1210 // If the hidden helper task is not enabled, reset the flag to FALSE. 1211 flags->hidden_helper = FALSE; 1212 } 1213 } 1214 1215 KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " 1216 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1217 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, 1218 sizeof_shareds, task_entry)); 1219 1220 if (parent_task->td_flags.final) { 1221 if (flags->merged_if0) { 1222 } 1223 flags->final = 1; 1224 } 1225 1226 if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) { 1227 // Untied task encountered causes the TSC algorithm to check entire deque of 1228 // the victim thread. If no untied task encountered, then checking the head 1229 // of the deque should be enough. 1230 KMP_CHECK_UPDATE( 1231 encountering_thread->th.th_task_team->tt.tt_untied_task_encountered, 1); 1232 } 1233 1234 // Detachable tasks are not proxy tasks yet but could be in the future. Doing 1235 // the tasking setup 1236 // when that happens is too late. 1237 if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE || 1238 flags->hidden_helper) { 1239 if (flags->proxy == TASK_PROXY) { 1240 flags->tiedness = TASK_UNTIED; 1241 flags->merged_if0 = 1; 1242 } 1243 /* are we running in a sequential parallel or tskm_immediate_exec... we need 1244 tasking support enabled */ 1245 if ((encountering_thread->th.th_task_team) == NULL) { 1246 /* This should only happen if the team is serialized 1247 setup a task team and propagate it to the thread */ 1248 KMP_DEBUG_ASSERT(team->t.t_serialized); 1249 KA_TRACE(30, 1250 ("T#%d creating task team in __kmp_task_alloc for proxy task\n", 1251 gtid)); 1252 __kmp_task_team_setup( 1253 encountering_thread, team, 1254 1); // 1 indicates setup the current team regardless of nthreads 1255 encountering_thread->th.th_task_team = 1256 team->t.t_task_team[encountering_thread->th.th_task_state]; 1257 } 1258 kmp_task_team_t *task_team = encountering_thread->th.th_task_team; 1259 1260 /* tasking must be enabled now as the task might not be pushed */ 1261 if (!KMP_TASKING_ENABLED(task_team)) { 1262 KA_TRACE( 1263 30, 1264 ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid)); 1265 __kmp_enable_tasking(task_team, encountering_thread); 1266 kmp_int32 tid = encountering_thread->th.th_info.ds.ds_tid; 1267 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 1268 // No lock needed since only owner can allocate 1269 if (thread_data->td.td_deque == NULL) { 1270 __kmp_alloc_task_deque(encountering_thread, thread_data); 1271 } 1272 } 1273 1274 if (flags->proxy == TASK_PROXY && 1275 task_team->tt.tt_found_proxy_tasks == FALSE) 1276 TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE); 1277 if (flags->hidden_helper && 1278 task_team->tt.tt_hidden_helper_task_encountered == FALSE) 1279 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE); 1280 } 1281 1282 // Calculate shared structure offset including padding after kmp_task_t struct 1283 // to align pointers in shared struct 1284 shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t; 1285 shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *)); 1286 1287 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 1288 KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid, 1289 shareds_offset)); 1290 KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid, 1291 sizeof_shareds)); 1292 1293 // Avoid double allocation here by combining shareds with taskdata 1294 #if USE_FAST_MEMORY 1295 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate( 1296 encountering_thread, shareds_offset + sizeof_shareds); 1297 #else /* ! USE_FAST_MEMORY */ 1298 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc( 1299 encountering_thread, shareds_offset + sizeof_shareds); 1300 #endif /* USE_FAST_MEMORY */ 1301 ANNOTATE_HAPPENS_AFTER(taskdata); 1302 1303 task = KMP_TASKDATA_TO_TASK(taskdata); 1304 1305 // Make sure task & taskdata are aligned appropriately 1306 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD 1307 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0); 1308 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0); 1309 #else 1310 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0); 1311 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0); 1312 #endif 1313 if (sizeof_shareds > 0) { 1314 // Avoid double allocation here by combining shareds with taskdata 1315 task->shareds = &((char *)taskdata)[shareds_offset]; 1316 // Make sure shareds struct is aligned to pointer size 1317 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 1318 0); 1319 } else { 1320 task->shareds = NULL; 1321 } 1322 task->routine = task_entry; 1323 task->part_id = 0; // AC: Always start with 0 part id 1324 1325 taskdata->td_task_id = KMP_GEN_TASK_ID(); 1326 taskdata->td_team = thread->th.th_team; 1327 taskdata->td_alloc_thread = encountering_thread; 1328 taskdata->td_parent = parent_task; 1329 taskdata->td_level = parent_task->td_level + 1; // increment nesting level 1330 KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); 1331 taskdata->td_ident = loc_ref; 1332 taskdata->td_taskwait_ident = NULL; 1333 taskdata->td_taskwait_counter = 0; 1334 taskdata->td_taskwait_thread = 0; 1335 KMP_DEBUG_ASSERT(taskdata->td_parent != NULL); 1336 // avoid copying icvs for proxy tasks 1337 if (flags->proxy == TASK_FULL) 1338 copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs); 1339 1340 taskdata->td_flags.tiedness = flags->tiedness; 1341 taskdata->td_flags.final = flags->final; 1342 taskdata->td_flags.merged_if0 = flags->merged_if0; 1343 taskdata->td_flags.destructors_thunk = flags->destructors_thunk; 1344 taskdata->td_flags.proxy = flags->proxy; 1345 taskdata->td_flags.detachable = flags->detachable; 1346 taskdata->td_flags.hidden_helper = flags->hidden_helper; 1347 taskdata->encountering_gtid = gtid; 1348 taskdata->td_task_team = thread->th.th_task_team; 1349 taskdata->td_size_alloc = shareds_offset + sizeof_shareds; 1350 taskdata->td_flags.tasktype = TASK_EXPLICIT; 1351 1352 // GEH - TODO: fix this to copy parent task's value of tasking_ser flag 1353 taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1354 1355 // GEH - TODO: fix this to copy parent task's value of team_serial flag 1356 taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1357 1358 // GEH - Note we serialize the task if the team is serialized to make sure 1359 // implicit parallel region tasks are not left until program termination to 1360 // execute. Also, it helps locality to execute immediately. 1361 1362 taskdata->td_flags.task_serial = 1363 (parent_task->td_flags.final || taskdata->td_flags.team_serial || 1364 taskdata->td_flags.tasking_ser || flags->merged_if0); 1365 1366 taskdata->td_flags.started = 0; 1367 taskdata->td_flags.executing = 0; 1368 taskdata->td_flags.complete = 0; 1369 taskdata->td_flags.freed = 0; 1370 1371 taskdata->td_flags.native = flags->native; 1372 1373 KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); 1374 // start at one because counts current task and children 1375 KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); 1376 taskdata->td_taskgroup = 1377 parent_task->td_taskgroup; // task inherits taskgroup from the parent task 1378 taskdata->td_dephash = NULL; 1379 taskdata->td_depnode = NULL; 1380 if (flags->tiedness == TASK_UNTIED) 1381 taskdata->td_last_tied = NULL; // will be set when the task is scheduled 1382 else 1383 taskdata->td_last_tied = taskdata; 1384 taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1385 #if OMPT_SUPPORT 1386 if (UNLIKELY(ompt_enabled.enabled)) 1387 __ompt_task_init(taskdata, gtid); 1388 #endif 1389 // Only need to keep track of child task counts if team parallel and tasking 1390 // not serialized or if it is a proxy or detachable or hidden helper task 1391 if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE || 1392 flags->hidden_helper || 1393 !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { 1394 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 1395 if (parent_task->td_taskgroup) 1396 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 1397 // Only need to keep track of allocated child tasks for explicit tasks since 1398 // implicit not deallocated 1399 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) { 1400 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 1401 } 1402 } 1403 1404 if (flags->hidden_helper) { 1405 taskdata->td_flags.task_serial = FALSE; 1406 // Increment the number of hidden helper tasks to be executed 1407 KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks); 1408 } 1409 1410 KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n", 1411 gtid, taskdata, taskdata->td_parent)); 1412 ANNOTATE_HAPPENS_BEFORE(task); 1413 1414 return task; 1415 } 1416 1417 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1418 kmp_int32 flags, size_t sizeof_kmp_task_t, 1419 size_t sizeof_shareds, 1420 kmp_routine_entry_t task_entry) { 1421 kmp_task_t *retval; 1422 kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; 1423 __kmp_assert_valid_gtid(gtid); 1424 input_flags->native = FALSE; 1425 // __kmp_task_alloc() sets up all other runtime flags 1426 KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) " 1427 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1428 gtid, loc_ref, input_flags->tiedness ? "tied " : "untied", 1429 input_flags->proxy ? "proxy" : "", 1430 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t, 1431 sizeof_shareds, task_entry)); 1432 1433 retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t, 1434 sizeof_shareds, task_entry); 1435 1436 KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval)); 1437 1438 return retval; 1439 } 1440 1441 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1442 kmp_int32 flags, 1443 size_t sizeof_kmp_task_t, 1444 size_t sizeof_shareds, 1445 kmp_routine_entry_t task_entry, 1446 kmp_int64 device_id) { 1447 if (__kmp_enable_hidden_helper) { 1448 auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags); 1449 input_flags.hidden_helper = TRUE; 1450 } 1451 1452 return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t, 1453 sizeof_shareds, task_entry); 1454 } 1455 1456 /*! 1457 @ingroup TASKING 1458 @param loc_ref location of the original task directive 1459 @param gtid Global Thread ID of encountering thread 1460 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new 1461 task'' 1462 @param naffins Number of affinity items 1463 @param affin_list List of affinity items 1464 @return Returns non-zero if registering affinity information was not successful. 1465 Returns 0 if registration was successful 1466 This entry registers the affinity information attached to a task with the task 1467 thunk structure kmp_taskdata_t. 1468 */ 1469 kmp_int32 1470 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, 1471 kmp_task_t *new_task, kmp_int32 naffins, 1472 kmp_task_affinity_info_t *affin_list) { 1473 return 0; 1474 } 1475 1476 // __kmp_invoke_task: invoke the specified task 1477 // 1478 // gtid: global thread ID of caller 1479 // task: the task to invoke 1480 // current_task: the task to resume after task invocation 1481 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task, 1482 kmp_taskdata_t *current_task) { 1483 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 1484 kmp_info_t *thread; 1485 int discard = 0 /* false */; 1486 KA_TRACE( 1487 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n", 1488 gtid, taskdata, current_task)); 1489 KMP_DEBUG_ASSERT(task); 1490 if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY && 1491 taskdata->td_flags.complete == 1)) { 1492 // This is a proxy task that was already completed but it needs to run 1493 // its bottom-half finish 1494 KA_TRACE( 1495 30, 1496 ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n", 1497 gtid, taskdata)); 1498 1499 __kmp_bottom_half_finish_proxy(gtid, task); 1500 1501 KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for " 1502 "proxy task %p, resuming task %p\n", 1503 gtid, taskdata, current_task)); 1504 1505 return; 1506 } 1507 1508 #if OMPT_SUPPORT 1509 // For untied tasks, the first task executed only calls __kmpc_omp_task and 1510 // does not execute code. 1511 ompt_thread_info_t oldInfo; 1512 if (UNLIKELY(ompt_enabled.enabled)) { 1513 // Store the threads states and restore them after the task 1514 thread = __kmp_threads[gtid]; 1515 oldInfo = thread->th.ompt_thread_info; 1516 thread->th.ompt_thread_info.wait_id = 0; 1517 thread->th.ompt_thread_info.state = (thread->th.th_team_serialized) 1518 ? ompt_state_work_serial 1519 : ompt_state_work_parallel; 1520 taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1521 } 1522 #endif 1523 1524 // Decreament the counter of hidden helper tasks to be executed 1525 if (taskdata->td_flags.hidden_helper) { 1526 // Hidden helper tasks can only be executed by hidden helper threads 1527 KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid)); 1528 KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks); 1529 } 1530 1531 // Proxy tasks are not handled by the runtime 1532 if (taskdata->td_flags.proxy != TASK_PROXY) { 1533 ANNOTATE_HAPPENS_AFTER(task); 1534 __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded 1535 } 1536 1537 // TODO: cancel tasks if the parallel region has also been cancelled 1538 // TODO: check if this sequence can be hoisted above __kmp_task_start 1539 // if cancellation has been enabled for this run ... 1540 if (UNLIKELY(__kmp_omp_cancellation)) { 1541 thread = __kmp_threads[gtid]; 1542 kmp_team_t *this_team = thread->th.th_team; 1543 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 1544 if ((taskgroup && taskgroup->cancel_request) || 1545 (this_team->t.t_cancel_request == cancel_parallel)) { 1546 #if OMPT_SUPPORT && OMPT_OPTIONAL 1547 ompt_data_t *task_data; 1548 if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) { 1549 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 1550 ompt_callbacks.ompt_callback(ompt_callback_cancel)( 1551 task_data, 1552 ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup 1553 : ompt_cancel_parallel) | 1554 ompt_cancel_discarded_task, 1555 NULL); 1556 } 1557 #endif 1558 KMP_COUNT_BLOCK(TASK_cancelled); 1559 // this task belongs to a task group and we need to cancel it 1560 discard = 1 /* true */; 1561 } 1562 } 1563 1564 // Invoke the task routine and pass in relevant data. 1565 // Thunks generated by gcc take a different argument list. 1566 if (!discard) { 1567 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 1568 taskdata->td_last_tied = current_task->td_last_tied; 1569 KMP_DEBUG_ASSERT(taskdata->td_last_tied); 1570 } 1571 #if KMP_STATS_ENABLED 1572 KMP_COUNT_BLOCK(TASK_executed); 1573 switch (KMP_GET_THREAD_STATE()) { 1574 case FORK_JOIN_BARRIER: 1575 KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); 1576 break; 1577 case PLAIN_BARRIER: 1578 KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); 1579 break; 1580 case TASKYIELD: 1581 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); 1582 break; 1583 case TASKWAIT: 1584 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); 1585 break; 1586 case TASKGROUP: 1587 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); 1588 break; 1589 default: 1590 KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); 1591 break; 1592 } 1593 #endif // KMP_STATS_ENABLED 1594 1595 // OMPT task begin 1596 #if OMPT_SUPPORT 1597 if (UNLIKELY(ompt_enabled.enabled)) 1598 __ompt_task_start(task, current_task, gtid); 1599 #endif 1600 1601 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1602 kmp_uint64 cur_time; 1603 kmp_int32 kmp_itt_count_task = 1604 __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial && 1605 current_task->td_flags.tasktype == TASK_IMPLICIT; 1606 if (kmp_itt_count_task) { 1607 thread = __kmp_threads[gtid]; 1608 // Time outer level explicit task on barrier for adjusting imbalance time 1609 if (thread->th.th_bar_arrive_time) 1610 cur_time = __itt_get_timestamp(); 1611 else 1612 kmp_itt_count_task = 0; // thread is not on a barrier - skip timing 1613 } 1614 KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task) 1615 #endif 1616 1617 #ifdef KMP_GOMP_COMPAT 1618 if (taskdata->td_flags.native) { 1619 ((void (*)(void *))(*(task->routine)))(task->shareds); 1620 } else 1621 #endif /* KMP_GOMP_COMPAT */ 1622 { 1623 (*(task->routine))(gtid, task); 1624 } 1625 KMP_POP_PARTITIONED_TIMER(); 1626 1627 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1628 if (kmp_itt_count_task) { 1629 // Barrier imbalance - adjust arrive time with the task duration 1630 thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time); 1631 } 1632 KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed) 1633 KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent 1634 #endif 1635 1636 } 1637 1638 // Proxy tasks are not handled by the runtime 1639 if (taskdata->td_flags.proxy != TASK_PROXY) { 1640 ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent); 1641 #if OMPT_SUPPORT 1642 if (UNLIKELY(ompt_enabled.enabled)) { 1643 thread->th.ompt_thread_info = oldInfo; 1644 if (taskdata->td_flags.tiedness == TASK_TIED) { 1645 taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1646 } 1647 __kmp_task_finish<true>(gtid, task, current_task); 1648 } else 1649 #endif 1650 __kmp_task_finish<false>(gtid, task, current_task); 1651 } 1652 1653 KA_TRACE( 1654 30, 1655 ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n", 1656 gtid, taskdata, current_task)); 1657 return; 1658 } 1659 1660 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution 1661 // 1662 // loc_ref: location of original task pragma (ignored) 1663 // gtid: Global Thread ID of encountering thread 1664 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' 1665 // Returns: 1666 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1667 // be resumed later. 1668 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1669 // resumed later. 1670 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 1671 kmp_task_t *new_task) { 1672 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1673 1674 KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid, 1675 loc_ref, new_taskdata)); 1676 1677 #if OMPT_SUPPORT 1678 kmp_taskdata_t *parent; 1679 if (UNLIKELY(ompt_enabled.enabled)) { 1680 parent = new_taskdata->td_parent; 1681 if (ompt_enabled.ompt_callback_task_create) { 1682 ompt_data_t task_data = ompt_data_none; 1683 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1684 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1685 parent ? &(parent->ompt_task_info.frame) : NULL, 1686 &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0, 1687 OMPT_GET_RETURN_ADDRESS(0)); 1688 } 1689 } 1690 #endif 1691 1692 /* Should we execute the new task or queue it? For now, let's just always try 1693 to queue it. If the queue fills up, then we'll execute it. */ 1694 1695 if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1696 { // Execute this task immediately 1697 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1698 new_taskdata->td_flags.task_serial = 1; 1699 __kmp_invoke_task(gtid, new_task, current_task); 1700 } 1701 1702 KA_TRACE( 1703 10, 1704 ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " 1705 "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", 1706 gtid, loc_ref, new_taskdata)); 1707 1708 ANNOTATE_HAPPENS_BEFORE(new_task); 1709 #if OMPT_SUPPORT 1710 if (UNLIKELY(ompt_enabled.enabled)) { 1711 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1712 } 1713 #endif 1714 return TASK_CURRENT_NOT_QUEUED; 1715 } 1716 1717 // __kmp_omp_task: Schedule a non-thread-switchable task for execution 1718 // 1719 // gtid: Global Thread ID of encountering thread 1720 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() 1721 // serialize_immediate: if TRUE then if the task is executed immediately its 1722 // execution will be serialized 1723 // Returns: 1724 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1725 // be resumed later. 1726 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1727 // resumed later. 1728 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 1729 bool serialize_immediate) { 1730 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1731 1732 /* Should we execute the new task or queue it? For now, let's just always try 1733 to queue it. If the queue fills up, then we'll execute it. */ 1734 if (new_taskdata->td_flags.proxy == TASK_PROXY || 1735 __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1736 { // Execute this task immediately 1737 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1738 if (serialize_immediate) 1739 new_taskdata->td_flags.task_serial = 1; 1740 __kmp_invoke_task(gtid, new_task, current_task); 1741 } 1742 1743 ANNOTATE_HAPPENS_BEFORE(new_task); 1744 return TASK_CURRENT_NOT_QUEUED; 1745 } 1746 1747 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a 1748 // non-thread-switchable task from the parent thread only! 1749 // 1750 // loc_ref: location of original task pragma (ignored) 1751 // gtid: Global Thread ID of encountering thread 1752 // new_task: non-thread-switchable task thunk allocated by 1753 // __kmp_omp_task_alloc() 1754 // Returns: 1755 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1756 // be resumed later. 1757 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1758 // resumed later. 1759 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 1760 kmp_task_t *new_task) { 1761 kmp_int32 res; 1762 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 1763 1764 #if KMP_DEBUG || OMPT_SUPPORT 1765 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1766 #endif 1767 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 1768 new_taskdata)); 1769 __kmp_assert_valid_gtid(gtid); 1770 1771 #if OMPT_SUPPORT 1772 kmp_taskdata_t *parent = NULL; 1773 if (UNLIKELY(ompt_enabled.enabled)) { 1774 if (!new_taskdata->td_flags.started) { 1775 OMPT_STORE_RETURN_ADDRESS(gtid); 1776 parent = new_taskdata->td_parent; 1777 if (!parent->ompt_task_info.frame.enter_frame.ptr) { 1778 parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1779 } 1780 if (ompt_enabled.ompt_callback_task_create) { 1781 ompt_data_t task_data = ompt_data_none; 1782 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1783 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1784 parent ? &(parent->ompt_task_info.frame) : NULL, 1785 &(new_taskdata->ompt_task_info.task_data), 1786 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1787 OMPT_LOAD_RETURN_ADDRESS(gtid)); 1788 } 1789 } else { 1790 // We are scheduling the continuation of an UNTIED task. 1791 // Scheduling back to the parent task. 1792 __ompt_task_finish(new_task, 1793 new_taskdata->ompt_task_info.scheduling_parent, 1794 ompt_task_switch); 1795 new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1796 } 1797 } 1798 #endif 1799 1800 res = __kmp_omp_task(gtid, new_task, true); 1801 1802 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 1803 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 1804 gtid, loc_ref, new_taskdata)); 1805 #if OMPT_SUPPORT 1806 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 1807 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1808 } 1809 #endif 1810 return res; 1811 } 1812 1813 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule 1814 // a taskloop task with the correct OMPT return address 1815 // 1816 // loc_ref: location of original task pragma (ignored) 1817 // gtid: Global Thread ID of encountering thread 1818 // new_task: non-thread-switchable task thunk allocated by 1819 // __kmp_omp_task_alloc() 1820 // codeptr_ra: return address for OMPT callback 1821 // Returns: 1822 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1823 // be resumed later. 1824 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1825 // resumed later. 1826 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid, 1827 kmp_task_t *new_task, void *codeptr_ra) { 1828 kmp_int32 res; 1829 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 1830 1831 #if KMP_DEBUG || OMPT_SUPPORT 1832 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1833 #endif 1834 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 1835 new_taskdata)); 1836 1837 #if OMPT_SUPPORT 1838 kmp_taskdata_t *parent = NULL; 1839 if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) { 1840 parent = new_taskdata->td_parent; 1841 if (!parent->ompt_task_info.frame.enter_frame.ptr) 1842 parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1843 if (ompt_enabled.ompt_callback_task_create) { 1844 ompt_data_t task_data = ompt_data_none; 1845 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1846 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1847 parent ? &(parent->ompt_task_info.frame) : NULL, 1848 &(new_taskdata->ompt_task_info.task_data), 1849 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1850 codeptr_ra); 1851 } 1852 } 1853 #endif 1854 1855 res = __kmp_omp_task(gtid, new_task, true); 1856 1857 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 1858 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 1859 gtid, loc_ref, new_taskdata)); 1860 #if OMPT_SUPPORT 1861 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 1862 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1863 } 1864 #endif 1865 return res; 1866 } 1867 1868 template <bool ompt> 1869 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid, 1870 void *frame_address, 1871 void *return_address) { 1872 kmp_taskdata_t *taskdata; 1873 kmp_info_t *thread; 1874 int thread_finished = FALSE; 1875 KMP_SET_THREAD_STATE_BLOCK(TASKWAIT); 1876 1877 KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref)); 1878 __kmp_assert_valid_gtid(gtid); 1879 1880 if (__kmp_tasking_mode != tskm_immediate_exec) { 1881 thread = __kmp_threads[gtid]; 1882 taskdata = thread->th.th_current_task; 1883 1884 #if OMPT_SUPPORT && OMPT_OPTIONAL 1885 ompt_data_t *my_task_data; 1886 ompt_data_t *my_parallel_data; 1887 1888 if (ompt) { 1889 my_task_data = &(taskdata->ompt_task_info.task_data); 1890 my_parallel_data = OMPT_CUR_TEAM_DATA(thread); 1891 1892 taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address; 1893 1894 if (ompt_enabled.ompt_callback_sync_region) { 1895 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 1896 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 1897 my_task_data, return_address); 1898 } 1899 1900 if (ompt_enabled.ompt_callback_sync_region_wait) { 1901 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 1902 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 1903 my_task_data, return_address); 1904 } 1905 } 1906 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1907 1908 // Debugger: The taskwait is active. Store location and thread encountered the 1909 // taskwait. 1910 #if USE_ITT_BUILD 1911 // Note: These values are used by ITT events as well. 1912 #endif /* USE_ITT_BUILD */ 1913 taskdata->td_taskwait_counter += 1; 1914 taskdata->td_taskwait_ident = loc_ref; 1915 taskdata->td_taskwait_thread = gtid + 1; 1916 1917 #if USE_ITT_BUILD 1918 void *itt_sync_obj = __kmp_itt_taskwait_object(gtid); 1919 if (UNLIKELY(itt_sync_obj != NULL)) 1920 __kmp_itt_taskwait_starting(gtid, itt_sync_obj); 1921 #endif /* USE_ITT_BUILD */ 1922 1923 bool must_wait = 1924 !taskdata->td_flags.team_serial && !taskdata->td_flags.final; 1925 1926 must_wait = must_wait || (thread->th.th_task_team != NULL && 1927 thread->th.th_task_team->tt.tt_found_proxy_tasks); 1928 // If hidden helper thread is encountered, we must enable wait here. 1929 must_wait = 1930 must_wait || 1931 (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL && 1932 thread->th.th_task_team->tt.tt_hidden_helper_task_encountered); 1933 1934 if (must_wait) { 1935 kmp_flag_32<false, false> flag( 1936 RCAST(std::atomic<kmp_uint32> *, 1937 &(taskdata->td_incomplete_child_tasks)), 1938 0U); 1939 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) { 1940 flag.execute_tasks(thread, gtid, FALSE, 1941 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 1942 __kmp_task_stealing_constraint); 1943 } 1944 } 1945 #if USE_ITT_BUILD 1946 if (UNLIKELY(itt_sync_obj != NULL)) 1947 __kmp_itt_taskwait_finished(gtid, itt_sync_obj); 1948 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children 1949 #endif /* USE_ITT_BUILD */ 1950 1951 // Debugger: The taskwait is completed. Location remains, but thread is 1952 // negated. 1953 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 1954 1955 #if OMPT_SUPPORT && OMPT_OPTIONAL 1956 if (ompt) { 1957 if (ompt_enabled.ompt_callback_sync_region_wait) { 1958 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 1959 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 1960 my_task_data, return_address); 1961 } 1962 if (ompt_enabled.ompt_callback_sync_region) { 1963 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 1964 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 1965 my_task_data, return_address); 1966 } 1967 taskdata->ompt_task_info.frame.enter_frame = ompt_data_none; 1968 } 1969 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1970 1971 ANNOTATE_HAPPENS_AFTER(taskdata); 1972 } 1973 1974 KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " 1975 "returning TASK_CURRENT_NOT_QUEUED\n", 1976 gtid, taskdata)); 1977 1978 return TASK_CURRENT_NOT_QUEUED; 1979 } 1980 1981 #if OMPT_SUPPORT && OMPT_OPTIONAL 1982 OMPT_NOINLINE 1983 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid, 1984 void *frame_address, 1985 void *return_address) { 1986 return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address, 1987 return_address); 1988 } 1989 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1990 1991 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are 1992 // complete 1993 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) { 1994 #if OMPT_SUPPORT && OMPT_OPTIONAL 1995 if (UNLIKELY(ompt_enabled.enabled)) { 1996 OMPT_STORE_RETURN_ADDRESS(gtid); 1997 return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0), 1998 OMPT_LOAD_RETURN_ADDRESS(gtid)); 1999 } 2000 #endif 2001 return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL); 2002 } 2003 2004 // __kmpc_omp_taskyield: switch to a different task 2005 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) { 2006 kmp_taskdata_t *taskdata; 2007 kmp_info_t *thread; 2008 int thread_finished = FALSE; 2009 2010 KMP_COUNT_BLOCK(OMP_TASKYIELD); 2011 KMP_SET_THREAD_STATE_BLOCK(TASKYIELD); 2012 2013 KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n", 2014 gtid, loc_ref, end_part)); 2015 __kmp_assert_valid_gtid(gtid); 2016 2017 if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) { 2018 thread = __kmp_threads[gtid]; 2019 taskdata = thread->th.th_current_task; 2020 // Should we model this as a task wait or not? 2021 // Debugger: The taskwait is active. Store location and thread encountered the 2022 // taskwait. 2023 #if USE_ITT_BUILD 2024 // Note: These values are used by ITT events as well. 2025 #endif /* USE_ITT_BUILD */ 2026 taskdata->td_taskwait_counter += 1; 2027 taskdata->td_taskwait_ident = loc_ref; 2028 taskdata->td_taskwait_thread = gtid + 1; 2029 2030 #if USE_ITT_BUILD 2031 void *itt_sync_obj = __kmp_itt_taskwait_object(gtid); 2032 if (UNLIKELY(itt_sync_obj != NULL)) 2033 __kmp_itt_taskwait_starting(gtid, itt_sync_obj); 2034 #endif /* USE_ITT_BUILD */ 2035 if (!taskdata->td_flags.team_serial) { 2036 kmp_task_team_t *task_team = thread->th.th_task_team; 2037 if (task_team != NULL) { 2038 if (KMP_TASKING_ENABLED(task_team)) { 2039 #if OMPT_SUPPORT 2040 if (UNLIKELY(ompt_enabled.enabled)) 2041 thread->th.ompt_thread_info.ompt_task_yielded = 1; 2042 #endif 2043 __kmp_execute_tasks_32( 2044 thread, gtid, (kmp_flag_32<> *)NULL, FALSE, 2045 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2046 __kmp_task_stealing_constraint); 2047 #if OMPT_SUPPORT 2048 if (UNLIKELY(ompt_enabled.enabled)) 2049 thread->th.ompt_thread_info.ompt_task_yielded = 0; 2050 #endif 2051 } 2052 } 2053 } 2054 #if USE_ITT_BUILD 2055 if (UNLIKELY(itt_sync_obj != NULL)) 2056 __kmp_itt_taskwait_finished(gtid, itt_sync_obj); 2057 #endif /* USE_ITT_BUILD */ 2058 2059 // Debugger: The taskwait is completed. Location remains, but thread is 2060 // negated. 2061 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 2062 } 2063 2064 KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " 2065 "returning TASK_CURRENT_NOT_QUEUED\n", 2066 gtid, taskdata)); 2067 2068 return TASK_CURRENT_NOT_QUEUED; 2069 } 2070 2071 // Task Reduction implementation 2072 // 2073 // Note: initial implementation didn't take into account the possibility 2074 // to specify omp_orig for initializer of the UDR (user defined reduction). 2075 // Corrected implementation takes into account the omp_orig object. 2076 // Compiler is free to use old implementation if omp_orig is not specified. 2077 2078 /*! 2079 @ingroup BASIC_TYPES 2080 @{ 2081 */ 2082 2083 /*! 2084 Flags for special info per task reduction item. 2085 */ 2086 typedef struct kmp_taskred_flags { 2087 /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */ 2088 unsigned lazy_priv : 1; 2089 unsigned reserved31 : 31; 2090 } kmp_taskred_flags_t; 2091 2092 /*! 2093 Internal struct for reduction data item related info set up by compiler. 2094 */ 2095 typedef struct kmp_task_red_input { 2096 void *reduce_shar; /**< shared between tasks item to reduce into */ 2097 size_t reduce_size; /**< size of data item in bytes */ 2098 // three compiler-generated routines (init, fini are optional): 2099 void *reduce_init; /**< data initialization routine (single parameter) */ 2100 void *reduce_fini; /**< data finalization routine */ 2101 void *reduce_comb; /**< data combiner routine */ 2102 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2103 } kmp_task_red_input_t; 2104 2105 /*! 2106 Internal struct for reduction data item related info saved by the library. 2107 */ 2108 typedef struct kmp_taskred_data { 2109 void *reduce_shar; /**< shared between tasks item to reduce into */ 2110 size_t reduce_size; /**< size of data item */ 2111 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2112 void *reduce_priv; /**< array of thread specific items */ 2113 void *reduce_pend; /**< end of private data for faster comparison op */ 2114 // three compiler-generated routines (init, fini are optional): 2115 void *reduce_comb; /**< data combiner routine */ 2116 void *reduce_init; /**< data initialization routine (two parameters) */ 2117 void *reduce_fini; /**< data finalization routine */ 2118 void *reduce_orig; /**< original item (can be used in UDR initializer) */ 2119 } kmp_taskred_data_t; 2120 2121 /*! 2122 Internal struct for reduction data item related info set up by compiler. 2123 2124 New interface: added reduce_orig field to provide omp_orig for UDR initializer. 2125 */ 2126 typedef struct kmp_taskred_input { 2127 void *reduce_shar; /**< shared between tasks item to reduce into */ 2128 void *reduce_orig; /**< original reduction item used for initialization */ 2129 size_t reduce_size; /**< size of data item */ 2130 // three compiler-generated routines (init, fini are optional): 2131 void *reduce_init; /**< data initialization routine (two parameters) */ 2132 void *reduce_fini; /**< data finalization routine */ 2133 void *reduce_comb; /**< data combiner routine */ 2134 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2135 } kmp_taskred_input_t; 2136 /*! 2137 @} 2138 */ 2139 2140 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src); 2141 template <> 2142 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2143 kmp_task_red_input_t &src) { 2144 item.reduce_orig = NULL; 2145 } 2146 template <> 2147 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2148 kmp_taskred_input_t &src) { 2149 if (src.reduce_orig != NULL) { 2150 item.reduce_orig = src.reduce_orig; 2151 } else { 2152 item.reduce_orig = src.reduce_shar; 2153 } // non-NULL reduce_orig means new interface used 2154 } 2155 2156 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j); 2157 template <> 2158 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2159 size_t offset) { 2160 ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset); 2161 } 2162 template <> 2163 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2164 size_t offset) { 2165 ((void (*)(void *, void *))item.reduce_init)( 2166 (char *)(item.reduce_priv) + offset, item.reduce_orig); 2167 } 2168 2169 template <typename T> 2170 void *__kmp_task_reduction_init(int gtid, int num, T *data) { 2171 __kmp_assert_valid_gtid(gtid); 2172 kmp_info_t *thread = __kmp_threads[gtid]; 2173 kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; 2174 kmp_uint32 nth = thread->th.th_team_nproc; 2175 kmp_taskred_data_t *arr; 2176 2177 // check input data just in case 2178 KMP_ASSERT(tg != NULL); 2179 KMP_ASSERT(data != NULL); 2180 KMP_ASSERT(num > 0); 2181 if (nth == 1) { 2182 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n", 2183 gtid, tg)); 2184 return (void *)tg; 2185 } 2186 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n", 2187 gtid, tg, num)); 2188 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2189 thread, num * sizeof(kmp_taskred_data_t)); 2190 for (int i = 0; i < num; ++i) { 2191 size_t size = data[i].reduce_size - 1; 2192 // round the size up to cache line per thread-specific item 2193 size += CACHE_LINE - size % CACHE_LINE; 2194 KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory 2195 arr[i].reduce_shar = data[i].reduce_shar; 2196 arr[i].reduce_size = size; 2197 arr[i].flags = data[i].flags; 2198 arr[i].reduce_comb = data[i].reduce_comb; 2199 arr[i].reduce_init = data[i].reduce_init; 2200 arr[i].reduce_fini = data[i].reduce_fini; 2201 __kmp_assign_orig<T>(arr[i], data[i]); 2202 if (!arr[i].flags.lazy_priv) { 2203 // allocate cache-line aligned block and fill it with zeros 2204 arr[i].reduce_priv = __kmp_allocate(nth * size); 2205 arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size; 2206 if (arr[i].reduce_init != NULL) { 2207 // initialize all thread-specific items 2208 for (size_t j = 0; j < nth; ++j) { 2209 __kmp_call_init<T>(arr[i], j * size); 2210 } 2211 } 2212 } else { 2213 // only allocate space for pointers now, 2214 // objects will be lazily allocated/initialized if/when requested 2215 // note that __kmp_allocate zeroes the allocated memory 2216 arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *)); 2217 } 2218 } 2219 tg->reduce_data = (void *)arr; 2220 tg->reduce_num_data = num; 2221 return (void *)tg; 2222 } 2223 2224 /*! 2225 @ingroup TASKING 2226 @param gtid Global thread ID 2227 @param num Number of data items to reduce 2228 @param data Array of data for reduction 2229 @return The taskgroup identifier 2230 2231 Initialize task reduction for the taskgroup. 2232 2233 Note: this entry supposes the optional compiler-generated initializer routine 2234 has single parameter - pointer to object to be initialized. That means 2235 the reduction either does not use omp_orig object, or the omp_orig is accessible 2236 without help of the runtime library. 2237 */ 2238 void *__kmpc_task_reduction_init(int gtid, int num, void *data) { 2239 return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data); 2240 } 2241 2242 /*! 2243 @ingroup TASKING 2244 @param gtid Global thread ID 2245 @param num Number of data items to reduce 2246 @param data Array of data for reduction 2247 @return The taskgroup identifier 2248 2249 Initialize task reduction for the taskgroup. 2250 2251 Note: this entry supposes the optional compiler-generated initializer routine 2252 has two parameters, pointer to object to be initialized and pointer to omp_orig 2253 */ 2254 void *__kmpc_taskred_init(int gtid, int num, void *data) { 2255 return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data); 2256 } 2257 2258 // Copy task reduction data (except for shared pointers). 2259 template <typename T> 2260 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data, 2261 kmp_taskgroup_t *tg, void *reduce_data) { 2262 kmp_taskred_data_t *arr; 2263 KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p," 2264 " from data %p\n", 2265 thr, tg, reduce_data)); 2266 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2267 thr, num * sizeof(kmp_taskred_data_t)); 2268 // threads will share private copies, thunk routines, sizes, flags, etc.: 2269 KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t)); 2270 for (int i = 0; i < num; ++i) { 2271 arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers 2272 } 2273 tg->reduce_data = (void *)arr; 2274 tg->reduce_num_data = num; 2275 } 2276 2277 /*! 2278 @ingroup TASKING 2279 @param gtid Global thread ID 2280 @param tskgrp The taskgroup ID (optional) 2281 @param data Shared location of the item 2282 @return The pointer to per-thread data 2283 2284 Get thread-specific location of data item 2285 */ 2286 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) { 2287 __kmp_assert_valid_gtid(gtid); 2288 kmp_info_t *thread = __kmp_threads[gtid]; 2289 kmp_int32 nth = thread->th.th_team_nproc; 2290 if (nth == 1) 2291 return data; // nothing to do 2292 2293 kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp; 2294 if (tg == NULL) 2295 tg = thread->th.th_current_task->td_taskgroup; 2296 KMP_ASSERT(tg != NULL); 2297 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data); 2298 kmp_int32 num = tg->reduce_num_data; 2299 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 2300 2301 KMP_ASSERT(data != NULL); 2302 while (tg != NULL) { 2303 for (int i = 0; i < num; ++i) { 2304 if (!arr[i].flags.lazy_priv) { 2305 if (data == arr[i].reduce_shar || 2306 (data >= arr[i].reduce_priv && data < arr[i].reduce_pend)) 2307 return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size; 2308 } else { 2309 // check shared location first 2310 void **p_priv = (void **)(arr[i].reduce_priv); 2311 if (data == arr[i].reduce_shar) 2312 goto found; 2313 // check if we get some thread specific location as parameter 2314 for (int j = 0; j < nth; ++j) 2315 if (data == p_priv[j]) 2316 goto found; 2317 continue; // not found, continue search 2318 found: 2319 if (p_priv[tid] == NULL) { 2320 // allocate thread specific object lazily 2321 p_priv[tid] = __kmp_allocate(arr[i].reduce_size); 2322 if (arr[i].reduce_init != NULL) { 2323 if (arr[i].reduce_orig != NULL) { // new interface 2324 ((void (*)(void *, void *))arr[i].reduce_init)( 2325 p_priv[tid], arr[i].reduce_orig); 2326 } else { // old interface (single parameter) 2327 ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]); 2328 } 2329 } 2330 } 2331 return p_priv[tid]; 2332 } 2333 } 2334 tg = tg->parent; 2335 arr = (kmp_taskred_data_t *)(tg->reduce_data); 2336 num = tg->reduce_num_data; 2337 } 2338 KMP_ASSERT2(0, "Unknown task reduction item"); 2339 return NULL; // ERROR, this line never executed 2340 } 2341 2342 // Finalize task reduction. 2343 // Called from __kmpc_end_taskgroup() 2344 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) { 2345 kmp_int32 nth = th->th.th_team_nproc; 2346 KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1 2347 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data; 2348 kmp_int32 num = tg->reduce_num_data; 2349 for (int i = 0; i < num; ++i) { 2350 void *sh_data = arr[i].reduce_shar; 2351 void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini); 2352 void (*f_comb)(void *, void *) = 2353 (void (*)(void *, void *))(arr[i].reduce_comb); 2354 if (!arr[i].flags.lazy_priv) { 2355 void *pr_data = arr[i].reduce_priv; 2356 size_t size = arr[i].reduce_size; 2357 for (int j = 0; j < nth; ++j) { 2358 void *priv_data = (char *)pr_data + j * size; 2359 f_comb(sh_data, priv_data); // combine results 2360 if (f_fini) 2361 f_fini(priv_data); // finalize if needed 2362 } 2363 } else { 2364 void **pr_data = (void **)(arr[i].reduce_priv); 2365 for (int j = 0; j < nth; ++j) { 2366 if (pr_data[j] != NULL) { 2367 f_comb(sh_data, pr_data[j]); // combine results 2368 if (f_fini) 2369 f_fini(pr_data[j]); // finalize if needed 2370 __kmp_free(pr_data[j]); 2371 } 2372 } 2373 } 2374 __kmp_free(arr[i].reduce_priv); 2375 } 2376 __kmp_thread_free(th, arr); 2377 tg->reduce_data = NULL; 2378 tg->reduce_num_data = 0; 2379 } 2380 2381 // Cleanup task reduction data for parallel or worksharing, 2382 // do not touch task private data other threads still working with. 2383 // Called from __kmpc_end_taskgroup() 2384 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) { 2385 __kmp_thread_free(th, tg->reduce_data); 2386 tg->reduce_data = NULL; 2387 tg->reduce_num_data = 0; 2388 } 2389 2390 template <typename T> 2391 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2392 int num, T *data) { 2393 __kmp_assert_valid_gtid(gtid); 2394 kmp_info_t *thr = __kmp_threads[gtid]; 2395 kmp_int32 nth = thr->th.th_team_nproc; 2396 __kmpc_taskgroup(loc, gtid); // form new taskgroup first 2397 if (nth == 1) { 2398 KA_TRACE(10, 2399 ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n", 2400 gtid, thr->th.th_current_task->td_taskgroup)); 2401 return (void *)thr->th.th_current_task->td_taskgroup; 2402 } 2403 kmp_team_t *team = thr->th.th_team; 2404 void *reduce_data; 2405 kmp_taskgroup_t *tg; 2406 reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]); 2407 if (reduce_data == NULL && 2408 __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data, 2409 (void *)1)) { 2410 // single thread enters this block to initialize common reduction data 2411 KMP_DEBUG_ASSERT(reduce_data == NULL); 2412 // first initialize own data, then make a copy other threads can use 2413 tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data); 2414 reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t)); 2415 KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t)); 2416 // fini counters should be 0 at this point 2417 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0); 2418 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0); 2419 KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data); 2420 } else { 2421 while ( 2422 (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) == 2423 (void *)1) { // wait for task reduction initialization 2424 KMP_CPU_PAUSE(); 2425 } 2426 KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here 2427 tg = thr->th.th_current_task->td_taskgroup; 2428 __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data); 2429 } 2430 return tg; 2431 } 2432 2433 /*! 2434 @ingroup TASKING 2435 @param loc Source location info 2436 @param gtid Global thread ID 2437 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2438 @param num Number of data items to reduce 2439 @param data Array of data for reduction 2440 @return The taskgroup identifier 2441 2442 Initialize task reduction for a parallel or worksharing. 2443 2444 Note: this entry supposes the optional compiler-generated initializer routine 2445 has single parameter - pointer to object to be initialized. That means 2446 the reduction either does not use omp_orig object, or the omp_orig is accessible 2447 without help of the runtime library. 2448 */ 2449 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2450 int num, void *data) { 2451 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2452 (kmp_task_red_input_t *)data); 2453 } 2454 2455 /*! 2456 @ingroup TASKING 2457 @param loc Source location info 2458 @param gtid Global thread ID 2459 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2460 @param num Number of data items to reduce 2461 @param data Array of data for reduction 2462 @return The taskgroup identifier 2463 2464 Initialize task reduction for a parallel or worksharing. 2465 2466 Note: this entry supposes the optional compiler-generated initializer routine 2467 has two parameters, pointer to object to be initialized and pointer to omp_orig 2468 */ 2469 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, 2470 void *data) { 2471 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2472 (kmp_taskred_input_t *)data); 2473 } 2474 2475 /*! 2476 @ingroup TASKING 2477 @param loc Source location info 2478 @param gtid Global thread ID 2479 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2480 2481 Finalize task reduction for a parallel or worksharing. 2482 */ 2483 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) { 2484 __kmpc_end_taskgroup(loc, gtid); 2485 } 2486 2487 // __kmpc_taskgroup: Start a new taskgroup 2488 void __kmpc_taskgroup(ident_t *loc, int gtid) { 2489 __kmp_assert_valid_gtid(gtid); 2490 kmp_info_t *thread = __kmp_threads[gtid]; 2491 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2492 kmp_taskgroup_t *tg_new = 2493 (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t)); 2494 KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new)); 2495 KMP_ATOMIC_ST_RLX(&tg_new->count, 0); 2496 KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq); 2497 tg_new->parent = taskdata->td_taskgroup; 2498 tg_new->reduce_data = NULL; 2499 tg_new->reduce_num_data = 0; 2500 taskdata->td_taskgroup = tg_new; 2501 2502 #if OMPT_SUPPORT && OMPT_OPTIONAL 2503 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2504 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2505 if (!codeptr) 2506 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2507 kmp_team_t *team = thread->th.th_team; 2508 ompt_data_t my_task_data = taskdata->ompt_task_info.task_data; 2509 // FIXME: I think this is wrong for lwt! 2510 ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data; 2511 2512 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2513 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2514 &(my_task_data), codeptr); 2515 } 2516 #endif 2517 } 2518 2519 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task 2520 // and its descendants are complete 2521 void __kmpc_end_taskgroup(ident_t *loc, int gtid) { 2522 __kmp_assert_valid_gtid(gtid); 2523 kmp_info_t *thread = __kmp_threads[gtid]; 2524 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2525 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 2526 int thread_finished = FALSE; 2527 2528 #if OMPT_SUPPORT && OMPT_OPTIONAL 2529 kmp_team_t *team; 2530 ompt_data_t my_task_data; 2531 ompt_data_t my_parallel_data; 2532 void *codeptr; 2533 if (UNLIKELY(ompt_enabled.enabled)) { 2534 team = thread->th.th_team; 2535 my_task_data = taskdata->ompt_task_info.task_data; 2536 // FIXME: I think this is wrong for lwt! 2537 my_parallel_data = team->t.ompt_team_info.parallel_data; 2538 codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2539 if (!codeptr) 2540 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2541 } 2542 #endif 2543 2544 KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc)); 2545 KMP_DEBUG_ASSERT(taskgroup != NULL); 2546 KMP_SET_THREAD_STATE_BLOCK(TASKGROUP); 2547 2548 if (__kmp_tasking_mode != tskm_immediate_exec) { 2549 // mark task as waiting not on a barrier 2550 taskdata->td_taskwait_counter += 1; 2551 taskdata->td_taskwait_ident = loc; 2552 taskdata->td_taskwait_thread = gtid + 1; 2553 #if USE_ITT_BUILD 2554 // For ITT the taskgroup wait is similar to taskwait until we need to 2555 // distinguish them 2556 void *itt_sync_obj = __kmp_itt_taskwait_object(gtid); 2557 if (UNLIKELY(itt_sync_obj != NULL)) 2558 __kmp_itt_taskwait_starting(gtid, itt_sync_obj); 2559 #endif /* USE_ITT_BUILD */ 2560 2561 #if OMPT_SUPPORT && OMPT_OPTIONAL 2562 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2563 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2564 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2565 &(my_task_data), codeptr); 2566 } 2567 #endif 2568 2569 if (!taskdata->td_flags.team_serial || 2570 (thread->th.th_task_team != NULL && 2571 thread->th.th_task_team->tt.tt_found_proxy_tasks)) { 2572 kmp_flag_32<false, false> flag( 2573 RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U); 2574 while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) { 2575 flag.execute_tasks(thread, gtid, FALSE, 2576 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2577 __kmp_task_stealing_constraint); 2578 } 2579 } 2580 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting 2581 2582 #if OMPT_SUPPORT && OMPT_OPTIONAL 2583 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2584 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2585 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2586 &(my_task_data), codeptr); 2587 } 2588 #endif 2589 2590 #if USE_ITT_BUILD 2591 if (UNLIKELY(itt_sync_obj != NULL)) 2592 __kmp_itt_taskwait_finished(gtid, itt_sync_obj); 2593 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants 2594 #endif /* USE_ITT_BUILD */ 2595 } 2596 KMP_DEBUG_ASSERT(taskgroup->count == 0); 2597 2598 if (taskgroup->reduce_data != NULL) { // need to reduce? 2599 int cnt; 2600 void *reduce_data; 2601 kmp_team_t *t = thread->th.th_team; 2602 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data; 2603 // check if <priv> data of the first reduction variable shared for the team 2604 void *priv0 = arr[0].reduce_priv; 2605 if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL && 2606 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2607 // finishing task reduction on parallel 2608 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]); 2609 if (cnt == thread->th.th_team_nproc - 1) { 2610 // we are the last thread passing __kmpc_reduction_modifier_fini() 2611 // finalize task reduction: 2612 __kmp_task_reduction_fini(thread, taskgroup); 2613 // cleanup fields in the team structure: 2614 // TODO: is relaxed store enough here (whole barrier should follow)? 2615 __kmp_thread_free(thread, reduce_data); 2616 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL); 2617 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0); 2618 } else { 2619 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2620 // so do not finalize reduction, just clean own copy of the data 2621 __kmp_task_reduction_clean(thread, taskgroup); 2622 } 2623 } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) != 2624 NULL && 2625 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2626 // finishing task reduction on worksharing 2627 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]); 2628 if (cnt == thread->th.th_team_nproc - 1) { 2629 // we are the last thread passing __kmpc_reduction_modifier_fini() 2630 __kmp_task_reduction_fini(thread, taskgroup); 2631 // cleanup fields in team structure: 2632 // TODO: is relaxed store enough here (whole barrier should follow)? 2633 __kmp_thread_free(thread, reduce_data); 2634 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL); 2635 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0); 2636 } else { 2637 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2638 // so do not finalize reduction, just clean own copy of the data 2639 __kmp_task_reduction_clean(thread, taskgroup); 2640 } 2641 } else { 2642 // finishing task reduction on taskgroup 2643 __kmp_task_reduction_fini(thread, taskgroup); 2644 } 2645 } 2646 // Restore parent taskgroup for the current task 2647 taskdata->td_taskgroup = taskgroup->parent; 2648 __kmp_thread_free(thread, taskgroup); 2649 2650 KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n", 2651 gtid, taskdata)); 2652 ANNOTATE_HAPPENS_AFTER(taskdata); 2653 2654 #if OMPT_SUPPORT && OMPT_OPTIONAL 2655 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2656 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2657 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2658 &(my_task_data), codeptr); 2659 } 2660 #endif 2661 } 2662 2663 // __kmp_remove_my_task: remove a task from my own deque 2664 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid, 2665 kmp_task_team_t *task_team, 2666 kmp_int32 is_constrained) { 2667 kmp_task_t *task; 2668 kmp_taskdata_t *taskdata; 2669 kmp_thread_data_t *thread_data; 2670 kmp_uint32 tail; 2671 2672 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2673 KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data != 2674 NULL); // Caller should check this condition 2675 2676 thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 2677 2678 KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n", 2679 gtid, thread_data->td.td_deque_ntasks, 2680 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2681 2682 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2683 KA_TRACE(10, 2684 ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: " 2685 "ntasks=%d head=%u tail=%u\n", 2686 gtid, thread_data->td.td_deque_ntasks, 2687 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2688 return NULL; 2689 } 2690 2691 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 2692 2693 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2694 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2695 KA_TRACE(10, 2696 ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: " 2697 "ntasks=%d head=%u tail=%u\n", 2698 gtid, thread_data->td.td_deque_ntasks, 2699 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2700 return NULL; 2701 } 2702 2703 tail = (thread_data->td.td_deque_tail - 1) & 2704 TASK_DEQUE_MASK(thread_data->td); // Wrap index. 2705 taskdata = thread_data->td.td_deque[tail]; 2706 2707 if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata, 2708 thread->th.th_current_task)) { 2709 // The TSC does not allow to steal victim task 2710 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2711 KA_TRACE(10, 2712 ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: " 2713 "ntasks=%d head=%u tail=%u\n", 2714 gtid, thread_data->td.td_deque_ntasks, 2715 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2716 return NULL; 2717 } 2718 2719 thread_data->td.td_deque_tail = tail; 2720 TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1); 2721 2722 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2723 2724 KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: " 2725 "ntasks=%d head=%u tail=%u\n", 2726 gtid, taskdata, thread_data->td.td_deque_ntasks, 2727 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2728 2729 task = KMP_TASKDATA_TO_TASK(taskdata); 2730 return task; 2731 } 2732 2733 // __kmp_steal_task: remove a task from another thread's deque 2734 // Assume that calling thread has already checked existence of 2735 // task_team thread_data before calling this routine. 2736 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid, 2737 kmp_task_team_t *task_team, 2738 std::atomic<kmp_int32> *unfinished_threads, 2739 int *thread_finished, 2740 kmp_int32 is_constrained) { 2741 kmp_task_t *task; 2742 kmp_taskdata_t *taskdata; 2743 kmp_taskdata_t *current; 2744 kmp_thread_data_t *victim_td, *threads_data; 2745 kmp_int32 target; 2746 kmp_int32 victim_tid; 2747 2748 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2749 2750 threads_data = task_team->tt.tt_threads_data; 2751 KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition 2752 2753 victim_tid = victim_thr->th.th_info.ds.ds_tid; 2754 victim_td = &threads_data[victim_tid]; 2755 2756 KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: " 2757 "task_team=%p ntasks=%d head=%u tail=%u\n", 2758 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 2759 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 2760 victim_td->td.td_deque_tail)); 2761 2762 if (TCR_4(victim_td->td.td_deque_ntasks) == 0) { 2763 KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: " 2764 "task_team=%p ntasks=%d head=%u tail=%u\n", 2765 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 2766 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 2767 victim_td->td.td_deque_tail)); 2768 return NULL; 2769 } 2770 2771 __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock); 2772 2773 int ntasks = TCR_4(victim_td->td.td_deque_ntasks); 2774 // Check again after we acquire the lock 2775 if (ntasks == 0) { 2776 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2777 KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: " 2778 "task_team=%p ntasks=%d head=%u tail=%u\n", 2779 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2780 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2781 return NULL; 2782 } 2783 2784 KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL); 2785 current = __kmp_threads[gtid]->th.th_current_task; 2786 taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head]; 2787 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2788 // Bump head pointer and Wrap. 2789 victim_td->td.td_deque_head = 2790 (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td); 2791 } else { 2792 if (!task_team->tt.tt_untied_task_encountered) { 2793 // The TSC does not allow to steal victim task 2794 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2795 KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from " 2796 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 2797 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2798 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2799 return NULL; 2800 } 2801 int i; 2802 // walk through victim's deque trying to steal any task 2803 target = victim_td->td.td_deque_head; 2804 taskdata = NULL; 2805 for (i = 1; i < ntasks; ++i) { 2806 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 2807 taskdata = victim_td->td.td_deque[target]; 2808 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2809 break; // found victim task 2810 } else { 2811 taskdata = NULL; 2812 } 2813 } 2814 if (taskdata == NULL) { 2815 // No appropriate candidate to steal found 2816 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2817 KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from " 2818 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 2819 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2820 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2821 return NULL; 2822 } 2823 int prev = target; 2824 for (i = i + 1; i < ntasks; ++i) { 2825 // shift remaining tasks in the deque left by 1 2826 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 2827 victim_td->td.td_deque[prev] = victim_td->td.td_deque[target]; 2828 prev = target; 2829 } 2830 KMP_DEBUG_ASSERT( 2831 victim_td->td.td_deque_tail == 2832 (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td))); 2833 victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped)) 2834 } 2835 if (*thread_finished) { 2836 // We need to un-mark this victim as a finished victim. This must be done 2837 // before releasing the lock, or else other threads (starting with the 2838 // master victim) might be prematurely released from the barrier!!! 2839 kmp_int32 count; 2840 2841 count = KMP_ATOMIC_INC(unfinished_threads); 2842 2843 KA_TRACE( 2844 20, 2845 ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n", 2846 gtid, count + 1, task_team)); 2847 2848 *thread_finished = FALSE; 2849 } 2850 TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1); 2851 2852 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2853 2854 KMP_COUNT_BLOCK(TASK_stolen); 2855 KA_TRACE(10, 2856 ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: " 2857 "task_team=%p ntasks=%d head=%u tail=%u\n", 2858 gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team, 2859 ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2860 2861 task = KMP_TASKDATA_TO_TASK(taskdata); 2862 return task; 2863 } 2864 2865 // __kmp_execute_tasks_template: Choose and execute tasks until either the 2866 // condition is statisfied (return true) or there are none left (return false). 2867 // 2868 // final_spin is TRUE if this is the spin at the release barrier. 2869 // thread_finished indicates whether the thread is finished executing all 2870 // the tasks it has on its deque, and is at the release barrier. 2871 // spinner is the location on which to spin. 2872 // spinner == NULL means only execute a single task and return. 2873 // checker is the value to check to terminate the spin. 2874 template <class C> 2875 static inline int __kmp_execute_tasks_template( 2876 kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin, 2877 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 2878 kmp_int32 is_constrained) { 2879 kmp_task_team_t *task_team = thread->th.th_task_team; 2880 kmp_thread_data_t *threads_data; 2881 kmp_task_t *task; 2882 kmp_info_t *other_thread; 2883 kmp_taskdata_t *current_task = thread->th.th_current_task; 2884 std::atomic<kmp_int32> *unfinished_threads; 2885 kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0, 2886 tid = thread->th.th_info.ds.ds_tid; 2887 2888 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2889 KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]); 2890 2891 if (task_team == NULL || current_task == NULL) 2892 return FALSE; 2893 2894 KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d " 2895 "*thread_finished=%d\n", 2896 gtid, final_spin, *thread_finished)); 2897 2898 thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 2899 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 2900 2901 KMP_DEBUG_ASSERT(threads_data != NULL); 2902 2903 nthreads = task_team->tt.tt_nproc; 2904 unfinished_threads = &(task_team->tt.tt_unfinished_threads); 2905 KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks || 2906 task_team->tt.tt_hidden_helper_task_encountered); 2907 KMP_DEBUG_ASSERT(*unfinished_threads >= 0); 2908 2909 while (1) { // Outer loop keeps trying to find tasks in case of single thread 2910 // getting tasks from target constructs 2911 while (1) { // Inner loop to find a task and execute it 2912 task = NULL; 2913 if (use_own_tasks) { // check on own queue first 2914 task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained); 2915 } 2916 if ((task == NULL) && (nthreads > 1)) { // Steal a task 2917 int asleep = 1; 2918 use_own_tasks = 0; 2919 // Try to steal from the last place I stole from successfully. 2920 if (victim_tid == -2) { // haven't stolen anything yet 2921 victim_tid = threads_data[tid].td.td_deque_last_stolen; 2922 if (victim_tid != 2923 -1) // if we have a last stolen from victim, get the thread 2924 other_thread = threads_data[victim_tid].td.td_thr; 2925 } 2926 if (victim_tid != -1) { // found last victim 2927 asleep = 0; 2928 } else if (!new_victim) { // no recent steals and we haven't already 2929 // used a new victim; select a random thread 2930 do { // Find a different thread to steal work from. 2931 // Pick a random thread. Initial plan was to cycle through all the 2932 // threads, and only return if we tried to steal from every thread, 2933 // and failed. Arch says that's not such a great idea. 2934 victim_tid = __kmp_get_random(thread) % (nthreads - 1); 2935 if (victim_tid >= tid) { 2936 ++victim_tid; // Adjusts random distribution to exclude self 2937 } 2938 // Found a potential victim 2939 other_thread = threads_data[victim_tid].td.td_thr; 2940 // There is a slight chance that __kmp_enable_tasking() did not wake 2941 // up all threads waiting at the barrier. If victim is sleeping, 2942 // then wake it up. Since we were going to pay the cache miss 2943 // penalty for referencing another thread's kmp_info_t struct 2944 // anyway, 2945 // the check shouldn't cost too much performance at this point. In 2946 // extra barrier mode, tasks do not sleep at the separate tasking 2947 // barrier, so this isn't a problem. 2948 asleep = 0; 2949 if ((__kmp_tasking_mode == tskm_task_teams) && 2950 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && 2951 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) != 2952 NULL)) { 2953 asleep = 1; 2954 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread), 2955 other_thread->th.th_sleep_loc); 2956 // A sleeping thread should not have any tasks on it's queue. 2957 // There is a slight possibility that it resumes, steals a task 2958 // from another thread, which spawns more tasks, all in the time 2959 // that it takes this thread to check => don't write an assertion 2960 // that the victim's queue is empty. Try stealing from a 2961 // different thread. 2962 } 2963 } while (asleep); 2964 } 2965 2966 if (!asleep) { 2967 // We have a victim to try to steal from 2968 task = __kmp_steal_task(other_thread, gtid, task_team, 2969 unfinished_threads, thread_finished, 2970 is_constrained); 2971 } 2972 if (task != NULL) { // set last stolen to victim 2973 if (threads_data[tid].td.td_deque_last_stolen != victim_tid) { 2974 threads_data[tid].td.td_deque_last_stolen = victim_tid; 2975 // The pre-refactored code did not try more than 1 successful new 2976 // vicitm, unless the last one generated more local tasks; 2977 // new_victim keeps track of this 2978 new_victim = 1; 2979 } 2980 } else { // No tasks found; unset last_stolen 2981 KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1); 2982 victim_tid = -2; // no successful victim found 2983 } 2984 } 2985 2986 if (task == NULL) 2987 break; // break out of tasking loop 2988 2989 // Found a task; execute it 2990 #if USE_ITT_BUILD && USE_ITT_NOTIFY 2991 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { 2992 if (itt_sync_obj == NULL) { // we are at fork barrier where we could not 2993 // get the object reliably 2994 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 2995 } 2996 __kmp_itt_task_starting(itt_sync_obj); 2997 } 2998 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 2999 __kmp_invoke_task(gtid, task, current_task); 3000 #if USE_ITT_BUILD 3001 if (itt_sync_obj != NULL) 3002 __kmp_itt_task_finished(itt_sync_obj); 3003 #endif /* USE_ITT_BUILD */ 3004 // If this thread is only partway through the barrier and the condition is 3005 // met, then return now, so that the barrier gather/release pattern can 3006 // proceed. If this thread is in the last spin loop in the barrier, 3007 // waiting to be released, we know that the termination condition will not 3008 // be satisfied, so don't waste any cycles checking it. 3009 if (flag == NULL || (!final_spin && flag->done_check())) { 3010 KA_TRACE( 3011 15, 3012 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3013 gtid)); 3014 return TRUE; 3015 } 3016 if (thread->th.th_task_team == NULL) { 3017 break; 3018 } 3019 KMP_YIELD(__kmp_library == library_throughput); // Yield before next task 3020 // If execution of a stolen task results in more tasks being placed on our 3021 // run queue, reset use_own_tasks 3022 if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) { 3023 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned " 3024 "other tasks, restart\n", 3025 gtid)); 3026 use_own_tasks = 1; 3027 new_victim = 0; 3028 } 3029 } 3030 3031 // The task source has been exhausted. If in final spin loop of barrier, 3032 // check if termination condition is satisfied. The work queue may be empty 3033 // but there might be proxy tasks still executing. 3034 if (final_spin && 3035 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks) == 0) { 3036 // First, decrement the #unfinished threads, if that has not already been 3037 // done. This decrement might be to the spin location, and result in the 3038 // termination condition being satisfied. 3039 if (!*thread_finished) { 3040 kmp_int32 count; 3041 3042 count = KMP_ATOMIC_DEC(unfinished_threads) - 1; 3043 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec " 3044 "unfinished_threads to %d task_team=%p\n", 3045 gtid, count, task_team)); 3046 *thread_finished = TRUE; 3047 } 3048 3049 // It is now unsafe to reference thread->th.th_team !!! 3050 // Decrementing task_team->tt.tt_unfinished_threads can allow the master 3051 // thread to pass through the barrier, where it might reset each thread's 3052 // th.th_team field for the next parallel region. If we can steal more 3053 // work, we know that this has not happened yet. 3054 if (flag != NULL && flag->done_check()) { 3055 KA_TRACE( 3056 15, 3057 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3058 gtid)); 3059 return TRUE; 3060 } 3061 } 3062 3063 // If this thread's task team is NULL, master has recognized that there are 3064 // no more tasks; bail out 3065 if (thread->th.th_task_team == NULL) { 3066 KA_TRACE(15, 3067 ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid)); 3068 return FALSE; 3069 } 3070 3071 // We could be getting tasks from target constructs; if this is the only 3072 // thread, keep trying to execute tasks from own queue 3073 if (nthreads == 1 && 3074 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks)) 3075 use_own_tasks = 1; 3076 else { 3077 KA_TRACE(15, 3078 ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid)); 3079 return FALSE; 3080 } 3081 } 3082 } 3083 3084 template <bool C, bool S> 3085 int __kmp_execute_tasks_32( 3086 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin, 3087 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3088 kmp_int32 is_constrained) { 3089 return __kmp_execute_tasks_template( 3090 thread, gtid, flag, final_spin, 3091 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3092 } 3093 3094 template <bool C, bool S> 3095 int __kmp_execute_tasks_64( 3096 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin, 3097 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3098 kmp_int32 is_constrained) { 3099 return __kmp_execute_tasks_template( 3100 thread, gtid, flag, final_spin, 3101 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3102 } 3103 3104 int __kmp_execute_tasks_oncore( 3105 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, 3106 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3107 kmp_int32 is_constrained) { 3108 return __kmp_execute_tasks_template( 3109 thread, gtid, flag, final_spin, 3110 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3111 } 3112 3113 template int 3114 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32, 3115 kmp_flag_32<false, false> *, int, 3116 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3117 3118 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32, 3119 kmp_flag_64<false, true> *, 3120 int, 3121 int *USE_ITT_BUILD_ARG(void *), 3122 kmp_int32); 3123 3124 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32, 3125 kmp_flag_64<true, false> *, 3126 int, 3127 int *USE_ITT_BUILD_ARG(void *), 3128 kmp_int32); 3129 3130 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the 3131 // next barrier so they can assist in executing enqueued tasks. 3132 // First thread in allocates the task team atomically. 3133 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 3134 kmp_info_t *this_thr) { 3135 kmp_thread_data_t *threads_data; 3136 int nthreads, i, is_init_thread; 3137 3138 KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n", 3139 __kmp_gtid_from_thread(this_thr))); 3140 3141 KMP_DEBUG_ASSERT(task_team != NULL); 3142 KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL); 3143 3144 nthreads = task_team->tt.tt_nproc; 3145 KMP_DEBUG_ASSERT(nthreads > 0); 3146 KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc); 3147 3148 // Allocate or increase the size of threads_data if necessary 3149 is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team); 3150 3151 if (!is_init_thread) { 3152 // Some other thread already set up the array. 3153 KA_TRACE( 3154 20, 3155 ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n", 3156 __kmp_gtid_from_thread(this_thr))); 3157 return; 3158 } 3159 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 3160 KMP_DEBUG_ASSERT(threads_data != NULL); 3161 3162 if (__kmp_tasking_mode == tskm_task_teams && 3163 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) { 3164 // Release any threads sleeping at the barrier, so that they can steal 3165 // tasks and execute them. In extra barrier mode, tasks do not sleep 3166 // at the separate tasking barrier, so this isn't a problem. 3167 for (i = 0; i < nthreads; i++) { 3168 volatile void *sleep_loc; 3169 kmp_info_t *thread = threads_data[i].td.td_thr; 3170 3171 if (i == this_thr->th.th_info.ds.ds_tid) { 3172 continue; 3173 } 3174 // Since we haven't locked the thread's suspend mutex lock at this 3175 // point, there is a small window where a thread might be putting 3176 // itself to sleep, but hasn't set the th_sleep_loc field yet. 3177 // To work around this, __kmp_execute_tasks_template() periodically checks 3178 // see if other threads are sleeping (using the same random mechanism that 3179 // is used for task stealing) and awakens them if they are. 3180 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3181 NULL) { 3182 KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n", 3183 __kmp_gtid_from_thread(this_thr), 3184 __kmp_gtid_from_thread(thread))); 3185 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); 3186 } else { 3187 KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n", 3188 __kmp_gtid_from_thread(this_thr), 3189 __kmp_gtid_from_thread(thread))); 3190 } 3191 } 3192 } 3193 3194 KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n", 3195 __kmp_gtid_from_thread(this_thr))); 3196 } 3197 3198 /* // TODO: Check the comment consistency 3199 * Utility routines for "task teams". A task team (kmp_task_t) is kind of 3200 * like a shadow of the kmp_team_t data struct, with a different lifetime. 3201 * After a child * thread checks into a barrier and calls __kmp_release() from 3202 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no 3203 * longer assume that the kmp_team_t structure is intact (at any moment, the 3204 * master thread may exit the barrier code and free the team data structure, 3205 * and return the threads to the thread pool). 3206 * 3207 * This does not work with the tasking code, as the thread is still 3208 * expected to participate in the execution of any tasks that may have been 3209 * spawned my a member of the team, and the thread still needs access to all 3210 * to each thread in the team, so that it can steal work from it. 3211 * 3212 * Enter the existence of the kmp_task_team_t struct. It employs a reference 3213 * counting mechanism, and is allocated by the master thread before calling 3214 * __kmp_<barrier_kind>_release, and then is release by the last thread to 3215 * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes 3216 * of the kmp_task_team_t structs for consecutive barriers can overlap 3217 * (and will, unless the master thread is the last thread to exit the barrier 3218 * release phase, which is not typical). The existence of such a struct is 3219 * useful outside the context of tasking. 3220 * 3221 * We currently use the existence of the threads array as an indicator that 3222 * tasks were spawned since the last barrier. If the structure is to be 3223 * useful outside the context of tasking, then this will have to change, but 3224 * not setting the field minimizes the performance impact of tasking on 3225 * barriers, when no explicit tasks were spawned (pushed, actually). 3226 */ 3227 3228 static kmp_task_team_t *__kmp_free_task_teams = 3229 NULL; // Free list for task_team data structures 3230 // Lock for task team data structures 3231 kmp_bootstrap_lock_t __kmp_task_team_lock = 3232 KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock); 3233 3234 // __kmp_alloc_task_deque: 3235 // Allocates a task deque for a particular thread, and initialize the necessary 3236 // data structures relating to the deque. This only happens once per thread 3237 // per task team since task teams are recycled. No lock is needed during 3238 // allocation since each thread allocates its own deque. 3239 static void __kmp_alloc_task_deque(kmp_info_t *thread, 3240 kmp_thread_data_t *thread_data) { 3241 __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); 3242 KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL); 3243 3244 // Initialize last stolen task field to "none" 3245 thread_data->td.td_deque_last_stolen = -1; 3246 3247 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0); 3248 KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0); 3249 KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0); 3250 3251 KE_TRACE( 3252 10, 3253 ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n", 3254 __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data)); 3255 // Allocate space for task deque, and zero the deque 3256 // Cannot use __kmp_thread_calloc() because threads not around for 3257 // kmp_reap_task_team( ). 3258 thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( 3259 INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); 3260 thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; 3261 } 3262 3263 // __kmp_free_task_deque: 3264 // Deallocates a task deque for a particular thread. Happens at library 3265 // deallocation so don't need to reset all thread data fields. 3266 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) { 3267 if (thread_data->td.td_deque != NULL) { 3268 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3269 TCW_4(thread_data->td.td_deque_ntasks, 0); 3270 __kmp_free(thread_data->td.td_deque); 3271 thread_data->td.td_deque = NULL; 3272 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3273 } 3274 3275 #ifdef BUILD_TIED_TASK_STACK 3276 // GEH: Figure out what to do here for td_susp_tied_tasks 3277 if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) { 3278 __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data); 3279 } 3280 #endif // BUILD_TIED_TASK_STACK 3281 } 3282 3283 // __kmp_realloc_task_threads_data: 3284 // Allocates a threads_data array for a task team, either by allocating an 3285 // initial array or enlarging an existing array. Only the first thread to get 3286 // the lock allocs or enlarges the array and re-initializes the array elements. 3287 // That thread returns "TRUE", the rest return "FALSE". 3288 // Assumes that the new array size is given by task_team -> tt.tt_nproc. 3289 // The current size is given by task_team -> tt.tt_max_threads. 3290 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 3291 kmp_task_team_t *task_team) { 3292 kmp_thread_data_t **threads_data_p; 3293 kmp_int32 nthreads, maxthreads; 3294 int is_init_thread = FALSE; 3295 3296 if (TCR_4(task_team->tt.tt_found_tasks)) { 3297 // Already reallocated and initialized. 3298 return FALSE; 3299 } 3300 3301 threads_data_p = &task_team->tt.tt_threads_data; 3302 nthreads = task_team->tt.tt_nproc; 3303 maxthreads = task_team->tt.tt_max_threads; 3304 3305 // All threads must lock when they encounter the first task of the implicit 3306 // task region to make sure threads_data fields are (re)initialized before 3307 // used. 3308 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3309 3310 if (!TCR_4(task_team->tt.tt_found_tasks)) { 3311 // first thread to enable tasking 3312 kmp_team_t *team = thread->th.th_team; 3313 int i; 3314 3315 is_init_thread = TRUE; 3316 if (maxthreads < nthreads) { 3317 3318 if (*threads_data_p != NULL) { 3319 kmp_thread_data_t *old_data = *threads_data_p; 3320 kmp_thread_data_t *new_data = NULL; 3321 3322 KE_TRACE( 3323 10, 3324 ("__kmp_realloc_task_threads_data: T#%d reallocating " 3325 "threads data for task_team %p, new_size = %d, old_size = %d\n", 3326 __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads)); 3327 // Reallocate threads_data to have more elements than current array 3328 // Cannot use __kmp_thread_realloc() because threads not around for 3329 // kmp_reap_task_team( ). Note all new array entries are initialized 3330 // to zero by __kmp_allocate(). 3331 new_data = (kmp_thread_data_t *)__kmp_allocate( 3332 nthreads * sizeof(kmp_thread_data_t)); 3333 // copy old data to new data 3334 KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t), 3335 (void *)old_data, maxthreads * sizeof(kmp_thread_data_t)); 3336 3337 #ifdef BUILD_TIED_TASK_STACK 3338 // GEH: Figure out if this is the right thing to do 3339 for (i = maxthreads; i < nthreads; i++) { 3340 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3341 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3342 } 3343 #endif // BUILD_TIED_TASK_STACK 3344 // Install the new data and free the old data 3345 (*threads_data_p) = new_data; 3346 __kmp_free(old_data); 3347 } else { 3348 KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating " 3349 "threads data for task_team %p, size = %d\n", 3350 __kmp_gtid_from_thread(thread), task_team, nthreads)); 3351 // Make the initial allocate for threads_data array, and zero entries 3352 // Cannot use __kmp_thread_calloc() because threads not around for 3353 // kmp_reap_task_team( ). 3354 ANNOTATE_IGNORE_WRITES_BEGIN(); 3355 *threads_data_p = (kmp_thread_data_t *)__kmp_allocate( 3356 nthreads * sizeof(kmp_thread_data_t)); 3357 ANNOTATE_IGNORE_WRITES_END(); 3358 #ifdef BUILD_TIED_TASK_STACK 3359 // GEH: Figure out if this is the right thing to do 3360 for (i = 0; i < nthreads; i++) { 3361 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3362 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3363 } 3364 #endif // BUILD_TIED_TASK_STACK 3365 } 3366 task_team->tt.tt_max_threads = nthreads; 3367 } else { 3368 // If array has (more than) enough elements, go ahead and use it 3369 KMP_DEBUG_ASSERT(*threads_data_p != NULL); 3370 } 3371 3372 // initialize threads_data pointers back to thread_info structures 3373 for (i = 0; i < nthreads; i++) { 3374 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3375 thread_data->td.td_thr = team->t.t_threads[i]; 3376 3377 if (thread_data->td.td_deque_last_stolen >= nthreads) { 3378 // The last stolen field survives across teams / barrier, and the number 3379 // of threads may have changed. It's possible (likely?) that a new 3380 // parallel region will exhibit the same behavior as previous region. 3381 thread_data->td.td_deque_last_stolen = -1; 3382 } 3383 } 3384 3385 KMP_MB(); 3386 TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE); 3387 } 3388 3389 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3390 return is_init_thread; 3391 } 3392 3393 // __kmp_free_task_threads_data: 3394 // Deallocates a threads_data array for a task team, including any attached 3395 // tasking deques. Only occurs at library shutdown. 3396 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) { 3397 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3398 if (task_team->tt.tt_threads_data != NULL) { 3399 int i; 3400 for (i = 0; i < task_team->tt.tt_max_threads; i++) { 3401 __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]); 3402 } 3403 __kmp_free(task_team->tt.tt_threads_data); 3404 task_team->tt.tt_threads_data = NULL; 3405 } 3406 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3407 } 3408 3409 // __kmp_allocate_task_team: 3410 // Allocates a task team associated with a specific team, taking it from 3411 // the global task team free list if possible. Also initializes data 3412 // structures. 3413 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread, 3414 kmp_team_t *team) { 3415 kmp_task_team_t *task_team = NULL; 3416 int nthreads; 3417 3418 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n", 3419 (thread ? __kmp_gtid_from_thread(thread) : -1), team)); 3420 3421 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3422 // Take a task team from the task team pool 3423 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3424 if (__kmp_free_task_teams != NULL) { 3425 task_team = __kmp_free_task_teams; 3426 TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next); 3427 task_team->tt.tt_next = NULL; 3428 } 3429 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3430 } 3431 3432 if (task_team == NULL) { 3433 KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating " 3434 "task team for team %p\n", 3435 __kmp_gtid_from_thread(thread), team)); 3436 // Allocate a new task team if one is not available. Cannot use 3437 // __kmp_thread_malloc because threads not around for kmp_reap_task_team. 3438 task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t)); 3439 __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock); 3440 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG 3441 // suppress race conditions detection on synchronization flags in debug mode 3442 // this helps to analyze library internals eliminating false positives 3443 __itt_suppress_mark_range( 3444 __itt_suppress_range, __itt_suppress_threading_errors, 3445 &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks)); 3446 __itt_suppress_mark_range(__itt_suppress_range, 3447 __itt_suppress_threading_errors, 3448 CCAST(kmp_uint32 *, &task_team->tt.tt_active), 3449 sizeof(task_team->tt.tt_active)); 3450 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ 3451 // Note: __kmp_allocate zeroes returned memory, othewise we would need: 3452 // task_team->tt.tt_threads_data = NULL; 3453 // task_team->tt.tt_max_threads = 0; 3454 // task_team->tt.tt_next = NULL; 3455 } 3456 3457 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3458 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3459 task_team->tt.tt_nproc = nthreads = team->t.t_nproc; 3460 3461 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads); 3462 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 3463 TCW_4(task_team->tt.tt_active, TRUE); 3464 3465 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p " 3466 "unfinished_threads init'd to %d\n", 3467 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team, 3468 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads))); 3469 return task_team; 3470 } 3471 3472 // __kmp_free_task_team: 3473 // Frees the task team associated with a specific thread, and adds it 3474 // to the global task team free list. 3475 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) { 3476 KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n", 3477 thread ? __kmp_gtid_from_thread(thread) : -1, task_team)); 3478 3479 // Put task team back on free list 3480 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3481 3482 KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL); 3483 task_team->tt.tt_next = __kmp_free_task_teams; 3484 TCW_PTR(__kmp_free_task_teams, task_team); 3485 3486 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3487 } 3488 3489 // __kmp_reap_task_teams: 3490 // Free all the task teams on the task team free list. 3491 // Should only be done during library shutdown. 3492 // Cannot do anything that needs a thread structure or gtid since they are 3493 // already gone. 3494 void __kmp_reap_task_teams(void) { 3495 kmp_task_team_t *task_team; 3496 3497 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3498 // Free all task_teams on the free list 3499 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3500 while ((task_team = __kmp_free_task_teams) != NULL) { 3501 __kmp_free_task_teams = task_team->tt.tt_next; 3502 task_team->tt.tt_next = NULL; 3503 3504 // Free threads_data if necessary 3505 if (task_team->tt.tt_threads_data != NULL) { 3506 __kmp_free_task_threads_data(task_team); 3507 } 3508 __kmp_free(task_team); 3509 } 3510 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3511 } 3512 } 3513 3514 // __kmp_wait_to_unref_task_teams: 3515 // Some threads could still be in the fork barrier release code, possibly 3516 // trying to steal tasks. Wait for each thread to unreference its task team. 3517 void __kmp_wait_to_unref_task_teams(void) { 3518 kmp_info_t *thread; 3519 kmp_uint32 spins; 3520 int done; 3521 3522 KMP_INIT_YIELD(spins); 3523 3524 for (;;) { 3525 done = TRUE; 3526 3527 // TODO: GEH - this may be is wrong because some sync would be necessary 3528 // in case threads are added to the pool during the traversal. Need to 3529 // verify that lock for thread pool is held when calling this routine. 3530 for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL; 3531 thread = thread->th.th_next_pool) { 3532 #if KMP_OS_WINDOWS 3533 DWORD exit_val; 3534 #endif 3535 if (TCR_PTR(thread->th.th_task_team) == NULL) { 3536 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n", 3537 __kmp_gtid_from_thread(thread))); 3538 continue; 3539 } 3540 #if KMP_OS_WINDOWS 3541 // TODO: GEH - add this check for Linux* OS / OS X* as well? 3542 if (!__kmp_is_thread_alive(thread, &exit_val)) { 3543 thread->th.th_task_team = NULL; 3544 continue; 3545 } 3546 #endif 3547 3548 done = FALSE; // Because th_task_team pointer is not NULL for this thread 3549 3550 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to " 3551 "unreference task_team\n", 3552 __kmp_gtid_from_thread(thread))); 3553 3554 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 3555 volatile void *sleep_loc; 3556 // If the thread is sleeping, awaken it. 3557 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3558 NULL) { 3559 KA_TRACE( 3560 10, 3561 ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n", 3562 __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread))); 3563 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); 3564 } 3565 } 3566 } 3567 if (done) { 3568 break; 3569 } 3570 3571 // If oversubscribed or have waited a bit, yield. 3572 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 3573 } 3574 } 3575 3576 // __kmp_task_team_setup: Create a task_team for the current team, but use 3577 // an already created, unused one if it already exists. 3578 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) { 3579 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3580 3581 // If this task_team hasn't been created yet, allocate it. It will be used in 3582 // the region after the next. 3583 // If it exists, it is the current task team and shouldn't be touched yet as 3584 // it may still be in use. 3585 if (team->t.t_task_team[this_thr->th.th_task_state] == NULL && 3586 (always || team->t.t_nproc > 1)) { 3587 team->t.t_task_team[this_thr->th.th_task_state] = 3588 __kmp_allocate_task_team(this_thr, team); 3589 KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created new task_team %p " 3590 "for team %d at parity=%d\n", 3591 __kmp_gtid_from_thread(this_thr), 3592 team->t.t_task_team[this_thr->th.th_task_state], 3593 ((team != NULL) ? team->t.t_id : -1), 3594 this_thr->th.th_task_state)); 3595 } 3596 3597 // After threads exit the release, they will call sync, and then point to this 3598 // other task_team; make sure it is allocated and properly initialized. As 3599 // threads spin in the barrier release phase, they will continue to use the 3600 // previous task_team struct(above), until they receive the signal to stop 3601 // checking for tasks (they can't safely reference the kmp_team_t struct, 3602 // which could be reallocated by the master thread). No task teams are formed 3603 // for serialized teams. 3604 if (team->t.t_nproc > 1) { 3605 int other_team = 1 - this_thr->th.th_task_state; 3606 if (team->t.t_task_team[other_team] == NULL) { // setup other team as well 3607 team->t.t_task_team[other_team] = 3608 __kmp_allocate_task_team(this_thr, team); 3609 KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created second new " 3610 "task_team %p for team %d at parity=%d\n", 3611 __kmp_gtid_from_thread(this_thr), 3612 team->t.t_task_team[other_team], 3613 ((team != NULL) ? team->t.t_id : -1), other_team)); 3614 } else { // Leave the old task team struct in place for the upcoming region; 3615 // adjust as needed 3616 kmp_task_team_t *task_team = team->t.t_task_team[other_team]; 3617 if (!task_team->tt.tt_active || 3618 team->t.t_nproc != task_team->tt.tt_nproc) { 3619 TCW_4(task_team->tt.tt_nproc, team->t.t_nproc); 3620 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3621 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3622 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, 3623 team->t.t_nproc); 3624 TCW_4(task_team->tt.tt_active, TRUE); 3625 } 3626 // if team size has changed, the first thread to enable tasking will 3627 // realloc threads_data if necessary 3628 KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d reset next task_team " 3629 "%p for team %d at parity=%d\n", 3630 __kmp_gtid_from_thread(this_thr), 3631 team->t.t_task_team[other_team], 3632 ((team != NULL) ? team->t.t_id : -1), other_team)); 3633 } 3634 } 3635 3636 // For regular thread, task enabling should be called when the task is going 3637 // to be pushed to a dequeue. However, for the hidden helper thread, we need 3638 // it ahead of time so that some operations can be performed without race 3639 // condition. 3640 if (this_thr == __kmp_hidden_helper_main_thread) { 3641 for (int i = 0; i < 2; ++i) { 3642 kmp_task_team_t *task_team = team->t.t_task_team[i]; 3643 if (KMP_TASKING_ENABLED(task_team)) { 3644 continue; 3645 } 3646 __kmp_enable_tasking(task_team, this_thr); 3647 for (int j = 0; j < task_team->tt.tt_nproc; ++j) { 3648 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j]; 3649 if (thread_data->td.td_deque == NULL) { 3650 __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data); 3651 } 3652 } 3653 } 3654 } 3655 } 3656 3657 // __kmp_task_team_sync: Propagation of task team data from team to threads 3658 // which happens just after the release phase of a team barrier. This may be 3659 // called by any thread, but only for teams with # threads > 1. 3660 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) { 3661 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3662 3663 // Toggle the th_task_state field, to switch which task_team this thread 3664 // refers to 3665 this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state); 3666 3667 // It is now safe to propagate the task team pointer from the team struct to 3668 // the current thread. 3669 TCW_PTR(this_thr->th.th_task_team, 3670 team->t.t_task_team[this_thr->th.th_task_state]); 3671 KA_TRACE(20, 3672 ("__kmp_task_team_sync: Thread T#%d task team switched to task_team " 3673 "%p from Team #%d (parity=%d)\n", 3674 __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team, 3675 ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state)); 3676 } 3677 3678 // __kmp_task_team_wait: Master thread waits for outstanding tasks after the 3679 // barrier gather phase. Only called by master thread if #threads in team > 1 or 3680 // if proxy tasks were created. 3681 // 3682 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off 3683 // by passing in 0 optionally as the last argument. When wait is zero, master 3684 // thread does not wait for unfinished_threads to reach 0. 3685 void __kmp_task_team_wait( 3686 kmp_info_t *this_thr, 3687 kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) { 3688 kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state]; 3689 3690 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3691 KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team); 3692 3693 if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) { 3694 if (wait) { 3695 KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d waiting for all tasks " 3696 "(for unfinished_threads to reach 0) on task_team = %p\n", 3697 __kmp_gtid_from_thread(this_thr), task_team)); 3698 // Worker threads may have dropped through to release phase, but could 3699 // still be executing tasks. Wait here for tasks to complete. To avoid 3700 // memory contention, only master thread checks termination condition. 3701 kmp_flag_32<false, false> flag( 3702 RCAST(std::atomic<kmp_uint32> *, 3703 &task_team->tt.tt_unfinished_threads), 3704 0U); 3705 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 3706 } 3707 // Deactivate the old task team, so that the worker threads will stop 3708 // referencing it while spinning. 3709 KA_TRACE( 3710 20, 3711 ("__kmp_task_team_wait: Master T#%d deactivating task_team %p: " 3712 "setting active to false, setting local and team's pointer to NULL\n", 3713 __kmp_gtid_from_thread(this_thr), task_team)); 3714 KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 || 3715 task_team->tt.tt_found_proxy_tasks == TRUE); 3716 TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3717 KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0); 3718 TCW_SYNC_4(task_team->tt.tt_active, FALSE); 3719 KMP_MB(); 3720 3721 TCW_PTR(this_thr->th.th_task_team, NULL); 3722 } 3723 } 3724 3725 // __kmp_tasking_barrier: 3726 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier. 3727 // Internal function to execute all tasks prior to a regular barrier or a join 3728 // barrier. It is a full barrier itself, which unfortunately turns regular 3729 // barriers into double barriers and join barriers into 1 1/2 barriers. 3730 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) { 3731 std::atomic<kmp_uint32> *spin = RCAST( 3732 std::atomic<kmp_uint32> *, 3733 &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads); 3734 int flag = FALSE; 3735 KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier); 3736 3737 #if USE_ITT_BUILD 3738 KMP_FSYNC_SPIN_INIT(spin, NULL); 3739 #endif /* USE_ITT_BUILD */ 3740 kmp_flag_32<false, false> spin_flag(spin, 0U); 3741 while (!spin_flag.execute_tasks(thread, gtid, TRUE, 3742 &flag USE_ITT_BUILD_ARG(NULL), 0)) { 3743 #if USE_ITT_BUILD 3744 // TODO: What about itt_sync_obj?? 3745 KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin)); 3746 #endif /* USE_ITT_BUILD */ 3747 3748 if (TCR_4(__kmp_global.g.g_done)) { 3749 if (__kmp_global.g.g_abort) 3750 __kmp_abort_thread(); 3751 break; 3752 } 3753 KMP_YIELD(TRUE); 3754 } 3755 #if USE_ITT_BUILD 3756 KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin)); 3757 #endif /* USE_ITT_BUILD */ 3758 } 3759 3760 // __kmp_give_task puts a task into a given thread queue if: 3761 // - the queue for that thread was created 3762 // - there's space in that queue 3763 // Because of this, __kmp_push_task needs to check if there's space after 3764 // getting the lock 3765 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task, 3766 kmp_int32 pass) { 3767 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 3768 kmp_task_team_t *task_team = taskdata->td_task_team; 3769 3770 KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n", 3771 taskdata, tid)); 3772 3773 // If task_team is NULL something went really bad... 3774 KMP_DEBUG_ASSERT(task_team != NULL); 3775 3776 bool result = false; 3777 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 3778 3779 if (thread_data->td.td_deque == NULL) { 3780 // There's no queue in this thread, go find another one 3781 // We're guaranteed that at least one thread has a queue 3782 KA_TRACE(30, 3783 ("__kmp_give_task: thread %d has no queue while giving task %p.\n", 3784 tid, taskdata)); 3785 return result; 3786 } 3787 3788 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3789 TASK_DEQUE_SIZE(thread_data->td)) { 3790 KA_TRACE( 3791 30, 3792 ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", 3793 taskdata, tid)); 3794 3795 // if this deque is bigger than the pass ratio give a chance to another 3796 // thread 3797 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 3798 return result; 3799 3800 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3801 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3802 TASK_DEQUE_SIZE(thread_data->td)) { 3803 // expand deque to push the task which is not allowed to execute 3804 __kmp_realloc_task_deque(thread, thread_data); 3805 } 3806 3807 } else { 3808 3809 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3810 3811 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3812 TASK_DEQUE_SIZE(thread_data->td)) { 3813 KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to " 3814 "thread %d.\n", 3815 taskdata, tid)); 3816 3817 // if this deque is bigger than the pass ratio give a chance to another 3818 // thread 3819 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 3820 goto release_and_exit; 3821 3822 __kmp_realloc_task_deque(thread, thread_data); 3823 } 3824 } 3825 3826 // lock is held here, and there is space in the deque 3827 3828 thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; 3829 // Wrap index. 3830 thread_data->td.td_deque_tail = 3831 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 3832 TCW_4(thread_data->td.td_deque_ntasks, 3833 TCR_4(thread_data->td.td_deque_ntasks) + 1); 3834 3835 result = true; 3836 KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n", 3837 taskdata, tid)); 3838 3839 release_and_exit: 3840 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3841 3842 return result; 3843 } 3844 3845 /* The finish of the proxy tasks is divided in two pieces: 3846 - the top half is the one that can be done from a thread outside the team 3847 - the bottom half must be run from a thread within the team 3848 3849 In order to run the bottom half the task gets queued back into one of the 3850 threads of the team. Once the td_incomplete_child_task counter of the parent 3851 is decremented the threads can leave the barriers. So, the bottom half needs 3852 to be queued before the counter is decremented. The top half is therefore 3853 divided in two parts: 3854 - things that can be run before queuing the bottom half 3855 - things that must be run after queuing the bottom half 3856 3857 This creates a second race as the bottom half can free the task before the 3858 second top half is executed. To avoid this we use the 3859 td_incomplete_child_task of the proxy task to synchronize the top and bottom 3860 half. */ 3861 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 3862 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 3863 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3864 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 3865 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 3866 3867 taskdata->td_flags.complete = 1; // mark the task as completed 3868 3869 if (taskdata->td_taskgroup) 3870 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 3871 3872 // Create an imaginary children for this task so the bottom half cannot 3873 // release the task before we have completed the second top half 3874 KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks); 3875 } 3876 3877 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 3878 kmp_int32 children = 0; 3879 3880 // Predecrement simulated by "- 1" calculation 3881 children = 3882 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1; 3883 KMP_DEBUG_ASSERT(children >= 0); 3884 3885 // Remove the imaginary children 3886 KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks); 3887 } 3888 3889 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) { 3890 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3891 kmp_info_t *thread = __kmp_threads[gtid]; 3892 3893 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3894 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 3895 1); // top half must run before bottom half 3896 3897 // We need to wait to make sure the top half is finished 3898 // Spinning here should be ok as this should happen quickly 3899 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0) 3900 ; 3901 3902 __kmp_release_deps(gtid, taskdata); 3903 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 3904 } 3905 3906 /*! 3907 @ingroup TASKING 3908 @param gtid Global Thread ID of encountering thread 3909 @param ptask Task which execution is completed 3910 3911 Execute the completion of a proxy task from a thread of that is part of the 3912 team. Run first and bottom halves directly. 3913 */ 3914 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) { 3915 KMP_DEBUG_ASSERT(ptask != NULL); 3916 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3917 KA_TRACE( 3918 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n", 3919 gtid, taskdata)); 3920 __kmp_assert_valid_gtid(gtid); 3921 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3922 3923 __kmp_first_top_half_finish_proxy(taskdata); 3924 __kmp_second_top_half_finish_proxy(taskdata); 3925 __kmp_bottom_half_finish_proxy(gtid, ptask); 3926 3927 KA_TRACE(10, 3928 ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n", 3929 gtid, taskdata)); 3930 } 3931 3932 /*! 3933 @ingroup TASKING 3934 @param ptask Task which execution is completed 3935 3936 Execute the completion of a proxy task from a thread that could not belong to 3937 the team. 3938 */ 3939 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) { 3940 KMP_DEBUG_ASSERT(ptask != NULL); 3941 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3942 3943 KA_TRACE( 3944 10, 3945 ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n", 3946 taskdata)); 3947 3948 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3949 3950 __kmp_first_top_half_finish_proxy(taskdata); 3951 3952 // Enqueue task to complete bottom half completion from a thread within the 3953 // corresponding team 3954 kmp_team_t *team = taskdata->td_team; 3955 kmp_int32 nthreads = team->t.t_nproc; 3956 kmp_info_t *thread; 3957 3958 // This should be similar to start_k = __kmp_get_random( thread ) % nthreads 3959 // but we cannot use __kmp_get_random here 3960 kmp_int32 start_k = 0; 3961 kmp_int32 pass = 1; 3962 kmp_int32 k = start_k; 3963 3964 do { 3965 // For now we're just linearly trying to find a thread 3966 thread = team->t.t_threads[k]; 3967 k = (k + 1) % nthreads; 3968 3969 // we did a full pass through all the threads 3970 if (k == start_k) 3971 pass = pass << 1; 3972 3973 } while (!__kmp_give_task(thread, k, ptask, pass)); 3974 3975 __kmp_second_top_half_finish_proxy(taskdata); 3976 3977 KA_TRACE( 3978 10, 3979 ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n", 3980 taskdata)); 3981 } 3982 3983 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid, 3984 kmp_task_t *task) { 3985 kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task); 3986 if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) { 3987 td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION; 3988 td->td_allow_completion_event.ed.task = task; 3989 __kmp_init_tas_lock(&td->td_allow_completion_event.lock); 3990 } 3991 return &td->td_allow_completion_event; 3992 } 3993 3994 void __kmp_fulfill_event(kmp_event_t *event) { 3995 if (event->type == KMP_EVENT_ALLOW_COMPLETION) { 3996 kmp_task_t *ptask = event->ed.task; 3997 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3998 bool detached = false; 3999 int gtid = __kmp_get_gtid(); 4000 4001 // The associated task might have completed or could be completing at this 4002 // point. 4003 // We need to take the lock to avoid races 4004 __kmp_acquire_tas_lock(&event->lock, gtid); 4005 if (taskdata->td_flags.proxy == TASK_PROXY) { 4006 detached = true; 4007 } else { 4008 #if OMPT_SUPPORT 4009 // The OMPT event must occur under mutual exclusion, 4010 // otherwise the tool might access ptask after free 4011 if (UNLIKELY(ompt_enabled.enabled)) 4012 __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill); 4013 #endif 4014 } 4015 event->type = KMP_EVENT_UNINITIALIZED; 4016 __kmp_release_tas_lock(&event->lock, gtid); 4017 4018 if (detached) { 4019 #if OMPT_SUPPORT 4020 // We free ptask afterwards and know the task is finished, 4021 // so locking is not necessary 4022 if (UNLIKELY(ompt_enabled.enabled)) 4023 __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill); 4024 #endif 4025 // If the task detached complete the proxy task 4026 if (gtid >= 0) { 4027 kmp_team_t *team = taskdata->td_team; 4028 kmp_info_t *thread = __kmp_get_thread(); 4029 if (thread->th.th_team == team) { 4030 __kmpc_proxy_task_completed(gtid, ptask); 4031 return; 4032 } 4033 } 4034 4035 // fallback 4036 __kmpc_proxy_task_completed_ooo(ptask); 4037 } 4038 } 4039 } 4040 4041 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task 4042 // for taskloop 4043 // 4044 // thread: allocating thread 4045 // task_src: pointer to source task to be duplicated 4046 // returns: a pointer to the allocated kmp_task_t structure (task). 4047 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) { 4048 kmp_task_t *task; 4049 kmp_taskdata_t *taskdata; 4050 kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src); 4051 kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task 4052 size_t shareds_offset; 4053 size_t task_size; 4054 4055 KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread, 4056 task_src)); 4057 KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy == 4058 TASK_FULL); // it should not be proxy task 4059 KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT); 4060 task_size = taskdata_src->td_size_alloc; 4061 4062 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 4063 KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread, 4064 task_size)); 4065 #if USE_FAST_MEMORY 4066 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size); 4067 #else 4068 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size); 4069 #endif /* USE_FAST_MEMORY */ 4070 KMP_MEMCPY(taskdata, taskdata_src, task_size); 4071 4072 task = KMP_TASKDATA_TO_TASK(taskdata); 4073 4074 // Initialize new task (only specific fields not affected by memcpy) 4075 taskdata->td_task_id = KMP_GEN_TASK_ID(); 4076 if (task->shareds != NULL) { // need setup shareds pointer 4077 shareds_offset = (char *)task_src->shareds - (char *)taskdata_src; 4078 task->shareds = &((char *)taskdata)[shareds_offset]; 4079 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 4080 0); 4081 } 4082 taskdata->td_alloc_thread = thread; 4083 taskdata->td_parent = parent_task; 4084 // task inherits the taskgroup from the parent task 4085 taskdata->td_taskgroup = parent_task->td_taskgroup; 4086 // tied task needs to initialize the td_last_tied at creation, 4087 // untied one does this when it is scheduled for execution 4088 if (taskdata->td_flags.tiedness == TASK_TIED) 4089 taskdata->td_last_tied = taskdata; 4090 4091 // Only need to keep track of child task counts if team parallel and tasking 4092 // not serialized 4093 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { 4094 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 4095 if (parent_task->td_taskgroup) 4096 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 4097 // Only need to keep track of allocated child tasks for explicit tasks since 4098 // implicit not deallocated 4099 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) 4100 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 4101 } 4102 4103 KA_TRACE(20, 4104 ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n", 4105 thread, taskdata, taskdata->td_parent)); 4106 #if OMPT_SUPPORT 4107 if (UNLIKELY(ompt_enabled.enabled)) 4108 __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid); 4109 #endif 4110 return task; 4111 } 4112 4113 // Routine optionally generated by the compiler for setting the lastprivate flag 4114 // and calling needed constructors for private/firstprivate objects 4115 // (used to form taskloop tasks from pattern task) 4116 // Parameters: dest task, src task, lastprivate flag. 4117 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); 4118 4119 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8); 4120 4121 // class to encapsulate manipulating loop bounds in a taskloop task. 4122 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting 4123 // the loop bound variables. 4124 class kmp_taskloop_bounds_t { 4125 kmp_task_t *task; 4126 const kmp_taskdata_t *taskdata; 4127 size_t lower_offset; 4128 size_t upper_offset; 4129 4130 public: 4131 kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub) 4132 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)), 4133 lower_offset((char *)lb - (char *)task), 4134 upper_offset((char *)ub - (char *)task) { 4135 KMP_DEBUG_ASSERT((char *)lb > (char *)_task); 4136 KMP_DEBUG_ASSERT((char *)ub > (char *)_task); 4137 } 4138 kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds) 4139 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)), 4140 lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {} 4141 size_t get_lower_offset() const { return lower_offset; } 4142 size_t get_upper_offset() const { return upper_offset; } 4143 kmp_uint64 get_lb() const { 4144 kmp_int64 retval; 4145 #if defined(KMP_GOMP_COMPAT) 4146 // Intel task just returns the lower bound normally 4147 if (!taskdata->td_flags.native) { 4148 retval = *(kmp_int64 *)((char *)task + lower_offset); 4149 } else { 4150 // GOMP task has to take into account the sizeof(long) 4151 if (taskdata->td_size_loop_bounds == 4) { 4152 kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds); 4153 retval = (kmp_int64)*lb; 4154 } else { 4155 kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds); 4156 retval = (kmp_int64)*lb; 4157 } 4158 } 4159 #else 4160 retval = *(kmp_int64 *)((char *)task + lower_offset); 4161 #endif // defined(KMP_GOMP_COMPAT) 4162 return retval; 4163 } 4164 kmp_uint64 get_ub() const { 4165 kmp_int64 retval; 4166 #if defined(KMP_GOMP_COMPAT) 4167 // Intel task just returns the upper bound normally 4168 if (!taskdata->td_flags.native) { 4169 retval = *(kmp_int64 *)((char *)task + upper_offset); 4170 } else { 4171 // GOMP task has to take into account the sizeof(long) 4172 if (taskdata->td_size_loop_bounds == 4) { 4173 kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1; 4174 retval = (kmp_int64)*ub; 4175 } else { 4176 kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1; 4177 retval = (kmp_int64)*ub; 4178 } 4179 } 4180 #else 4181 retval = *(kmp_int64 *)((char *)task + upper_offset); 4182 #endif // defined(KMP_GOMP_COMPAT) 4183 return retval; 4184 } 4185 void set_lb(kmp_uint64 lb) { 4186 #if defined(KMP_GOMP_COMPAT) 4187 // Intel task just sets the lower bound normally 4188 if (!taskdata->td_flags.native) { 4189 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4190 } else { 4191 // GOMP task has to take into account the sizeof(long) 4192 if (taskdata->td_size_loop_bounds == 4) { 4193 kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds); 4194 *lower = (kmp_uint32)lb; 4195 } else { 4196 kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds); 4197 *lower = (kmp_uint64)lb; 4198 } 4199 } 4200 #else 4201 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4202 #endif // defined(KMP_GOMP_COMPAT) 4203 } 4204 void set_ub(kmp_uint64 ub) { 4205 #if defined(KMP_GOMP_COMPAT) 4206 // Intel task just sets the upper bound normally 4207 if (!taskdata->td_flags.native) { 4208 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4209 } else { 4210 // GOMP task has to take into account the sizeof(long) 4211 if (taskdata->td_size_loop_bounds == 4) { 4212 kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1; 4213 *upper = (kmp_uint32)ub; 4214 } else { 4215 kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1; 4216 *upper = (kmp_uint64)ub; 4217 } 4218 } 4219 #else 4220 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4221 #endif // defined(KMP_GOMP_COMPAT) 4222 } 4223 }; 4224 4225 // __kmp_taskloop_linear: Start tasks of the taskloop linearly 4226 // 4227 // loc Source location information 4228 // gtid Global thread ID 4229 // task Pattern task, exposes the loop iteration range 4230 // lb Pointer to loop lower bound in task structure 4231 // ub Pointer to loop upper bound in task structure 4232 // st Loop stride 4233 // ub_glob Global upper bound (used for lastprivate check) 4234 // num_tasks Number of tasks to execute 4235 // grainsize Number of loop iterations per task 4236 // extras Number of chunks with grainsize+1 iterations 4237 // last_chunk Reduction of grainsize for last task 4238 // tc Iterations count 4239 // task_dup Tasks duplication routine 4240 // codeptr_ra Return address for OMPT events 4241 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task, 4242 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4243 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4244 kmp_uint64 grainsize, kmp_uint64 extras, 4245 kmp_int64 last_chunk, kmp_uint64 tc, 4246 #if OMPT_SUPPORT 4247 void *codeptr_ra, 4248 #endif 4249 void *task_dup) { 4250 KMP_COUNT_BLOCK(OMP_TASKLOOP); 4251 KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling); 4252 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4253 // compiler provides global bounds here 4254 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4255 kmp_uint64 lower = task_bounds.get_lb(); 4256 kmp_uint64 upper = task_bounds.get_ub(); 4257 kmp_uint64 i; 4258 kmp_info_t *thread = __kmp_threads[gtid]; 4259 kmp_taskdata_t *current_task = thread->th.th_current_task; 4260 kmp_task_t *next_task; 4261 kmp_int32 lastpriv = 0; 4262 4263 KMP_DEBUG_ASSERT( 4264 tc == num_tasks * grainsize + (last_chunk < 0 ? last_chunk : extras)); 4265 KMP_DEBUG_ASSERT(num_tasks > extras); 4266 KMP_DEBUG_ASSERT(num_tasks > 0); 4267 KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, " 4268 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n", 4269 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper, 4270 ub_glob, st, task_dup)); 4271 4272 // Launch num_tasks tasks, assign grainsize iterations each task 4273 for (i = 0; i < num_tasks; ++i) { 4274 kmp_uint64 chunk_minus_1; 4275 if (extras == 0) { 4276 chunk_minus_1 = grainsize - 1; 4277 } else { 4278 chunk_minus_1 = grainsize; 4279 --extras; // first extras iterations get bigger chunk (grainsize+1) 4280 } 4281 upper = lower + st * chunk_minus_1; 4282 if (upper > *ub) { 4283 upper = *ub; 4284 } 4285 if (i == num_tasks - 1) { 4286 // schedule the last task, set lastprivate flag if needed 4287 if (st == 1) { // most common case 4288 KMP_DEBUG_ASSERT(upper == *ub); 4289 if (upper == ub_glob) 4290 lastpriv = 1; 4291 } else if (st > 0) { // positive loop stride 4292 KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper); 4293 if ((kmp_uint64)st > ub_glob - upper) 4294 lastpriv = 1; 4295 } else { // negative loop stride 4296 KMP_DEBUG_ASSERT(upper + st < *ub); 4297 if (upper - ub_glob < (kmp_uint64)(-st)) 4298 lastpriv = 1; 4299 } 4300 } 4301 next_task = __kmp_task_dup_alloc(thread, task); // allocate new task 4302 kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task); 4303 kmp_taskloop_bounds_t next_task_bounds = 4304 kmp_taskloop_bounds_t(next_task, task_bounds); 4305 4306 // adjust task-specific bounds 4307 next_task_bounds.set_lb(lower); 4308 if (next_taskdata->td_flags.native) { 4309 next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1)); 4310 } else { 4311 next_task_bounds.set_ub(upper); 4312 } 4313 if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates, 4314 // etc. 4315 ptask_dup(next_task, task, lastpriv); 4316 KA_TRACE(40, 4317 ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, " 4318 "upper %lld stride %lld, (offsets %p %p)\n", 4319 gtid, i, next_task, lower, upper, st, 4320 next_task_bounds.get_lower_offset(), 4321 next_task_bounds.get_upper_offset())); 4322 #if OMPT_SUPPORT 4323 __kmp_omp_taskloop_task(NULL, gtid, next_task, 4324 codeptr_ra); // schedule new task 4325 #else 4326 __kmp_omp_task(gtid, next_task, true); // schedule new task 4327 #endif 4328 lower = upper + st; // adjust lower bound for the next iteration 4329 } 4330 // free the pattern task and exit 4331 __kmp_task_start(gtid, task, current_task); // make internal bookkeeping 4332 // do not execute the pattern task, just do internal bookkeeping 4333 __kmp_task_finish<false>(gtid, task, current_task); 4334 } 4335 4336 // Structure to keep taskloop parameters for auxiliary task 4337 // kept in the shareds of the task structure. 4338 typedef struct __taskloop_params { 4339 kmp_task_t *task; 4340 kmp_uint64 *lb; 4341 kmp_uint64 *ub; 4342 void *task_dup; 4343 kmp_int64 st; 4344 kmp_uint64 ub_glob; 4345 kmp_uint64 num_tasks; 4346 kmp_uint64 grainsize; 4347 kmp_uint64 extras; 4348 kmp_int64 last_chunk; 4349 kmp_uint64 tc; 4350 kmp_uint64 num_t_min; 4351 #if OMPT_SUPPORT 4352 void *codeptr_ra; 4353 #endif 4354 } __taskloop_params_t; 4355 4356 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *, 4357 kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64, 4358 kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64, 4359 kmp_uint64, 4360 #if OMPT_SUPPORT 4361 void *, 4362 #endif 4363 void *); 4364 4365 // Execute part of the taskloop submitted as a task. 4366 int __kmp_taskloop_task(int gtid, void *ptask) { 4367 __taskloop_params_t *p = 4368 (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds; 4369 kmp_task_t *task = p->task; 4370 kmp_uint64 *lb = p->lb; 4371 kmp_uint64 *ub = p->ub; 4372 void *task_dup = p->task_dup; 4373 // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4374 kmp_int64 st = p->st; 4375 kmp_uint64 ub_glob = p->ub_glob; 4376 kmp_uint64 num_tasks = p->num_tasks; 4377 kmp_uint64 grainsize = p->grainsize; 4378 kmp_uint64 extras = p->extras; 4379 kmp_int64 last_chunk = p->last_chunk; 4380 kmp_uint64 tc = p->tc; 4381 kmp_uint64 num_t_min = p->num_t_min; 4382 #if OMPT_SUPPORT 4383 void *codeptr_ra = p->codeptr_ra; 4384 #endif 4385 #if KMP_DEBUG 4386 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4387 KMP_DEBUG_ASSERT(task != NULL); 4388 KA_TRACE(20, 4389 ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize" 4390 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 4391 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 4392 st, task_dup)); 4393 #endif 4394 KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min); 4395 if (num_tasks > num_t_min) 4396 __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4397 grainsize, extras, last_chunk, tc, num_t_min, 4398 #if OMPT_SUPPORT 4399 codeptr_ra, 4400 #endif 4401 task_dup); 4402 else 4403 __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4404 grainsize, extras, last_chunk, tc, 4405 #if OMPT_SUPPORT 4406 codeptr_ra, 4407 #endif 4408 task_dup); 4409 4410 KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid)); 4411 return 0; 4412 } 4413 4414 // Schedule part of the taskloop as a task, 4415 // execute the rest of the taskloop. 4416 // 4417 // loc Source location information 4418 // gtid Global thread ID 4419 // task Pattern task, exposes the loop iteration range 4420 // lb Pointer to loop lower bound in task structure 4421 // ub Pointer to loop upper bound in task structure 4422 // st Loop stride 4423 // ub_glob Global upper bound (used for lastprivate check) 4424 // num_tasks Number of tasks to execute 4425 // grainsize Number of loop iterations per task 4426 // extras Number of chunks with grainsize+1 iterations 4427 // last_chunk Reduction of grainsize for last task 4428 // tc Iterations count 4429 // num_t_min Threshold to launch tasks recursively 4430 // task_dup Tasks duplication routine 4431 // codeptr_ra Return address for OMPT events 4432 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task, 4433 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4434 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4435 kmp_uint64 grainsize, kmp_uint64 extras, 4436 kmp_int64 last_chunk, kmp_uint64 tc, 4437 kmp_uint64 num_t_min, 4438 #if OMPT_SUPPORT 4439 void *codeptr_ra, 4440 #endif 4441 void *task_dup) { 4442 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4443 KMP_DEBUG_ASSERT(task != NULL); 4444 KMP_DEBUG_ASSERT(num_tasks > num_t_min); 4445 KA_TRACE(20, 4446 ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize" 4447 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 4448 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 4449 st, task_dup)); 4450 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4451 kmp_uint64 lower = *lb; 4452 kmp_info_t *thread = __kmp_threads[gtid]; 4453 // kmp_taskdata_t *current_task = thread->th.th_current_task; 4454 kmp_task_t *next_task; 4455 size_t lower_offset = 4456 (char *)lb - (char *)task; // remember offset of lb in the task structure 4457 size_t upper_offset = 4458 (char *)ub - (char *)task; // remember offset of ub in the task structure 4459 4460 KMP_DEBUG_ASSERT( 4461 tc == num_tasks * grainsize + (last_chunk < 0 ? last_chunk : extras)); 4462 KMP_DEBUG_ASSERT(num_tasks > extras); 4463 KMP_DEBUG_ASSERT(num_tasks > 0); 4464 4465 // split the loop in two halves 4466 kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1; 4467 kmp_int64 last_chunk0 = 0, last_chunk1 = 0; 4468 kmp_uint64 gr_size0 = grainsize; 4469 kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute 4470 kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task 4471 if (last_chunk < 0) { 4472 ext0 = ext1 = 0; 4473 last_chunk1 = last_chunk; 4474 tc0 = grainsize * n_tsk0; 4475 tc1 = tc - tc0; 4476 } else if (n_tsk0 <= extras) { 4477 gr_size0++; // integrate extras into grainsize 4478 ext0 = 0; // no extra iters in 1st half 4479 ext1 = extras - n_tsk0; // remaining extras 4480 tc0 = gr_size0 * n_tsk0; 4481 tc1 = tc - tc0; 4482 } else { // n_tsk0 > extras 4483 ext1 = 0; // no extra iters in 2nd half 4484 ext0 = extras; 4485 tc1 = grainsize * n_tsk1; 4486 tc0 = tc - tc1; 4487 } 4488 ub0 = lower + st * (tc0 - 1); 4489 lb1 = ub0 + st; 4490 4491 // create pattern task for 2nd half of the loop 4492 next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task 4493 // adjust lower bound (upper bound is not changed) for the 2nd half 4494 *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1; 4495 if (ptask_dup != NULL) // construct firstprivates, etc. 4496 ptask_dup(next_task, task, 0); 4497 *ub = ub0; // adjust upper bound for the 1st half 4498 4499 // create auxiliary task for 2nd half of the loop 4500 // make sure new task has same parent task as the pattern task 4501 kmp_taskdata_t *current_task = thread->th.th_current_task; 4502 thread->th.th_current_task = taskdata->td_parent; 4503 kmp_task_t *new_task = 4504 __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *), 4505 sizeof(__taskloop_params_t), &__kmp_taskloop_task); 4506 // restore current task 4507 thread->th.th_current_task = current_task; 4508 __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds; 4509 p->task = next_task; 4510 p->lb = (kmp_uint64 *)((char *)next_task + lower_offset); 4511 p->ub = (kmp_uint64 *)((char *)next_task + upper_offset); 4512 p->task_dup = task_dup; 4513 p->st = st; 4514 p->ub_glob = ub_glob; 4515 p->num_tasks = n_tsk1; 4516 p->grainsize = grainsize; 4517 p->extras = ext1; 4518 p->last_chunk = last_chunk1; 4519 p->tc = tc1; 4520 p->num_t_min = num_t_min; 4521 #if OMPT_SUPPORT 4522 p->codeptr_ra = codeptr_ra; 4523 #endif 4524 4525 #if OMPT_SUPPORT 4526 // schedule new task with correct return address for OMPT events 4527 __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra); 4528 #else 4529 __kmp_omp_task(gtid, new_task, true); // schedule new task 4530 #endif 4531 4532 // execute the 1st half of current subrange 4533 if (n_tsk0 > num_t_min) 4534 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0, 4535 ext0, last_chunk0, tc0, num_t_min, 4536 #if OMPT_SUPPORT 4537 codeptr_ra, 4538 #endif 4539 task_dup); 4540 else 4541 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, 4542 gr_size0, ext0, last_chunk0, tc0, 4543 #if OMPT_SUPPORT 4544 codeptr_ra, 4545 #endif 4546 task_dup); 4547 4548 KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid)); 4549 } 4550 4551 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4552 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4553 int nogroup, int sched, kmp_uint64 grainsize, 4554 int modifier, void *task_dup) { 4555 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4556 KMP_DEBUG_ASSERT(task != NULL); 4557 if (nogroup == 0) { 4558 #if OMPT_SUPPORT && OMPT_OPTIONAL 4559 OMPT_STORE_RETURN_ADDRESS(gtid); 4560 #endif 4561 __kmpc_taskgroup(loc, gtid); 4562 } 4563 4564 // ========================================================================= 4565 // calculate loop parameters 4566 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4567 kmp_uint64 tc; 4568 // compiler provides global bounds here 4569 kmp_uint64 lower = task_bounds.get_lb(); 4570 kmp_uint64 upper = task_bounds.get_ub(); 4571 kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag 4572 kmp_uint64 num_tasks = 0, extras = 0; 4573 kmp_int64 last_chunk = 4574 0; // reduce grainsize of last task by last_chunk in strict mode 4575 kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks; 4576 kmp_info_t *thread = __kmp_threads[gtid]; 4577 kmp_taskdata_t *current_task = thread->th.th_current_task; 4578 4579 KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, " 4580 "grain %llu(%d, %d), dup %p\n", 4581 gtid, taskdata, lower, upper, st, grainsize, sched, modifier, 4582 task_dup)); 4583 4584 // compute trip count 4585 if (st == 1) { // most common case 4586 tc = upper - lower + 1; 4587 } else if (st < 0) { 4588 tc = (lower - upper) / (-st) + 1; 4589 } else { // st > 0 4590 tc = (upper - lower) / st + 1; 4591 } 4592 if (tc == 0) { 4593 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid)); 4594 // free the pattern task and exit 4595 __kmp_task_start(gtid, task, current_task); 4596 // do not execute anything for zero-trip loop 4597 __kmp_task_finish<false>(gtid, task, current_task); 4598 return; 4599 } 4600 4601 #if OMPT_SUPPORT && OMPT_OPTIONAL 4602 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); 4603 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 4604 if (ompt_enabled.ompt_callback_work) { 4605 ompt_callbacks.ompt_callback(ompt_callback_work)( 4606 ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data), 4607 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 4608 } 4609 #endif 4610 4611 if (num_tasks_min == 0) 4612 // TODO: can we choose better default heuristic? 4613 num_tasks_min = 4614 KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE); 4615 4616 // compute num_tasks/grainsize based on the input provided 4617 switch (sched) { 4618 case 0: // no schedule clause specified, we can choose the default 4619 // let's try to schedule (team_size*10) tasks 4620 grainsize = thread->th.th_team_nproc * 10; 4621 KMP_FALLTHROUGH(); 4622 case 2: // num_tasks provided 4623 if (grainsize > tc) { 4624 num_tasks = tc; // too big num_tasks requested, adjust values 4625 grainsize = 1; 4626 extras = 0; 4627 } else { 4628 num_tasks = grainsize; 4629 grainsize = tc / num_tasks; 4630 extras = tc % num_tasks; 4631 } 4632 break; 4633 case 1: // grainsize provided 4634 if (grainsize > tc) { 4635 num_tasks = 1; 4636 grainsize = tc; // too big grainsize requested, adjust values 4637 extras = 0; 4638 } else { 4639 if (modifier) { 4640 num_tasks = (tc + grainsize - 1) / grainsize; 4641 last_chunk = tc - (num_tasks * grainsize); 4642 extras = 0; 4643 } else { 4644 num_tasks = tc / grainsize; 4645 // adjust grainsize for balanced distribution of iterations 4646 grainsize = tc / num_tasks; 4647 extras = tc % num_tasks; 4648 } 4649 } 4650 break; 4651 default: 4652 KMP_ASSERT2(0, "unknown scheduling of taskloop"); 4653 } 4654 4655 KMP_DEBUG_ASSERT( 4656 tc == num_tasks * grainsize + (last_chunk < 0 ? last_chunk : extras)); 4657 KMP_DEBUG_ASSERT(num_tasks > extras); 4658 KMP_DEBUG_ASSERT(num_tasks > 0); 4659 // ========================================================================= 4660 4661 // check if clause value first 4662 // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native) 4663 if (if_val == 0) { // if(0) specified, mark task as serial 4664 taskdata->td_flags.task_serial = 1; 4665 taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied 4666 // always start serial tasks linearly 4667 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4668 grainsize, extras, last_chunk, tc, 4669 #if OMPT_SUPPORT 4670 OMPT_GET_RETURN_ADDRESS(0), 4671 #endif 4672 task_dup); 4673 // !taskdata->td_flags.native => currently force linear spawning of tasks 4674 // for GOMP_taskloop 4675 } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) { 4676 KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu" 4677 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 4678 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 4679 last_chunk)); 4680 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4681 grainsize, extras, last_chunk, tc, num_tasks_min, 4682 #if OMPT_SUPPORT 4683 OMPT_GET_RETURN_ADDRESS(0), 4684 #endif 4685 task_dup); 4686 } else { 4687 KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu" 4688 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 4689 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 4690 last_chunk)); 4691 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4692 grainsize, extras, last_chunk, tc, 4693 #if OMPT_SUPPORT 4694 OMPT_GET_RETURN_ADDRESS(0), 4695 #endif 4696 task_dup); 4697 } 4698 4699 #if OMPT_SUPPORT && OMPT_OPTIONAL 4700 if (ompt_enabled.ompt_callback_work) { 4701 ompt_callbacks.ompt_callback(ompt_callback_work)( 4702 ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data), 4703 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 4704 } 4705 #endif 4706 4707 if (nogroup == 0) { 4708 #if OMPT_SUPPORT && OMPT_OPTIONAL 4709 OMPT_STORE_RETURN_ADDRESS(gtid); 4710 #endif 4711 __kmpc_end_taskgroup(loc, gtid); 4712 } 4713 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid)); 4714 } 4715 4716 /*! 4717 @ingroup TASKING 4718 @param loc Source location information 4719 @param gtid Global thread ID 4720 @param task Task structure 4721 @param if_val Value of the if clause 4722 @param lb Pointer to loop lower bound in task structure 4723 @param ub Pointer to loop upper bound in task structure 4724 @param st Loop stride 4725 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 4726 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 4727 @param grainsize Schedule value if specified 4728 @param task_dup Tasks duplication routine 4729 4730 Execute the taskloop construct. 4731 */ 4732 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4733 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, 4734 int sched, kmp_uint64 grainsize, void *task_dup) { 4735 __kmp_assert_valid_gtid(gtid); 4736 KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid)); 4737 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 4738 0, task_dup); 4739 KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid)); 4740 } 4741 4742 /*! 4743 @ingroup TASKING 4744 @param loc Source location information 4745 @param gtid Global thread ID 4746 @param task Task structure 4747 @param if_val Value of the if clause 4748 @param lb Pointer to loop lower bound in task structure 4749 @param ub Pointer to loop upper bound in task structure 4750 @param st Loop stride 4751 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 4752 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 4753 @param grainsize Schedule value if specified 4754 @param modifer Modifier 'strict' for sched, 1 if present, 0 otherwise 4755 @param task_dup Tasks duplication routine 4756 4757 Execute the taskloop construct. 4758 */ 4759 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4760 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4761 int nogroup, int sched, kmp_uint64 grainsize, 4762 int modifier, void *task_dup) { 4763 __kmp_assert_valid_gtid(gtid); 4764 KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid)); 4765 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 4766 modifier, task_dup); 4767 KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid)); 4768 } 4769